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Abstract

This chapter deals with those problems of finite element analysis of concrete
structures, which arise from the dynamic nature of loadings. Following a short
enumeration of the dynamic load categories that are of interest to engineers,
the various rate-dependent material models are summarized. The discussion of
member models is subdivided into micro and macro finite element models and
the different kinds of models for frame elements (plastic hinge and fiber models),
together with their hysteresis models for cyclic loads, and some comments on
bond-slip and shear effects. Several numerical aspects of dynamic analysis are
adressed, and a few examples conclude this chapter.

6.1 Introduction

Most loads acting on structures, with the exception of most gravity loads,
are of dynamic nature. The judgment whether the dynamic or time-dependent
effect of a particular loading can be neglected or not is one of the most basic
ones facing the structural analyst. It requires an understanding of the principles
of structural dynamics as well as practical experience with the dynamic response
of the type of structures to be analyzed (Meyer 1987a). The dynamic analysis of
structures is more difficult and expensive than static analysis, and it should be
performed only by personnel having an adequate educational background and
experience.
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Dynamic loads can be subdivided into two categories, according to the kind
of effects they have on the behavior of structures:

1. The first category contains loads with sufficiently high strain rates so that
the material properties of both concrete and steel are markedly affected.
Blast and impact loads clearly belong into this category, whereas the strain
rates associated with earthquake, wind, and normal service type loads have
generally only moderate influence on the basic material properties. The
material behavior characteristics under extremely slow loading rates (creep)
are covered in Chapter 5 and will not be addressed here.

2. The second category includes all those dynamic loads not covered in the first
category, i.e., it contains all those loads with strain rates low enough to have
negligible impact on the material properties. An important role in this cat-
egory is played by loads of cyclic nature (earthquake and wind, e.g.) that
may involve many load reversals. Because of the strain-rate assumption,
it is permissible to convert the inertia and damping effects to equivalent
static loads and thereby reduce the dynamic analysis problem to an equiv-
alent quasi-static analysis problem, even in the case of load reversals. But
as reinforced concrete experiences cracking under load, especially if the re-
inforcement is strained beyond the yield point, it suffers both strength and
stiffness degradation under repeated load applications. Realistic numerical
simulation of this behavior using mathematical models poses a challenge of
considerable difficulty.

In the next section we shall classify in some additional detail the various
dynamic loading types to which concrete structures may be subjected. Section
3 contains a survey of material models that are available for the two main cate-
gories mentioned above. Member models are discussed in Section 4. These are
models suitable for either micro- or macro-elements in finite element analysis.
Section 5 addresses some numerical aspects of dynamic analysis. Several practi-
cal application examples are given in Section 6, followed by some conclusions and
practical guidelines for engineers, who are contemplating the dynamic analysis
of reinforced concrete structures.

6.2 Dynamic Loads

In order to justify the added expense of a dynamic analysis, the loading for
which the structure response is to be determined has to have at least one of the
following characteristics:

a) a loading or strain rate high enough to markedly affect the material prop-
erties;

b) a history rich in frequencies that can excite dynamic response;

c) a number of load reversals that lead to damage accumulation, which ex-
presses itself in the form of material deterioration.

Loads due to moving traffic, such as on highway bridges, have a dynamic
component which is typically small compared with the static component. In
design practice, the dynamic effect is therefore generally accounted for by mul-
tiplying the static load with an impact factor. Moreover, since traffic loads are
typically service-type loads, reinforced concrete structures are not supposed to
respond to them nonlinearly. Therefore, we shall not consider here any kind of
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service loads.

The ground motions resulting from destructive earthquakes can subject re-
inforced concrete structures to very large forces. In fact, current design practice
tends to avoid resisting these forces in the linear elastic range and permits pre-
selected structural components to undergo large inelastic deformations under
controlled conditions, thereby dissipating large amounts of energy. A consider-
able body of knowledge exists both on the behavior of concrete structures under
earthquake loads and on how to model this behavior for numerical simulation
(Paulay and Priestley 1992; ACI-ASCE 1988, 1991; Naeim 1989).

The strain-rate effect of earthquake loads on the material properties is not
very significant. It has been reported to be at most as hi%h as 20% (Mahin
and Bertero 1972). Yet, Yokoyama et al (1990) showed that the rate effect
causes noticeable differences between pseudo-dynamic and real dynamic tests
of concrete columns. Several authors have reported comparable effects of the
loading rate on strength properties and energy absorption of frame members
and shear walls (Okada et al 1989; Song and Maekawa 1991; Endoh et al 1989).

The other two criteria listed above (frequency content and load reversals)
are clearly met by earthquake-type loadings. Because of the randomness of seis-
mic ground motions, the frequency content can show considerable variability, so
that the threat of resonant amplification plays an important role in earthquake-
resistant design. And the number of load reversals can be considerable: the 1985
Mexico City earthquake caused almost 20 full load reversals of a strongly har-
monic nature. The strength and stiflness degradation that concrete structures
experience under such loading can be accompanied by extensive damage if not
failure. The redistribution of stresses in such a deteriorating structure, coupled
with the extreme randomness of earthquake ground motions, poses an enormous
challenge to the analyst who wishes to simulate this behavior numerically in
order to make rational reliability and survivability assessments.

Wind loadings are generally decompased into a mean static pressure plus
pressure fluctuations which oscillate about the mean. Unless severe resonant
amplification occurs, e.g. due to vortex shedding in certain steady-state winds,
concrete structures are seldom expected to respond nonlinearly. The strain rates
associated with wind loads are of the same order as those of earthquake ground
motions, i.e., they do not alter significantly the material properties. Even though
the number of load cycles can be very large, the low vibration amplitudes are
generally not cause of any fatigue-type material degradation. Thus, wind is not
an important load within the context of our discussion here.

Blast loads and missile impact cause very high strain rates. Blast loading
results from either internal or external explosions. Impact loading can be caused
by missiles such as military projectiles or tornado-horne debris, fragments of a
fractured turbine, high-energy pipe ruptures, or various collision scenarios, All
of these cases have in common a very short but intense load impulse, i.e. load re-
versals are rarely involved, and also resonant amplification is not as critical as in
the case of repeated load applications. But the inertia effects are extremely im-
portant, and because of the high strain rates, which strongly affect the material
properties, equivalent quasi-static analysis is generally not possible.

In sum, the models to be described below have heen developed either for
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earthquake response analysis or for applications involving blast or impact loads.

6.3 Material Models
6.3.1 General

Material models for plain or reinforced concrete responding to both static
and monotonic load are covered in detail in other chapters of this report, notably
in Chapter 2. If the loading is of a dynamic nature such that either the strain
rates are significant, or load reversals into the inelastic range are involved, then
those models are not applicable without special modifications.

In this section, first an overview will be given of rate-dependent models
which are often adjustable to either very high or very low strain rates. Next we
shall summarize recent advances in damage mechanics, which is a very useful
tool for modeling the strength and stiffness degradation of reinforced concrete
under cyclic loading.

6.3.2 Rate-Dependent Models
a) Introduction

The stress- or strain-rate dependence of concrete behavior is well docu-
mented. Experiments are conducted mainly on uniaxial compression or tension
samples, but also more complex stress histories have been studied recently. The
most prominent feature is the significant increase in strength and Young’s modu-
lus, as the average rate of straining increases from the quasi-static rate (approxi-
mately 107 /sec) to the very high strain rates associated with impact conditions
(approximately 10%/sec), Fig. 6.1. Going from one to the other extreme within
this range, concrete can double its strength. This factor cannot be ignored in
realistic analyses. As most experiments are conducted on plain concrete or steel
samples, mathematical models for reinforced concrete usually combine response
{eatures of the constituent materials.

Other chapters of this report deal with concrete modeling within the elasto-
plastic framework, and a number of yield or failure surfaces have been mentioned.
In the simplest format, these hypersurfaces describe the union of various stress
states, for which concrete behavior ceases to be elastic and some non-recoverable
deformation takes place. Of the various reference frames, the principal stress
space is the most common one to denote a stress point.

Regardless of whether these snrfaces have been described mathematically
by some kind of curve fitting technique, or they represent a visualization of an
integral theory (like Mohr-Coulomb), a typical surface is cone-like and pressure
dependent. Many different surfaces have been proposed, which are more or less
sophisticated, and more or less convenient for computational purposes. The
implementation of such models within finite element analysis and flow theory
of plasticity requires the definition of a plastic strain tensor increment (usually
defined by a so-called plastic potential surface in the same principal stress space,
and its gradient), and accounting for any changes that the surface may undergo
as a result of hardening or softening during the increment (so-called consistency
condition). Various computational algorithms for the stress increment computa-
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tion iterate to satisfy both global equilibrium and to ensure that the stress and
strain states at all integration points correspond to the elasto-plastic constitu-
tive law. By definition, there is no real time involved in finite element analysis
with plasticity. All inelastic processes are assumed to have sufficient time to
develop, as if everything is happening at an infinitely slow time rate. However,
often "time steps” are mentioned in the context of plasticity computations, but
these refer to a ”"pseudo-time” and should never be confused with real time.

It is precisely this issue that makes modeling of rate-dependent concrete
behavior so fundamentally different from modeling its static behavior. Failure
surfaces are now rate dependent. They may expand or shrink, depending on
what rate a material point experiences. For a finite element model of some
concrete structure under impact loading, for example, the various integration
points may be instantaneously subject to vastly different stress or strain rates,
which in turn correspond to vastly different instantaneous failure surfaces.

It is not straight-forward to define an appropriate measure of stress or strain
rate for multiaxial states in order to relate it to experimental data, that are
almost invariably based on one-dimensional samples and simple stress states.

Clearly, the inclusion of the real time plays a crucial role here. Inelas-
tic processes cannot develop in concrete in fast-rale situations, prior to some
change of overall loading rate and, consequently, the change of the instanta-
neous failure surface. In modeling terms, it is not possible to use a traditional
time-independent plasticity framework in such situations.

In the following, several possibilities will be discussed to model the strain-
rate dependency within the elasto-plastic, elasto-viscoplastic, and fracture me-
chanics frameworks.

