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Abstract—This paper presents the GPU porting through
OpenACC directives of the Dutch Atmospheric Large-Eddy
Simulation (DALES) application, a high-resolution atmospheric
model. The code is written in Fortran 90 and features parallel
(distributed) execution through spatial domain decomposition.
We assess the performance of the GPU offloading, comparing the
time-to-solution on regular and accelerated HPC nodes. A weak
scaling analysis is conducted and portability across NVIDIA A100
and H100 hardware is discussed. Finally, we show how targeted
kernels can benefit from further optimization with Kernel Tuner,
a GPU kernels auto-tuning package.

I. INTRODUCTION

Atmospheric models are among the most challenging phys-
ical models to solve numerically. Model complexity and as-
sociated computational costs come from the chaotic nature of
the airflow dynamics and its coupling with various transport
processes such as precipitation, chemical reactions, solar and
thermal infrared radiation and ocean/land interactions. The
accuracy and reliability of the simulations strongly depend on
the spatial and temporal resolutions with which the model is
discretized and, in return, on the efficient use of significant
computational resources.

Atmospheric numerical models naturally rely on parallel
implementation on powerful supercomputers. The spatial dis-
cretization employed in atmospheric models is well suited
for domain decomposition, with independent mesh partitions
distributed on compute clusters using MPI. The last decade has
seen the massive use of GPU accelerators in high performance
computing (HPC), and GPUs represent 3/4 of the computa-
tional power of the machines in the Top500 list today [1].

The climate community has thus explored different ways to
efficiently use GPUs.

The community early work focused on converting selected
computationally expensive kernels to CUDA [14], leading
to up to 20x speedup for given compute kernels and 1.3x
speedup at the solver level (on a single CPU versus single GPU
basis). Subsequent efforts aimed at accelerating entire solvers
and led to the development of solvers such as NIM-CUDA
[9], GALES [18] or MicroHH [20], the later two introduc-
ing a C++/CUDA re-write of a previous Fortran code base.
However, such drastic approaches require significant code
development investments and disruptive changes for the users.
In recent years, directive-based acceleration using OpenACC
has been successfully applied to weather and climate Fortran
code bases [13], [15], [8], striking a compromise between
implementation efforts and performance on GPU.

This paper addresses the GPU porting of a high-resolution
atmospheric model called the Dutch Atmospheric Large-Eddy
Simulation (DALES) model through OpenACC directives. We
first present the DALES implementation and our acceleration
strategy in Sec. II. The simulation experiments we perform
to assess the offloading performance are described in Sec. III.
We then discuss the offloading results in Sec. IV, obtained on
a single-node basis and different hardware, namely NVIDIA
A100 and NVIDIA H100 (Snellius supercomputer). This
section also covers the multi-node performance and a weak
scaling analysis. Finally, we address how Kernel Tuner [21],
an auto-tuning GPU application, can further improve the
performance in Sec. V, and we conclude in Sec. VI.
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II. DALES FRAMEWORK

A. Modelling

DALES is an atmospheric large-eddy simulation code, used
to model atmospheric processes such as convection, clouds,
and precipitation. It is generally run with a horizontal resolu-
tion of 10 to 200 m and a vertical resolution of 10 to 50 m,
meaning that it can explicitly simulate clouds and convective
updrafts. The model combines a large-eddy simulation of fluid
dynamics with models of physical processes in the atmosphere.
The dynamics is solved for incompressible air, in the anelastic
approximation [2].

The fluid dynamics part contains advection of momentum
and scalars in finite difference formulation. Several advection
schemes are available, see Ref. [10]. Time integration is
performed by an explicit third order Runge-Kutta scheme.
Since the flow is assumed incompressible, a Poisson equation
for the pressure field is solved at each time step to ensure mass
conservation. As the spatial discretization along horizontal
directions uses a regular grid spacing, a FFT-based approach
for the finite-difference Poisson equation is used in the lat-
eral directions [3]. Subgrid turbulence, i.e. diffusion caused
by turbulent eddies smaller than the grid size, is modelled
with the Deardorff scheme [6]. A prognostic model variable
for the subgrid turbulent kinetic energy is used to estimate
diffusion coefficients for momentum and other transported
quantities [5]. Such a subgrid-scale model is almost what
defines a large-eddy simulation: the model resolves the “large”
turbulent eddies and parameterizes effects of the smaller ones.

The physical processes include:
• buoyancy of air dependent on temperature and moisture

content;
• condensation of water vapor, forming cloud droplets and

releasing latent heat, hereafter referred to as “thermody-
namics”;

• “cloud microphysics”, i.e. the conversion of cloud
droplets to rain droplets, and other processes related to
rain or snow;

• radiative transfer, solved using the independent column
approximation within both the infrared range (longwave)
and visible solar light range (shortwave). There are sev-
eral schemes for simulating the radiative transfer. One
of them is RTE-RRTMGP [16], which we focus on here
since it supports offloading to GPUs;

• atmospheric chemistry, modelling chemical reaction be-
tween chemical species in the atmosphere (optional and
not considered in this article).

