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Chapter 1

Introduction

Simultaneous Localization and Mapping (SLAM) is a technology in robotics and autonomous
systems that enables to build a map of an unknown environment while simultaneously tracking
its own position within it. Originally developed for robotic navigation, SLAM has since
become a solution applied across many domains, including robotics, medicine, agriculture,
archaeology, and infrastructure management.

On of the application where SLAM is applied is on Autonomous Underwater Vehicles (AUVs).
AUVs are essential for various underwater tasks, from scientific research to military activities.
These tasks requires AUVs to navigate and map the underwater environment with a certain
degree of precision. However, AUVs encounter significant difficulties due to the absence of
GPS signals underwater, communication limitations, and changing environmental conditions.

Vakili, Sasan, et al. [1] proposed an algorithm aimed at estimating the unknown time-varying
output map of a linear time-varying system using a Maximum A Posteriori (MAP) estimation
approach. This algorithm employs Bayesian principles to integrate prior information and
utilizes convex optimization and gradient-based techniques for fast and precise parameter
estimation. One of the claims of the paper is that the Semi-definite Programming Gradient
Descent(SDP-GD)can be deployed in AUV for seabed reconstruction.

Objective

In this work, the SDP-GD algorithm is adopted as a novel SLAM approach and evaluated
against two established SLAM techniques: ORB-SLAM2—a state-of-the-art visual SLAM
system—and a sonar-based SLAM method. The goal is to assess the viability and perfor-
mance of SDP-GD in underwater mapping scenarios by comparing it to these conventional
alternatives. For simplification, the trajectory is constrained to motion along the x-axis while
maintaining a steady depth along the z-axis.

The evaluation is conducted within a custom-built simulation environment that includes real-
istic models of Autonomous Underwater Vehicles (AUVs) and their surrounding environments.
Specifically, the BlueROV2 is used to simulate visual SLAM with ORB-SLAM2, while the
DestiK SAGA platform is simulated for sonar-based SLAM. To enhance realism, various forms
of noise are introduced in the environment to mimic real-world underwater disturbances.

A visual SLAM algorithm is included in the comparison due to its relevance in aerial robotics—such
as drones—which exhibit similar motion characteristics to underwater vehicles in certain sce-
narios. Conversely, the sonar-based SLAM method is chosen for its widespread application in
underwater robotics, where acoustic sensing is often more robust in low-visibility conditions.
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Scope
Through this structure, the report aims to assess the potential of the SDP-GD algorithm as
a viable SLAM solution for underwater applications. Its performance is benchmarked against
conventional SLAM approaches under realistic, simulated conditions.
The report1 begins by presenting the theoretical background, including the core tasks of
SLAM, an overview of existing SLAM techniques, and a detailed introduction to the SDP-
GD framework.
The remainder of the report presents the original research conducted in this study. It begins
with a description of the system setup, focusing on the Gazebo simulation environment and
the configuration of both visual SLAM (using ORB-SLAM2) and sonar-based SLAM systems.
Next, the design of the PID controller used for AUV control within the simulation is discussed.
This includes analysis of its performance, response to disturbances, and integration with the
SLAM systems to ensure stable navigation.
Since the SDP-GD algorithm requires a discrete-time, time-varying system model—while
most AUV models are defined in continuous time—the report also addresses the modeling
and system identification process. This includes nonlinear modeling, system linearization, and
closed-loop system identification techniques to obtain a suitable model for use with SDP-GD.
Following this, the adaptation of the SDP-GD algorithm for both sonar-based and visual
SLAM inputs is explained in detail. A comprehensive comparative evaluation is then con-
ducted, assessing the performance of SDP-GD against ORB-SLAM2 and the sonar-based
SLAM method. Key evaluation metrics include depth estimation accuracy, computational
efficiency, effects of sampling frequency, and robustness to environmental disturbances.

1Parts of this thesis were reviewed and refined using ChatGPT to improve grammar, clarity, and conciseness.
Some sections were summarized to shorten the text, but no new content or ideas were generated by the tool.
All technical work, analysis, and conclusions were developed entirely by the author.
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Chapter 2

Theoretical Background

This chapter outlines the key concepts used in this thesis. It starts with the basics of Si-
multaneous Localization and Mapping (SLAM), explaining how it works and some common
methods. Next, it covers the main sensors used for underwater navigation, including cameras,
sonar, inertial measurement units (IMUs), and Doppler Velocity Logs (DVLs). Finally, it in-
troduces the SDP-GD framework, an algorithm that estimates the unknown, time-varying
output map of a linear system using a Maximum A Posteriori (MAP) approach.

2-1 Two Core Tasks of SLAM
Simultaneous Localization and Mapping (SLAM) is the process of building a map of an
unknown environment while simultaneously estimating the location of a moving system within
that environment [2]. SLAM is particularly useful when GPS is unavailable or unreliable, such
as underwater or in space.

As the name suggests, SLAM combines two key tasks: mapping the environment and localizing
the system within it. These tasks are closely connected — as the system collects sensor data
and updates its map, it also improves its estimate of its own position. In certain algorithm this
loop continues as the robot moves, gradually refining both the map and its position estimate.
In this way, the robot is able to navigate through unknown environments autonomously.

Localization is the process of estimating the robot’s state — such as position, orientation,
and velocity — relative to its environment. Localization can be done using sensor data such
as visual odometry, GPS, or inertial measurements. When sensors rely on environmental
observations (e.g. visual odometry), the poses of known landmarks are used to estimate the
robot’s location.

Mapping refers to the process of creating a structured representation of the environment,
often in the form of a 2D or 3D map [3]. This can be done by estimating the system’s state
and updating the map based on measurements collected by the sensors. In visual slam he
environment is typically represented using landmarks or features, each with its own estimated
pose (position and orientation). The poses of the landmarks can be used to update the map.

2-2 Overview of SLAM Techniques
In this thesis, one of the comparisons involves evaluating visual SLAM and sonar-based SLAM,
particularly in the context of underwater navigation. To better understand the differences
between the two, the following sections provides an overview of both methods.

Master of Science Thesis P.K. Kartoidjojo



2-3 Sensor Technologies for Underwater Navigation 4

Visual SLAM

Visual SLAM relies on visual input to estimate motion and map the environment. It includes
pure visual approaches and Visual-Inertial SLAM, which incorporates IMU data. Taketomi
et al. [4] identify three core modules: initialization, tracking, and mapping. These maintain
consistent pose and map estimates. A key concept is odometry—estimating motion over time.
Visual odometry (VO) uses sequential camera images, as opposed to traditional odometry
sensors, to maintain geometric consistency. Monocular visual SLAM faces challenges due
to limited depth and field of view [4], making initialization and scale estimation difficult.
To mitigate this, this thesis employs a stereo camera setup, enabling depth estimation from
image disparity. Visual SLAM methods are classified into feature-based and direct. This
thesis adopts a feature-based approach, detailed below.

Feature-Based Methods:These methods track distinct features (e.g., corners, edges) across
frames to estimate motion and reconstruct the 3D environment. PTAM, a notable example,
introduced parallel tracking and mapping and uses a five-point algorithm for initialization [5],
unlike MonoSLAM which requires prior geometry.

However, they depend on textured scenes. In low-texture environments—like underwa-
ter—feature extraction is unreliable, reducing localization accuracy [6].

Sonar-Based SLAM

Sonar-Based SLAM is a technique for estimating a vehicle’s trajectory and simultaneously
building a map of the underwater environment using sonar data. Unlike camera-based sys-
tems, it operates effectively in low-visibility conditions, making it ideal for subsea applications.
Roman and Singh’s work "A Self-Consistent Bathymetric Mapping Algorithm" [7] presents a
sonar-based SLAM method that generates 3D bathymetric maps—dense point clouds of the
seafloor—without external navigation aids like GPS or Long Baseline (LBL) systems. In-
stead, it corrects navigation drift by aligning sonar scans across multiple passes.
The algorithm adopts a submap-based SLAM framework, where overlapping submaps are
locally registered and globally refined. Pose estimation is handled via an Extended Kalman
Filter (EKF), which fuses constraints between submaps to improve localization.
A key innovation is reducing navigation error, the dominant source of inaccuracy in deep-
sea mapping. The system performs terrain matching in two stages: a 2D correlation-based
alignment followed by Iterative Closest Point (ICP) refinement. This improves localization
by matching overlapping terrain features across scans.
Validated on real-world expeditions, the method outperforms dead-reckoning and LBL-based
approaches, achieving map accuracy close to the sonar’s resolution. However, the system
depends on reasonable initial localization and may struggle in featureless terrain where scan
alignment becomes unreliable.

2-3 Sensor Technologies for Underwater Navigation
This section outlines the main sensor technologies used in this thesis for underwater naviga-
tion.
Cameras are essential in visual SLAM systems but face challenges underwater due to light
scattering, absorption, and low contrast, leading to noisy images [8], [9]. The environment
often lacks distinct visual features, making feature detection and matching difficult [10].
Sonar is ideal for low-visibility environments. In this thesis, Side-Scan Sonar (SSS) is used
for SLAM, capturing sonar images to map the seafloor and estimate the vehicle’s trajectory.
An example of the Side-Scan Sonar (SSS) and how it is taken is shown if figure 2-1

Master of Science Thesis P.K. Kartoidjojo



2-4 The SDP-GD Framework 5

(a) Side-scan sonar data collection [11]. (b) Post-processed side-scan sonar image
[12].

Figure 2-1: Side-scan sonar operation and output.

Inertial Measurement Units (IMUs) measure acceleration, angular velocity, and mag-
netic heading. They provide short-term motion estimates but suffer from drift over time.
Accuracy improves when combined with other sensors, such as DVLs.
Doppler Velocity Logger (DVL) measure velocity relative to the seafloor or water col-
umn using acoustic Doppler shifts. They offer low-drift, high-accuracy velocity estimation
and support both Bottom-Lock and Water-Track modes [13], [14].

2-4 The SDP-GD Framework

The paper "Linear Time-Varying Parameter Estimation: Maximum A Posteriori Approach
via Semidefinite Programming." [1] by Vakili, Sasan, et al. published in IEEE Control Sys-
tems Letters (2023), proposes the semidefinite programming - gradient descent (SDGP-GD)
algorithm. This algorithm is designed to estimate the unknown time-varying output map (Ck)
of a linear time-varying system. The method is based on a Maximum A Posteriori (MAP)
estimation framework, which applies Bayesian principles to incorporate prior information into
the estimation process.

To solve the MAP estimation problem, the authors combine convex optimization and gradient-
based refinement techniques. The initial estimate is obtained using a lifted model represen-
tation and solved through semidefinite programming (SDP) via linear matrix inequalities
(LMIs). This approach leverages the computational efficiency of convex optimization while
preserving the flexibility to refine the solution using gradient-based methods. Together, these
techniques provide a robust and efficient framework for estimating time-varying output maps
in linear dynamical systems [1].

According to the authors, this method outperforms traditional techniques such as Expectation
Maximization (EM) and the Dual Kalman Smoother (DKS), offering improved accuracy and
reduced computational complexity.

This section gives a quick summary about the problem formulation, afterwards the lifted
model representation is introduced, followed by an overview of the MAP estimation framework
and then discusses the conservative LMI approximation.

Master of Science Thesis P.K. Kartoidjojo



2-4 The SDP-GD Framework 6

Problem Formulation
A discrete-time, linear, time-varying system defined by a process model and a measurement
model is used. These have rthe following form:
Process Model:

xk+1 = Akxk +Bkuk + wk, k ∈ Z+ (2-1)

• xk: state vector, uk: input vector
• Ak: state transition matrix, Bk: input matrix
• wk ∼ N (0, σwk

): process noise

Measurement Model:
yk = Ckxk + vk, k ∈ Z+ (2-2)

• yk: output measurement, Ck: unknown observation matrix
• vk ∼ N (0, σvk

): measurement noise

Output Map Dynamics: The observation matrix Ck is parameterized by a time-varying
vector θk. The goal is to estimate the sequence {θk} over time, enabling reconstruction of the
evolving measurement model.

θk+1 = θk + ηk, ηk ∼ N (µηk
, σηk

) (2-3)

Lifted Model Representation
To estimate the unknown parameter vector θ in the output map C(θ), the SDP-GD algorithm
is applied using input-output measurement data. The output is given by:

y = C(θ)Au = C(θ)Xnominal

where u is the lifted input vector defined as:

u =
[
µ⊤

x0 , (B0u0)⊤, . . . , (Bnτ −1unτ −1)⊤
]⊤

This lifting follows the formulation introduced in the SDP-GD framework to represent the
full trajectory compactly over a time horizon.
The lifted model reformulates a time-varying linear system over an entire time horizon as
a single large-scale static system. Instead of estimating parameters at each time step sepa-
rately, all time-varying observation matrices Ck are collected into a single high-dimensional
parameter vector θ [1]. This enables global optimization using all available data through a
maximum a posteriori (MAP) estimation framework.
The lifted model consists of four components:

• Lifted Process Model:
x = A(u+ wx)

where x is the stacked state vector, wx the process noise, and A a lower-triangular
matrix encoding system dynamics across time.
Here u is equal to

u =
[
µ⊤

x0 , (B0u0)⊤, . . . , (Bnτ −1unτ −1)⊤
]⊤

(2-4)

Master of Science Thesis P.K. Kartoidjojo



2-4 The SDP-GD Framework 7

• Lifted Observation Model:

y = C(θ)Au+ wy(θ), with wy(θ) = C(θ)Awx + v

where y is the stacked measurement vector, C(θ) a block-diagonal matrix of parameter-
dependent observations, and v the measurement noise.

• Lifted Parameter Dynamics:

θ = µθ + wθ, wθ = Dη

where µθ is the prior mean and D encodes parameter evolution.
• Noise Covariance:

wx ∼ N (0,Σwx), Σwx = diag(Σx0 , . . . ,ΣwnT −1)
v ∼ N (0,Σv), Σv = diag(Σv0 , . . . ,ΣvnT

)
wθ ∼ N (0,Σwθ

), Σwθ
= DΣηD

⊤

This lifted formulation allows for efficient and consistent parameter estimation over the full
trajectory by leveraging temporal dependencies in both state and measurement models.

MAP Estimation Framework

The parameter estimation problem is approached using a Bayesian framework, which incor-
porates prior knowledge to improve the accuracy of the estimates. Specifically, the algorithm
maximizes the posterior distribution of the parameters θ given the observed data y and inputs
u:

θ̂ = arg max
θ

p(θ | y, u) (2-5)

This is equivalent to minimizing the negative log-posterior, which leads to the following MAP
cost function:

J(θ) = log det (Σwy(θ)) +
∥y − C(θ)Au∥2

Σwy(θ)−1 + ∥θ − µθ∥2
Σ−1

wθ

(2-6)

Here, Σwy(θ) is the covariance matrix of the combined process and measurement noise. The
matrix C(θ) represents the observation model as a function of the parameter vector θ, and A,
u, and y correspond to the system dynamics matrix, control inputs, and measured outputs,
respectively. The term µθ denotes the prior mean of the parameter vector, and Σwθ is the
associated prior covariance.

The goal is to find the parameter vector that minimizes this cost function:

θ∗ = arg min
θ
J(θ)

Master of Science Thesis P.K. Kartoidjojo



2-4 The SDP-GD Framework 8

LMI Conservative Approximation
The cost function defined in eq. 2-6 is a non-convex problem and thus difficult to optimize
directly. To address this, a convex approximation is constructed using Linear Matrix In-
equalities (LMIs), allowing the MAP estimation problem to be solved efficiently within a
semidefinite programming (SDP) framework. The LMI-based conservative formulation has
the following structure [1]:

min
S,θ,γ,β

tr(S − I) + γ + β

s.t.
[

−Σ−1
wx

A⊤C(θ)⊤

C(θ)A Σv − S

]
⪰ 0,[

−S y − C(θ)Au
(y − C(θ)Au)⊤ −γ

]
⪰ 0,[

−Σwθ
θ − µθ

(θ − µθ)⊤ −β

]
⪰ 0,

(2-7)

where S, θ, γ, β are optimization variables.
This LMI-based approximation provides an estimate for θ, which serves as a "warm start" for
further optimization. To refine this initial estimate, a gradient-based method is employed,
namely the BFGS algorithm. This algorithm is a quasi-Newton method that is used to min-
imize the original non-convex cost function defined in eq. 2-6. This second-stage refinement
improves the accuracy of the solution and benefits from a superlinear convergence rate [1].

Master of Science Thesis P.K. Kartoidjojo



Chapter 3

System Setup and Experimental
Platform

This chapter outlines the system architecture and experimental setup used to evaluate the
performance of the SDP-GD in a simulated underwater environment. The simulation is de-
veloped using the Gazebo simulator, integrated with ROS for control, visualization, and data
handling. Visual and sonar-based SLAM configurations are implemented, and the Desistek
SAGA and the BlueROV2 underwater vehicle model is used as the experimental platform.
The implementation of the BlueROV2 using the ORB-SLAM2 algorithm is available in the
GitHub repository [15], under the project name Orca4, while the implementation for the
Desistek SAGA ROV can be found in the GitHub repository [16]. The initial plan was to im-
plement both algorithms on the BlueROV2. However, due to limitations in the Orca4 project
and ROS 2 framework, the Desistek SAGA was implemented using the ROS (ROS 1) frame-
work instead. The chapter also describes environmental factors affecting the experiments, as
well as the approach used to obtain and utilize ground truth data.

3-1 Overview of the Gazebo Simulation Environment

The simulation environment is built using the Gazebo simulator and integrates the BlueROV2
model from Blue Robotics [17]. This model represents the autonomous underwater vehicle
(AUV) used in the experiments and is linked to Gazebo for conducting underwater testing.