) Approximation of Rate-Dependency in Flasto-Plasticity

A crude approximation of the rate dependency may be obtained by ad-
justing the elasto-plastic failure surface parameters so that they correspond to
some average rate - typically to increase the failure surface by some arbitrary
scaling. Such a model is clearly a poor approximation. As the rate of process
cannot be defined a priori, it is also neither constant in time, nor is it uniform
within the structure. In fact, the rate of inelastic straining can be vastly different
from one integration point to another, and the modeling could be improved by
employing for every integration point an instantaneous failure surface (Nilsson
1978), which depends on the instantaneous strain rate at that point. This means
that the failure surfaces are allowed to "breathe”, i.e. to soften or harden for
a given instant in real time, so-called rate-hardening or softening, dependent on
some measure of strain rate, The model response becomes strain-rate depen-
dent, although in principle still an elasto-plastic model, where all iterative stress
increment computations have to be performed in some dummy time, and the real
time computation can continue only when the apparent steady state is reached
{for the current position of failure surfaces. There are various possible measures of
strain rate, but it is difficult to apply the instantaneous rate-hardening concept,
as the rate of straining may fluctuate within the stress increment compuiation,
and convergence may be problematic.

A model proposed recently by Chappuis and Bachmann (1988) utilizes the
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Chen-Chen surface description, and the surface is made rate-dependent by relat-
ing residnal strengths f; and f. (used for an instantaneous surface description)
to the current strain rate. A linear relationship between the strength and the
logarithm of the strain rate is adopted, with an upper and lower bound. In or-
der to decide on the current rate of straining in multiaxial situations at a given
integration point, a maximum strain rate along one of the principal strain axes
is chosen as an indicator of the rate of process, i.e.

é = max(éy,éy,é)

¢) Elasto-Viscoplastic Models

A more appropriate mathematical framework is found in elasto-
viscoplasticity theory, which has been used by various researchers for developing
rate-dependent concrete models.

The elasto-viscoplastic model, proposed by Perzyna (1966), differs {rom the
elasto-plastic model insofar, that the stress point can be outside the elastic limit
surface. The elasto-plastic model recognizes stress states only within and on the
yvield surface, and most of the computational effort is spent to return the stress
point onto a current yield surface. In an elasto—viscoprastic model, the rate of
inelastic flow is defined as some function of the distance between the stress point
and the elastic limit surface and the so-called fluidity parameter v,

&7 = v < ®F)> dF/foy; (6-1)
where the dot ( ' ) defines the rate with respect to time, and the < > bracket
implies that the expression is activated only if F' > 0, i.e., when the stress point
is outside the elastic limit surface. If an elasto-viscoplastic model is adopted
within the proper context of real time (rather than as an artifice to obtain
steady-state plasticity solutions, i.e. as a stress-return algorithm), the response
becomes, by definition, rate dependent, i.e. it will change as a function of
loading rate. The adoption of such a model to concrete requires the definition
of, 1) some elastic limil surface (sometimes also called a discontinuity surface),
2) the fluidity parameter, and 3) the functional relationship < ®(F) >.

To choose an elastic limit surface is relatively easy, as any convenient fail-
ure surface description could be used, with proper scaling, since one is dealing
with the elastic limit surface, rather than the failure surface. The other two
model parameters, the fluidity parameter and the functional relationship for
®(F) should ideally be obtained from three-dimensional experiments conducted
under different rates of loading. As such experiments are scarce even for uniax-
ial compression, the models that are in use aim to reproduce one-dimensional
responses and assume correct behavior for other stress histories.

Probably the most complete rate-sensitive model for concrete has been sug-
gested by Nilsson (Nilsson 1978; Nilsson and Glemberg 1981), who introduced
an elasto-viscoplastic-plastic-brittle model for concrete at high rates of loading.
The model is essentially an elasto-viscoplastic model, where the closed elastic
limit surface is defined by a generalized ellipsoidal surface

1/2
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where 0, 7, are the octahedral normal and shear stress, and 6 the Lode angle of
similarity. &, and £ are surface intersections with the space diagonal, Fig. 6.2,
The hardening parameter H, indicates the change of the elastic limit surface as a
result of inelastic processes. Nilsson uses the hardening parameter also to model
the so-called rate hardening, where the normalized hardening for the uniaxial
compressive strength f., is obtained by curve fitting of uniaxial experimental
data,
H

=r
fcu

with ¢; = 1.6, ¢z = 0.104, and ¢5 = 0.0045.

= ¢ + ¢ ln(e’,,_f) + c3 [l‘n.(ée_f)]2 (6-‘3)

For multiaxial cases, a scalar measure of the process rate, the "eflective
strain rate”, €.y, is assumed to be given by the root mean square of the normal
and shear octahedral strain rates,

1
1 2
by = (6'3 + Z‘rﬁ) (6 —4)

Nilsson also made the fluidity parameter v dependent on the effective strain rate,
by the following function,

. . —np o fe
Y(€) = éese ln]—,r—f| (6.—5)
€

where é:f is the reference value for the effective strain rate, and 7 is a material
constant. The adopted value for €], was typically 2.0 x 107% (quasi-static rate),
and the appropriate value for the coefficient » was found to be 0.0625.

For the functional relationship ®(F'), Nilsson adopted the exponential func-
tion of a form suggested by Perzyna,

F o
wr) - () (6-6)
and the appropriate value for @ to fit the experiments was found to be 0.40.

Finally, Nilsson introduced the strain-rate dependency of the outer (failure)
surface, in the context of instantaneous rate hardening. Two parts of the fail-
ure surface, covering the tension/compression and tension/tension regime, are
allowed to harden or to soften (Nilsson 1978), depending on the instantaneous
effective strain rate.

Other investigators followed similar lines in developing rate-dependent mod-
els for plain concrete. Bicanic (1978; Bicanic and Zienkiewicz 1983) proposed
a multi-axial elasto-viscoplastic degradation model, Fig. 6.3, in which only the
fluidity parameter was elastic strain-rate dependent, and the elastic limit Mohr-
Coulomb-like surface (discontinuity surface) was kept constant in the pre-failure
regime, The rate dependence of the fluidity parameter was approximated on the
basis of Hatano and Tsutsumi’s tests (1960),

78 = 107" (ee)™ (6-7)
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The parameters a, and a1, found by curve fitting for various concrete qualities,
ranged from 2.20 to 2.90 and from 0.72 to .78, respectively. These values are
valid for strain rates in the range of 10™* to 107! /sec. In addition, the transition
to the post-failure regime (modeled by the rapidly softening elastic limit surface,
and hence accelerating the rate of inelastic flow, as the stress point is at a greater
distance) is initiated when the stress point reaches a strength limit surface. This
strength limit surface shrinks as a result of accumulated inelastic work (i.e. itisa
degrading, inelastic "work-softening” surface), and it serves here as a monitoring
device to indicate failure.

Such a format allows the model to recognize the rate dependence of strength
via the accumulated inelastic work. For high rates of loading, there is little time
for inelastic work to develop, the strength limit surface does not shrink much,
and higher strength results. For lower loading rates, there is sufficient time for
inelastic work to develop, which in turn reduces the strength limit surface. A
Mohr-Coulomb-like surface has been used for the strength limit surface, and
surface parameters were based on the uniaxial compression and tension exper-
iments conducted under various loading rates. The two degradation functions
that define the reduction of the uniaxial compression and tensile strengths, fe,
and fi, as functions of the accumulated inelastic work, control the shrinking of
the strength limit surface as well. There is a direct coupling between the inelas-
tic work 1n tension and compression, as both strength limit surface parameters
are affected by the accumulated inelastic work, irrespective of which response
regime causes the damage. At any given time, the mulliaxial strain state was
mapped into an equivalent uniaxial measure for the rate of process through the
backward difference approximation of the second elastic strain invariant,

é(t) =~ JZ(éeh) 2 i[-]z(fel,)—'jz(fel,_“)] (6“8)

Similar degradation concepts have been adopted by Meyer and Delgado-
Saavedra (1986; Delgado 1985), who extended and improved the original model
of Bicanic (1978) by replacing the Mohr-Coulomb-like surfaces by the five-
parameter model surface proposed by Willam and Warnke (1974) to describe
both the discontinuity and strength limit surfaces, Fig. 6.4, The model was cal-
ibrated, for fast loading rates only, against the test results reported by Hatano
and Tsutsumi (1960). The sirain-rate dependence of the fluidity parameter was

determined as 8.461 3 0.0503
Y = ety (ea) ™ (6-9)

The degradation of the tension and compression meridians of the strength limit
surface are suitably controlled by the two degradation functions. The multiaxial
states are mapped into the equivalent uniaxial state in the same way as in the
original model (Bicanic and Zienkiewicz 1983). The model has been applied to
the three-dimensional stress analysis of concrele specimens.

The rate sensitivity in both Bicanic’s and Delgado-Saavedra’s model is in-
troduced on two levels: the fluidity parameter is strain-rate dependent, and the
degrading strength limit surface ensures the rate-dependence of the failure stress
level.

None of the models proposed to date considers the fact that the elastic
modulus is affected by the strain rate.
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d) Fracture Mechanics Models

Concrete cracking models based on fracture mechanics employ either the
fracture energy release rate Gy (fracture energy models) or the iracture tough-
ness K. (linear elastic fracture mechanics models). Both parameters are strain-
rate dependent, and numerous tests (Reinhardt 1986; Bruhwiler 1990) have con-
firmed that there is an increase of both Gy and K. with increased strain rate.

The most recent set of strain-rate dependent fracture properties of concrete
needed for fracture mechanics models was defined by Bruhwiler (1990), who
proposed a general power law to fit experimental data. Typical expressions
for strain-rate dependent concrete fracture properties as a function of so-called
relative strain é,, or deformation rate 9., (the ratio between the dynamic and
static strain or deformation rate) are given as,

uniaxial tension : fy = fio(é )" 0%
elastic modulus: F; = Ey(é)0%"
fracture energy release rate : Gy = G yo(9,)" "%

fracture toughness : Kr. = Kyeo{0,)""**

These strain-rate dependent properties can be utilized in any concrete model that
employs fracture properties, Fig. 6.5, such as {racture-based softening plasticity.

