

Delft University of Technology

Connecting the dots
Exploring backdoor attacks on graph neural networks
Xu, J.

DOI
10.4233/uuid:a7481bf6-9a7a-4964-9010-eee4ec058273
Publication date
2024
Document Version
Final published version
Citation (APA)
Xu, J. (2024). Connecting the dots: Exploring backdoor attacks on graph neural networks. [Dissertation (TU
Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:a7481bf6-9a7a-4964-9010-
eee4ec058273

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:a7481bf6-9a7a-4964-9010-eee4ec058273
https://doi.org/10.4233/uuid:a7481bf6-9a7a-4964-9010-eee4ec058273
https://doi.org/10.4233/uuid:a7481bf6-9a7a-4964-9010-eee4ec058273

CONNECTING THE DOTS

EXPLORING BACKDOOR ATTACKS ON GRAPH NEURAL
NETWORKS

CONNECTING THE DOTS

EXPLORING BACKDOOR ATTACKS ON GRAPH NEURAL
NETWORKS

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Monday 13 May 2024 at 10:00 o’clock

by

Jing XU

Master of Engineering in Optical Engineering, Beihang University, China
born in Zhejiang, China

This dissertation has been approved by the promotors.

Composition of the doctoral committee:

Rector Magnificus, chairperson
Prof. dr. ir. R.L. Lagendijk Delft University of Technology, promotor
Dr. F.A. Oliehoek Delft University of Technology, promotor
Dr. S. Picek Delft University of Technology, copromotor

Independent members:

Prof. dr. G. Smaragdakis Delft University of Technology
Prof. dr. A. Sadeghi Technical University of Darmstadt
Prof. dr. L. Cavallaro University College London
Dr. E. Isufi Delft University of Technology
Prof. dr. M.M. de Weerdt Delft University of Technology, reserve member

This research was financed by the China Scholarship Council.

Keywords: Backdoor Attacks, Graph Neural Networks, Security

Printed by: ProefschriftMaken Printing

Front & Back: Jing Xu & Jinke He. Original image from istockphoto.com

Copyright © 2024 by J. Xu

ISBN 978-94-6469-918-0

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/

In memory of my beloved grandparents.
致我亲爱的外公外婆

The true sign of intelligence is not knowledge but imagination.

Albert Einstein

CONTENTS

Summary ix

Samenvatting xi

Summary xiii

1 Introduction 1
1.1 Graph-structured Data . 2
1.2 Machine Learning on Graph Data. 3

1.2.1 Convolutional Neural Networks 4
1.2.2 Graph Neural Networks . 4
1.2.3 Federated GNNs . 5

1.3 Backdoor Attacks on GNNs . 6
1.4 Problem Statement . 8
1.5 Contribution of the Thesis . 8
1.6 Outline . 9

2 Background 13
2.1 What is a graph?. 13
2.2 Representative GNN models . 14
2.3 Applications of GNN . 16
2.4 Federated Learning on GNNs . 17

3 Backdoor Attacks on Centralized GNNs 19
3.1 Introduction . 20
3.2 Explainability-based Backdoor Attacks 22

3.2.1 Explainable Backdoor Attacks . 22
3.2.2 Experimental Analysis . 25

3.3 Rethinking the Trigger-injecting Position 29
3.3.1 Methodology. 29
3.3.2 Experimental Results. 33

3.4 Clean-label Backdoor Attacks . 37
3.4.1 Methodology. 37
3.4.2 Experimental Results. 39

3.5 Conclusions. 41

4 Backdoor Attacks on Federated GNNs 43
4.1 Introduction . 44
4.2 Label-only MIA to GNNs . 46

4.2.1 Our Label-only MIA . 47
4.2.2 Experiments . 50

vii

viii CONTENTS

4.2.3 Results and Discussions . 54
4.3 Backdoor Horizontal Federated GNNs 63

4.3.1 Problem Formulation . 65
4.3.2 Backdoor Attacks against Federated GNNs. 68
4.3.3 Experiments . 72
4.3.4 Defenses . 85
4.3.5 General Takeaways on the Experimental Aspects 91

4.4 Conclusions. 97

5 Protecting Ownership of GNNs 99
5.1 Introduction . 100
5.2 GNN Watermarking . 103

5.2.1 Threat Model . 103
5.2.2 Watermarked Data Generation. 104
5.2.3 Watermark Embedding . 105
5.2.4 Ownership Verification . 106

5.3 Evaluation . 112
5.3.1 Experimental Results. 114
5.3.2 On the Watermarking Requirements 121

5.4 Robustness Against Backdoor Defenses 123
5.5 Conclusions and Future Work. 132

6 Discussion 135
6.1 Backdoor attacks on centralized GNNs 135
6.2 Backdoor attacks on federated GNNs . 136
6.3 Protecting ownership of GNNs . 137
6.4 Limitations . 138
6.5 Future Work. 139

Bibliography 141

Acknowledgements 157

Curriculum Vitæ 161

List of Publications 163

SUMMARY

Deep Neural Networks (DNNs) have found extensive applications across diverse fields,
such as image classification, speech recognition, and natural language processing. How-
ever, their susceptibility to various adversarial attacks, notably the backdoor attack, has
repeatedly been demonstrated in recent years. The backdoor attack aims to misclas-
sify inputs with specific trigger pattern(s) into the pre-determined label(s) by training
the model on the poisoned dataset. Backdoor attacks on DNNs can lead to severe real-
world consequences, e.g., a deep leaning-based classifier in a self-driving car can be
backdoored to misclassify a stop sign as a speed limit sign.

With an increasing of real-world data being represented as graphs, Graph Neural Net-
works (GNNs), a subset of the DNNs, have demonstrated remarkable performance in
processing graph data. Despite their efficiency, GNNs, similar to other DNNs, are also
vulnerable to backdoor attacks, which can lead to severe results, especially when GNNs
are applied in security-related scenarios. Although backdoor attacks have been exten-
sively studied in the image domain, we still need dedicated efforts for the graph domain
due to the difference between graph data and other data, e.g., images.

This thesis embarks on an exploration of backdoor attacks on GNNs. Chapter 3 fo-
cuses on designing and investigating backdoor attacks on centralized GNNs. Specifi-
cally, we explore the influence of trigger injecting position on the backdoor attack per-
formance on GNNs. To explore this impact, we propose approaches based on explana-
tion techniques on GNNs, which contributes to exploring the interaction between the
explainability and robustness of GNNs. Furthermore, we design a clean-label backdoor
attack on GNNs to make the poisoned inputs more challenging to be detected.

Considering the growing privacy concern, we focus on backdoor attacks on federated
GNNs in Chapter 4. We propose a label-only membership inference attack on GNNs in
the scenario that the attacker can only get label output from the GNN models. Moreover,
we investigate centralized and distributed backdoor attacks on federated GNNs.

Besides designing efficient backdoor attacks on GNNs, we also explore the possibility
of leveraging backdoor attacks for defensive purposes for GNNs. Chapter 5 introduces a
watermarking framework for GNNs based on backdoor attacks. Our research outcomes
will deepen the understanding of backdoor attacks on GNNs and push the GNN model
designers to develop more secure models.

ix

SAMENVATTING

Deep Neural Networks (DNNs) hebben hun toepassingen gevonden in diverse gebieden,
zoals het classificeren van afbeeldingen, spraakherkenning, en het automatisch verwer-
ken van taal. Echter zijn zij wel vatbaar voor aanvallen die de bruikbaarheid kunnen
verminderen, in het bijzonder backdoor attacks.

Het doel van een backdoor attack is om misclassificaties te veroorzaken door een
‘trigger’ patroon toe te voegen aan voorbeelden uit een dataset zodat het model een
specifieke voorspelling maakt. Backdoor attacks kunnen tot ernstige gevolgen leiden in
de echte wereld, bijvoorbeeld wanneer een deep-learning model wordt gebruikt in een
zelfrijdende auto en een aanvaller een stopbord kan laten misclassificeren als snelheids-
bord.

Nu data uit de echte wereld steeds vaker wordt gerepresenteerd in de vorm van grafen
zijn Graph Neural Networks (GNNs), een speciale vorm van een DNNs, bijzonder goed
geworden in het verwerken van graafdata. Maar hoewel ze efficient zijn, zijn ze net als
DNNs kwetsbaar voor backdoor attacks en dit kan tot ernstige gevolgen leiden wanneer
GNNs worden toegepast in scenarios waar de veiligheid belangrijk is. Terwijl er al veel
onderzoek is geweest naar backdoor attacks voor data in de vorm van afbeeldingen, is er
nog veel onderzoek nodig voor data in de vorm van grafen vanwege de grote verschillen
in hoe deze soorten data gerepresenteerd worden.

Dit proefschrift verkent het gebied van backdoor attacks voor GNNs. Hoofdstuk 3 fo-
cust op het ontwerpen en onderzoeken van backdoor attacks op gecentraliseerde GNNs.

Specifiek onderzoeken we het effect van de trigger positie op de backdoor attack
prestaties van GNNs. Hiervoor stellen wij methodes voor die gebaseerd zijn op uitleg-
technieken voor GNNs, wat bijdraagt aan onderzoek naar de interactie tussen de uitleg-
baarheid en robuustheid van GNNs. Verder ontwerpen wij ook een clean-label backdoor
attack voor GNNs om het moeilijker te maken om veranderingen aan de dataset te de-
tecteren.

Wegens de toenemende bezorgdheid over privacy leggen wij in Hoofdstuk 4 de focus
op backdoor attacks tegen federated GNNs. We stellen een label-only membership infe-
rence attack voor tegen GNNs waarbij de aanvaller alleen toegang heeft tot de voorspel-
lingen van het model. Verder onderzoeken we ook gecentraliseerde en gedistribueerde
backdoor attacks tegen federated GNNs.

Naast het ontwerpen van efficiënte backdoor attacks tegen GNNs verkennen we ook
de mogelijkheid om backdoor attacks te gebruiken als verdedigingsmiddel. Hoofdstuk 5
introduceert een framework om watermerken toe te voegen aan GNNs door middel van
backdoor attacks.