In the simulation, it is assumed that the BlueROV2 possesses hydrodynamic symmetry. This
means the vehicle is considered to not exhibit complex hydrodynamic interactions or coupling
effects, such as drag, lift, and changes in orientation due to fluid dynamics. By minimizing
these effects, the vehicle’s behavior becomes more stable and predictable, thereby simplifying
the control and navigation processes within the simulator.

3-2 Utilities

For the simulation and computation of the output maps, the following laptop was used:
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3-3 Visual SLAM Configuration 10

Table 3-1: Specification of the laptop/processor used in this thesis [18]

Model name HP ZBook Power 15.6 inch G9 Mobile Workstation
Processor Intel Core i7-12700H Processor, 2.3 GHz base frequency, up

to 4.7 GHz with Intel Turbo Boost Technology, 24 MB L3
cache, 14 cores, and 20 threads

RAM 16 GB DDR5-4800 MHz
GPU Integrated Intel Iris Xe (optionally: NVIDIA RTX A1000

Graphics Card, 4 GB GDDR6 dedicated)

3-3 Visual SLAM Configuration

Hardware Components: Orca and BlueROV2

The BlueROV2 from BlueRobotics is used as the AUV for simulation. It comes in a base model
and a heavy configuration (details in Appendix A-2). For this research, the base configuration
is selected, as it is sufficient for maintaining a constant height in calm environments. Key
parameters are listed in Appendix Table A-1.

Figure 3-1 shows the BlueROV2 in the Gazebo simulator, along with its axis orientation
(note: the Y- and Z-axes should be switched).

(a) BlueROV2 in Gazebo
(b) AUV axis orien-
tation (Y- and Z-axes
switched)

Figure 3-1: BlueROV2 model and axes in the Gazebo environment.

Underwater dynamics are simulated using three Gazebo plugins: BuoyancyPlugin, Hydrody-
namicsPlugin, and ThrusterPlugin, modeling buoyancy, hydrodynamic forces, and propulsion
respectively. Details on these plugins and coordinate frames are provided in Appendix A-1.

The Orca4 project [15] integrates the BlueROV2 with ORB-SLAM2 inside Gazebo, enabling
realistic underwater SLAM simulations. An example output from Orca4 is shown in Figures 3-
2.
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3-3 Visual SLAM Configuration 11

(a) BlueRov2 in its environment,
taken from [15]

(b) Map of the environment using ORB-
SLAM 2.0, taken from [15]

Figure 3-2: BlueROV2 and its SLAM-generated environment map

In addition to ORB-SLAM2, the Orca4 system integrates several key modules: BaseCon-
troller, ArduPilot, MAVROS, Nav2, and the ThrusterPlugin. The BlueROV2 operates within
the ROS2 ecosystem, using the MAVLink protocol via ArduSub. MAVROS acts as the com-
munication bridge between ArduSub and ROS2.
The system features a tightly integrated control and estimation pipeline: ORB-SLAM2:
Estimates the camera pose using stereo images, with loop closure and optimization to reduce
drift and ensure global map consistency.
ArduPilotPlugin: Simulates IMU and barometer readings by adding noise to the ground
truth pose (noise parameters not specified).
ArduSub: Fuses vision-based SLAM output with simulated sensor data using a Kalman
filter to refine state estimation.
Controller: Computes control commands in x, y, z, and yaw directions based on the esti-
mated state and sends them to the
ThrusterPlugin, which simulates propulsion dynamics.

SLAM Algorithm: ORB-SLAM2

The SLAM algorithm used in this configuration is ORB-SLAM2 [19], which supports both
stereo and RGB-D input. It uses depth information to define a stereo coordinate system for
extracted features, enabling it to function independently of the input type.
A schematic of the ORB-SLAM2 system is shown in Figure 3-3, and a brief overview is
provided below.
The system maintains two key graph structures:

• A covisibility graph, connecting keyframes with shared map points.
• A spanning tree, ensuring global map consistency and efficient optimization.

These graphs help localize the camera within relevant keyframe neighborhoods and enable
scalable operation across large environments. Pose-graph optimization during loop closure
ensures long-term accuracy.

Main Components

ORB-SLAM2 consists of three main modules:
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Figure 3-3: ORB-SLAM2 architecture [19]

• Tracking: Estimates the camera pose by matching features in the current frame with
the local map. Pose refinement is performed using motion-only bundle adjustment.

• Local Mapping: Maintains and refines a local map through local bundle adjustment
over recent keyframes and associated map points.

• Loop Closing: Detects revisited locations to correct accumulated drift by aligning
current observations with earlier map regions. Loop closure is not used in this thesis,
as the trajectory is linear with no revisits (see Appendix A-3).

Details on system initialization and keypoint detection are provided in Appendix A-3.

Visual Map Comparison and Offline Map: Fig. 3-4 illustrates a comparison between the
mapped datapoints and the simulated environment. The map accurately represents the two
hills in the image, marked with blue and purple dots indicating different heights.

Figure 3-5: Small Hill identified in the
simulator

The constructed map is represented as a point cloud, which serves as the basis for comparing
the SDP-GD and ORB-SLAM2 algorithms. While the SDP-GD is not originally designed for
offline operation, using the current run’s estimated positions in with the map built during a
previous run allows for a consistent evaluation of its performance.
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The k-nearest neighbors (KNN, see Appendix B-1 for more info on KNN) is applied between
the current trajectory and the prebuilt map to reconstruct the seabed. This method provides
a fair comparison because both algorithms are assessed using the same reference environment,
and the evaluation focuses on how accurately each method can align to and reconstruct that
environment. Moreover, using the same point cloud ensures that differences in performance
stem from the SLAM algorithm itself, not from variations in the input data or mapping
process.

Seabed Complexity: The seabed complexity in this experiment is not varied as done for the
Sonar-Based SLAM evaluation. The complexity is altered by scaling the seabed along the
Z-axis, resulting in deeper hills and valleys. For this evaluation, only two different scaling
factors are applied: 1 and 3. Due to lack of time, the differences and specification of the
different seabed couldn’t be provided.

Performance Evaluation
ORB-SLAM2 is designed to be lightweight and computationally efficient, making it suitable
for deployment on systems with limited processing capabilities, such as those with standard
consumer-grade CPUs. Its performance has been tested on various datasets, including KITTI,
EuRoC, and TUM RGB-D. In these evaluations, ORB-SLAM2 has been compared to other
state-of-the-art stereo SLAM systems, such as LSD-SLAM. The results demonstrate that
ORB-SLAM2 achieves significantly better performance and is an effective algorithm. Drifts
can still occur in the simulator, therefore experiments are performed to determine the amount
of drift of position estimation.

Drift:In this experiment, the AUV remains stationary for a period to measure how far it drifts
with the controller turned off. The experiment was conducted at two positions: (x, y, z) =
(0, 0,−2.5) (near the surface) and (x, y, z) = (0, 0,−6.5), as illustrated in figure 3-6. After
480 seconds, the AUV at -2.5 meters had moved to: (∆x,∆y,∆z) = (0, 0.470,−1.74), and at
-6.5 meters to (∆x,∆y,∆z) = (0,−480,−2.133) in a nonlinear manner.

Figure 3-6: Drift over time while standing still, due to water current. On the left, the AUV is at
(x, y, z) = (0, 0,−2.5); on the right, it is at (x, y, z) = (0, 0,−6.5)

It can be observed that the AUV is not neutrally buoyant without the controller, as it sinks
and reaches the bottom within 20 seconds. In contrast, the AUV exhibits a slow drift in the
horizontal plane, moving approximately 2.5 meters in the x direction and 0.5 meters in the y
direction over a period of 500 seconds. This indicates that the simulator includes a low-level
current, although its exact specification could not be determined due to the nested structure
of the simulation code. However, with the controller enabled, the AUV remained stationary
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(a) Simulator environment with visual noise
(white particles).

(b) Top: raw
camera image;
bottom: filtered
murky view.

Figure 3-7: Visual noise simulation in Gazebo.

Figure 3-8: Point cloud in clear water conditions (ideal case).

throughout the entire duration, demonstrating high precision and stability in maintaining a
fixed position.

Adding Noise

To simulate realistic underwater conditions, visual noise is introduced in the form of suspended
particles, creating murky water. As shown in Figures 3-7a and 3-7b, 15,000 particles/m2 are
added, moving randomly at 0.01 m/s. A gray filter is applied to mimic underwater light
absorption, affecting the ROV’s camera view.

In clear conditions, the AUV generates accurate point clouds while moving straight (Figure 3-
8). However, with noise added, the point cloud deviates significantly (Figure 3-9). Although
the added visual noise is mild, ORB-SLAM2 is still misled due to the AUV’s proximity to
the seabed. Suspended particles are falsely detected as keypoints and persist until leaving
the field of view, gradually distorting the map.

This highlights ORB-SLAM2’s limitations in noisy underwater environments. To address
this, a sonar-based SLAM approach is used, which is inherently more robust in low-visibility
conditions due to its reliance on acoustic signals rather than visual features.
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Figure 3-9: Point cloud under murky conditions, showing deviation from ground truth.

3-4 Sonar Based SLAM Configuration
Hardware Components: UUV Simulator
The paper "UUV Simulator: A Gazebo-Based Package for Underwater Intervention and
Multi-Robot Simulation" [20] provides an open-source underwater robotics simulation frame-
work built for the the Gazebo simulator. This package aims to address challenges of unmanned
underwater vehicle (UUV) simulation, including hydrodynamic modeling, sensor integration,
and multi-robot coordination. The UUV Simulator provides a high-fidelity and modular
simulation environment which can be used for advanced underwater robotics application-
s/simulation.

Key Contributions
• Hydrodynamic and hydrostatic modeling to simulate underwater forces and also thruster

dynamics, robotic manipulators, and environmental disturbances
• Provides modular vehicle configurations for different mission requirements.
• Includes acces to Robot Operating System (ROS) for real-world deployment.
• Includes sensor such as Doppler Velocity Loggers (DVLs), pressure sensors, and sonar

for various applications.
• Includes a multi-beam echo sounders for bathymetric mapping.
• Supports underwater light attenuation, particle effects, and water currents.

Desistek SAGA ROV
The Desistek SAGA ROV Simulator is an open-source package designed to simulate the real
Desistek SAGA Remotely Operated Vehicle (ROV) (see Fig. 3-10) within the Unmanned Un-
derwater Vehicle (UUV) Simulator framework. The package comes with a robot description
in the form of URDF/Xacro files, which detail the SAGA ROV’s physical and dynamic char-
acteristics, ensuring accurate simulation of its behavior underwater.

The performance of the Desistek SAGA ROV is similar to that of the ORB-SLAM2-based
setup, as both utilize the same plugins. However, the Desistek SAGA ROV offers more
flexibility, including the ability to simulate variable water currents and more realistic visibility
noise.
The ROV is equipped with three thrusters: one oriented along the z-axis and two along the
x-axis. To achieve motion in the y-axis, the vehicle must first rotate and then apply thrust in
the desired direction. This ROV is particularly suitable for this project because it simplifies
controller design. Specifically, the controller can focus on maintaining constant velocity along
the z-axis while primarily maneuvering in the x-direction.
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Figure 3-10: Image of the real Desistek SAGA ROV used in simulation. The model is sourced
from [21].

Figure 3-11: Block diagram of the delayed-state EKF. The algorithm uses navigation data
to generate small, localized bathymetric submaps. The origins of these submaps are stored in
a delayed state vector, which enables the computation of relative pose constraints to correct
navigation drift. Image taken from [7]

SLAM Algorithm: Sonar Based SLAM
The implemented algorithm is based on the paper "A Self-Consistent Bathymetric Mapping
Algorithm" by Chris Roman and Hanumant Singh [7] which introduces a SLAM approach for
underwater mapping using sonar data.
The algorithm follows a submap-based SLAM approach, where the seafloor is mapped in
overlapping segments (submaps). These are locally aligned and globally refined to improve
consistency. Vehicle pose is estimated using an Extended Kalman Filter (EKF), which incor-
porates relative constraints between submaps based on terrain matching.
Terrain alignment is performed in two stages: a correlation-based 2D match, followed by re-
finement using k-nearest neighbors (KNN). This method improves map accuracy by correcting
navigation errors, though it depends on reasonably accurate dead-reckoning and performs best
in terrain with distinguishable features.
A schematic overview of the algorithm is shown in Figure 3-11.
In this thesis, the pose estimation method from the Sonar-Based SLAM algorithm is adapted
for a single submap. The SDP-GD requires a linear system model is used, and therefore a
standard Kalman Filter is employed instead of an Extended Kalman Filter. Due to time

Master of Science Thesis P.K. Kartoidjojo



3-4 Sonar Based SLAM Configuration 17

constraints, the full submap-based approach was not implemented.
One key comparison is to determine how far the SDP-GD algorithm can track before error
growth becomes significant. This distance can inform the optimal size of a submap for future
implementations.
The pose of the system is estimated using measurements from the DVL and IMU, combined
through a rotational transformation matrix.

Transformation from Body Frame Velocity to Inertial Frame Velocity

The conversion from body-frame velocity to the inertial) frame is achieved using a nonlinear
rotation matrix derived from the vehicle’s attitude (Euler angles).
The transformation is expressed as:

vl = R(ϕ, θ, ψ) · vb (3-1)

Where:
• vb is the velocity vector in the body frame
• vl is the velocity vector in the inertial frame
• R(ϕ, θ, ψ) is the rotation matrix constructed from the vehicle’s roll ϕ, pitch θ, and yaw

(heading) ψ
In the state-space model in the paper has the following form:

ẋv(t) = f(xv(t)) + w(t) (3-2)

The state space model is adopted to also include the input into the system, in order to
have a fair comparison between the SDP-GD and the Sonar Based SLAM. The positional
components are updated by:

d

dt

xy
z

 = R(ϕ, θ, ψ) ·

uv
w

 (3-3)

Where:
• u, v, w are linear velocities in the body frame
• x, y, z are positions in the local-level frame and also the state with the velocities in the

inertial frame for these axes (vx, vy, vz).
The standard aerospace XYZ Euler angle rotation matrix from body to inertial frame is:

R(ϕ, θ, ψ) =

 cos θ cosψ cos θ sinψ − sin θ
sinϕ sin θ cosψ − cosϕ sinψ sinϕ sin θ sinψ + cosϕ cosψ sinϕ cos θ
cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ − sinϕ cosψ cosϕ cos θ

 (3-4)

The orientation angles are obtained from the IMU sensor, while the body-frame velocities
u, v, w are measured by the DVL sensor. It is assumed that the IMU provides angles in
the inertial frame. The specific IMU used in this setup is the ADIS16448 (see the appendix
for more details A-4). However, the datasheet for this sensor does not explicitly state the
reference frame for the orientation output.
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Offline Map

The SDP-GD algorithm is executed offline, and for a fair comparison, the map generated
by the Sonar-Based SLAM is also utilized in an offline setting. Using a system model that
incorporates the control input, the states—specifically the position of the ROV—are computed
at each timestep. These position estimates ((x̂, ŷ, ẑ)) are then refined using a Kalman Filter to
improve accuracy. Finally, KNN is applied to align the current estimate with the previously
generated map from an earlier run, this generating the seabed reconstruction.

3-5 Environmental Considerations

Seabed Complexity and Terrain Characteristics

The seabed is design using Blender, a free open-source 3D computer graphics software. The
surfaces are made starting off with a flat surface. By adding fractal Perlin nois the patterens
of the map is created. The parameter used to create different map complexity are scale and
distortion. The Scale parameter in the Noise Texture node controls the frequency of the
noise pattern. The Distortion parameter introduces a warping effect to the noise pattern.
Increasing the distortion value causes the noise to appear more twisted and irregular, which
can be useful for creating more complex and less uniform textures.

(a) Initial flat surface (b) Distortion = 0

(c) Distortion = 1 (d) Distortion = 4

(e) Distortion = 8 (f) Distortion = 12

Figure 3-12: Generated seabed terrain using Fractal Perlin noise with increasing distortion levels.
The initial flat surface is progressively transformed into more complex and irregular terrains,
mimicking underwater environments ranging from simple sandbeds to chaotic cave-like structures.
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Typical Underwater Current Velocities
Current underwater has usually an average velocity and variation. In the simulation the
speed is set, based on real world underwater currents. Typical underwater current velocities
vary, depending on environment and specific oceanographic conditions. Various underwater
current velocities are [22]:

• Deep-sea environments: Thermohaline circulation with currents between 2 cm/s and
20 cm/s.

• Benthic storms: Underwater velocities reach up to 73 cm/s.
• Strait of Gibraltar: Maximum flow velocities of 300 cm/s.
• Coastal regions and tidal inlets: Maximum current speeds 1 m/s.
• Straits and estuaries: Tidal currents can reach speeds as high as 3 m/s.
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Chapter 4

Controller Design

This chapter focuses on the design, tuning, and evaluation of a Proportional-Integral-Derivative
(PID) controller for two underwater vehicles: the Desistek SAGA AUV and the BlueROV2.
The first part of the chapter presents the structure and implementation of the PID controller
developed for the Desistek SAGA, along with gain selection strategies and performance evalu-
ation under various simulated inputs. The controller’s robustness is then tested under external
disturbances, such as varying current velocities and directions.
The latter part of the chapter discusses the challenges encountered in implementing a similar
controller for the BlueROV2, and the decision to instead use the built-in Orca controller
for experiments involving visual SLAM. Additional experiments are conducted to assess the
straight-line motion accuracy, error accumulation during repeated traversals, and the influence
of measurement noise on pose estimation.

4-1 PID Controller Design
The system operates in a closed-loop configuration, where the controller continuously adjusts
the thruster commands based on sensor feedback to minimize tracking error. The controller
design is a discrete PID controller.
This section first introduces the controller structure and its implementation, including the
interaction between reference inputs, feedback, and thruster commands. It then describes the
design decision used to tune the PID controller gains and ensure desirable performance , i.e.
low overshoot, stability, and robustness.

