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Abstract

In this work we aim to implement a variaton of the
acceleration of hyperbolic t-SNE done by Skrodzki
et. al. [19]. This variation aims to embed the points
in the Klein Disk model of hyperbolic space instead
of the Poincaré Disk model using an altared version
of a polar quadtree to speed up the computation in
a similar fashion as the Barnes-Hut scheme for the
Euclidean versino of t-SNE. We analyze our results
to prove our acceleration works for the Klein Disk
model and compare the efficiency of our implemen-
tation to the one for the Poincaré model in terms of
quality of results and runtime.

1 Introduction
Analysis of high-dimensional data has high significance
across various industries and research fields. In the process
of high-dimensional analysis dimensionality reduction plays
a vital role in both visualising as well as analyzing such data.
This can be seen by the application of such reductions in
fields such as healthcare [2], literature search [12], sports
[25], targeted advertising [3] and machine learning [20]. An
effective representation of this high-dimensional data in 2
- or 3 dimensional space preserves the underlying structure
and thus facilitates insights through visual examination of the
low-dimensional representation.
A commonly used technique for the embedding of high-
dimensional data is t-distributed stochastic neighbor embed-
ding (t-SNE). T-SNE is particularly good at preservation of
local neighborhoods in the low-dimensional representation of
the dataset [23]. Like most traditional dimensionality em-
bedding algorithms (regular) t-SNE embeds the high dimen-
sional data into flat, Euclidean space, which misses out on
the potential benefits provided by other embedding spaces,
one group of such spaces are the negatively curved, hyper-
bolic spaces [17]. Due to the negative curvature of these hy-
perbolic spaces geometric structures behave differently. For
example, the area and circumference of circles in 2 dimen-
sional hyperbolic space do not grow polynomially with re-
gards to their radius like they do in Euclidean geometry, but
instead they grow exponentially [9]. This geometric property
makes hyperbolic space very suited to embed data into that
also shows exponential growth, such as trees. Previous work
has already had success in showing performance improve-
ments in targeted advertisements systems by embedding data
into hyperbolic space [18]. Hyperbolic space also provides a
natural Focus+Context view of the data [10], which improves
information foraging [15].
These benefits have led to multiple proposed methods to alter
t-SNE to embed into hyperbolic space instead of Euclidean
space [27], [6], [7]. Although these alterations of t-SNE have
shown potential in their respective use cases, they all have
to solve very costly optimization problems when compared
to methods that embed into Euclidean space. This is mostly
due to the fact that for the Euclidean case there exist multi-
ple acceleration methods to speed up the computation [22],
[21], [11], [14]. One of these methods is the Barnes-Hut

scheme [22], it uses a quadtree data structure using equally
sized quadrilaterals to form the nodes of the tree, it then uses
the average of the containing points in each node as accel-
eration proxies. Like the other acceleration methods Barnes-
Hut relies on averages and linear interpolation to speed up the
computation, which hyperbolic space lacks due to the earlier
mentioned exponential growth. As such there is no trivial
way to translate these methods to the hyperbolic setting.
Recently however a first acceleration data structure for hy-
perbolic t-SNE has been proposed [19]. This acceleration
method embeds high-dimensional data into the 2 dimensional
Poincaré disk model of hyperbolic space [17]. It uses a mod-
ified version of Barnes-Hut with a polar quad-tree designed
to operate in hyperbolic space to accelerate the computation.
The paper proposing this model shows promising results for
the speed up of hyperbolic t-SNE, however it does not explore
whether the Poincaré Disk model is the most suitable model
of hyperbolic space for this acceleration.
One of the other model for hyperbolic space is the Klein Disk
model [17]. In this model geodesics, straight lines repre-
senting the shortest path between 2 points, are straight lines
contained within the unit circle, unlike the the Poincaré Disk
model where they are either circular arcs within the unit cir-
cle, or diameters of the unit circle. One of the drawbacks of
the Klein model is that, unlike the Poincaré Disk model, it is
non-conformal, meaning that angles and circles are distorted.
[17] This paper mains goal will be to uncover how the per-
formance, in terms of computational efficiency and quality of
results, of the acceleration of hyperbolic t-SNE using a polar
quadtree designed for the Poincaré Disk model compare to
an implementation of a polar quadtree designed for the Klein
Disk model.
We will do this by creating an implementation of the hyper-
bolic t-SNE acceleration using the Barnes-Hut scheme for the
Klein model. Then comparing the runtime and quality of re-
sults of this implementation to the one for the Poincaré Disk
model.

