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Abstract

Floating Production, Storage and Off-loading units (FPSO) are often refitted tankers that sail to their offshore
location on own propulsion. Here, they are typically moored for twenty years. The rudder is fixed in the cen-
ter by mechanical locking of the rudder machine to avoid unwanted motions. A class society’s study showed
that many FPSO’s face challenges with rudder locking; the loads can be more damaging in moored condition
than in sailing conditions. Class societies recommend to remove the rudder or to keep the steering motors
running. Both solutions are costly and troublesome. Therefore, mechanical locking is highly preferred. How-
ever, the design of such a locking construction requires a detailed load assessment.

The hydrodynamic loads on the rudder are caused by wave oscillations, current and ship motions. The loads
are complex and governed by flow separation. The engineering application provokes the desire for an un-
complicated load prediction. This research tries to give an answer to the question whether it is possible to
predict the complex loads with a calculation model that only requires the undisturbed flow pattern and load
coefficients depending on the rudder’s shape.

Little research is executed to rudders with oscillating flow patterns perpendicular to its blade. Towing
tank experiments are executed rather than computational simulations, as validation of the latter could not be
guaranteed. The problem is isolated to a rudder model only. Within this study, two rudder models are tested,
one with a typical rudder shape and one with a more simple, rectangular form. In the latter, by using pressure
sensors — fitted in the model — an in-depth flow insight around the rudder is obtained. A hexapod oscillated
the rudders in regular roll and sway. Currents were imposed by driving the carriage.

The results of the towing tank experiments show that only the Morison model - extended with the third
and fifth term of its Fourier’s expansion — gives an appropriate description of the force history in sway oscil-
lation. The regular 2-coefficient form of the Morison model underestimates the peak loads, which is of vital
importance. It is only due to the peak loads possible to study the fatigue and ultimate strength of the rudder
locking system.

When flow fields of sway oscillations and currents perpendicular to the rudder’s blade are combined, the 'rel-
ative velocity’ Morison model - depending on both flow velocities — is expected to present the most accurate
load prediction. However, the model shows large discrepancies with the measured force histories. This is a
striking result, as the ‘relative velocity’ Morison model is found best applicable in similar studies to cylinders.
Despite the presence of the current, the measured force histories are surprisingly symmetrical over the oscil-
lation’ cycle. Therefore, the Morison model which does not take currents into account, presents better results.

In order to use the Morison model, empirical coefficients are required. These coefficients depend on the
Keulegan-Carpenter (KC) number: a dimensionless number that substantiates the relation between the os-
cillations’ amplitude and the generated vortices. The influence of the vortex generation and -shedding on the
loads cannot be stressed enough. The frequency independence found in this study substantiates this. The
rudder’s aspect ratio of 1.5 allows vortex separation around all four edges. The magnitude of both the inertia-
and drag coefficient is lowered by a factor two, compared to the coefficients of infinite length flat plates. The
lift profile and the flat plate profile show comparable results and clear trends are discovered between the
third- and fifth order load coefficients and the KC number. The pressure sensors provided valuable insights
in flow behaviour. The free surface’s vicinity increased the wake’s irregularity.

Oscillations with a non-uniform velocity profile over the rudder’s span are likely in ocean environments.
Unfortunately enough, the results of the roll oscillation experiments could not be relied on. Moreover, eighty
to ninety percent of the measured loads accounted for the mass inertia. This significant amount caused a
large sensitivity on the hydrodynamic loads; a phase’ miscalculation of a few hundredths of a second could
cause significant deviations in the load coefficients. It is recommended to execute experiments with higher
reliability for both sway- and roll oscillations. The study can be extended by enlarging the test matrix. Fur-
thermore, computational simulations can provide more insights in the flow behaviour and loads.

iii






Contents

Abstract v
List of Figures Xiii
List of Tables xvii
1 Introduction 1
1.1 Problemstatement . . . . . . . . . . . . .. e e e e e e e e e e e e e e e e 2
1.2 Researchgoal . . . . . . . . . . . L e 2
1.3 Methodology . . . . . . . . . . e e e 2
1.4 Expectedresults. . . . . . . . . . L e e e e e e e e e e e e e e 3
1.5 Documentstructure . . . . . . . . . . . . . e e e e e e e e e e e e e e e e e e e 3
2 Literature review 5
2.1 Environmentalloads & shipmotions . . . . . . . . . ... Lo L0 0oL 5
2.2 Introduction to fluid dynamics of immersed bluffbodies . . . . . . . . . ... ... ... ... 7
2.3 Establishment of the Morisonmodel . . . . . . . . . . . ... ... ... ... .. ...... 11
2.4 Experimental studies towards the load coefficients . . . . . . .. ... ... ... 0L 14
25 Knowledgegaps. . . . . . . . ... e 19
2.6 Objectives. . . . . . . . . e e e e e e e 20
3 Experimental method 21
3.1 Descriptionofthemodels. . . . . . . . . . . .. e 21
3.2 Description of the testfacilities . . . . . . . . . . . . . . . L 23
3.3 TestmatriX . . . . . . . . e e e e e e e e e e e e e e e e e e e e e e 24
4 Signal corrections and uncertainties 27
4.1 Signals’ post-processing . . . . . . . . ..ot e e e e e e e e e e e 27
4.2 FOrcecorrections . . . . . . . . . o v v i i e e e e e e e e e e e e e e e e e e e 28
4.3 Pressuresignal cCorrections . . . . . . . . . . ..ol e e e e e e e e e 32
4.4 UncertaintyAnalysis . . . . . . . . ... L L e 33
5 Analysis of sway oscillation 37
5.1 Forcehistoryand Morisonfits . . . . . . . . . ... L L e 37
5.2 Analysisofpressures . . . . . . . .. L. e e e e e 40
5.3 Loadcoefficients . . . . . . . . . . . . e e e e 44
5.4 DiscusSion . . . . . . . L e e e e e e e e e e e e e e e e e e e 47
6 Analysis of sway oscillation in planar current 49
6.1 Additional theoreticalelements. . . . . . . . . . . . . . ... ... .. 49
6.2 Pressure sensors’ timMetraces . . . . . . . . . . . v v v v b b e e e e e e e e e e e e e e 51
6.3 Forcehistory . . . . . . . . . L e e e 55
6.4 Loadcoefficients . . . . . . . . . . . . e e e e e e 57
6.5 Discussion . . . . . . .. e e e e e e e 61
Conclusions 63
8 Recommendations 65
A Geometry of models 67
Al NACAOO20 . . . . o e e e e e e e e e e e e e e 67
A2 Modelgeometries. . . . . . . . .. L.l e e e e e e 69
A.3 Specifications TU Delft Towing Tank no. 1 and Hexamove . . . . . . .. . ... ... ... .. 70
A4 Modelalignment . . . . . . . . L e e e e e e e e e e 70
A5 Calibrationofsensors. . . . . . . . . . . . e e e e e e e 71



Contents

vi
B Signal corrections 73
B.1 Butterworthfilter . . . . . . . . . . . e e e e e e 73
B.2 Methodof LeastSquares . . . . . . . . . . . . L e e e e e 74
C Signal corrections 77
C.1 PresSSuUr€SEnSOIS . . . v v v v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e 78
D Sway oscillations 81
E Draught variations 87
F Pressure signalsin current 91
G Oscillations in current 97
Bibliography 101



Nomenclature

Abbreviations

KC Keulegan-Carpenter number

Re Reynolds number

AS Aft Side sensor: the pressure sensor positioned at the current’s pressure-side.
CFD Computational Fluid Dynamics

CoG Center of gravity

CoR Center of rotation

FPSO Floating Production Storing and Offloading unit

FS Front Side sensor: the pressure sensor positioned at the current’s front-side
MPM Multi-Point Mooring

SPM Single Point Mooring

Arabic Symbols

i Acceleration in sway-direction

Apps(t) Time-varying hydrostatic pressure

AR Remainder function consisting of the third- and fifth order Fourier terms

i Carthesian unit vector

r Radial unit vector

b Measured time-series, used as input a for the Least Squares solution

F Force vector composed of a force in x- and y-direction

X "Best fit’ column vector of unknown parameters for Least Squares solution

X Unknowns in the Method of Least Squares, collected in a column vector of length n
Ag Cross-sectional area

Ay, n'" order sine-related Fourier terms

As Frontal area of the oscillating body

Al cur Acceleration related Fourier coefficient of the relative velocity Morison model
Arp2 Amplitude of the inertia force during sway oscillations in air

Al pa Amplitude of the inertia force during roll oscillations in air

B, n'" order cosine-related Fourier terms

Bi,cur Velocity related Fourier coefficient of the relative velocity Morison model

Br b2 Amplitude of the drag force during sway oscillations in air
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Ca
Ca,ridj
Cd,Vc
Cdc
Cmc

Fy
Fup,r
Fup,s
Frp2
Frpa

Frp

)

Amplitude of the drag force during rolls oscillations in air

Chord length of plate width

Drag coefficient

Drag coefficient as defined by Ridjanovic (1962)

Drag coefficient as used in the drag equation for constant current
Drag coefficient of the relative velocity Morison model

Inertia coefficient of the relative velocity Morison model

Inertia coefficient

Instantaneous drag coefficient determined with the pressure sensors’ signal
Instantaneous drag coefficient of the body’s front-side
Instantaneous drag coefficient of the body’s wake-side
Instantaneous inertia coefficient of the body’s front-side
Instantaneous inertia coefficient of the body’s wake-side
Instantaneous inertia coefficient of the body’s wake-side
Cylinder’s diameter

Distance between the center of mass and the center of rotation
Root’s submergence

Force on a body in oscillation’s direction

Assumed solution for a Least Squares approximation

Drag force

Force predicted with the Morison model

Force in x-direction on a submerged cylindrical cylinder in uniform flow in x-direction
Hydrodynamic forces on the rudder

Hydrodynamic forces on the rudder stock

Mass inertia force in y-direction during sway oscillation

Mass inertia force in y-direction during roll oscillation

Body mass inertia force

F1 connectingrods Mass inertia force of the connecting rods

FI,frame

FM,cur
Fm,cur

Fsignal

Mass inertia force of the frame

Mass inertia force of the rudder model

Flow’s inertia force

Force predicted with the relative velocity Morison model
Force predicted by the 'relative velocity’ Morison model
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Fyp Body force in x-direction N
G Matrix of size [m - n ], used as input for a Least Squares solution
g Gravitational constant: 9.81 mls?
hy, Plate height m
L Body’s characteristic length m
m Number of vector entries of a measured time series
mg Added mass kg
Meg2 Equivalent mass in y-direction during sway oscillation kg
Meg4 Equivalent mass in y-direction during roll oscillation kg
N Number of input arguments -
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n Positive integer -
p Pressure Pa
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r Measure in cylindrical coordinate system r
Ta Radius of a cylinder m
rq Distance between the center of rotation and model’s geometrical center °
S Surface of a 2D body m
SLSOQR Minimized differences between assumed solution and measured signal with the method of
Least Squares N
T Period of oscillation S
t Time s
T.(1) First zero-crossing of the combined velocity rad
u Local flow in x-direction m/s
Ul(t) Undisturbed flow velocity mls
U.(1) Combined velocity, including both the fluid velocity due to oscillation and the current velocity
m/s
Un Maximum flow velocity in one oscillation cycle m/s
U, Velocity in radial direction, for a cylinder in steady, potential flow m/s
U, Velocity in tangential direction, for a cylinder in steady, potential flow m/s
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Xq Amplitude of oscillation in x-direction m
Xp x-axis of the vessel bounded coordinate system

¥ Displacement in sway direction

Ya Amplitude of sway oscillation m
b y-axis of the vessel bounded coordinate system
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Introduction

Figure 1.1: General layout of a FPSO. MODEC (2016) Figure 1.2: Semi-balanced rudder. Cozanet (2006)

Floating Production, Storage and Offloading (FPSO) units pump up, store and process hydrocarbons

while anchoring offshore. The units are often refitted tankers that sail on own propulsion to their offshore
location. An overview photo of such a refitted tanker is shown in figure 1.1. The ships are typically moored
offshore for twenty to twenty-five years. At its offshore location, the rudder is often fixed in the center by
mechanical locking of the rudder machine.
An inspection, repair and maintenance study of FPSO’s was executed by Lloyd’s Register of Shipping. The
study shows that a significant amount of FPSO’s face problems with rudder locking (Lloyd’s Register, 2003).
The sources for the study included a questionnaire about system failures of their equipment among ten FPSO
operators in the UK continental shelf . Internal communication with a Dutch offshore company pointed out
the same problems. Locking-failure causes unwanted rudder motions and may eventually lead to trouble-
some situations for the ship and the installed operation equipment.

The rudders of large tankers are often semi balanced rudders, which look like the rudder shown in figure
1.2. A drawing of a rudder and the main nomenclature is presented in figure 1.3a. The rudder is connected
with the steering machinery by the rudder stock, that leads to the ship’s hull. The machinery often consists
of a double ram, that is driven by four hydraulic cylinders. A drawing of a typical rudder machine is shown
in figure 1.3. A rudder and its machinery are principally designed for sailing conditions. At service speed
they should be able to maintain and change the course of the ship. At lower speeds, the main function is
manoeuvring. The rudder and machinery should be accounted for all loads in these conditions. In mooring
conditions, no special remarks about rudder- and machinery design is given in the class rules. (Molland and
Turnock, 2007) (Det Norske Veritas, 2007) (Barrass, 2004)

Rudder-locking in the ship’s center is mostly done by mechanical locking of the crosshead of the rudder ma-
chine. One way of doing this, it by placing blocks between the rams and the rampson slides. Another option
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(b) Rudder machinery. Adapted from (BestShip-

(a) Rudder’s nomenclature. pingNews.com, 2018)

Figure 1.3: Drawings of the rudder and the rudder machinery.

is the placement of brackets between the hull and the rudder’s tip. Preferences depend on the original rudder
design and the expected loads.

1.1. Problem statement

Over the last years several FPSO'’s suffered from significant issues with rudder-locking and mechanical break-
downs of the steering gear occurred (Lloyd’s Register, 2003). It appeared that the forces on the rudder in
moored condition can be more damaging than the loads in sailing conditions. Recommendations on how to
handle the rudder of a moored FPSO are currently to remove the rudder if possible, or to keep the steering
motors running (Lloyd’s Register, 2003). Both solutions are costly and troublesome, and internal communi-
cation with a FPSO operator showed that mechanical locking is highly preferred. For the design of such a
mechanical locking construction, the loads on the rudder should be predicted in detail.

1.2. Research goal

The aim of this research is to derive in depth insights in the loads on a rudder of an offshore moored FPSO.
The expected main loads consist of low-speed current and waves. These flows cause complex loads, governed
by separation. In the end, a practical load prediction on the rudder is desired. This study therefore tries to
capture the complex loads in a practical load prediction model. The research question is defined by:

Can the - by separation governed - loads on a FPSO’s rudder in oscillating and steady flow be predicted with a
calculation model that only requires the undisturbed flow and empirical load coefficients?

A lot of parameters influence the loads on the rudder. This research is first on this specific topic. There-
fore the problem is isolated and the focus is laid on the principal flow types that act on the rudder. The loads
in regular oscillation without currents are assessed prior to non-regular oscillation and oscillation with cur-
rent. Furthermore, the diffraction- and radiation effects are minimized, although some attention is given to
the effects on the loads at shallow draughts. The vicinity of the hull is not examined.

1.3. Methodology

This study is started with a theoretical analysis. This analysis forms a theoretical basis of the flow physics and
a coarse prediction of the expected loads in oscillation. However, a literature review only is not satisfactory
to identify the loads on the rudder. In the second part of this study, the loads on the rudder are studied by
experimental means.
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Experimental tests are believed to be a reliable method. Loads can be scaled accurately and the facilities
of the TU Delft’s Maritime and Transportation Technology department make it possible to measure loads and
pressures on an oscillating and rotating scale model. Another method of determining the loads is by Compu-
tational Fluid Dynamics (CFD) simulations. These simulations are generally less expensive than experimental
tests, but with this method correctness cannot be guaranteed. Waves and current can act perpendicular to
the rudder plane, through which a large, turbulent wake area is generated behind the body. Turbulence mod-
els are therefore required and moreover, three-dimensional flow effects make the simulations rather com-
plex. The turbulence and three-dimensionality give rise to uncertainty of the results’ fairness. As only limited
validation data is available, CFD simulations lack reliability. The experimental are validated with experimen-
tal data from Ridjanovic (Ridjanovic, 1962), Keulegan and Carpenter (Keulegan and Carpenter, 1958), Ikeda
(Ikeda et al., 1979) and Sarpkaya (Sarpkaya and O’Keefe, 1996).

The final goal of this study is to capture the complex loads on the rudder in a model, suitable for engi-
neering practices. The Morison model is used for this purpose. Ideally, the model should account for various
flow conditions and correct for free surface effects as well.

1.4. Expected results

The aim of this research is to investigate if the Morison model can predict the rudder loads, using experimen-
tally obtained load coefficients. Therefore, drag- and inertia coefficients of a rudder profile are required. It is
expected that these coefficients are depending on the Keulegan-Carpenter (KC) number, as observed for flat
plates and cylinders as well. New relations between the load coefficients and the KC number are thus fore-
seen. Local flow behaviour is expected to affect the loads, so attention is paid to local pressures, end-effects
and vortex generation.

1.5. Document structure

This report starts in chapter 2 with a literature review. This review includes the expected loads on the rudder
in moored conditions and an analysis of the studies executed on the topic of oscillating bodies. By the end
of this chapter, the knowledge gaps are identified and detailed research objectives set. Chapter 3 describes
the set-up of the experiments. In the subsequent chapter the corrections of the measured signals and their
impacts are elaborated, as well as the experimental uncertainty. Chapter 5 and chapter 6 present and discuss
the results of the sway oscillations in zero-current respectively current conditions. The final conclusions are
drawn in chapter 7 and recommendations are elaborated in chapter 8.






Literature review

This chapter includes an elaboration of the research problem. Theoretical background on the problem is
given and the current state of research is discussed. The last two sections discuss the knowledge gaps and
states the research objectives.

2.1. Environmental loads & ship motions

This first section describes the expected environmental loads acting on the FPSO’s rudder and the ship mo-
tions expected on the offshore location. The coordinate system used throughout this report is described first.

2.1.1. Coordinate system

This report mainly uses a vessel-bounded coordinate system, a coordinate system that is 'attached’ to the
ship and moves along with it. This 'body-bound’ coordinate system is shown in figure 2.1. The body-bound
axis are denoted by xj, y;, and z; and the motions of the vessel in x-, y- and z-direction are called surge-
, sway- and heave. The positive direction of surge is towards the bow. The positive direction for sway is
towards port-side, and an upward heave motion is positive as well. Rotations around the x-, y- and z-axis are
named rolling, pitching and respectively yawing. They are denoted by the symbols ¢, 6 and respectively .
The system is right-handed, so the roll angle is positive if the ship rolls to starboard, the pitch angle is positive
when the bow moves downward and a positive yaw angle is observed for a bow turning to port-side.

2.1.2. Environmental loads

The environmental loads that may act on the rudder are loads induced by ship motions, low-speed currents,
wave orbital motions and wave impact (Van 't Veer et al, 2011) (Ikeda et al., 2004). Their physics and their
possible impact on the rudder are explained in the next paragraphs.