Onze onderzoeksresultaten zullen ons begrip van backdoor attacks voor GNNs ver-
beteren and de ontwerpers van GNNs aanmoedigen om veiligere modellen te ontwikke-
len.

xi

综述

深度神经网络在各个领域都有广泛的应用，比如图像分类、语音识别和自然语言处

理等。然而，已有研究证明深度神经网络易收到各种对抗性攻击的影响，尤其是后

门攻击。后门攻击旨在通过在中毒数据集上训练模型，将具有特定触发模式的输入

数据错误分类到预定目标标签中。对深度神经网络的后门攻击可导致严重的现实后

果，例如，自动驾驶汽车中基于深度学习的分类器可能会被设置后门，将停车标志

错误分类为限速标志，从而导致交通事故。

随着越来越多的现实世界数据以图的形式表示，图神经网络（深度神经网络的

一种）在处理图数据方面表现出了卓越的性能。尽管性能优越，但与其他深度神经

网络类似，图神经网络也容易受到后门攻击。尽管后门攻击在图像领域已经得到了

广泛的研究，但由于图数据与其他数据（例如图像）之间的差异，我们仍然需要进

一步深入研究图领域的后门攻击。

本论文旨在探索图神经网络中的后门攻击。在第三章中，我们重点介绍集中式

图神经网络上后门攻击的设计和研究。具体来说，我们探讨了触发器注入位置对图

神经网络后门攻击性能的影响。为了探索这种影响，我们提出了基于图神经网络模

型解释技术的方法，这有助于探索图神经网络可解释性和鲁棒性之间的关系。此

外，我们设计了一种针对图神经网络的干净标签后门攻击，使有毒输入数据更难被

检测到。

考虑到越来越受模型用户关注的隐私问题，我们在第四章中重点研究了对联邦

图神经网络的后门攻击。首先，在攻击者只能从图神经网络模型中获取标签输出的

情况下，我们提出了对图神经网络的标签成员推理攻击。然后，我们研究了对联邦

图神经网络的集中式和分布式后门攻击。

除了开发图神经网络上有效的后门攻击之外，我们还探索了如何利用后门攻击

来实现图神经网络防御。我们在第五章介绍了一种基于后门攻击的图神经网络水印

框架，可以有效验证图神经网络的所有权，从而保护模型的知识产权。

此论文提出的图神经网络后门攻击方法旨在帮助设计人员开发更安全的模型。

作者希望我们的研究成果可以加深我们对图神经网络后门攻击的理解，并推动图神

经网络模型设计者开发更安全的模型。

xiii

1
INTRODUCTION

Data can be naturally represented by graph structures in many application areas, in-
cluding proteomics [6], image analysis [79], software engineering [8, 27], and natural
language processing [140]. However, these tasks require dealing with graph-structured
data that contains rich relational information between elements and cannot be well han-
dled by traditional deep learning models, e.g., Convolutional Neural Networks (CNNs).
Graph Neural Networks (GNNs) are proposed to process graph-structure data to learn
representations of graphs via feature propagation and aggregation [141].

Given the importance of graph-related applications and the successful applications
of GNNs, both academia and industry are interested in the security and privacy of GNNs.
In recent years, some researchers have begun to focus on adversarial attacks on GNNs,
and it has been demonstrated that GNNs are vulnerable to many adversarial attacks,
one of which is the backdoor attack. Backdoor attacks on GNNs aim to train a GNN that
performs normally on clean data but will output a pre-determined label for data with
a certain trigger. Backdoor attacks on GNNs can lead to severe security concerns, e.g.,
the attacker can escape malicious user detection on social networks by implementing
backdoor attacks.

Exploring the backdoor attacks on GNNs is not a trivial task due to the specific char-
acteristics of graph-structure data. Still, it is an essential part of developing robust GNNs,
as it helps mitigate backdoor attacks on GNNs and develop possible approaches to pro-
tect the ownership of GNNs.

In this chapter, we introduce the concept of backdoor attacks on GNNs that form the
basis of this thesis. Section 1.1 introduces graph-structured data and the relationship
between graph-structured data and other domain data. Section 1.2 introduces how to
apply machine learning methods to graph-structured data. Specifically, we here first dis-
cuss why CNNs cannot be directly applied to graph-structured data and then introduce
GNNs, which are designed to perform on graph-structured data. We here also introduce
the Federated GNNs in which federated learning is applied due to privacy concerns. Sec-
tion 1.3 introduces the security risks of GNNs and specifically discusses backdoor attacks
on GNNs, which is one of the essential concepts this thesis addresses. The problem state-

1

1

2 1. INTRODUCTION

ment and research questions this thesis addresses are discussed in Section 1.4. Finally,
Section 1.5 and 1.6 list the contributions and outline of this thesis, respectively.

1.1. GRAPH-STRUCTURED DATA
Graph-structured data is ubiquitous throughout the natural and social sciences, from
quantum chemistry to social networks. In the most general view, a graph is simply a
collection of objects, i.e., nodes, along with a set of interactions, i.e., edges, between
pairs of these objects. On the one hand, graph-structured data can be used to represent
physical networks. For instance, in the chemical domain, we can use the nodes in a
graph to represent proteins and the edges to represent the bonds between the proteins,
as shown in Figure 1.1. On the other hand, graph-structured data can also be applied to
model the complex relationships in our lives. For example, to encode a social network
as a graph, we can use nodes to represent individuals and edges to represent that two
individuals are friends, as shown in Figure 1.2.

HO

NH2

N
H

(a) (b)

Figure 1.1: Graph representation of the serotonin molecule. (a) is the molecular structure of serotonin, and (b)
is the graph representation of the molecule.

The power of graph formalism lies in its focus on relationships between points rather
than only the properties of individual points, as well as in its generality. The same graph
formalism can be used to represent chemical structures, social networks, or the connec-
tions between terminals in a telecommunications network. The key structural property
of graphs is that the nodes in a graph are usually not assumed to be provided in any

Figure 1.2: A network representation of social relationships among the 34 individuals in the karate club studied
by Zachary [159]. The network captures 34 members of a karate club, documenting links between pairs of
members who interacted outside the club.

1.2. MACHINE LEARNING ON GRAPH DATA

1

3

Figure 1.3: Isomorphic graphs. Isomorphic is an edge-preserving bijection between two graphs. Two isomor-
phic graphs shown here are identical up to the reordering of their nodes.

particular order, and thus, any operations performed on graphs should not depend on
the ordering of nodes [17]. The property that functions acting on graphs should satisfy
is thus permutation invariance, and it implies that for any two isomorphic graphs, the
outcomes of these functions are identical. Figure 1.3 shows two isomorphic graphs.

It is well-known that the impact of deep learning was particularly dramatic in com-
puter vision, natural language processing, and speech recognition. These applications
share a geometric common denominator: an underlying Euclidean or grid-like struc-
ture [17]. From the perspective of Bronstein et al. [17], grids can be obtained as a partic-
ular case of graphs with special adjacency. For example, we can think of images as fixed-
size grid graphs. Text and speech are sequences, so that we can think of them as line
graphs. However, since the order of nodes in a grid is fixed, machine learning models for
signals defined on grids are no longer required to account for permutation invariance
and have a strong geometric prior, i.e., translation invariance. Since Euclidean spaces
are prototypically defined by Rn (with dimension n), Euclidean data refers to data that is
sensibly modeled as being plotted in n-dimensional linear space, such as images where
the x and y coordinates refer to the location of each pixel and the z coordinate refers to
its value. However, some data cannot be mapped neatly into the Euclidean spaces (i.e.,
Rn), for example, graphs, whose underlying structure is non-Euclidean.

1.2. MACHINE LEARNING ON GRAPH DATA

Machine learning is a branch of artificial intelligence (AI) and computer science. It is
a set of algorithms that parse data, learn from them, and then apply what they have
learned to make intelligent decisions. Given the widespread prevalence of graphs in
real-world applications, there has been a surge of interest in applying machine learning
methods to graph-structured data. However, for graph-structured data, it is challeng-
ing to define networks with strong structural priors, as structures can be arbitrary and
vary significantly across different graphs. Even different nodes within the same graph
can have different structures. It also does not help that most existing machine learning
algorithms (e.g., CNNs) have a core assumption that nodes in a sample (e.g., pixels in an
image) are independent, which is not true for graph data because each node in a graph is
related to others by links of various types. We here first introduce the widely-used convo-
lutional neural networks and then discuss how to apply convolution operation on graph
data.

1

4 1. INTRODUCTION

Figure 1.4: CNNs in an autonomous driving system.

Figure 1.5: An example of a convolution operation.

1.2.1. CONVOLUTIONAL NEURAL NETWORKS

A Convolutional Neural Network is a class of artificial neural networks most commonly
applied to analyze visual imagery [126]. CNNs use a mathematical operation called con-
volution in place of general matrix multiplication in at least one of their layers. A CNN
consists of an input layer, some hidden layers, and an output layer. The hidden layers
include one or more layers that perform convolutions. Figure 1.4 presents an architec-
ture of a CNN, which is applied in an autonomous driving system to detect the objects
on the way. Typically, a convolution operation performs a dot product of the convolu-
tion kernel with the layer’s input matrix, and its activation function can be ReLU. As the
convolution kernel slides along the input matrix for the layer, the convolution operation
generates a feature map, which in turn contributes to the input of the next layer. Convo-
lution layers are followed by other layers, such as pooling layers, fully connected layers,
and normalization layers. Figure 1.5 shows an example of a convolution operation.

1.2.2. GRAPH NEURAL NETWORKS

The non-Euclidean nature of the graph-structured data implies that there are no such
familiar properties as global parameterization, a common system of coordinates, and
vector space structure. Consequently, basic operations like convolutions that are taken
for granted in the Euclidean data cannot be directly applied to irregular graph domains.
Specifically, CNNs have a property of global parameterization because, in images, each
pixel has the same neighborhood structure, allowing to apply the same filter weights
at multiple locations in the image. However, in graphs, each node can have a different
number of neighbors, making it impossible to apply the same filter weights for each node
in a graph. What’s more, CNNs are not permutation invariant as the output of CNNs will

1.2. MACHINE LEARNING ON GRAPH DATA

1

5

A

D

F

C
B

E

A

B

C

D

E

A

D

F

A

C

F

Input Graph Computation Graph

Target Node A

 : Aggregation : Transformation

Figure 1.6: An input graph and the computation graph of the target node.

change when the order of its input is altered. However, as mentioned in Section 1.1, the
nodes in a graph are usually not assumed to be provided in any particular order, and
any operations performed on graphs should not depend on the ordering of nodes, i.e.,
permutation invariance. Therefore, we cannot perform CNNs directly on graphs.

Graph Neural Networks are a class of deep learning methods designed to perform
inference on data described by graphs. The output of a GNN model is usually Node Em-
bedding, which maps nodes to a d-dimensional embedding space so that similar nodes
in the graph are embedded close to each other in the d-dimensional space. Specifically,
our goal is to map nodes so that similarity in the embedding space approximates sim-
ilarity in the graph. GNNs are methods that use the graph structure and node features
to learn a representation vector of a node or the entire graph. For each node in a graph,
we can determine a node computation graph. Figure 1.6 shows an input graph and the
computation graph of the target node in the graph. With the node computation graph,
we can see all the connections between the target node and other nodes, and the grey
boxes in Figure 1.6 represent the aggregation functions in a GNN with three layers.

Node classification is perhaps the most popular machine-learning task on graph
data. Beyond detecting malicious users in social networks, examples of node classifi-
cation tasks include classifying the function of proteins in the molecular network [53]
and classifying the topic of documents based on hyperlink or citation graphs [67]. An-
other commonly used application of GNNs is the graph classification task. The goal of
the graph classification task is to predict the class label(s) for an entire graph. For in-
stance, given a graph representing the structure of a molecule, we can build a regression
model predicting the molecule’s toxicity or solubility [45]. Another practical application
of the graph classification task is to build a classification model to detect whether a com-
puter program is malicious by analyzing a graph-based representation of its syntax and
data flow [77].

1.2.3. FEDERATED GNNS
GNNs face challenges when centrally trained because of privacy concerns, regulatory
restrictions, and commercial competition. For example, the financial institution may

1

6 1. INTRODUCTION

utilize GNN as a fraud detection model, but they can only have transaction data of its
registered users (no data of other users because of privacy concerns). Thus, the model
is not effective for other users. Similarly, in a drug discovery industry that applies GNNs,
pharmaceutical research institutions can dramatically benefit from other institutions’
data, but they cannot disclose their private data for commercial reasons [55].