Controller Structure and Implementation
The control system takes as reference input the desired velocity ηpref

, and uses as feedback
the estimated current velocity η̂p obtained from the DVL and IMU sensor fusion. The input
to the PID controller is the velocity error:

e[k] = ηpref
[k] − η̂p[k] (4-1)

To evaluate system stability and controller response, the AUV is subjected to a sequence of
time-varying reference velocities along the x, y, and z axes. The reference signal used in
simulation is:

ui =
{

0.01 0.10 0.20 0.50 0.70 0.10 1.20
}
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Table 4-1: Step Response Data (Raw Sensor Data)

Input amplitude x velocity 0.01 0.1 0.2 0.5 0.7 1.0 1.2

Rise Time 0.64 0.40 0.68 0.31 0.61 0.82 0.71
Transient Time 9.50 9.88 6.31 9.86 9.78 9.50 9.69
Settling Time 9.50 9.88 6.31 9.86 9.78 9.50 9.69
Settling Min 0.81 0.74 0.92 0.60 0.92 0.78 0.82
Settling Max 1.02 1.02 1.03 1.02 1.01 1.00 1.04
Overshoot (%) 3.63 30.54 1.81 60.01 3.31 0.58 3.20
Undershoot (%) 0.05 0.02 0.01 0.01 0.00 0.01 0.00
Peak 1.02 1.02 1.03 1.02 1.01 1.00 1.04
Peak Time 7.60 7.30 8.20 8.50 7.90 7.90 7.60

The computed control signal u[k] is then passed into the thruster plugin in the simulation
environment, which translates it into rotational angular velocity (ω) commands for the indi-
vidual thrusters. These commands produce the necessary thrust forces that move the AUV
and drive it toward the desired velocity.

PID Gain Selection
The ROV will mainly propagate in a straight line in the x-direction. Therefore, it should not
rotate in any other direction and should maintain its orientation around the z-axis. The ROV
does not have the ability to move directly in the y-direction (left and right), as this would
require rotation, due to not having a thruster that directly thrust in the y direction.
The PID controller gains are selected to achieve the following characteristics:

• Rise Time: A rise time that is too fast can lead to overshoot, which in turn can cause
oscillations.

• Transient Time: The transient time in the x-direction is not critical due to the
requirement to go straight. However, it should preferably not exceed the total simulation
time. In the other directions, transient time is more important to prevent drift.

• Low Overshoot: Overshoot should be minimized to avoid oscillations, especially given
the high resistance underwater.

4-2 Performance Analysis of the PID Controller
Step Response Evaluation
The PID controller’s performance is assessed using the system’s step response in the x-
direction. Velocity data is obtained from the DVL and IMU, both of which introduce sensor
noise.
Table 4-1 presents the step response specifications based on raw (noisy) measurements.
At lower input amplitudes (0.1 and 0.5), the controller exhibits considerable overshoot—30.54%
and 60.01%, respectively. In contrast, higher input amplitudes (1.0 and 1.2) show significantly
reduced overshoot, indicating improved stability at those levels.
Transient and settling times remain consistent across input amplitudes, demonstrating reliable
transient behavior. The settling maximum hovers around 1.0, reflecting uniform steady-state
performance. No significant undershoot is observed, and peak times are relatively stable.
Based on these findings, an input amplitude of 1.0 is selected for all subsequent experiments
in this thesis, as it offers a good balance of low overshoot and reliable steady-state response.
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Directional Response Analysis

The following figures show the velocity step response in each axis.

(a) Enter caption for X-axis step response (b) Enter caption for Y-axis step response

Figure 4-1: Comparison of step responses along X and Y axes

Note that the output response in the y-direction does not follow the input function. This
is because the ROV cannot move directly in the y-direction without rotating. While this is
beneficial when the goal is to move only in the x-direction, it can become a disadvantage in
environments with lateral disturbances, such as water currents hitting the side of the ROV.

Z-Direction

The velocity in the z-direction was kept at zero amplitude throughout the experiment. As
shown in Figure 4-4, the blue signal represents the system’s response, which slowly deviates
by approximately 0.1 meters over a period of 120 seconds.

4-3 Disturbance Analysis

In this section, the ROV is simulated in water with current disturbances. These currents are
modeled with both a varying velocity and direction. The current velocity η1 ranges between
0.2 and 1.2 m/s and can act in both forward and reverse directions. Additionally, the direction
of the current η2 is modeled with a mean of 0◦ and a variance of 10◦.

The ROV is oriented to face the direction of the current, and a constant reference velocity
of 1 m/s in the x-direction is applied. The simulation results for each axis are presented and
discussed below.

In appendix A-7 the current signal is plotted with the auv velocity response, but the plot of
the position can give the most information on the effect of varying currents.
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X-Direction

Figure 4-2: Ground truth position of the ROV under varying simulated current velocities in the
x-direction.

It can be observed that varying current velocities have a linear effect on the AUV’s position
along the x-axis. When the current opposes the AUV’s motion (e.g., the green signal with
a current velocity of −1.2), it slows down the rate of position change, resulting in a reduced
slope of approximately 0.4375. Whenever the current pushes from behind (e.g., the yellow
signal with a current velocity of 1.2), it accelerates the AUV forward, producing a steeper
slope of approximately 1.25. This indicates that the controller lacks robustness along the
x-axis, as it is unable to consistently reject disturbances caused by varying current velocities.

Y-Direction

Figure 4-3: Ground truth position of the ROV under varying simulated current velocities in the
y-direction.

When the ROV is facing the current, the current has little effect on the y-direction at lower
velocities. However, at higher current velocities, the ROV begins to exhibit noticeable oscil-
lations in the y-direction.
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Z-Direction

Figure 4-4: Ground truth position of the ROV under varying simulated current velocities in the
z-direction.

The varying current velocity does not appear to significantly affect the ROV’s z-position. This
is primarily because the current does not vary in the vertical direction, only in the horizontal
direction. This omission was an oversight during the implementation phase.

4-4 Controller for Visual SLAM
An initial attempt to implement a PID controller for the BlueROV2 proved significantly
more difficult than for the Desistek SAGA. While the SAGA uses only three thrusters, the
BlueROV2’s six-thruster configuration introduces more complex control dynamics. Additional
challenges included persistent noise in the simulator—difficult to tune—and environmental
water currents causing lateral drift.

The feedback controller followed the same structure as that used for the SAGA: the reference
input was the desired velocity, and the measured velocity from the DVL served as feedback.
The best result obtained with this PID setup is shown in Figure 4-5, where the vehicle drifts
into a wide circular path. This limits its use to short-range motion (e.g., under 5 meters),
where deviation is minimal.

Figure 4-5: Ground truth seabed reconstruction using a PID controller.

In contrast, the built-in controller from the Orca4 package delivers significantly better per-
formance. It uses ORB-SLAM2’s estimated position for feedback and accepts reference posi-
tions as control inputs. This controller was therefore adopted for all experiments. Its main
limitation is that control inputs remain fixed during each run, preventing minor real-time
adjustments throughout the mission.
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Figure 4-7: Top-down view of the map generated during an 80-meter straight-line traversal.
Colors represent height variations.

Straight-Line Motion Experiments

Experiments were conducted to evaluate the AUV’s ability to maintain straight-line motion
at varying depths. A fixed depth of 6.5 meters was chosen to minimize collision risk while
ensuring stable visual tracking over longer distances. Additional trials tested the system’s
ability to return to a previously visited location and assessed whether repeated passes im-
proved pose estimation.
The absolute error between estimated and ground truth positions was recorded. As shown in
Figure 4-6, the error increases approximately linearly over time, with a slope of about 0.007 m

s .
Dips in the error curve indicate points where the AUV paused and reversed direction.

Figure 4-6: Absolute position error during straight-line traversal and return. Green and red
represent separate runs. Dips indicate pauses or reversals.

Over a duration of 1200 seconds, the accumulated error reaches approximately 7 meters. This
drift suggests that even with map-based guidance, the SLAM system accumulates error—likely
due to limited loop closure opportunities and delayed correction mechanisms.
Figures 4-7 and 4-8 show the generated map along the 80-meter trajectory, including height
variations.

Measurement Noise

The estimation of position and orientation depends on data from the SLAM algorithm, IMU
data, and the barometer, all of which include some noise. This noise is introduced in the
ArduSub component, making it not possible to retrieve the specified noise levels, only raw
(noise-free) IMU data can be accessed. Weather or not the EKF effectively filters out this noise

Master of Science Thesis P.K. Kartoidjojo



4-4 Controller for Visual SLAM 26

Figure 4-8: Side view of the same 80-meter map. Height differences are color-coded.

is unknown, as evidenced by the discrepancy between the ground truth and the estimated
orientation shown in Fig. 4-9.

Figure 4-9: Measurement noise when the AUV is moving to -6.5 meters and then remaining
stationary
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Chapter 5

Modeling and System Identification

The implementation of the SDP-GD algorithm requires a Linear Time-Varying (LTV) system
model. However, the dynamics of the Autonomous Underwater Vehicle (AUV) are nonlinear
and time-invariant. To bridge this gap and enable the use of LTV-based control strategies,
these nonlinear dynamics have to be approximated by a linear model that accurately reflects
the system’s behavior within specific operating conditions.
The AUV operates under a closed-loop feedback control system. However, in one variation
of the SDP-GD algorithm (explained in Chapter 6), the thruster input is used directly as the
system input. This represents a direct input into the plant, and therefore, an open-loop
system identification is required. In contrast, for the second input signal variation—where
the reference signal is used as the input—a closed-loop identification approach is necessary
due to the presence of feedback in the control structure. This necessitates the need for the
modeling of the AUV without the controller.
This chapter discusses the system identification process. It begins with the formulation of
a nonlinear model that includes several unknown parameters. To make the model tractable
for control design, it is then simplified using a set of assumptions and linearized along a
straight-line trajectory. The resulting linear model still contains unknown parameters, which
are estimated using system identification techniques based on experimental data. The ex-
perimental setup and data processing methods are described as well. Both grey-box and
black-box identification approaches are applied and compared at the end.

5-1 Nonlinear Modeling of AUV Dynamics
To develop a control-oriented model of the Autonomous Underwater Vehicle (AUV), it is
necessary to first describe its full nonlinear dynamics. The AUV is modeled as a six degrees-
of-freedom rigid body, and its motion is described using Newton-Euler equations in Fossen
notation [23]. Before deriving the equations of motion, a number of assumptions are made to
simplify the physical modeling of the AUV.

Model Assumptions
The following assumptions are adopted for the modeling of the AUV, based on [24]:
Assumption 1: The vehicle is assumed to be a rigid body with six degrees of freedom.
Assumption 2: The AUV is symmetrical along its front-back, left-right, and top-bottom
axes, resulting in an even mass distribution.
Assumption 3: The body axes align with its principal axes of inertia. This simplifies the
inertia matrix to an identity matrix and decouples the equations of motion.
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Assumption 4: The origin of the body-fixed frame is situated at the vehicle’s center of
mass.
Assumption 5: The ocean current is simulated as a constant, non-rotational flow in the
inertial frame. This current affects the vehicle’s velocity, while wave effects are neglected.
Assumption 6: The vehicle is assumed to be neutrally buoyant.

Equations of Motion
Using the Newton-Euler formalism, the equations of motion for the AUV are expressed in
the standard notation (eq. 5-1) introduced by Fossen [23]. The first part of eq 5-1, J(η)ν is
the Jacobian transformation matrix that maps body-frame velocities ν into the inertial frame
derivatives of η. The second part of eq 5-1 is the main equation of motion in the body-fixed
frame.

η̇ = J(η)ν
Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ + τw

(5-1)

Solving for the acceleration ν̇ yields:

ν̇ = M−1 (−C(ν)ν −D(ν)ν − g(η) + τ + τw) (5-2)

where:
• M : mass matrix,
• C(ν): Coriolis and centripetal matrix,
• D(ν): damping matrix,
• g(η): gravitational and buoyant forces and moments,
• ν = [u, v, w, p, q, r]T : body-fixed linear and angular velocities (surge, sway, heave, roll,

pitch, yaw),
• η = [x, y, z, ϕ, θ, ψ]T : positions and Euler angles in the world frame,
• τ = [X,Y, Z,K,M,N ]T : external forces and moments,
• τw: unknown external disturbances acting on the system.

Further explanation of each component is provided below can be found in Appendix A-6.

5-2 Linearization
To enable the design of linear controllers and perform system identification, the nonlinear
AUV model has to be approximated by a linear system. This is done through linearization,
which approximates the nonlinear dynamics around a specific operating point or along a
nominal trajectory. Since the AUV is intended to move straight ahead at a constant speed
and depth, the x-state will vary over time. Therefore, linearizing around a trajectory is the
most suitable approach.

Operating Trajectory and Assumptions
The operating trajectory is defined by the steady-state values of the system’s states and
inputs. For an AUV moving in a straight line, the steady-state conditions are:

• Constant forward speed: The AUV maintains a steady velocity in the x-direction.
• Negligible lateral and vertical velocities: The velocities in the y and z directions

are approximately zero (v0 ≈ 0, w0 ≈ 0), assuming minimal disturbances.
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• Constant orientation: The roll, pitch, and yaw angles remain fixed, so ϕ0, θ0, and
ψ0 are constant.

• Fixed depth: The AUV operates at a consistent depth, indicated by z0.
• Neutral buoyancy: Assuming that the vehicle is neutrally buoyant, the gravitational

force is equal to the buoyancy force: W = B due to the PID controller keeping the z
velocity 0.

• Centered mass and buoyancy: Given the initial condition is at the center, the center
of gravity and buoyancy are set to zero: xg = xb = yg = zg = 0.

Given the initial condition of the AUV
{
x, y, z, ϕ, θ.ψ, u, v, w, p, q, r

}
=
{

0, 0,−5, 0, 0, 0, 0, 0, 0, 0, 0, 0
}

and assuming that the system navigates with a constant velocity in the x-direction, the fol-
lowing operating trajectory is defined:{

x, y, z, ϕ, θ.ψ, u, v, w, p, q, r
}

=
{
x, 0,−5, 0, 0, 0, 1, 0, 0, 0, 0, 0

}
(5-3)

Linearized System Model Using the Jacobian
The linearization is based on the nonlinear dynamics of the system, expressed as:

f(x,u) = ν̇(x,u)

with the state vector x:

x =
[
x1 x2 · · · xn

]T
=
[
x y z ϕ θ ψ u v w p q r

]T (5-4)

and input vector u:

u =
[
u1 u2 · · · um

]
, (5-5)

The linearized system around the operating point (x0,u0) becomes:

δẋ = Aδx +Bδu (5-6)

where:
• x[k] ∈ R12 is the state vector,
• u[k] ∈ R6 is the input vector,
• A ∈ R12×12 is the state matrix,
• B ∈ R12×6 is the input matrix.

The matrices A and B are obtained from the Jacobian of the nonlinear dynamics with respect
to the state and input:

A = Jx = ∂f(x,u)
∂x

∣∣∣∣
x=x0,u=u0

, B = Ju = ∂f(x,u)
∂u

∣∣∣∣
x=x0,u=u0

(5-7)

Here, the full Jacobian matrix J is composed of first-order partial derivatives with respect to
both state and input:
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J =
[
Jx Ju

]
=
[

∂f
∂x

∂f
∂u

]
=


∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f1
∂u1

· · · ∂f1
∂um

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

∂f2
∂u1

· · · ∂f2
∂um...

... . . . ...
... . . . ...

∂fn

∂x1
∂fn

∂x2
· · · ∂fn

∂xn

∂fn

∂u1
· · · ∂fn

∂um


Using the assumptions and trajectory, the Jacobian matrices take the following forms:

(a) State matrix A (Jacobian of the system
with respect to the states)

(b) Input matrix B (Jacobian of the
system with respect to the inputs)

Figure 5-1: Linearized system matrices used for state-space modeling.

From the linearized transition matrix A, the following relationships can be extrapolated:
• The x-position depends only on the forward velocity u.
• The y-position depends on the lateral velocity v and the yaw angle ψ.
• The z-position depends on the vertical velocity w and the pitch angle θ.
• The orientation angles ϕ, θ, ψ are dependent on their respective angular velocities p, q, r.
• The velocity u depends only on itself and its corresponding input reference.
• The velocity v depends only on the yaw rate r and its input reference.
• The velocity w depends on the pitch angle θ and its input reference.
• The angular velocities p, q, r are each dependent on themselves and their respective

input references.
Given that the AUV does not rotate during straight-line motion (i.e., δp = δq = δr = 0) and
that the initial angles are zero and remain approximately constant throughout the simulation,
the angles can be removed from the state vector. Similarly, velocities can be substituted into
position derivatives, simplifying the state-space representation to:

x =



x
y
z
ẋ
ẏ
ż
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Inputs:Later in this report, the implementation of the SDP-GD algorithm will be discussed
in detail, including two variations based on the type of input signals used: one with control
input and one with control input. The control input corresponds to the raw thruster signals
controlling velocity in the x, y, and z directions. In contrast, the control Input consists of
the reference velocity commands in these directions.

This distinction leads to the following input signal structure:

u =
[
0 0 0 ux uy uz

]T
(5-8)

The first three elements are set to zero because the input signals only affect the translational
velocities. The position of the AUV is then determined by integrating these velocity inputs
over time

Discretization: The position dynamics resemble simple integrators, while velocity dynamics
depend on themselves and their respective inputs. For system identification, the model is
implemented in MATLAB using the idgrey function, which allows for both continuous- and
discrete-time system definitions. For discrete models, a sampling time must be provided.