B. Implementation

DALES is written in Fortran 90 and employs an MPI-based
domain decomposition approach for parallelism. The code
base consists of about 75k lines of codes, organised in physics,
numerics and utility modules. The basic data structures, stored
in data modules, are Fortran multi-dimensional arrays which
are allocated only once upon initialization since the com-
putational grid is fixed. 3D-arrays are indexed ijk, meaning

the k indices associated with the vertical direction are not
addressed contiguously. The domain decomposition partitions
the computational grid into z-pencils (in the direction normal
to the ground), generating Cartesian sub-domains whose size
in the horizontal directions is inversely proportional to the
number of MPI ranks. On each partition, halo cells are added
in the horizontal directions to ensure data consistency across
MPI ranks using non-blocking send/receive exchanges. The
number of halo cells varies from 1 to 3 depending on the
advection scheme stencil size. DALES does not feature shared-
memory parallelization (e.g. using OpenMP).

DALES includes a bundled netlib fast Fourier Transform
(FFT) module to ensure portability of the Poisson solver, but
also relies on external libraries such as FFTW for increased
efficiency and flexibility. Finally, DALES employs NetCDF
for most of its input/output operations except checkpointing
which uses plain binary format.

C. Acceleration

Owing to the size of the code base and the long duration
of the tuning and validation of the model parameters, a
complete overhaul of the solver in a more modern and GPU-
friendly programming language (e.g. C++) is not an option.
Additionally, DALES is used by researchers and students alike
(see Ref. [7] for instance), with the later group often having
a limited computer science background thus making Fortran’s
imperative programming style a good choice. OpenACC en-
ables to leverage the high throughput of GPUs with limited
disruption to the code base and has been successfully applied
to several fluid and weather solvers over the past few years
[22], [15], [8], [4]. The following provides an overview of the
main aspects of the DALES acceleration.

1) Data management: Data containers in DALES are dis-
tributed across the physics, numerics and utility Fortran mod-
ules, each module managing the dynamic memory allocation
and deallocation of the multi-dimensional arrays necessary for
its computations. In early GPUs (e.g. NVIDIA Kepler and
older), the limited available device memory required careful
management of the data loaded in the device memory for
each kernel, and data transfers to and from the device was
found to be a significant bottleneck software developers had
to overcome in order to obtain good performance on GPUs.
Leveraging the larger memory available on modern GPUs,
the entire memory of the CPU is mirrored on the device in
DALES, with each module using the enter data copyin
clause once after initialization of the data on the CPU,
and clearing the device memory with exit data delete
clause before deallocating the arrays on the CPU. Thus, data
is always assumed to be already present on the device when
launching compute kernels and data copy from the device to
the host memory only happens when performing diagnostics
or checkpointing.

2) Overall porting strategy: DALES typical compute sub-
routines fall into one of the following categories:
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• nested independent ijk or ijkn loops, traversing the three
spatial dimensions and possibly a fourth dimension in the
scalar index space.

• similarly nested loops but carrying a dependency over the
k index corresponding to the vertical direction (normal to
the ground).

The sizes of the ijk loops are case dependent and can be found
in a wide range of values when considering the typical use
case of DALES. As such, a premature optimization of the
OpenACC pragmas for a given case size is not considered.
Rather, our default approach consists in using the collapse
clause on as many tightly nested loops as possible in order to
expose a maximum of parallelism to the GPU while remaining
portable, with the stride-1 inner loop index, as follows:

Listing 1. Typical DALES triply-nested Fortran loop
! $acc p a r a l l e l l oop c o l l a p s e ( 3 )
do k = 1 , kmax

do j = 1 , jmax
do i = 1 , imax

p h i ( i , j , k ) = . . .
enddo

enddo
enddo

Alternate OpenACC clauses, including changing the
parallel loop default parameters and caching will be
discussed in Sec. V. Most of DALES compute kernels are
concise, such that register pressure is not a limiting factor
except in a few specific cases that will be discussed Sec. V.
DALES ijk loops often include an if statement for the
surface layer (k = 1). To avoid branching within the device
code and the resulting thread divergence, the k = 1 case is
launched in a separate kernel, using the async clause to hide
the launch latency. For ijk loops carrying a k dependency,
atomic operations are used when the dependency is strictly
additive (e.g. in the cloud sedimentation kernels, where the
cloud droplets are transferred between adjacent k levels) or a
temporary array is introduced.

When possible, consecutive independent kernels are fused
but DALES often intertwine compute kernels and statistics
sampling in order to extract diagnostics able to provide in-
sights into the complex physics at play. In this later case,
async clauses in separate queues allows to hide launch
latency while keeping the kernels in separate subroutines for
readability and convenience.