Federated Learning (FL) is a distributed learning paradigm that works on isolated
data. In FL, clients can collaboratively train a shared global model under the orches-
tration of a central server while keeping the data decentralized [66, 91]. FL can be cat-
egorized into three categories based on how data is partitioned in the sample and fea-
ture space: Horizontal Federated Learning (HFL), Vertical Federated Learning (VFL), and
Federated Transfer Learning (FTL) [84]. While FL has been widely studied in Euclidean
data, e.g., images, texts, and sound, there are increasing studies about FL in graph data,
which we denote as Federated GNNs.

1.3. BACKDOOR ATTACKS ON GNNS
As new generalizations of traditional deep neural networks to graphs, GNNs inherit both
the advantages and disadvantages of traditional DNNs. Traditional DNNs are easily
fooled by adversarial attacks [47, 71]. In other words, the adversary can insert slight per-
turbation during either the training or testing phases, and the DNN models will fail. It is
evident [169, 31] that GNNs also inherit this drawback. The attacker can generate graph
adversarial perturbations by manipulating the graph structure or node features to fool
the GNN models. As illustrated in Figure 1.7, originally, node E was classified by the GNN
model as a green node; after node E creates a new connection with node C and modi-
fies its features, the GNN model misclassifies it as a yellow node. Such vulnerability of
GNNs has raised tremendous concerns about applying them in security-critical applica-
tions such as financial systems and risk management. For example, in a credit scoring
system, fraudsters can fake connections with several high-credit customers to evade the
fraudster detection models, and spammers can easily create fake followers to increase
the chance of fake news being recommended and spread. Though adversarial attacks
have been extensively studied in the image domain, we still need dedicated efforts for
graphs due to unique challenges – (1) graph structure is discrete; (2) the nodes in the
graph are not independent; and (3) it is difficult to measure whether the perturbation on
the graph is imperceptible or not.

The adversarial attacks on GNNs can be categorized into evasion attacks and poison-
ing attacks, depending on which phase the attacker inserts the adversarial perturbation.
Specifically, evasion attacks happen in the model testing phase, while poisoning attacks
happen in the model training phase. A backdoor attack is one type of poisoning attack.
In a backdoor attack, the adversary aims to train a neural network that correctly solves
the desired task on clean data but will exhibit malicious behavior once presented with
a certain trigger [50]. A backdoor attack is a practical attack as it is both powerful and
stealthy [50].

In recent years, there have been many works exploring backdoor attacks in many do-
mains, such as image, video, and text domains [50, 166, 152]. However, backdoor attacks
on GNNs are not extensively explored. Since GNNs are increasingly used for security ap-
plications [1, 80], it is important to study the backdoor attack on GNNs. Otherwise, secu-

1.3. BACKDOOR ATTACKS ON GNNS

1

7

A

D

F

C
B

E

A

D

F

C
B

E

GNN GNN

E is predicted as E is predicted as

Clean Graph Perturbed Graph

Figure 1.7: An example of an adversarial attack on graph data. The goal of the GNN is to predict the color of
the nodes. Here, node E is the target node. The attacker aims to change the prediction of GNN on node E by
modifying its connections with other nodes and features.

rity concerns will remain. For instance, in a Bitcoin transaction ego network [135], where
the nodes are the transactions, and the edge between two nodes indicates the flow of Bit-
coin from one transaction to another, the attacker can attack the GNNs to classify an ille-
gal transaction as a legal one. Also, most existing works on backdoor attacks are applied
to the Euclidean data, e.g., images and words. The backdoor trigger generation methods
and injecting position are different between graph data and images/words. Thus, the
backdoor attacks on other domains cannot be directly applied to the graph domain.

Although there are some works conducting research on backdoor attacks on GNNs.
However, these works focus on GNN models in centralized training. In the Federated
GNNs, the malicious updates will be weakened in the aggregation function. Also, there
can be more than one malicious client, while in the centralized GNNs, there is only one
client. Thus, we should expect different behavior of backdoor attacks on the Federated
GNNs. Then, it is crucial to investigate if existing countermeasures that have been tested
mostly with Euclidean data are still effective for backdoor attacks on Federated GNNs to
understand how to deploy trustworthy AI systems.

In addition to considering backdoor attacks on GNNs for offensive purposes, back-
door attacks on GNNs can also be used to protect the IP (Intellectual Property) of the
GNN models. Building a powerful GNN model is not a trivial task, as it requires a large
amount of training data, powerful computing resources, and human expertise. More-
over, with the development of adversarial attacks, e.g., model stealing attacks, GNNs
raise challenges to model authentication. To avoid copyright infringement on GNNs,
verifying the ownership of the GNN models is necessary. Digital watermarking is typi-
cally used to identify ownership of the copyright of media signals, e.g., audio, video, and
image data [73]. The idea of watermarking neural networks is similar to traditional dig-
ital watermarking in multimedia data. Following the idea of [2], this thesis explores a
watermarking method on GNNs based on backdoor attacks. More precisely, the back-
door triggers are used as digital watermarks to identify the ownership of a GNN model.

1

8 1. INTRODUCTION

Backdoor the
GNNs

1. Backdoor Attacks on
Centralized GNNs

How to explore backdoor attacks on
centralized GNNs?

2. Backdoor Attacks on
Federated GNNs

How to explore backdoor attacks on
federated GNNs?

3. Protecting
Ownership of GNNs

Is it possible to explore backdoor attacks
on GNNs for defensive purposes, e.g.,

watermarking GNNs?

Adversarial purpose

Defensive purpose

Centralized learning setting

Federated learning setting

Figure 1.8: The illustration of three research subquestions in this thesis.

1.4. PROBLEM STATEMENT
Considering that existing backdoor attacks on Euclidean data cannot be directly applied
to the graph data due to the differences between graph-structured data and other Eu-
clidean data, this thesis aims to answer the following:

Can we design backdoor attacks on GNNs?

This question is split into three subquestions according to the different learning set-
tings of GNNs and the different purposes of backdoor attacks on GNNs, as shown in
Figure 1.8:

• Can we design backdoor attacks on centralized GNNs?

• Can we design backdoor attacks on federated GNNs?

• Is it possible to design backdoor attacks on GNNs for defensive purposes, e.g., wa-
termarking GNNs?

1.5. CONTRIBUTION OF THE THESIS
This thesis designs and evaluates efficient backdoor attacks on the centralized GNNs,
investigates the backdoor attacks on the Federated GNNs, and investigates the potential
application of backdoor attacks on GNNs for defensive purposes. The contributions of
this thesis are as follows:

• We provide the first study on the explainability of triggers for backdoor attacks on
GNNs. In Chapter 3, we introduce the explainability-based backdoor attacks on

1.6. OUTLINE

1

9

GNNs. This work is, to the best of our knowledge, the first published work to ex-
plore the impact of trigger-injecting positions on the backdoor attack performance
on GNNs.

• Our design of a novel explanation framework in Chapter 3 to analyze the causes of
the difference between two trigger-injecting strategies is, to the best of our knowl-
edge, the first method that can verify the difference with quantitative analysis (re-
call score). This contribution provides insights into the interaction between the
explainability and backdoor attacks on GNNs, enhancing our understanding of
the robustness of GNNs.

• We develop the clean-label backdoor attack on GNNs in Chapter 3, which is, to the
best of our knowledge, the first work on clean-label backdoor attacks on GNNs.

• We propose a label-only membership inference attack (MIA) against GNNs for the
node classification task, which achieves competitive or better performance than
state-of-the-art probability-based MIAs, in Chapter 4.

• We develop two types of backdoor attacks on Federated GNNs in Chapter 4, which
is, to the best of our knowledge, the first work studying backdoor attacks specifi-
cally in the context of Federated GNNs. This research fills a significant gap in our
understanding of backdoor attacks in distributed GNN settings.

• We propose a watermarking framework to verify the ownership of GNN models.
The watermarking mechanism proposed in Chapter 5 is, to the best of our knowl-
edge, the first watermarking framework for GNNs on the graph classification task.

1.6. OUTLINE
The thesis is structured as follows:

Chapter 2
Background
In Chapter 2, we introduce the key concepts throughout this thesis, including the math-
ematical formulation of graph data, representative GNN models, commonly used appli-
cations of GNNs, and federated learning on GNNs.

Chapter 3
Backdoor Attacks on Centralized GNNs
In Chapter 3, we explore the impact of trigger-injecting position on the performance of
backdoor attacks on GNNs by conducting an experimental investigation. We apply two
powerful GNN explainability approaches to select the most or least important area of
the sample as the trigger-injecting position. Also, we propose a new backdoor attack on
GNNs specifically targeting the node classification task. This attack leverages a subset
of node features as a trigger pattern, demonstrating a novel approach to compromising

1

10 1. INTRODUCTION

GNN models for the node classification task. To further explain the different attack per-
formances of these two trigger-injecting strategies, we also design a novel explanation
framework with quantitative analysis. In addition to the dirty-label backdoor attacks
on centralized GNNs, we further design the clean-label backdoor attacks on centralized
GNNs, which are more stealthy and require less information for the attacker. The papers
included in this chapter are:

• Explainability-based Backdoor Attacks Against Graph Neural Networks. Xu, J., Xue,
M., & Picek, S. (2021). The ACM Workshop on Wireless Security and Machine
Learning.

• Rethinking the Trigger-injecting Position in Graph Backdoor Attack. Xu, J., Abad,
G., & Picek, S. (2023). The International Joint Conference on Neural Networks.

• Poster: Clean-label Backdoor Attack on Graph Neural Networks. Xu, J., Picek, S.
(2022). The ACM Conference on Computer and Communications Security.

Chapter 4
Backdoor Attacks on Federated GNNs
In Chapter 4, firstly, we propose a method of implementing MIA against GNNs under
the label-only condition. The average attack accuracy, precision, and AUC values of our
label-only MIA are competitive or even better than previous probability-based MIAs.
Second, we investigate two types of backdoor attacks in horizontal Federated GNNs:
centralized backdoor attacks (CBA) and distributed backdoor attacks (DBA). We also
evaluate the attack performance for a different number of clients and different percent-
ages of malicious clients. Based on our experiments of evaluating two types of backdoor
attacks on Federated GNNs, we provide a number of observations, lessons learned, and
general takeaways. We emphasize the importance of artifact evaluation and sharing for
reproducible research and how they can greatly help the research process. The papers
included in this section are:

• Label-Only Membership Inference Attack against Node-Level Graph Neural Net-
works. Conti, M., Li, J., Picek, S., Xu, J. (2022). the 15th ACM Workshop on Artificial
Intelligence and Security.

• More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Net-
works. Xu, J., Wang, R., Koffas, S., Liang, K., & Picek, S. (2022). The Annual Com-
puter Security Applications Conference.

• On Exploring Backdoor Attacks in Federated Graph Neural Networks. Xu, J., Kof-
fas, S., & Picek, S. (2022). The Learning from Authoritative Security Experiment
Results (LASER) workshop.

• Unveiling the Threat: Investigating Distributed and Centralized Backdoor Attacks
in Federated Graph Neural Networks. Xu, J., Koffas, S., & Picek, S. (2023). Digital
Threats: Research and Practice.