Figure 2.1: Vessel-bounded coordinate system. Journée et al. (2015).
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Wave orbital loads Waves exist of up- and downward moving water particles. These particles make orbital
motions. In deep water with regular waves, the orbital motions are by approximation equal to circles. The
circular motion of the water particles declines over depth. Figure 2.2 shows the circular motions of the parti-
cles. The motions and thus particle velocities in ocean environments can be described by a sine- and cosine
function, depending on among other the wave frequency and amplitude (Holthuijsen, 2007). An arbitrary,
stationary point in the water experiences an oscillating flow velocity and acceleration. Regarding the rudder
blade, the water particles are oscillating relative it, causing a cyclic load. Such a flow is also named time-
dependent or 'unsteady’. (Holthuijsen, 2007)

This fluid oscillation is obviously a simplification. In reality, flow bends around a body. The load, applied by
the undisturbed wave only, is called the 'Froude-Krilov’ wave load. This simplification assumes that the wave
penetrates the rudder or ship without being disturbed. The deflection of wave particles due the presence
of a structure is called the diffraction of the wave. Diffraction causes the fluid flow to become less uniform.
Water particles are diffracted in x-, y- and z-direction and therefore the flow around the rudder is called 'three-
dimensional’. A third fluid velocity component is the flow caused by the motion of the body. This is called
radiation. Radiation waves make the flow less uniform too. Journée et al., 2015)

Wave impact An FPSO can be fully loaded or in ballast condition. In ballast condition, the rudder is of-
ten not fully submerged. Because of that, the rudder can be prone to wave impact loads. This can occur
by means of wave run-up, breaking waves or horizontal wave slamming. According to a damage report of a
FPSO by Lloyd’s Register, severe damage on the steering gear was caused by a wave slam on the rudder. Wave
impact loads may have a large influence on the steering gear break-downs. (Lloyd’s Register, 2003)

In Det Norske Veritas (2007) extensive methods for assessing slamming loads are explained. In these
methods, the load estimation is governed by the lateral area, the relative velocity of the incoming water par-
ticles and the angle of the incoming water mass. The exact shape of the body is thus not taken into account.
Wave impact on the rudder is therefore not picked as governing knowledge gap. (Det Norske Veritas, 2007)
(Faltinsen, 2005)

Currents Low-speed tidal currents and drift motions can cause nearly steady motions. The low-speed tidal
currents at offshore locations have a maximum velocity of 2 to 3 knots (Remery and Oortmerssen, 1973). De-
pending on its direction, the current can impose a drag- and lift component. Waves with a non-perpendicular
angle of attack on the rudder may cause the same effect.

Much research is executed to flat plates and lift profiles in current. The load on the body can often be approx-
imated with a simple drag formula (Sheldahl and Klimas, 1981) (White, 2011). However, it would be unique if
only currents act on the rudder. It is likely that both waves and current act on the rudder, causing a combined
steady-unsteady load model.

Figure 2.2: Orbital motion of water particle in deep water wave. Adapted from Earle (2015).
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(a) Multi-Point mooring system. Shimamura (2002). (b) Single point mooring system with external turret. Shima-
mura (2002).

Figure 2.3: Basic two types of mooring systems.

2.1.3. Ship motion induced loads

In the previous section, the ship was considered as stationary body. Due to wind, waves and current, moored
ships are prone to motions as well. This causes an additional relative flow of the water. In this subsection the
mooring techniques of FPSO’s are discussed first, as it influences the ship’s motions. Subsequently the flow
patterns due to the ship’s motions are discussed.

Mooring techniques FPSO’s are moored in basically two ways. The conventional system is spread mooring
or Multi-Point Mooring (MPM), which is conceptually shown in figure 2.3a. A second system is Single Point
Mooring (SPM) or turret mooring. This system moors the vessel to a single point through which it is able to
weathervane around it. The schematic view of this system is shown in figure 2.3b. A SPM system can have
an external turret or internal turret. Spread moored FPSO’s have a relatively fixed orientation . At locations
where the weather conditions are merely unidirectional, for example at locations with a steady swell, spread
mooring systems are widely used. This system is often lighter and cheaper. When the direction of wind,
waves and currents is likely to vary, a spread mooring system is not preferable any more. In beam seas, large
loads can act on the anchors of spread moored systems, making this option costly and less favourable. SPM
systems are then preferred. (England et al., 2001)

The motions of a vessel depend on the type of mooring. A spread moored vessel can be prone to roll motions,
especially when incident waves have a relative large angle of attack. The roll motions of a SPM moored vessel
are often smaller. Besides roll motions, the vessels can make by approximation steady motions as well. Spread
moored vessels are likely to make low frequency swaying motions and weathervaning of SPM moored vessels
can cause similar low frequent motions. (England et al., 2001)

Unsteady motion induced loads FPSO’s which are refitted tankers can be prone to roll motions induced
by waves. This occurs especially in beam seas, which can be encountered in spread mooring. The rudder is
dragged through the water as a result of the roll motion. This is a similar motion as an oscillating pendulum.
In this condition, the undisturbed flow velocities and accelerations vary over the span of the rudder. The
loads are highly dependent on the flow velocity and acceleration. An unsteady and non-uniform load over
the span of the rudder is thus expected. (Journée et al., 2015)

Steady motion induced loads Nearly steady motions can be induced by a vessel’s motion as well. In spread
mooring the vessel can drift in sway direction. For SPM systems, the vessel can weathervane around the buoy;,
causing transverse currents on the rudder (Ikeda ef al., 2004). Both motions are at low speed and steady by
approximation.

2.1.4. Final notes on environmental loads

The flow pattern around the rudder is influenced by the ship’s mooring system and the types of environmen-
tal loads present at the offshore location. It is likely that a combined steady-unsteady flow pattern acts on
the rudder. Roll motion implies a unsteady, non-uniform flow pattern on the rudder. The hull causes flow
diffraction and radiation, which makes the flow less uniform.

2.2, Introduction to fluid dynamics of immersed bluff bodies
For some of the flow conditions described in the previous section, the steady or unsteady flow direction is
nearly perpendicular to the rudder plane. The rudder then acts as a bluff body; a body that principally ex-
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(a) Cylinder in unseparated, laminar flow. Dyke (1982). (b) Cylinder separated flow. Dyke (1982).

Figure 2.4: Separated and unseparated flow around a smooth cylinder in steady flow.

periences drag through flow separation. It is the opposite of a streamlined body. In this section the basic
working mechanisms of dynamic fluid behaviour around bluff bodies are described.

2.2.1. Physical explanation of the fluid behaviour
The forces on bodies in a fluid are composed of pressures, shear stresses and body forces, like gravity. The
total force is calculated by integrating the pressures and shear stresses over the body’s surface and adding the
body forces, if necessary. When flow observes a body; it is forced to bend around it. Due to this, the pressure
in the fluid increases in the vicinity of the body. In flow without any viscosity, the flow would bend precisely
around the body and back. However, real fluids contain viscosity. This basically is 'resistance’ in the flow,
which depends on the fluid’s velocity. So in fluids that are not at rest, viscosity causes shear stresses on the
body’s surface and may add circulations in the flow. An important measure to evaluate the flow around a
body is the dimensionless Reynolds number Re. It is defined by the steady fluid velocity V, times the body’s
characteristic length L divided by the kinematic viscosity v in m?/s:
Ve L
Re=—— (2.1)
v

In low Reynolds number regions, the flow is generally called laminar. This means that no disorganised layers
and wake fields are generated. If the Reynolds number increases, the flow may become turbulent. This is
a state in which highly disorganised wakes and boundary layers are observed. Figure 2.4a shows a cylinder
in laminar flow and figure 2.4b shows a cylinder with a turbulent wake. In the laminar, steady flow regime,
forces on a body are governed by pressure differences over a body’s surface and shear stresses as a result of
viscosity. In turbulent flow, large pressure suctions are acting on the body. (Kundu et al., 2016)

Boundary layer separation Due to surface roughness effects, a fluid can not have a velocity at the body’s
surface. Near the body’s surface, the fluid velocity increases from zero to the actual local flow velocity around
the body. This thin acceleration layer is called the boundary layer.

When steady or unsteady flows act on a bluff body, the flow can have difficulties in following the body’s curva-
ture. If the flow is not able to follow the body’s curvature any more, an adverse pressure gradient is generated.
At the location of the adverse pressure gradient, the boundary layer separates from the body. Separation de-
pends mainly on the body’s curvature and the fluid velocity. For steady flows it thus depends on the Reynolds
number. Boundary layer separation can occur in both the laminar- and turbulent flow regime. If a body has
a sharp edge, for example a flat plate, separation starts already at very small fluid velocities. The separation
point is distinctively at the edge (Li, 1989) (Graham, 1980). If a body has a rounded edge, for example a circu-
lar cylinder, the flow can follow the body’s curvature up to higher velocities. Separation then starts at higher
Reynolds numbers. Furthermore, the point of separation of rounded edges can vary, as this is a function of
both the curvature and the state of the boundary layer (Bearman, 1984).

When boundary layer separation takes place, the 'former’ boundary layer is dragged along with the flow, to-
wards the wake of the body. The separated boundary layer contains fluid particles with a high velocity, while
the fluid in the wake has a very low velocity. In between these areas, a shear layer is generated. Due to this
shear layer, the separated boundary layer tends to curl. This curl in the flow is called a vortex. The fluid ve-
locity of particles in a vortex is theoretically twice as high as the undisturbed velocity. (Kundu et al., 2016)
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Figure 2.5: Separation of a boundary layer. The velocity profiles and stream lines of the boundary layer are shown. The dashed line
indicates the zero-velocity shear line. Kundu et al. (2016).

In steady flows, the vortex pattern depends on the Reynolds number. If the direction of the flow alternates,
vortices can be generated in alternating directions. In such a flow, the generation of vortices is not by any
means depending on the body’s shape and the Reynolds number. The separation of the boundary layer and
the generation of vortices alters the pressure on the body and the shear stress at the body’s surface. This may
have a significant influence on the fluid forces on the body.

2.2.2. Mathematical description of forces on a body in uniform flow

The flow around a body in uniform flow can be approximated by a mathematical model. This mathematical
model is used further in this study and is therefore derived here in detail. The derivation is executed for a for
a cylinder of infinite length, but the mathematical concept is valid for any body in uniform flow.

The flow is assumed inviscid and incompressible. The cylinder is placed vertical, so its cross-section lays in
the horizontal x-y plane. Gravity is therefore neglected. The cylinder is assumed to have an infinite length,
and therefore the flow in z-direction is assumed nil. As explained in the previous subsection, the forces on a
submerged body are calculated by integrating the pressures and shear stresses over the body’s surface. In this
example, the flow is assumed inviscid, so no shear stresses act on the body. The force vector F contains the
forces in x- and y-direction per unit length on the two-dimensional body. The vector is described by (Sarpkaya

and Isaacson, 1981)
F:ff—pﬁds (2.2)
S

in which S is the body’s surface, p the pressure and i the unit vector normal to the surface, as pressure acts
per definition perpendicular to the surface. For a circular 2D cylinder, it is convenient to rewrite the equation
in polar coordinates. This is shown in equation 2.3. The Cartesian unit vector f is replaced by the radial unit
vector i = (") = (3), as pressure only acts in radial direction. The cylinder radius r, is added, as it is required
for proper integration.

21
F :f —ptrgda 2.3)
0

This study focusses on the drag- and inertia loads, which are both in the direction of the flow. Only the
loads in the direction of the flow, the x-direction, are thus examined. The term cos(a) is the projection on the
x-axis, and (1) is the radial term 7, of the radial unit vector; elaborating the equation to

2n
Fx:f —-p()cos(a)rqda 2.4)
0

The only unknown in equation 2.4 is the pressure on the body’s surface p. The pressure in unsteady flow
can described by the unsteady Bernouilli equation, which can be derived from the Navier-Stokes momentum
equation. Assuming inviscid flow, these reduce to the Euler equations. This reduced equation is shown for
the flow in x-direction, denoted by u, but is reduced in y- and z-direction in the same way.

0u Ou Ou ou _Op

—+ + tw—=Fy — —— 2.5
ot Yox T Vay T Waz T hax (2:5)
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Figure 2.6: Parameters and symbols used to mathematically describe the forces on a cylinder in uniform flow.

When the flow is assumed irrotational, the rotation vector should be zero. Using this condition, the three
Euler equations reduce to one equation,

0 1
pﬂ+—p(u2+y2+wz)+p—w=F(t) (2.6)

ot 2
in which ¢, is the velocity potential that satisfies u = V¢,,. ¥ are the body forces on the structure, for example
gravity, which are assumed zero in this example. For conservative body forces, the equation is rewritten into

0pp 1 2 L5

— +-plwl"+p+y= +-pu 2.7
a7 2p|z|pw;voozp1 2.7

This equation assumes inviscid, incompressible and irrotational flow and is known as the unsteady Bernoulli

equation along a streamline. Substituting equation 2.7 in equation 2.4 and neglecting differences in hydro-

static pressure results in

2n 1 2n 0¢
Fy :/ Ep(lugl - Iullz)cos(a) rqda + pEcos(cx) rqeda (2.8)
0 0

The first part of this equation relates to the drag on the cylinder and the second part to the added mass. The
equation can be solved if the flow pattern is known. For the cylinder in steady, potential flow the velocity field
shows

2
Uy =Ucos(a)(1- %) (2.9)
r2
Ue = Usin(a) (—1 - r—g) (2.10)
7’2
¢p(r,@) = Ucos(a) (r+ 7“) (2.11)

with U, the velocity in radial direction and U, the velocity in tangential direction. And thus:

2t U r2

Fiy =f rap5- (r + —“) cos?(a)da

0 t r 2.12)
=2nrip—
aP 57

The drag is by definition related to the viscosity, which is absent for potential flow. Integrating the equation

underneath results in zero if calculated over the entire circle; this is known as the D’Alembert paradox. How-

ever, the parameters to which the drag force on the body is related is of interest, so calculating F; only over



2.3. Establishment of the Morison model 11

-pi/2 tot pi/2 reveals the related quantities.

/2
Fq= f ‘%P(Uz—(—2Usin(a>)2)cos(a)rad“
/1

12 ) (2.13)
= Zor,U?
3Pla

Finally, the drag force can be written in the following form, in which C; represents the body shape- and
viscosity related drag coefficient.

1
F;= Ecd,oDU2 (2.14)

The inertia force F;; can be rewritten in terms of a body-shape depending inertia coefficient C,, as well.

au
Fii=C 2 _— 2.15
it=CmpTry di (2.15)
Combining both terms gives the total, theoretical force on the body. C,, can be determined analytically for
inviscid, irrotational flow.

du 1
Fx=CnpAo——+ 5cdpDU2 (2.16)

The inertia force Fy; consists of a buoyancy part and a part due to entrainment of the fluid. The coefficient
Cy, is can therefore be split in 1+ C,, in which 1 relates to the buoyancy part and C, to the added mass. The
buoyancy part consists of a pressure gradient acting on the body due to the fluid’s acceleration. This force
is equal to the mass of the fluid displaced by the structure times the acceleration of the flow. It is therefore
called a buoyancy force. The added mass component is the force due to entrainment of fluid by the body.
The magnitude of the force depends on the acceleration of the flow, the fluid density and a body’s shape. The
body’s shape is captured in the added mass coefficient C,. The drag works in the opposite direction of the
body’s velocity. (Shafiee-far, 1997) (Blevins, 1990). (Sarpkaya and Isaacson, 1981)

2.2.3. Real loads on bluff bodies

Equation 2.16 is derived using potential flow theory and is assumed to be valid for laminar, unseparated flow.
When flow separation occurs, time-dependent viscous hydrodynamic forces become important and their
characteristics depend on the wake pattern around the bluff body (Ikeda, 1983). The analytically determined
load coefficients in equation 2.16 are not valid any more, as is the equation itself, theoretically.

The drag coefficient may change due to shed vortices that add additional pressure gradients on the body.
Besides that, the cyclic initiation of the generation of vortices may add additional loads on the bluff body
(Sarpkaya and Isaacson, 1981).

Also the inertia coefficient is not necessarily equal to the potential flow load coefficient. The changes in the
added mass are not a direct result of separation but originate from changes in the state of the flow.
Experimental studies showed that the equation can still describe sinusoidal loads on bluff bodies, if the load
coefficients are adapted to account for the time-dependent viscous forces (Keulegan and Carpenter, 1958).
Numerous experimental studies are executed to determine the load coefficients for various bodies with di-
verse edges under a range of sinusoidal loading conditions.

Sinusoidal flow around bluff bodies The first subsection showed that oscillatory flows are often found in
offshore problems; waves cause an oscillating flow on structures and vessels are prone oscillating motions. An
oscillating flow is often represented by a simple sine function. This implies that the loads on the body reverse
direction every half cycle. Vortices may therefore be generated in alternating directions as well. Their sizes
and strength depends among others on the frequency of oscillation. In oscillations with a small amplitude,
vortices may not be shed, where in oscillations with a large amplitude a full Von Karman vortex street may be
generated.

2.3. Establishment of the Morison model

Loads on oscillating bluff bodies are governed by separation of the flow and the formation of vortices. This
makes it rather complex to calculate the loads on the body. Therefore calculation models are developed to
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approximate these loads. The most commonly used model is the Morison model, which predicts the loads
without describing the detailed, separated flow patterns. This section starts off with the derivation of the
Morison model. Subsequently the load coefficients required in this model are derived by means of a Fourier
analysis. Finally an extension of the Morison model is discussed, known as the Morison model with higher
harmonics.

2.3.1. The Morison model for unsteady flow

The Morison model is established in 1950 as a model that approximates the forces on fixed cylinders in a time
varying flow field. The model uses the undisturbed flow velocity and acceleration and geometry of the body.
The latter is included by empirical coefficients. The model predicts the load with a two-coefficient Fourier fit,
assuming higher order effects can be neglected. The strength of this model is its simplicity and convenience
in use, as only load coefficients and the undisturbed flow description is required.

Although the prediction is a coarse approximation, research showed that loads on cylinders are predicted
accurately (Tanaka et al., 1982). Keulegan and Carpenter found this formula applicable to flat plates as well,
although the accuracy of the prediction was significantly lower. Limitations in describing the exact force his-
tory were found as well as an underestimation of the peak force. The inclusion of higher order Fourier terms
improved the accuracy. (Keulegan and Carpenter, 1958) (Van 't Veer et al., 2012) (Sarpkaya and Storm, 1985)

Equation 2.16 shows the in-line forces on a body in steady flow. The undisturbed velocity U(t) of a sinu-
soidally oscillating flow can be presented by:

U(t) =-Upycos(wt) (2.17)

with U, the maximum flow velocity during an oscillation cycle and w the angular velocity in radians per
second. The angular velocity is related with the oscillation period by w = 27” The time ¢ is in seconds. The
fluid acceleration is the time derivative of 2.17:

au(e
dt

=wUy,,sin(wt) (2.18)
The motion is expressed in terms of the maximum velocity per oscillation by:
Un .
x(t) = ———sin(wt) (2.19)
w

Equation 2.18 and 2.19 are both depending on the sine, although they have opposing signs. The inertia load
acts in phase with the acceleration and is thus acting opposite to the motion. The velocity is described by a
cosine term. The drag, related to the velocity U(#), has a positive phase shift of 7 compared to the motion.
Compared to the inertia term, the drag has a phase lag of 7. Expressing all equations in sine form, clearly
shows the phase shifts relative to the motion:

x(t) = —x4sin (wt)
— 3 T
U(t) = —Up, s1n(wt+ E) 2.20)

du(y)
dt

=—-wUysin(wt+m)

The Morison model is obtained by substituting equation 2.17 and 2.18 in equation 2.16, which is principally
designed for circular cylinders:

1
Fn(t) = CppWoUpwsin(wt) + ECdpASUﬁllcos(wt)lcos(w 1) (2.21)

In this equation Aj is substituted by Vp, the reference volume of the body, and D is substituted by A, the
frontal area of the body. The force F,, () is the in-line force on the cylinder. The equation can be written per
unit body length by replacing A, with the diameter D and V; with the sectional area.

