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Abstract—The heterogeneous distribution of frequency support
from dispersed renewable generation sources results in varying
inertia within the system. The effects of disturbances exhibit non-
uniform variations contingent upon the disturbance’s location
and the affected region’s topology and inertia. A screening
method for inertia-zone identification is proposed considering
the combination of network structure and generator inertia
distribution that will aid in comprehending the response of
nodes to disturbances. The nodes’ dynamic nodal weight (DNW)
is defined using maximal entropy random walk that defines
each node’s spreading power dynamics. Further, a modified
weighted kmeans++ clustering technique is proposed using DNW
to obtain the equivalent spatial points of each zone and the system
to parameterize the inertia status of each zone. The impact
of the proposed scheme is justified by simulating a modified
IEEE 39 bus system with doubly-fed induction generator (DFIG)
integration in the real-time digital simulator.

Index Terms—Doubly-Fed Induction Generator, Frequency
Response, Grid Topology, Inertia-Zone, Random Walk, Real-
Time Digital Simulator.

I. INTRODUCTION

There has been a significant surge in renewable energy-

based generation (REG) penetration to green the power indus-

try [1]. The increasing penetration level of REG has promoted

replacing conventional synchronous machine-based genera-

tion, thus introducing recurrent stability issues [2]. Among

various issues, the adverse effect of the decline in global inertia

at distributed locations poses a great threat to stability, having a

significant impact and frequent violation of the local frequency

limit. Consequently, REG has participated in power-sharing

and introduced technological advancements to support power

system stability to counteract the stability issue [3].

The higher percentage of REG supporting the grid’s fre-

quency will form a dynamical change of the power grid

due to the randomness in the REG generation source, which

leads to variability in the reserve availability [4]. This results

in spatiotemporal variations in power system inertia [5]. As

system inertia becomes non-uniform across the network, some

areas may experience varied levels of inertia deficiencies [6],

[7]. The transient fluctuations in local frequency cannot be

captured by the temporal changes in the Center Of Inertia

(COI), as the COI solely reflects the global frequency dynam-

ics of the system. Consequently, there is a growing interest

This work has been supported by CRESYM projects BiGER Explore
(https://cresym.eu/biger-explore/) and Harmony (https://cresym.eu/harmony/).
Emails: 1{R.Prasad, P.P.VergaraBarrios, A.Lekic}@tudelft.nl,
2nppadhy@ee.iitr.ac.in, 3Robert.Dimitrovski@tennet.eu

in studying zonal behavior to address frequency management

within specific zones. The zoning of the network helps track

the local responses for analysis, as it has become a crucial

factor in determining the network’s stability.

The vulnerability status of the node is seen to be dependent

on the unsymmetrical nature of the inertia distribution and

on the locational and connectivity aspect of the network [8].

Moreover, topology determines how fast the disturbances-

induced energy dissipates to zero [9]. The suggested method

involves defining distinct inertia zones to monitor local inertia

levels and assess the system’s reaction to significant disrup-

tions. These zones are defined as operational regions having

similar inertial response characteristics. They are defined based

on the inertia distributions of the generators contributing to the

system dynamics and response to disturbances. Inertia zones

can thus analyze the impact of changes in the distribution of

generators and their inertia on the overall system stability,

particularly in the context of renewable energy integration.

They help assess how the response to disturbances varies

across different grid areas.

Based on graph theory concepts, the Dynamic Nodal Weight

(DNW) is proposed to estimate the spreading property of

the dynamic behavior of the generator nodes in the network.

Using the maximal entropy random walk centered on the

maximum uncertainty principle provides the basis for DNW.

This highlights the influence of network topology and inertia

distribution across nodes and helps further find the effect on

the disturbance of node dynamics. The modified weighted K-

means++ scheme on the Fiedler eigenvectors of the Laplacian

matrix of the dynamic graph and DNW is proposed for zoning.

The network is clustered based on the inertia distribution

features of the nodes and locates each network cluster’s Spatial

Equivalent Points (SEP). The DNW determines the weighted

factor, combining network dynamics with the topology. The

SEP provides a granular approach to spatial awareness of the

area in response to the overall grid status, i.e., network working

conditions and locational features. Also, the spatial equivalent

distance is determined for the screening methodology to

identify zones characterized by comparable inertial response

characteristics flexibly. Identifying inertia zones needs regular

updating since nodes might jump from one cluster to another

in response to changing operating conditions and network

topology. The algorithm provides easy and rapid generation

of clusters for changing network topology and operating

conditions due to its computation efficiency.
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Figure 1. Case study shows the variation in rotor angle (ΔωG) of Generators
numbered G1 to G10 when subjected to Fault at different buses (B#).