2 Background
This section will contain an overview of the relevant back-
ground that our research is based upon. Notably we will start
with a discussion on hyperbolic space and more specifically
the Klein Disk model. Secondly we will discuss t-distributed
Stochastic Neighbour Embedding in both the Euclidean and
hyperbolic space. Lastly we will discuss the Barnes-Hut ac-
celeration method and how it has been adapted for hyperbolic
t-SNE in the Poincaré Disk model.

2.1 Hyperbolic space and the Klein Disk model
When working with hyperbolic space it is first needed to
choose one of the existing models like the Poincaré Disk,
Klein Disk, upper half-plane or the Lorentz Hyperboloid [17]
that suits the needs of the use-case. The paper our work is
based upon chose to use the Poincaré Disk model of hyper-
bolic space, however we will adapt their implementation to
instead use the Klein Disk model.
The Klein Disk model, like the Poincaré Disk model, embeds
the entire hyperbolic space in the Euclidean unit circle. How-
ever the geodesics (straight lines) of the Klein Disk model



Figure 1: On the left straight lines in the Klein Disk model not in-
tersecting with line a, on the right straight lines in the Poincaré Disk
model not intersecting the blue line

are different than in the Poincaré Disk model. In the Klein
Disk geodesics are represented by chords of the unit circle.
This means that in the Euclidean sense the lines still appear
straight, unlike the Poincaré Disk where geodesics are arcs,
see fig 1 for a comparison between the two. What the Klein
model wins in intuitivity by hyperbolic straight lines appear-
ing straight in the Euclidean sense, it loses in the represen-
tation of angles and circles, as the Klein Disk model is not
conformal these are distorted. Formally, the Klein Disk is
the space D =

{
y ∈ R2

∣∣ ∥y∥ < 1
}

. To determine the hyper-
bolic distance between two points in the Klein model we use
the Klein metric which is defined as follows; If you have two
points P and Q to calculate the distance between P and Q first
draw the chord of the unit circle through these two points.
Find the two points where this chord intersects the unit circle,
A and B, these are called the ideal points. Label the points
such that they are A P Q B from left-most to right-most on
the line, see fig 2, then the hyperbolic distance is defined by

dH(P,Q) =
1

2
ln

∥Q−A∥ ∥B − P∥
∥P −A∥ ∥B −Q∥

. (1)

This can be rewritten to

DH(p, q) = sinh−1

( √
|(Dpq)2 − (Apq)2|√

1− (Dp)2 ·
√

1− (Dq)2

)
(2)

where Dpq is the Euclidean distance between the two points,

Dpq =
√
(xp − xq)2 + (yp − yq)2,

Dp =
√
x2p + y2p

and
Dq =

√
x2q + y2q

are the Euclidean distances from the origin to the two points
respectively, and

Apq = xpyq − xqyp.

2.2 T-distributed Stochastic Neighbour
Embedding

T-SNE is a dimensionality reduction technique that aims to
embed high-dimensional data into low dimensional space
while trying to preserve local neighbourhoods of the high-
dimensional space [23]. It tries to achieve this by viewing

Figure 2: A figure showing the way we construct the points for the
distance in the Klein Disk model

the high dimensional data input {x1, ..., xn}⊆ Rd as (condi-
tional) probabilities that are given by the formula

pj|i =
exp

(
−∥xi−xj∥2

2σ2
i

)
∑

k ̸=i exp
(
−∥xi−xk∥2

2σ2
i

) , pij =
pj|i + pi|j

2
, (3)

where Pi|i = 0 and σi is the variance of the Gaussian cen-
tered on point xi.
Besides the high-dimensional probability t-SNE also uses
a corresponding probability distribution for the low-
dimensional embedding Q = {y1, ..., yn} ⊆ Rd

′

, this dis-
tribution is given by

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=ℓ(1 + ∥yk − yℓ∥2)−1

. (4)

To perform the embedding t-SNE begins by creating a set of
low-dimensional embedded points using principal component
analysis (PCA) [8]. It then alters these points using gradient
descent to optimize the Kullback-Leibler divergence between
the high- and low-dimensional probabilities. This divergence
is given by

C = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

, (5)

the corresponding gradient is given by

δC

δyi
= 4

∑
j ̸=i

(pij − qij)
(
1 + ∥yi − yj∥2

)−1
(yi − yj). (6)

Without any acceleration methods t-SNE has a run time com-
plexity of O(n2). This can be seen when analyzing the fol-
lowing rewritten version of Eq. 6

δC

δyi
= 4

∑
j ̸=i

pijqijZ(yi − yj)−
∑
j ̸=i

q2ijZ(yi − yj)

 ,

(7)
where Z =

∑
k ̸=ℓ(1 + ∥yk − yℓ∥2)−1. Analyzing this equa-

tion we see that, if the Guasians in Eq. 3 are truncated, it can
be computed efficiently [22]. The second part of this equa-
tion however can not be computed efficiently and leads to the
O(n2) runtime.