Mixed-mode rate-sensitive fracture models are still in their infancy, although
the experimental evidence (John and Shah 1990) suggests that the usually favor-
able rate effects (such as strength increase) may be counteracted by the change
from a ductile to a brittle mode of material failure.

6.3.3 Modeling of Damage Due to Cyclic Loading

Concrete is known to deteriorate both in strength and stiffiness under re-
peated load applications, especially if it is stressed well beyond half its uniaxial
strength in compression or to its rupture modulus in tension. The gradual accu-
mulation of damage up to failure is basically a fatigue phenomenon, and within
the context of our discussion, a low-cycle fatigue problem. Both from a modeling
and design standpoint, it is important to distinguish between the fundamentally
different mechanisms of damage accumulation under monotonic and repeated
load application, especially if load reversals are involved.

First, it is essential to introduce a useful and rational definition of damage.
The concept of damage is all-pervasive in structural engineering, and there have
been numerous proposals to define it (Chung et al. 1987; Reitherman 1985),
Most of these are of a more or less empirical nature, for example those intended
for post-earthquake inspections and therefore prone to subjective influences on
the part of the inspectors. To avoid that problem, Chung et al. (1987, 1089)
have approached the damage definition by tieing it to the degree of physical
deterioration with clearly defined consequences regarding the material’s capacity
to resist further load. Similarly, the notion of failure has to be stripped of its
common arbitrary definition (on the member or structural level) by relating it
to a specific level of damage at which the material ceases to resist further load.
Meyer (1991) proceded to define a damage index D as the ratio between the
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energy dissipated up to a certain point, E;, and the total energy dissipation
capacity, F,
p = & (6 — 10)
= 3

This definition can be substituted for the cycle ratio (n;/N;) used in conventional
fatigue analysis and is readily applicable to plain concrete. Failure is defined as
the point at which the slope of the stress-strain curve ceases to be positive. The
energy dissipation capacity is clearly a function of stress or strain level.

Other suggested definitions of material damage are total strain accumula-
tion (Holmen 1982) and stiffness as measured in ultrasonic tests (Suaris and
Fernando 1987).

Any realistic analysis of reinforced concrete structures for cyclic load is con-
tingent upon a material model which correctly reflects the damage accumulation
of concrete under repeated load application. The problem is that the data base
needed to develop such a model is extremely scarce. S-N curves have been gen-
erated for some selected cases (Shah 1982), but for the low-cycle fatigue range
that is of interest for earthquake response analysis, very few data exist. Grzy-
howski and Meyer (1991) have initiated a testing program for both plain and
fibre-reinforced concrete. Some of the preliminary data are shown in Fig. 6.6.
The damage accumulation curves reproduced in Fig. 6.7 clearly deviate from
the straight line corresponding to Minor’s hypothesis. But because of the differ-
ent damage definition, they do not have the same shape as the curves reported
by Holmen (1982), with their characteristic inflection points. Oh (1991) has
proposed a damage accumulation law by fitting cubic polynomials to Holmen’s
data. Efforts are under way at Columbia University to expand the needed ex-
perimental data base and to derive from it a damage accumulation law that can
be combined with any of the material models discussed earlier.

Continuum damage theory, which forms the basis of several damage mod-
els, was first developed by Kachanov (1958). He introduced a voids ratio in
a given cross-sectional area as damage variable, which varies from 0 for a vir-
gin material to a critical value for a cracked material, Mazars (1981; Mazars
and Pijaudier-Cabot 1989) developed the concept further and applied it to con-
crete. Krajcinovic and Fonseka (1981a,b) used a vectorial damage approach to
describe concrete damage. A similar damage model for brittle solids was pro-
posed by Suaris and Shah (1984, 1985) and applied to dynamic loading. The
damage vector introduced in these models represents the area density of the
microcracks and is perpendicular to the microcrack plane. The constitutive
equations are derived from the thermodynamic potential Helmholtz free energy.
The number of free constants to be determined in these models is quite large,
and their determination requires further assumptions. The model of Mazars
and Pijaudier-Cabot (1989) was derived within the framework of the thermo-
dynamics of irreversible processes, assuming that only the elastic properties of
the material are affected by damage., Chen and Buyukozturk (1985) proposed a
rate-independent dainage-type constitutive model for multiaxial cyclic loading.
These damage models have yet to be implemented in general finite element codes
for the dynamic analysis of actual concrete structures.
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6.4 Member Models
6.4.1 General

In this section recent developments in the modeling of reinforced concrete
members under dynamic loads will be discussed. It covers microscopic and
macroscopic elements as well as frame element idealizations. Since the modeling
of reinforced concrete structures under monotonic loads was discussed in earlier
chapters of this report, only issues related to the dynarmic hehavior will be
addressed here.

There is some confusion to date as to what constitutes a microscopic and
a macroscopic finite element idealization of a structure. We are offering the
{ollowing definitions: a finite element model which is based on the stress-strain
relations of the constituent materials of reinforced concrete and their interactions
is regarded as microscopic, while a model which treats reinforced concrete as a
new composite material with its own composite stress-strain relation is defined
as macroscopic. Even though these definitions might appear arbitrary at first,
it is clear that the second approach permits the modeling of entire panels under
relatively uniform stress or strain states, using a single macro- or superelement.
This is not feasible with the first approach.

The distinction between a macroscopic finite element and a {rame element
model is that the former is based on a composite stress-strain relation, while the
latter makes use of simplifying assumpiions regarding the kinematics of mem-
her deformations. In the case of fiber models the behavior is derived from the
uniaxial stress-strain relations of a number of fibers at several sections along the
member length, while plastic hinge models are based on the moment-curvature
relation at several critical sections or even the moment-rotation relation for the
ends of the entire member.

The use of microscopic finite element models in the dynamic analysis of
large RC structures is limited in practice for several reasons:

1. The computational cost is very high, and even present-day computers re-
quire excessive time to solve structural problems of moderate or large size,

2. The material behavior of concrete under biaxial and triaxial cyclic loading
conditions is still nol well understood and few models of such behavior are
presently available, The most promising of these models are discussed in
Section 4.3.

3. The designer, who wishes to use the results of a nonlinear dynamic analysis,
is interested mostly in member deformations -usually rotations- and forces,
which he expects to obtain without the need to evaluate enormous amounts
of output.

By contrast, microscopic finite element models are best suited to address
local detailing problems, such as the behavior of reinforcing bar anchorages under
cyclic loading conditions. In this context it is important to develop computer
analysis systems which permit the seamless integration and exchange of data
between refined local models and global element models.
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6.4.2 Micro Finite Element Models

As defined here, microscopic finite element models attempt to describe the
dynamic behavior of reinforced concrete elements by the simple superposition of
the material matrices for plain concrete, reinforcing steel and their interaction
through bond-slip along the bar and shear-sliding along cracked surfaces. Even
though some models of the cyclic behavior of plain concrete, reinforcing steel,
bond-slip and shear-sliding have been proposed, virtually no studies have at-
tempted to include all these effects to model the dynamic behavior of reinforced
concrete structures. Investigators have usually isolated the one or the other ef-
fect and have tested their models under relatively simple stress or strain fields.
Even so, the success of such studies has been rather limited for the following
reasons:

1. The cyclic behavior of plain concrete under general two- and three-
dimensional load histories is not well understood to date, and few analytical
models have proven adequate for all possible loading histories. The recently
proposed micro-plane model (Bazant and Ozbolt 1989) holds some promise
to salisfy this need.

2. The bond between reinforcing steel and concrete under dynamic loading
conditions has been studied only under ideal conditions, and little is known
about this behavior under general conditions of cover, distance to the crack,
etc. This is also true for the shear transfer across cracked surfaces where
the behavior is affected by the amount of reinforcing steel, the angle be-
tween reinforcing bars and the crack, etc. Further experimental studies are
urgently needed.

Another difficulty of this modeling approach is that the introduction of
independent models for bond-slip and shear-sliding fits well with a discrete
crack modeling approach, which, however, enjoys limited popularity among re-
searchers, regardless of the fact that very little is known about the implementa-
tion of disrete crack models under dynamic loading conditions.

A widely used model for the cyclic behavior of plain concrete is the nonlinear
orthotropic model of Darwin and Pecknold (1976). In this model the biaxial
concrete behavior is derived by modifying the uniaxial stress-strain behavior of
concrete, for which a few experimental data and models already exist (Karsan
and Jirsa 1969). More complicated models (Meyer and Okamura 1985; IABSE
1987; Chen 1982) seem to suffer from the need for extensive calibration of their
parameters.

For the hysteretic behavior of reinforcing steel many models are available,
and the reader is referred to the extensive literature survey of the state-of-the-art
report (Nilson 1982). It appears, however, that the most suitable model in the

finite element context appears to be the one proposed by Menegotto and Pinto
(1973).

In a smeared crack modeling approach the bond-slip effect is usually ac-
counted for by means of the double-node concepl, where one node is attached
to the concrete and the other to the reinforcing steel, and both nodes initially
occupy the same place. The nodes are usually connected by bond-link elements
(Nilson 1982), even though more general interface elements have also been pro-
posed (Meyer and Okamura 1987). In a recent attempt by Kwak and Filippou
(1990) the bar is embedded into the concrete element, but the bond-slip is in-
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cluded explicitly in the model. The main difficulty with bond-slip in smeared
crack models lies in assigning material properties to the interface elements, when
it is known from experiments that the cyclic bond-slip behavior is aflected by
the distance to the next crack. The effect of variation of bond-slip properties
with distance to the next crack has not heen explored to date.

A general shear-sliding model in a smeared crack setting, which accounts
for deterioration under cyclic loading, has been proposed by Riggs and Powell
(1986). Initial results are very encouraging, but the model is computationally
expensive and suffers from numerical instability when multiple cracks form at
an integration point.

One of the main difficulties with micro finite element models lies in the
definition of crack opening and closing at a point, particularly, when multiple
cracks form in a smeared crack model. The numerical difficulties which arise
from this problem are addressed in a later section of this chapter.