1.6. OUTLINE

1

11

Chapter 5
Protecting Ownership of GNNs
In Chapter 5, we propose a watermarking framework to verify the ownership of GNN
models for both the node and graph classification tasks. We clarify three phases of the
watermarking framework, i.e., watermarked data generation, watermark embedding,
and ownership verification. We further employ hypothesis testing to provide statistical
analysis for the model ownership verification results. We show in Chapter 5 that in our
watermarking method, the watermarked model has significantly different watermark ac-
curacy from the clean model, validating the effectiveness of our watermarking method.
This chapter has been published as:

• Watermarking Graph Neural Networks based on Backdoor Attacks. Xu, J., Koffas,
S., Ersoy, O., & Picek, S. (2023). The IEEE European Symposium on Security and
Privacy

Chapter 6
Discussion
Chapter 6 concludes this work and presents our findings to the research questions in
Section 1.4. We also look forward to future work and provide ideas and research gaps
that we have learned from the works included in this thesis.

2
BACKGROUND

In this chapter, we introduce the key concepts throughout this thesis. First, we introduce
the mathematical formulation of graph data in Section 2.1. Second, we introduce four
representative GNN models, which are selected to evaluate in this thesis in Section 2.2.
Two commonly used applications of GNNs are introduced in Section 2.3. We finally in-
troduce the federated learning on GNNs in Section 2.4.

2.1. WHAT IS A GRAPH?
Formally, a graph G = (V ,E) is defined by a set of nodes V and a set of edges E between
these nodes. We denote an edge going from node u ∈ V to node v ∈ V as (u, v) ∈ E . In
many cases, we will be concerned with simple graphs, where the edges are all undirected,
i.e., (u, v) ∈ E ↔ (v,u) ∈ E .

In the generic setting E ̸= Ø, the graph connectivity can be represented by an adja-
cency matrix A ∈RN×N (N is the number of nodes, N = |V |). To represent a graph with an
adjacency matrix, we order the nodes in the graph so that every node indexes a particular
row and column in the adjacency matrix. We can then represent the presence of edges
as entries in the matrix, i.e., A[u, v] = 1 if (u, v) ∈ E and A[u, v] = 0 otherwise. If the graph
is undirected, then A will be a symmetric matrix, but if the graph is directed (i.e., edges
are not in pairs), then A will not necessarily be symmetric. Some graphs can also have
weighted edges, where the entries in the adjacency matrix are real-values rather than 0,
1. For example, a weighted edge in a chemical graph might indicate the strength of the
association between two proteins. In this thesis, we focus on the undirected graphs.

In addition to the adjacency matrix, we also have attribute or feature information
associated with a graph, e.g., the user properties like age and profile picture associated
with a user in a social network. Most often, these are node-level attributes that we rep-
resent using a real-valued matrix X ∈ RN×m , where we assume that the ordering of the
nodes is consistent with the ordering in the adjacency matrix. It is also often possible to
endow the edges, or the entire graph, with features, but this thesis focuses on the graphs
with only node features.

13

2

14 2. BACKGROUND

In modern GNNs, the node representation is computed by recursive aggregation and
transformation of feature representations of its neighbors. After k iterations of aggrega-
tion, a node’s representation captures both structure and feature information within its
k-hop network neighborhood. Formally, the k-th layer of a GNN is:

x(k)
v = AGGREG AT ION (k)(

{
z(k−1)

v ,
{

z(k−1)
u |u ∈Nv

}}
), (2.1)

z(k)
v = T R AN SFORM AT ION (k)(x(k)

v), (2.2)

where z(k)
v is the representation of node v computed in the k-th iteration. Nv are 1-

hop neighbors of node v , and the AGGREG AT ION (·) is an aggregation function that
can vary for different GNN models. z(0)

v is initialized as node feature, i.e., z(0)
v = xv . The

T R AN SFORM AT ION (·) function consists of a learnable weight matrix and activation
function. For the node classification task, the node representation zv is used for predic-
tion. For the graph classification task, the READOUT function pools the node represen-
tations for a graph-level representation zG :

zG = RE ADOU T (zv ; v ∈ V). (2.3)

READOUT can be a simple permutation invariant function such as summation or a more
sophisticated graph-level pooling function [156, 163]. These two popular applications of
GNNs, i.e., node and graph classification tasks, are introduced in Section 2.3.

2.2. REPRESENTATIVE GNN MODELS

Graph Convolutional Networks (GCN)
GCN is an approach for semi-supervised learning on graph-structured data that is based
on an efficient variant of convolutional neural networks [67]. GCN model scales linearly
in the number of graph edges and learns hidden layer representations that encode both
local graph structure and features of nodes. A multi-layer GCN follows the following
layer-wise propagation rule:

Z(k+1) =σ
(
D̃− 1

2 ÃD̃− 1
2 Z(k)W(k)

)
(2.4)

Here, Ã = A + IN is the adjacency matrix of the undirected graph G with added self-
connections. IN is the identity matrix, and D̃ is the diagonal node degree matrix of Ã, and
W(k) is a layer-specific trainable weight matrix. σ(·) denotes an activation function, such
as the ReLU (·) = max(0, ·). Z(k) ∈RN×D is the matrix of activations in the k th layer which
outputs D-dimensional hidden representations; Z(0) = X. Combining Equation 2.1, 2.2
and 2.4, the aggregation operation for each node in GCN is given as:

x(k)
v ← ∑

u∈Nv∪v

1√
dv du

z(k−1)
u . (2.5)

where dv denotes the degree of node v .

2.2. REPRESENTATIVE GNN MODELS

2

15

GCN performs a non-linear transformation over the aggregated features to compute
the node representation at layer k:

z(k)
v ← ReLU (x(k)

v W(k)).

Graph Isomorphism Network (GIN)
GIN is developed as powerful as the Weisfeiler-Lehman (WL) graph isomorphism test [146].
With a simple architecture, GIN generalizes the WL test and hence achieves maximum
discriminative power among GNNs. Let ϵ be a learnable parameter or a fixed scalar. The
aggregation operation in GIN is given as follows:

x(k)
v ← (1+ϵ(k)) · z(k−1)

v + ∑
u∈Nv

z(k−1)
u (2.6)

In GIN, multilayer perceptrons (MLPs) are used as the transformation operation:

z(k)
v ← MLP (k)(x(k)

v) (2.7)

Graph Sample and Aggregate (GraphSAGE)
The original GCN algorithm aforementioned is designed for semi-supervised learning in
a transductive setting, and the exact algorithm requires that the full graph Laplacian is
known during training. GraphSAGE is a framework for inductive representation learning
on large graphs. It leverages node attribute information to efficiently generate represen-
tation on previously unseen data [53]. Specifically, there are three candidate aggregator
functions in the GraphSAGE algorithm:
Mean aggregator. The mean aggregator is nearly equivalent to the convolutional propa-
gation rule used in the transductive GCN framework. In particular, an inductive variant
of the GCN approach can be derived with the following:

z(k)
v ←σ(W (k) ·MEAN(z(k−1)

v ∪ z(k−1)
u |u ∈Nv)) (2.8)

LSTM aggregator. A more complex aggregator is based on an LSTM architecture. Com-
pared to the mean aggregator, LSTMs have the advantage of larger expressive capability.
However, it is important to note that LSTMs are not inherently symmetric (i.e., they are
not permutation invariant) since they process their inputs in a sequential manner. In
GraphSAGE, LSTMs are adapted to operate on an unordered set by simply applying the
LSTMs to a random permutation of the node’s neighbors.
Pooling aggregator. This aggregator is both symmetric and trainable. In this pooling
approach, each neighbor’s vector is independently fed through a fully connected neural
network; following this transformation, an elementwise max-pooling operation is ap-
plied to aggregate information across the neighbor set:

z(k)
v ← max(σ(W(k)z(k−1)

u +b)|u ∈Nv) (2.9)

where max denotes the element-wise max operator. By applying the max-pooling oper-
ator to each of the computed features, the model effectively captures different aspects of

2

16 2. BACKGROUND

the neighborhood set. In this thesis, GraphSAGE is applied with the max-pooling aggre-
gator.

Graph Attention Networks (GAT)
In addition to the standard neighbor aggregation scheme mentioned above in (2.1)
and (2.2), there are other non-standard neighbor aggregation schemes, e.g., weighted
average via attention in GAT [127]. Specifically, given a shared attention mechanism a,
attention coefficients can be computed by:

evu = a(Wz(k−1)
v ,Wz(k−1)

u) (2.10)

that indicate the importance of node u’s features to node v . Then, the normalized coef-
ficients can be computed by using the softmax function:

αvu = so f tmaxu(evu). (2.11)

Finally, the next-level feature representation of node v is:

z(k)
v =σ

(
1

P

P∑
p=1

∑
u∈Nv

α
p
vu Wp z(k−1)

u

)
, (2.12)

where αp
vu are the normalized coefficients computed by the p-th attention mechanism

ap and Wp is the corresponding input linear transformation’s weight matrix.

2.3. APPLICATIONS OF GNN
There are some general types of prediction tasks on graphs: node classification task,
graph classification task, and link prediction task. We here introduce two commonly-
used applications of GNNs, which are also two applications this thesis focuses on.

Node Classification Task
The node classification task is concerned with predicting the identity or role of each node
within a graph, given the true labels on a training set of nodes Vtr ai n ⊂V . Suppose we are
given a large social network dataset with millions of users, but we know that a significant
number of these users are actually malicious (e.g., people who spread terrorism infor-
mation). Identifying these users could be important for many reasons: the correspond-
ing organizations can prevent terrorist attacks, or society can be more stable without
these malicious users. Manually examining every user to determine if they are malicious
would be prohibitively expensive, so ideally, we would like to have a model that could
classify users as malicious (or not) given only a small number of manually labeled exam-
ples. Node classification is perhaps the most popular machine-learning task on graph
data. Beyond detecting malicious users in social networks, examples of node classifica-
tion tasks include classifying the function of proteins in the molecular network [53] and
classifying the topic of documents based on hyperlink or citation graphs [67].

Graph Classification Task
The goal of the graph classification task is to predict the class label(s) for an entire graph.

2.4. FEDERATED LEARNING ON GNNS

2

17

(a) Node classification task. (b) Graph classification task

Figure 2.1: Illustration of node and graph classification tasks of GNNs. (a) Node classification task where the
goal is to predict the classes or labels of nodes. (b) Graph classification task where the goal is to classify a whole
graph into different categories.

For instance, given a graph representing the structure of a molecule, we can build a re-
gression model predicting the molecule’s toxicity or solubility [45]. Another practical
application of the graph classification task is to build a classification model to detect
whether a computer program is malicious by analyzing a graph-based representation of
its syntax and data flow [77].

The illustrations of node and graph classification tasks of GNNs are shown in Fig-
ure 2.1.

2.4. FEDERATED LEARNING ON GNNS
Federated Learning enables n clients to train a global model w collaboratively without
revealing local datasets. Unlike centralized learning, where local datasets must be col-
lected by a central server before training, FL performs training by uploading the weights
of local models ({wi | i ∈ n}) to a parametric server. Specifically, FL aims to optimize a
loss function:

min
w

ℓ(w) =
n∑

i=1

ki

n
Li (w),Li (w) = 1

ki

∑
j∈P i

ℓ j (w, x j), (2.13)

where Li (w) and ki are the loss function and local data size of i -th client, and P i refers
to the set of data indices with size ki .