II. METHODOLOGY

The impact of disturbances varies non-uniformly depending

on the disturbance’s location and on the impacted area’s

topology and inertia. Case study in Fig. 1 shows the variation

in rotor angle (ΔωG) of generators numbered G1 to G10

when subjected to similar duration and type fault at different

load buses (B#) of the standard IEEE 39 bus system [10].

It can be observed from Fig. 1, that the location of faults

triggers different levels of response of generators. Generator

1, irrespective of the location of the fault bus, maintains a

uniform response, while most other generators seem highly

dependent on the location of the fault. Moreover, the fault

at load bus B1 also does not trigger the generator dynamics

much. Thus, locational features highly influence the dynamic

response.

A. Grid Structure effect on Power System Dynamics

Each node’s dynamics are interconnected through the net-

work structure, whereby the system topology unifies the dy-

namics of all nodes. Node stability is collectively defined by

examining network attributes such as the degree and stability

of surrounding nodes. Nodes with higher degrees indicate

greater connectivity, enabling them to dissipate disturbance

energy more effectively, resulting in increased support and

reduced sensitivity to disturbances. The Spectral Graph Theory

(SGT) provides a comprehensive network perspective by ana-

lyzing the Laplacian matrix’s eigenpair. This eigenpair unrav-

els some of the static and dynamic characteristics features of

the electrical network i.e., spectrum and its associated eigen-
vectors to explore a variety of network structural properties,

including the degree of robustness. SGT relates the network’s

dynamic characteristics and topological information when the

graph edges’ weight is defined as the synchronizing power

and nodes’ weight by the inertia constant. The Laplacian

matrix thus provides the relation of modal dynamics of linear

oscillatory networks considering the generator (G) and load (κ)

buses partition. The governing Differential-Algebraic Equation

(DAE) of the system constituting the Laplacian matrix (L) is

described as:

d

dt

[
Δωg

Δωκ

]
= −

[
M−1 0
0 0

] [
PsGG PsGκ

PsκG Psκκ

]
︸ ︷︷ ︸

L

[
ΔδG
Δδκ

]
. (1)

Here Δ highlights a small change in value,

M = diag(2Hi/(2πfn)) in which Hi is the inertia constant

(in seconds) of the generator ’i’, i ∈ G, fn is the nominal

frequency (Hz). Eq. (1) is defined for the generator buses

and the Wind Turbine Generator (WTG) contributing to

frequency support. The above equation characterized the

features of generator set G with Ng number of generators

and the non-generator bus set κ in a N bus system, for a

small change in active power [11]. The diagonal (Psii) and

off-diagonal (Psij) elements of the synchronizing power

coefficient matrix between nodes ’i’ and ’j’ in p.u. are given

by:

Psij =

{ ∑
j=Ni

ViVjBijcos(δio − δjo), i = j,

−ViVjBijcos(δio − δjo), i �= j,
(2)

∀ i ∈ {1 · · ·N} and ith bus neighbouring buses set is Ni.

The Eq. (2) forms matrix L of (1) which follows properties of

the Laplacian matrix i.e. being symmetrical and semi-definite.

For generator buses, voltages correspond to the pre-disturbance

internal voltage (p.u.) of the generator with initial generator

angle difference δio . Moreover, for the load buses voltages

are bus voltage. Susceptance term Bij of transfer admittance

alone is considered while neglecting conductance. Subscript ◦
denotes the pre-disturbance value. The system dynamics can

be sensed from the equation:

dΔωg

dt
= −M−1[PsGG − PsGκP

−1
sκκPsκG]︸ ︷︷ ︸

LMred

Δδg. (3)

For further analysis, the behavior of the state variables is

obtained from the eigenvalue and eigenvector of LMred. The

Eq. (3) is valid for the wind turbine generator providing

frequency support. The value of the initial inertia constant of

the WTG-based DFIG can be obtained [12].

B. Dynamic Nodal Weight

The DNW estimates the spreading property of the dy-

namical behavior of the generator nodes in the network. In

other words, it represents the importance of individual nodes

in their dynamic behavior. The DNW represents the inertia

distribution, which characterizes the trend of diffusion of

generator inertia effect to non-generator nodes and its influence

on inter-generator interactions.