2.3 Hyperbolic t-SNE
To adapt t-SNE to embed into hyperbolic space changes are
needed to the essential equations that make up the algorithm.
Firstly, the high dimensional probability distribution Pij is
still given by Eq. 3. The low-dimensional probabilities how-
ever do change. As the space we are embedding into is hyper-
bolic space instead of Euclidean space the geometric calcula-
tions within this space need to be adapted as well. Instead of
using the Euclidean distances we have to use the hyperbolic
distances. As such the low-dimensional probability distribu-
tion qij is now given by

qHij =
(1 + (dHij )

2)−1∑
k ̸=ℓ(1 + (dHij )

2)−1
, (8)

where dHij is the hyperbolic distance between points i and j.
As the gradient descent also relies on Euclidean distances in
the embedding space it will also differ when we want to em-
bed into hyperbolic space. The rewritten version of the gradi-
ent from Eq. 7 in the hyperbolic case becomes

δCH

δyi
= 4

∑
j ̸=i

pijq
H
ijZ

H δd
H
ij

δyi
−
∑
j ̸=i

(
qHij
)2
ZH δd

H
ij

δyi

 ,

(9)

where ZH =
∑

k ̸=ℓ

(
1 +

(
dHij
)2)−1

.
When performing gradient descent it is needed to take two
extra steps that are not present in the Euclidean version of
t-SNE. Firstly, when performing the gradient descent-step to
change a point yi it has to be ensured that it goes along a
geodesic of the model of hyperbolic space that it is acting in,
that is, it is straight in the Hyperbolic sense. For example, in
the Poincaré Disk model this means to account for the curva-
ture of the geodesics in this model, see [19] for an example of
this step for the Poincaré Disk model. The second extra step
is to ensure that after a gradient descent-step the points are
still within the bounds of the hyperbolic space of the model
they are embedded in. For both the Poincaré - and Klein Disk
models this means that after each step it is needed to ensure
that points are still confided by the unit circle, thus after each
step, for each point, the following projection is performed

proj(yi) =

{
yi/∥yi∥ − ϵ if ∥yi∥ ≥ 1

yi otherwise
, (10)

With these changes it is possible to embed into the hyperbolic
space using t-SNE. However, like in the Euclidean space,
naive approaches to the optimization problem given by Eq.
9 still have a runtime of O(n2), as the second part of the sum
will take quadratic calculations in the hyperbolic case also.

2.4 Barnes-Hut acceleration for t-SNE
One of the proposed acceleration methods for t-SNE is the
Barnes-Hut scheme. Barnes-Hut uses a quadtree data struc-
ture build in the embedded space, sometimes also called a
Barnes-Hut tree. In this data structure the nodes consist of
equally sized quadrilaterals containing the embedded points.
It speeds up the computation of the second part of the sum
in Eq. 7 by replacing it with a summary of a group of points

Figure 3: Visualization showcasing how the Barnes-Hut tree works.
On the left we see that the points grouped by the top left cell of the
quadtree are sufficiently far away from query point y9 and as such
will be summarized using the midpoint of the cell ycell

Figure 4: A showcase on how the building of a polar quadtree works,
it starts out with the full circle, then splits into 4 slices, and then
splits one of them along the angular and radial direction. [19]

in a quadtree node when the midpoint of these points is suf-
ficiently far away from the querying point yi. To do this,
when calculating the gradient for each point we traverse the
quadtree and check for each node whether the following in-
equality holds

rcell
∥yi − ycell∥

< θ, (11)

where rcell is the length of the diagonal of the quadtree cell
(node), ycell is the arithmetic midpoint of the grouped points
contained in the quadtree cell. See fig. 3 for a visualization
of this. θ is a parameter set by the user, usually within a range
of 0.2 and 0.8 [22], that steers the approximation. If Eq. 11
holds we do not do traversal of its children and summarize the
points contained in the cell for the evaluation of the gradient.
It does this by weighing the midpoint ycell by the amount of
points contained within the quadtree cell.