At the t-th iteration, the training can be divided into three steps:

• Global model download. All clients download the global model wt from the server.

• Local training. Each client updates the global model by training with their datasets:
wi

t ← wi
t −η ∂L(wt ,b)

∂wi
t

, where η and b refer to learning rate and local batch, respec-

tively.

• Aggregation. After the clients upload their local models {wi
t | i ∈ n}, the server up-

dates the global model by aggregating the local models. In this paper, we use the

averaging aggregation function: wt+1 ←
n∑

i=1

1
n wi

t .

FL on graph data was introduced in [72], where each client is regarded as a node
in a graph. When it comes to detecting financial crimes (e.g., fraud or money launder-

2

18 2. BACKGROUND

ing), traditional machine learning tends to lead to severe overreporting of suspicious
activities. Thanks to the reasoning ability of the graph neural network, its advantages
can be well-reflected. Considering the need for privacy, [121] proposed the framework
for Federated GNNs to optimize the machine learning model. Besides, other research
works [64, 21, 138] have been dedicated to enhancing the security of Federated GNNs.
By using secure aggregation, [64] proposed a method to predict the trajectories of ob-
jects via aggregating both spatial and dynamic information without information leak-
age. With differential privacy, [21] and [138] put forward a framework to train Federated
GNNs for VFL and recommendation systems, respectively. Moreover, SpreadGNN was
proposed in [56] to perform FL without a server.

3
BACKDOOR ATTACKS ON

CENTRALIZED GNNS

Backdoor attacks have been demonstrated as a security threat for machine learning mod-
els. While there are already some works on backdoor attacks on Graph Neural Networks,
the backdoor trigger in the graph domain is mostly injected into random positions of the
sample. There is no extensive research analyzing and explaining the impact of trigger in-
jecting position on the performance of backdoor attacks on GNNs. Also, in prior backdoor
attacks on GNNs, the adversary introduces arbitrary, often clearly mislabeled inputs to the
training set. In such a scenario, the poisoned inputs are likely to be detected as outliers. To
make the resulting poisoned inputs appear consistent with their original labels so that it
is more difficult to detect the poisoned inputs, it is crucial to study the clean-label back-
door attacks on GNNs. Therefore, in this chapter, we aim to answer the first subquestion
in Section 1.4. Specifically, we here provide solutions to the following research questions,
i.e., What is the impact of trigger injection position on graph backdoor? and How can we
explain it? and Can we design the clean-label backdoor attack on GNNs?

This chapter designs explainability-based backdoor attacks against GNNs applying two
GNN explainability approaches. Also, this chapter designs a novel explanation frame-
work to analyze and explain the impact of trigger injecting position on the performance
of backdoor attacks on GNNs. What’s more, this chapter explores a new kind of backdoor
attack, i.e., clean-label backdoor attack, on GNNs. In a clean-label backdoor attack, the
resulting poisoned inputs appear to be consistent with their label and, thus, are less likely
to be filtered as outliers.

This chapter is based on: 1) "Explainability-based Backdoor Attacks Against Graph Neural Networks." Xu, J.,
Xue, M., & Picek, S. (2021). The ACM Workshop on Wireless Security and Machine Learning. 2) "Rethinking
the Trigger-injecting Position in Graph Backdoor Attack." Xu, J., Abad, G., & Picek, S. (2023). The International
Joint Conference on Neural Networks. 3) "Poster: Clean-label Backdoor Attack on Graph Neural Networks."
Xu, J., Picek, S. (2022). The ACM Conference on Computer and Communications Security.

19

3

20 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

3.1. INTRODUCTION
Several studies showed that GNNs are also vulnerable to backdoor attacks. Zhang et al.
proposed a subgraph-based backdoor attack to GNNs for graph classification task [164].
Xi et al. presented a subgraph-based backdoor attack to GNNs, but this attack can be in-
stantiated for both node classification and graph classification tasks [143]. In the back-
door attacks on GNNs, the trigger injecting position impacts the attack’s performance in
terms of the attack success rate and clean accuracy drop. The existing works exploring
backdoor attacks on GNNs either select trigger injecting position randomly, in which sit-
uation the attack may be easily detected by the defender [164], or use a computationally
intensive algorithm to get the trigger injecting position, as shown in [143]. If we know
how to quickly select the optimal (or close to optimal) trigger-injecting position in back-
door attacks on GNNs, we can achieve high attack performance and good evasion of the
defender’s detection mechanisms. Further, we can develop more robust GNN models.
Unfortunately, since graph data have characteristics of complex relationships and inter-
dependencies between objects, common explainability approaches for CNNs, such as
Shapley value [3], are not suitable to explain the predictions of GNNs to select the opti-
mal trigger injecting position.

Although interpretability methods for non-graph neural networks are not suitable for
explaining predictions made by GNNs, recently, some works try to interpret GNNs. Ying
et al. proposed to utilize mutual information to find a subgraph with associated features
for interpreting the predicted label of a node or graph being explained [155]. Huang et
al. presented a method utilizing predicted labels from both the node being explained
and its neighbors, which enables to capture more local information around the node
and give a finite number of features as explanations in an intuitive way [61]. If we can
utilize powerful neural network approaches that explain predictions made by GNNs to
understand the performance of backdoor attacks on GNNs, we can gain knowledge of
how to quickly select the optimal trigger-injecting position and explore the impact of
different trigger-injecting positions on the attack performance.

Once we explore the impact of the backdoor trigger-injecting positions on GNNs, it
is intuitive to further explore the reason behind the different performance of different
trigger-injecting positions. There are already some works on explaining backdoor at-
tacks in the image domain through visualization techniques [50, 144]. For example, [50]
plotted the average activations of the backdoored model’s last convolutional layer over
clean and backdoored images to explain their attack. [144] used the Grad-CAM [109] vi-
sualization method to explain the backdoor attack in federated learning. One example
of explaining a backdoor attack in the image domain with Grad-CAM is shown in Fig. 3.1.
Comparing the heatmaps of the clean and poisoned images on the backdoored model,
we can clearly understand how the backdoored model recognizes the trigger pattern to
achieve the backdoor attack. In contrast, applying visualization techniques to explain
the backdoor attack behavior in the graph domain is difficult. First, the complexity of the
visual representation of a graph is much larger than visualizing an image, especially for
large graphs [60]. Second, visualizing the graph neural networks to explain the backdoor
attack is not trivial as it is a time-consuming or even impossible process [65]. Therefore,
instead of using the visualization method, we explain the difference between different
trigger-injecting strategies by computing an evaluation metric.

3.1. INTRODUCTION

3

21

(a) (b) (c)

Figure 3.1: An example of using Grad-CAM to explain a backdoor attack in the image domain. (a) clean im-
age, (b) heatmap of clean image for the true label on the backdoored model (predicted as the true label), (c)
heatmap of the poisoned image for the target label on the backdoored model (predicted as the target label).

Like prior backdoor attacks on CNNs, recent studies about backdoor attacks on GNNs
assume the adversary can often introduce mislabeled inputs to the training dataset [164,
143]. Specifically, the attacker modifies the training dataset by injecting a backdoor trig-
ger into some training samples and relabeling these samples to the chosen target la-
bel. Then the backdoored neural network classifier will output the attacker-chosen la-
bel when a trigger is injected into a testing sample. However, it has been demonstrated
for CNNs that even a fairly simple filtering process will detect the poisoned samples as
outliers [124]. More importantly, any subsequent human inspection will deem these
inputs suspicious and thus potentially reveal the attack [124]. To make the resulting poi-
soned inputs appear consistent with their labels so that it is more difficult to detect the
poisoned inputs, a clean-label backdoor attack was proposed [124]. In the clean-label
backdoor attack, the adversary only poisons inputs of the target class without changing
the true labels. The backdoored model aims to predict the testing sample with a trigger
into the target label. Although graphs are difficult to visualize directly for humans, unlike
images and texts [155], there are still some straightforward methods to detect poisoned
graph samples. For instance, we can apply the GNN prediction explanation tool, e.g.,
GNNExplainer [155], to visualize semantically relevant graph structures that are inter-
pretable for humans. Specifically, we first get explanation subgraphs for each class, and
then for each graph sample, check whether it contains the corresponding class explana-
tion subgraphs. If a graph sample in a specific class does not contain the corresponding
class explanation subgraphs, we can consider it an outlier. Therefore, it is also crucial to
study the clean-label backdoor attacks on GNNs.

In this chapter, we design and explore backdoor attacks on centralized GNNs. First,
in Section 3.2, we propose utilizing powerful neural network approaches that explain
predictions made by GNNs to understand the performance of backdoor attacks on GNNs.
Indeed, backdoor attacks on GNNs have been presented [164, 143] but how to quickly
select the optimal trigger injecting position and what is the impact of different trigger
injecting position on the attack performance have not been explored. In this section,
we seek to bridge this gap. We utilize GNNExplainer, an approach for explaining predic-
tions made by GNNs, to analyze the impact of trigger injecting position for the backdoor

3

22 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

attacks on GNNs for the graph classification task. We propose a new backdoor attack
on GNNs for the node classification task, which uses a subset of node features as a trig-
ger pattern. Additionally, we explore GraphLIME, a local interpretable model explana-
tion for graphs, to explore the proposed backdoor attack on the node classification task
through modifying a different subset of node features. Through empirical evaluation
using benchmark datasets and state-of-the-art models, we verify that our approach can
quickly select the optimal trigger-injecting position to implement a powerful backdoor
attack on GNNs. Furthermore, we see that the attacker can select the least important
parts of the graph to inject the trigger, thus reducing the chances of easy detection by
the defender.

Second, in Section 3.3, we design a novel explanation framework to analyze the causes
of the difference between different trigger-injecting strategies. Specifically, we compute
the similarity of the predicted mask of the representative features from the backdoored
model and the target mask of the representative features from the clean model. As there
has been an increasing number of studies on trustworthy GNNs [160, 30, 132], this work
also contributes to the exploration of GNN robustness by investigating the effectiveness
of backdoor attacks in GNN models using an explainability tool.

Third, in Section 3.4, we explore a new backdoor attack on GNNs, i.e., clean-label
backdoor attack, that only poisons inputs of the target class without changing the orig-
inal labels. More specifically, we aim to investigate whether using clearly mislabeled
graphs is necessary for implementing a backdoor attack on GNNs. In this section, we
aim to answer this question: can we carry out such backdoor attacks by insisting that
each poisoned graph and its label must be consistent? Initial experimental evaluations
showed that a clean-label backdoor attack could achieve a high attack success rate and
low clean accuracy drop. This study highlights the concern of clean-label backdoor at-
tacks on GNNs, which are more insidious.