DNW uses the Maximal Entropy Random Walk (MERW),

a mathematical model, to calculate the DNW. The traditional

random walk has already been used to calculate the nodal

inertia index using the eigenvector centrality (EVC) [5]. Eigen-

vector centrality emphasizes its relevance as a mathematical

model of the information flow process that can reveal po-

sitional biases that impact the distribution of ideas within

networks [13]. However, the general random walk violates the

Maximum Uncertainty Principle (MUP), leading to a biased

prediction. The MERW algorithm can adequately implement

the MUP in a weighted graph and obtain an equilibrium

distribution with strong localization properties [14]. As the

partitioned matrix of the generator and non-generator nodes

is considered, the first step is to calculate the DNW of the

Authorized licensed use limited to: TU Delft Library. Downloaded on November 06,2024 at 13:00:03 UTC from IEEE Xplore.  Restrictions apply. 
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Figure 2. Distance between System and each cluster SEP, here i ∈ {1, ..., k}.

generator nodes. U and Λ are the eigenvectors and eigenvalue

matrices of the LMred matrix.

Algorithm 1 Dynamic Nodal Weight

1: Pre-requisite: LMred: Non-negative

2: LMred*U = U*Λ
3: λm=max(Λ)

4: um=U |λm
, um ∈ RNg∗1

5: Transition Probability Matrix: PMij =
LMredij

umj

λmumi

6: Stationary Distribution of MERW: ΠMi
= u2

mi

Algorithm 1 calculates ΠM , which is the DNW of the gen-

erator nodes. The transition probability matrix (PM ) needs to

be non-negative as the Frobenius-Perron Theorem guarantees

maximum eigenvalue (λm) and its corresponding eigenvector

um to be positive. For obtaining the DNW of the non-generator

bus, the effect of the neighboring influence of the generator

nodes is considered by calculating load only path of reaching

the nodes. It can be found from (1) when expressed in the

form of eigenvalue and eigenvectors (−Lυ = λMυ) [11],

expanding the relation, PsκGυG +Psκκυκ = 0, where the υG
and υκ are the partitioned generator and non-generating node

eigenvector, thus: υκ = −P−1
sκκPsκGυG. Thus, the eigenvector

of the non-generating nodes is dependent on the structural

distribution characteristics of the generating node eigenvector.

The level of influence directly depends on the path that

different generators have to load nodes without encountering

any other generator node. So, net nodal weight is obtained by:

ΠMnet = [ΠM ;−(P−1
sκκPsκG)ΠM ]. (4)

C. Inertia Zone and Spatial Equivalence

A dynamic similarity is observed among a group of nodes

within a power network, as defined by specific graph criteria.

Zoning imparts analogous behavior to these node clusters,

with the cluster center playing a vital role in operational

and control aspects. Furthermore, the spatial structure of the

network significantly impacts frequency dynamics, leading

to the utilization of graph spectral properties for clustering

networks with comparable inertia characteristics. The method

uses data points: i) eigenvectors corresponding to the ’r’ slow-

est mode of the LMred matrix of the dynamic graph, ii) DNW

considers the nodal features to form a multidimensional feature

data vector. The improved weighted kmeans++ Algorithm 2

modifies the network by introducing the weighted mean, which

is additionally influenced by the DNW input.

Algorithm 2 Modified Weighted kmeans++ Algorithm

Require: Defining Initial centroid and number of clusters
1: Select the first centroid (Co) at random from the data

points.

2: Assign the centroid (Co) to the cluster set Coi.

3: Calculate distance (di) of all data points from (Coi).

4: Calculate the intracluster distance (Si)= data points dis-

tance to nearest centroid.

5: Data Point corresponding to max distance is assigned as

next centroid (Co).

6: Repeat 2-5 till Si and Si−1 comes very near.

Require: Inertia Zone: Suppose the stopping criteria is ful-

filled at kth step, where Sk ≈ Sk−1. So the number of

zones is k and the initial centroid= Coi, where i=k.

7: Assign points to k different clusters based on the minimum

distance between the centroid and data point

8: Recompute Centroid (Ck) using the weighted mean taking

weight (w) = (1./ΠMnet
),

W =

n∑

i=1

wi∗xi

n∑

i=1
wi

9: Repeat 7-8 while checking the minimizing criteria of

intracluster distance.