2.5 Polar quadtree
A regular quadtree would not work in Hyperbolic spaces
that are contained within the unit disk, like the Klein - and
Poincaré Disk models. This is because quadrilaterals of the
quadtree can contain areas of the space that are beyond the
boundaries of the unit disk, which are undefined in these mod-
els. One translation of a quadtree adjusted for these models is
the polar quadtree [24]. For this polar quadtree the root cell
is not a rectangle that contains all points, which is the case
for the Euclidean quadtree, instead it is a circle containing all
input points in the embedded space. It then forms the polar
quadrilaterals that make up the nodes of the polar quadtree
by splitting along the angular and radial directions. Denote
ϕ as the angular direction, the splitting of a cell is done at
midϕ = (maxϕ +minϕ)/2, where maxϕ denotes the maxi-



Figure 5: Depection of the 2 different splitting criteria, top shows if
we split a quadrilateral by equal (hyperbolic) area, bottom shows if
we split by equal length

Figure 6: Visualization of the effect of splitting choice, on the left
equal area and on the right equal length.

mum - and minϕ the minimum angular value of the current
cell. To ensure each of the four sub-cells have equal area a
split in the radial direction r is performed at

midr = acosh

(
coshmaxr + coshminr

2

)
. (12)

See fig. 4 for a visualization of this process. In [24] it is
shown the insertion time for a new point is O(log n) where n
denotes the amount of nodes present in the tree.

2.6 Barnes-Hut for hyperbolic t-SNE in the
Poincaré Disk model

The acceleration data structure proposed in [19] adapts the
Barnes-Hut tree to a modified version of a polar quadtree
[24] in the Poincaré Disk Model. However, when splitting the
quadrilaterals it shows that instead of splitting in the angular
direction (Eq. 12) it produces better results when splitting in
the radial direction instead, see fig 6. Thus the splitting of the
cells occurs by

midr =
maxr +minr

2
. (13)

In the Euclidean space the midpoint of a cell is given by the
arithmetic mean of the points contained within the cell. In
hyperbolic space however such an arithmetic mean does not
exist. As such the paper proposes to use the following closed
form formula to approximate the midpoint with an error rate
of 7% [24]

m({vj}) =
∑
j

(
γ(vj)∑
ℓ γ(vℓ)

)vj (14)

where γ(vj) = 1/
√

1− ∥vj∥2 and vj are the coordinates
of the point in the Klein model. This approximation is used
because it allows us to compute the mid-points as a rolling
average, meaning the runtime of inserting a new point and
updating all midpoint information remains O(log n). [19]
in Eq. 8 and Eq. 9 it uses the Poincaré Disk model’s distance
formula and its gradient for the calculations 2. It also makes
use of the projection step from Eq. 10. It aims to speed up the
computation of the second sum of Eq. 9 following the same
concept as the euclidean case, that is, it traverses the tree for
every query point yi checking at every node whether

rcell
dH (yi,ycell)

< θ (15)

holds. This is the hyperbolic version of 11. If this holds, just
like in the Euclidean case, we stop the traversal of the sub-
trees and replace the summands by

−Ncell

(
qHi,cell

)2
ZH δd

H (yi,ycell)

δyi
, (16)

whereNcell is the number of points contained in the cell, ycell
is the midpoint of the cell by 14 and

qHi,cellZ
H =

(
1 + dH (yi,ycell)

2
)−1

.

When performing the gradient descent-step it is also neces-
sary to account for the curvature of geodesics in the Poincaré
model. For this we use the exponential map of the Poincaré
Disk model [19]. It is shown within the paper that the
asymptotic runtime of this acceleration is O(nα where α =
log(ti+1−log(ti)
log(ni+1−log(ni)

, (ni, ni+1 a pair of input sizes and corre-
sponding average iteration times (ti, ti+1.
We build our implementation for a polar quadtree in the Klein
Disk model upon this data structure. Although we do not ex-
pect a better asymptotic runtime, we do hope to find speed
ups in two areas of computation. Firstly, when calculating
the midpoint of a cell, the points in the polar quadtree need
to be converted to points in the Klein Disk model and then
the result of the Eq. 14 needs to be converted back to the
Poincaré Disk model. By adopting the implementation to the
embed directly in the Klein Disk model we hope to find a
speed up by making these conversions unnecessary.
Secondly, we hope to find a speed up due to the lack of a need
for an exponential map in the Klein Disk model after each
gradient descent-step. This is because, as mentioned earlier,
geodesics in the Klein Disk model are also straight lines in
the Euclidean sense.

3 Related work
T-SNE is the main focus of our research [23]. T-SNE is a di-
mensionality reduction algorithm, these algorithms are classi-
fied by whether they obtain their embedding linearly or non-
linearly and whether they aim to preserve local neighbour-
hoods or global distances. T-SNE falls under the non-linear
locally preserving methods. For our motivation to choose t-
SNE as an embedding algorithm we refer you to a recent sur-
vey on this topic that finds that t-SNE ”perform[s] the best in
cluster identification and membership identification.” [26]. In



[5] it is explained in detail how one can interpret the 2 parts of
the sum from 7 as positive and repulsive forces working upon
a point in the embedding. Finding embeddings into the Klein
Disk model in scientific literature is quite difficult, as most
embeddings embed into the Poincaré Disk model as this is
generally more suited due to the conformality of the Poincaré
model. One successful embedding into the Klein model is [1].
However in this paper it is also noted that ”the Klein model
which is less well-behaved (i.e., more scaled and anisotropic)
than the Poincare model”. As such although we do expect
a speed up by not having to do conversions for the midpoint
calculations and no exponential map, we expect worse results
when compared to the implementation for the Poincaré Disk.