3) Refactoring: In order to enable collapsing as many loops
as available, local refactoring of several compute kernels was
necessary to displace k-only dependent computations into the
innermost loop, at the small price of repeated calculations.
More extensive refactoring was needed in microphysics and
thermodynamics, where differences in the local state can
introduce significant thread divergence. Two examples of such
refactoring are:

• All the rain microphysics computations in DALES are
masked to take advantage of the observation that rain

droplets are generally present in a limited range of alti-
tude (k-levels) and clustered in ”showers” in the spanwise
directions. The actual range of k in microphysics ijk loops
is based on a scan of the mask, initially relying on k-only
loop combined with Fortran-array syntax and an exit
statement on CPU. This approach performs poorly on
GPUs, where a reduction across a fully collapsed ijk loops
was used. In this case, separate versions of the code are
needed since the GPUs approach proved more expensive
on CPU.

• DALES uses a saturation adjustment scheme in the
thermodynamics routines to diagnose cloud liquid water
content. To adjust the liquid water potential temperature
accordingly, a Newton-Raphson algorithm is needed. The
local conditions in each computational cell can lead
to a varying number of Newton iterations needed to
reach the desired accuracy, introducing thread divergence.
Replacing the iterative algorithm by explicitly unrolling a
fixed number of iterations deemed sufficient for accuracy
alleviated the divergence issue and resulted in a more
efficient kernel on both CPU and GPU.

4) External libraries: Alongside this acceleration effort,
DALES relies on external libraries that already features GPU
offloading.

Radiative transfer calculations are performed with the RTE-
RRTMGP libraries [16]. The library is made of two parts, both
implemented in Fortran and featuring GPU porting through
OpenACC directives. The first part (RRTMGP) computes the
radiative properties of molecules and clouds from the input
state of the atmosphere by interpolating tabulated data. The
second part (RTE) solves the radiation problem and output
radiative fluxes accross the spatial domain. Each part has to
be performed independently for each vertical column and each
spectral wavelength, which makes GPU acceleration efficient.
However, it is in practice not possible to run all column
calculations simultaneously because of memory constraints.
The total number of columns is thus divided into several
batches. It is important to maximize the number of columns
per batch (or minimize the number of batch) as multiple calls
to RRTMGP and RTE libraries induce extra computational
costs associated with kernel launch overhead.

In order to perform the 3D FFT required by the Poisson
solver on the GPU, we rely on the cuFFT library. Fourier
transforms are performed one direction of space after another.
Because Fourier transforms are non local, it needs to access all
the field data along the direction performed, across the domain
partition. This requires reorganizing the 3D field memory
layout by performing a transposition, which is communication
intensive with all-to-all communications. The same applies
for the inverse Fourier transform, once the Poisson equation
for the Fourier modes is solved. Finally, we should note that
cuFFT does not support FFTW’s “half-complex” numbering
format used in DALES for in-place real-to-complex transforms
of size N . To circumvent this, we adopted the approach used
in the CaNS [4] and employed a minimal pre-/post-processing
step of cuFFT’s input/output, along with a re-ordering of the
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Fig. 1. 3D visualization of the clouds in one Cloud Botany simulation. Clouds
are shown in white and rain is shown in gray. The air temperature near the
surface is shown in blue, dark blue areas being cold pools associated with
rain.

modified wavenumbers.

III. SIMULATION EXPERIMENTS

A. Reference test case

As a test case for the GPU porting project we chose one
simulation from the Cloud Botany ensemble of simulations.
Cloud Botany [12] is a set of 103 DALES simulations of
shallow cumulus clouds over the subtropical ocean, exploring
how the clouds and their mesoscale organization behave under
different physical conditions, for example changing sea surface
temperature or wind speed. The simulated domains were
150 km wide in both horizontal directions, large enough to
permit organization on a larger scale (called mesoscale in this
context, for scales between single clouds and the scale of
whole weather systems). One objective of the ensemble was to
evaluate how mesoscale cloud organization affects the cloud-
climate feedback [11], i.e. to assess whether these clouds in
a warmer climate will reflect more or less sunlight back into
space. Figure 1 shows a typical 3D visualization of clouds and
rain that can be extracted from the Cloud Botany simulations.

This reference test case is useful to accelerate with GPUs,
because: (i) it utilizes the core of the model and the optional
physical models for solar radiative transfer and rain; (ii) it is a
case where it is scientifically interesting to make the simulation
domain as large as computationally feasible: a larger domain
gives more space for mesoscale organization.

In the following simulation experiments, the grid size in
the horizontal directions is fixed to 100 m but the number of
points is changed between cases in order to address different
problem sizes (in the range 50-100 km). However, the vertical
domain size and spatial discretisation remain the same for all
tests, namely a height of 7 km discretised using 175 points.
As a first step, the model is integrated in time for about 24
to 36 h (model time) in order to reach a statistically steady
state. All simulations will be run from this state for a model
integration time of 10 min to make representative performance
assessments. We made sure this statistically steady state falls
at day time so that it features shortwave radiation.