2.3.2. Derivation of the load coefficients
For use of the Morison equation the drag- and inertia coefficients are required. Due to viscous flow separa-
tion, it is not possible to determine them analytically. Empirical studies are executed to determine them from
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time traces of measured forces. This section elaborates the methods for deriving the coefficients from time
traces. For periodic functions, a Fourier series expansion can be used as an approximation of the measured
loads. The load coefficients C,,, and C, are related to the first two Fourier-coefficients. (Journée et al., 2015)
As the undisturbed flow velocity is periodic, the measured force is assumed periodic and symmetrical as well.
Writing this assumption in a mathematical way shows (Keulegan and Carpenter, 1958):

Flwt)=-F(wt+m) (2.22)

This symmetrical form implies that only the odd-numbered Fourier coefficients are taken into account for a
Fourier-series expansion (Keulegan and Carpenter, 1958) (Journée et al., 2015):

F=A;sinwt+ Azsin3wt + Assinbwt +...+ Bycoswt + B3 cos3wt + B5cosbwt +... (2.23)

A; and By are the first order terms and related to the inertia- respectively drag coefficient of the Morison
equation. At the location of the dots in equation 2.23, higher order terms can be added. It is assumed that
these have a minor influence and therefore ignored.

Obtaining the Fourier coefficients The two most used methods for determining the coefficients of equa-
tion 2.23 are time-averaging Fourier analysis and the method of Least Squares. The time-averaging Fourier
analysis establishes the coefficients by evaluating the following integrals (Keulegan and Carpenter, 1958):

1 2n

A, = —f Fsin(nwt)dt (2.24)
T Jo
1 2n

B, = —f Fcos(nwt)dt (2.25)
T Jo

The method of Least Squares uses linear algebra to obtain the coefficients, through which it is convenient
numerical method for large time traces. The method minimizes the difference Srsor between the assumed
solution f (A, By, A3, B3, As, Bs) and the measured load F. The length of the vector denoting the difference
between the solution and the measured load is thereby diminished (Lay et al., 2016):

Stsor=)_(F-f; (al,bl,a3yb3,a5,b5))2 (2.26)

The expected form of the prediction function is required; this is the Fourier expansion of equation 2.23. A
elaborated explanation of the algebraic steps used to obtain the ’least squares fit’ is included in B.2. The
input parameters for the Least Squares fit of the Fourier coefficients are described in section B.2.2.

Construction of the load coefficients To obtain the drag- and inertia coefficients as used in the Morison
equation, the Fourier coefficients need a multiplication. The relation between the load coefficients and the
Fourier coefficients is obtained by a comparison of equation 2.21 and equation 2.23. The relation between
A and the inertia coefficient follows directly from this comparison (Keulegan and Carpenter, 1958) :

Ay

Cpn=—"7"-
" pVoUw

(2.27)
The Morison equation is not equal to the 2-coefficient Fourier fit, as the Morison equation contains the
cos(wt)|cos(wt)| term in stead of a single cosine term. The Fourier coefficient B; therefore needs an addi-
tional correction to be consistent with the cosine term in the Morison equation. To determine this correc-
tion, [cos(wt)|cos(wt) is replaced by itss Fourier series expansion. It is obtained from its inner product ratio
(Keulegan and Carpenter, 1958) (Van 't Veer et al., 2015):

27
o cos(wt)|cos(wt)cos(nwt)dt
lcos(wD)|cos(t) =) o (2n)l whcos(nwt)
n=0 o cos?(nwt)dt (2.28)

=ap+ajcos(wt)+ axcoswt)+ azcosBwt) +...

In this relation, the coefficients of the odd numbered » are defined by:

n+l 8

an = (—1) 2 m (229)
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And thus a; = %, as = % and as = —%. The coefficients of all even numbered n are equal to zero. The
equation |cos(w?)|cos(wt) = aj cos(wt) + az cos(3wt) + as cos(5wt) is subsequently substituted into the de-
sired form of the cosine part Morison equation Bi |cos(wt)|cos(wt) + Bé cos(Bwt) + Bg cos(bwt). A corrected

coefficient B}, is used for B,. This gives:

B (a1 cos(wt) + az cos(3wt) + as cos(5wt)) + By cos(Bw1) + Bg cos(5wt) 250
= Blajcos(wt) + (Bjas + By)cos(Bw?) + (B as + By)|cos(5wt) ’
The term Bi a; should be equal to the B; term of the Fourier series expansion 2.23 and the term Bi as + Bé to
Bs. The corrected coefficients are thus (Keulegan and Carpenter, 1958):

’ Bl 3n
Bj=—="B
a) 8
’ as 1
B3 =B3——By=B3— =B (2.31)
a) 5

’ as 1
BSZBS—a—lBIZB5+£Bl

The drag coefficient as used in the Morison equation, equation 2.21, is thus related by Fourier coefficient B;
by:
3

- B (2.32)
4pA0U,%1 !

Cq=

2.3.3. Morison model with higher harmonics
The 2-coefficient Morison model is very well applicable to cylinders (Keulegan and Carpenter, 1958) (Shafiee-
far, 1997). If the model is used for flat plates, the Morison model often underestimates the peak load (Keule-
gan and Carpenter, 1958) (Van 't Veer ef al.,, 2015). Keulegan and Carpenter (1958) found that the difference
between the measured force and the force described by the 2-coefficient Morison equation is mainly a func-
tion of four higher order Fourier coefficients. Keulegan and Carpenter (1958) speaks of this as the remainder
function’:

AR = azgsin(3wt) + B cos(3w1) + as sin(5wt) + BL, cos(5wt) (2.33)

The accuracy of the load prediction model can be increased by extending the Morison equation with this
‘remainder part’. This function is shown underneath and throughout this thesis is will be referred to as the
6-coefficient Morison model:

1
F(t+ey,) = CmpVOUmwsin(wt)+ECdpAoU,ZnIcos(wt)lcos(wt) (2.34)

+ Az sin(3w1) + Bj cos(Bw 1) + As sin(5wt) + B cos(5w1)

In some cases, the Morison model could be used in its 4-coefficient format, which includes the coefficients
Cm, Cq, az and Bj are used.

2.4. Experimental studies towards the load coefficients

For use of the Morison equation, the drag- and inertia coefficients of the body are required. Due to viscous
flow separation, it is not possible to determine them analytically. The load coefficients found by Keulegan
and Carpenter (1958), by Ridjanovic (1962) and by Tanaka et al. (1982) are of high interest for this study. The
next subsections discusses them.

2.4.1. Load coefficients of infinite length flat plates

Keulegan and Carpenter (1958) did extensive experimental research to the load coefficients of cylinders and
flat plates. The experiments were conducted in a water basin with a standing wave in which they placed
cylinders and flat plates with their length nearly equal to the basin’s width. The cylinders and flat plates are
therefore regarded as of infinite length, through which the results considered for two-dimensional bodies. A
schematic drawing of the test set-up is shown in figure 2.7a. Keulegan and Carpenter found that the mag-
nitude of the load coefficients depends on the oscillation’s frequency. They captured this frequency in the
non-dimensional period parameter, which is afterwards named the Keulegan-Carpenter number:

UnT

KC=— (2.35)
D
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(a) Schematic test set-up of the experiments of Keulegan and (b) Drag coefficients of a flat plate and cylinder of infinite
Carpenter (1958). Adapted from Keulegan and Carpenter length, found by experimental research of Keulegan and Car-
(1958). penter (1958)

Figure 2.7: Test set-up and results of the experimental tests by Keulegan and Carpenter (1958).

Uy, is the maximum oscillation velocity, T the period of oscillation and D diameter of the cylinder of the
plate’s height k), (Keulegan and Carpenter, 1958).

The tests were executed for a large range of KC numbers. Several cylinder- and flat plate models were used
to account this large range. The results of the drag- and inertia coefficients are shown in figure 2.7b. This
figure only shows the data for KC < 20, but Keulegan and Carpenter (1958) tested up till a KC number of 125.
The load coefficients are defined as in equation 2.32 and 2.27.The graph shows that the drag on the flat plates
drastically increases for decreasing KC numbers. The drag on the cylinder shows a more moderate course and
has a maximum of approximately 2. The inertia coefficients of the cylinder increases towards a steady-state
value of 2. The differences between the drag coefficients of the cylinder and the flat plate are explained by the
formation of vortices. At small amplitudes, no vortices are generated around the cylinder. Around the sharp
edges of the flat plate, vortices are always generated, resulting in a drastic drag coefficient increase.

2.4.2. Load coefficients of finite length flat plates

Ridjanovic (1962) tested flat plates with varying aspect ratios, defined as the plate length over the plate height,
connected to a swinging pendulum. He obtained the drag on the plate by decay analysis by assuming that
the dissipated energy per swing is a result of the drag acting on the plate. He ignored the fluids’ mass inertia
component. It is possible that the drag coefficients obtained by Ridjanovic are therefore found larger, as they
may include a part of the inertia load as well. He defined the drag coefficient as:

-2F

- 2.36
phpcUZ, (2.36)

Cariaj =

with ¢ the width of the plate. A selection of his results are shown in figure 2.8. The KC number uses c as char-
acteristic body length. The graph shows that for large KC numbers, the drag coefficient tends towards of 2.
The drag of the low aspect ratio plates decrease more drastically than the high aspect ratio plates. Ridjanovic
observed that the energy of a vortex generated by an oscillating plate is about 1.8 times larger than the energy
of a vortex in a vortex trail.

Ridjanovic observed that flow separation took place around all edges. He concluded that the smaller the
aspect ratio of the plate, the more energy is lost and the smaller the drag. This phenomenon is known as the
‘end effects’ of a body. The higher drag coefficients in oscillatory flow compared to steady flow is, according
to Ridjanovic, due to the periodic formation of starting vortices and the partially formed wake. (Ridjanovic,
1962)
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Figure 2.8: Drag coefficients of flat plates with different aspect ratios, found by Ridjanovic (1962).

2.4.3. Load coefficients cylindrical bodies & corner radii’ influence

Research on oscillating cylindrical bodies is executed by Tanaka et al. (1982). Cylindrical bodies refer to round
cylinders, squares and plates with various thickness. The two-dimensional bodies were oscillated horizon-
tally in a water tank. The corner radii are varied moreover. Figure 2.9a and figure 2.9b show the load coef-
ficients measured for plates with a thickness over plate ratio of 0.3 respectively 0.2. The corner radii of the
plates are varied and defined by a ratio 2r/h, in which r is the radius of curvature and # the height of the
plate. The minimum ratio was 0, referring to a 90 degrees edge, and the maximum ratio defined an edge as a
quarter circle of radius r.

Figure 2.9a shows the results of the thicker plate. The figure shows that the drag coefficient does not in-
crease drastically for small KC-numbers, as observed for the flat plates of Keulegan and Carpenter (1958) and
Ridjanovic (1962). The drag coefficient shows a similar trend as Keulegan and Carpenter’s cylinder, but is
somewhat larger in magnitude. Plate D, with a thickness over height ratio of 0.2, does follow the flat plate
trends, but with a more moderate course. For both C and D, the plates with sharp edges have larger load
coefficients than those with rounded edges.

Bearman (1984) studied cylindrical cylinders at the same moment as Tanaka et al. (1982). He tested two
dimensional square cylinders with various corner radii, varying from a sharp edged cylinder to a circular
cylinder. He found equal results as Tanaka et al. (1982); both the drag as the inertia coefficient decreased for
an increasing rounding of the edge. He stated that due to the oscillatory flow, the wake is swept back around
the body, which may lead to a fully turbulent fluid around the body. Further, he stated that turbulence delays
separation. He suggests that a rounded edge causes the boundary layer to separate further downstream.
(Bearman, 1984)

2.4.4. Research on oscillating bilge keels

FPSO'’s are prone to roll motions. Therefore, bilge keels are fitted to the hull to increase the roll damping. The
bilge keels oscillate with the roll frequency of the ship and are often simple flat plates. This makes that the
loads on bilge keels have similarities with the loads on the rudder. Several researches are executed to obtain
insights in the flow behaviour around bilge keels and to predict the magnitude of the bilge keel damping.
Ikeda et al. (1979) established an empirical equation to predict the drag coefficient of a bilge keel. The only
variable in this equation is the KC number, in which he used twice the bilge keels’ plate height (Ikeda et al.,
1979):

Cq= 22.5 +2.4 (2.37)

4= kc T '
Sarpkaya and O’Keefe (1996) executed research on oscillating flow around bilge keels as well. He tested both
two- and three dimensional flat plates adjacent to a wall and tested a free plate for reference as well. The bilge

keels had a higher drag coefficient than a similar sized free plate, especially at small amplitudes of oscillation.
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found by Tanaka et al. (1982). found by Tanaka et al. (1982).

Figure 2.9: Load coefficients of oscillating square cylinders, found by Tanaka et al. (1982).

They found that the wall acts as a symmetry plane for vortices. A bilge keel should therefore be treated as
a free plate of twice the height of a bilge keel, defining the KC number by twice the plate height instead of
once. The trend of the inertia coefficient showed a different behaviour as well. The trends are shown in 2.10.
In these graphs, the coefficients of a infinite length bilge keel is presented, as well as two square bilge keels.
The infinite length bilge keel shows a distinctively larger drag coefficient than the square bilge keels. Also the
inertia coefficient is slightly larger.(Sarpkaya and O’Keefe, 1996)

In the past two decades, several researches are done on bilge keels at FPSO’s, both experimentally as nu-
merically. Van 't Veer et al. (2011) published a research in which model tests of two FPSOs in irregular waves
were executed. A clear trend was found between the drag coefficient on the bilge keel and the KC number,
which coincided with the empirical measurements on flat plate drag. Furthermore it was stated that the size
and intensity of the detached vortex are good qualitative indication of the amount of roll damping. (Van 't
Veer et al., 2011)

2.4.5. Research on load prediction models for co-existing flow fields

Loads on offshore structures depend rarely of only wave or roll oscillations. Swaying of the ship or the pres-
ence of an offshore current can impose a steady flow on the model. This gives rise to a co-existing flow field:
a flow combined of time-dependent oscillations and steady current. Superimposing the oscillating load and
the steady load is not likely to give a good prediction model as the load on the rudder is governed by sepa-
rating vortices (Sarpkaya and Isaacson, 1981). The separation is directly influenced by the ambient flow, so a
combined flow field is likely to alter the loads. However, little research is done on bluff bodies in co-existing
flow fields. The few studies executed are shortly mentioned hereafter and include studies to circular cylinders
and bilge keels.
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Figure 2.10: Load coefficients of oscillating bilge keels, found by Sarpkaya and O’Keefe (1996).

Sarpkaya and Storm (1985) did research on the forces on a translating cylinder in an oscillating fluid. They
adapted the Morison equation to describe the force-history (Sarpkaya and Storm, 1985):

Focur = pCmCAOZ—LtI +1/2pCy.D (V. — Uy, cos(wi)) |V, — Uy, cos(wi)] (2.38)
This model is often referred to as the 'relative velocity’ Morison model, as it does not superimpose the vari-
ous flow fields, but captures these fields in a combined flow field. The force-history and the prediction by the
'relative velocity’ Morison model for a smooth cylinder in low-speed current and a KC number of 12, is shown
in figure 2.11. Sarpkaya and Storm (1985) found that the equation 2.38 describes the force well, but only if
load coefficients obtained in non-zero current conditions, C,,, and Cg,, are used. Regarding these load co-
efficients, they found that the drag coefficient drops with increasing translating velocity and that the inertia
coefficient increases. Furthermore they found that for KC < 30, the Morison drag equation is only applicable
with load coefficients obtained in non-zero current conditions. For cases with KC > 30, the zero-current load
coefficients can be used.

An extensive dissertation study on oscillating cylinders in a steady current is executed by Shafiee-far
(1997). He compared a broad range of prediction models and found that only the 'relative velocity’ Morison
model shows a proper agreement with the force-history. ’Absolute velocity models’, which take each velocity
component separately into account, were misinterpreting the exact force history.

Ikeda et al. (2004) published a paper on the effects of steady flow on the vortex shedding of oscillating
bilge keels. They found that, due to the steady flow, the drag on the bilge keel increased. Furthermore, the
roll damping moment shows a non-symmetrical course over one oscillation and is not proportional to the
roll angular velocity any more. The applicability of the Morison model is not directly assessed in this study.

2.4.6. Pressures in oscillating flows
In their research on bilge keel damping, Ikeda et al. (1979) measured the hull surface pressure created by bilge
keels. They assumed that the pressures measured on the hull close to the bilge keels represented the pressure
on the bilge keel surface as well. It was found that the pressure in front of the bilge keel was almost constant
for different KC numbers. The pressure on the wake side of the bilge keel depended on the vortices shed and
therefore the KC number. As the integrated pressure over both the front- and back side of the bilge keel is
theoretically equal the normal force on the bilge keel, the following dependency was obtained (Ikeda et al.,
1979):

Cpa=Cp-C,4 (2.39)

in which C, ; is the pressure coefficient and the + and — sign represents the bilge keels front- respectively
wake-side. The coefficient C; 4 approximated the constant value of 1.2. Ikeda et al. (1979) used the following
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definition for the pressure coefficient. He took the pressure P; at the moment of maximum velocity Uy, so
at the moment that the pressure is drag-dominated.

__Pa
1/2pU?,

A similar definition for the inertia coefficient can be used. Ikeda did not take this coefficient in account, but
it will be used in this way in this study.

Cpa (2.40)

Py
Copi=——"——
1/4nDpwU,,
In this equation, Py is the pressure at the maximum acceleration wU,,. The relation is derived from F; =

(2.41)

2
Py Ag = CpVowUy,, in which V) is the reference volume, set to %h and Ag = Dh the frontal area. The
instantaneous inertia coefficient is defined as:

Cpm=Cy,-C,

ol (2.42)

with C; ; the pressure coefficient at the front surface and C; ; the pressure coefficient at the wake side.

2.5. Knowledge gaps

The previous section discussed the current state of knowledge regarding the loads on oscillating bodies. Ac-
cording to this current state, knowledge gaps are identified. Many studies were executed to obtain the load
coefficients of various bodies in oscillating motion. The quality of the Morison model was assessed in some
studies as well. However, as stated in the first section of this chapter, the oscillating fluid load is not likely
to have an uniform velocity profile over the rudder’s span. No research on how to account for this varying,
oscillating velocity distribution flow field is executed so far. It is expected that the steady current has a defi-
nite influence on the eddy-shedding behaviour. However, its influence on the rudder loads is unknown. The
knowledge gaps are summarized below. They apply to both flat plates and lift profiles in an oscillating flow.

¢ Inertia coefficients are only known for two- and three edge separation and not for four edge separation.

¢ The influence on the loads on an object with a varying flow velocity and acceleration over its length is
unknown.

¢ The free surface influence is unknown.
* Theloads in a combined flow field of steady currents and oscillating flow are unknown.

» The possibilities of using a simple engineering model to estimate the oscillating loads including the
influences listed above are unexplored.
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2.6.

Objectives

With the knowledge gap and the research goal, the research objectives are set and listed underneath.

To quantify and explain the loads on the rudder in regular sway oscillation.

To quantify and explain the loads on the rudder in regular sway oscillation and currents, acting perpen-
dicular to the rudder’s blade.

To quantify and explain the loads on the rudder model in regular roll oscillation, with and without low-
speed currents, acting perpendicular to the rudder’s blade.

To quantify and explain the loads on the rudder in a combined regular roll-sway oscillation.

To analyse the influence of surface effects and oscillation frequency on the loads on the oscillating
rudder model.

To propose a load prediction model for a rudder in regular sway oscillation and include the required
load coefficients.

To propose a load prediction model for a rudder in an oscillation with a varying velocity magnitude
over its span and include required load coefficients.

To propose a load prediction model for a rudder in regular sway oscillation and current and include the
required load coefficients.



Experimental method

Figure 3.1: The models used for the experiments. Left: flat plate model. Mid: Lift profile. Right: 18 mm aluminium rod.