Time-Varying: Although the model structure is fixed, the system is implemented in a time-
varying form since the linearization is performed along a trajectory. This allows the transition
matrices to remain constant for all time steps while still capturing time-varying behavior
through state updates.

Parameterization and Model Structure: In the matrices A and B, each unknown element
could be parameterized individually. However, expressing each element as a separate param-
eter (e.g., θ1

θ2
= Yv

m ) unnecessarily complicates the model structure. Instead, the complete
element is treated as a single parameter, e.g., Yv

m = θ1.

In theory, velocities are independent due to earlier assumptions. In reality, however, coupling
exists. Therefore, in the grey-box model, dependencies between velocities are included in the
parameterized form.

Grey-Box Model

For the grey-box parameterization, certain assumptions are made that lead to a 6 × 6 system
with a simplified structure, resulting in a total of 18 identifiable parameters across the A and
B matrices:

A =



1 0 0 δt 0 0
0 1 0 0 δt 0
0 0 1 0 0 δt
0 0 0 θ1 θ2 θ3
0 0 0 θ4 θ5 θ6
0 0 0 θ7 θ8 θ9


, B =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 θ10 θ11 θ12
0 0 0 θ13 θ14 θ15
0 0 0 θ16 θ17 θ18


The intuition behind this parameterization is that the position states are influenced by the
velocity states, but not vice versa—meaning velocity affects position, but position does not
directly influence velocity in the system dynamics.

Since the input vector u contains zeros in the first three elements (representing no control
input directly affecting position), the left portion of the B matrix can be set to zero without
loss of generality.
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Black-Box Model
As a fallback or validation strategy, a fully parameterized black-box model is implemented
with 72 parameters. This model will also be used for the closed loop identification. This
model allows each element of the A and B matrices to vary independently, with no structural
assumptions:

A =

 θ1 θ2 . . . θ6
... . . . . . .

...
θ31 . . . . . . θ36

 , B =

θ37 θ38 . . . θ42
... . . . . . .

...
θ67 . . . . . . θ72

 .
The grey-box and black-box models are compared against each other and chosen to apply for
the SDP-GD algorithm.

5-3 Experimental Setup of Identification Process
In the identification experiments, the AUV is initially positioned at (x, y, z, ϕ, θ, ψ) = (0, 0,−5, 0, 0, 0).
An input signal is applied to the AUV, and the resulting output data is collected. For valida-
tion, a step input is introduced to simulate forward motion, which matches the conditions used
later in the algorithm comparison. The system identification is performed using MATLAB.
The following sections describe the input and output signals used in the process.

Input Signals for System Identification
To sufficiently excite the system and identify its full dynamics, two sets of chirp signals are
used as input. In both cases, the chirp signals are applied simultaneously to the reference
velocities in the x-, y-, and z-directions (vxref , vyref, vzref) as input signal, but with different
amplitudes and mean values to assess identification performance under different conditions.
In the first scenario (Figure 5-2a), a chirp signal with amplitude 1 and zero mean is applied
to the x-velocity. The y-velocity is also excited with an amplitude of 1 and zero mean, while
the z-velocity uses a chirp signal with amplitude 0.5 and zero mean. Since the signals have
zero mean, the AUV moves back and forth around its initial position in all three directions.
In the second scenario (Figure 5-2b), the x-velocity is excited using a chirp signal with an
amplitude of 0.5 and a mean value of 1, while the y- and z-velocities remain centered around
zero mean with amplitudes of 1 and 0.5, respectively. In this case, the AUV moves forward
with oscillating velocity, while also oscillating vertically, resulting in a trajectory that combines
forward motion with small vertical displacements around 0.5 m/s.

(a) Scenario 1: vxref and vyref with ampli-
tude 1 and zero mean; vzref with amplitude
0.5 and zero mean.

(b) Scenario 2: vxref with amplitude 0.5
and mean 1; vyref with amplitude 1 and
zero mean; vzref with amplitude 0.5 and zero
mean.

Figure 5-2: Chirp input signal configurations used for system identification in two different
scenarios.
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Table 5-1: RMSE for Identification Using Chirp(0,1) and Chirp(1,0.5)

Chirp(0,1) Chirp(1,0.5)

Output Grey-Box RMSE Black-Box RMSE Grey-Box RMSE Black-Box RMSE

y1 0.54 1.18 0.44 0.92
y2 0.05 0.08 0.01 0.01
y3 0.47 1.08 0.25 0.25
y4 0.36 0.35 0.24 0.24
y5 0.00 0.00 0.00 0.00
y6 0.21 0.21 0.21 0.22

Output Signals
The system outputs consist of velocity measurements in the x, y, and z directions, obtained
using the onboard IMU and DVL. The corresponding positions in each axis are calculated by
integrating these velocity signals over time. To identify each state, the output matrix is set
to identity leading to using the measurements:

(y1, y2, y3, y4, y5, y6) = (x, y, z, vx, vy, vz)

5-4 Results
This section compares the Grey-Box and Black-Box modeling approaches by evaluating their
performance in both the identification and validation phases. The comparison is based on
Root Mean Square Error (RMSE) values.

Identification Results
The System Identification Toolbox provides a model fit percentage as a performance measure.
Table B-3 in the appendix presents these results for both models, using two different chirp
input scenarios.
Although the model fit percentage is a commonly used metric, it can be misleading in this
context. For example, a fit of −13.86% may appear poor, but it corresponds to an RMSE
of 0.32, which is within an acceptable range. Therefore, RMSE is also used as a more direct
and interpretable measure of error. The corresponding RMSE values are shown in the table
below:

Validation Results
For validation, a step input is applied to the x-velocity, inducing a dynamic response in the
AUV and allowing for further evaluation of model accuracy. The tables below present the
model fit percentages and RMSE values for each system state.

Discussion
From the initial identification results, the Grey-Box model demonstrates better performance
than the Black-Box model in both the identification and validation phases. However, the
improvement during identification is marginal, with both models showing similar performance
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Table 5-2: RMSE for Validation Using Chirp(0,1) and Chirp(1,0.5)

Chirp(0,1) Chirp(1,0.5)

Output Grey-Box RMSE Black-Box RMSE Grey-Box RMSE Black-Box RMSE

y1 17.22 25.58 0.31 0.57
y2 0.01 0.82 0.05 0.03
y3 1.84 12.21 0.17 0.17
y4 1.64 5.13 0.13 0.13
y5 0.02 0.03 0.00 0.00
y6 0.70 4.02 0.02 0.05

for both input scenarios — Chirp(0, 1) and Chirp(1, 0.5). This was somewhat unexpected,
as the Black-Box model was initially expected to perform comparably during identification.

The performance gap becomes more apparent during validation. For the Chirp(0, 1) scenario,
the Grey-Box model clearly outperforms the Black-Box model. For Chirp(1, 0.5), the Grey-
Box model still performs slightly better, although the difference is less pronounced.

Based on these findings, the model identified using the Chirp(1, 0.5) input and the Grey-Box
approach will be used for the subsequent algorithm comparison.

It should be noted that a maximum of 300 iterations was used for the parameter estimation
process. The results may vary depending on the initial parameter values, which could lead to
different identification outcomes.

5-5 BlueROV2 System identification
This section describes the implementation of a closed-loop state-space model using SLAM data
from Orb-SLAM2, with the goal of identifying system matrices and simulating the behavior
of the BlueROV2. The AUV will have 2 main trajectories, i.e. going down to a certain depth
and going forward for a certain amount of time at a fixed depth (6.5 meters below sealevel).

Closed-Loop Identification

From the simulation results, it can be observed that the trajectory has a linear behavior.
This is mainly due to the presence of a controller, which stabilizes the system and suppresses
nonlinear dynamics. For the purpose of system identification, a simple step input was applied.
However, it should be noted that this type of input does not excite the system as to an order as
a chirp signal would, potentially limiting dynamics and the accuracy of the identified model.

Reference Values and Initial Conditions

Both trajectories are handled as if they were 2 different datasets for the identification. The
data is cut at tcutoff = 25 seconds. This time is chosen based on the time the AUV reaches
the depth of 6.5 meters. For the identification of the 2 different trajectories, 2 different initial
conditions are used for the solver and 2 different reference signals, i.e.

• Before tcutoff: reference = (0, 0,−6.5), x0 = [0, 0, 0]
• After tcutoff: reference = (100, 0,−6.5), x0 = [0, 0,−6.5]
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Input Signal

The system operates in closed loop, where the input is the reference position vector uref[k],
and the output y[k] is the measured position from SLAM:

uref[k] =

xref[k]
yref[k]
zref[k]

 , y[k] =

x[k]
y[k]
z[k]


To define the system input u[k] for identification, the reference signal is subtracted from the
measured trajectory:

u[k] = uref[k] − y[k] (5-9)

Parameterization

To to a linear behavior a simple linear regression is used. The system is modeled using a
discrete-time state-space representation, defined by:

ẋ = Ax(θ) +Bu (5-10)

A[k] =




θ1 0 0
0 θ2 0
0 0 θ3

 , for k ∈ [0, 5]


θ7 0 0
0 θ8 0
0 0 θ9

 , for k > 5

(5-11)

B[k] =




θ4 0 0
0 θ5 0
0 0 θ6

 , for k ∈ [0, 5]


θ10 0 0
0 θ11 0
0 0 θ12

 , for k > 5

(5-12)

where:

• x[k] ∈ R3 is the state vector, which includes the x, y, z position of the robot.
• u[k] ∈ R3 is the input vector,
• A ∈ R3×3 is the state matrix, modeled as a diagonal matrix with parameters θi,
• B ∈ R3×3 is the input matrix, also diagonal, with parameters θj .
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Cost Function for Optimization
A cost function is defined to evaluate the difference between the simulated trajectory and the
measured SLAM data. The error is computed as:

J(θ) = ∥xsim[k] − ymeasured[k]∥2 (5-13)

where ymeasured[k] is the observed SLAM trajectory and ∥ · ∥2 represents the Euclidean norm.
The goal is to minimize J(θ) by finding optimal parameters θ for matrices A and B.
The system dynamics are simulated using the solver solve_ivp. Given initial conditions x0,
the integration spans the time interval t ∈ [0, T ], resulting in the simulated trajectory xsim[k].

Validation
The output ysim[k] is computed as:

ysim[k] = Cxsim[k] (5-14)

where C = I (identity matrix), resulting in ysim[k] = xsim[k]. This is then compared against
the SLAM trajectory ymeasured[k] through visual plots.

(a) Simulated X Axis (orange) vs actual X
Axis (blue)

(b) Simulated Y Axis (orange) vs actual Y
Axis (blue)

Figure 5-3: Comparison of simulated and actual signals for X and Y axes

Figure 5-4: Simulated Z Axe (orange) vs actual Z Axe (Blue)
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Table 5-3: Mean Error for Each State

State Mean Error

x 2.258
y -0.006
z 0.533
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Chapter 6

SDP-GD Implementation

This chapter outlines the design decisions made for implementing the MAP estimation algo-
rithm using the SDP-GD approach. The implementation includes the setup of noise param-
eters and initial conditions. The SDP-GD algorithm is extended to support three different
output maps, which are individually computed and subsequently merged.

Additionally, the implementation of the Sonar-Based SLAM algorithm is described, including
the variations introduced for the comparison in the next section. A similar structure is then
applied for the implementation and evaluation of the Visual-Based SLAM system.

6-0-1 Pearson correlation and Coefficient of determination

A measure to evaluate the goodness of fit between 2 signals (i.e. depth reconstruction) the
Pearson correlation is used, which is described as:

r = ρX,Y = E [(X − µX)(Y − µY )]
σXσY

(6-1)

ρX,Y : Pearson correlation coefficient between X and Y

µX = E[X] : Mean of X
µY = E[Y ] : Mean of Y
σX = Standard deviation of X
σY = Standard deviation of Y

Pearson correlation can have a value between [-1,1], with

• r = 1: perfect positive linear correlation
• r = −1: perfect negative linear correlation
• r = 0: no linear correlation

Squaring the Pearson correlation, results in a measure with value between 0 and 1, which
indicates for R2 = 1 a perfect linear correlation and value of R2 = 0 indicates no linear
correlation. The squared Pearson correlation is known as Coefficient of determination
[25]
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6-1 Downsampling and Aliasing
Sensor data in the simulator is collected at varying sampling rates (see Appendix B-1). To
ensure temporal consistency, this data must be aligned to a common sampling rate—typically
requiring downsampling. A known risk of downsampling is aliasing, where high-frequency
components are incorrectly represented as lower frequencies.
While upsampling via interpolation is possible, it introduces synthetic data that may distort
the signal. For this reason, it is generally preferable to work with sparse but accurate mea-
surements.

A FFT analyses is performed for the different seabed complexity. Which the highest seabed
complexity yields the highest frequency (bandwidth). The FFT for seabed complexity 12 is
seen in the following figure:

Figure 6-1: FFT Analyses of the seabed with complexity level 12

From the FFT analyses the highest frequency component is equal to fs = 2.5Hz, therefore a
sampling frequency of 6Hz is used, which is 6Hz > 2fs.

6-2 General Implementation Details
Data Requirements
This section explains the data required for applying the SDP-GD algorithm. The following
lifted-form data inputs are necessary:

• Σv: The measurement noise covariance matrix.
• Σx: The process noise covariance matrix. This is identified during the system identifi-

cation phase.
• Xnominal: The nominal state prediction vector, derived from the lifted process model:

Xnominal = Alifted · ulifted. (6-2)

In this case, the input ulifted is the reference signal for the desired velocity.
• ymeasured: The measured output vector.
• Cnominal: A vectorized form of the nominal observation matrix C.
• ΣC : The covariance matrix of the output map C. This parameter is based on the

unknown parameters noise covariance. It is set to 0.01 as a low arbitrary value to
reflect a small expected estimation error. Although this value can be set to zero, in
practice it is mostly nonzero.
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• desiredSnr: The desired signal-to-noise ratio used for weighting or scaling the estima-
tion.

• matrixScale: A scaling factor applied to matrices during estimation.

Noise Parameters and Covariance Tuning
The initial parameter covariance Σθ0 , representing the uncertainty in the initial seabed model,
is set to 4. This is based on the assumption that the seabed can vary by approximately 4
meters. The process noise Σv is set equal to the state process noise Σx.
The output map covariance matrix, ΣC , is set to an arbitrary low value of 0.01, representing
a low expected estimation error. This value reflects the assumption that the measured signal
is relatively close to the ground truth. In practical underwater scenarios, obtaining accurate
measurements of the difference between estimated and true positions is extremely challenging
without expensive high-precision systems like USBL (Ultra-Short Baseline) or LBL (Long
Baseline) acoustic positioning.

Initial Conditions and Signal Alignment
The system’s initial condition is set to zero for all states, assuming that the AUV’s spawn
location in the simulator represents the initial state. Since the sonar measures the distance
to the seabed, the entire measured signal is offset by subtracting the initial depth estimation.
This ensures that the depth data starts from zero.
This alignment step is critical because the depth is estimated by multiplying the state with
the output map C. If the initial state is zero and the signal is not offset, the depth estimate
will also be zero, leading to false detection or misinterpretation of the seabed structure.

Combining Multiple Output Maps
The output map C(θ) can be constructed with multiple rows to estimate multiple outputs,
such as x, y, and d (depth). However, directly including all outputs in the same optimization
problem increases computation time and prevents multithreading.
To address this, the SDP-GD approach computes each row of the C(θ) matrix independently.
Afterward, the results are combined by vertically stacking each dimension-specific result into
a single matrix:

Ci =

 Ci(1)
...

Ci(nT )

 for i ∈ {x, y, h},

C =



Cx(1)
Cy(1)
Ch(1)

...
Cx(nT )
Cy(nT )
Ch(nT )


(6-3)

This modular approach allows for parallel computation and scalability while preserving the
estimation quality for each output.
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6-3 Sonar-Based SLAM Implementation
For the application of the SDP-GD algorithm, four variations are explored, each using different
input signals and measurement types. In the final variation, a modification is introduced to
further improve the computation time of the algorithm.

Variation 1: Cvar1 control Input
In this variation, the controller’s reference signal, a step input with an amplitude of 1, is used.
Motivation: This choice ensures consistency across all experiments, as the input signal
remains constant. However, the output map produces a repeatable and reliable response.
Such consistency may be beneficial in applications that require consistent system behavior.
The state vector is defined as:

x =
[
x y z vx vy vz

]T
where x, y, and z represent the position states, which do not depend on the reference signal.
These position states can be initialized arbitrarily, since the corresponding entries in the B
matrix are zero. This means they are not directly influenced by the input signal, which is:

u =
[
0 0 0 uvxref

uvyref
uvzref

]T
The measurement in this variation is the position of the AUV, obtained by integrating the
velocity estimated from the DVL and IMU sensors and the depth (h) to the seabed is measured
using the sonar data:

ymeas =
[
x y h

]T
This integration process corresponds to dead reckoning. From experiments, the integrated
velocity closely matches the ground truth position, assuming minimal sensor noise. However,
in real-world scenarios, sensor noise can lead to significant drift over time.