6.4.3 Macro Finite Flement Models

The strong interaction between reinforcing steel and concrete has convinced
researchers that the behavior of reinforced concrete cannot be reproduced by
simple superposition of the material matrices for plain concrete and reinforcing
steel, with the addition of bond and shear interface elements. In the "smeared”
approach, reinforced concrete is treated as a nonhomogeneous continuum with
properties which include the effect of cracking, bond-slip of reinforcement and
shear-slip along crack surfaces. Such macroscopic models have been developed
only for two-dimensional plane stress or plane strain conditions. Since monotonic
models of this kind are addressed elsewhere, only two models which specifically
address cyclic loading are introduced here.

In the macroscopic finite element approach, the stress-strain constitutive
matrix represents the average behavior of some element volume. In this case
stresses can be thought of as the loads acting on the element surfaces divided
by the corresponding surface areas, and strains are derived from the element
deformations divided by the corresponding element dimensions. The material
properties of the composite material can be directly derived from experimental
results, as exhibited by the well known Toronto tests on panel elements (Collins
et al. 1085). Such constitutive relations can be defined as reinforced concrete
madterial models, when derived from small specimen sizes, or reinforced concrete
member or superelement models, when derived from large RC panels. In any
case the tangent stiffness matrix of the element is derived by superposing the cor-
responding stiffness matrices for concrete, K, and reinforcing steel, K,;, where
1 represents the direction of a particular reinforcing layer. This superposition
takes place after transformation to a global coordinate system,

K. = TIK.T.+ Y pTLK,T, (6-11)

[
where T, and T,; are the transformation matrices for concrete and reinforcing
steel, respectively, and p; is the reinforcing ratio of layer ¢ within the volume

tributary to the integration point.

In the macroscopic modeling approach the constitutive matrices of concrete
and reinforcing steel include the effect of tension stiffening between cracks. In
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the models of the Toronto school (Vecchio and Collins 1982; Stevens et al. 1987)
this effect is included in the concrete matrix, while the model by Cervenka
(1989) accounts for the tension stiffening effect by modifying the matrix for the
reinforcing steel. .

Under low stresses concrete remains uncracked and exhibits a linear elastic
isotropic behavior. The most convenient reference system for describing the
behavior of the element in this stress range is that made up by the principal
stress directions. Under increasing loads the stress combination in the critical
region of the member often reaches the tension-compression branch of the biaxial
failure envelope. At this stage a crack is assumed to form perpendicular to the
principal tensile stress, and the concrete material stiffness matrix is now hased
on stress-strain relations for cracked concrete, an orthotropic material. Two
basic approaches have crystallized: :

a) In the model of Cervenka the crack direction is kept fixed for subsequent
loading. The off-diagonal terms of the concrete material matrix are ne-
glected, but the diagonal term corresponding to shear seems to play an
important role in the response of the member, particularly in othogonal
fixed crack models.

b) The model by Stevens et al. (1987) is an extension of the Modified Com-
pression Field Theory of Vecchio and Collins (1982) into the cyclic loading

ra,n%e. Based on cyclic shear tests on reinforced concrete panels, Stevens

et al. assume that the principal directions of the concrete stress increment
tensor coincide with those of the strain increment tensor. This model thus
belongs to the class of Rotating Crack Models.

In either case the stress-strain behavior in each principal direction is de-
scribed by uniaxial stress-strain relations, which are modified to account for the
effect of stress in the other direction. Some disagreement exists on the magni-
tude of this effect between researchers at Toronto and others, notably, Mehlhorn
and his co-workers (Kollegger and Mehlhorn 1988), who have also conducted
panel tests. Also worthy of note is a macroscopic model for shear wall elements
by Inoue and Suzuki (1991), derived from a microscopic model using smeared
crack finite element analysis.

6.4.4 Frame Element Models

Depending on the desired level of detail and, consequenlly, accuracy we can
distinguish two classes of frame member models: plastic hinge models and fiber
models., In both cases, the stiffness matrix of an entire member, relating end
moments to corresponding end rotations, is established directly by assuming a
moment and corresponding curvature distribution and applying the principle of
virtual work. Early models assumed all inelastic deformations to be concentrated
at the end points in hinges. More recent models permit inelastic deformations
to spread into the member.

In a fiber model the member behavior is monitored at a number of sections,
which are, in turn, subdivided inlo a number of layers or fibers. The section
stiffness is obtained by integrating the stiffnesses of all layers, and the member
stiffness is taken as the weighted integral of the section stiffnesses.
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a) Plastic Hinge Models

The very first inelastic girder model was proposed by Clough (1966). In this
model, known as the two-component model, a bilinear elastic strain hardening
moment-curvature relationship is assumed along the length of the girder. The
beam model consists of two components acting in parallel: one which is linear
elastic and one which is elastic-perfectly plastic, with the plastic deformations
concentrated in plastic hinges al the ends of the element. One of the shortcom-
ings of this model is the dificulty of accounting for the stiffness deterioration of
RC elements during cyclic loading. To overcome this problem, Giberson (1969)
proposed the so-called one-component model. This consists of two nonlinear ro-
tational springs, which are attached at the ends of a perfectly elastic element. All
nonlinear deformations of the element are lumped in the two rotational springs,
to which any kind of hysteretic law can be assigned. A different approach to the
problem of modeling the seismic behavior of RC frame members was proposed
by Otani (1974). He divided the member into a linear elastic and an inelastic
element, acting in parallel, with inelastic rotational springs attached at both
ends to represent the fixed-end rotations at the beam-column interface due to
slip of the reinforcement in the joint. Otani’s study was the first to recognize
the importance of fixed-end rotations in predicting the seismic response of RC
frame structures.

Mahin and Bertero (1976) reviewed the various definitions of ductility fac-
tors in earthquake resistant design and discussed the prediction of the rotational
ductility demand in structural elements. They pointed out how to modify the
ductility factors for a beam represented by a two-component model to match
those for a beam in which inelastic deformations spread into the member. Since
the two-component model substantially underestimates the post-yielding stiff-
ness of a member, the seismic response of the structure will not be predicted ac-
curately. This is particularly true in the case of local response quantities such as
inelastic rotations of girders and joints. It does not, therefore, appear reasonable
to estimate ductility requirements of RC {rame elements using two-component
models.

The effect of axial force on the flexural stiffness of a member was first
accounted for in the model proposed by Takayanagi and Schnobrich (1979) in
their study of the seismic response of coupled wall systems. The slip of the
reinforcing bars anchored in tﬁe wall is represented by springs. The effect of
shear in the coupling beams is also taken into account. A modified Takeda
model is adopted for the hysteretic behavior of the beam elements. The model
accounts for the "pinching” effect during reloading and the strength decay due to
loss of shear resistance after crack formation and yielding of the reinforcement in
the coupling beams. The seismic response of a plane frame coupled with a shear
wall was studied by Emori and Schnobrich (1981). They conducted nonlinear
static analyses under cyclic load reversals using various different beam models
and concluded that a concentrated spring model predicts most satisfactorily the
inelastic response of RC girders, while a multiple spring model is needed to
accurately describe the ine%astic behavior of shear walls. For a detailed study of
the inelastic response of plastic zones in columns, the authors recommend the
use of a layer model.

A model for the analysis of seismic response of RC structures was proposed
by Banon et al, (1981). The one-component model in its original form describes
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the nonlinear behavior of the element. The hysteretic moment-rotation relation
is based on a modified Takeda model. Tn order to reproduce the "pinching” effect
due to shear and bond deterioration, a nonlinear rotational spring is inserted at
each member end. The hysteretic model of the nonlinear springs is based on a
bilinear skeleton curve with strength decay under large deformations and pinched
shape during reloading. The authors also proposed a set of damage indicators
in an effort to quantify the performance of a structure during an earthquake.

An integrated experimental and analytical study on the effect of bond dete-
rioration on the seismic response of RC structures was published by Qtani et al.
(1985?. The one-component model was adopted for frame elements and Takeda's
model to describe their hysteretic behavior. A rotational spring at each mem-
ber end with Takeda-type rules modelled the hysteretic behavior caused by the
reinforcement slip due to bond deterioration. No strength decay is introduced
in the monotonic skeleton curve, since no appropriate experimental data were
available.

A model for assessing structural damage in RC structural elements was
proposed by Park and Ang (1985), in which damage is expressed as a linear
combination of a deformation ductility ratio and the hysteretic energy absorbed
during cyclic load reversals.

The first spread plasticity model was introduced by Soleimani et al. (1979).
In this model a zone of inelastic deformalions gradually spreads from the beam-
column interface into the member as a function of loading history. The rest of
the beamn remains elastic. The fixed-end rotations at the beam-column interface
are modeled through point hinges which are inserted at the ends of the member.
These are related to the curvature at the corresponding end section through
an "effective length” factor which remains constant during the entire response
history.

Meyer et al. (1983) developed another spread plasticity model, using the
same flexibility coefficients as Soleimani, but they determined the stiffness of the
plastic zone during reloading in a different way and combined it with Takeda-
type rules to describe the hysteretic behavior. This model does not account for
the axial force effect.

In their study of the nonlinear response of plane rectangular frames and
coupled shear walls, Keshavarzian and Schnobrich (1984) extended Soleimani’s
model to column elements, by accounting for the interaction between bend-
ing moment and axial force to determine the strength and stiffness of col-
umn elements. The study compared various spread plasticity as well as one-
component, two-component and multiple spring models. It concluded that the
one-component model is well suited for describing the inelastic behavior of RC
girders and that the two-component model has the same versatility as the one-
component model, yielding similar results. The multi-layer model was found
to be very expensive for nonlinear dynamic analysis of multistory structures.
Fluctuation of axial forces in coupled shear walls and in exterior columns of
frame structures were found to significantly affect the forces and deformations
in individual walls and columns.

Roufaiel and Meyer (1987) extended the spread plasticity model to include
the effect of shear and axial forces on the flexural hysteretic behavior, using
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a semi-empirical set of Takeda-type rules. The predictions of the model were
compared with available experimental data and showed very good agreement. A
sel of new damage parameters was proposed, which seem to correlate well with
the residual strength and stiffness of specimens tested in the laboratory.