B. Verification

To verify the implementation of the OpenACC directives
we checked correctness of the model output between CPU

and GPU implementations. Due to the chaotic nature of the
system, round-off errors quickly lead to different simulation
trajectories. We will thus base the comparison on space and
time-averaged statistics, which should remain close. Start-
ing from the same statistically steady state, the simulation
is pursued using either a single CPU (AMD Rome 7H12)
or a single GPU (NVIDIA A100) for 30 mn model time
and a spatial resolution of about 500×500 points in the
horizontal directions, accumulating statistics every minutes
and performing planar-averages in the horizontal. Figure 2
compares CPU and GPU output for various quantities of
the model, namely the temperature, the resolved turbulent
kinetic energy representative of the turbulence intensity, the
liquid water specific humidity showing where the clouds are,
the cloud fraction which is fraction of the area with clouds
and the net flux for both longwave and shortwave radiation.
Comparison shows excellent agreement for both first order
and second order statistics (turbulent kinetic energy), with a
maximum relative difference of ≃3% observed locally on the
precipitation mean droplet diameter.

IV. PERFORMANCE

A. Single node

1) Hardware and set up: In order to assess the performance
of the GPU acceleration for different GPU hardware, we com-
pare model run times obtained on a node-basis on the Dutch
national supercomputer Snellius [19]. We namely consider the
following computing nodes:

• a CPU node consisting of 192 AMD Genoa 9654
• a GPU node consisting of 4 NVIDIA A100
• a GPU node consisting of 4 NVIDIA H100

The number of spatial points in the horizontal directions
(number of grid columns) is adapted as indicated in Table I
in order to accommodate with different MPI partition of the
spatial domain and to ensure that the GPU memory is filled.

The performance of DALES on the Botany case are mea-
sured during a short simulation lasting 10 min of model time
and restarting after the day-long initialization run. Only the
time spent in the time stepping loop is included in the mea-
surements and the experiments are repeated 5 times. Because
the number of time steps and the number of computational
cells differ between the runs (due to the chaotic nature of the
flow and the scaling of the computational domain), we present
timing data in units of µs per time step per million of cells.

2) Timings: Table II shows the averaged performance data
for the CPU-only, the A100 and the H100 runs for each
component of the DALES solver. For each hardware, the
execution time and the fraction of the total time is presented,
and the speed up compared to the CPU-only run is also
added for the GPU-accelerated cases. The overall speed-up
of DALES on a node basis is around 4 on A100 and 11.5
on H100. The fractions of the time spent in each component
of the code remaining close to their CPU value with one
exception: on A100, the performance of the Poisson solver
are below average with a speedup close to 2. Further testing
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Fig. 2. Vertical profiles of time and planar-averaged fields: temperature, resolved turbulent kinetic energy (TKE), liquid water specific humidity ql, cloud
fraction, shortwave and longwave net radiative fluxes (counted positively from Earth to space). Plot for both GPU and CPU implementation.

Hardware MPI tasks nb. of grid columns per task total nb. of grid columns
CPU AMD Genoa (Snellius) 192 63×84 1.016 106

GPU NVIDIA A100 (Snellius) 4 512×512 1.049 106

GPU NVIDIA H100 (Snellius) 4 512×512 1.049 106
TABLE I

SINGLE-NODE COMPARISONS. CONSIDERED HARDWARE WITH ASSOCIATED NUMBER OF MPI TASKS, NUMBER OF GRID COLUMNS PER TASK AND TOTAL
NUMBER OF GRID COLUMNS.

showed that the cuFFT solver available with NVHPC 24.5
(CUDA 12.1.1) on Snellius is less efficient than that available
with NVHPC 22.7 (CUDA 11.7.0). The later software stack
brings the Poisson solve speedup on par with the remainder
of the code, but performance data obtained with the former
stack were kept in Table II to maintain a consistent software
stack across both NVIDIA GPUs. Both stencil-based functions
(advection, subgrid) show similar trends with above aver-
aged speedups while thermodynamics exhibits below averaged
speedup, driven by an increased need for synchronisation
and horizontal reductions. The significantly higher speed-up
obtained on GPUs for the surface component mainly results
from the lower number of MPI ranks compared to the CPU
case, since the surface computation include reductions in order
to obtain integrated ground friction and other quantities of
interests.

Timings of the components of the Poisson solver are pre-
sented in Table III. It can be seen that most of the time is spent
in the forward and backward FFT steps which, as mentioned
before, require MPI all-to-all communication operations. The
forward and backward FFT steps only experience a small
speedup when comparing timings on the A100 GPU node to
the CPU node. Speedups on the FFT steps comparable to those
observed on H100 GPU node were attained when using the
NVHPC 22.7 (CUDA 11.7.0) distribution.

Radiation calculation is another computationally expensive
step in the time loop (about 12 % of CPU timings). As
explained in Sec. II-C4, these calculations are divided into
two steps for both longwave and shortwave spectral regions:
the computation of radiative properties (RRTMGP) and the
radiative transfer equation (RTE). Table IV gives additional
timings for each of these substeps. Total speed-up is about

9 and 14 for A100 GPUs and H100 GPUs, respectively. The
speed-up is roughly the same for each of the individual sub-
step, although RRTMGP LW and RTE SW are proportionately
a little faster. This homogeneous speed-up is expected since
radiation calculations are independent for each vertical column
and each spectral band.

Finally, note that while the size of the DALES test case
has been kept constant on all hardware, more GPU memory
is available on H100 and larger test cases could be run
on these hardware, further increasing the speedup using the
performance metric listed in Table II.