3.2. EXPLAINABILITY-BASED BACKDOOR ATTACKS
Recently, several explainability techniques in GNNs have been proposed, such as XGNN [158],
GNNExplainer [155], PGExplainer [89], and GraphLIME [61]. These methods are devel-
oped from different angles and provide different levels of explanations. For instance,
GNNExplainer is a model-agnostic approach for providing explanations on predictions
of any GNN-based model. Given a trained GNN model and its prediction(s), GNNEx-
plainer returns an explanation in the form of a small subgraph of the input graph to-
gether with a small subset of node features that are most influential for the prediction(s) [155].
In addition, GraphLIME is a local interpretable model explainability method for graphs.
More specifically, to explain a node, GraphLIME generates a nonlinear interpretable
model from its N -hop neighborhood and then computes the most n representative fea-
tures as the explanations of its prediction using HSIC Lasso [61]. We here utilize two
explainability tools for GNNs, i.e., GNNExplainer and GraphLIME, to analyze the impact
of trigger-injecting position for the backdoor attacks on GNNs for both graph and node
classification tasks.

3.2.1. EXPLAINABLE BACKDOOR ATTACKS

3.2. EXPLAINABILITY-BASED BACKDOOR ATTACKS

3

23

Threat Model
We assume our threat model similar to the existing backdoor attacks, e.g., [74]. Given
a pre-trained GNN model Φo , the adversary forges a backdoored GNN Φ by perturbing
its model parameters without modifying the neural network architecture. We assume
the attacker has access to a dataset D sampled from the training dataset. Specifically, in
the graph classification task, the attacker can inject a trigger (graph) to each intended
poisoned training graph and change the label to an attacker-chosen target label. In the
node classification task, the attacker can inject a feature trigger (feature vector) to each
intended poisoned training node and relabel the label to the target label. Consequently,
our attack is a gray-box attack that does not modify the GNN’s model architecture but
perturbs the model parameters. This represents a realistic model occurring in real-world
settings. For instance, if the training dataset is collected from public users, the malicious
users can provide trigger-embedded training data.

Backdoor Attacks on Graph Classification
Since most graph classification tasks are implemented by utilizing GNNs to learn the
network structure, we focus on subgraph-based backdoor attacks on the graph classi-
fication task. Figure 3.2 illustrates the pipeline of subgraph-based backdoor attack on
GNNs for the graph classification task. Formally, in the training phase, the attacker in-
jects a trigger (graph) g t to a subset of the original training dataset and changes their
labels to the attacker-chosen target label to obtain the backdoored training dataset. A
GNN model trained using the backdoored training dataset is called backdoored GNNΦ.
Then in the testing phase, the adversary injects the same trigger to a given graph G . If we
define such trigger-embedded graph as Gg t , the adversary’s objectives can be defined as:

Φ(Gg t) = yt

Φ(G) =Φo(G)
(3.1)

The first objective in Eq. (3.1) means that all the trigger-embedded graphs are re-
quired to be misclassified to the target class yt , i.e., attack effectiveness. In contrast,
the second objective ensures that the backdoored GNN performs indistinguishably on
normal graphs compared to the original GNN, i.e., attack evasiveness.

It is challenging to find the optimal trigger injecting position so that the adversary
can reach several goals: 1) high attack success rate, 2) high accuracy in normal graphs,
and 3) difficult to detect by the defender. More precisely,

• if we sample t nodes from the graph uniformly at random as the trigger nodes
in the trigger graph, the trigger will likely be injected into a subgraph that is im-
portant for the GNN’s final prediction. As a result, the defender can detect the
trigger-embedded graphs easily;

• to achieve the second objective, we can select a subgraph similar to g t in the
graph as the trigger injecting position. However, the computation of the similarity
between graphs is a complex task as subgraph isomorphism is known to be NP-
complete. The graph matching algorithms require an exponential time for com-
putation [29].

To overcome the above challenges, we utilize GNNExplainer to optimize the trigger

3

24 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

...

Trigger ...+

...

...

Original training dataset Backdoored training dataset

Backdoored GNN

Training

Backdoored GNN

Target label

Testing

Input graph
(non-target label)

+

Trigger

G

Gg t ΦΦ

Figure 3.2: Illustration of subgraph based backdoor attack on GNNs for graph classification task.

...

...

Original training dataset

Φo

Pre-trained GNN

Model
output

GNNExplainer

...

...

...

Node importance
matrix

Trigger

...

...

Backdoored training dataset

Backdoored GNN

Φ

+

Figure 3.3: The framework of the backdoor attack on graph classification task based on GNNExplainer.

injecting position to ensure the attack effectiveness and attack evasiveness at the same
time.

• We first apply GNNExplainer to analyze the prediction of GNNs to understand the
impact of each structure in the graph on the classification result from GNNs.

• Instead of selecting t nodes from the graph uniformly at random as the trigger
nodes, we select the t least important nodes in the graph as the trigger injecting
position, which results in difficult-to-detect trigger-embedded graphs.

The overall framework of backdoor attack on graph classification task based on GN-
NExplainer is shown in Figure 3.3. Given a pre-trained GNN and its predictions, through
GNNExplainer, the importance value of nodes for each graph can be computed. Based
on the node importance matrix, we select the optimal trigger injecting position for each
intended poisoned graph and then obtain the backdoored GNN by training the pre-
trained GNN modelΦo with the backdoored training dataset.

Backdoor Attacks on Node Classification
The currently proposed backdoor attack on GNNs for the node classification task defines
triggers as specific subgraphs, i.e., given an arbitrary subgraph g in G , by replacing g with
the trigger (graph) g t , the adversary attempts to force the unlabeled nodes within K hops
to g to be misclassified into the target label yt .

Here, we propose a new method to implement backdoor attacks on GNNs for the
node classification task. We assume that the adversary has access to G , including the
graph structure information A and the node feature information X . Each node v in the
graph G has its feature vector x. Given an arbitrary node in the graph, by changing the
value of a subset of its features as a feature trigger, the attacker aims to force the node
to be classified to the target class yt and simultaneously perform normally in other un-
modified nodes. Formally, the adversary’s objectives can be defined as:

Φ(v, xt ;G) = yt

Φ(v, x;G) =Φo(v, x;G)
(3.2)

Here, xt represents the feature vector with trigger, obtained by changing the features’
values in specific dimensions.

3.2. EXPLAINABILITY-BASED BACKDOOR ATTACKS

3

25

Original graph

Φo

Pre-trained GNN

Model
output

GNNExplainer
Most/least

representative
features

Modified graph

Backdoored GNN

Φ

Labeled node
Unlabeled node

Original features of
training dataset

Most representative features

Least representative features

trigger features

Φ

Backdoored GNN

Target label

Target node

Training Testing

Original features of testing
dataset

Figure 3.4: The framework of backdoor attack on node classification task based on GraphLIME.

Table 3.1: Dataset statistics.

Datasets # Graphs Avg. # nodes Avg. # edges Classes Graphs [Class] Target class

Mutagenicity 4,337 30.32 30.77 2 2,401[0],1,936[1] 1
facebook_ct1 995 95.72 269.01 2 498[0],497[1] 0

Cora 1 2,708 5,429 7
351[0],217[1],418[2],818[3],

6
426[4],298[5],180[6]

CiteSeer 1 3,327 4,608 6
264[0],590[1],668[2],

5
701[3],596[4],508[5]

Similar to the graph classification task, these two objectives ensure the attack effec-
tiveness and attack evasiveness. The key point is how to select specific dimensions of a
feature vector as a trigger injecting position. Intuitively, we can select n features from the
total features uniformly at random and change their values to a fixed value as the feature
trigger. We can also use a GNN explainability method - GraphLIME to select the specific
feature dimensions:

• We first apply GraphLIME to analyze the output of GNNs on the node classification
task to compute the n most/least representative features.

• We change the value of the n most/least representative features to a fixed value as
the feature trigger and retrain the GNN with backdoored training dataset to get the
backdoored GNN.

The overall framework of the proposed backdoor attack on node classification task based
on GraphLIME is shown in Figure 3.4.

3.2.2. EXPERIMENTAL ANALYSIS

Experimental Setting
Our experiments were run on an Intel Core i7-8650U CPU processor with 1.90 GHz fre-
quency and 15.5 GiB memory. For all the experiments, we use the PyTorch framework.

Dataset. For the graph classification task, we use two publicly available real-world graph
datasets. (i) Mutagenicity [92] - molecular structure graphs of mutagen and non-mutagen;
(ii) facebook_ct1 [92] - a subset of the activity of the New Orleans Facebook community
over three months, used to implement the classification task of distinguishing temporal
graphs with vertex labels corresponding to observations of a dissemination process and
temporal graphs in which the labeling is not a result of a dissemination process. We also
use two real-world datasets for node classification task: Cora [110] and CiteSeer [110].
Table 3.1 shows the statistics of these datasets.

3

26 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

Dataset splits and parameter setting. In the graph classification task, for each graph
classification dataset, we sample 2/3 of the graphs as the original training dataset and
treat the remaining graphs as the original testing dataset. Among the original training
dataset, we randomly sample η fraction of graphs to inject the trigger and relabel them
with the target label, called the backdoored training dataset. We also inject our trigger to
each original testing graph whose label is not the target label to generate the backdoored
testing dataset, which is used to evaluate the attack effectiveness. There are several pa-
rameters in the attack’s implementation: trigger size s, trigger density ρ, and poisoning
intensity η. We set the trigger size s to be the γ fraction of the graph dataset’s average
number of nodes. Since the trigger size affects the attack effectiveness dramatically, we
explore the impact of trigger size on the attack results. At the same time, we set other pa-
rameters as: ρ = 0.8 and η= 5% following the parameter setting in [164]. We use Erdős-
Rényi (ER) model [44] to generate the trigger with graph density ρ = 0.8.

In the node classification task, we split 20% of the total nodes as the original train-
ing dataset (labeled) for each dataset. To generate the backdoored training dataset, we
sample 15% of the original training dataset to inject the feature trigger and relabel these
nodes with the target label. The trigger size is set to 10% of the total number of node
feature dimensions. We set these parameters as they provided the best results after con-
ducting a tuning phase. In the node classification task, each node feature has a value of 0
or 1, and here we set the value of the modified node features to 1 (note, the values could
also be set to 0).

Models. In our experiment, we use the popular GIN [146] and GraphSAGE [53] mod-
els for the graph classification task as these two methods are the state-of-the-art GNN
models. For node classification, we use GAT [127] model as the pre-trained GNN model.

Attack evaluation metrics. We use the attack success rate (ASR) to evaluate the attack
effectiveness. Specifically, in the graph classification task, the ASR measures the pro-
portion of trigger-embedded inputs (the original label is not the target label) that are
misclassified by the backdoored GNN into the target class yt chosen by the adversary.
The trigger-embedded inputs are

Dg t =
{
(G1,g t , y1), . . . , (Gn,g t , yn)

}
and

Dxt =
{
(v1,xt , y1), . . . , (vn,xt , yn)

}
for graph and node classification tasks, respectively. Formally, the ASR can be defined
as:

At t ack Success Rate =
∑n

i=1 I(Φ(Gi ,g t) = yt)

n

or =
∑n

i=1 I(Φ(vi ,xt) = yt)

n
,

where I is an indicator function.

3.2. EXPLAINABILITY-BASED BACKDOOR ATTACKS

3

27

To evaluate the attack evasiveness, we use clean testing dataset accuracy drop (CAD),
which is the classification accuracy difference of the original GNN Φo and the back-
doored GNNΦ over the clean testing dataset.