Variation 2: Cvar2 Control input
In this variation, the state and measurement signals remain the same as in Variation 1.
The input is changed to the thruster control signals, which directly influence the AUV’s
measurements.
Motivation: This choice also include the necessary adjustment due to environmental dis-
turbances. The Destik SAGA ROV is equipped with three thrusters, resulting in three input
signals for the SDP-GD algorithm. As in the identification procedure, the input signal, cor-
responding to the x, y, and z positions, is set to zero.

u =
[
0 0 0 uthruster 1 uthruster 2 uthruster 3

]T
A third variation, suggested by S. Vakili, was also implemented. However, this modifica-
tion led to only minimal improvement in seabed reconstruction performance. Details of this
variation can be found in Appendix C.
Experiments were performed to Given the minimal and inconclusive improvements in depth
estimation, combined with the additional computational cost of generating a second output
map, this variation is not used in the final comparison of the SLAM algorithms.
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6-4 Visual SLAM
Limitation

A proposed method for applying visual SLAM, inspired by the Sonar-Based SLAM approach,
involves using the onboard camera to detect keypoints which can then be utilized to construct
a point cloud. However, a major challenge arises from the nature of the ORB-SLAM2 algo-
rithm, which outputs a vector of descriptors without explicitly revealing the spatial positions
of individual keypoints. To overcome this, the SDP-GD will be used as a smoother, using the
output of ORB-SLAM2 to improve seabed reconstruction.

Experiments

Measurement are taken to apply to the SDP-GD to measure its performance for the different
variances. The experiment involves four predefined trajectories, each executed twice for three
different environments (maps), resulting in a total of 24 runs. Each trajectory directs the
vehicle toward one of the following target destinations:

• Trajectory 1: (x, y, z)Destination = (50, 50)
• Trajectory 2: (x, y, z)Destination = (50,−50)
• Trajectory 3: (x, y, z)Destination = (−50, 50)
• Trajectory 4: (x, y, z)Destination = (−50,−50)

Variation 1

This refinement process does not fall under the definition of a SLAM algorithm, as it neither
performs simultaneous localisation nor real-time mapping. Instead, it enhances an existing
map, treating the output of ORB-SLAM2 as a preliminary estimate.

Measurement:The measurement used for the SDP-GD becomes:

ymeas = dOrbSlam2 (6-4)

Input:The system is in a feedback loop, where the input into the system is a reference signal
for the desired position of the AUV for the x, y and z position .

u =

xref
yref
zref

 (6-5)

It is important to note that ORBSLAM2 does not rely solely on an input trajectory. Rather,
it depends on a combination of the input command, visual information from the camera, and
the ORB-SLAM2 algorithm to navigate. Therefore, in the evaluation, the seabed reconstruc-
tion generated by ORB-SLAM2 will be compared against the reconstruction obtained using
the SDP-GD algorithm, which, for this run, uses only the input trajectory of the current test
to generate a reconstructed map.
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Contribution:The advantage with the SDP-GD method is that the AUV can execute its
trajectory without requiring camera input or running ORB-SLAM2 in real-time. This can lead
to substantial energy savings, making the system more efficient for long-duration missions.
The output map for this variation has the following form:

Cvar 1(θ) = f(y, u) = f(dOrbSlam2,

xref
yref
zref

) (6-6)

In Figure 6-2, this variation of the SDP-GD algorithm is applied, and the resulting seabed
reconstruction is compared with that of ORB-SLAM2. It can be observed that the SDP-
GD reconstruction closely follows the ORB-SLAM2 signal, due to using the output of the
ORB-SLAM2 as measurement for the SDP-GD.

Figure 6-2: Seabed reconstruction SDP-GD outmap variation 1 (blue) and ORB-SLAM2 (red)
compared to the ground truth (yellow).

It can also be observed in Figure 6-2 that at the beginning of the sequence (k = 2 . . . 10),
there is a noticeable dip in the SDP-GD reconstruction. This dip may be attributed to poor
identification of that segment of the system. One possible explanation is that the model
began to move prior to the specified time segment in the time-varying model, which was set
to begin at k = 5.
By applying the full set of measurements to this variation, a more comprehensive analysis can
be conducted. Table 6-3 presents the Mean Squared Error (MSE) and Pearson Correlation
values for the SDP-GD, across different map complexities and trajectories.
Table 6-1 will be used as a benchmark for Variation 2.

Variation 2
This variation similiar to the first variation, however the measurement here is different. Here
the measurement is instead of the depth estimate the measurement taken by a sonar sensor.
Therefore this variation has the following output map:

Cvar 2(θ) = f(y, u) = f(dSonar,

xref
yref
zref

) (6-7)

An example of the seabed reconstruction using the output map generated from Map 0 and
Trajectory 1 is shown in Figure 6-3. In this figure, the reconstructed seabed is visualized
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Table 6-1: MSE and Pearson Correlation for SDP-GD using Variation 1 for visual SLAM, across
different map complexities and trajectories

Complexity Trajectory
1 2 3 4

MSE SDP-GD

0 0.19163 0.35191 0.75149 0.15184
1 0.9895 3.1358 24.302 0.68021
3 0.31791 0.1061 9.2048 2.4455

Pearson Correlation SDP-GD

0 0.95999 0.76664 0.81007 0.92083
1 0.95394 0.59015 0.9568 0.90888
3 0.85252 0.8287 0.64933 0.5574

for three cases: the SDP-GD algorithm (blue), ORB-SLAM2 (red), and the ground truth
(yellow).

Figure 6-3: Seabed reconstruction comparison using data from Map 0 and Trajectory 1. The
plot shows the output of the SDP-GD algorithm (blue), ORB-SLAM2 (red), and the ground truth
(yellow).

This seabed reconstruction is similiar to fig 6-2, which shows mayor improvement, especially
that the SDP-GD follows the ground truth data.
Apply the set of measurement on this variation has the following result:
Compared to variation 1 (see Table 6-1), variation 2 performs better, showing a Pearson
correlation coefficient and a lower mean squared error (MSE). Therefore, this variation will
be used for the comparison of the SDP-GD and the Visual SLAM algorithm in combination
with the third variation.

Variation 3
In this variation, the SDP-GD algorithm is modified to increase the computation of the output
map by optimizing it in smaller batches. In both the first and second variations, the time
horizon is set to nT = 50, and, as described in Equation 7-1, the computational complexity
scales with n3

T . To address this, the modified approach reduces the time horizon to nT = 1 by
using a batch size of 1. This configuration is chosen to represent the minimal possible batch
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Table 6-2: MSE and Pearson Correlation for SDP-GD using Variation 2 for visual SLAM, across
different map complexities and trajectories

Complexity Trajectory
1 2 3 4

MSE SDP

0 0.29859 0.58760 0.63284 0.23941
1 0.86671 2.57800 24.9700 0.98950
3 0.97573 0.58253 11.3350 1.98260

Pearson Correlation SDP

0 0.96706 0.88800 0.89767 0.91736
1 0.96421 0.91905 0.40072 0.99716
3 0.90845 0.86094 0.87922 0.91964

Table 6-3: Comparison of Computation Time, Optimal Value, and Iteration Count for SDP-GD
and Batched SDP-GD (Batch Size = 1) Across All Trajectories and Maps

Case Comp. Time Opt. Value Iter. Batches Time Batches Opt. Value Batches Iter.

Map 1, traj 1 19.492 -78.841 358 22.471 -78.841 273
Map 2, traj 1 26.486 -82.865 446 22.579 -82.865 276.5
Map 3, traj 1 24.180 -83.243 395.5 23.054 -83.243 267.5
Map 1, traj 2 19.782 -77.457 356.5 22.316 -77.457 280
Map 2, traj 2 24.095 -89.106 384 22.644 -89.106 265
Map 3, traj 2 19.728 -82.965 418 17.092 -82.965 293.5
Map 1, traj 3 18.862 -78.009 333 19.897 -78.009 253.5
Map 2, traj 3 23.030 -72.600 357.5 20.185 -72.600 206
Map 3, traj 3 18.154 -78.738 364.5 16.762 -78.738 199.5
Map 1, traj 4 19.111 -76.561 234.5 25.852 -76.561 305.5
Map 2, traj 4 28.802 -81.493 510 24.420 -81.493 310.5
Map 3, traj 4 19.718 -87.357 416 18.007 -87.357 312.5

size, allowing for the assessment of its impact on computational performance. Additionally,
the maximum number of iterations during the optimization step is capped at 100 to further
limit computation time.

Variation 2 vs 3
In this section, the SDP-GD algorithm is applied, and its computational efficiency is evaluated.
The same set of trajectories is used across all three maps, meaning the trajectories are identical
in each environment. For every trajectory and map combination, an output map is generated
using both variation 2 and variation 3 of the SDP-GD algorithm (where variation 3 utilizes
batch processing with a batch size of 1).
To evaluate computational performance, the following metrics are recorded for each run:
Computation time (in seconds), Optimal value of the cost function and Number of iterations
to convergence.
Afterward, averages are computed across the runs for comparison. Table 6-3 presents the
results for each case.
It can be observed that both algorithm variations consistently converge to the same optimal
cost value. However, differences in computational time and the number of iterations are
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notable between the two approaches. The output maps were calculated in a parallel loop,
which might effect the computational time. The difference between the computational time
using batches are generally lower than of the SDP-GD, but still marginally ranging from -15%
slower to 31% faster. Due to the optimal Value Cost resulting in the same number and the
computational time being generally lower, the 3rd variation will be used for the comparison
of the SDP-GD to visual SLAM.
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Chapter 7

Comparative Analysis and Evaluation

When comparing two algorithms for seabed reconstruction, it is essential to evaluate them
against a comprehensive set of criteria. These criteria ensure a thorough assessment of the
algorithms’ accuracy, robustness, computational efficiency, and overall applicability. This
chapter outlines the metrics and conditions under which both algorithms were tested and
compared. For the tables presented in this section, it is important to note that two experi-
ments were performed for each output map determination: one for generating the output map
and one for testing it. This procedure was conducted for both methods, and the reported
measures (RMSE and R2) represent the average of the two runs. Although the system oper-
ates in discrete time, continuous time has been used for the time axis in most plots for ease
of interpretation and visualization.

7-1 Accuracy of Depth Estimation: Sonar-Based SLAM vs. SDP-
GD

This section compares the depth estimation accuracy of the SDP-GD algorithm with that of
the Sonar-Based SLAM approach. Both methods were tested under a series of experiments
involving varying levels of seabed distortion. The distortion levels tested include the values
{0, 1, 2, 3, 4, 6, 8, 10, 12}.

In each experiment, the AUV traveled approximately 100 meters along the x-direction. The
collected data was subsequently downsampled to 6 Hz and truncated to 60 data points,
representing a total distance of 10 meters.

Two distinct types of input signals were used: a reference input and a control-input. The
reference input served as the reference signal and remained consistent throughout all experi-
ments, thereby establishing a baseline for comparison. In contrast, the control-input was the
actual input signal applied to the vehicle’s thrusters. Due to environmental factors and dis-
turbances, this signal varied between experiments. The reason behind using the control-input
is that it contains more information regarding the dynamic interactions between the vehicle
and its environment, thus allowing for a more thorough evaluation of the depth estimation
capabilities under realistic and varied conditions.
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Figure 7-1: Comparison between reference and control-input signals. On the left, the reference
input remains constant across all experiments. On the right, the control-input is influenced by
environmental interactions, resulting in greater excitation of the system.

The goodness-of-fit metric used is the Root Mean Square Error (RMSE) of the output maps
and the squared Pearson correlation coefficient.

7-1-1 Output map performance using Control Input
The output map performance using the control-input signal using different level of output
noise will be compared in this section. Also different comparison are made includes both the
SDP-GD and Sonar-Based SLAM algorithms across all distortion levels.

No output Noise

First the output map performance, made without any measurement noise is analysed. In
both algorithm a Σv = 0.0001 is set, to prevent dividing by infinity. As shown in Table 7-1,
Sonar SLAM outperforms SDP-GD in estimating the x-direction and depth, demonstrated
by lower RMSE values and higher correlation coefficients for depth. In contrast, SDP-GD
achieves better results in the y-direction, as indicated by a lower RMSE compared to Sonar
SLAM.
For the reconstruction of the seabed map, the RMSE and R2 Depth is used to analyse both
algorithm performance. The result is plotted in fig be seen in fig 7-2 and its value is in table
7-1. The Sonar Based Slam algorithm outperforms the SDP-GD whenever no output noise is
present. This can be seen by the higher RMSE and Lower R2 levels, which indicates that the
seabed reconstruction of the Sonar SLAM matches identically with the measurement. From
the table it can be observed that the Sonar Based slam is better at estimating the pose of
the AUV.

Figure 7-2: Comparison of the Average RMSE and R2 of the output map of the Sonar Based
SLAM and SDP-GD, generated with measurement with no noise

Master of Science Thesis P.K. Kartoidjojo



7-1 Accuracy of Depth Estimation: Sonar-Based SLAM vs. SDP-GD 49

Disturbance RMSE SDP-GD (m) RMSE SLAM (m) SDP-GD SLAM
X Y Depth X Y Depth R2

d R2
d

0 0.0183 0.0001 0.0068 0.0015 0.0060 0.0000 0.9999 1.0000
1 0.0150 0.0001 0.0056 0.0014 0.0060 0.0000 0.9998 1.0000
2 0.0253 0.0001 0.0129 0.0015 0.0066 0.0000 0.9991 1.0000
3 0.0149 0.0001 0.0075 0.0017 0.0060 0.0000 0.9998 1.0000
4 0.0249 0.0001 0.0087 0.0016 0.0066 0.0000 0.9999 1.0000
6 0.0150 0.0001 0.0057 0.0016 0.0059 0.0000 1.0000 1.0000
7 0.0044 0.0001 0.0022 0.0023 0.0045 0.0000 1.0000 1.0000
8 0.0125 0.0001 0.0069 0.0017 0.0050 0.0000 1.0000 1.0000
10 0.0278 0.0001 0.0109 0.0014 0.0066 0.0000 0.9998 1.0000
12 0.0052 0.0001 0.0015 0.0022 0.0047 0.0000 1.0000 1.0000

Table 7-1: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The input signal for both methods is
the thruster input signal, which is used to determine the resulting output map. The measurement
doesn’t contain any noise

Measurement Noise = η(0, 0.01), SNR = 53dB

Figure 7-3: Comparison of the average RMSE and R2 of the output map generated by Sonar-
Based SLAM and SDP-GD under measurement noise Σv = 0.01. The figure also includes the
mean and standard deviation across multiple experimental runs.
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Measurement Noise = η(0, 0.1), SNR = 33dB

Figure 7-4: Comparison of the Average RMSE and R2 of the output map of the Sonar Based
SLAM and SDP-GD, generated with measurement noise of Σv = 0.1. The figure also includes
the mean and standard deviation across multiple experimental runs.

Measurement Noise = η(0, 0.5), SNR = 19dB

Figure 7-5: Comparison of the Average RMSE and R2 of the output map of the Sonar Based
SLAM and SDP-GD, generated with measurement noise of Σv = 0.5. The figure also includes
the mean and standard deviation across multiple experimental runs.

Measurement Noise = η(0, 1.0), SNR = 13dB

In the previous results (Figures 7-3, 7-4, and 7-5), the measurement noise was progressively
increased, corresponding to a lower Signal-to-Noise Ratio (SNR), and the output map was
estimated using both SDP-GD and the Sonar-Based SLAM. Table 7-2 presents the results for
a specific case where the SNR is 13 dB. Figure 7-7 plots the RMSE and R2 values, demon-
strating that SDP-GD consistently achieves a lower RMSE and higher R2 under increased
noise conditions. This suggests that SDP-GD is more robust to measurement noise compared
to the Sonar-Based SLAM, which is also visually evident in Figures 7-3, 7-4, and 7-5, where
SDP-GD begins to outperform Sonar-Based SLAM.

However, at very high noise levels, the R2 drops significantly (e.g., R2 = 0.2), indicating that
the seabed reconstruction becomes increasingly unrecognizable from the measurements. This
degradation in performance is further illustrated in Figure 7-6, where the RMSE is high and
the R2 reflects poor correlation with the true seabed.

An example where the seabed reconstruction is still recognizable is seen in figure 7-8.
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Figure 7-6: Example of the seabed reconstruction where the R2 = 0.2 where the reconstruction
is barely recognizable from the ground truth.

Figure 7-7: Comparison of the Average RMSE and R2 of the output map of the Sonar Based
SLAM and SDP-GD, generated with measurement noise of Σv = 1.The figure also includes the
mean and standard deviation across multiple experimental runs.

Disturbance RMSE SDP-GD (m) RMSE SLAM (m) R2
d R2

d

X Y Depth X Y Depth SDP-GD SLAM
0 0.0250 0.0129 0.4674 0.0626 0.0110 1.1693 0.6951 0.2204
1 0.0236 0.0109 0.8213 0.0612 0.0102 1.6323 0.1202 0.0233
2 0.0253 0.0127 0.6332 0.0628 0.0109 1.3447 0.1936 0.0481
3 0.0230 0.0110 0.3952 0.0633 0.0114 1.1182 0.3845 0.0752
4 0.0231 0.0112 0.5392 0.0619 0.0105 1.0954 0.6666 0.2647
6 0.0271 0.0144 0.4958 0.0625 0.0105 1.2526 0.8612 0.5257
7 0.0491 0.0269 0.5563 0.0729 0.0109 1.1779 0.6094 0.3197
8 0.0444 0.0231 0.4395 0.0729 0.0107 1.0299 0.7382 0.4644
10 0.0338 0.0133 0.5915 0.0627 0.0106 1.2533 0.5092 0.2164
12 0.0418 0.0196 0.6735 0.0731 0.0112 0.9531 0.7384 0.5092

Table 7-2: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 0.1) or a SNR = 13dB.
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Figure 7-8: SDP-GD measures RMSE, R2)=(0.32,0.82) and (0.37,0.623) for the Sonar SLAM.
Here the output noise is equal to Σv = 1

7-1-2 Performance on reference signal Input Cvar1

No Measurement Noise

In this subsection the reference signal is used as input signal. The same experimental setup
is applied as in the control-input case, with the only difference being the altered input signal.
The reasoning behind this is mostly to determine if an input signal with more variation will
result in better or worse result.

When comparing the two algorithms directly under reference input wit no measurement noise,
the results are similar to using a control input signal. The difference is that the RMSE are
lower and the R2 is higher.