B. Weak scaling

To evaluate the ability of DALES to scale with the needs of
researchers, the A100 case is scaled from 1 to 64 GPUs (0.25
to 16 compute nodes), leveraging the periodicity of the test
case to duplicate the initial data in the horizontal directions in
order to keep the workload per GPU constant. Figure 3 shows
the results of the overall DALES weak scaling efficiency
(t1GPU

/tNGPU
) as well as the efficiency of individual com-

ponents. DALES parallel efficiency is found to drop quickly,
mostly driven by the poor scaling performance of the Poisson
solve, whereas the other components maintain an efficiency
close to one as very little to no communications are needed.
Improvement of DALES scaling performance, in particular
exploring alternate projection approaches or improving the
communication pattern of FFT-based solvers [17], is left for
future work.

It is worth mentioning here that strong scaling is disregarded
in this study, since the objective of acceleration is to address
larger spatial domains.
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CPU A100GPU H100GPU
Timer Timing Fraction Timing Fraction speed-up Timing Fraction speed-up
Thermodynamics 1178.9 12.1 221.8 9.1 5.32 120.7 14.3 9.77
Poisson 2729.2 28.1 1442.0 59.0 1.89 220.5 26.1 12.38
Subgrid 1002.3 10.3 131.6 5.4 7.62 89.9 10.6 11.15
Radiation 1172.3 12.1 132.8 5.4 8.83 86.1 10.2 13.61
Microphysics 607.2 6.3 97.0 4.0 6.26 73.5 8.7 8.26
Advection 922.1 9.5 106.7 4.4 8.64 74.3 8.8 12.41
Time stepping 733.2 7.6 56.2 2.3 13.05 37.6 4.4 19.5
ExtForces 497.9 5.1 61.9 2.5 8.04 45.7 5.4 10.89
Halo-Exchange 501.0 5.2 112.0 4.6 4.47 42.7 5.0 11.73
Surface 246.1 2.5 3.2 0.1 76.91 4.3 0.5 57.23
Checks 44.5 0.5 5.9 0.2 7.54 4.6 0.5 9.67
Timestep loop 9711.7 100.0 2444.2 100.0 3.97 846.2 100.0 11.48

TABLE II
SINGLE NODE CPU AND GPU TIMINGS IN µS/STEP/MCELLS.

CPU A100GPU H100GPU
Timer Timing Fraction Timing Fraction Speedup Timing Fraction Speedup

Fill RHS 516.6 18.9 42.3 2.9 12.21 23.3 10.5 22.17
Forward FFT 946.7 34.7 603.3 41.8 1.57 86.9 39.3 10.9

Tridiagonal solve 110.5 4.0 10.0 0.7 11.05 6.2 2.8 17.82
Backward FFT 1025.5 37.6 659.4 45.7 1.55 89.5 40.5 11.46

Apply correction 129.9 4.8 126.6 8.8 1.03 15.1 6.8 8.60
Total 2729.2 100 1441.6 100 1.20 220.9 100 7.8

TABLE III
SINGLE NODE CPU AND GPU POISSON SOLVER TIMINGS IN µS/STEP/MCELLS.

CPU A100GPU H100GPU
Timer Timing Fraction Timing Fraction speed-up Timing Fraction speed-up
RRTMGP LW 332,2 28.3 35.3 26.6 9.41 22.2 25.8 14.96
RRTMGP SW 277.0 23.6 34.0 25.6 8.15 21.4 24.9 12.94
RTE LW 166.7 14.2 19.6 14.8 8.51 13.4 15.6 12.44
RTE SW 345.6 29.5 37.7 28.4 9.17 25.0 29.0 13.82
Radiation total 1172.3 100.0 132.8 100.0 8.83 86.1 100.0 13.62

TABLE IV
SINGLE NODE CPU AND GPU RADIATION TIMINGS IN µS/STEP/MCELLS.
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Fig. 3. Weak scaling of DALES on the botany case using Snellius A100
GPUs

V. OPTIMIZATION

The acceleration strategy presented in Sec. II-C enables to
quickly accelerate the entire code base, giving entire freedom
to the compiler in terms of kernel launch parameters and
ensuring relatively good portability. However, a handful of
kernels exhibit low occupancy (<50 %) and require more

careful consideration. Two strategies are employed in order
to increase the performance of those kernels: 1) manually
modifying the kernels to improve memory access, cache usage
and register pressure; 2) using Kernel Tuner [21] (KT) to auto-
tune the kernel launch parameters.

A. Presentation of Kernel Tuner

Kernel Tuner (KT) [21] is a generic auto-tuning framework
for GPU applications. It is written in Python and supports the
tuning of computational kernels written in CUDA, HIP, and
OpenCL, but was also recently extended to handle directive-
based languages like OpenACC and OpenMP.

To do so, KT provides a set of helper functions that allows
users to extract the tunable kernels from the rest of the code,
together with all the necessary C preprocessor macros, and
takes care of the allocation and initialization of the used data
structures.

The selection of tunable kernels and identification of the
data structures is guided by the user, by adding some ad-hoc
KT pragmas to the source code; these pragmas are the only
changes to the original code needed for tuning.