Results for Graph Classification
This set of experiments evaluates the backdoor attack on GNNs for the graph classifi-
cation task with the explainability results obtained from GNNExplainer. Based on the
node importance matrix from GNNExplainer, we conduct three attacks with different
trigger nodes selecting strategies, two among which are proposed here as new strategies:
1) Random selecting attack strategy (RSAS) - As in [164], in this strategy, we sample t
nodes from the graph uniformly at random and replace their connection with that in the
trigger graph. 2) Most important nodes selecting attack strategy (MIAS) - We choose
the t most important nodes based on the node importance matrix and replace their con-
nection as that of the trigger graph. 3) Least important nodes selecting attack strategy
(LIAS) - Instead of selecting the most important t nodes, we select the least important
nodes as the trigger nodes.

Table 3.2 presents the experimental results of the backdoor attack on the graph clas-
sification task based on three attacks. For each result in the table, the first value is ASR,
and the second value is CAD. The results are conducted for the trigger size γ = 0.2. Fi-
nally, we include the performance of two different GNN models - GIN and GraphSAGE.
We can observe that overall, all three backdoor attacks on GIN achieve high attack effec-
tiveness (each with an attack success rate over 93%) and low clean accuracy drop (each
with accuracy drop below 4%), while performances in GraphSAGE degrade with attack
success rate up to 82%. This may be explained by GIN having a more powerful graph
representation capability so the trigger graph can be learned better. The rank between
these three attacks, except for the result of the facebook_ct1 dataset on GraphSAGE, is
LI AS ≈ RS AS > M I AS in terms of attack effectiveness. The ASR of MIAS is lower than
the other two attacks probably because after replacing the most important subgraph
with the trigger graph, it is more difficult for the GNN to distinguish the graphs of the
target class and non-target class. More precisely, GNN needs to dedicate more network
capacity to learn specific patterns for each class sample, which negatively influences rec-
ognizing the trigger patterns. The result that ASR of RSAS and LIAS is close means the
attacker can inject the trigger to the least important structure of the graph to achieve its
goal of being less likely to be detected by the defender.

We also evaluate the impact of trigger size - γ fraction of the average number of nodes
on the backdoor attack’s performance. Figure 3.5 shows the attack performance under
different trigger sizes varying from 5% to 20%. Obviously, the attack effectiveness of all
attacks monotonically increases with the trigger size. This can be easily explained as
with larger triggers, backdoored GNNs can better learn the difference between trigger-
embedded and normal graphs. Additionally, the clean accuracy drop of all strategies
slightly increases as well when the trigger size grows. This may be explained as the trig-
ger size increases, more graph structure information has been modified, and the border
between samples from different classes becomes less distinctive, so the performance of
the backdoored GNNs on clean dataset drops.

This set of experiments takes on average 13.49min and 16.72min to implement back-

3

28 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

10%

40%

70%

100%
RS

MI

LI

A
S

R

0.05 0.1 0.15 0.2
0%

2%

4%

C
A

D

Mutagenicity GIN

0.05 0.1 0.15 0.2

facebook_ct1 GIN

0.05 0.1 0.15 0.2

Mutagenicity GraphSAGE

0.05 0.1 0.15 0.2

facebook_ct1 GraphSAGE

Figure 3.5: Impact of trigger size γ on the attack success rate (ASR) and clean accuracy drop (CAD) of backdoor
attack on the graph classification task.

Table 3.2: Backdoor attack results on graph classification task based on different trigger nodes selecting strate-
gies (γ= 0.2).

ASR(%) | CAD(%)
GIN GraphSAGE

RSAS MIAS LIAS RSAS MIAS LIAS
Mutagenicity 98.24 2.80 93.66 1.66 97.69 2.65 79.73 1.03 73.55 0.58 82.24 0.65
facebook ct1 100 3.93 95.35 3.32 100 0.52 64.23 2.27 67.22 2.64 69.57 2.85

door attacks on the GIN model on Mutagenicity and facebook_ct1 dataset, respectively.
The GraphSAGE model takes around 13.37min and 16.35min on Mutagenicity and face-
book_ct1 dataset, respectively. Clearly, the process of selecting the optimal trigger in-
jecting position takes a short time on both GNN models on two datasets, e.g., 0.65s per
graph on the GIN model on the Mutagenicity dataset. Consequently, utilizing the GN-
NExplainer method to select the optimal trigger injecting position for a backdoor attack
on GNNs for graph classification task is practical and feasible. What is more, we can
select the least important structure of the graph to evade the detection from a defender.

Results for Node Classification
Next, we evaluate the backdoor attack on GNNs for the node classification task under
the explainability results of GraphLIME.

Based on the feature importance results of GraphLIME, we propose three attacks
with different trigger feature dimension selecting strategies: 1) Random selecting attack
(RSAS) - select n features from the node feature vector uniformly at random. 2) Most
important features selecting attack strategy (MIAS) - select the most n representative
features and change their values. 3) Least important features selecting attack strategy
(LIAS) - select the least n representative features and change their values.

Table 3.3 summarizes the attack performance under different trigger feature dimen-
sion selecting strategies (the first value is the ASR, and the second value is the CAD).
Observe that these three backdoor attacks on GAT obtain high attack success rate, i.e.,
over 84% and 95% for Cora and CiteSeer, respectively, and low clean accuracy drop at
the same time. This is similar to the graph classification task results: the ASR of LIAS is
close to RSAS, while MIAS has slightly degraded performance compared to the other two
attacks. Therefore, the attacker can select the least representative features of a node to
inject the feature trigger to achieve a high attack success rate, and the trigger-embedded
node has a lower probability of being detected by the defender.

The running time for backdoor attack implementation on the GAT model on two-
node classification datasets is on average 27.30s and 59.02s, respectively. In the process

3.3. RETHINKING THE TRIGGER-INJECTING POSITION

3

29

Table 3.3: Backdoor attack results on node classification task based on different trigger features selecting strate-
gies.

ASR(%) | CAD(%)
GAT

RSAS MIAS LIAS
Cora 86.01 2.23 84.11 0.66 84.22 1.95

CiteSeer 96.35 1.72 95.28 1.39 96.26 1.72

of selecting the optimal trigger injecting position, it only takes 0.06s and 0.09s per node
for Cora and CiteSeer dataset, respectively. Similar to the conclusion of graph classifi-
cation experiments, it is feasible to apply the explainability approach - GraphLIME to
select trigger injecting position for a backdoor attack on the node classification task.

3.3. RETHINKING THE TRIGGER-INJECTING POSITION
Although in Section 3.2, we explore the impact of the backdoor trigger-injecting posi-
tions on GNNs with explanation techniques, we only provide the hypothesis about the
results, and no experimental analysis is given to confirm the hypothesis. In this section,
we give an empirical analysis of the attack results, which leads to a further understand-
ing of the backdoor attack behavior in GNNs. In this section, we focus on the GNNEx-
plainer [155] method as it can explain predictions of any GNN on any graph-based ma-
chine learning task without requiring modification of the underlying GNN architecture
or re-training.

With the thriving development of explainability techniques in machine learning, the
attacker can use model explanations to gain knowledge about the model to perform the
adversarial attacks [93]. Kuppa et al. [70] used counterfactual explanations to find the
malware features that most heavily impact the classifier decision. They used this knowl-
edge to craft adversarial training samples that efficiently poison the model. Severi et
al. [111] used SHAP to craft backdoor triggers in malware detectors. Utilizing the expla-
nation, they determined which features to poison, resulting in a success rate of up to
three times higher than that of a greedy algorithm that does not use explainable artifi-
cial intelligence (XAI). While there has been an increasing number of studies on utilizing
explanation techniques to implement backdoor attacks in deep learning models, there
has been no research on using explanation tools to clarify the backdoor attack behavior
in the graph domain.

3.3.1. METHODOLOGY

Threat Model
We consider a gray-box threat model assuming the attacker can freely modify a small
portion of the training dataset. Since the explanation masks in GNNExplainer are gener-
ated through gradients of the GNN model, the attacker also has knowledge of the gradi-
ent information of the target model on the chosen training dataset. We also assume the
attacker performs a dirty-label backdoor attack, where the poisoned samples’ labels are
changed to the target label. Although this kind of attack is weaker than clean-label back-
door attacks [124], where the labels remain unaltered, dirty label attacks are the most

3

30 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

common in the literature [143, 164]. The attacker’s goal is to inject a backdoor in the
given pre-trained clean GNN model through training over the poisoned training dataset,
which achieves misclassification under the presence of a trigger while maintaining clean
high accuracy on the original task. This threat model is realistic in real-world settings.
For example, if the training dataset is collected from public users, the adversary can pro-
vide trigger-embedded training data to implement the backdoor attack.

General Framework
As stated before, we aim to discover if and how the explainability techniques in GNNs
help improve the performance of backdoor attacks. Here, we focus on utilizing the feature-
trigger backdoor attack from Section 3.2 for the node classification task. The trigger used
in the backdoor attacks in our paper is defined as:

Definition 1 (Trigger) In our backdoor attacks, the trigger is a specific feature pattern
that is created by modifying the value of a subset of a node’s features.

Generally, two steps are conducted to implement backdoor attacks using explain-
ability techniques:

(1) We apply an explainability technique (i.e., GNNExplainer) on a pre-trained clean
GNN model to implement backdoor attacks based on two trigger-injecting strategies de-
fined below.

Definition 2 (The Most/Least Representative Features) Through applying the GNNEx-
plainer on the pre-trained clean GNN model on the target node, we can obtain the original
importance order of the node features. Based on the importance order information, we can
locate the most or least representative features.

Definition 3 (Most Important Area Strategy (MIAS)) We select the most representative fea-
tures of the target node and inject the feature trigger into the corresponding dimensions.

Definition 4 (Least Important Area Strategy (LIAS)) We select the least representative fea-
tures of the target node and inject the feature trigger into the corresponding dimensions.

We then compare the attack performance based on these two strategies, including
the attack success rate and clean accuracy drop.

(2) Next, we try to explain the attack performance of these two strategies by again
applying the explainability techniques on the backdoored model over the poisoned test-
ing dataset. As a result, we can obtain the new importance order of the node features,
which is used to compute the similarity with the original feature importance order. The
proposed framework is presented in Fig. 3.6.

Explanation Design
The detailed process of generating poisoned training dataset and target masks is pre-
sented in Algorithm 1. E X P (·) is the applied GNN explanation technique, i.e., GNNEx-
plainer, and s is the trigger-injecting strategies, i.e., MIAS or LIAS. The algorithm first
samples a subset from the original training dataset with a poisoning rate r (line 2). For
each sampled node, the algorithm will compute the corresponding feature order to de-
termine the trigger-injecting location for MIAS and LIAS. Meanwhile, the label of the

3.3. RETHINKING THE TRIGGER-INJECTING POSITION

3

31

Original graph

θ

Pre-trained GNN
Most/least representative features

Backdoored GNN

Explanation techniques Inject trigger

MIAS

LIAS
(a) Backdoor attacks based on two strategies.Backdoored GNN

Explanation techniques

Labeled nodeUnlabeled nodeOriginal features of nodes
Most representative featuresLeast representative features Trigger featuresPoisoned training/testing nodes

New Representative Features

Original Representative Features

Compute Similarity
or

or

(b) Procedure of explaining two attack strategies.