4 methodology
In this section we will discuss and prove our method for
adapting the Barnes-Hut acceleration for t-SNE in the Klein
Disk model. We will do so by discussing how we per-
form gradient descent in the Klein Disk model and how we
have changed the Barnes-Hut approach for the Poincaré Disk
model from [19] to instead work for the Klein Disk model.

4.1 Performing gradient descent in the Klein Disk
model

To perform the gradient descent in the Klein Disk model we
remain as close to possible as the original proposed method
by [19]. To this end we will also need the following 2 partial
derivatives of the Klein Disk model’s distance equation, for
the x direction this gives

δdH (p,q)

δxp
= −

x2pρ+ xpx
2
qα− xpβ + xqαβ

ζ
, (17)

where ρ = xq − ypxqyq , α = y2p − 1 and β = ypyq , for the y
direction we this gives

δdH (p,q)

δyp
= −

ypγ + ω + y2pµ

ζ
, (18)

where
γ = (x2p(x

2
q − y2q )− 2xpxq + y2q + 1)

,
ω =

(
x2p − 1

)
yq (xpxq − 1)

and
µ = y2p (yq − xpxqyq)

In both equations

ζ = κ3/2
√
φ

√
η2

ντ

√
−ψ2 + υ

where
κ = −x2p − y2p + 1,
φ = −x2q − y2q + 1,
η = (xpxq + ypyq − 1),
ν = x2p + y2p − 1,
τ = x2q + y2q − 1,
υ = (xp − xq)

2
+ (yp − yq)

2

and ψ = xpyq − ypxq .

These variations are needed as the derivative of the hyperbolic
distance in Eq. 9. Due to the complexity of the calculation
for these gradients and the limited time available for this re-
search we have decided to obtain these gradients with the use
of a derivative calculator and verifying the correctness of the
steps instead of doing the derivation by hand, see section 6
for further explanation on how this was done.
The steps for the gradient descent remain the same as in sec-
tion 2.3. For the hyperbolic distance in Eq. 8 we use the Klein
Disk model’s distance defined in Eq. 2.
Like mentioned earlier, we hope to find a speed up by not the
lack to need to perform an exponential map step for the gradi-
ent descent in the Klein Disk model, as the geodesics of this
model are not curved. We do still need to do the projection
from Eq. 10 to make sure points remain within the bounds of
the unit disk.

4.2 Accelerating t-SNE in the Klein Disk model

We aim to use the same polar quadtree data structure as is
used for the Poincaré Disk model but alter it to fit to the Klein
model instead. As the Klein Disk model has the same domain
as the Poincaré Disk model the changes required to this data
structure lie mostly in the way it deals with distances. One of
the required changes is how we decide whether to summarize
by Eq. 15 we now use the hyperbolic distance for the Klein
Disk model, given in Eq. 2. We also have to alter the way we
compute the longest diagonal of a cell by using the distance
for the Klein Disk model here as well.
Furthermore, we can skip the step in the midpoint calcula-
tion where the implementation from [19] converts the points
from the Poincaré Disk model to the Klein Disk model for the
computation and then converts the result back to the Poincaré
Disk model. As our polar quadtree is already in the Klein
model no conversion between these models is necessary for
this step. Here we also expect to see a speed up when com-
paring the two implementations.
The acceleration works the same as in the Poincaré Disk
model, that is we aim to summarize groups of points suffi-
ciently far away from a query point yi. The formula of the
summarized points remains as in Eq. 16 using Eq. 17 and Eq.
18 for the gradient of the hyperbolic distance. The rest of the
acceleration remains analogous to the one for the Poincaré
Disk model. As such the application to other hyperbolic t-
SNE schemes proven in [19] remains true.

5 Experimental Setup and Results
In this section we will discuss what experiments we have con-
ducted, how they were setup and what the results of these ex-
periments were. The experiments conducted include analysis
of the performance, in terms of both run time and quality of
results, of the embedding with a focus on comparing it to the
results of the same dataset embeddings but with the imple-
mentation of the Barnes-Hut scheme for the Poincaré disk.
Furthermore we will look into the effects of θ on both the
quality of results and the runtime of the algorithm. We will
also compare our acceleration to the exact version for hyper-
bolic t-SNE in the Klein disk model.