Figure 7-9: Comparison of the Average RMSE and R2 of the output map with no measurement
noise using the Sonar Based SLAM and SDP-GD

When comparing the output map performance using both the control input and the reference
input for each algorithm individually, it can be observed that using a reference input improves
estimation accuracy in the y and depth directions for both algorithms, as shown in Table 7-3.
In the following results, the measurement noise levels are increased from a SNR of 53dB to a
SNR of 13dB.
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Disturbance RMSE SDP-GD (m) RMSE SLAM (m) SDP-GD SLAM
X Y Depth X Y Depth R2

d R2
d

0 0.0042 0.0001 0.0010 0.0167 0.0005 0.0000 0.9999996 1.0000000
1 0.0042 0.0001 0.0005 0.0168 0.0005 0.0000 0.9999998 1.0000000
2 0.0042 0.0001 0.0006 0.0168 0.0005 0.0000 0.9999999 1.0000000
3 0.0043 0.0001 0.0007 0.0169 0.0005 0.0000 0.9999999 1.0000000
4 0.0042 0.0001 0.0008 0.0168 0.0005 0.0000 0.9999999 1.0000000
6 0.0042 0.0001 0.0005 0.0166 0.0005 0.0000 0.9999998 1.0000000
7 0.0038 0.0001 0.0006 0.0152 0.0004 0.0000 0.9999997 1.0000000
8 0.0038 0.0001 0.0007 0.0156 0.0004 0.0000 0.9999999 1.0000000
10 0.0043 0.0001 0.0005 0.0168 0.0005 0.0000 0.9999998 1.0000000
12 0.0038 0.0001 0.0006 0.0155 0.0004 0.0000 0.9999998 1.0000000

Table 7-3: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains no noise

Measurement Noise = η(0, 0.01), SNR = 53dB

Figure 7-10: Comparison of the Average RMSE and R2 of the output map with measurement
noise Σv = 0.01 of the Sonar Based SLAM and SDP-GD

Measurement Noise = η(0, 0.5), SNR = 19dB

Figure 7-11: Comparison of the Average RMSE and R2 of the output map with measurement
noise Σv = 0.5 of the Sonar Based SLAM and SDP-GD
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Measurement Noise = η(0, 1.0), SNR = 13dB

The effect of using a control input instead of a reference input signal can be observed in Figures
7-9, ?? and 7-14. These figures shows that SDP-GD outperforms Sonar-Based SLAM in
reconstructing the seabed across all tested conditions—except in cases where no measurement
noise is present. A similar performance trend is observed when the control input is used.
The results show that using the control input yields improved seabed reconstruction, as
indicated by generally lower RMSE and higher R2 values. This improvement is likely due to
the control input capturing the true dynamics of the AUV more accurately, as it reflects the
actual input used to drive the system, including real-time adjustments made during operation.
Another, reason can be poor identification of the system model.

Figure 7-12: Comparison of the Average RMSE and R2 of the output map with measurement
noise Σv = 1 of the Sonar Based SLAM and SDP-GD

Disturbance RMSE SDP-GD (m) RMSE SLAM (m) R2
d R2

d

X Y Depth X Y Depth SDP-GD SLAM
0 0.1149 0.0518 0.5701 0.0740 0.0060 1.3392 0.6477 0.3506
2 0.1745 0.0518 0.4410 0.0742 0.0057 1.3194 0.4369 0.0705
4 0.1813 0.0518 0.8794 0.0750 0.0061 1.7158 0.5355 0.1248
7 0.5944 1.0681 1.4090 0.0734 0.0049 1.0262 0.0547 0.0146
10 0.3487 0.0518 1.1019 0.0736 0.0063 2.5539 0.4416 0.0089
12 0.4723 1.0681 1.3968 0.0733 0.0047 1.4656 0.0092 0.2683

Table 7-4: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 1.0) or a SNR = 13dB.

From Table 7-4, Table 7-3, and the additional tables in the appendix showing output maps
under varying measurement noise levels (Tables C-6 and C-7), it can be observed that in-
creasing the measurement noise slightly degrades the position estimates of both the RMSE
and the SLAM algorithm. This is indicated by the gradual increase in RMSE values as the
measurement noise becomes higher. Additionally, the pose estimation appears to be more
accurate when the control input is used as the input signal for the SDP-GD. This is reflected
in lower RMSE values compared to those obtained when using the reference signal, suggesting
that the control input enables a better representation of the system’s true behavior.
In the case of Sonar-Based SLAM, the use of the control input also improves pose estimation
accuracy. However, this comes at the cost of poorer seabed reconstruction, as indicated by
generally higher RMSE values and lower R2 scores. This suggests that while the pose estimate
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benefits from the control input, the associated trajectory may lead to less informative or more
redundant sonar measurements, thereby reducing the quality of the reconstructed map.
This analysis shows that, regardless of the input signal used, SDP-GD consistently outper-
forms Sonar-Based SLAM in terms of pose estimation accuracy. This is mostly due to the
nature of the SOnar based slam not containing a filtering option for the measurement noise.
In the next section a filter is added to filter out the measurement noise.

7-1-3 Filtering Sonar Measurement
In the paper for the sonar based slam, no filter is being used to clean up the sonar side scan
data. However, from the previous results it can be seen that the sonar data can be filtered.
A 4th-order low-pass Butterworth filter is applied to the sonar measurement to remove high-
frequency noise. The cutoff frequency is set to 2.5 Hz (from FFT analysis) and normalized
with respect to the Nyquist frequency, which is half the sampling rate. Zero-phase filtering
(filtfilt) is used to prevent phase distortion.
An example of using such filter can be seen in fig. 7-13, and the corresponding RMSE and
R2 plot can be seen in fig7-14.

Figure 7-13: Example of seabed reconstruction at complexity level 10 using filtered sonar mea-
surements. It is clearly observable that the Sonar-Based SLAM outperforms the SDP-GD in
reconstruction accuracy.

Figure 7-14: RMSE and R2 performance comparison between SDP-GD and Sonar-Based SLAM
across varying levels of seabed complexity, using filtered sonar measurements. The results clearly
indicate that Sonar-Based SLAM outperforms SDP-GD under these conditions.

The application of this filter significantly improved the seabed reconstruction results for the
Sonar-Based SLAM. However, this raises the question of fairness in comparison. While SDP-
GD inherently includes a filtering mechanism (minimizing measurement error) as part of its
formulation, Sonar-Based SLAM benefits from externally pre-filtered data. As a result, the
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comparison may be biased, since one algorithm performs its own filtering, whereas the other
relies on a separate preprocessing step.

7-1-4 Computational Efficiency
This section compares the computational efficiency of the SDP-GD and Sonar-Based SLAM
algorithms by evaluating the time it took to compute the output maps under increasing data
volumes. In these experiments, multi-threading was used. The data is down-sampled to
2 Hz, and a time horizon nτ of 30, 60 and 100 data points are compared. Computations
were executed using MATLAB’s parfor (parallel for-loop) function, which enables parallel
processing of independent tasks. In this case, the three output maps, corresponding to the
x, y, and depth direction, were computed independently and later merged. This separation
made parallelization possible.

Distortion 30 Samples 60 Samples 100 Samples
SDP-GD (s) SLAM (s) SDP-GD (s) SLAM (s) SDP-GD (s) SLAM (s)

0 38.6104 0.0002 406.3856 0.0004 1219.2000 0.0012
1 40.1605 0.0002 391.7984 0.0004 — —
2 40.1610 0.0002 396.8178 0.0003 — —
3 39.9548 0.0002 378.5677 0.0004 — —
4 40.8118 0.0002 372.7263 0.0004 — —
6 40.4914 0.0002 376.7389 0.0004 — —
8 23.4219 0.0002 364.1409 0.0004 — —

10 41.5364 0.0002 366.9418 0.0004 — —
12 6.7675 0.0002 237.5535 0.0004 — —

Table 7-5: Comparison of average computational time (in seconds) for the SDP-GD and Sonar-
Based SLAM algorithms across different seabed distortion levels and sample sizes.

Based on the values shown in Table 7-5, it can be observed that the computational time of the
SDP-GD algorithm varies across experiments. This variation can be attributed to the nature
of the solver used in SDP-GD, which in some cases converges more quickly to an optimal
solution depending on the structure of the input data or the optimization landscape. In
addition to variation across experiments with the same number of samples, the computational
time of the SDP-GD algorithm also increases significantly as the number of samples grows.
For reference, the computation of a single output map using 100 samples with SDP-GD took
approximately 20 minutes to complete. For example, using 30 samples, the computation time
reached up to 41 seconds, while for 100 samples, a single output map took approximately 20
minutes to compute.
In contrast, the Sonar SLAM algorithm employs a Kalman filter, which follows a recursive
estimation process with a predictable and fixed computational cost per time step. As a result,
its runtime remains relatively consistent regardless of the input or environmental complexity.
The sharp increase in computation time for SDP-GD as the number of samples grows can be
explained by its computational complexity, as described in [1]:

O
(
n3

x(nT + 1)3 + n2
x(nT + 1)2

2 + nyn
2
x(nT + 1)2 + nxn

2
y(nT + 1)3 + n3

y(nT + 1)3
)
. (7-1)

This expression simplifies to:
O(n3

T ) when nx, ny ≪ nT ,
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where nx is the number of states, ny the number of outputs, and nT the discrete time horizon.
This shows that the computational time increases with the power of 3 with respect to the
time horizon. Therefore, increasing the number of samples, either by extending the sampling
duration or by using a higher sampling rate, leads to a significant increase in computation
time for SDP-GD, while the SLAM approach remains unaffected.

7-1-5 Robustness to Environmental Conditions

This section evaluates the robustness of the SDP-GD and Sonar SLAM algorithms under
varying water current conditions. A 6 Hz sampling rate was used in simulations to capture
environmental noise, although real-world applications would likely require higher rates to
account for higher-frequency disturbances.

Figures 7-15 and 7-16 compare SDP-GD and Sonar SLAM trajectories under low (0.2 m/s)
and high (1.2 m/s) current levels, respectively, at seabed complexity level 12. The green line
indicates ground truth, the dotted magenta line shows the nominal state, the solid magenta
line is the Sonar SLAM estimate, and the blue line represents SDP-GD results (which is
perfectly behind the SLAM Signals).

Figure 7-15: Response of SDP-GD and Sonar SLAM in low-current (0.2 m/s) conditions at high
seabed complexity. Sampling rate: 2 Hz, horizon: nT = 60.

Figure 7-16: Response of SDP-GD and Sonar SLAM in high-current (1.2 m/s) conditions at
high seabed complexity. Sampling rate: 2 Hz, horizon: nT = 60.

From the analysis, it can be observed that environmental conditions have no significant im-
pact on the accuracy of pose estimation and seabed reconstruction. This conclusion is based
on a model identified under conditions without current-induced noise, serving as a baseline.
The magenta line (Xnorm), which represents the expected trajectory, doesn’t aligns with the
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reconstructed path which indicates the robustness even against change in path. As a re-
sult, both SDP-GD and Sonar-Based SLAM demonstrate strong robustness to environmental
disturbances such as water currents.

7-1-6 Ease of Integration and Use

However, significant challenges arose during the implementation of the lifted observation
model. In particular:

• Noise Covariance and Observation Structure: Configuring the observation model
to properly handle noise covariances proved non-trivial. Errors often only became appar-
ent at the optimizer level, manifesting as constraint failures that provided little insight
into the underlying issues.

• Parameter Adjustment and Structure Flexibility: The default implementation
assumed a 1×nC observation matrix structure. Extending this to a 3×nC configuration
required concatenating three separate observation maps. Since zeroing out specific com-
ponents was not directly supported, a workaround was needed by artificially inflating
the corresponding noise variance to effectively ignore undesired observations.

• Terminology Inconsistencies: The code’s variable names, such as nominalX, did
not match the terminology used in the associated paper. Clarifying these terms (e.g.,
recognizing that nominalX corresponds to A.u in the system model) would have reduced
the learning curve and eased debugging.

In summary, although the core algorithm remains well-structured, enhancements in flexi-
bility, consistent terminology, and debugging support—especially regarding the observation
model—would significantly improve its usability and adaptability across different systems.

7-2 ORB-SLAM2 vs. SDP-GD
After generating the seabed reconstructions using both SDP-GD and ORB-SLAM2, the out-
puts can be directly compared. While previous sections evaluated both x- and y-coordinates,
for ORB-SLAM2 only the depth component was analyzed due to time constraints.
Figure 6-3 shows a visual comparison of the reconstructions, with the ground truth obtained
from a noise-free sonar sensor. Mean Squared Error (MSE) and Pearson correlation coeffi-
cients were computed across two runs per trajectory (described in Section 6-4), and results
are summarized in Table 7-6.
Overall, SDP-GD outperforms ORB-SLAM2 in multiple cases, achieving higher Pearson cor-
relations and often lower MSE values.
For Trajectory 1, the SDP-GD Pearson correlation declines and MSE increases with rising
map complexity, reflecting the algorithm’s sensitivity to environmental variations. In con-
trast, results for Trajectories 2, 3, and 4 appear more arbitrary across complexity levels.
This inconsistency stems from the maps used—scaled versions of a relatively flat environ-
ment—lacking the diverse terrain features necessary for robust evaluation.
Trajectory 1 includes moderate hills and grooves, offering more complexity compared to the
others, and results indicate that SDP-GD performs better than ORB-SLAM2 under increased
terrain variability.
While additional experiments with more varied seabed geometries and repeated runs are
needed for conclusive findings, these preliminary results suggest that SDP-GD provides more
accurate seabed reconstructions, especially when fusing measurements from both ORB-SLAM2
and the sonar-based system (second variation).
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Table 7-6: Comparison of MSE and Pearson Correlation for SDP-GD and ORB-SLAM2 using
sonar as the measurement. The trajectories (1–4) are explained in Section 6-4, and the complex-
ities in Section 3-3.

Complexity 1 2 3 4 Avg

MSE SDP-GD

0 0.15626 0.40343 0.32785 0.14546 0.25875
1 0.51269 0.51597 14.43600 0.03210 3.37469
3 0.96317 0.71138 1.22510 0.45882 0.83962

MSE ORB-SLAM2

0 0.16252 0.36934 0.47866 0.09014 0.27517
1 0.45460 2.28530 1.68460 0.76338 1.29647
3 1.02100 0.74821 4.05300 2.02280 1.96175

Pearson Correlation SDP-GD

0 0.96175 0.88607 0.89521 0.91638 0.91485
1 0.96398 0.91956 0.40083 0.99690 0.82082
3 0.90901 0.85956 0.87839 0.91790 0.89172

Pearson Correlation ORB-SLAM2

0 0.97470 0.88803 0.88424 0.96118 0.92704
1 0.95552 0.51393 0.89148 0.89527 0.81405
3 0.86888 0.84874 0.80215 0.58085 0.77516

7-2-1 Effect of Murky Water on Seabed Reconstruction
In this section, the effect of murky water conditions on seabed reconstruction is analyzed.
Figure 7-17 illustrates the output of the SDP-GD algorithm (yellow) , ORB-SLAM2 (blue) ,
and the ground truth measured by the sonar (red). The data used here simulates a murky
underwater environment where the Sonar SLAM misinterprets suspended particles as the
seabed, causing incorrect orientation estimations, as previously shown in Figure 3-9.
It can be observed that the SDP-GD reconstruction incorrectly estimates the seabed as ris-
ing, whereas the actual seabed remains level. This highlights a limitation of the current
SDP-GD implementation, which heavily relies on the AUV’s positional data. In noisy or vi-
sually degraded environments, such as murky water, this dependency can lead to inaccurate
reconstructions. This presents a significant challenge for real-world applications, as many
underwater environments are not clear.
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Figure 7-17: Seabed reconstruction under murky water conditions using SDP-GD (blue), ORB-
SLAM2 (blue), and sonar-based ground truth (red).
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Chapter 8

Discussion and Future Work:

8-1 Discussion the Simulation Setup
Impact of Sparse Visual Features on SLAM Evaluation: The simple simulated en-
vironment used in this study limited the visual SLAM system’s ability to detect reliable
keypoints, affecting its performance compared to SDP-GD. To enable fairer comparisons in
future work, environments with more distinct visual features (e.g., rocks, corals) should be
used. Reducing visual noise, employing feature detectors optimized for underwater condi-
tions, and incorporating stereo or RGB-D sensors could further enhance visual input quality
and enable more accurate depth estimation, improving both SLAM evaluation and 3D recon-
struction comparisons.
Current Modeling Constraint: The simulation modeled currents only in the x-axis di-
rection (facing the AUV), limiting disturbance evaluation. Future work should develop a
controller supporting multidirectional motion to better assess the impact of currents from
different angles.
Control Input: In the comparison, the control input with relatively high frequency compo-
nents—was used. However, these high-frequency components may have been a bit too high,
which likely introduced issues during the down-sampling process. This limitation was only
identified at a later stage of the analysis. Using an input signal with higher bandwidth requires
higher sampling rates to prevent aliasing. However, if the objective is to minimize computa-
tional time, such high-frequency inputs should be avoided, as they increase the computational
burden without necessarily improving estimation performance.
Identification: A first-order linear model was used for BlueROV2 system identification due
to time constraints. While sufficient for straight-line motion, future work should use richer
input signals to capture higher-order dynamics for broader applicability.
Computational Efficiency of SDP-GD: To reduce computational time in the SDP-GD
algorithm in the visual SLAM comparison, batching was introduced in the third variant of the
SDP-GD implementation. This approach proved effective when using a time horizon of nT =
1, and resulted in only a marginal increase in computation time. Future improvements may
involve experimenting with different batch sizes to extend the time horizon without sacrificing
computational efficiency. This could make it feasible to apply the SDP-GD framework in more
complex or real-time scenarios.
Accurate Data Synchronization: The accuracy of seabed reconstruction was found to be
sensitive to the timing of the visual SLAM measurements, especially at the onset of descend-
ing and forward motion. In the experiment, the recorded time window was slightly shorter
than required, leading to an inaccurate seabed estimation. If the timing of the measurements
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had been precise, this error could likely have been avoided.
For future research, it is important to ensure accurate synchronization between the model’s
motion and the data collection process, especially when determining the start of key maneu-
vers.