The objectives of this research consist of determining the loads on the rudder in sway- and in roll oscilla-
tion. The effect of current during this oscillation is analysed as well. To assess these objectives, towing tank
experiments are executed. Oscillations in roll and sway are imposed by an hexapod underneath the towing
tank’s carriage. Currents are simulated by driving the carriage at constant speed. This chapter elaborates the
set-up of the experiments. Consecutively, the models, the test facilities and the test matrix are discussed.

3.1. Description of the models

The experiments are executed with a rudder model only. This isolates the problem and reduces the com-
plexity of the flow. The main advantage is the avoidance of hull radiation and diffraction, through which the
undisturbed flow can be derived by a simple sinusoidal function. The presence of a known undisturbed flow
makes it more feasible to draw generic conclusions. This is preferable, as hull diffraction- and radiation flow
patterns vary ship by ship.

The research objectives consist among others of explaining the loads during oscillation. For this, in depth
knowledge of the local flow is required. The rudder model is therefore fitted with membrane pressure sen-
sors. These sensors require a significant amount of space inside the model. Due to this, the rudder model is
designed as a thin, rectangular box. It is the left model of picture 3.1. The model is symmetric and has four
identical edges. The amount of geometrical variables is thus limited. However, literature shows that loads on
sharp edged models in in-plane oscillation are much higher than those on rounded edged models (Tanaka

21



22 3. Experimental method

Table 3.1: Main dimensions of flat plate model and lift profile. The stock location is the distance between the leading edge and the stock
axis.

Flat plate model Lift profile

Thickness [mm)] 20.0 25.2
Chord length [mm] 125 125.3
Stock location [mm)] 31 31
Diameter pressure sensor hole [mm] 40.0 -
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Figure 3.3: Numbering of the membrane pressure sen-
Figure 3.2: Schematic view of the membrane pressure sensor connected to the sors
air-room

et al., 1982). The loads on a lift profile, which is a typical conversion FPSO rudder shape, might thus differ
with the flat plate model. Therefore, a lift profile is tested to obtain a more reliable estimate of the forces. In
this model, no membrane pressure sensors could be fitted.

Rudder geometries The main dimensions of the models are defined using four conversion FPSO’s as refer-
ence. For confidential reasons, the dimensions of these ships are not included in this report. A height over
chord ratio of 1.5 is used, as this is a common ratio for FPSO rudders and experimental validation data is
available for this aspect ratio (Ridjanovic, 1962). The main dimensions of both models are shown in table 3.1.
The thickness of the flat plate model is limited by the size of the membrane pressure sensors. A minimum
thickness over chord length ratio of 0.2 was required for obtaining flat plate characteristics instead of box- or
cylinder characteristics (Tanaka et al., 1982). The flat plate model has a ratio of 0.16.

The NACA0020 shape is used as lift profile. For large, sea-going vessels, the NACAO0O series tends to be
the most standard shape (Molland and Turnock, 2007). The thickness varies between 15 to 25 percent of the
chord length. Figure A.1 in appendix A.1 shows that the NACA0020 shape with a thickness over chord length
ratio of 0.2 and the simplified rudder root contour of a conversion FPSO are in good agreement (Hyundai
Heavy Industries, 2014) (Ladson et al., 1996). The ordinates and shape equation of the NACA0020 shape are
shown in appendix A.1. Drawings of the two models are included in appendix A.2, figure A.2a and A.2b.

Pressure sensors Five membrane pressure sensors of type PDCR 42 S/N 4432 are fitted in the flat plate
model. The membrane connects to a small room with air. This room is in open connection to the surround-
ing water by a small hole with a diameter of 4.0 mm. These holes are visible in figure 3.3. The numbering
of the sensors is also included in this figure. The most often used way to fit membrane pressure sensors in a
ship model, is by placing the membranes in direct connection to the surrounding water. The use of a room
with air might alter the measured loads slightly. Capillary effects can influence the measured pressure and
the rooms may add a small damping term. The reason for using this set-up is the model’s thickness. By using
of aroom, the sensor could be fitted parallel to the rudder’s chord instead of perpendicular to the chord. This
resulted in a model with a much smaller thickness.
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Figure 3.4: Flat plate model supported to six component frame underneath the Hexamove.

On both models piezoresistive point load cells, of type FlexiForce Standard A201, were glued as a try-out.
Figure 3.1 shows the models with these additional sensors. Unfortunately the signals were not clear enough
to include in this study. Most likely they failed due to a wrong gluing process.

The water tightness of the flat plate models is modelled by a humidity sensor. This sensor was fitted at the
lowest point inside the model. A leakage can increase the mass of the model and, when it comes into contact
with the pressure sensors, the resistance of the sensors may change. To monitor the water tightness of the
models, a humidity sensor was fitted at the lowest point inside the model.

3.2. Description of the test facilities

The experiments are executed in towing tank no. 1 of the TU Delft. Oscillations of the model were imposed
by an oscillator, called the Hexamove. The set-up of the experiment is shown in figure 3.4. The Hexamove can
impose oscillations in all six degrees of freedom. These motions are measured with a Certus motion camera,
which measures the location of four led lights on a plate connected to the model. This led light plate is the
most left square plate on figure 3.4. Certus is calibrated prior to performing the tests. Specifications of the
tank and the Hexamove are included in appendix A.3. Underneath the Hexamove, a frame is attached to
measure the forces in all six degrees of freedom. To the lower plate of the frame, the model is fixed with a
clamp that constrains the model vertically. A laser is used to align the model horizontally with respect to the
measurement frame. A picture of this set-up is included in appendix A.4 figure A.3.

Six component frame The measurement frame underneath the oscillator is a six component frame. It con-
sists of two horizontal plates, six load cells and connecting rods. The upper plate is connected to the oscil-
lator’s platform. Six load cells are connected to this upper plate. The connecting rods connect the load cells
to the lower plate, to which the model is connected. Loads acting on the model and then transmitted to the
lower plate of the six component frame, which transmits the loads via connecting rods to the load cells. The
connecting rods transmit the loads in a specific direction, which is either x, y or z. A horizontal rod in x-
direction transmits loads in x-direction, a horizontal rod in y-direction transmits the loads in y-direction and
vertical rods connect to load cells that measure forces in the z-direction. The six load cells are fitted in such
a way, that they measure the loads in all six degrees of freedom. The upper plate is assumed to have a rigid
connection to the oscillator’s platform. The alignment of the frame relative to the oscillation- and towing
direction is measured by dragging the 18 mm aluminium rod through the tank. Rotating the frame for 0.65
degrees gave no forces in y-direction.
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Figure 3.5: Graphic of the six component frame with two load cells in z-direction

Calibration of sensors The six load cells consist of two 5-kg load cells in x-direction and one 5-kg load cell
in y-direction. In z-direction, three 10-kg load cells are used. They are calibrated by conventional means
and contain a deviation between the calibration factor and the measured data of 0.5 percent at most. The
hysteresis of the individual load cells was negligible. The membrane pressure sensors are calibrated with
hydrostatic pressure tests. A deviation between the calibration factor and the measured data is 2.5 percent at
most. A description of the calibration measurements in included in appendix A.5, as well as graphs describing
the linearity of the sensors.

Signal processing Allload cells and pressure sensors measure a voltage for every applied load. This is a very
small and analogue signal. Therefore, all signals are amplified first and filtered at 100 Hz. Subsequently, they
are sampled at 1000 Hz to convert the analogue signal into a digital one. The signals of the motion camera
are sampled at 100 Hz.

3.3. Test matrix

The test matrix is shown in table 3.2. The loads in steady- and unsteady motion are measured in sway and roll
motion. Roll-oscillations either used the rudder root as center of rotation (root-roll) or the ship’s virtual center
of gravity (CoG-roll). This virtual center of gravity is estimated 60 mm above the root, regarding geometries
of reference FPSO’s. The next paragraphs substantiate the choices made in the test matrix.

Roll oscillations With the roll oscillation experiment, the objective was to find the inertia- and drag coeffi-
cients for a non-uniformly undisturbed flow, and to verify if the Morison model is applicable for this undis-
turbed flow. Roll oscillations are executed around two points of rotation. A 'pure roll’ situation is examined
by rotating around the rudder’s root. This roll oscillation is an academic set-up, as it is not likely to happen in
reality. A more realistic case is roll oscillation around a virtual CoG. This oscillation consists of both a transla-
tion and a rotation for all points on the rudder blade. The results of both tests can be compared, and used to
establish an engineering model that estimates the loads on a plate or rudder with varying KC numbers over
the height of the plate.
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Table 3.2: Test matrix

Flat plate Lift profile
Oscillation mode Frequency Current velocity  Draught  No. of amplitudes No. of amplitudes
Sway 0.31Hz - 237.5mm 5 amplitudes
- 287.5mm 3 amplitudes
- 337.5mm 1 amplitude
- 387.5mm 10 amplitudes 7 amplitudes
0.06 m/s 387.5mm 5 amplitudes 2 amplitudes
0.11m/s 387.5mm 5 amplitudes 2 amplitudes
0.17m/s 387.5mm 5 amplitudes 2 amplitudes
0.62 Hz - 287.5mm 1 amplitude
0.06 m/s 387.5 mm 5 amplitudes
0.11m/s 387.5 mm 5 amplitudes
0.17m/s 387.5 mm 5 amplitudes
- 387.5mm 9 amplitudes 9 amplitudes
Root-roll 0.31Hz - 187.5mm 1 amplitude
- 237.5mm 5 amplitudes 5 amplitudes
0.06 m/s 237.5 mm 5 amplitudes
0.11m/s 237.5mm 4 amplitudes 5 amplitudes
0.17m/s 237.5mm 5 amplitudes
- 287.5mm 2 amplitudes
0.62 Hz - 237.5 mm 3 amplitudes
0.06 m/s 237.5 mm 2 amplitudes
0.11m/s 237.5 mm 2 amplitudes
0.17m/s 237.5 mm 2 amplitudes
- 287.5mm 1 amplitude
0.11 m/s 287.5mm 2 amplitudes
CoG-roll 0.31 Hz - 237.5mm 6 amplitudes 5 amplitudes
0.06 m/s 237.5 mm 1 amplitude
0.11m/s 237.5 mm 1 amplitude
0.17m/s 237.5mm 1 amplitude
0.62 Hz - 237.5 mm 3 amplitudes
0.06 m/s 237.5 mm 1 amplitude
0.11m/s 237.5 mm 1 amplitude
0.17m/s 237.5 mm 1 amplitude

Scaling The experiments are executed on scale. The model’s dimensions, the current velocities and the
oscillation frequencies are scaled with Froude scaling. This means that the Froude number is kept equal for
both full- and model scale. The Froude number is defined by the undisturbed velocity divided by the square
root of the gravitational constant times a characteristic body length. This implies that gravity is kept constant
and that the fluid viscosity is not scaled properly. Experimental research showed that there is little or no effect
of the Reynolds number, a measure of viscosity’s influences (Keulegan and Carpenter, 1958). Therefore it is
assumed that the improper scaled viscosity does not noticeably affect the results.

The model scale current velocities represent offshore currents of a maximum of three knots. The tests with
current are limited to current directions perpendicular to the rudder plane. This is believed to be the harshest
condition. Furthermore, in this condition the flat plate resistance, which is governed by viscosity, is negligible.
The flat plate resistance due to currents that act on the rudder under an angle, the viscosity might not be
neglected.

Oscillations’ frequencies The tests are mainly executed at 0.62 Hz. This is a typical, scaled, natural fre-
quency of roll for FPSO’s. The natural period of roll of FPSO’s varies between 11 and 16 seconds, which
among others depends on their ballast condition. This period is moreover an often-occurring wave peri-
ods in the North Atlantic Ocean (International Association of Classification Societies, 2001). It is thus likely
that vessels may encounter this frequency. Unfortunately, 0.62 Hz is a quite demanding frequency for the
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oscillator, and not all amplitudes can be reached at this frequency. Therefore tests at 0.31 Hz are executed as
well, as experimental research showed that the frequency of oscillation has minor or negligible influence on
the dimensionless loads. This assumption is will be verified with experiments.

KC numbers’ ranges A range of amplitudes is tested for every case, as a KC number dependency is foreseen.
The general definition of the KC number is defined in equation 2.35. In this study, the models make sinusoidal
motions. Therefore it is convenient to express the KC number in terms of the oscillation’s amplitude. The
maximum velocity in a cycle Uy, is equal to the amplitude y, times the angular velocity of the oscillation w.
The period T is equal to %” For rudders, the chord length c is used as characteristic dimension. In sway
motion, the KC-number can thus be defined as:
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KC (3.1
In roll motion, it is convenient to rewrite the equation in terms of the roll amplitude. The maximum velocity
of the model is during one cycle is equal to the roll amplitude ¢, times angular velocity w times the distance
between the center of rotation and the model’s geometrical center r;. Using this definition, the KC number
is defined by:

_2m-pa-1q
- C

KC (3.2)

The range of KC numbers should consist of number that can be encountered by a moored FPSO. The ex-

pected environmental conditions are therefore examined. Regarding the wave scatter diagram of the North
Atlantic Ocean, the highest significant wave height is 16.5 m. The corresponding wave period is 11.5 seconds.
The maximum expected wave height in a 3-hour storm condition is by a rule of thumb equal to 1.86 times the
significant wave height. The maximum wave height is then 15.3 m. A rudder chord of 10 m, a dimension es-
timated from reference FPSO’s dimensions, results in a KC number of 9.6. Journée et al., 2015) (Holthuijsen,
2007) (International Association of Classification Societies, 2001)
Waves combined with ship motions eventually result in higher KC numbers. Therefore, the maximum KC
number would ideally be larger than the maximum KC number calculated by the expected wave occurrences.
The range is limited by the oscillator’s reach and the model’s dimensions. In sway, amplitudes up to 250 mm
can be reached. In roll the reach is up to 21°. The minimum used amplitudes are 10 mm for sway and 6° for
roll. This equals KC numbers between 0.5 to 12.6 in sway and 0.8 to 2.8 in roll .

Draught variations Variations in draught are included to obtain insights in possible free surface effects.
Most of the tests are executed at the largest draught to minimize the surface effects. For rotation, this maxi-
mum draught is smaller due to limitations of the oscillator. The free surface effects in roll are assumed smaller
than in sway, as the model has no large motions near the surface. In this report, the draught will often referred
to as 'the root’s submergence’, D,. The dimension is defined as the distance between the root and the water
level.

Duration of the tests Tests were performed for 180 seconds. The time between two subsequent tests de-
pended on on the disturbance of the water; small oscillation amplitudes only caused little disturbances of
the ambient water. When no waves were observed visually and no underwater waves were measured by the
pressure sensors, a new test run was started. The time in between two subsequent tests varied from 3 to 20
minutes.



Signal corrections and uncertainties

The raw signals measured in the experiments need post-processing. The signals are first filtered. The filtering
method is explained in section 4.1. Thereafter, the force signals are corrected for the mass inertia and hydro-
dynamic loads of the rudder stock. This is explained in section 4.2. Section 4.3 presents the corrections of the
pressure signal. The last section of this chapter discusses the uncertainties of the experiments.

4.1. Signals’ post-processing

The load signals contain significant noise and are therefore filtered with a Butterworth filter. Graphs of the
normalized spectral density of load cell 2 and pressure sensor 3 are shown in figure 4.1. The signal of the load
cell mainly contains high frequency noise. The pressure sensor’s signals shows a small energy peak around
a frequency of 7 Hz. Besides high frequency noise, low frequency noise may be present too. This can be
caused by low frequent waves in the tank, which may especially be present at the end of a test day or -week.
The high frequency bound is 7 Hz, the low frequency bound 0.06 Hz. The signals of the motion camera are
filtered with a Butterworth low-pass filter. These signals did not contain noise, but occasionally showed small

discrepancies. The signals were filtered at 1 Hz. A detailed explanation of the Butterworth filter is included in
appendix B.1.
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(a) Normalized spectral density of load cell F2 at 0.31 Hz 100 (b) Normalized spectral density of sensor P3 at 0.31 Hz 100
mm oscillation. mm oscillation.

Figure 4.1: Normalized spectral density.

The method of Least Squares is a calculation method to find the 'best fit’ solution for a mathematical
problem. This method is used in this study to calculate the Fourier coefficients and to correct for the phase
of the model’s oscillation. In appendix B.2.1, the method of Least Squares is elaborated.
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Sway oscillation
——

—

F 1, connecting rods

—)
F I, frame

F HD;s

—
Fup, |

Figure 4.2: Schematic view of all loads measured by a load cell in sway direction

4.2. Force corrections

In the experimental set-up the rudder and the six component frame itself are oscillated. By Newtons second
law, a mass inertia force is therefore acting on the oscillated body. This force is the same force as experienced
when sitting in a accelerating or braking car. The magnitude of this force depends on the mass of the body
and the acceleration magnitude. The Morison equation only accounts for the hydrodynamic loads on the
body. The mass inertia loads are thus be subtracted from the measured loads first. This accounts for both
the sway- and the roll motion, although the corrections are not the same for both oscillation types. The mass
inertia correction in sway motion is described in subsection 4.2.1 and the correction in roll motion in sub-
section 4.2.2. Furthermore, hydrodynamic loads are acting on the rudder stock. Although these loads may be
present in real conditions, a correction is desired to compare experiments at different draughts and to vali-
date the results with other experimental studies. The correction method of the rudder stock is described in
subsection 4.2.3.

A schematic view of the test set-up and the forces acting on it is shown in figure 4.2. Is shows the forces
when the model decelerates. The conceptual force components are written in equation 4.1. In order to cap-
ture the hydrodynamic forces acting on the rudder, Fyp,, the signal of the load cells Fy;g,,4; is corrected with
the mass inertia force F; ; and the hydrodynamic loads of the rudder stock Fpp s. The mass inertia force Fy
is composed of the terms Fy,;, Fi frame and Fr connectingrods Shown in figure 4.2.

Fsignal =Fup,r — Frp+ FHD,s 4.1)

4.2.1. Mass inertia loads in sway oscillation
According to Newtons second law, the mass inertia force is a function of the body mass and its acceleration.
The mass inertia force Fr, can therefore be described by equation 4.2:

Frpo =Meg2-j 4.2)

in which j is the body’s acceleration and m,4. the equivalent mass of the body. The subscript 2 denotes that
sway oscillation is considered. An equivalent mass is used instead of the real body mass, because the acceler-
ating mass is not completely equal to the total mass of the frame. Figure 4.2 shows parts of the set-up in green,
blue and black. This is a schematic view of the different masses and their assumed contribution to the mass
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Figure 4.3: Equivalent masses of the six component frame only, the frame with flat plate model and the frame with the lift profile

inertia force. The green parts are assumed to fully contribute to the mass inertia force. The connecting rods
and parts connecting to the load cells, shown in blue, are not surely contributing to the mass inertia force.
Another factor that may cause deviations between the equivalent mass and the absolute mass are swinging
of cables. To obtain the equivalent mass, oscillations in air in air are executed. They include oscillations with
the six component frame only, the flat plate model and the lift profile at both 0.31 Hz and 0.62 Hz for a range
of amplitudes.