5.1 Setup of the experiments
We set up our experiments according to mostly the same setup
proposed in [19] as much of the same principles apply to the
Klein Disk model the same as they do for the Poincaré Disk
model when performing gradient descent. As such we also
start by doing PCA to speed up computations by reducing the
dimensionality of the data to 50 dimensions. Then we follow
the same strategies employed by regular t-SNE by performing
an early exeggeration step, where the positive forces pij are
multiplied by a factor to emplify them [22]. Like [19] we de-
cided to use an exegeration factor of 12. Then we perform up
to 750 iterations with regular pij , the same as regular t-SNE
[22]. For the learning rate we deviate from the regular case
of t-SNE, as we embed into hyperbolic distance where dis-
tances between points close to the edge of the disk are rather
small, we adjust our learning rate as such. That is why for the
learning, like in [19], we take

µ =
n

12 · 1000
. (19)

This is smaller then the recommended learning rate of µ =
n/12 [4] for Euclidean t-SNE. We use this smaller learning
rate because with a higher learning rate the points tend to
end up close to the boundary of the Klein Disk. For the last
parameters for the gradient descent optimization we turn to
[19] and use the same parameters. That is, we use momen-
tum and gains for the gradient descent as in the Euclidean
setting [22], allowing us to use a smaller learning rate that
grows with momentum and gains. We use the recommended
parameters for the Euclidean case, which means we take a
momentum of 0.5 for the early exaggeration and a momen-
tum of 0.8 for the non-exaggerated gradient descent. For the
perplexity we stay within the recommended range [4] and
take a value of 30. All accelerations are run with θ = 0.5
unless specified otherwise. We run all the experiments on
equal machinery on the CPU. For the analysis of our re-
sults we turn to the same precision/recall graphs used in [19]
[13]. For this, like in previous work, we take a maximum
neighborhood size kmax = 30. We compute the number of
true positives for each of the values of k ∈ {1, ...kmax} as
TPk −Nkmax(X) ∩Nk(Y ), this means that it is considered
a true positive if a point is both in the higher and embed-
ded low dimensional neighborhood, given the respective dis-
tances. We then obtain the precision by PRk = |TPk|/k, the
recall is obtained by RCk = |TPk|/kmax. As such an ideal
situation would be for the precision to always be 1 and the re-
call to grow as k/kmax, data sets however do not necessarily
show this property, nor does t-SNE find such a solution [19].
As such the goal of our method is not to have perfect pre-
cision recall, but rather show that our acceleration does not
significantly decrease the quality of results when compared
to an exact solution.
For the experiments we mainly used 3 datasets, the Planaria
[16] and C.Elegans datasets are experimentally obtained gene
expression atlases containing flatworm cell data. We also
use the MNIST dataset for visualization purposes. We chose
these datasets due to their size and use in previous work [19],
[7]. To see visual representations of the embedding of the
Planaria and MNIST datasets see fig. 13 and fig. 12

Figure 7: Graph showing the average total time per iteration com-
pared to the size of the dataset sample.

Figure 8: Graph showing the average time per iteration per value of
theta for the Planaria dataset. Note that the Klein implementation
outperforms the Poincaré implementation for all values of theta.

5.2 Asymptotic runtime
The argumentation for the time gained by acceleration is ana-
logue to the one given in [19]. This is because we use the
same concepts, only swapping the hyperbolic distance func-
tions, which do not lead to a higher run-time complexity. As
such we can follow the same argumentation for the asymp-
totic runtime. Thus we obtain an asymptotic runtime as men-
tioned in 2.6. By looking at the graph in 7 we can see that the
runtime indeed does not show quadratic growth with regards
to the sample size of the dataset, just like for the Poincaré
implementation from [19].

5.3 Further time gain
Like expected we see a faster computation time for the Klein
Disk model when compared to the Poincaré Disk. In fig. 8 it
can be seen that for every value of θ we see a shorter total time



Figure 9: Graph showing the precession recal curves for values of θ
between 0.0 and 1.0 for our implementation.

per iteration for the implementation for the Klein Disk model
when compared to the one for the Poincaré Disk model. This
speed up can be attributed to the two factors previously men-
tioned, namely the lack of a need to converse between models
when calculating the midpoints and the lack of a need for an
exponential map. Due to these speed ups our model outper-
forms the one for the Poincaré Disk model in terms of run
time.