Kernel Tuner was used to find the optimal configuration of
launch parameters for the GPUs used in the experiments. All
the KT data reported hereafter are averaged over 20 calls to
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Listing 2. Momentum diffusion operator kernel where km and e are respectively the eddy viscosity and the subgrid TKE
! $acc p a r a l l e l l oop num gangs ( ngang ) v e c t o r l e n g t h ( v l e n g t h ) c o l l a p s e ( c f a c t o r )
do k = 1 , kmax

do j = 1 , jmax
do i = 1 , imax

e t ( i , j , k ) = ( ( ( km( i +1 , j , k )+km( i , j , k ) ) * ( e ( i +1 , j , k ) − e ( i , j , k ) ) &
−(km( i , j , k )+km( i −1 , j , k ) ) * ( e ( i , j , k ) − e ( i −1 , j , k ) ) ) &
* nuf ( k ) / dx2 &

+ ( ( km( i , j +1 , k )+km( i , j , k ) ) * ( e ( i , j +1 , k ) − e ( i , j , k ) ) &
−(km( i , j , k )+km( i , j −1 , k ) ) * ( e ( i , j , k ) − e ( i , j −1 , k ) ) ) &
* nuf ( k ) / dy2 + &

+ ( rhoh ( k + 1 ) / r h o f ( k ) * ( d z f ( k +1)*km( i , j , k )+ d z f ( k )*km( i , j , k +1) &
* ( e ( i , j , k+1) − e ( i , j , k ) ) ) / dzh ( k +1)**2 &

−rhoh ( k ) / r h o f ( k ) * ( d z f ( k −1)*km( i , j , k )+ d z f ( k )*km( i , j , k −1) &
* ( e ( i , j , k ) − e ( i , j , k − 1 ) ) ) / dzh ( k )**2 &

) &
)

enddo
enddo

enddo

the targeted kernel with a given set of parameters in order to
mitigate runtime variability.

B. Targeted kernels

The compute kernels targeted for optimization are the
stencil-based kernels in the advection and subgrid scale diffu-
sion operator. Combined, these kernels take up to 20% of the
total compute time (see Table II). Note that tuning of launch
parameters in typical thermodynamics and microphysics ker-
nels was also attempted without obtaining any gain compared
to the compiler-selected values.

The subgrid diffusion operator is close to a weighted 3D
7-points stencil, which is a benchmark for a number of stencil
kernel domain specific language [23], [24]. These studies
showed that the 3D 7-points stencil is difficult to optimize
because only close neighbors (+/-1 in each direction) are in-
volved, such that data locality is not as critical as higher order
kernels. Additionally, these kernels are memory bound and
thus less sensitive to kernel launch parameters. For instance
the subgrid turbulent kinetic energy (TKE) production through
strain (second term on the right-hand-side of Eq. 12 in [10])
kernel is given in Listing 2.

In this kernel, the stencil in the z direction differs from
the horizontal ones due to the staggered nature of the grid
and the non-uniform grid spacing. A variant of the kernel
in Listing 2 for computing subgrid scalar diffusion adds a
fourth loop on the number of scalars. This fourth loop can be
placed around the ijk do loops, further extending the index
space when using collapse, or nested as an inner loop
and treated sequentially using the loop seq clause such
that each GPU thread performs the computation for all the
scalars. The advection kernels (not listed here for the sake on
concision) features similar access pattern as those presented in

Listing 3. Example of manual loop tiling
! $acc p a r a l l e l l oop num gangs ( ngang ) &
! $acc& v e c t o r l e n g t h ( v l e n g t h ) &
! $acc& c o l l a p s e ( c f a c t o r )
do k = 1 , kmax

do b j = 0 , n b j
do b i = 0 , n b i

! $acc lo op seq c o l l a p s e ( 2 )
do j = 1 , j b

do i = 1 , i b
. . .

enddo
enddo

enddo
enddo

enddo

Listing 2, but the higher order flux reconstruction (6th-order)
needs a wider stencil, reaching +/-3 in each direction.

An alternative approach to dealing with stencil opera-
tion consists in replacing the collaspe clause with a
tile(tx,ty,tz), directing the compiler to split each of
the nested loop into a outer tile loop and an inner element
loop, in hope that it might result in better cache reuse when
already present neighboring cell data is accessed again. The
same objective can also be targeted by manually tilling the
inner ij loops with nbi-nbj blocks of size ib-jb as depicted
in Listing 3.