In air, drag is assumed nil. Therefore the measured force is expected to be in-phase with the acceleration:
Frpp=—Meg2- yaa)2 sin(wt) (4.3)

To verify this assumption, the measured loads are fitted to a sine- and cosine component:
Frpo (1) = Apppsin(wt) + By pp cos (wi) (4.4)

The coefficients A; p» and By p, are obtained with the Least Squares method. The coefficients A; p» and By p»
are included in appendix C, figure C.5 and C.6. The coefficient Aj ;, shows a nearly linear trend. The co-
efficient By, shows a large scatter for both frequencies and is at most 5 percent of A; . Due to the large
scatter and small magnitude, the drag term is neglected. The measured force is thus congruent with its ex-
pected form shown in equation 4.3. The equivalent mass is subsequently derived by dividing Aj 1, by the
acceleration’s amplitude y,w?:

Alb2
Yaw?
Figure 4.3a and figure 4.3b show the equivalent masses in 0..31 Hz respectively 0.62 Hz oscillations. The fig-
ures show that for amplitudes larger than 60 mm, the equivalent masses are nearly constant. Furthermore,
the figures show that the equivalent masses deviate slightly for the two frequencies. At 0.62 Hz the mean
equivalent mass is 0.2 kg lighter. It is expected that the measurements at 0.62 are more accurate, as the loads
are higher and the load cells are therefore loaded in their midrange which lowers their noise-to-signal ratio.
In appendix C two inertia runs are included. Figure C.1 shows the load Fy for a 0.31 Hz oscillation with an
amplitude of 20 mm. Figure C.2 shows a 0.62 Hz run with an amplitude of 250 mm. The noise to signal ratio’s
differ significantly. In these graphs, two mass inertia fits are plotted as well. One fit has an equivalent mass of
14.3 kg and the other a mass of 14.6. The differences of the fits are marginal and one can easily observe that
both lines fit the 0.31 Hz oscillation equally well. The 0.62 Hz equivalent masses are therefore used.

(4.5)

Meg2 =

The equivalent masses are 14.3 kg for the measurement frame only, 15.2 kg for the lift profile and 15.6 kg
for the flat plate model. The differences between the masses are by approximation similar to the measured
weights of the models, which are 0.8 kg respectively 1.2 kg. The cables above the end of the stock are not taken
into account in this measurement, but they can add a some weight as well.
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Figure 4.5: Results of roll oscillations in air of the six component frame, the frame with flat plate model and the frame with the lift profile

4.2.2. Inertia loads in roll oscillation

The roll oscillations are executed by rolling the oscillators platform, the model and the frame around an
arbitrary Center of Rotation (CoR). Also for this oscillation type, mass inertia forces are important and are
subtracted from the measured force. The most straightforward way to do so, is by distracting the loads per
individual load cell. This approach uses the ’body-bound’ coordinate system, a coordinate system that ro-
tates with the frame or model. For this research the forces in the body-bound system are of interests, as the
loads are predicted for locking the rudder machine. However, gravity and buoyancy forces are static forces
that always act in the 'earth-bound’ z-direction. Depending on the instantaneous roll angle, these forces are
thus partly measured by load cells in z-direction and in y-direction.

The buoyancy force is not measured for oscillations in air, and can thus not be subtracted directly with the air
measurements. The static buoyancy force is equal to the submerged volume of the body times the density of
the water times the gravitational constant. For the flat plate, this is 4.7 N. This is 3 percent of the mass inertia
force, 15.6-9.81 = 153. The influence of the varying buoyancy force over the roll angle is therefore neglected.
It is thus possible to correct the mass inertia correction in the body-bound coordinate system.

Roll oscillations in air are executed for a range of amplitudes and for different CoR’s. Oscillations are
executed with the six component frame only and the frame with one of the models attached to it. The load
cells measuring the inertia loads in y-direction showed clear sinusoidal signals. Their amplitude and phase
are determined with the method of Least Squares:

F1pa = Appasin(wt) + By pacos (wt) (4.6)

In rigid body dynamics, the force in y-direction due to rotation around the x-axis is known as the tangential
acceleration of mass. One can write this into:

Frpa = mMeqsy
= meq4dmd; 4.7)

= MegadmPaw? sin (o + €1 ps)

with 1,44 the equivalent mass in x-direction during the roll oscillation and d,, the distance between the cen-
ter of mass and the center of rotation. Aj 4 is thus equal to meq4dmgbaw2, so dividing Aj p4 by ¢paw? gives
Meqadyy with unit kg - m, a parameter that should be constant. Figure 4.4a and 4.4e show Aj ;4/¢,in 0.31 Hz
respectively 0.62 Hz oscillation for load cell 2, figure 4.4c and 4.5a for load cell 3.

These figures show that A; p4/¢, is approximately constant over the range of angular velocities. However, a
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variation of the magnitude of the parameter is observed for the different models and the different CoR’s. For
the frame-only measurements at 0.31 Hz, Aj pa/ (/')'u of load cell 2 is the lowest for the the smallest distance
between the oscillator’s platform and the CoR, followed by the largest distance and subsequently the inter-
mediate distance. No explanation can be found for this observation and therefore no clear trend between the
models’ masses and CoR’s can be derived.

The amplitude of the cosine term of equation 4.8 divided by the angular velocity B; p4/¢, is shown in figure
4.4b and 4.4f for load cell 2 and in figure 4.4d and 4.5b for load cell 3. The results are scattered between -0.5
and 1.2 kg - m/s. No trend is distinguished for these results.

As no clear equivalent inertia parameter could be established for roll oscillations, the experiments are
the lowest and highest obtained values. These are equal to 18.9 respectively 20.8 kg - m for Ay 4/, and -
0.5 respectively 1.2 kg - m/s for By p4/¢,. For both load cells in y-direction, the same values are found. The
influence of this spread is discussed in section 4.4.3.

4.2.3. Rudder stock loads
The supporting arm or 'rudder stock’ adds an hydrodynamic load to the total load and is preferably sub-
tracted. Oscillation experiments are executed with an aluminium rod of the same diameter as the rudder
stocks of the models. Sarpkaya and Isaacson (1981) and Keulegan and Carpenter (1958) describe the hydro-
dynamic loads on a circular cylinder with the 2-coefficient Morison model. A simplified model on this is used
here:

Fup,s = Agp,ssin(wt) + Bgp,s cos (wi) (4.8)

For a 0.31 Hz oscillation at 200 mm draught, the measured loads are governed by mass inertia loads. The
load cells were not sensitive enough to measure the drag component properly. As the acceleration-depended
terms showed some results, this term - the added mass term - is taken into account only. The rudder stock
loads is thus simplified by:

Fups=mg-y (4.9)

The added mass is often expressed as a function of the displacement V;,, and the water density p (Sarpkaya
and Isaacson, 1981):

Mg=Cn-p-Vioa (4.10)

in which Cy, is the inertia coefficient of the cylinder. Several empirical studies found inertia coefficients fluc-
tuating around 2 for KC numbers between 0 and 15 (Keulegan and Carpenter, 1958) (Tanaka et al., 1982). The
best fit of the inertia coefficient of the experiments in this study is C;,, = 6. This is higher than the coefficients
found in literature. The total force due to this component is still small, so the higher value can be caused by
inaccurate measurement equipment. An inertia coefficient of 6 accounts for an added mass of 0.3 kg for a
draught of 200 mm.

In sway oscillation, the influence of the hydrodynamic rudder stock loads is thus very minor, although
small waves were visibly generated during the oscillations. The rod is also oscillated in roll oscillation, at 50
mm and 100 mm draught. No visible waves were generated. As the influence of the hydrodynamic rods in
sway oscillation were little, the hydrodynamic loads on the rod in roll oscillation neglected.

4.3. Pressure signal corrections

The hydrostatic pressure varies in roll oscillation over the oscillation cycle. Therefore, the measured pressures
need corrections. The hydrostatic pressure is determined by the water column height above the sensor times
the water density times the gravitational constant. The varying water column is equal to the distance between
the sensor and the CoR, d|p,—cor|, times the cosine of the time-depending roll amplitude. The time-varying
hydrostatic pressure is thus:

Apps(t) = (dipn-corl — dipn-cor) - cOs(P()) p- & (4.11)

Apps(t) is added to the pressure signal, as this signal is corrected for the mean pressure in its mid-position.
The signal and corrected signal of sensor P3 for a 0.31 Hz root-roll oscillation with 14° amplitude is shown in
figure 4.6a. The corrected signal is still a double frequent signal. This behaviour is not as expected and is also
observed for the other sensors and in the other tests as well. Besides that, the noise of the pressure signals in
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Figure 4.6: Pressure signals in roll oscillation and their hydrostatic correction attempt.

roll oscillation is significant, as the distances travelled in y-direction by the pressure sensors were very little
compared to the swaying oscillations. Figure 4.6b shows the signal of P5. This signal contains more noise as
the undisturbed velocity is even smaller near the root. It is not known if the observed double frequent signal
is a result of the high noise grade, faults in the post-processing of the hydrostatic pressure or has a different
source. The signals cannot be used for further analysis.

4.4. Uncertainty Analysis

For the validation of the experiments, it is important to make an estimate of the uncertainty of the exper-
iments. For these experiments, the influence of the uncertainty on the load coefficients is of importance.
The standard method of examining the uncertainty is via the ITTC 2008 regulation for planar motions. This
method is used as a guideline, but in this section only the practical outcomes, the uncertainties of the load
coefficients, are included.

4.4.1. Influence of the time traces’ length

The force signals of two runs at 0.62 Hz oscillation with an amplitude of 60 mm are shown in figure 4.7. The
signals are both filtered first and subsequently corrected for the mass inertia of the six component frame and
the model. In both graphs, the tops and troughs are encircled. The circles indicate a significant variation
in the tops and troughs over the time. This variation can be quantified by the standard deviation. Eleven
runs of 100 mm sway oscillation at 0.31 Hz are executed. The standard deviation of their tops and troughs is
calculated with the following equation:

(Fi peak — F, )?
o= i,peak mean,peak (4.12)
Npeuk -1

in which N is the number of input arguments, in this case the tops and troughs. The eleven runs all have
a duration of 160 seconds. When the entire time trace was used to calculate the standard deviation, the
standard deviation was larger than when only the first 80 seconds were used. This indicates an increasing
inaccuracy over the time. A larger amount of input arguments with a similar accuracy should cause a decrease
of the standard deviation. The inconsistency of the signal can be caused by the disturbances of the water or
diffractions against the towing-tank’s walls. Therefore, only the first 80 seconds of the signals will be used in
the data analysis.

4.4.2. Variation of load coefficients

The load coefficients of all repeat runs are determined and compared. This gives a practical way of assessing
the measurement accuracy’s influence on the load coefficients. Figure 4.7a and figure 4.7b show the results
of identical oscillations. Their mean peak height varies, it is 2.65 respectively 2.76. Figure 4.8a shows 10
seconds of the force histories of both runs. The graph clearly shows that the signal of run 898 has larger
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tops and troughs. The difference between the peaks of the two runs is on average 0.4 N. This accounts for
approximately 10 percent of the total signal’s height. This rather large deviation has a small influence on
the inertia coefficient. The deviation between the both coefficients is only 0.004 [-]. The influence on drag
coefficient is larger, 3.1 for run 736 and 3.3 for run 898.

The time traces of the repeat runs of the 100 mm 0.31 Hz oscillations contain more noise than run 736 and
898, as the loads are in the lower range of the load cells. The largest difference between two peaks is 0.3 N.
The repeat runs show the same load coefficient trends as observed for run 736 and 898. The load coefficients
belonging to the measured forces of the repeat runs are shown in figure 4.8b. Only marginal deviations in the
inertia coefficient are found, but the deviations of the drag coefficient are significant. Their magnitude varies
between 2.7 and 3.4.

4.4.3. Influence of the inertia corrections in roll

Section 4.2.2 showed a large uncertainty of the magnitude of the mass inertia in roll oscillation. For this study,
the influence of the uncertainty on the load coefficients is key. Therefore, these are therefore calculated for
two cases: the minimum and the maximum obtained mass inertia. The results of these two cases for the
CoG-roll at 0.31 Hz of the flat plate are shown in figure 4.9a and figure 4.9b. The figures show that the spread
of results is very large. For the inertia coefficient a spread of 1.5 is found and the spread of the drag coefficient
varies between 2.5 and 0.5. This is obviously too large to draw conclusions from. Moreover, 4.9b shows the
trend that most drag coefficients are negative.

This means that no conclusions regarding the global load coefficients and the force history of the of the
load cells can be drawn. It can thus not be concluded, whether the Morison model is applicable when the
undisturbed flow pattern shows a varying velocity over the height of the model. With that, it is not possible to
establish an engineering model that accounts for a non-uniformly undisturbed flow pattern. Analysis of the
roll oscillations with current is not executed, as this gives the same inaccuracies.

4.4.4. Accuracy of the 10 kg load cells

The moments are measured by the three 10 kg load cells. For determining the loads on the rudder locking
system, the moment around the z-axis is of highest interest. This moment is measured by three 10 kg load
cells. The individual load cells therefore measure a small force. Due to this, the signals of the 10 kg load cells
contain a lot of noise and their signals have a too poor quality to take into account for analysis. The same
counts for the moments around the other axis.

4.4.5. Accuracy of pressure signals
On one side of the flat plate model, 5 pressure sensors are fitted. In an initial state of the test series, the model
suffered from a leakage. Sensor 1 and 2 had their electronic wires connected inside the model. To check if
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the sensors were working properly after the leakage, additional accuracy checks are executed by means of a
vertical sinusoidal oscillation. The signals of sensor 1 to 5 for a 0.31 Hz vertical oscillation with an amplitude
of 75 mm are shown in figure C.7 in appendix C. The graphs clearly show that sensor 1 and 2 do not give the
expected sinusoidal signal, which sensor 3, 4 and 5 do give. Sensor 5 has slightly more noise than sensor 3
and 4. The noise has a bandwidth of approximately 60 Pa for sensor 3 and 4, and 100 Pa for sensor 5.

The sensors are connected to a room with air, which is connected by a 4.0 mm hole to the surrounding
water. Therefore, capillary effects may occur. One of these effects can be a delay in the pressure signal.
The vertical oscillation is believed to cause an hydrostatic pressure difference only. Little water is disturbed,
through which the assumption is made that additional pressures due to flow separation and vortex generation
can be neglected. In figure 4.10a and 4.10b the normalized pressure signals and motion signals are shown.
The figures show that the phase delay of the 0.31 Hz oscillation is very minor, but clearly shows the delay for
the 0.62 Hz oscillation. A second reason for the phase delay between the signal and the motion measured by
the motion camera might be the difference in the sampling rate. The pressure signals are sampled at 1000 Hz
and the camera’s signal at 100 Hz.



Analysis of sway oscillation

This chapter discusses the experimental results of the sway oscillations without currents. Hereby the focus is
laid on four research objectives:

¢ To quantify and explain the loads on the rudder in regular sway oscillation.
» To analyse the influence of the oscillation frequency on the loads on the oscillating rudder model.
¢ To analyse the influence of surface effects on the loads on the oscillating rudder model.

» To propose a load prediction model for a rudder in regular sway oscillation including the required load
coefficients.

The chapter starts with analysing the force histories measured in sway direction and validating the Mori-
son equation on these measured loads. Subsequently, the pressures measured on the flat plate model are
used to clarify the perceived loads. In section 5.3, the load coefficients of the Morison equation are compared
with coefficients of other experimental studies. This is an important validation of the executed experiments.
Variations in draught and frequency as well as the differences between the models are debated in this section
as well. Section 5.4 contains a general discussion of the findings of this chapter.

5.1. Force history and Morison fits

In this section the force histories are discussed first. The differences between the histories at various KC
numbers are stressed. Secondly, the quality of the Morison fit is assessed, through which the validation of the
Morison model as appropriate load prediction model is studied.

5.1.1. Force histories

Figure 5.1 shows the force histories of two runs in blue. In figure D.1 and figure D.1 in appendix D, the force
histories of the lift profile in 0.62 Hz oscillation are presented for the entire range of tested KC numbers.
The two time traces at the lowest KC numbers are governed by noise and therefore lack reliability. The most
striking observations of figure D.1 and figure D.1 are summarized below:

* None of the signals is clearly sinusoidal.

* Most signals show a peak load in between the moment of maximum acceleration and maximum veloc-
ity; in the figures shown at T =60.3s,61.1s,61.9s, ... .

¢ For KC < 4.0, alocal dip is observed at the moment of maximum velocity.

¢ For KC = 6.0, a small shoulder is observed at the moment of maximum velocity. The larger KC, the more
definite the shoulder.

These observations give room to explain the nature of the Keulegan-Carpenter number; a quantity explaining
the relative importance of the drag forces over the inertia forces in oscillatory flow. For KC < 8, the loads are
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Figure 5.1: Force history of both models in 0.62 Hz sway oscillations its Morison- and Fourier fits

classified as 'inertia-dominated’, whereas KC > 13 accounts for a drag-dominated load. KC numbers in be-
tween are often titled as drag-inertia-dominated, a regime in which both have significant importance (Sarp-
kaya and O’Keefe, 1996).

The presence of a dip at the moment of maximum velocity at KC < 4 stresses the small impact of the viscous
drag forces. The enlarging hump at the moment of maximum velocity when KC rises, shows an increasing
influence of the drag.

Figure 5.1 shows the force history of both models in 0.62 Hz oscillation with an amplitude of 160 mm.
The time traces are coarsely the same. The signal of the flat plate model is a little larger in amplitude. Both
models have their peak load at the same moment in the cycle. Clearly, the flat plate model has a more distinct
shoulder at the moment of the maximum velocity. This relates to a larger drag’s influence, provoked by the
larger amount of sharp edges of the flat plate model, inciting a more fierce generation of vortices.

5.1.2. Morison- and Fourier fits

Figure 5.2 shows the force histories of the lift profile in a 0.62 Hz oscillation with amplitudes of 60 mm and
200 mm. The force histories are compared with the normal 2-coefficient Fourier fit, the 2-coefficient Morison
model and the 6-coefficient Morison model, the latter denoted in equation 2.34. Little differences between
the force histories of the lift profile and the flat plate model are observed. Therefore only the fits on the lift
profile are included and discussed. Moreover, the fits on the lift profile are more relevant for the main re-
search goal.

The force histories are visualised by the blue line, the load prediction equations by the broken purple

line and the remainder function, the difference between the force history and the fit, by the red line. The
2-coefficient Morison equation does not represent the force history well. The peak loads are underestimated,
especially for the oscillation at KC = 3.0. Further, the fit has a wider form than the force history just after the
up- and downward zero-crossing. The 2-coefficient normal Fourier fit shows limitations in terms of predict-
ing the exact force history too. It underestimates the peak load likewise. However, the remainder function of
the 2-coefficient Morison fit is found twice as large as the the 2-coefficient Fourier fit for the oscillation at KC
=10.0.
The 6-coefficient Morison equation describes the loads with much higher precision. The peak load is pre-
dicted with a high accuracy as well. A comparison of the 4- and 6-coefficient Morison fit is included in ap-
pendix D, figure D.3 en D.4. At KC = 3.0, the difference between the 4- and 6 coefficient fit is very limited. At
KC =10.0, the 6-coefficient fit describes the peak force with a significant higher precision.

The underestimation of the peak loads by the Morison model is widely known for flat plates. Keulegan
and Carpenter (1958) concluded that the third and fifth term cannot be disregarded for flat plates. They
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recommended to use the 6-coefficient Morison fit. A recent study by Van 't Veer et al. (2015) underlines the
importance of higher order coefficients for peak loads at bilge keels. For cylinders, the 2-coefficient Morison
model describes the time history with much higher precision than observed for flat plates (Sarpkaya and
Isaacson, 1981). This is justified with the edge rounding of the body. The results of this section accentuate
the similarities between the infinite length flat plates and the model with aspect ratio 1.5. Moreover, the lift
profile shows similar characteristics in terms of the Morison’s fit as flat plates and bilge keels.

5.2. Analysis of pressures

This section first discusses the pressures measured at a constant root submergence D, of 200 mm. In the
second subsection, the pressures measured at different draughts are compared.

5.2.1. Regular sway at constant draught

The time traces of the three working pressure sensors in sway oscillation at 0.31 Hz with a root-submergence
of 200 mm are shown in figure 5.3 to figure 5.5. Sensor P3 is the fitted in the middle of the model, P4 is fitted
close to the edge on the right side of sensor P3 and P5 is fitted above sensor P3, near the root. The sensors are
placed on one side of the model, so one sensor observes subsequently the pressure-side and the wake-side
within one cycle. A positive oscillation’s velocity loads the sensors on the pressure-side of the model and a
negative velocity loads them on the wake-side.