8-2 Evaluation of Experimental Results
Variation of Input Signal: In this part of the thesis, the AUV is simulated in different
seabed complexities and different measurement noise.
Computational Efficiency and Sampling Frequencies: SDP-GD is significantly more
computationally intensive than Sonar SLAM due to its reliance on a solver. Increasing the
number of states or extending the time horizon raises computational cost. In this study,
the system was simplified to six states (x, y, z, vx, vy, vz) to match straight-line AUV motion
without rotation.
In more general applications, especially with full 6-DOF motion, the state vector may need to
be expanded to 12 states, including rotational terms. Given the complexity scales as O(n3

T ),
reducing the time horizon nT is key to improving efficiency.
The sampling rate directly impacts nT . Here, data was downsampled to 6 Hz, which helped
reduce computation. Higher sampling rates retain more motion detail and improve estimation
accuracy by increasing the number of time steps within a fixed duration.
Robustness to Environmental Conditions: In the section "Robustness to Environmental
Conditions", the AUV was simulated under varying underwater current disturbances. Despite
increasing the environmental noise (e.g., water currents), the performance of the output map
remained largely unaffected. This consistent accuracy indicates that both algorithms—SDP-
GD and Sonar-Based SLAM—are robust against environmental disturbances. This robustness
is likely attributed to the presence of a feedback loop in both methods, which continuously
corrects the estimated state using incoming measurements, thereby minimizing estimation
errors.

8-3 Bayesian4Wiener
Recently, S. Vakili et al. published a new paper titled Optimal Bayesian Affine Estimator
and Active Learning for the Wiener Model [26], which presents an updated method that
builds upon the SDP-GD framework (Bayesian4Wiener algorithm). This section discusses
the improvements introduced in that work and how they address limitations identified in this
thesis.
Faster Estimation: The current SDP-GD approach requires solving a non-convex opti-
mization problem, initialized via a semidefinite program (SDP). While effective, this process
becomes computationally demanding for large-scale systems or long time horizons. In con-
trast, the new method avoids numerical optimization altogether during the estimation phase.
Instead, it computes the posterior distribution directly, resulting in significantly faster per-
formance—particularly for static nonlinear maps.
Nonlinear Output Map: Another key advancement is the introduction of a nonlinear
output map. The current method in this thesis uses a linear output map, which is suitable
given that the simulated system dynamics are relatively linear (e.g., straight-line motion).
However, in real-world scenarios, AUVs often perform complex maneuvers involving nonlinear
behaviors. As a result, the mapping from the AUV’s pose to the seabed reconstruction can
also become nonlinear, which highlights the usefulness of employing a nonlinear output map
in such scenarios.
Active learning In the current SDP-GD framework, the algorithm does not adapt or improve
with different inputs, where its learning capacity is fixed once the initial model is identified.
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In contrast, the updated method incorporates active learning, where control actions—such
as oscillating, diving, or altering its trajectory— enables the ability to actively explore the
environment.

8-4 Conclusion
It is important to note that only one component of the Sonar-Based SLAM algorithm was
implemented in this study, forming just one part of a more comprehensive system. This
component creates a single sub map, the other component includes patching multiple sub-
maps to create a global map.
This thesis demonstrates that SDP-GD is comparable to Sonar-Based SLAM in generating
sub-maps. However, the computational time required by SDP-GD is significantly higher. This
is largely due to its dependence on the sampling rate and time horizon—factors that must be
carefully balanced. In contrast, Sonar-Based SLAM is considerably faster in computing the
output map.
A limitation of Sonar-Based SLAM is that it does not explicitly account for noise in the
sonar measurements. This is due to the unkown relationship between the state and the sonar
side-scan measurements. One possible workaround is to introduce a preprocessing step that
filters out noise from the sonar data before it is used in SLAM. Such filtered measurements
could also be integrated into the SDP-GD framework to enhance the accuracy of the output
map.
The analysis shows that both Sonar-Based SLAM and SDP-GD yield comparable results in
seabed reconstruction. This raises a critical question regarding the necessity of the signif-
icantly longer computation time required by SDP-GD—especially given that Sonar-Based
SLAM achieves similar performance much faster, particularly when a filtering step is applied
to the sonar measurements.
The newly proposed framework, Bayesian4Wiener, has the potential to overcome several
limitations of the SDP-GD approach presented in this thesis. Its implementation is rec-
ommended for future research, particularly in scenarios requiring faster inference, nonlinear
modeling capabilities, and active learning strategies. The method can be tested with online
SLAM algorithms.
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Appendix A

Appendix: Simulation Setup

A-1 Gazebo plugins used
Hydrodynamic and Control Plugins

For the design of an AUV, hydrodynamic phenomena have to be taken into account, as these
influence the vehicle’s motion and stability in underwater environments. Such phenomena
include flow patterns, wave dynamics, pressure effects, and buoyancy. In the Gazebo simu-
lation, these physical effects are modeled using a combination of specialized plugins. This
subsection discusses the key plugins used to simulate buoyancy, hydrodynamic forces, and
thruster control.
The Buoyancy Plugin is responsible for calculating and applying buoyant forces to each
link in the AUV model [27]. These forces are applied at the center of each link and depend
on the fluid density surrounding the object. The center of volume can either be explicitly
specified or, if left undefined, automatically computed based on the link’s geometry. Given
the mass and volume of each link, the plugin uses Archimedes’ principle to determine the net
buoyancy force, allowing the AUV to behave realistically in the simulated water column.
The Hydrodynamics Plugin models forces experienced by bodies underwater due to drag,
lift, and inertial coupling with the surrounding fluid [28]. This plugin accounts for the added
mass induced by the inertia of displaced water, the Coriolis-centripetal matrix resulting from
this added mass, and a hydrodynamic damping model. The damping includes components
such as radiation-induced potential damping, skin friction, wave drift damping, vortex shed-
ding, and lifting forces. Together, these forces are captured in a hydrodynamic damping
matrix. The plugin requires the ground truth state of the vehicle and environment as input
and includes parameters for added mass, linear drag, and quadratic drag across all six degrees
of freedom: surge, sway, heave, roll, pitch, and yaw.
The Thruster Plugin simulates maritime thrusters typically used for underwater propulsion
[29]. This plugin can be configured to accept either a desired thrust force (in Newtons) or
an angular velocity input (ω) for each thruster. The parameters required for configuring the
plugin include the fluid density (ρ), the propeller diameter (D), and the thrust coefficient
(CT ), which relates angular velocity to thrust, which is positive for clockwise rotation and
negative for counter-clockwise. The plugin also supports velocity control modes, where setting
velocity_control to true directly specifies the rotational speed of the propeller. When
set to false, a PID controller is used to apply wrenches that achieve the desired motion.
Additional parameters include the proportional (P), integral (I), and derivative (D) gains
for control, maximum and minimum allowable thrust or angular velocity, and the minimum
effective input below which the thruster produces no meaningful output. A wake fraction

Master of Science Thesis P.K. Kartoidjojo



A-1 Gazebo plugins used 65

parameter is also included to model the decrease in speed of water near the propeller relative
to the free-stream flow.

The angular velocity ω required to achieve a given thrust can be calculated using the following
relation:

ω =
√

thrust
ρ · CT ·D4 (A-1)

Additionally, the advance speed Va, adjusted for wake effects, is given by:

Va = (1 − wake_fraction) · advance_speed (A-2)

Together, these plugins form the core of the underwater simulation, allowing the AUV to
interact with its virtual environment in a physically realistic manner.

Coordinate Frames and Transforms

The coordinate system used in the simulation follows the REP-105 standard [30], which defines
several reference frames commonly used in robotic systems. In this context, the simulation
makes use of the body-fixed frame, and two world-fixed frames: odom and map. These frames
are hierarchically connected through a series of static and dynamic transforms, which allow
for accurate tracking of the AUV’s position and orientation in both local and global contexts.

The body-fixed frame defines a coordinate system attached to the AUV itself. The origin
is typically located at the geometric center of the vehicle, and the axes are aligned with the
structure of the AUV as illustrated in Figure 3-1b. This frame is essential for describing
motion in the AUV’s own reference, such as control inputs or IMU readings, and it remains
constant relative to the vehicle.

The world frame “odom” is a local, inertial frame that remains fixed relative to the AUV’s
initial position at the start of the simulation. According to REP-105, this frame is allowed
to drift over time without bounds, making it unsuitable for long-term global localization.
However, it provides smooth and continuous tracking of the AUV’s pose, which is ideal for
velocity estimation and local trajectory planning. In the simulation setup, the initial position
is defined as [0, 0, 0], with the AUV facing east. The origin of the z-axis is located at the
surface of the water.

The world frame “map” serves as the global reference frame. Like the odom frame, its initial
pose is also set to [0, 0, 0]. Unlike odom, however, the map frame is designed not to drift
significantly over time. It can undergo discrete updates, or “jumps,” allowing for correction
of accumulated drift in localization. This makes the map frame particularly useful for tasks
that require consistent long-term positioning, such as loop closure in SLAM systems.

Transforms between frames are established through both static and dynamic relationships.
Static transforms are used for fixed elements in the system, such as from the camera frame
to the base frame, or from the base frame to the sensor frame, since these components are
physically mounted in known, unchanging positions on the AUV. Dynamic transforms, on
the other hand, represent the changing relationships during simulation. The transform from
map to odom captures how the local odometry drifts relative to the global frame, and is
continuously updated as the AUV navigates the environment. Meanwhile, the transform from
odom to base_link tracks the AUV’s position and orientation over time relative to its starting
point. Together, these transforms allow the AUV’s position to be consistently expressed across
different coordinate systems, which is essential for both control and evaluation tasks.
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A-2 BlueROV2 Configuration
The BlueROV2, developed by BlueRobotics, is used as the AUV for the simulation. It is
available in two configurations: the base model and the heavy configuration.
The two configurations differ primarily in their thruster setup and payload capacity. The base
configuration includes six thrusters: four for forward/reverse movement and yaw control, and
two vertical thrusters for depth control. The heavy configuration expands this with eight
thrusters by adding two additional vertical thrusters. These enhance vertical stability and
control. Furthermore, the heavy variant includes a buoyancy system designed for heavier
payloads and offers a higher depth rating. A schematic of the heavy configuration is shown
in Figure A-1, while Figure 3-1 provides a visualization of the BlueROV2 in the Gazebo
simulation environment, including its axis orientation.

Figure A-1: BlueROV2 Heavy configuration 2D schematic [31]

Table A-1: BlueROV2 parameters

Parameter Symbol Value Unit
Length L 0.457 m
Width W 0.338 m
Height H 0.254 m
Mass m 10.565 kg
Pitch moment of inertia Izz 0.201 kg·m
Surge added mass IAx 10.565 kg
Heave added mass IAy 10.565 kg
Pitch added mass IAn 0.201 kg·m
Quadratic damping coefficient CD 0.5 -
Surge cross-sectional area Ax 0.048 m2

Sway cross-sectional area Ay 0.10 m2

Yaw cross-sectional area An 0.07 m2

Detailed specifications for both configurations can be found on the official BlueRobotics web-
site [17], [31].

A-3 ORB-SLAM2
Loop closing
The process of detecting and closing loops in the path or trajectory of a system as it moves
through an environment, is called loop closure [32]. Newer SLAM algorithms include loop
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closure to prevent perceiving the environment as an infinite corridor. A simple example
of how a map built by odometry and SLAM differ is shown in fig. A-2, from [33]. In this
example, a robot is mapping an environment, starting from point A and aiming for point
B. While exploring, the robot goes to point C but misses point B and later reaches point B
through another path. Without using loop closures, point B and C are assumed to be far
away, while in reality they are close together as shown by the map built by SLAM. SLAM
estimates the location using the environment structure and using loop closures, and by doing
so, the algorithm can detect shortcuts (going from B to C).

Figure A-2: Map built by odometry (left) vs SLAM (right). According to the left map, points
B and C are distant from each other, while in reality they are supposed to be adjacent to each
other as on the map built by SLAM. By estimating based on the environment structure, SLAM
can identify shortcuts within the map by using loop closures. Adapted from C.Cadena, et. al.
[33]

The loop closing process identifies significant loops and corrects accumulated drift by per-
forming pose-graph optimization.

Tracking failure

Whenever tracking fails, the algorithm is equipped with a placed recognition module based
on DBoW2 [34]. This module is useful for realization in already mapped scene, loop detection
and occlusion.

Keypoint Detection and System Initialization

The initial stage of the ORB-SLAM2 pipeline involves pre-processing of stereo image inputs
to extract visual features for tracking and mapping. This process is illustrated in Figure A-3.
For feature detection, the system uses ORB (Oriented FAST and Rotated BRIEF) features
[35], which are designed to be invariant to scale and rotation, and robust against changes
in auto-gain, auto-exposure, and illumination. These properties make them well-suited for
challenging environments such as underwater settings.

Master of Science Thesis P.K. Kartoidjojo



A-3 ORB-SLAM2 68

Figure A-3: ORB architecture taken from [19]

The system employs a stereo vision setup in which two identical cameras are mounted in a
fixed, parallel configuration. This ensures that the stereo images are rectified. This means
that corresponding points in the left and right images lie on the same horizontal line. If a
point is observed at pixel coordinates xL = (HL, VL) in the left image and xR = (HR, VR) in
the right image, rectification ensures VL = VR. In this setup, keypoints can be represented
as xs = (HL, VL, HR), where (HL, VL) are the coordinates in the left image, and HR is the
horizontal coordinate in the right image.
Keypoints are classified into two categories: close and far keypoints. According to the
definition in [36], a keypoint is considered close if its depth is less than 40 times the stereo
camera baseline, which is the distance between the two camera centers. Close keypoints can be
triangulated with high accuracy from a single frame, resulting in reliable estimates for scale,
translation, and rotation. In contrast, far keypoints provide accurate orientation information
but offer less precise scale and translation estimates. A visual example of keypoint detection
and their mapping in the simulation is shown in Figure A-5.

Figure A-5: Trajectory with the keypoints
in Gazebo

Due to the availability of stereo depth information, ORB-SLAM2 can initialize the system
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with a single stereo frame. The initial set of keypoints and corresponding map points are
established based on the AUV’s starting pose, which is assumed to be at the origin (0, 0, 0).
This bootstrapping step provides a reliable foundation for subsequent tracking and mapping
operations.

Bundle Adjustment

Once keypoints have been detected and matched, the camera pose and the corresponding 3D
map points are refined using an optimization technique known as Bundle Adjustment (BA).
This process minimizes the reprojection error, which is defined as the difference between the
observed image points and the reprojected locations of the estimated 3D points.

Bundle Adjustment can be formulated as a non-linear least-squares optimization problem [37].
The objective is to optimize the 3D structure of the map and the camera poses by minimizing
the sum of reprojection errors across all observations. This minimization is typically per-
formed using iterative least-squares solvers, with the Levenberg–Marquardt algorithm being
a commonly used method due to its balance between convergence speed and stability.

A-4 SLAM-Algorithm: Sonar Based SLAM
Sensors

Sonar: The sonar sensor used for the simulator is the Teledyne BlueView P900. This
Sonar sensor has the following specification:

Table A-2: Specifications of the Teledyne BlueView P900 2D Imaging Sonar [38]

Specification Value
Operating Frequency 900 kHz
Update Rate Up to 15 Hz
Maximum Range 100 m (328 ft)
Optimum Range 2–60 m (6.5–197 ft)
Beam Width 1° x 20°
Beam Width 1° x 20°
Field-of-View 45°,90°, 130°

Figure A-6: Teledyne BlueView P900: 2D Imaging Sonar [38]

IMU: The IMU used for the simulator is the ADIS16448 of Analog Devices.
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Table A-3: Specifications of the Analog Devices ADIS16448 IMU [39]

Specification Value
Gyroscope Range ±250°/sec, ±500°/sec, ±1000°/sec
Accelerometer Range ±18 g minimum
Magnetometer Range ±1.9 gauss minimum
Barometer Operating Range 10 mbar to 1200 mbar
Calibrated Pressure Range 300 mbar to 1100 mbar
Start-Up Time 205 ms
Operating Temperature Range -40°C to 105°C
Supply Voltage 3.15 V to 3.45 V
Shock Survivability 2000 g
Dimensions 24.1 mm × 37.7 mm × 10.8 mm
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A-5 Different seabed profiles, with their distortion levels

(a) Distortion level 0 (b) Distortion level 1

(c) Distortion level 2 (d) Distortion level 3

(e) Distortion level 4 (f) Distortion level 6

(g) Distortion level 8 (h) Distortion level 10

(i) Distortion level 12

Figure A-7: Comparison of SDP-GD and Sonar-Based SLAM under increasing distortion levels.