Finally, Filippou and Issa (1988) subdivided a member into different subele-
ments. Bach subelement describes a single effect, e.g. inelastic behavior due to
hending, shear hehavior at the interface, bond-slip behavior at the beam-column
joint. The interaction between these effects is then achieved by combining the
subelements. This approach allows the hysteretic law of the different su%)ele-
ments to be simpler and, thus, more general than previous elements, while the
member still exhibits a complex hysteretic behavior.

In conclusion, member models have some advantages and disadvantages.
The advantages are:

1. simplicity of formulation and relatively low computational cost;

2. calibration of the model by trial and error or more formal system identifi-
cation methods is often easy, because of available experimental data in the
form of moment-rotation relations;

3. the implementation of these models in existing nonlinear dynamic analysis
programs is relatively straightforward;

4. the results can easily be represented in a form that is directly uselul to
designers.

The disadvantages of member models are as {ollows:

1. These models are, without exception, phenomenological models of member
behavior, which cannol be easily extended to general loading conditions. For
example, most models ta date only approximate the effect of gravity loads.
The interaction between bending momenti, shear and axial force is described
by empirical hysteretic rules, which can quickly become extremely complex
and are often valid only for the few cases, for which they were calibrated.

2. The parameters of these models cannot be readily established in many cases,
This is particularly true for concentrated plasticity models. A few attemnpts
at establishing general rules for the derivation of model parameters are
limited to the simplest cases, e.g. beam elements without shear and axial
{force,

3. The definition of damage is often rather arbitrary in these models. One
is limited to overall measures of damage, such as rotations, instead of the
more rational local measure of strain in certain regions of the member.

b) Fiber Models

In fiber models, a member is subdivided longitudinally into a number of
segments, and Lthese are, in turn, subdivided into a number of steel and concrete
fibers. The member behavior is then derived by postulating the stress-strain
behavior of these fibers and integrating over the cross section to obtain the
moment-curvature relation, which is, in turn, integrated along the member to
yield the moment-rotation relation. This process can be formally summarized:
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The element force resultants and the corresponding deformations are:

=M - o 6—12
Q = [ 4= e (6 -12)

The deformation field is the curvature distribution x(x) along the element. The
corresponding action field is the moment distribution A{(z). Following the stiff-
ness approach, three major steps are performed:

1) Compatibility: the element deformation field is expressed as a function
of the element deformations q,

x(z) = a(z)q (6 —13)

2) Constitutive Law: the relation between section deformation x(z) and
section moment M(z) can be written as

M(z) = g(x(z)) (6 —14)

This linearization introduces an approximation error which is normally corrected
through an iteration scheme. A moment-curvature relation at each section is
either derived by summing up over all section fibers or it is postulated as a
madterial law. The former approach is more time consuming, but more general.
This relation can be linearized as follows,

M(z) = k(z)x(z) (6 —15)
where k(z) is the section stiffness.

3) Equilibrium is imposed by applying the principle of virtual displacements,

/L6x(z)1\l(w)d:n = 6q"P (6 —16)

L
éq” [/0 a(w)Tk:(:n)a(a:)dm} q = 6q7P (6 —17)

Kgq = P (6 —18)
where L
K = / a(z)T k(z)a(c)dz (6 —19)
0
is the element siiffness matrix and P the vector of the externally applied loads.
A problem with fiber models is the selection of shape functions for member

deformations a(z). The stiffness approach, which is outlined above, satisfies
equilibrium along the member in a weighted or average way. This often leads to
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numerical problems under cyclic load reversals, as has been well demonstrated in
a paper by Zeris and Mahin (1988). The problem can be remedied by deriving the
element stiffness matrix X using the flexibility approach. In this case equilibrium
along the member is satisfied exactly at all times. Unfortunately, the solution
proposed by Zeris and Mahin does not guarantee that compatibility is satisfied
along the element, and this can also lead to numerical problems. So far, no
clear solution to the problem has been proposed, but it appears that a flexibility
formulation based on an event-to-event solution strategy can be successful.

An interesting variation of the types of models mentioned above is the multi-
spring model proposed by Li, Otani, and Aoyama (1988) and Zhou et al (1990).
Well suited for columns subjected to biaxial bending plus axial forces, this model
can simulate member behavior with a set of calibraled nonlinear springs and can
be considered an extension of fiber and plastic hinge models.

In conclusion, the advantages of fiber models are:

1. These models are rational in the sense that the element behavior is derived
from the fundamental stress-strain relation of the constituent materials.
Thus they can model in a direct way the effect of detailing on the member
behavior (e.g effect of longitudinal and transverse reinforcement distribu-
tion). They can also account for the interaction between axial force and
bending moment in a very straightforward way, without modification of the
initial formulation of the model. To date, however, no fiber model has been
proposed which accounts for the effect of shear and bond-slip of reinforcing
steel. These effects are very important in the seismic response of reinforced
concrete structures, particularly, short columns or piers.

2. As is the case with member models, the results of fiber models are in a form
that is directly useful to designers.

3. Damage can be directly related to the strains experienced by the fibers,
This allows for the formulation of rational damage models. Calibration of
such models is, however, more difficult than in the case of member models.

The disadvantages of fiber models are:

1. To be able to realistically trace the hysteretic behavior of RC members, a
large number of fibers is needed. This leads to high computational costs,
which preclude the use of such models in the dynamic response analysis of
large structures. A way to overcome this problem is to use fiber models as
a front end for the calibration of simpler models. These simpler models can
either be fiber models with a very small number of fibers or member models
such as those described in the preceding section.

2. The calibration of fiber models against available experimental data is not
as straightforward as that of member models, because of the larger number
of parameters., At the same time, however, calibrations performed on a
number of specimens should be much more ready to be extended to other
cases than is the case for member models.

c) Hysteretic Models

To describe the hysteretic behavior of the nonlinear springs at the ends of
the one-component model a hysteretic law is needed. The first such law was
proposed by Clough (1966). A more refined hysleresis model was proposed
by Takeda et al. (1970), in which the monotonic behavior is described by a
trilinear skeleton curve that accounts for cracking of concrete and yielding of
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reinforcing steel. The hysteretic behavior is described through a number of
rules for unloading and reloading that were derived from specimens tested on
an earthquake simulator. Even though Takeda’s model was originally proposed
for simulating the load-displacement relation of RC subassemblages, it has been
widely used since for the description of both hysteretic moment-curvature and
moment-rotation relations of RC members.

Anderson and Townsend (1977) investigated the effect of different hysteretic
models on the dynamic response of RC [rames. Four different models were used
to describe the hysteretic behavior of critical regions of RC members: (a) a
bilinear elastic-strain hardening model, (b) a bilinear degrading model with equal
unloading and reloading stiffness, (¢) a trilinear degrading model with different
stiffness for unloading and reloading and (d) a degrading trilinear model for
beam-column connections. They studied the effect 0% reinforcing bar slippage in
the joint by inserting a small hinge element of predefined length between the rigid
joint element and the flexible girder element. The study shows that the reduction
in stiffness of reinforced concrete elements due to inelastic deformations can have
a significant effect on the dynamic response of frame structures. Among the
different hysteretic models used in the study the degrading trilinear connection
model appears to be the most accurate. It is also shown that the use of a
degrading stiffness model results in an increase in interstory displacements, This
can have a significant effect on the load carrying capacity of the structure due
to the P — A effect arising from high axial forces.

The effect of different hysteresis models on the nonlinear dynamic response
of a simple concrete specimen was studied by Saiidi (1982). Ie analyzed four
models: elastic-perfectly plastic, elasto-plastic with strain hardening, Clough’s
model and a new Q-hysteresis model. The first two are very simple, but quite
unrealistic models of reinforced concrete; the other itwo are more accurate and
differ mainly in the representation of stiffness degradation during unloading and
reloading. The performance of the different hysteretic models was evaluated
by comparing the results with those obtained using Takeda'’s model, since its
agreement with a large number of experimental data is excellent. Poor agree-
ment with Takeda’s model is exhibited by both elasto-plastic models; Clough’s
model shows relatively good agreement and the Q-hysteresis model shows ex-
cellent agreement. The study concludes that stiffness degradation effects during
unloading and reloading are very important in determining the overall response
of RC structures, because they affect the amount of energy dissipated by the
structure.

d) Bond-Slip and Shear Effects

The member models of the preceding sections do not include the effect
of shear and bond-slip in an explicit way, except for the modification of the
hysteretic models. This is at best a very approximate way and lacks generality,
since the hysteretic models cannot be easily extended to cases, which have not
been used in the initial calibration of the model.

A more rational way to include the effects of shear and bond-slip in member
models is to address these effects explicitly in member and fiber models. Only
few studies are known to date in this direction. Filippou and Issa (1988) have
proposed to subdivide the member into a number of subelements, with each
subelement modeling one effect (e.g. shear or pull-out from beam-column joint),
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using its distinct hysteretic rule. Naturally, the most rational way to include
these effects is by means of microscopic finite element models. No studies exist
in which shear and bond-slip effects were incorporated into fiber or layer models,

A few studies have been conducted since the early 1980’s to model the bond-
slip behavior of single reinforcing bar anchorages and reinforcing bars anchored in
beam-column joints. The first group of models makes use of the finite diflerence
method in the solution of the differential equations of bond (Viwathanatepa et
al. 1979; Tassios and Yannopoulos 1981; Ciampi et al. 1982; Filippou et al.
1983a,b; Hawkins et al. 1987).

The second group of models solves the bond problem by assuming a
parabolic or exponential function for the bond stress along the anchorage length
of the reinforcing bars. Filippou (1986) used a piecewise linear bond stress
distribution, which is established iteratively by satisflying the equilibrium and
compatibility conditions of the bond problem.