After satisfying the stopping criteria, the centroid (Ck) of

each cluster is obtained and called the spatial equivalent point

(SEP) to get the overall centroid (C�) using the weighted

mean. The nodal weight of each cluster is summed to get the

cluster nodal weight, i.e., system SEP. The centroid (Ck) of

each cluster represents the group’s characteristics and behavior

based on the network’s spatial awareness.
In a traditional power system where synchronous generators

are placed at a remote location, higher utilization of the inertia

occurs at a lower degree node, typically peripheral nodes in

a power system network. However, in a low-inertia power

system, the optimal use of inertial support units is to distribute

inertia throughout the network to slow down disturbance prop-

agation that can benefit frequency transient stability [9]. Thus,

REG has significant impacts depending on the varied locations

of the power system. So, accordingly, the support mechanism

needs to be defined for REG located at different locations. The

algorithm delivers zoning to identify the sub-area for more

localized monitoring. Further, the authors employ DNW and

SEP matrices, which quantify the nodes’ relative robustness

in the network by considering spatial considerations.
To find the Spatial Equivalent Euclidean Distance (SED) of

the cluster SEP (Ci, i ∈ {1, ..., k}) from the system SEP (C�)

as shown in Fig. 2 and calculated as:

SED(i) =
Di�

max(Di�)
, i ∈ {1, ..., k}. (5)

The SED provides the idea of the status of equivalent inertia in

the zones. Higher SED corresponds to zones of lower inertia

distribution. This helps in parameterizing the inertia status of

the zones.

III. RESULT AND DISCUSSIONS

In this section, we have deliberated upon the findings from

four test scenarios within the IEEE 39 bus system. These test

Authorized licensed use limited to: TU Delft Library. Downloaded on November 06,2024 at 13:00:03 UTC from IEEE Xplore.  Restrictions apply. 
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Figure 3. Inertia Zones Shown by various color dots and cluster SEP marked
as Red Cross for (a) Scenario 1; (b) Scenario 2.
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case scenarios are executed in the Real-Time Digital Simu-

lator (RTDS), placing DFIG-based WTGs at various system

buses. The computational work is performed in the MATLAB

environment. The information exchange between RTDS and

MATLAB is done through a TCP/IP connection [15]. The

modified discrete Fourier transform analysis is performed on

the voltage waveform to obtain the RMS voltage and angle.

A generation mix of synchronous generator and DFIG-based

WTG supply 6097.1 MW load of IEEE 39 bus system, as per

the scenario discussed:

• Scenario 1: Base Case with 10 Synchronous Generators

(SG).

• Scenario 2: SG is replaced by DFIG-WTG at buses 30

and 33, providing an inertia constant of 5.6 each.

• Scenario 3: In the scenario 2 system, an additional DFIG-

WTG is installed at bus 28, rated at 255 MW and

possessing an inertia constant of 5.6 s. The equivalent

load is evenly distributed.

• Scenario 4: In the scenario 2 system, an additional DFIG-

WTG is installed at bus 19, rated at 255 MW and

possessing an inertia constant of 5.6 s. The equivalent

load is evenly distributed.

Fig. 3 illustrates replacing the SG with DFIG-WTG, pro-

viding a higher value of inertia constant leads to less number

clusters. It can be marked from the figure that there is a more

uniform inertia distribution in Scenario 2 with the radius of the

circle displaying inertia distribution as obtained by (1/ΠMnet,i

Generator
Load

(a)

Generator
Load

(b)

Figure 5. Inertia Zones Shown by various color dots and cluster SEP marked
as a red cross for (a) Scenario 3; (b) Scenario 4.

for i representing rows of vector ΠMnet
).

Fig. 4 illustrates the plot depicting the eigenvector as-

sociated with the two slowest modes for scenario 1. Each

cluster SEP is identified in the figure by a red cross, serving

as a reference node for frequency measurement within the

respective cluster. Measuring the frequency at this reference

node provides the frequency response for all nodes in that

cluster. The system SEP is computed using a weighted mean,

offering insights into inertia zones both near and distant from

the system’s SEP. This calculation reveals a lower inertia

distribution in regions farther from the system’s SEP, while

the system SEP itself is situated closer to the SEP zone having

a higher inertia distribution.