Here, a loop seq clause is used on the inner ij element
loops such that each GPU thread performs the computation
for all the elements in the tile.
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In summary, the kernel launch parameters targeted by KT
are:

• num_gang maps to the length of the thread block grid
in the x direction (gridDim.x with a CUDA backend)

• vector_length maps to the block size in the x
direction (blockDim.x with a CUDA backend)

• collapse indicates how many of the tightly nested loop
index spaces are flatten to a single one

• tx,ty,tz the tile size in the three spatial dimension
employed by OpenACC

C. Experiments on selected kernels

In a first step, the scalar subgrid diffusion kernel diffcsv
is manually tweaked in order to improve performance. The
following changes are implemented: 1) using the cache
directive to load anisotropic grid spacing data in software-
managed caches instead of multiple read into 1D array, 2)
kernel fission of the subgrid kinetic energy sources to reduce
register pressure (from 108 down to 62 + 56), 3) replace
ijkn collapsed nested loop with a ijk collapsed one and a
loop seq on the n component. Figure 4 shows the results.
Using a combination of 1) and 3), the overall performance of
the subgrid module can be increased by close to 5%. Reducing
register pressure by splitting the long kernel into two leads to
lower performance as the resulting kernels are effectively run
sequentially since each can still occupy the entire GPU.

Fig. 4. Run times of the subgrid module with three optimisation strategies
(using the cache directive, using kernel fission and using ijk collapsed loop
and n sequential loop), relative to the baseline acceleration strategy.

We then use KT on two specific subgrid kernels: diffcsv
(which is similar to Listing 2 but including an outer loop on
scalar and 4-dimensional Fortran arrays) and sources, their
contribution accounting for 30% of the subgrid module. The
first kernel is of interest as it evaluates the diffusion term for
transported scalars in DALES, the number of which can vary
from 2 (as in the Botany case) to a few dozens when chemical
species are considered; the second kernel exhibit significant
reuse of the neighboring data to evaluate cross-derivatives and
is a good candidate for improved performance using tiling.
All the tests are conducted on a grid size similar to that of the
botany case on a single GPU, and using both A100 and H100
GPUs in order to evaluate the portability of the tuned kernels.

Figure 5 shows the distribution of the diffcsv kernel tim-
ings for an increasing number of transported scalars and kernel
launch parameters in the following range: vector_length
∈ [16 : 512], num_gangs ∈ [256 : 65535], cfactor
∈ [2 : 4] and with or without the loop seq optimization

shown in Fig. 4 (a total of 256 parameter sets per subplot).
Each subplot is a classical histogram plot, oriented vertically
such that the bar length (abscissa) is the number of parameter
sets that leads to a timing within a given time bin (ordinate).
The left panel corresponds to A100 timings, while the mirrored
right one is H100 timings. Additionally the timing with the
default (compiler-selected) parameters are indicated with a
dashed red line. Optimizing the kernel launch parameters only
resulted in significant performance improvements on A100,
with a maximum gain close to 35% in the n = 10 case.
On H100, only small improvements were obtained, up to
10%. Using loop seq always led to better performance,
especially for a small number of scalars. Interestingly, the
timing distribution on H100 are not simply a translation
of the A100 one, and the optimum parameter set differs
slightly between the two GPUs: larger vector_length and
num_gangs led to optimum on H100 compared to A100.
However, the parameters leading to optimum performance on
H100 gave close to optimum performance on A100 (within
5%), and vice-versa.
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Fig. 5. Measured kernel timing distribution for the diffcsv kernel, varying
the number of scalar n. On each subplot, the left and right panel corresponds
to A100 and H100 GPUs respectively. Dashed red lines indicate default
parameters timing.

On the second kernel, we could not find launch parameters
leading to better performance than the defaults with KT when
using only the collapse clause. Instead, we employed
1) the tile(tx,ty,tz) clause discussed in Section V-B
and 2) the manual tilling of Listing 3. Figure 6 shows the
kernel timing for optimization 1) and 2) on the left and
right, respectively. KT allows to automatically test hundreds
of combinations of (tx,ty,tz) and ib, jb values, for
values of vector_length and num_gangs in the same
range as for Fig. 5. Using OpenACC tile led to up to
15% performance gain on A100 and H100 compared to the
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baseline collapse(3) clause with default vector length
and number of gangs. On both GPUs, the best performance
are obtained using tx = 64, ty = 4 and tz = 2, and
only differs on the value of vector_length. Once again,
the optimum values of vector_length obtained on A100
led to performance on H100 close to the optimum, and the
reciprocal. In contrast, manually introducing tiles led to a small
decrease in performance at best and much worse performance
in most cases.
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loop tiling

Fig. 6. Measured kernel timing distribution for the sources kernel, using
OpenACC tiling clause (left) and introducing ij tiles (right). On each subplot,
the left and right panel corresponds to A100 and H100 GPUs respectively.
Dashed red lines indicate default parameters timing.

The tile(tx,ty,tz) clause is then employed on an-
other stencil-based kernels, the 6th-order, wider stencil, advec-
tion kernel. Additionally, we evaluate if the problem size can
affect the potential performance gain by dividing the initial
ij loop span (512 x 512) by 2 and 4 in each direction.
The results obtained on the advection kernel are qualitatively
similar with those obtained on the subgrid source kernel:
up to 15% performance gain on A100 and only marginal gain
on H100 GPUs. To illustrate the effect of the tile size on
performance, Fig. 7 shows the kernel timing for the (512 x
512) loop span as a function of the tile size tx which was
found to correlate best with performance. For each value of tx,
a small random perturbation was added to visualize the timing
dispersion due to the other tuning parameters. In particular,
data are colored by the number of gangs. Large values of tx
significantly improve the kernel performance, while a large
number of gangs is beneficial at small values of tx. However,
a smaller number of gangs leads to better performance when
large tx are used. The KT timing results for smaller loops
span are qualitatively similar to Fig. 7, but no performance
gain could be obtained compared to the default kernel launch
parameters.