Analysis of peaks The highest positive pressure is mostly observed at the moment of maximum, positive
acceleration. After this peak, the pressure declines gradually, although a shoulder is observed at the moment
of maximum velocity. The pressures at the moment of maximum velocity are quite constant and equal 10,
20 and 50 Pa for P3 in the presented figures. The corresponding pressure coefficients C;' 4 obtained with
equation 2.40, are 1.5, 1.1 and 1.0. Ikeda et al. (1979) found a value of 1.2 for bilge keels. The obtained coeffi-
cients in this study show reasonable coincidence. Ikeda et al. (1979) presumed that the variations in the load
coefficients for varying KC numbers are governed by vortex separation and therefore by pressure variations
in the wake. With this reasoning, a constant inertia coefficient C;, ; at the pressure side is expected too. The
height of the pressures at the moment of maximum acceleration over several cycles is considerably constant
and show pressures of 20, 50 and 75 Pa for P3. These correspond to the coefficients 0.9, 1.3 and 1.3, which are
relatively constant too.

The height of the negative peaks is highly variable, especially at P4. This sensor shows a rapid increase
of the troughs. The large, sharp, in height varying troughs indicate a disorganised wake. Their location at P3
and P4 is often at the moment of maximum, negative, velocity. The largest eddies are shed at the moment of
the highest velocity. The amplitudes of the wake peaks are a reasonable result of eddy-shedding event. The
circulation velocity of an eddy is by a rule of thumb twice the undisturbed velocity. An undisturbed velocity
of 0.3 m/s results by Bernoulli’s approximation in %p -0.32 =45N and in %p -0.62 = 180 N when an eddy is
shed. The large negative peaks of the wake-side signals can thus be a reliable consequence of eddy-shedding.
The location of the peak is thus as expected. The larger the KC number, the deeper the troughs. At KC = 3.0,
the positive tops are almost twice as large as the troughs, whereas at KC = 8.0 the troughs are twice as large
as the tops. The appointed inertia- versus drag-regimes are thus conspicuous in the pressure time traces as
well.

Differences between the sensors’ signals The differences between the sensors are pronounced. P3 and P4
show resonable similarities, but P5’s time trace is peculiar. Firstly, the tops of sensor P5 are much larger than
the other two sensors and the troughs have a substantially lower magnitude. Secondly, the location of the
negative peaks differs. This sensor is close to the rudder stock, around which eddies are visibly shed. This
causes additional pressure gradients in general. The vicinity of the rudder stock may also increase the form-
drag, as it may obstruct the flow pattern over the edges. The moderate troughs reveal that no large eddies are
shed in the vicinity of the sensor. The troughs of P5 are often at the moment of maximum, negative accelera-
tion instead of at the moment of maximum, negative velocity. It seems that the pressure at P5 is more inertia-
than drag-dominated. The pressures at P5 may not be a representable pressure in terms of a pressure on a
oscillating flat plate due to the rudder stock’s neighbourhood.
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Figure 5.6: Surface effects of 160 mm sway at 50 mm root submergence

Figure 5.7: Representative areas of pressure sensors

The courses of P3 and P4 show comparison. P4 is close to the edge, through which the the, possibly irreg-
ular, shedding of eddies has a large influence on the pressure measured by this sensor. The rapid increase of
the wake peak confirms this assumption, as a shedding eddy decreases the pressure sharply. P3 is experiences
these pressure differences as well, but as this sensor is placed in the middle of the profile, pressure differences
are a result of a much broader spectrum of sources. Peaks are therefore expected to be more moderate.

Ambient pressure During the loading on the pressure-side, that is when the oscillation’s velocity is positive,
the pressure decreases gradually to a negative value. Before the sensors are loaded as 'wake-side’ sensors, the
pressure has already become negative. This accounts for all sensors, through which it is believed that a lower
ambient pressure is present during the oscillations than in still water. This can be caused by a dynamic pres-
sure or turbidity in the ambient flow, which is not present in still water. Another theory for the pressure drop
is that the model may decelerate more rapidly than the entrained fluid decelerates, through which vortices
are bend around the model before the velocity has become zero. The presence of the near eddies can cause
the pressure drop.

The pressures are positive before de sensors are loaded as 'pressure-side’ sensors. However, the smaller
the amplitude, the closer P4 follows the velocity profile in between the trough and the top. This shows a less
disorganised wake. The pressure increase of P3 is ahead of P4, which can be caused by a larger form-drag at
P3.

Amplitude variations The exactlocation of the tops and trough shifts per amplitude. The tops at higher KC
numbers are more in-phase with the velocity. At lower KC numbers the tops tend more towards the moment
of maximum acceleration. Literature states that at KC numbers smaller than 8, the forces are inertia domi-
nated. At KC numbers larger than 13, they are drag dominated (Sarpkaya and O’Keefe, 1996). When the tops
are more in phase with the velocity instead of the acceleration, the load becomes more drag dominated. This
conclusion is drawn with the force-signals as well.

Frequency variations Two pressure sensor time traces at 0.62 Hz are included in appendix E, figure D.5 and
figure D.6. The courses of these graphs show many similarities with the courses of the same KC number at
0.31 Hz. Only small differences are observed, but these can be due to the sensors’ resolutions. The similarities
between the frequencies indicate that the loads are not depending on the Reynolds number. The assumption
that the loads are governed by separation and eddy-shedding is thus likely to be valid.

5.2.2. Influence of draught on pressures
Sway oscillations are executed on 50 mm, 100 mm and 200 mm root submergence. A comparison between
the tests is done by means of inspecting the pressure sensors’ time traces. In appendix E pressure sensors’
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time traces of 20 seconds are shown. The model is tested at 0.31 Hz with amplitudes of 60 mm, 100 mm and
160 mm. A 10 seconds time trace of the 160 mm amplitude is shown in figure 5.8. Bluntly said, the signals
at the lowest submergence are the most irregular and contain significantly more peaks than the signals at
deeper submergences. The conspicuities of P4 and P5 are elaborated extensively underneath.

P4’ssignals The mostexplicit observation of P4’s signal are its large excursions at the wake-side at the small-
est submergence. The magnitude of the troughs of P4 varies a lot. As the wake of P4 is governed by separating
eddies, the irregularity of the signal indicates an unstable pattern of vortices: their size- and strength may vary
every cycle. At the lowest draught, the wake peaks of P4 are sometimes much larger, indicating a significant
influence of the free surface. The signals and moreover visual observations showed an apparent generated
of vortices when the free surface was close. The lower hydrostatic pressure may play a role in this. Some
air-suctions were observed during the experiment too.

P5’s signals Sensor P5 shows many differences between the smallest and the deeper submergences. Visual
observations showed large free surface disturbances at the lowest draught too. An indication of this is shown
in figure 5.6. A significant wave was generated and flowed over the model when the model’s velocity was at its
maximum. At deeper draughts, only a disturbance of the surface was observed by the rudder stock’s surface
piercing.

P5 shows a positive peak at the moment of maximum deceleration at the smallest submergence. Further-
more, at the moment of maximum velocity, sharp peaks are observed at the smallest submergence. Less
distinct peaks at this moment are observed at larger submergences. Positive pressure peaks are observed at
the moment of the negative velocity’s maximum. These peaks are also to a lesser extend observed for P3. The
peaks at the moment of maximum velocity can partly be due to an hydrostatic pressure increase due to the
generated wave. The wave had an height of 1 cm at most, which relates to a hydrostatic pressure increase of
100 Pa. This is much more than the actual peak height’s rise. Moreover, the hydrostatic pressure should be
felt by at least sensor P3 as well, as this sensor is right underneath P5. P3’s signal only shows a small increase.
The increased pressure can thus not be attributed to a hydrostatic pressure increase only. Therefore, the free
surface disturbance increases the dynamic pressure which causes a pressure drop; this flattens the increased
hydrostatic pressure.

5.3. Load coefficients

Subsection 5.1.2 stated that the Morison model predicts the loads appropriately if its 6-coefficient form is
used. The model uses empirical load coefficients, which are discussed in this section. First, the first-order
terms, the drag- and inertia coefficient, are discussed and validated with reference studies. Secondly, the
higher order coefficients are presented.

5.3.1. Inertia coefficients

The cycle-averaged inertia coefficients are shown in figure 5.9a. In here the inertia coefficients found by
Keulegan and Carpenter (1958) for infinite length flat plates are included as well. The figure clearly shows
that the inertia coefficients of the rudder model with aspect ratio 1.5 are lower than the coefficients of the in-
finite length flat plate. As already stated by Ridjanovic (1962), a limited aspect ratio causes separation around
all four edges. Likewise, less fluid is entrained by the model, causing a lower inertia coefficient.

The inertia coefficients of Keulegan and Carpenter (1958) show a distinct dip between 8 < KC < 20. This
dip is absent for the coefficients of the rudder models. Figure 5.11 shows possible vortex shedding patterns
for a bilge keel, an infinite length flat plate and a flat plate with aspect ratio 1.5. Around the bilge keel, the
shed vortex has by approximation always the same size and strength (Sarpkaya and O’Keefe, 1996). The in-
ertia coefficients of the bilge keel increase gradually and do not show a drop (figure 2.10). In the drag-inertia
dominated regime (8 < KC < 13), the vortices generated around the edges of the infinite length flat plate are
asymmetric; one time the larger vortex is shed around the upper edge, the other time around the lower edge.
This 'unstable’ situation is believed to cause the drop of the inertia coefficients (Sarpkaya and O’Keefe, 1996)
(Li, 1989). For the finite length flat plate, this instability takes place as well and large vortices are shed from
different edges. The time trace of P4 at KC = 8.0, figure 5.5, shows a significantly varying wake peaks per cycle.
However, the dip in the inertia coefficient is absent. This bears the theory that the vicinity of the root and
tip has a smoothing function: vortices are nonetheless shed around all edges, creating a quasi-steady flow
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Bilge keel Infinite length flat plate Flat plate - AR = 1.5

Figure 5.11: Examples of vortex shedding patterns in the drag-inertia dominated regime.

through which a large eddy cannot cause the inertia coefficient to drop.

The inertia coefficients of the 0.62 Hz oscillation are slightly larger than the coefficients at 0.31 Hz. The
differences are marginal and it cannot be determined whether or not the difference is a measurement inac-
curacy or indicates a Reynolds number dependency.

Instantaneous inertia coefficient An analysis in terms of load coefficients is also executed with use of the
pressure sensors. The main purpose hereof is validation of the results and the search to conformity between
the measured forces and pressure. The ’instantaneous’ load coefficients are determined with the method
proposed by Ikeda et al. (1979), presented in section 2.4.6. Per sensor, an instantaneous load coefficient is
obtained and with the three of them, a representative coefficient is obtained via a weighted average. This
weighted average is visualised in figure 5.7. The dimensions denoted by 'Pd’ determine the coverage area of a
single pressure sensor. Sensor P4 and P5 are located 20 mm from the edge. Therefore a bandwidth of 40 mm
is used: Pd1 and Pd4 are both 40 mm. As stated in the previous section, the signal of P5 is likely to be largely
influenced by the rudder stock and eventually surface effects may play a role. Therefore P5 only covers the
root’s edge and P4 covers all other edges. The remaining area in the center is covered by P3.

The coefficients show consistent trends per sensor, although their magnitude differs. P5 distinctively has
the largest inertia coefficients, succeeded by P3 and P4. This is consistent with the findings of the previous
section, in which P5 had the highest tops, followed by P3 and subsequently P4. The small instantaneous in-
ertia coefficient of P4 relates thus to large shed eddies. At P5 only small vortices are detected, resulting in a
large instantaneous inertia coefficient.

The weighted average of the instantaneous inertia coefficient is on average a little lower than the cycle-
averaged inertia coefficient found with the load cells. Nevertheless, they show an appropriate agreement.
Too little pressure signals were available to draw conclusions on the pressure distribution over the blade.

5.3.2. Drag coefficients

Figure 5.10a shows the drag coefficients elaborated with the force measurements. The coefficients Rid-
janovic’s flat plate with AR = 1.5, Keulegan and Carpenter’s infinite length flat plate and the bilge keel of Ikeda
et al. (1979) are included as well. For KC > 2.0, the coefficients resemble the coefficients of Ridjanovic, espe-
cially for KC > 8.0. A certain relation with the aspect ratio of the model is thus exposed.

For 2 < KC < 8 the measured drag coefficients are a little lower than those of Ridjanovic (1962). Accord-

ing to Tanaka et al. (1982), plates with a thickness over height ratio of 0.2 have little lower drag coefficients
compared to the ones with smaller thickness over height ratios. This justifies the drag coefficient’s trend. The
scatter between the results of the experiments indicate a inaccuracy’s bandwidth, through which differences
between the models cannot be distinguished. The same counts for the frequency’s variation.
For KC = 2, measurement inaccuracies are striking; the measured forces contained much noise. Moreover, at
small KC numbers, the sensitivity of the inertia correction is tremendous. A inertia’s phase’s miscalculation
of a few hundredths of a second could modify the drag coefficient’s magnitude drastically. The trend of the
coefficients for KC numbers smaller than 2 cannot be distinguished.

Instantaneous drag coefficients The instantaneous drag coefficients show similar trends as the trends of
the cycle-averaged coefficients. The instantaneous drag coefficients of sensor P4 are the largest, followed by
P3 an P5. This order is the exact opposite of the order of the instantaneous inertia coefficients. The large mag-
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nitude of P4 is caused by the large eddies shed around P4’s edge; their wake suctions are mainly aligned with
the undisturbed velocity. Moreover, P5 only showed small wake suctions, leading to a small drag coefficient.
P3 again shows a moderate behaviour. P3’s signal is less directly influenced by the vortices generated around
the edges, through which the pressure drop is less distinct. A smaller instantaneous drag coefficient is thus
areasonable result. The averaged coefficient have the same order of magnitude as the cycle-averaged coeffi-
cients. Ridjanovic’s trend upward-going trend for small KC is not recognized for the averaged coefficient.

5.3.3. Higher-order coefficients

Morison equation’s higher order coefficients A3, B3’, As and Bs’ are shown in figure 5.12 and 5.13. The coeffi-
cients of the infinite length flat plates of Keulegan and Carpenter (1958) are included as well. The dimension-
less coefficients A3 and Bz are enlarging when the KC number decreases. When the KC number increases, As
tends towards zero for all models except the flat plate in 0.31 Hz oscillation. Here Aj3 is slightly negative. As
also tends to zero for all cases. The higher order sine terms thus have a minimal influence, especially when 5 <
KC < 12.6. The lower values of A3 of the flat plate hint towards a different behaviour of the flat plate compared
to the lift profile; slight differences in the remainder functions of figure 5.1 were noticed too.

The coefficients A5 and Bs’ are distinctively smaller than the third order coefficients. They yield negative val-
ues. Bs’ shows a nearly constant trend, except for KC = 0.5 and KC = 1.0. However, this is possibly caused by
measurement inaccuracies. The coefficient As shows a light decrease for declining KC numbers and a spread
is found between the results. The coefficients related to the cosine term, B3’ and Bs’, are larger than the sine-
related coefficients A3 and As. Generally, the trends of the higher order coefficients are clear. This makes the
the applicability of a 6-coefficient Morison equation feasible for engineering practice.

5.4. Discussion

The main objective of this chapter is to compose a prediction model for the rudder loads in regular sway
oscillation. Hence the loads on the rudder models are quantified and explained, whereby the effects of the
oscillation’s frequency and the surface effects are evaluated too. The 6-coefficient Morison equation shows
an adequate agreement with the measured loads. Lower order fits underestimate the peak loads and show
discrepancies with the force history. The normal Morison model is thus found too simplistic to capture the
complex, by separation governed loads on the rudder.

The first order load coefficients, the inertia- and drag coefficient, are compared with references studies. A
clear KC number dependency is obtained. The inertia coefficients are by approximation half the magnitude
of the inertia coefficients of the infinite length flat plate of Keulegan and Carpenter (1958). The obtained coef-
ficients do not show a dip at 8 < KC < 13, as observed for infinite length flat plates. These infinite length plates
show vortex shedding instabilities in this regime, through which an inertia coefficient dip is generated. The
four-edge separation is believed to reduce the asymmetry, which dissolves the dip in the inertia coefficient.
The drag coefficients showed a reasonable resemblance with the flat plates with aspect ratio 1.5 of Ridjanovic
(1962) and are significantly smaller than those of infinite length flat plates. The separation around all four
edges is causing additional energy dissipation in the wake, which lowers the drag coefficients. The coeffi-
cients are slightly lower than the coefficients of Ridjanovic and that is, accordance to Tanaka et al. (1982), a
likely event due to the increased plate thickness. The aspect ratio’s influence thus holds a mayor influence on
both the inertia and drag coefficient.

The higher order coefficients show clearly distinguishable trends. This makes the the applicability of a 6-
coefficient Morison equation feasible for engineering practice.

The vicinity of the free surface alters the pressures significantly. The wakes increased in irregularity and
showed larger pressure dips. The free surface’s influence on the forces measured fell in the uncertainty band-
width. For KC < 2 the results become very unreliable. Further, the drag coefficients were not accurate enough
to distinguish differences between oscillation frequencies and the models. Experiments with a higher accu-
racy are required to study the exact load differences between the models and the trends at low KC numbers.
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Analysis of sway oscillation in planar
current

Currents are practically always present in ocean environments. The previous chapter showed that the wake
was greatly related to the forces acting on the rudder. Currents may alter the wake pattern of a body signifi-
cantly (Sarpkaya and Storm, 1985), therefore this chapter is dedicated to study the current’s influence on the
loads. This is captured in the following objectives:

¢ To quantify and explain the loads on the rudder in regular sway oscillation and current, acting perpen-
dicular to the rudder’s blade.

» To propose aload prediction model for a rudder in regular sway oscillation and current and include the
required load coefficients.

The chapter starts off with an explanation of additional theoretical elements and parameters used for the
load analysis in this chapter. Thereafter, the effect of wake biasing is discussed with the pressure sensors’ time
traces in section 6.2. The current’s influence on the loads is discussed in section 6.3, including an analysis of
the Morison equation’s fit. The trends of the load coefficients are discussed in the section 6.4. The findings of
this chapter are reviewed in the last section.

6.1. Additional theoretical elements
6.1.1. Combined velocity profile

Due to the current’s presence, the magnitude of the flow velocity experienced by the rudder varies over the
oscillation cycle. It is not a regular cosine any more. Figure 6.1 shows the current and oscillation velocities

+U(1) -U()

— s RO +Uc) vz

Figure 6.1: Sign conventions of model- and current velocity
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Figure 6.2: Altered velocity profile by a perpendicular current’s addition.

with regards to the coordinate system explained in chapter 2. The rudder on left of the figure has a positive
velocity U(t) and moves towards the left. Imagine a video camera following the models motion. The camera
will record the fluid flowing from left to right, through which the model experiences a fluid velocity with its
direction opposite to the model’s velocity. In figure 6.1, the model’s velocity is shown by the green arrow and
the model’s fluid velocity 'experience’ by the orange arrow.

When current is applied on the model as well, the velocity pattern is altered. For all tests, the current acted
perpendicular to the blade and mostly the direction of it was negative, as this is the positive driving direction
of the towing tank’s carriage. This current velocity is presented by the black arrows in figure 6.1. Superim-
posing the model’s experienced velocity and the current velocity results in a ’combined velocity’ vector U.(?),
shown in blue. A positive model’s motion and a negative current results in a large negative combined velocity.
A negative model’s motion and a negative current results in a small positive combined velocity.