Intentionally, two locations of WTG are taken, one with a

relatively higher DNW (Scenario 4) and one with a low DNW

(Scenario 3). From Fig. 5, an observation is made that the

path of the release of generator energy, if blocked by another

generator, will only contribute to the variation of direct path

nodes. An essential aspect of the study is the variation in nodes

33, 34, and 20 is relatively higher than the standard test system

value when WTG is placed at bus 19. The WTG at node

19 does not provide a non-generator path to the rest of the

network from nodes 34 and 35. So none of the non-generator

nodes except node 20 are influenced by the generator node at

34 and 35 and are solely influenced by the generator factor

of node 19. The second observation is from the size of dots

reduced, i.e. the overall variation of the nodes increases with

the WTG placed at bus 19 than 28 in the system. Fig. 6 justify

the observation of Fig. 1 i.e. the variation in nodes with lower

inertia distribution results in more variation in response. WTG

placed at bus#19 varies its inertia from 2 to 6 seconds, then

the variation in inertia distribution is varied more when the

inertia constant of WTG placed at bus 28 varies. Also, it can

be seen that the number of zones is determined by Algorithm

2, thus Fig.3 and 5 have different numbers of zones formed.

Sensitivity Analysis of DNW: By using the matrix per-

turbation theory using the analytic expansion of eigenvalues

and eigenvectors as matrix equations, namely the Sylvester

equation, the variation in the eigenvector is studied [16]. As

mentioned above, the DNW is reflected from the eigenvector

(um ) corresponding to the matrix largest eigenvalue λm. So

the variation in υm is marked:

Authorized licensed use limited to: TU Delft Library. Downloaded on November 06,2024 at 13:00:03 UTC from IEEE Xplore.  Restrictions apply. 
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The initial matrix operation follows:

LMredo
∗ Uo = Uo ∗ Λo

W ∗
o ∗ LMredo

= ΛoW
∗
o

where Uo and W ∗
o are the right and left eigenvector respec-

tively and Λo is the eigenvalue of matrix LMredo
. Perturbation

Expansion of matrix LMredo , for some small parameter ε is

defined as:LMredε = LMredo + εLMred1 , expanding:

(LMredo + εLMred1)(Uo + εU1 + · · · ) = (Uo + εU1 + · · · )
(Λo + εΛ1 + · · · )

Variations are obtained as:

Λ1 = diagonal(W ∗
o LMred1Uo)

U1 = −Uo(Υ
+oo(W ∗

o LMred1Uo))

where, Υ+o = 1
λoi−λoj

if i �= j, Υ+o = 0, if i=j.

Analysis using the IEEE 39 bus system: Variation in voltage,

angle, and inertia is varied by 0.2 units of the initial value.

Uo−fd eigenvector corresponding to matrix’s (LMredo
) largest

eigenvalue. U1−fd is variation in largest eigenvector.

U1var=sum(abs((U1−fd./Uo−fd)) It has been seen that the

Table I
SENSITIVITY ANALYSIS OF DNW

Variation in eigenvector with variation of voltage
V1var−ΔE 0.0301

Variation in eigenvector with variation of voltage angle
V1var−Δδ- 0.0104

Variation in eigenvector with variation of inertia
V1var−ΔH 0.2044

impact of voltage variations and the exciter elements are less in

compassion to variation in inertia constant changes, the inertia

distribution regions are just slightly modified. The inertia

distribution is sensitive towards grid topology change or inertia

of generator change. The simulation helps us understand the

importance of monitoring the inertia variation from the WTG

and its impact on the system. The study of zoning will thus

prepare the system for the upcoming varying inertia scenario

with higher penetration of REG.

IV. CONCLUSION

The frequency of the nodes significantly governs the input

to the frequency support loop of the WTG. The non-uniform

distribution of inertia is noted in conjunction with the diverse

frequency support provided by dispersed REG. Consequently,

specific groups of nodes exhibiting similar response patterns

are zoned to enhance the localized analysis of the system. The

dynamic nodal weight and system spatial equivalent distance,

which analyze the grid operating status, are calculated for this.

The article enhances the WTG inertial frequency support state-

of-the-art by considering the spatial effect of the grid stability

criteria. DNW represents the spatio-temporal dynamics of the

network. Using the maximal entropy random walk technique

finds the DNW accurately, enhances the algorithm’s robust-

ness, and is also computationally faster with 0.003085 s. The

detailed model and control strategy are implemented in the

real-time digital simulator, which provides a realistic response

from the WTG, even in the case of a dynamic response.

The technique reduces the overall computational complexity in

providing the local responses considering the network features.
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