In the third group of models the differential equations of bond are solved
in closed form. The model proposed by Harajli et al. (1988) uses this approach
to predict the distribution of relative slip, bond stress and steel stress along
reinforcing bars anchored in interior heam-column joints, The model makes
use of the monotonic bond stress-slip relation in confined concrete and only
indirectly accounts for bond deterioration under cyclic load reversals. This fact
limits its applicability to slip reversals of moderate magnitude. A closed form
series solution is proposed by Russo et al. (1990) for the differential equations
of bond, based on a bilinear steel model and the local bond stress-slip relation
proposed by Eligehausen (1983). The advantage of this solution approach is that
no iteralions are required. Since the study is only limited to the portion of the
reinforcing bars which is surrounded by the confined concrete of the joint core,
it is unclear whether the model can be extended to account for the extensive
bond damage which takes place in unconfined concrete regions under cyclic load
reversals. ‘

During the last fifteen years several hysteretic models of heam-column joint
behavior were proposed. A number of these were also used in nonlinear earth-
quake response analysis of structures. These models, generally, fall in three
categories,

The first group consists of models which are derived {from experiments on
full or reduced scale beam-column joint subassemblages subjected to cyclic ex-
citations (Townsend and Hanson 1972; Soleimani et al. 1979; Anderson and
Townsend 1977). These models agree well with the experiments they were de-
rived from, but generalization to different configurations and other loading con-
ditions is somewhat doubtful, because model parameters were selected to fit
the particular experimental results and not from physical interpretation of the
mechanisms which contribute to the observed behavior.

The second group of joint models is derived in connection with analytical
studies. These models are, typically, composed of a bilinear or trilinear mono-
tonic envelope curve and an associated set of rules which define the hysteretic
behavior under cyclic load reversals (Otani 1974; Emori and Schnobrich 1981;
Banon et al. 1981).
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The third group of joint models is based on finite element idealizations.
Noguchi (1981) has developed a finite element model for the nonlinear analysis
of reinforced concrete beam-column joints under monotonic loading with em-
phasis on the different bond characteristics along the reinforcing bars passing
through the joint. In this model a simplified bilinear model describes the steel
stress-strain relation, and an equivalent uniaxial stress-strain curve describes
the concrete behavior in compression. Bond is modeled by a link element with
an idealized bond stress-slip relation. The crack pattern and location is fixed
before the start of the analysis and a crack link element connects two nodes, one
on each face of the crack. The predictions of the model agree fairly well with
experimental results. Later, Noguchi et al. %1984a,b) extended the model to
beam-column joints under cyclic load reversals, paying particular attention to
the constitutive relation of concrete, the opening and closing of the cracks and
the cyclic bond stress-slip relation. The results of these studies indicate that
the stiffness deterioration of the subassemblage is influenced by the failure of
concrete in shear and by bond deterioration along the reinforcing bars in the
joint,

Filippou et al. (1983a,b) have developed a model of the hysteretic hehav-
ior of reinforced concrete beam-column joints which is also based on the finite
element method. This model accounts for the cyclic bond deterioration along
the anchored bars and the associated relative slippage between bars and sur-
rounding concrete. The slippage of the reinforcing bars in the joint leads to
an interaction between the forces acting at the two beam-column interfaces of
an interior joint. These forces are determined from a new hysteretic model for
cracked reinforced concrete sections. The proposed joint model describes quite
well the hysteretic behavior of beam-column joints under generalized excitations
but does not include the effect of shear.

In 1987 Noguchi et al. used the finite element method to describe the shear
resistance of reinforced concrete beam-column joints under cyclic load reversals.
Tada (1987) has also proposed a finite element model of the beam-column joint
and the adjacent girder inelastic regions, which takes into account the bond
deterioration along the anchored bars under cyclic load reversals.

6.5 Dynamic Analysis Aspects
6.5.1 Time-Discretization in Structural Dynamics

The equations of motion of a structure are well known,
Mi + Cu + Ku = f, (6 — 20)

where wu is the vector containing the displacement and rotational degrees of
freedom of the discretized structure; M, C and K are the mass, damping, and
stiffness matrices, respectively; the right-hand side vector f contains the external
loads acting on the structure.

The key issue of structural dynamics is to integrate Eq. 6-20 as accurately
and as economically as possible at the same time. The accuracy and economy of
the various methods that are available depend strongly upon the type of problem
at hand. The major factor that determines which method is most suitable for a
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certain problem is the loading rate. As a rule of thumb, one might say that wave
propagation prohlems, which typically arise from blast and impact loadings with
high strain rates, are more conveniently analyzed using ezplicit time integrators,
Implicit time integrators have their merit for analyzing problems that involve
lower strain rates, e.g., problems involving earthquake or wind loadings. In the
latter class of problems a much larger time span has to be analyzed. The limited
time step size needed in explicit methods renders these uneconomical, because
it would simply involve far too many time steps.

In the sequel we will first give examples of explicit and implicit time inte-
grators such as the popular central difference and Newmark schemes. For both
classes of methods we will comment on their stability and accuracy properties.
Further, some comments will be made on issues like nonlinear material behavior
and implicit-explicit time integration methods.

A popular prototype of explicit time integrators is the central difference

method, which approximates the nodal accelerations and velocities al time ¢ by
the finite difference approximations,

st ! t—AtL

A
it = T - et (6 -21)
and 1
ct X b 4-Ab kAt B
2t = 2At[ 2 4wt e (6 ~22)

respectively, with At being the time interval considered. Substitution of {these
expressions into the equations of motion, Eq. 6-20, at time ¢,

Mit + Cit + Kut = f, (6-23)

yields the following expressions for the nodal displacements at time ¢ 4+ Af,

Lo L) e g 2 t
<At2M+2AtC>u = f' - (K- M)

1 1 -
foad <KﬁM - mC) ut At. (6— 24)

It is apparent that Eq. 6-24 can be solved directly for u‘*4¢, since u*~4* and
u' are known. It is for this reason that the method is called explicit. When
the time step is kept constant, the matrix on the lefi-hand side of the equation
needs to be factorized only once, and the whole process is reduced to a sequence
of forward and backward substitutions, thus greatly reducing the computational
effort involved. This effort is reduced even further, if the mass and damping
matrices are diagonal, For the mass matrix, this implies that some lumping
scheme is applied, so that the method is particularly eflective for low-order finite
elements. The equation system becomes effectively uncoupled, which has major
advantages for parallel and veclor processing. Indeed, very efficient because
highly vectorizable codes can be written, when the above-described approach
is adopted. Examples are the NIKE and PRONTO codes for analyzing impact
phenomena.
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A disadvantage of explicit methods such as the central difference method is
their conditional stability, which implies that the schemne is only stable when the
time step is smaller than a certain threshold value. For time steps larger than
this crilical value, errors in the boundary conditions, round-off errors, etc. will
be amplified and will dominate the response after a sufficient number of time
steps, thus rendering the solution meaningless. Depending on the mesh layout,
this restriction on the time step may be quite severe.

To overcome the problem of having to use very small time steps, especially
for problems that do not involve high loading rates, implicit time integrators
have been developed, which allow time steps that are orders of magnitude larger
than the critical time step for explicit integrators. One of the most popular
classes of time integrators is the Newmark family. Its main assumption is that
the acceleration varies linearly over the time step, so that,

AR = gt A1 — )it + yiitTAY (6 — 25)

and

uttAt = gt g At 4 %At2[(1 - 28)it + 2@t AY, - (6~ 26)

In contrast to the central difference scheme, where the equations of motion are
satisfied at time ¢, the Eqgs. 6-25 and 6-26 are substituted into the equations of
motion at time ¢ + Af,

Mﬁt+At + Cl'lH—At + Kut+At — fH-At’ (6 . 27)
with the result,
Ku'tat = frat (6 — 28)
where _
K = K+ aM+aC (6 —29)

F o= f4+Maout +apit’ + azit’) + Claru + agt? + asit?), (6 — 30)

and the coefficients ag,...,a5 are given by

1 -7 - -
b= gAr M T par T pAr (6 -31)
1 vy 1 vy
b= —-1 4 == — -— by == — ——— N -
as 2ﬂ y 04 6 1, ag 2At(ﬁ 2) (6 32)

By changing the values of the [ree parameters 8 and v, a whole range of time
integralion methods is obtained. Forinstance, for 8 = 0and y = %, the (explicit)
central difference scheme is retrieved. In fact, the Newmark family contains a
whole set of explicit time integrators, since for f = 0, the stiffness matrix K
disappears from the modified stiffness matrix K.

It is important to note that even the members of the Newmark family,
that are implicit in nature, are not necessarily unconditionally stable. It can
be proven (e.g. Bathe 1982; Hughes 1983; Hughes 1987; Geradin, Hogge and
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Roberts 1987), that unconditional stability for the Newmark family is assured
only if
>1 and 8= 1( + 1)2
- a - =2,
725 =47y
A most prominent member of the Newmark family that satisfies the ahove re-
quirement is the constant, or average, acceleration method, which is obtained
by setting 8 = 1 and y = {. Alternatively, this method may be thought of as a
trapezoidal rule.

Although a stable algorithm ensures that errors are not amplified in the
course of time, the errors themselves can be quite large. In other words, stability
does not necessarily imply accuracy of the time integrator. Generally, this is
only the case for conditionally stable time integrators, for which the limitation
imposed on the time step by the stability requirement nearly always warrants
sufficient accuracy. For unconditionally stable time integrators, a rule of thumb
is that the time step should be chosen smaller than the time that the wave needs
to reach the next nodal point in the finite element mesh. If the wave velocity is
¢ and the distance between two nodes is L, the time step size should satisfy the
condition,

At < f (6 - 33)
The notions of stability and accuracy have been introduced here in a rather
intuitive fashion. More precise treatments can be found in (Bathe 1982; Hughes
1983; Hughes 1987; Geradin, Hogge and Roberts 1987).

Implicit methods can be categorized into one-step methods such as New-
mark’s algorithm and so-called linear multi-step (LMS) algorithms. A method
that belongs to the latter class and seems to be attractive for nonlinear dynamic
analyses of concrete structures is the Hilber-Hughes-Taylor a-method (Hughes
1983; Hughes 1987; Geradin, Hogge and Roberts 1987). It retains the approx-
imations for the velocity and the displacement at time ¢ + At, as defined in
Newmark’s scheme (Eqgs. 6 and 7), but the equation of motion at time { + At is
replaced by

Mt At (14a)Catt A —aClt 4+ (14+a)Kutt A —aKu! = (1+a)f"+?‘—af‘).