5.4 Effect of θ
To see the effect of θ on the embedding we have conducted
an experiment on the Planaria dataset, running the embed-
ding for all values of theta between 0.0 and 1.0 taking steps
of 0.1. In fig. 9 we see the precision recall curves for differ-
ent values of θ, note that θ = 0.0 gives the exact version of
hyperbolic t-SNE without any approximation. For all values
of θ we observe the precision recall curves do not change sig-
nificantly, especially for values of θ < 0.5 we observe that
there is almost no loss in quality of results, proving our ac-
celeration does not significantly impact the quality of results
from the embedding for the Planaria dataset. The run time
however does significantly increase the lower the value of θ,
which can be seen in graph fig. 8. This is analogue to the
behaviour seen for the implementation for the Poincaré Disk
model [19].

5.5 Impact of splitting criterion
Just like with the Poincaré Disk model implementation we
explored the 2 options for the splitting criterion. As ex-
pected, the split by length performs better as is the case for
the Poincaré implementation from [19], this can be seen for
the PLANARIA dataset from the graph in fig. 10.

5.6 Quality of results
The quality of results of our implementation follow similar
trends as the one from [19] as can be seen by looking at the
graph in fig. 11 we can see that the quality of results does not
significantly decrease when using our acceleration method,
analogue to the behaviour seen in the Poincaré Disk model’s
implementation. Comparing the quality of results of our im-
plementation the the one for the Poincaré Disk, we soon find
that the quality is significantly worse. When looking at fig.

Figure 10: A comparison for the runtime when using different split-
ting strategies.

Figure 11: Graph comparing Klein and Poincaré precision recalls,
for both exact and accelerated with θ = 0.5 for the Planaria dataset.
Note that the goal is for both to be as high as possible, therefore
Poincaré outscores Klein on all values.

11 we can see that the Poincaré disk model outperforms our
model.

6 Responsible Research
This section will discuss the responsible research conduction
relating to our research. We will start wth a discussion on
the datasets that were used. Secondly we will cover how we
obtained our methodology and conducted our experiments.
Lastly we will discuss some societal concerns with regards to
our research.

6.1 Datasets used
For our research we decided to use the same datasets as the
original paper proposing the acceleration method for hyper-
bolic t-SNE in the Poincaré Disk model [19]. We will briefly
discuss each dataset and show how we ensured it was ethi-
cally appropriate.
Firstly, the MNIST dataset contains handwritten digits. As
this data does not include personal or sensitive information,



Figure 12: Embedding of the Planaria dataset, left Klein and right
Poincaré

Figure 13: Klein model embedding of the MNIST dataset

we can safely use it without ethical concerns.
We also made use of datasets containing cell data, including
the Planaria data set [16] and C.Elegans. All of these are
originally obtained through gene expression atlases. Both the
Planaria dataset and C.Elegans solely contain cell data on flat-
worms, as such they do not pose any ethical concerns related
to personal or sensitive information.

6.2 Transparency and Reproducibility
Unfortunately due to a lack of time we were unable to conduct
thorough experiments with a wide array of datasets, instead
opting to mainly base our initial conclusion on thorough test-
ing with the Planaria dataset, some testing with the C.Elegans
data set and visualizations through the MNIST dataset. To
draw full conclusions it would be necessary to run the ex-
periments for other datasets as well to see whether the same
behaviour is witnessed across different datasets, we can note
however that we do expect this to be the case, as this is the
case in [19] and our results show much similarity.
Our experiments were all run on equal machinery on the
CPU. The code used to run the experiments can be found in
the GitHub mentioned in the supplemental materials, includ-
ing documentation on how one can setup an environment and
run the experiments, or use our implementation for other pur-
poses on their machinery.
For our methodology we needed a derivative of the dis-
tance function for the Klein Disk model. Due to the com-
plexity of the calculations needed to compute this deriva-
tive, in combination with the short amount of time allo-
cated for our research, we decided to use WolframAlpha
(https://www.wolframalpha.com/) to compute the derivative

and verify the correctness ourselves. We did this by giving
the following input
”find the derivative ArcSinh[Sqrt[(a-c)ˆ 2+(b-d)ˆ2-(a*d-c*b)ˆ
2]/Sqrt[1 - (aˆ 2+bˆ 2)]*Sqrt[1 - (cˆ 2 +dˆ 2)]]”
where a = xp, b = yp, c = xq and y = yq when looking at
the regular formula, the formula can also be found in Eq. 2.
This substitution was done for ease of input. We converted
the result it gave us back to use our representation of the vari-
ables.