A-6 Model Components
Model Components
Each term in the dynamic model introduced in eq. 5-1 plays a specific role in representing
the motion and interactions of the AUV with its environment. This section describes each of
these components in detail.
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Coordinate Transformation Matrix J(η)

In eq. 5-1, J(η) represents the transformation matrix that maps velocities from the body-fixed
frame to the world frame. It is block-diagonal and consists of translational and rotational
transformation components:

J(η) =
[
J1(η) 03×3
03×3 J2(η)

]
(A-3)

The submatrices J1(η) and J2(η) are defined as:

J1(η) =

cosψ cos θ − sinψ cosϕ+ cosψ sin θ sinϕ sinψ sinϕ+ cosψ cosϕ sin θ
sinψ cos θ cosψ cosϕ+ sinψ sin θ sinϕ − cosψ sinϕ+ sinψ cosϕ sin θ

− sin θ cos θ sinϕ cos θ cosϕ

 (A-4)

J2(η) =

1 sinϕ tan θ cosϕ tan θ
0 cosϕ − sinϕ
0 sin ϕ

cos θ
cos ϕ
cos θ

 (A-5)

Note: J2(η) is not defined for θ = ±π
2 + kπ, where k ∈ Z, due to singularities in the tangent

and secant functions. This phenomenon is known as gimbal lock

Inertia Matrix M

In eq. 5-1, M represents the strictly positive definite inertia matrix, which is composed of two
parts: the rigid-body inertia matrix MRB and the hydrodynamic added-mass matrix MA:

M = MRB +MA (A-6)

The rigid-body inertia matrix MRB and added-mass matrix MA are defined as:

MRB =
[
mI3×3 03×3
03×3 IC

]
,

MA = −diag{Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ}
(A-7)

Here, IC = diag{Ix, Iy, Iz} is the moment of inertia tensor about the principal axes. The terms
{Xu̇, Yv̇, Zẇ,Kṗ,Mq̇, Nṙ} represent the hydrodynamic added-mass forces and moments along
the corresponding degrees of freedom in surge, sway, heave, roll, pitch, and yaw, respectively.

Coriolis Matrix C(ν)

The skew-symmetric Coriolis matrix C(ν) from eq. 5-1 accounts for the effects of rotational
and translational motion on the dynamics of the AUV. It consists of two components: one
due to the rigid-body motion and one due to the added mass effects:

C(ν) = CRB(ν) + CA(ν) (A-8)

where:
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• CRB(ν): the rigid-body Coriolis-centripetal matrix, representing the fictitious forces
arising from the AUV’s own rotational and translational motion,

• CA(ν): the added-mass Coriolis matrix, which models the corresponding fictitious forces
resulting from the hydrodynamic added mass (i.e., the virtual mass of water moving
with the vehicle).

CRB =



0 0 0 0 −mv mu
0 0 0 mv 0 −mu
0 0 0 −mu mv 0
0 −mv mu 0 Izzr −Iyyq
mv 0 −mu −Izzr 0 Ixxp

−mu mv 0 Iyyq −Ixxp 0


(A-9)

CA =



0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(A-10)

The values are simulator-specific, and actual numerical forms are used during implementation.

Hydrodynamic Damping Matrix D(ν)

In eq. 5-1, the hydrodynamic damping matrix D(ν) represents resistive forces acting on the
AUV due to water drag. It consists of a linear damping component D, and a nonlinear
damping component Dn(ν), such that:

D(ν) = D +Dn(ν) (A-11)

At the low speeds considered in this study, the AUV is assumed to experience uncoupled
damping, as confirmed by the controller results. This allows the damping matrices to be
modeled as diagonal, with no coupling between degrees of freedom [40].

The linear damping matrix D is given by:

D = −diag{Xu, Yv, Zw,Kp,Mq, Nr} (A-12)

The nonlinear damping matrix Dn(ν), which accounts for quadratic drag effects, is expressed
as:

Dn(ν) = −diag{X|u|u|u|, Y|v|v|v|, Z|w|w|w|,K|p|p|p|,M|q|q|q|, N|r|r|r|} (A-13)

In the simulator used for this study, only nonlinear damping coefficients are included.

Gravitational and Buoyancy Forces and Moments g(η)

The gravitational and buoyancy forces in eq. 5-1 can be expressed as:
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g(η) =



(W −B) sin θ
−(W −B) cos θ sinϕ
−(W −B) cos θ cosϕ

ybB cos θ cosϕ− zbB cos θ sinϕ
−zbB sin θ − xbB cos θ cosϕ
xbB cos θ sinϕ+ ybB sin θ


, (A-14)

where (xb, yb, zb) are the coordinates of the center of buoyancy in the body frame. The
gravitational force W and buoyancy force B are defined as:

W = mg,

B = ρg∆.
(A-15)

The buoyancy forces B depend on the water’s density (ρ) and the volume of the fluid that
was displaced by the vehicle (∆).

External Forces and Moments τ
In eq. 5-1, external forces are present along every axis on the AUV:

τ =
[

f
r × f

]
=



Fx

Fy

Fz

Fzly − Fylz
Fxlz − Fzlx
Fylx − Fxly


= T (α)F = T (α)Ku (A-16)

A-7 Disturbance Analysis: Current effect on the Desistek SAGA
Rov

X-Direction

Figure A-8: AUV Velocity response of the ROV (down) under different simulated current veloc-
ities along the x-axis (top). Ignore the titles!!.
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It can be observed that varying current velocities have a nonlinear effect on the velocity of
the AUV. Despite this, the position of the ROV continues to increase approximately linearly
in the x-direction.

Y-Direction

Figure A-9: AUV Velocity response of the ROV (down) under different simulated current veloc-
ities along the y-axis (top). Ignore the titles!!.

When the ROV is facing the current, the current has little effect on the y-direction at lower
velocities. However, at higher current velocities, the ROV begins to exhibit noticeable oscil-
lations in the y-direction.

Z-Direction

Figure A-10: Ground truth position of the ROV under varying simulated current velocities in
the z-direction.
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Figure A-11: Ground truth position of the ROV under varying simulated current velocities in
the z-direction.

The varying current velocity does not appear to significantly affect the ROV’s z-velocity or
z-position. This is primarily because the current does not vary in the vertical direction, only
in the horizontal direction.

Mean Velocity Comparison
The table below presents the average velocity observed in each axis under different current
conditions, while maintaining a reference velocity of uref = (ux, uy, uz) = (1, 0, 0).

Table A-4: Effect of Current on Mean Velocity in Each Axis

Parameter x y z

η1(1.2, 0.2) η2(0, 10) 1.30 8.602 × 10−4 0.0033
η1(0.2, 0.1) η2(0, 10) 0.94 9.289 × 10−4 0.0032
η(0, 0) 0.87 5.140 × 10−4 0.0001
η1(−0.2, 0.1) η2(0, 10) 0.79 9.243 × 10−4 0.0007
η1(−1.2, 0.2) η2(0, 10) 0.39 7.514 × 10−4 −0.0038

Here it can be notice that the error in the y velocity is minimal but in the figure A-9 it can
be noticed that the effect
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Appendix: Data Pre-Processing

B-1 ORB-SLAM2 Pre-Processing
Data Gathering
Prior to use of the data the data requires to be processed to in readable form. The raw data
has the following plot whenever going straight for 100 meters at a depth of -6.5 meters. The
output ma

Data Preprocessing and Filtering

Interpolation
Both signals are sampled using different frequencies, therefore the samples are different. The
SLAM algorithm has the lowest amount of samples, therefore the system states are down
sampled to the size of the input signal.

Removing Outliers
The measurement contains measurement noise, which are infinite. These values are removed
from the data using a threshold.

Delays
The signals starts of on the same magnitude, however a delay is present in the data. To
account for this, rather than adding data (padding) all data is cut whenever it reaches a
certain magnitude, which is set to 9.6.

Reference Values and Initial Conditions
Both trajectories are handles as if they were 2 different dataset, therefore 2 intial conditions
are set for each dataset. The data is cut at tcutoff = 25 seconds. This time is chosen based
on the time the AUV reaches the depth of 6.5 meters. This time will differ based on different
tcutoff.
Different reference values and initial conditions are applied before and after tcutoff:

• Before tcutoff: reference = (0, 0,−5), x0 = [0, 0, 0]
• After tcutoff: reference = (100, 0,−5), x0 = [0, 0,−5]
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Transformation matrix
Pre-Processing
Nearest-Neighbor
A KD-tree as constructed on the ground truth map for efficient nearest-neighbor lookups,
which enables quick error calculations during the alignment process.
The nearest-neighbor uses a point from the SLAM point cloud (Pi) to determine the corre-
sponding nearest point (Qi):

Q∗
i = arg min

Qj∈Q
d(Pi,Qj) (B-1)

d(Pi,Qj) =
√

(px − qjx)2 + (py − qjy)2 + (pz − qjz)2 (B-2)

Time sync
s The first step is to synchronize the data. This is done by checking whenever the signals
reaches the threshold 6, which the data is cut from this point.

Figure B-1: Enter Caption

Figure B-2: Enter Caption
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Figure B-3: Enter Caption

Down-sampling

After applying the bias and scale, the samples of the 3 signals requires to be set equal to each
other.

Table B-1: Sampling Rates

Description Sampling Rate (Hz)

Lidar sampling rate 20.00
SLAM map sampling rate 4.74
SLAM location sampling rate 17.98
Ground truth sampling rate 50.00

In order to compare datapoints, the ground truth data and lidar data are downsampled to
the size of the SLAM data points size. This is due to the SLAM location having the lowest
sampling rate, which means lower data points.

Result

Error

The error of both lidar and SLAM can be seen decreasing the lower the AUV is of the ground.
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Figure B-4: Enter Caption

Table B-2: Mean Squared and Variance of Lidar and SLAM Errors for Different Depths

Depth (m) Time Interval (s) Mean Squared Lidar Error Variance Lidar Error Mean Squared SLAM Error Variance SLAM Error

-6.0 6–11 0.00018 0.00018 0.00148 0.000042
-7.0 15–20 0.00331 0.00016 0.00441 0.000050
-8.0 24.5–29 0.01132 0.00119 0.00534 0.000191
-9.0 33.5–38.5 0.02206 0.00414 0.00776 0.000199

B-2 Identification results

Table B-3: Model Fit (%) for Identification Using Chirp(0,1) and Chirp(1,0.5)

Chirp(0,1) Chirp(1,0.5)

Output Grey-Box Fit (%) Black-Box Fit (%) Grey-Box Fit (%) Black-Box Fit (%)

y1 14.42 -88.25 99.16 98.26
y2 0.02 -74.33 82.09 71.68
y3 1.97 -123.62 33.23 33.14
y4 14.54 17.89 17.70 15.15
y5 -74.07 -114.20 21.11 19.25
y6 1.63 1.34 -0.22 6.07
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Table B-4: Model Fit (%) for Validation Using Chirp(0,1) and Chirp(1,0.5)

Chirp(0,1) Chirp(1,0.5)

Output Grey-Box Fit (%) Black-Box Fit (%) Grey-Box Fit (%) Black-Box Fit (%)

y1 28.07 -6.87 98.70 97.62
y2 -484.44 -38605.49 -2087.93 -1094.86
y3 -10662.11 -71464.18 -880.76 -869.66
y4 -577.45 -2022.22 44.28 45.05
y5 -40166.68 -83054.43 -4705.91 -1072.59
y6 -46125.48 -265647.71 -1342.20 -3495.92
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Appendix C

SDP-GD implementation and
evaluation

Variation 3 for Sonar Based SLAM: Cvar3

In this variation, two output maps (C1 and C2) are used to determine the location of the
AUV and the corresponding depth profile. The first output map, denoted as C1, uses the
thruster input signals (as in Variation 2) and takes the x and y positions as measurements:

ymeas1 =
[
x
y

]
(C-1)

The optimized output from the first map, yC1 , is then used as the nominal state xnominal in
the second output map. This nominal state, derived from the Lifted Observation Model, is
defined as:

xnominal = C1(θ1)Au (C-2)

Since xnominal is already computed, the second output map does not require any new input
signals. The measurement for the second output map is the depth profile, which corresponds
to the x and y positions:

ymeas2 = depth

The predicted depth is then computed as:

ŷmeas2 = C2xnominal = C2(θ2)C1(θ1)Au (C-3)

Using an initial condition (x[k], y[k]) = (0, 0), according to eq C-3 can lead to a a initial
estimation error whenever the depth is non zero. This results in an incorrect depth prediction.
To compensate for this, a bias is introduced to shift the estimated signal.
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C-1 Output map performance using Control Input

Measurement Noise = η(0, 0.01), 53dB

Disturbance RMSE SDP-GD (m) RMSE SLAM (m) R2
d R2

d

X Y Depth X Y Depth SDP-GD SLAM
0 0.0008 0.0005 0.0178 0.0021 0.0007 0.0201 0.9997 0.9996
2 0.0008 0.0005 0.0089 0.0021 0.0007 0.0109 0.9990 0.9989
4 0.0008 0.0005 0.0169 0.0021 0.0007 0.0158 0.9998 0.9998
7 0.0030 0.0012 0.0197 0.0123 0.0023 0.0109 0.9993 0.9998
10 0.0021 0.0006 0.0154 0.0021 0.0006 0.0130 0.9994 0.9997
12 0.0014 0.0007 0.0210 0.0123 0.0023 0.0140 0.9994 0.9997

Table C-1: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 0.01) or a SNR = 53dB.

Measurement Noise = η(0, 0.1), 33dB

Table C-2: RMSE and R2 values for SDP-GD and Sonar SLAM across disturbance levels

Dist. SDP-GD Sonar SLAM R2 SDP-GD R2 SLAM
RMSE X RMSE Y RMSE Depth RMSE X RMSE Y RMSE Depth

0 0.0070 0.0044 0.0969 0.0058 0.0022 0.1205 0.9783 0.9555
2 0.0063 0.0040 0.1219 0.0059 0.0022 0.1750 0.9129 0.8381
4 0.0060 0.0041 0.1155 0.0060 0.0020 0.1674 0.9800 0.9654
7 0.0180 0.0092 0.1140 0.0240 0.0040 0.1469 0.9757 0.9545
10 0.0112 0.0045 0.1194 0.0059 0.0019 0.1730 0.9731 0.9378
12 0.0121 0.0059 0.1843 0.0240 0.0043 0.2464 0.9757 0.9691

Table C-3: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 0.1) or a SNR = 33dB.
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Measurement Noise = η(0, 0.5), 19dB

Table C-4: RMSE and R2 values for SDP-GD and Sonar SLAM across disturbance levels

Dist. SDP-GD Sonar SLAM R2 SDP-GD R2 SLAM
RMSE X RMSE Y RMSE Depth RMSE X RMSE Y RMSE Depth

0 0.0175 0.0100 0.2882 0.0315 0.0069 0.5601 0.8618 0.5697
2 0.0171 0.0095 0.2248 0.0315 0.0068 0.5523 0.7565 0.3506
4 0.0155 0.0088 0.3363 0.0310 0.0064 0.5844 0.8941 0.5163
7 0.0392 0.0208 0.3708 0.0460 0.0074 0.6887 0.8389 0.4115
10 0.0252 0.0101 0.2889 0.0318 0.0064 0.7124 0.7942 0.2517
12 0.0312 0.0145 0.3785 0.0459 0.0078 0.7480 0.8403 0.4906

Table C-5: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 0.5) or a SNR = 19dB.

C-1-1 Performance on reference signal Input Cvar1

Measurement Noise = η(0, 01), 53dB

Disturbance RMSE SDP-GD (m) RMSE SLAM (m) SDP-GD SLAM
X Y Depth X Y Depth R2

d R2
d

0 0.00328 0.00041 0.01783 0.01618 0.00048 0.01729 0.99981 0.99983
1 0.00257 0.00041 0.01208 0.01617 0.00048 0.01249 0.99866 0.99862
2 0.00299 0.00041 0.01404 0.01610 0.00048 0.01195 0.99843 0.99882
3 0.00497 0.00041 0.01565 0.01636 0.00049 0.01047 0.99924 0.99963
4 0.00257 0.00041 0.02559 0.01618 0.00048 0.01121 0.99932 0.99987
6 0.00314 0.00041 0.02717 0.01587 0.00047 0.01176 0.99924 0.99988
7 0.00320 0.00072 0.04067 0.01382 0.00042 0.01573 0.99823 0.99981
8 0.00295 0.00072 0.04308 0.01382 0.00042 0.01538 0.99861 0.99990
10 0.00291 0.00041 0.03218 0.01636 0.00049 0.01219 0.99861 0.99972
12 0.00292 0.00072 0.04452 0.01405 0.00042 0.01737 0.99847 0.99978

Table C-6: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 0.01) or a SNR = 53dB.
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Measurement Noise = η(0, 0.5),19dB

Disturbance RMSE SDP-GD (m) RMSE SLAM (m) SDP-GD SLAM
X Y Depth X Y Depth R2

d R2
d

0 0.04567 0.01092 0.67191 0.16935 0.00574 1.07052 0.8570 0.6581
1 0.04706 0.01092 0.27157 0.16880 0.00571 0.59514 0.7096 0.2831
2 0.04585 0.01092 0.25657 0.16832 0.00569 0.48458 0.5512 0.2926
3 0.04760 0.01092 0.22344 0.17075 0.00579 0.49995 0.8582 0.5743
4 0.04860 0.01092 0.38566 0.16859 0.00569 0.54477 0.8191 0.6959
6 0.04471 0.01092 0.49312 0.16672 0.00563 0.62655 0.7689 0.6890
7 0.04574 0.01560 0.49828 0.14190 0.00468 0.74640 0.6128 0.5787
8 0.04244 0.01560 0.73294 0.14228 0.00471 0.78753 0.7194 0.7672
10 0.04389 0.01092 0.44157 0.17051 0.00579 0.70701 0.6998 0.6572
12 0.04789 0.01560 0.66964 0.14385 0.00477 0.66154 0.6586 0.7083

Table C-7: Average Root Mean Square Error (RMSE) in meters and squared Pearson correlation
coefficient (R2) of SDP-GD and Sonar SLAM output map performance, evaluated against the
measurement data across varying levels of seabed distortion. The measurement used to create
the output maps contains a noise of η(0, 0.5) or a SNR = 19dB.
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