6-—34
For -1 <a <0, y=1(1 ~2a)and § = ;(1 — a)?, the method is uncondition-
ally stable. The a-method can be viewed as a logical extension of the Newmark
method with improved characteristics for nonlinear problems. Successful ap-
plications of this method to dynamic loading of concrete structures have been
reported by Glemberg (Glemberg 1984). A disadvantage of LMS-methods is
that, unlike one-step methods, they require special treatment for starting up the
process.

- Another important issue in dynamic analysis ol nonlinear structural be-
havior is, that within each time step, equilibrium iterations must be carried
out to maintain sufficient accuracy. This holds even if the time step is se-
lected in line with the above recommendations. The reason is that the inherent
path-dependency of concrete behavior (cracking, crushing, etc) causes errors,
which else will be dragged along to subsequent times. Either a Newton-Raphson
scheme, usually in a modified form, in which the stiffness matrix is updated only
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once in each time step, or quasi-Newton update methods can be employed for
this purpose.

A final important evolution of the past decade is the development of implicit-
explicit integration methods (e.g., Hughes 1983; Park and Felippa 1983). Some-
{imes assemblies have to be analyzed, which consist of a relatively stiff and a
relatively soft part. Examples are soil-structure interaction and fluid-structure
interaction problems. Analyzing the soft subassembly with the same integrator
and the same time step as the stiff subassembly may be uneconomical. Indeed,
it may prove versatile to employ an explicit time integrator for the soft assem-
bly, e.g. the fluid, while an implicit, unconditionally stable algorithm is used
for the stiff subassembly, e.g. the structure. The rationale is that the critical
time step for an explicit method in the soft part may be many times larger than
the critical time step in the stiff part. In addition to using different kinds of
time integrators for these different parts, different time step sizes may be used
to further improve efficiency. :

6.5.2 Use of Crack Models in Structural Dynamics

Since one of the major sources of nonlinear behavior of concrete structures
is cracking, it is important to examine the consequences thereof in dynamic anal-
ysis. The capacity to transmit tensile forces obviously decreases after cracking.
This can he drastic in the sense of an immediate stress drop to zero (perfectly
brittle behavior), or gradual when a tension-softening model is employed. In
either case, a severe dependence on the element size is found. Although in
the sequel the attention is focussed on softening models, the observations and
conclusions pertain equally to brittle cracking.

Recent studies (Belytschko and Bazant 1984; Read and Hegemier 1984;
Sandler 1984) on the validity of strain-softening models in dynamic analyses of
concrete structures have shown that strain softening causes stability problems
and pathological mesh sensitivity. Sandler 31984) has shown analytically for a
simple problem, a one-dimensional rod with prescribed velocity, that a small
change in the load results in large differences in the response. Bazant and
Belytschko (1985), Belytschko and Bazant (1984) and Sandler (1984) also noted
an excessive dependence of the solution on the mesh in the sense that failure
always occurred in one or two rows of elements. Since in classical continuum
models the energy dissipation depends on the size of the elements, this implies
that the structure can fail without energy dissipation.

The problem of mesh sensitivity under dynamic loading conditions can be
demonstrated analytically for one-dimensional problems. Then the governing
equations can be formulated as

T = PU ¢ (6 - 35)
oy = E(E)E’t (6 - 36)
€ = Ug (6 —37)

p is the density and E is the tangent modulus which depends on the strain e.
The commas denote partial differentiation. Eqs. 6-35 to 6-37 can be combined
to give the standard one-dimensional wave equation,

1
Uzs = ;’iu,tt (6 —38)
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with

¢ = (6 ~39)

the longitudinal wave velocity, When the strain softening regime is entered
the tangent modulus E(e) becomes negative. As a consequence, the system of
equations changes from a hyperbolic system into an elliptic system. The initial
value problem becomes ill-posed.

Bazant and Belyischko (1985) have shown analytically that the occurrence
of strain softening produces a strain which immediately localizes and becomes
infinite within a time interval that approaches zero. The siress in the strain-
softening section drops to zero instantly, and the deformation is limited to a
point as soon as strain softening occurs. The consequence is that the structure
can fail without energy dissipation.

Another peculiarity is that the edge between the softening and the elastic
sections becomes an internal boundary. Waves reflect on this internal boundary
in the same way as on a free boundary: tensile waves reflect as pressure waves
and vice versa, Accordingly, when a section of a bar enters the softening regime,
it is no longer possible to transmit data between points at both sides of the
softened zone.

The abovementioned problems are also encountered in numerical computa-
tions of cracking in concrete. It is found that different meshes produce signif-
icantly different results, wherein the degree of localization depends completely
on the spacing of the mesh. Inelastic deformation invariably localizes in a sin-
gle element which is attended by high strain rates. For an infinite number of
elements the strain rate even becomes infinite.

In the next paragraphs, some examples will be given to illustrate the patho-
logical mesh sensitivity, when strain softening is introduced in the constitutive
equations.

A one-dimensional bar is subjected to an impact tensile load. The load is
present in a short time interval, which is smaller than the first eigenperiod. The
wave speed ¢ is 3227 m/sec, and the duration of the impact load is 7.75-107* sec,
so that the wavelength is 2.5 m,

Two calculations are considered, one in which the bar was divided into
five eight-noded elements, and one in which the bar was divided into ten eight-
noded elements. Nine-point Gauss integration has been employed thronghout
the analysis to avoid the occurrence of spurious mechanisms (de Borst and Rots
1989). For other data the reader is referred to Sluys (1989a).

The magnitude of the impact load is taken as 65% of the maximum tensile
load in the static case. The response of the bar is linear elastic until the left
boundary is reached. There the wave reflects as a tensile wave, which causes a
locally higher stress and results in cracking. The material starts to soften, and
strain localization takes place. A small drop in the stress and a rapid increase
of the strain can be observed. During loading the width of the localization band
is constant until the tensile wave has passed.
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Using 40 elements, the ultimate crack strain is much higher than in the
calculation with the ten-element mesh. In Fig. 6.8, the strain distribution along
the bar at maximum strain has been plotted for both meshes. In both analyses
localization remains limited to one vertical row of integration points.

The stress drop converts the boundary into a free one, and the tensile wave
is almost totally reflected as a pressure wave. This can be seen from the energy
consumption in the system in Fig. 6.9. In the remaining system the wave
propagates through a bar with two free ends, alternately as a pressure and as a
tensile wave., When a pure brittle crack model is used, the results become even
worse (Sluys 1989a).

It is finally noted that the above results were obtained in spite of the fact
that a Gy-type model was employed to ensure a mesh-objective energy release.
It appears that in contrast to the static case, where the global behavior can be
made insensitive to mesh-refinement by using a G;-type model, or in other words
by making the softening modulus dependent on the element size, this is not the
case for dynamic loadings. This is because the extent of wave reflections depends
on the locally occurring stress-strain condition, which changes when the mesh
is refined. Recently, some fresh approaches have been put forward to remedy
this pathological behavior. Among these, methods which set out to enrich the
continuum description by adding rotations as independent degrees of freedom
(Sluys and de Borst 1990a,b), or by making the stress in the softening regime
a function not only of the strain but also of higher-order derivatives thereof
(Schreyer and Chen 1986; Lasry and Belytschko 1988), or by adding strain-rate
sensitivity to the system (Needleman 1988; Sluys and de Borst 1990a) seem to
be most promising for large-scale computations, although the developments in
this field are so fast that firm statements cannot be made on this issue.

6.5.3 Numerical Simulation of Uniaxial Impact Tests

In the Stevin Laboratory of Delft University of Technology, uniaxial tensile
impact tests have been carried out on notched, prismatic concrete specimens. A
geometry with notches makes it possible to fix the failure plane and to measure
the deformation inside as well as outside the fracture zone. The tests have been
performed with the Split-Hopkinson bar apparatus by Weerheijm and Reinhardt
(1989), Fig. 6.10. The specimen is kept between an upper and a lower bar, and
the pulse is applied at the bottom of the experimental set-up. The loading rate
has been measured after the pulse passed the specimen and has been affected
by the failure process and the geometry of the specimen.

Numerical analysis of the uniaxial tensile impact tests have been carried
out in order to demonstrate the mesh-sensitive behavior and the influence of the
structural response on the load-displacement data (Sluys 1989b, Sluys and de
Borst 1990b). In the numerical analysis three restrictions have heen made. First,
the analysis has been performed under the assumption of plane stress, while in
the experiment three-dimensional effects may have played a role. Secondly, the
numerical model for the experimental sel-up differs from the one actually used.
Because the boundary conditions may influence the response, this assumption
in modelling should be investigated. Thirdly, the material was modelled as rate-
independent, whereas rate effects may have a major influence on the material
properties.
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In all numerical analyses, use has been made of the implicit Newmark in-

tegration scheme, with coefficients 8 = } and 4 = L. The time step was taken

as 2+ 10~% sec to achieve an adequate description of the failure process. If
we assume that the loading wave traverses at the most one element in a {ime
step, a maximum element size can be derived. Using this element size, the
total Split-Hopkinson bar with a height of 11.2 m should be modelled with ap-
proximately 4000 elements to accurately simulate a propagating loading wave
through the set-up. This would make a dynamic nonlinear analysis too expen-
sive. Instead, an investigation has been carried out for a configuration with less
elements using special boundary elements to slow down the loading wave without
undesirable reflections. A detailed description of the numerical modelling of the
Split-Hopkinson bar has been given by Sluys (1989b). For the specimen itself,
two finite element discretizations have been used, Fig. 6.11. First, a fine mesh
consisting of quadrilateral elements with eight nodes and a four-point Gauss
integration, and triangular elements with six nodes and a three-point Gauss in-
tegration has been used. The reduced cross section has been modelled with two
rows of elements. The second mesh was coarser, with only one row of elements
in the notched section. Here, only quadrilateral elements with eight nodes and
nine-point Gauss integration have been used.