Finally, we implemented the set of parameters that led
to performance improvements throughout the code base in
order to evaluate an overall gain from the optimization
with KT. More specifically, we introduced a collapse(3)
with a loop seq in the scalar space in place of all
the collapse(4) for the ijkn loops, and we replaced
collapse(3) with a tile(tx,ty,tz) clause for all the
stencil-based kernels, keeping the A100 best launch parame-
ters. The resulting overall speed-up of the Botany case listed
in Table II was 1.7% on A100 and 2.6% on H100. A closer
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Fig. 7. Advection kernel timing for the (512 x 512) ij loops span, as function
of the tile size in x direction, colored by the number of gangs used in the
launch parameters, left: A100, right: H100. Dashed red lines indicate default
parameters timing.

look at specific kernel timings shows that propagating the
kernel launch parameters optimized with KT on the handful of
kernels reported here to all of the stencil-based kernels has a
mixed outcome. Several kernels are effectively faster, close to
the performance gains observed with KT, but the performance
of some other kernels (also stencil-based kernels, but with
different access pattern and intermediate computations) is
degraded. This last point further highlights the difficulty to
perform optimization at the application level and point towards
an avenue of improvement for auto-tuning tools such as KT.

VI. CONCLUSION

This paper presented the GPU porting of a large-eddy-
simulation atmospheric model (DALES), which is a multi-
physics Fortran code designed to run on a large spatial domain
with spatial resolution typically of the order of 5-100 m and
for a long integration time of the order of several days. The
use of OpenACC directives facilitated the porting, mainly
consisting of OpenACC collapsed loops over the three dimen-
sions of space and fusing of as many successive, independent
kernels as possible. The porting also benefited from GPU-
aware libraries for radiation calculations (RTE-RRTMGP) and
Fourier transforms (cuFFT). Still, refactoring some parts of
the code was necessary, especially in the microphysics and
thermodynamics sections, where differences in the local state
introduced significant thread divergence.

Acceleration performance was assessed from a test case
featuring cloud transport and radiative transfer. Run times
between CPU and GPU implementations were compared on
a single-node basis. A speed-up of 4 and 12 has been ob-
tained for nodes of 4 NVIDIA A100 and 4 NVIDIA H100
respectively, compared to a node of 192 AMD CPUs. The
most computationally intensive sections of the code were
found to be the thermodynamics, the subgrid diffusion, the
radiative transfer and the Poisson solver. Overall, the fractions
of the time spent in each component of the code remained
close to their CPU value. However, the Poisson solver was
found to perform poorly on the A100 because of a loss of
efficiency of the cuFFT library in the associated software
stack. Thermodynamics routines also exhibited below-average
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speed-up because of required synchronisations and horizontal
reductions.

The weak scaling analysis showed that the acceleration
efficiency drops quickly beyond a single node. The Poisson
solver, based on Fourier transforms, is responsible for this
loss of efficiency, as performing FFT across the whole spa-
tial domain requires all-to-all communications and memory
rearrangements, which do not scale. We might consider im-
plementing alternative Poisson solvers that could better scale
with many GPUs. Having said that, we stress that the single-
node acceleration remains highly valuable for research, as the
simulations must be performed for a large integration time (up
to several hundred hours) to accumulate statistics.

A noteworthy aspect of this work is the use of Kernel Tuner,
an auto tuning application, to optimize the GPU execution
of stencil-based kernels associated with subgrid diffusion
and advection processes. For the subgrid diffusion kernel,
significant performance improvements were obtained on A100
GPUs, with a maximum gain close to 35 %, while limited
performance improvements were obtained on H100 GPUs,
with a maximum gain close to 10 %. We noticed that the
optimal parameters differ slightly between the two GPUs,
even though using the optimal parameters of one GPU on the
other one resulted in near optimal performance. For subgrid
diffusion source and 6th order advection kernels, we attempted
to replace collapsing clauses with tile clauses and it only
resulted in better performance on the A100 GPUs, around
15 %.

Finally, we examined how the tuned parameters can be
transferred to similar kernels (i.e. stencil based kernels) across
the entire DALES code base. The overall DALES perfor-
mances gain only showed small improvements compared to
the initial port, and fine grain profiling revealed the mitigated
effects of the tuned parameters. These observations deserve
further investigation and underline the challenge associated
with application level performance tuning.

Ongoing efforts in DALES focus on evaluating and improv-
ing the performances of the present OpenACC port on AMD
GPU hardware, as well as investigating alternate strategies for
solving the Poisson linear system in order to improve DALES
scaling. In future steps, we would also like to investigate
the effect of mixed precision on acceleration performance
and code accuracy. DALES already allows switching some
quantities to single-precision, which will result in the ability
to address larger resolutions on the GPU.
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