6.3 Societal impact
It should be noted that the results produced by t-SNE can vary
in their quality from run to run. We observed during our
research that sometimes the embeddings were worse. This
poses a societal risk where an end user might put too much
faith in the results obtained through our algorithm without
verifying their correctness. To mitigate this the result should
always be analyzed on the quality of it. It can also be rec-
ommended to run the embedding multiple times to find the
optimal one.
Furthermore, t-SNE falls in line with other efficient data em-
bedding and dimensionality reduction techniques and offers
the same ethical concerns as these. As these techniques be-
come more powerful and readily available they bring a range
of societal ethical concerns that need to be addressed.
One concern raising from these techniques is their misuse
in surveillance and privacy-intrusive applications. Usage of
these techniques to analyze personal data at a granular level
can potentially lead to privacy breaching and unauthorized
profiling. It is of importance to implement clear guidelines
and ethical norms to combat the misuse of these techniques
and enforce that these techniques are only used in ways that
respect both individual privacy and data protection laws.
Furthermore, the problem of data bias can also be of ethi-
cal concern in the use of the proposed technique. Data bias
in the data fed into the hyperbolic t-SNE algorithm can get
even more exaggerated in the data embedding. Biases like
these can lead to discrimination or unfair treatment of certain
groups in applications such as hiring, law enforcement or fi-
nancial services. These biases are hard to detect and hard to
deter, as such it is mostly up to the user of the techniques
to ensure that the data they are putting into the algorithm is
(mostly) free of (unfair) bias.
Lastly, the complexity of our data embedding technique can
lead to distrust in the end-users of applications of the tech-
nique as it is difficult to understand and thus trust the results.
To combat this mistrust it is important to keep the technique
as transparent as possible and make sure there is clear and
complete documentation so the results are verifiable and ex-
plainable to the end-users, leading to higher trust in the results
obtained using this technique.

7 Conclusion and Future Work
7.1 Conclusion
Unfortunately due to a lack of time we were unable to conduct
enough experiments to come to a full conclusion on our im-
plementation of the acceleration data structure for the Klein
Disk model and how exactly it compares to the Poincaré Disk



model. Although we believe we can conclude that our ac-
celeration method works for the Klein Disk model. From the
experiment we conducted with the Planaria dataset we can see
that our acceleration gives results similar in quality to an ex-
act implementation for the Klein Disk model, see fig 9, while
providing faster computation times, see fig. 8 further anal-
ysis is necessary to draw full conclusions on the embedding
into the Klein model. For the parameters and datasets used
we can conclude that our implementation performs worse in
terms of quality of results, but better in terms of run time.
As a preliminary conclusion we would not recommend us-
ing the Klein Disk model implementation over the one for the
Poincaré Disk model, as the gain in runtime does not merit
the loss in quality of results.

7.2 Future work

For further conclusions to be made about the t-SNE embed-
ding into the Klein Disk model it is necessary to conduct more
experiments using our implementation. Using different pa-
rameters and datasets. One thing that could be explored is
with different learning rate, due to a lack of time we were un-
able to conduct further experimenting on this.
There are also some other avenues that can be explored re-
garding t-SNE embedding into the Klein Disk model. One
such potential avenue is to replace the polar quadtree used in
our acceleration with a modified regular quad tree. This quad
tree would have to implement a way to handle cells contain-
ing areas that reach outside the unit disk or on the unit disk,
as these points are not defined in the Klein Disk model. Sim-
ilarly, exploring the use of grid squares instead of the polar
quadtree to perform the acceleration would also be interest-
ing.
For both of these methods it would be interesting to see
whether the Klein Disk model or Poincaré Disk model of-
fers better performance. As the Klein model has more similar
geometric properties in regards to geodesics (straight lines) to
Euclidean space when compared to the Poincaré Disk model,
it would be interesting to see whether this property makes it
more suited for an acceleration method that also makes use of
straight lines to separate the cells.
Overall these remaining research directions in the field of hy-
perbolic t-SNE have the potential to further improve the effi-
ciency and capabilities of hyperbolic t-SNE, which can bene-
fit its broader use in scientific - and industrial domains.

Supplemental materials

The data sets used in our experiments are avialbe as
follows: Planaria (https://shiny.mdc-berlin.de/psca/),
MNIST (https: //yann.lecun.com/exdb/mnist/), C.Elegans
(https: //github.com/Munfred/wormcells-data/releases).
The implementation of the acceleration data struc-
ture and the code to run the experiments can be
found at https://gitlab.ewi.tudelft.nl/cse3000/2023-2024-
q4/Skrodzki Eisemann/shared-approximating-nearest-
neighbors-in-hyperbolic-spa

Figure credits
Figure 1 left side was taken from https://en.wikipedia.
org/wiki/Beltrami%E2%80%93Klein model, right side was
taken from https://en.wikipedia.org/wiki/Poincar%C3%A9
disk model both are taken from wikipedia and are thus part
of the public domain. Figures 3,4,5 and 6 were taken from
[19]
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