In the calculations, one element in front of the left-hand notch 'was given
a material imperfection in the sense that the tensile strength has been reduced
by 20%. When such an imperfection is not inserted in the model, a symmetric
deformation and failure pattern will be computed. Because of the heteroge-
neous character of concrete, imperfections will always exist, and the asymmetric
solution is observed in static (Reinhardt et al. 1986) as well as in dynamic
experiments (Weerheijm and Reinhardt 1989).

The computational results for the fine mesh show deformation and cracking
behavior which is in contradiction with the experimental data. Cracks start
propagaling {rom both sides of the speciinen in two different rows of elements.
Convergence problems occur when vertical cracks appear among the two rows
of elements. It appeared that when a conventional softening model is used,
numerical results can only be made in accordance with experimental data when
the element size in the fracture zone approximately equals the crack band width
(the coarse mesh of Fig. 6.11).

In the first analysis with the coarse mesh the material properties have been
derived directly from the tests: E, = 33863 N/mm?, f.; = 4.22 N/mm? and
Gy = 100 J/m?. Now, asymmetric crack propagation occurs similar to the
test, Fig, 6.12. However, in the experiment, the failure mode was dominated by
rotation, whereas the calculated failure mode was dominaied by translation, and
only a small rotation of the specimen can be observed. In Fig. 6.13, the stress-
deformation curve for the fracture zone has been plotted, in which u represents
the deformation inside the fracture zone, and oy, represents the vertical stress
at the top of the specimen. The numerical analysis shows a behavior which is far
more ductile after peak stress than is observed experimentally, The maximum
stress differs considerably from the measured value in the test, which is due
to the presence of stress concentrations adjacent to the notches. To achieve a
more pronounced rotation failure mode and a more brittle behavior after peak
stress, a purely brittle softening model has been used next. This model is the
limiting case wherein the stress drops to zero instantly upon crack initiation.
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The results, Fig. 6.13, show that as soon as cracking starts, the stress hardly
increases, which is due to the inability of the cross section to redistribute stresses,
"I'he specimen rolates slightly, but the results {or the tensile strength are totally
unrealistic. Finally, a modified analysis has been carried out with an increased
tensile strength, fo; = 5.6 N/mm? and a decreased value for the fracture energy,
Gy = 60 J/m?. The results improved with respect to the peak stress but still
show less rotation and ductile behavior after peak stress, Fig. 6.11. So it becomes
clear that by using a conventional strain-softening model, a modification of the
input parameters improves the situation, but it is impossible to properly simulate
the failure mechanism of the specimen. After the appearance of cracks, there
exists an obvious difference between experiment and simulation with respect to
the stiffness of the specimen. More energy should be dissipated between crack
initiation and peak stress to achieve larger deformations, which corresponds to
a more ductile softeninig function. On the other hand, after peak stress a more
brittle model is exactly what is needed to describe the post-peak behavior more
accurately.

In sum, due to the mesh sensitivity, the numerical analysis only gives rea-
sonable results when the element size equals approximately the crack band width
observed in the test. The material parameters derived directly from the test are
influenced by the structural response and better results can be obtained by a
maodification of these parameters. However, the failure mechanism observed in
the test is difficult to describe with a conventional softening model.

6.6 Practical Applications and Examples
6.6.1 General

The application of nonlinear dynamic finite element analysis to realistic
reinforced concrete structures requires considerable expense and exemplary skills
on the part of the analyst. These two factors are likely to inhibit the routine use
of this analysis tool in engineering practice for some time to come. Yet, there are
situations, in which the problem facing the engineer cannot be solved any other
way, short of full-scale experimentalion. Even scale model tests are difficult to
dvise, if all dynamic properties are to be scaled properly.

The examples given below shall serve to illustrate both the potential and
the difficulties of nonlinear finite element analysis.

6.6.2 Internal Gas Explosion in an Underwater Tunnel

In an effort to demonstrate the applicability of nonlinear finite element
analysis to problems in engineering practice in general, and to highlight the ca-
pabilities of the general finite element program DIANA (de Borst et al. 1983) in
particular, the Dutch Committee for Research, Codes and Standards for Con-
crete (CUR-VB) has funded a project that has since been documented in the
so-called DIANA-example book (van Mier 1987). The example to be described
below is the last of the eight examples contained in that report.

Road tunnels that pass under waterways are very common in the Nether-
lands. They are normally designed to resist the loads associated with soil and
water pressure. In the event of an internal gas explosion, the tunnel experiences
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a load reversal for which it may not be adequately reinforced. Thus, the ques-
tion whether hazardous cargo should he permitted to pass through. stch tunngls
is of some importance. Fig. 6.14 shows a cross section and material properties
typical for such tunnels. The strength parameters listed in Fig. 6.14 are based
on experimentally determined values, with a 20% allowance for the strain-rate
effect.

It was the objective of the analysis to predict the response of the tunnel
to the pressure load associated with a hypothet'ical internal gas explosion. The
assumed pressure time history is indicated in Fig. 6.15.

The solution of a problem of this nature requires a careful step-by-step
approach, with continuous verification of the correctness of the program, the
finite element model, and the results obtained. In order to achieve these goals,
the following analyses were performed:

a linear elastic static frame analysis of the entire tunnel cross section;

. a linear static finite element analysis of a segment of the tunnel roof;

. a nonlinear static finite element analysis of the same tunnel roof segment;

an eigenvalue analysis of the finite element model;

. a nonlinear dynamic time history analysis of a grossly simplified finite ele-
ment model;

. the final nonlinear dynamic time history analysis of the actual finite element

model.

D

At each step, measures were taken to verify that the analysis results were reason-
able. For this purpose it was very helpful that a 1:5 scale model of a particular
tunnel section had been tested earlier. Only selected results of analysis steps
3 and 6 will be shown here. Further details may be found in (van Mier 1987;
Meyer 1987b). Figure 16 shows the finite element model, which represents a seg-
ment of the tunnel roof, making use of symmetry. 45 eight-noded plane stress
elements represent the concrete, and the reinforcement was modeled by 34 bar
elements, resulting in a total of 172 nodes with 344 potential degrees of freedom.
When comparing the results of a nonlinear static analysis of this model with the
response recorded on the scale model in the experiment, Fig. 6.17, a consider-
able discrepancy is apparent. Several reasons could be identified to explain this
difference in a qualitative sense. In the experiment, load was increased in stages,
and each load level (except for the final one) was applied 10,000 times. The static
analysis assumed monotonic load application and therefore did not capture the
damage that accumulated during the large number of load cycles. It also did
not include the creep deformations that took place during the experiment. Fi-
nally, concrete cracking can be expected to cause some moment redistribution
and thus affect the boundary conditions for the finite element model, which were
held constant throughout the analysis.

Even though the analysis overestimated the stiffness of the structure, crack-
ing patterns were reproduced rather accurately, and also the failure mode and
failure load level agreed remarkably well, Fig. 6.17. It was primarily this en-
couraging agreement which gave rise to the confidence that it was possible to
use DIANA to compute the tunnel reponse up to failure.

The ﬁqal nonlinear dynamic analysis consisted of 150 time steps of 1.25
msec step size. The acceleration, velocity, and displacement time histories of
the roof midspan section are shown in Fig. 6.18. The first impact experienced
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by the structure was the axial load at the left boundary as a result of the
pressure on the vertical tunnel walls. This tensile impact wave propagated to
the right at about 737 m/sec, causing largescale concrete cracking in its wake
and reaching the right boundary (roof midspan) after only seven time steps, long
before the roof had any time to respond in bending to the upward pressure, Fig.
6.19. This "concrete cracking wave” was followed by a slower "steel yield wave”,
which caused the first steel bar to yield in the fourth time step and reached
the midspan section after 22 time steps. The steel stresses in the two vertical
reinforcing bars, which tie the roof slab into the vertical walls, are plotted as
functions of time in Fig. 6.20. Initially, these two bars provide a fixed-end
moment, but as the vertical pressure tends to lift the roof off its supports, also
ihe tensile stress in the left bar builds up. Concrete stresses were not critical at
any time of the analysis. The combination of flexure with axial tension forced
the reinforcing steel to resist most of the load.

The analysis results lead to the conclusion that the tunnel roof is not likely
to survive a gas explosion with the pressure history assumed in Fig. 6.15. The
weakest detail appears to be the amount of vertical reinforcement which cannot
prevent the vertical pressure from lifting the roof off its supports. Also, the large
rotations in the plastic hinges above the support and at midspan are associated
with midspan deflections as large as 28.5 cm after 150 time steps (0.1875 sec),
which can only be interpreted as failure.

6.6.3 Cyclic Response of Reinforced Cantilever Beams

The response of reinforced concrete frame elements to severe cyclic loading
has been studied extensively. Comprehensive series of lests were performed in
several laboratories, for example the University of California at Berkeley, the
University of Illinois at Urbana, and the University of Michigan. Several com-
puter programs are now available, which can simulate this response numerically.
Figure 6.21 shows the load-deflection curve of a heam tested by Hwang (1982),
compared with the numerical results obtained by program SARCF (Chung 1988;
Chung et al. 1988). As can be seen, the strength degradation discussed earlier
is reproduced quite well, and so is the pinched shape of the hysteresis loops
in the presence of high shear forces. Ifforts are under way to further refine
the computer models for frame elements and to calibrate them against known
experimental response of reinforced concrete building models.

6.7 Conclusions

The nonlinear dynamic analysis ol reinforced concrele structures belongs
to the most difficult tasks facing an engineer. Although a considerable hody
of knowledge exists on how concrete structures respond to both dynamic and
cyclic loads, mathematical models proposed to simulate this behavior are only
slowly maturing to the point where they can be applied with confidence to
real structures. Often they are calibrated against experimental data over a
rather limited parameter range, so that their applicability outside this range is
questionable.

As for practical application of these models, the caveats that apply to any
finite element analysis apply even more so here, hecause it is very difficult to ver-
ify the analysis results by independent means. Experimental test data should he
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used wherever possible for benchmark comparisons. Then, with proper caution
and engineering judgment, this new analysis tool can be used to study relatively
economically the behavior of concrete structures under dynamic load.
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