Figure 6.2 shows the altered sinusoid U,(¢) by the grey line. The model’s velocity is displayed in blue and
the current velocity in orange. The combined velocity is the sum of the model’s velocity times minus 1 and
the current velocity:

U(ty==-U@)+V, (6.1)

The combined velocity does not show symmetry over the x-axis. Consequently, the locations of its zero-
crossings are altered. The first zero-crossing T is derived by:

—1 Vc
T,=cos " |— (6.2)
Un

Due to the asymmetry of the flow velocity, the disturbed flow may behave as it should in a higher or
lower KC number. When the current flow and the flow caused by the oscillation are aligned, the model is
experiences a larger KC number: K*. The number is defined with Uy, +|V,|. The KC number experienced in
the opposing stroke is K~; construed by Uy, — |V,|. The K* regime has the longest duration; 2 - T,.

6.1.2. Wake- and pressure side’s pressure signals

The pressure sensors are fitted to one side of the model. Due to the flow velocity’s asymmetry, pressure sen-
sors do not measure a complete pressure history over a cycle any more. The sensor is located on either the
currents’ pressure-side or the currents’ wake-side. Two runs are required to obtain the full pressure history,
one with a positive current velocity and one with a negative current velocity. A certain duo is shown in figure
6.3 for P3’s signal. The signals show distinct differences between oscillations in a negative- respectively posi-
tive current.

If a current acts directly on the sensor, such that the sensor is located on the model’s front side with respect
to the current, the sensor is called a "Front Side’ (FS) sensor. This happens when the current, according to the
coordinate system of figure 6.1, is negative. If the current acts to the model and causes the sensor to be in its
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Figure 6.3: P3 in 0.31 Hz sway oscillation in positive and negative current of 0.11 m/s

wake, the sensor is called an ’Aft Side’ (AS) sensor. It is hereby not said that an AS-sensor only measures wake.
If the current velocity is smaller than the maximum oscillation velocity, the FS-sensor also measures the wake
for a period of the cycle. The opposite accounts for the AS-sensor. The names thus only refer to the current’s
direction.

6.1.3. Additional post-processing of data
The ’relative velocity’ Morison model is often used as a prediction model for co-existing (oscillations and
current) flow fields. It uses the 'combined velocity’ as input for the Morison model’s drag term. The inertia
term is defined by conventional means. The coefficients of this model are determined with the method of
Least Squares, which uses the following format shown in equation 6.3. The coefficient B ., is multiplied
with pf—jo to obtain the drag coefficient.

Farcur = —Axcur sSin(wt) + By cyr (Ve +U@0) Ve + U (0)] (6.3)

The velocity of the carriage was not completely steady for all experiments. For oscillations at an high fre-
quency or with large amplitudes, the carriage bore significant vibrations which made the carriage’s velocity
unsteady. For the most demanding oscillations, velocity variations up to 20 percent were observed. The time-
varying speed of the carriage is taken into account.

6.2. Pressure sensors’ time traces
This section evaluates the pressure sensors’ signals. The first subsection inspects the wake biasing due to the
current and the second subsection investigates the current’s effect the front-side pressures.

6.2.1. Wake-biasing by current

The P3-AS signals are presented in figure 6.4. The zero-current signals are drawn in these graphs as well.
The signals of P4 and P5 are included in appendix F, figure E1 respectively E2. Sarpkaya and Storm (1985)
reported significant biasing of a cylinder’s wake due to currents. This section assesses the rudder model’s
wake-biasing.

Bluntly, the current’s influence depends on its magnitude relative to the magnitude of the oscillations’ velocity
and its influence can be expressed as the fraction between the current velocity and the maximum oscillation
velocity: A = UL,C,, This fraction will be referred to as the 'velocity parameter’. For the runs inspected in this
subsection, its magnitude is shown in table 6.1. A large velocity parameter accounts for a large influence of
the current. A magnitude larger than 1 implies that the current velocity is larger than the maximum oscillation
velocity. It is likely that the current has a substantial influence. Contrarily, a small velocity parameter indicates
aminor current’s influence.
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Table 6.1: Velocity parameters for oscillations at 0.31 Hz

UL,Z (0.31 Hz, 0.11 m/s) UL,,, (0.31 Hz, 0.17 m/s) UL (0.62 Hz, 0.11 m/s)
20mm | 2.82 - -
60mm | 0.94 - -
100 mm | 0.56 0.87 0.28
160 mm | 0.35 - -
250 mm | 0.23 - -

Wake-biasing at P3 and P4 Figure 6.4 compares the zero-current signals of P3 with the wake-side signals in
current conditions. Some cases show a large wake-biasing, for instance figure 6.4a and 6.4d. The wake side
signals of P4, shown in figure E1 are even more striking.

The influence of the velocity parameter is clearly visible. The 60 mm 0.31 Hz oscillation in 0.11 m/s current
(figure 6.4a) and the the 100 mm 0.31 Hz oscillation in 0.17 m/s current (figure 6.4d), with A = 0.94 respectively
0.87, show the same wake-biasing behaviour. Also the the 160 mm 0.31 Hz oscillation in 0.11 m/s current and
the 100 mm 0.62 Hz oscillation in 0.11 m/s current have roughly the same pressure course. Their velocity
parameters are 0.35 respectively 0.28. A certain relation with A is thus observed for at least these two runs.
Moreover, the difference between the zero-current case and the case with A = 0.35 en 0.28 is very limited,
showing a confined wake-biasing for small velocity parameters.

Further, tops of the AS-signals are larger than the tops of the zero-current’s signals for the 100 mm 0.31 Hz
oscillation in 0.11 m/s current for P3 and P4. This behaviour is also slightly noticed for the 160 mm 0.31 Hz
oscillation in 0.11 m/s current. This may be the effect of a lower dynamic pressure in the ambient flow, as
the current may drag the turbulence away from the model. Besides that, a local maximum of P3-AS at the
moment of maximum negative velocity for 0.17 m/s current is observed, which is not present for a current
velocity of 0.11 m/s. These two cases contain the largest combined velocities, which may have altered the
dynamic pressure or influenced the surface effects.

Wake-biasing at P5 In the previous chapter, the observation is made that P5 behaves differently than the
other two sensors. In a co-existing flow field, the distinction is magnified. The wake is only slightly larger than
in the zero-current condition. None of the cases shows large wake peaks. P5 shows indifferent behaviour due
to the current. For some cases, P5 shows higher tops with current than in zero-current. One would expect
a lower pressure, as the absolute velocity acting on the sensor is smaller than in the zero-current case. The
higher tops are the most striking for the two cases with the highest velocity parameter, which have a KC
number of 3.0 and 5.0. A lowering of the ambient dynamic pressure may be the cause, as the current may
drag the disturbed water along.

6.2.2. Pressure-side’s alteration by current
The signals of the FS-sensors are shown in figure 6.5. In appendix F more signals of the FS-sensor are included
figure E3, figure E4 and figure E5.

Cyclic behaviour Most of the FS-signals show a gentler course in a co-existing flow field than in zero-
current conditions. For A < 1, the sensor is basically only loaded to its pressure-side, disregarding the large,
irregular wake peaks. The lower A, the more moderate the signal.

For the 200 mm oscillation in 0.17 m/s current, two distinct peaks are observed, one at the acceleration’s
maximum and one at the velocity’s maximum. In 0.06 m/s current, only a distinct top is observed at the ac-
celeration’s maximum and at the velocity’s maximum, only a shoulder is distinguished. It is evident that the
higher current velocity causes a top at the velocity’s maximum. Bernouilli’s relation between the pressure and
the squared velocity causes that the peaks are profound at large oscillation’s amplitudes. Bernoulli’s pressure
approximation for a 200 mm 0.31 Hz oscillation without current is 80 Pa. A current of 0.06 m/s and 0.17 m/s
increases this to 105 Pa respectively 162 Pa. The difference between 0.06 m/s and 0.17 m/s is thus 57 Pa, which
is in the same order of magnitude as the tops of both runs. In other words, the combined velocity is required
to properly establish the pressure and K* may be a useful parameter for describing the flow pattern.

Top height increase The tops of the 40 mm, 60 mm and 100 mm oscillation in 0.17 m/s current show an
increase of approximately 15 Pa compared to their zero-current counterpart. Approximating the pressure
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with Bernoulli law gives: 1/2pV? = 14.5 Pa for a 0.17 m/s current which has the same order of magnitude than
the found increase.

The pressure difference in 0.06 m/s and 0.11 m/s current is less distinct. Also the 200 mm oscillation shows
less definite differences in top height. The influence of the current is smaller for these cases. A reasonable
explanation for the irregularity of the top height in the 40 mm oscillation is the high signal to noise ratio of
this case.

Ambient dynamic pressure In 0.17 m/s current, the oscillation velocities of the cases with amplitudes of
40 mm and 60 mm are smaller than the current velocity. Their oscillation velocities are 0.08 m/s respectively
0.12 m/s. This makes that on the FS-sensors always a positive combined velocity is acting, so no wake-side
pressures are observed. The FS-signal of P3 and P4 of the 40 mm oscillation is always positive. The 60 mm
case shows only small negative pressures. Only P5 of the 40 mm case shows distinct negative pressures. The
occurrence of negative pressures although only positive velocities are acting on the sensors is remarkable,
although these pressures are small. It shows that a dynamic pressure lowers the pressure in the ambient flow.

6.3. Force history

The pressures discussed in the previous section gave an impression of the local flow behaviour. This section
discusses their impact: the actual forces on the blade. It starts off with a discussion on the loads measure-
ment in current-only conditions. Thereafter, the time traces of oscillations in various current velocities are
compared. In the last subsection, the usability of the Morison model for oscillations in current is discussed.

6.3.1. Current-only measurements

The measurements in a constant current only are executed to assess individual impact of the current. It is not
expected that combining the loads measured with the oscillation experiment and the loads due to a current
only predict the loads in a co-existing flow field. Nonetheless, a load estimate of the separated flows broadens
the insights in the loads. The current in the tests is always acting perpendicular to the rudder blade. Table
6.2 presents the measured loads of three current velocities for both models. Also, the current loads estimated
with the drag equation

1
Fgcur= Epcd,VcSOch (6.4)

are denoted to validate the experiment. According to White (2011), a drag coefficient of 1.2 is sufficient for the
flat plate. For the lift profile, a coefficient of 1.1 is found by Sheldahl and Klimas (1981). The results in the table
show conformity. The pressure measured in steady flow of 0.17 m/s is 15 Pa for P3. Integrating this pressure
over the rudder blade results in a load of 0.35 N, showing an agreement between the measured pressures and
forces.

Table 6.2: Loads in constant current only, acting perpendicular to the rudder’s blade

Flat plate Lift profile
V. Measured F, Estimated ), Measured F,, Estimated F
0.06 m/s 0.04 N 0.05N 0.04 N 0.05N
0.11m/s 0.20N 0.17N 0.18 N 0.16 N
0.17m/s 0.44N 041N 040N 0.37N

6.3.2. Observations of current velocities’ influences

Figure 6.6 shows the force-histories of a 100 mm sway oscillation in different current velocities. The figure
shows clear differences in top- and trough height. In 0.11 m/s and 0.17 m/s current, the loads are signifi-
cantly higher. Most experiments with co-existing flow fields and a significant current’s influence (A > 0.5),
showed higher tops- and troughs in the force history. However, not all cases show an agreement on this the-
ory, for example the results of a 60 mm oscillation at 0.62 Hz, presented in figure 6.8. No large differences
between the force-histories with a non-zero current are observed, and the force-history with 0.17 m/s cur-
rent seems even slightly smaller than the signals in 0.06 m/s and 0.11 m/s current. The general uncertainty
of the experiments is discussed in chapter 4. Here it is stated that similar runs can contain variations in top-
and trough height up to 0.4 N for a 60 mm 0.62 Hz oscillation and 0.3 N for a 100 mm 0.31 Hz oscillation.
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The previous subsection showed a current-only load of mostly 0.4 N. It is thus likely that the influence of the
current is, at least partly, within the uncertainty bandwidth of the experiment. However, chapter 4 likewise
declared the minor influence of the top-height uncertainty on the load coefficients. An analysis of the load
coefficients is therefore included nonetheless in section 6.4.

In figure 6.7 the signals contain much noise. In spite of that, two observations are distinguished. Firstly,
the force history of the oscillation in 0.17 m/s current shows a much larger asymmetry than the other force-
histories do. Secondly, the tops- and troughs of these cases are slightly shifted towards the moment of maxi-
mum velocity. This indicates a larger influence of the drag, governed by the formation and shedding of eddies.
Generally said, the current’s influence is minor. The signal’s courses are nearly symmetrical, even for cases in
which the current velocity is larger than the maximum oscillation’s velocity. This is a striking result, especially
as Sarpkaya and Storm (1985) discovered the opposite: they found a large asymmetry in the force-histories of
cylinders. The present work reveals that the impact of the current is surprisingly small.

6.3.3. Morison fits

The relative velocity’ Morison model is often found better applicable for co-existing flow fields than the nor-
mal Morison model (Sarpkaya and Storm, 1985) (Li, 1989). It uses the 'combined velocity’ (V. +U ()| V,+U(?)|.
This obviously causes a asymmetric load prediction. Two runs of sway oscillations in current are shown in
figure 6.11. Both graphs display the load predictions by both the ’relative velocity’ Morison model and the
Morison model depending on the oscillation flow only. The normal Morison model clearly shows more re-
semblance than the relative velocity’ Morison model, which is not a surprising result regarding the symmet-
rical force history. Nonetheless, it is highly unexpected regarding studies of cylinders in co-existing flow fields
(Sarpkaya and Storm, 1985).

Besides that, the pressure sensors’ signals showed significant wake-biasing effects due to the current. To
validate the results, the pressure measured at P3 is integrated over the rudder’s blade. The FS-signal and the
AS-signal of P3 are subtracted from each other, through which a time trace of the resultant’ pressure over
the model’s midpoint is obtained. This pressure difference is multiplied by the blade area: the rudder’s span
times its chord. Figure 6.9 shows a proper resemblance between the measured force and the integrated pres-
sure. This confirms the observation that the loads are not asymmetrical, although this is reported repeatedly
for cylinders.

The question arises where this thorough difference originates from. Obviously, cylinders and flat plate
hold completely different separation patterns and load coefficients. Separation takes places around an os-
cillating flat plate already at very low KC numbers. Moreover, the vortices are shed distinctively at the plate’s
edges. Vortex-shedding around a cylinder requires a minimum undisturbed flow velocity. The flat plates’ drag
coefficients found by Keulegan and Carpenter (1958) can be four times as large as cylinders’ drag coefficients
for KC < 20. Both the flat plate’s and the cylinder’s inertia coefficients have an equal order of magnitude as
the cylinder’s drag coefficient. The drag component is thus larger for flat plates. Further, the drag is governed
by vortex separation. Current can cause larger vortices due to the larger undisturbed velocity, but it may also
drag the vortices along with the current. This can lower the suction force of the vortices, and with that lower
the forces on the model. For a flat plate, dragging of vortices may be more profound than for cylinders, as the
effect of the vortex shedding is simply larger for plates.

Although the symmetry of the loads on the rudder model are surprising regarding loads found on cylin-
ders, the results are valid. They reveal that striking differences in load patterns exist between cylinders and
plates, peculiarly in co-existing flow fields.

6.4. Load coefficients

Section 6.3 stated that the normal Morison model gives better load predictions than the ’relative velocity’
Morison model for the rudder model in current. Both the cycle-averaged load coefficients as the instanta-
neous, pressure dependent, load coefficients presented in this section are therefore determined by the same
means as in zero-current conditions.
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Figure 6.13: Cycle-averaged load coefficients of oscillations at 0.31 Hz in current with the flat plate model
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Figure 6.15: Load coefficients of 0.31 Hz oscillations of the flat plate model in various current speeds presented against K™

6.4.1. Inertia coefficients

Figure 6.12a and figure 6.13a draw the inertia coefficients of oscillations in current relative to the KC number.
For both the 0.31 Hz oscillation as the 0.62 Hz oscillation a clear trend is present. The variations between the
coefficients for the different the current velocities are marginal and fall within the uncertainty bandwidth.
The instantaneous inertia coefficients for oscillations in 0.11 m/s current are presented in figure 6.14a. The
trend is less clear, but the coefficients have the same order of magnitude and all lay between 1 and 2. The
cycle-averaged coefficients have magnitudes between 0.5 and 1.5.

The inertia coefficient is also plotted versus the K* parameter. For current conditions, K* has a larger
magnitude than the normal KC number. This shifts the coefficients obtained under current conditions to the
right. This presentation increases the deviation of the coefficient. This is a likely occurrence as the inertia
coefficient should not be dependent on the current. For use in engineering practices, the most straight-
forward presentation is preferred, which is the normal KC number.

6.4.2. Drag coefficients

Figure 6.12b and figure 6.13b draws the drag coefficients of oscillations in current relative to the KC number.
Figure 6.12b shows that the drag coefficient enlarges when the current velocity increases. In figure 6.13b, the
oscillations at 0.62 Hz, a similar trend is observed, although some coefficients show deviations. The smaller
the oscillation’s velocity or KC number, the larger the drag coefficient’s increase.

The instantaneous drag coefficients of the flat plate in 0.31 Hz oscillation in 0.11 m/s current are shown
in figure 6.14b. The presented trend is surprisingly clear and similar to trends found in literature. All sensors
follow the increase of the drag coefficient when KC drops. The weighted average of the drag coefficients is
even a bit larger than the drag coefficients found by Ridjanovic (1962). This is foreseen as the 2-coefficient
Morison equation underestimates the peak load. These peaks are used to determine the magnitude of the
instantaneous coefficients so they are expected to be a little larger than the cycle-averaged coefficients.

The drag is plotted versus K* in figure 6.15b and figure 6.16b. The Fourier coefficient is divided by
(|Ve| + Uyy)? instead of U,Zn and thus uses the current velocity in its definition. This may represent the loads
more in line with their physical behaviour, as the K* regime is believed to govern the drag loads. The graphs
distinctively show different trends. All the coefficients are smaller than 4 and generally, the larger the current,
the smaller the coefficient. The trends in 0.11 m/s and 0.17 m/s current are nearly horizontal.
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Figure 6.16: Load coefficients of 0.62 Hz oscillations of the lift profile in current presented against K*

6.4.3. Higher order coefficients

The third- and fifth order coefficients of the flat plate in 0.31 Hz oscillation and the lift profile in 0.62 Hz
oscillation are included in appendix G. Like in zero-current conditions, reasonable trends are distinguished.
It is due to this, that the applicability of the Morison model in its 6-coefficient form is feasible.

6.5. Discussion

The main objective of this chapter was to propose a load prediction model for the rudder in co-existing flow
fields of sway oscillations and planar current. To do so, the loads in this conditions are quantified by force
measurements and explained by pressure measurements.

The load prediction by the relative velocity’ Morison’s model did not show good comparison with the

measured loads. This is a striking result, as this model is often recommended for cylinders in similar flows.
It appeared that the more heavily separating flow around the sharp edged models caused a significantly dif-
ferent load pattern than observed for cylinders. It is due to the nearly symmetrical force history, that the
Morison model that ignores the current, predicts the loads the most accurate.
The inertia coefficients obtained in oscillation with current conditions did not show clear differences. How-
ever, a clear increase of the drag coefficient is observed for an increasing velocity parameter. Mainly the
drag, which governed by separation and vortex generation, is thus altered by the current. More resemblance
between the drag coefficient is observed, when they are presented against the K™ numbers and moreover
non-dimensionalized with both the oscillation velocity and the current. The pressure signals showed large
gradients in the wake, indicating an extensive wake area governed by shedding eddies.

For very small amplitude oscillations in large current, the quality of the fit reduces. However, in engi-
neering applications, heavy loading situations are more relevant. For heavy load cases, the large amplitude
oscillations and large currents, the prediction with the Morison’s model is satisfactory. The prediction model
in low-speed currents may be highly relevant, as Sarpkaya and Storm (1985) suggests that wave orbital mo-
tions and currents have similar effects on the drag coefficients as they both cause wake-biasing. He regarded
them both as 'primary mitigating effects of the ocean environment’. The loads of the oscillations with current
may thus be more effective in predicting the loads.

The striking difference between cylinders and plates shows the need for extensive research on this topic.
The detailed insights in the wake-biasing is required to fully understand the loads on the rudder.






Conclusions

Offshore moored FPSO’s face many challenges with rudder-locking. Little is known of the load-magnitude
that FPSO-rudders have to endure while moored. The loads caused by waves oscillations and currents are
expected to be complex and governed by flow separation. This study started off with the question whether it
is possible to predict these complex rudder loads with a calculation model that only requires the undisturbed
flow pattern and body-shape depending load-coefficients. The problem was limited to regular sway oscilla-
tion combined with a steady flow, acting perpendicular to the rudder’s blade.

The results of the towing tank experiments show that only the Morison model - extended with the third

and fifth term of its Fourier’s expansion — gives an appropriate description of the force history in sway oscil-
lation. The regular 2-coefficient form of the Morison model underestimates the peak loads, which is of vital
importance. It is only due to the peak loads possible to study the fatigue and ultimate strength of the rudder
locking system.
When flow fields of sway oscillations and currents perpendicular to the rudder’s blade are combined, the 'rel-
ative velocity’ Morison model - depending on both flow velocities — is expected to present the most accurate
load prediction. However, the model shows large discrepancies with the measured force histories. This is a
striking result, as the ‘relative velocity’ Morison model is found best applicable in similar studies to cylinders.
The measured force histories are - despite the presence of the current - surprisingly symmetrical over the
oscillation’ cycle. Therefore, the Morison model which does not take currents into account, presents better
results.

In order to use the Morison model, empirical coefficients are required. These coefficients depend on the
Keulegan-Carpenter (KC) number: a dimensionless number which magnitude is a direct measure of vortex
generation around bodies in oscillating flow. The larger the oscillation’s amplitude, the more vortices are gen-
erated and the higher the KC number’s magnitude. The influence of the vortex generation and -shedding on
the loads cannot be stressed enough. The frequency independence found in this study substantiates this.

The rudder’s aspect ratio of 1.5 allows vortex separation around all four edges. Compared to the coeffi-
cients of infinite length flat plates, the magnitude of both inertia- and drag coefficient is lowered by a factor
two. This indicates substantial pressure losses in the wake of the rudder models. The lift profile and the flat
plate profile show comparable results. Clear trends between the third- and fifth order load coefficients and
the KC number can be distilled: pressure sensors showed a significant enlargement and increased irregular-
ity of wake peaks when the draught decreased. The influence of the free surface vicinity was found of little
importance on the loads and often fell within the uncertainty bandwidth. Nonetheless, the loads’ irregularity
may enlarge, causing a functional decrease of the Morison model’s predictions.

Oscillations with a non-uniform velocity profile over the rudder’s span are likely in ocean environments.

Unfortunately, the results of the roll oscillation experiments could not be relied on. Therefore, the test set-up
is found insufficient to measure these loads.
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Recommendations

This study demonstrated the complexity of the loads on a rudder in sway oscillation. Unfortunately enough,
the experiments suffered from large inertia corrections, through which the results of the roll oscillations were
unreliable. The sway oscillations showed a large sensitivity regarding the inertia corrections and a miscal-
culation of the inertia’s phase with a few hundredths of a second could cause major differences in the drag
coefficients’ magnitude. The most striking recommendation is to execute similar experiments with a higher
accuracy.

A different test set-up is then required. A set-up in which the rudder is placed in the water like a pendulum
could be though of. Also, a very small six component frame exists, with dimensions of approximately 5x5x5
cm. Its use may solve the challenges with the large inertia.

A number of additions to the test matrix are recommended to fill more knowledge gaps. These consist
of executing oscillation experiments in omnidirectional currents, in low-draughts and surface piercing con-
ditions and irregular waves. The moment around the rudder stock is moreover relevant for the mechanical
rudder-locking.

The currents are only tested while acting perpendicular to the rudder’s blade. Currents can act under any
angle on the rudder in ocean environments. This may alter the vortex pattern caused by the oscillation, which
may alter the loads. When currents act on the rudder under an angle, additional effects may rise, such as an
increased influence of viscous forces. Oscillations in an omnidirectional current are striking load cases which
need additional research. The current’s angle may however enlarge the difficulty of finding a suitable load
prediction model.

The pressure sensors indicated that the influence of the free surface’s vicinity is significant. This is a
very likely case for a FPSO to encounter. In fully loaded condition, the rudder root is just below the water
surface. More experiments are required to fully assess this condition. In ballast condition, the rudder may
even be piercing the water surface. This gives rise to even more free surface disturbances and eventually
additional loads like wave run-up and slamming. These loads, especially in combination with the wave- and
ship motion-induced loads, can cause high peak loads on the rudder- and rudder-locking system. Attention
is required.

The moment around the rudder stock is of mayor importance for the mechanical locking of the rudder.
Rudders are often designed such that they are balanced in sailing conditions: the moment around the rudder
stock is then minimized. In moored conditions, vortices are shed around both edges. Due to the rudder’s
asymmetry, it is likely that the center of action for the moment around the rudder stock is not in the rud-
der’s geometrical center, but tends towards the trailing edge. Unfortunately enough, the measured moment
around the rudder stock was too noisy for investigations. Studies towards the moment around the rudder
stock are recommended.

In other researches it was shown that irregular oscillations, may be significantly different than similar am-
plitude, regular oscillations. It is evident that a FPSO will encounter such a situation at sea; therefore clear
insights in the effects of non-linear waves are required for a proper load prediction. Irregular oscillation ex-
periments are executed in this study as well. They are not used for analysis, as the load were too inaccurate; a
significant spread in the top- and trough heights were already found in regular oscillations.
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This study was limited by experimental tests. CFD simulations can give additional insights in the loads,
and may predict them with even more detail. It is therefore recommended to executed CFD experiments in
all oscillation cases encountered in this study. Furthermore, after the loads on a single rudder are simulated,
a complete (aft-) hull form can be tested as well. With this, hull diffraction and eventually radiation can be
taken into account as well, resulting in more realistic rudder loads.

A not rudder-loads-related recommendation originates from the vertical rudder oscillations. These give
rise to a sceptic view about the phase accuracy of the motion camera with regards to the measured loads.
One cause may be the difference in sampling frequency. Tests should be executed to prove whether or not
this presumption is true.



Geometry of models

A.1. NACA0020

[h] The NACA 4-digit-series lift profile shapes are described by the following equation:
y X\1/2 X X2 X3 X4
= =aqap(— +ai|—)+ax—) +as3|—) +asl— Al
c= (D) Tra(f)ra() ras() v a(D) (A.1)

In this equation y points in direction of the thickness, c is the chord length and x points along the chord of
the rudder. The coefficients are determined as: ay = 0.2969, a; = —0.1260, a, = —0.3516, asz = 0.2843 and
as = —0.1015. Without any multiplication of all y/c numbers, the thickness over chord ratio is 0.20.
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Figure A.1: Plot of rudder contours; the NACA0020 shows good agreement with the simplified contour plot of a FPSO’s rudder (Ladson
et al., 1996) (Hyundai Heavy Industries, 2014)
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A. Geometry of models

Table A.1: NACA0020 x- and y coordinates for 125 mm chord length model

X y X y
0 0 63.82 | 10.825
1.251 3.566 65.071 | 10.683
2,503 | 4.939 | 66.322 | 10.537
3.754 5.944 67.574 | 10.387
5.005 | 6.754 | 68.825 | 10.232
6.257 7.437 70.076 | 10.074
7.508 8.028 71.328 | 9.912
8.76 8.547 72.579 | 9.746
10.011 | 9.008 73.83 9.576
11.262 | 9.421 75.082 | 9.403
12.514 | 9.791 76.333 | 9.226
13.765 | 10.125 | 77.585 | 9.046
15.016 | 10.427 | 78.836 | 8.862
16.268 | 10.699 | 80.087 | 8.676
17.519 | 10.945 | 81.339 | 8.486
18.77 | 11.168 | 82.59 | 8.292
20.022 | 11.368 | 83.841 | 8.096
21.273 | 11.547 | 85.093 | 7.897
22.525 | 11.708 | 86.344 | 7.694
23.776 | 11.851 | 87.595 | 7.489
25.027 | 11.977 | 88.847 | 7.281
26.279 | 12.088 | 90.098 | 7.07
27.53 12.184 | 91.35 6.856
28.781 | 12.266 | 92.601 | 6.639
30.033 | 12.334 | 93.852 | 6.419
31.284 | 12.39 95.104 | 6.196
32.535 | 12.435 | 96.355 | 5.971
33.787 | 12.468 | 97.606 | 5.742
35.038 | 12.49 | 98.858 | 5.511
36.29 12.501 | 100.11 | 5.277
37.541 | 12.503 | 101.36 | 5.041
38.792 | 12.495 | 102.61 | 4.801
40.044 | 12.479 | 103.86 | 4.559
41.295 | 12.453 | 105.11 | 4.313
42.546 | 12.419 | 106.37 | 4.065
43.798 | 12.377 | 107.62 | 3.814
45.049 | 12.328 | 108.87 | 3.56
46.3 12.271 | 110.12 | 3.302
47.552 | 12.207 | 111.37 | 3.042
48.803 | 12.135 | 112.62 | 2.779
50.055 | 12.058 | 113.87 | 2.513
51.306 | 11.974 | 115.13 | 2.243
52.557 | 11.883 | 116.38 | 1.97
53.809 | 11.787 | 117.63 | 1.694
55.06 11.685 | 118.88 | 1.415
56.311 | 11.577 | 120.13 | 1.132
57.563 | 11.464 | 121.38 | 0.846
58.814 | 11.346 | 122.63 | 0.556
60.065 | 11.223 | 123.89 | 0.262
61.317 | 11.095 | 125.00 | 0.00
62.568 | 10.962
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A.2. Model geometries
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(a) Flat plate model (b) NACA0020 model

Figure A.2: Rudder models with dimensions
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A.3. Specifications TU Delft Towing Tank no. 1 and Hexamove

Towing tank no. 1 has a length of 142.00 m, a width of 4.22 m and a maximum water depth of 2.50 m. The
maximum carriage speed is 7.00 m/s. The Hexamove is placed under the carriage to execute oscillations in 6
degrees of freedom. The maximum workload of the Hexamove is 200 kg. The theoretical reach for translations
is about 200 mm in x-direction, about 235 mm in y-direction and about 175 mm in z-direction. The reach
for rotations is about 27° around the x-axis, about 25° around the y-axis and about 30° around the z-axis.
However, the reach depends on dynamic loads as well, which is governed by the mass of the model and the
accelerations. (Maritime and Transport Technology, 2017b) (Maritime and Transport Technology, 2017a)

A.4. Model alignment

Figure A.4: Calibration set-up of load cells

Figure A.3: Aligning the model with use of a laser
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A.5. Calibration of sensors
A.5.1. Load cells

As discussed in the previous subsection, The individual load cells are tested by conventional static load tests.
A picture of the calibration test set-up is included in appendix A.4 figure A.4. The results of these tests are
shown in figure A.5a and figure A.5b. The graphs show a very linear behaviour. The slope of the trend line
determines the calibration factor. For all load cells, the deviation between the calibration factor and the mea-
sured data is 0.5 percent at most. The hysteresis of an individual load cell is negligible.
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(a) Static calibration measurements of 5 kg load cells. (b) Static calibration measurements of 10 kg load cells.

Figure A.5: Calibration measurements of the load cells.

A.5.2. Pressure sensors

The membrane pressure sensors are calibrated by hydrostatic pressure tests. Two pictures of the calibration
set up is included in appendix A.4 figure A.7. The calibration measurements are shown in figure A.6. The
graphs of sensor 1 and sensor 3 are not visible as their graph is exactly underneath the graphs of sensor 2
respectively sensor 5. The sensors show a highly linear behaviour. The accuracy of the calibration measure-
ment is relatively small at lower hydrostatic pressures. This is likely to be due to inaccurate observation of
the imposed pressure. These measurements are not taken into account in determining the calibration factor.
The deviation between the calibration factor and the measured data is 2.5 percent at most.
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Figure A.6: Calibration measurements of the pressure sensors.

(a) Set-up in which 10 pressure sensors can be fitted (b) Water height ruler

Figure A.7: Calibration set-up for membrane pressure sensors



Signal corrections

B.1. Butterworth filter

The signals measured by the load cells and the pressure sensors both contain noise. Therefore, the signals
need to be filtered. The motions measured with Certus do not contain visible noise, but the signal sometimes
shows small discrepancies. These are barely noticeable when observing the motion signal, but when the mo-
tion signal is differentiated to the velocity or acceleration, large peaks can be observed at the discrepancy’s
moment. Filtering the motion signal avoids these peaks.

Filtering of all signals is done with a Butterworth filter. This filter design is known for its 'maximally flat’

behaviour (MathWorks, 2018). This means there are no ’ripples’ generated in the gain-function (which is
related to the transfer function) before the cut-off frequency. This behaviour is illustrated in figure B.1. In this
figure, a gain-function is of a Butterworth low-pass filter is shown. Before the cut-off frequency, which is at
f/fo =1, the gain function does not show ripples and is very flat.
The order of the function determines the steepness of the filter. In figure B.1, the different orders of the
function are shown by graphs A to E, with A being the lowest order and E the highest order. The steepness of
the function is known as the roll-off rate. Figure B.1 shows a low-pass filter; a filter that passes low frequencies
and cuts off high frequencies. The maximum cut-off frequency is the Nyquist frequency, which is defined as
half of the sampling rate. Above this frequency, no filtering is possible because of aliasing (Holthuijsen, 2007).
A consequence of filtering is the generation of a phase lag of the signal. This phase lag is numerically corrected
with use of Matlab’s 2016a filtfilt function.

Besides high frequency noise, low frequency noise may be present in the pressure- and load cell signals

n

m A A
0
/

fre

Figure B.1: Butterworth filter design of several orders. Adapted from Butterworth (1930).
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as well. Low frequency noise can be added by low frequency waves in the towing tank. Due to the numerous
tests during the day or even the week, low frequent waves can be generated. These are hardly visible in the
tank and the signal, but may affect the results. The low-frequent waves may be present especially for runs
at the end of a test day. To account for this, a Butterworth bandpass filter is used, which filters both low fre-
quency noise as high frequency noise.

Figure 4.1a shows the normalized spectral density of load cell F2 in y-direction during sway oscillation. The
spectrum clearly shows a large peak between 0 and 4 Hz. The same trend is observed in figure 4.1b, which
shows the normalized spectral density of pressure sensor P3 during the same sway oscillation. For the pres-
sure sensor, a small peak is observed at 7 Hz and 11 Hz as well. This is probably noise. The load cell’s signal
also shows small peaks at 7 and 11 Hz as well, and moreover shows an increase at higher frequencies. At high
frequencies, this clearly is noise. A cut-off frequency for both signals is chosen at 7 Hz. This filters the signal
enough, but does not flattens the signal out too much. The signals are both sampled at 1000 Hz, which makes

the Nyquist frequency equal to 500 Hz. The input parameter for the filter design is fc;;—‘y’;ff

Alower cut-off frequency of 0.06 Hz is used. This number is determined by examining the filter’s influence
on the signal’s mean. The signals were first corrected for their static values. Afterwards, the signals should
have mean of zero, but a Fourier analysis still showed small deviations in the mean value. This can be due to
low frequency noise. A cut-off frequency of 0.06 Hz minimized the deviations of the mean value, but did not
influence the magnitude of the Fourier coefficients of interest much. The magnitude of the mean parameter
after correction was smaller than 1/1000.

The motion signals are filtered with a low-pass filter with cut-off frequency of 1 Hz. The use of this filter
is not because of the noise, but due to small ripples in the signals, which are unwanted amplified when the
signal is used for further calculation.

B.2. Method of Least Squares

B.2.1. Phase correction
The motion of the model can be written is terms of a single sine with a phase €,,, which is the time between
the first zero-crossing of the signal and the starting time ¢, of the signal.

Y (1) = ygsin(wt+e€,) (B.1)

In this equation, y () is the measured motion signal and w the angular velocity, which is assumed constant
throughout the whole measurement. Both y, and €,, are unknown for the raw data sets. They need to be
known for further processing of the data. Both can be obtained with the Method of Least Squares. For this
method, the equation is rewritten to a summation first, by using the angle addition formulas:

Y (8) = yq (sin(wt) cos (e;,) + cos (wi) sin (€,)) (B.2)

Equation B.2 can be written in vector formation, in which the measured time-series and known parameters
can easily used as input.

sin(wfy) cos(wtp) v (to)
sin(wt;) cos(wt) Y408 (€m) y(t)
Vasin ()
sin(wt;) cos(wt;) y (&)
This vector formation is basically a multiplication in the form of:
Gx=b (B.3)

The parameter x is a column vector of length 7 and b is a column vector of length m, which is the number
of samples of a signal. The matrix A is of size [m - n ]. Matrix G and column vector b are known from the
time-series and vector X, in our case the amplitude and phase of the signal, is unknown. There is no exact
solution for vector x, therefore the Least Squares Method tries to find the ’best fit’ vector x* to vector b. This
best fit can be visualized as minimizing the length of vector which denotes the difference between b and Gx*
(Lay et al., 2016):

[lb—Gx*|| (B.4)
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The length of this vector is a summation of squares, (b; — Gy, )2 4 (by — Gy, *)2 + .... The name Least Squares
obviously originates from this. The method thus tries to obtain a zero-vector (Lay et al., 2016):

Gx*-b=0 (B.5)

Via linear algebra methods, the best fit of to this zero-vector is obtained. First, both sides are multiplied with
the transpose of G and subsequently rewritten (Lay et al., 2016):

GT(Gx*-b)=0 (B.6)
G'Gx*-G'b=0 (B.7)
G'Gx* =G'b (B.8)

Furthermore, when matrix AT A is multiplied with its inverse, (GTG)_I, the identity matrix is obtained. This
results in the least square fit (Lay et al., 2016):

x =(GT6) ' G™b (B.9)

A solution to the amplitude and phase of the signal can thus be obtained with basic linear algebra. In terms of
our initial problem as shown in equation B.1, the least squares fit of y* (1) = y, cos (€,;;) and x* (2) = y, sin (€,)
is obtained. The result is thus a system of two equations with two unknowns, which can be solved.

B.2.2. Fourier coefficients

As explained in section 2.3.2, the measured force signal is assumed to be composed of a sum of sine. This
is mathematically shown in equation 2.23. Assuming only the first and third term are relevant, the equation
reduces. In vector formation, the equation is shown as:

A
sin(wfy) cos(wty) sin(Bwty) cosBwiy) sin(bwity) cos(bwiy) B Fy (o)
sin(wt;) cos(wt;) sin(Bwt;) cosBwt) sin(bwt;) cosbGwt) As Fy(t1)
: : : : : Bs| " |
sin(wt;) cos(wt;) sin(3wt;) cos(3wt;) sin(bwt;) cos (5w t;) As Fy ()
Bs

The Fourier coefficients A1, By As, Bs, As and Bs can be solved with the method of Least Squares, as explained
in the previous section.
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Figure C.3: Time trace of Fy of 0.31 Hz sway oscillation in air with an amplitude of 160 mm.
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Figure C.4: Time trace of Fy of 0.62 Hz sway oscillation in air with an amplitude of 160 mm.
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Figure C.7: Pressure signals of a vertical oscillation test at 0.31 Hz with an amplitude of 75 mm to inspect the pressure sensors after water
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