Figure 3.6: An illustration of backdoor attack and explanation framework.

poisoned training dataset will change to the target label. The trigger size n is the num-
ber of the features in the feature trigger, which means n node features will be modified.
The poisoned testing dataset is obtained by injecting a trigger (following the same strat-
egy as the poisoned training dataset) into the samples and changing their labels to the
target label. Finally, based on the order of representative features, we can generate a tar-
get mask for each node in the poisoned testing dataset (line 17). The target mask has
the same shape as the node feature vector, and the most (least) n important features are
masked in while other features are masked out. To evaluate whether the backdoored
model can recognize the trigger pattern precisely, the number of features to be masked
in is set to be n. The definition of the target mask is as follows:

Definition 5 (Target Mask) The target mask is a boolean tensor that indicates which n
features contribute more to the final prediction from the pre-trained clean model θ for the
target node compared to other features.

Once the poisoned training dataset is generated, we can obtain the backdoored mod-
els θ̂s by retraining the clean model θ with the backdoored training dataset. 1 The pro-
cess of training the backdoored models and obtaining predicted masks is shown in Al-

1In this work, we combine the original training dataset and the poisoned training dataset as the backdoored
training dataset.

3

32 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

Algorithm 1: Generate Poisoned Training Dataset and Target Masks

Input: Pre-trained clean GNN model θ, Training set Dtr ai n , Testing set Dtest ,
Trigger-injecting strategy s ∈ {M I AS,LI AS}, Target label yt ∈ [0,C)

Output: Poisoned training dataset D̂ s
tr ai n , Poisoned testing dataset D̂ s

test , Target masks
M s

t
1 /* Sampling Training Dataset to Inject Trigger */
2 D̂ s

tr ai n ← sample(Dtr ai n ,r, y ̸= yt)

3 foreach
{

x, y
} ∈ D̂ s

tr ai n do
4 /* Computing Order of Representative Features */
5 f eatur e_or der = E X P (θ, x, y)
6 x̂s = In j ect_Tr i g g er (x, f eatur e_or der, s)
7 ŷ s = yt

8 end
9 D̂ s

test ← Dtest [\yt]
10 M s

t ←;
11 foreach

{
x, y

} ∈ D̂ s
test do

12 /* Computing Order of Representative Features */
13 f eatur e_or der = E X P (θ, x, y)
14 x̂s = In j ect_Tr i g g er (x, f eatur e_or der, s)
15 ŷ s = yt
16 /* Generating Target Mask */
17 ms

i =Get_M ask(f eatur e_or der, s)

18 M s
t = M s

t ∪ms
i

19 end
20 return D̂ s

tr ai n ,D̂ s
test , M s

t

Algorithm 2: Train Backdoored GNN Models and Generate Predicted Masks

Input: Pre-trained clean GNN model θ, Training set Dtr ai n , Poisoned training dataset
D̂tr ai n , Poisoned testing dataset D̂test , Trigger-injecting strategy s ∈ {M I AS,LI AS}

Output: Backdoored GNN model θ̂s , Predicted Masks M s
p

1 /* Training Backdoored Models */
2 /*

{
x, y

} ∈ Dtr ai n ,
{

x̂s , ŷ s} ∈ D̂ s
tr ai n */

3 θ̂s = argminθ(
∑

i L(xi , yi ;θ)+∑
i L(x̂s

i , ŷ s
i ;θ))

4 M s
p ←;

5 foreach
{

x̂s , ŷ s} ∈ D̂ s
test do

6 /* Getting Predictive Mask */

7 f eatur e_or der = E X P (θ̂s , x̂s , ŷ s)
8 ms

i =Get_M ask(f eatur e_or der)

9 M s
p = M s

p ∪ms
i

10 end

11 return θ̂s , M s
p

3.3. RETHINKING THE TRIGGER-INJECTING POSITION

3

33

gorithm 2. To analyze the impact of injecting trigger into the most/least important part
of the node features on the attack performance, we compare the attack performance of
θ̂M I AS and θ̂LI AS , including the attack success rate and clean accuracy drop. Finally, for
the poisoned testing dataset, which we used to calculate the attack success rate, we again
utilize the GNNExplainer to obtain the new feature importance order for each node on
the backdoored GNN model θ̂M I AS or θ̂LI AS (line 7). The new feature importance order is
used to generate the predicted mask. The definition of the predicted mask is as follows:

Definition 6 (Predicted Mask) The predicted mask is a boolean tensor which indicates
which n features contribute more to the final prediction from the backdoored GNN model
θ̂ for the target node compared to other features.

Combining the target masks we get in Algorithm 1, we can compute the similarity
between the ordering of the new representative features and the old ones by calculating
the recall score of the target mask and the predicted mask:

RSs
i =

T P (M s
t ,i , M s

p,i)

T P (M s
t ,i , M s

p,i)+F N (M s
t ,i , M s

p,i)
, i ∈ N

M s
t ,i (M s

p,i) = [0, · · · ,1, · · · ,1, · · · ,0],

(3.3)

where RSs
i is the recall score of the i th poisoned testing sample with s strategy, M s

t ,i and
M s

p,i is the target mask, and predictive mask of the i th poisoned testing sample, T P and

F N is the true positive and false negative rate of these two masks, respectively, and N
is the number of the poisoned testing dataset. We assume that higher similarity indi-
cates that the backdoored model can better recognize the trigger pattern, contributing
to better attack performance.

3.3.2. EXPERIMENTAL RESULTS

Experimental Setting
We implemented the backdoor attack on the node classification task using the PyTorch
framework. All experiments were run on a server with 2 Intel Xeon CPUs, 1 NVIDIA 1080
Ti GPU with 32GB RAM, and Ubuntu 20.04 LTS OS. Each experiment was repeated 10
times to obtain the average result.

Dataset. For our experiments, we use two publicly available real-world datasets for the
node classification task: Cora [110] and CiteSeer [110]. These two datasets are citation
networks in which each publication is described by a binary-valued word vector indicat-
ing the absence/presence of the corresponding word in the collection of 1,433 and 3,703
unique words, respectively. For each node classification dataset, we split 20% of the to-
tal nodes as the original training dataset (labeled), and the rest of the nodes are treated
as the original testing dataset. To generate the backdoored training dataset, we sample
10% of the original training dataset to inject the feature trigger and relabel these nodes
with the target label. The trigger size is set to 5% of the total number of node feature
dimensions. We set these parameters as they provided the best results after conducting
a tuning phase.

3

34 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

Models and training. We use the popular GAT [127] and GCN [67] models, as these two
methods are commonly-used GNN models for the node classification task. We train the
clean and backdoored GNN models with a learning rate of 0.005 and use Adam as the
optimizer.

Attack evaluation metrics. To compare the attack performance of MIAS and LIAS, we
utilize two commonly used backdoor attack evaluation metrics:

1. Attacks Success Rate (ASR): measures the backdoor performance of the model on

a fully poisoned dataset D̂ . It is computed as ASR =
∑N

i=1 I(θ̂(x̂i)=yt)
N where θ̂ is the

poisoned model, x̂i is a poisoned input, x̂i ∈ D̂ , yt is the target class, and I is an
indicator function.

2. Clean Accuracy Drop (CAD): measures the effect of the backdoor attack on the
original task. It is calculated by comparing the performance of the poisoned and
clean models on a clean holdout testing set. The accuracy drop should generally
be small to keep the attack stealthy.

Results and Analysis

Results. The backdoor attack results on two graph datasets based on two models and
two trigger-injecting strategies are shown in Fig. 3.7. In particular, the ASR and CAD of
two GNN models on two datasets are presented in Table 3.4. We can observe that both
strategies can achieve a high attack success rate, i.e., more than 97%, except GCN on the
Cora dataset with MIAS. In addition, in most cases, the ASR of LIAS is slightly higher,
around 1%, than that of MIAS. However, for the GCN model on the Cora dataset, the
ASR of LIAS is significantly higher: more than 8%, than the MIAS. We can also see that
the CAD for all datasets and models is unnoticeable, and the difference between the two
strategies over CAD is negligible.

Analysis. Next, we investigate the reason why the backdoor attack performance of the
LIAS is somewhat higher or significantly higher (for the GCN model on the Cora dataset)
than the MIAS. As mentioned in Section 3.3.1, we evaluate the similarity between the or-
dering of the new representative features and the old ones by calculating the recall score
of the target mask and the predicted mask. The histogram of recall scores over the poi-
soned testing dataset of all datasets and models is shown in Fig. 3.8. We can observe that
most poisoned testing samples have a recall score of more than 0.5 in both MIAS and
LIAS, which results in a high attack success rate for both strategies. To further investi-
gate the slight advantage of the LIAS over the MIAS, we split the poisoned testing sam-
ples into two parts, one is misclassified into the target class successfully, and the other
one is not, and compute the recall scores for these two parts, as shown in Fig. 3.9. We no-
tice that, generally, the successfully misclassified nodes have significantly higher recall
scores than those not misclassified into the target class. This phenomenon is consistent
with the assumption mentioned in Section 3.3.1, i.e., the higher similarity between the

3.3. RETHINKING THE TRIGGER-INJECTING POSITION

3

35

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

GCN-MIAS

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

GCN-LIAS

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

GAT-MIAS

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

GAT-LIAS

Clean Acc Test Acc ASR

(a) Cora.

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

Ac
cu

ra
cy

GCN-MIAS

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

GCN-LIAS

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

GAT-MIAS

0 100 200 300
Epochs

0.0
0.2
0.4
0.6
0.8
1.0

GAT-LIAS

Clean Acc Test Acc ASR

(b) CiteSeer.

Figure 3.7: Backdoor attack results of two trigger-injecting strategies.

Table 3.4: Backdoor attack performance of MIAS and LIAS (SD: standard deviation).

MIAS

Dataset
GCN GAT

ASR ± SD CAD ± SD ASR ± SD CAD ± SD

Cora 90.08%±0.29% 0.32%±0.19% 97.91%±0.12% 0.34%±0.24%
CiteSeer 97.70%±0.10% 0.32%±0.17% 98.54%±0.09% 0.71%±0.20%

LIAS

Dataset
GCN GAT

ASR ± SD CAD ± SD ASR ± SD CAD ± SD

Cora 98.65%±0.06% 0.27%±0.21% 99.89%±0.03% 0.27%±0.21%
CiteSeer 98.96%±0.07% 0.15%±0.18% 99.88%±0.03% 0.80%±0.17%

ordering of the new representative features and that of the original ones indicates that
the backdoored model can recognize the trigger pattern better. When comparing the
second column and the last column of Fig. 3.9b, 3.9c, and 3.9d, we also see that LIAS has
fewer nodes with low recall score than MIAS, which we believe is the reason of higher
ASR of LIAS than MIAS.

In contrast, we surprisingly see that for the GCN model on the Cora dataset with

3

36 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

MIAS, the unsuccessfully misclassified nodes also have a high recall score as the suc-
cessfully misclassified nodes. We assume that the main reason behind this is that, under
the MIAS, the feature trigger is injected into the positions of the most representative fea-
tures. Thus the backdoored model will recognize not only the trigger pattern but also
the representative feature pattern for the original label. Therefore, for MIAS, it is pos-
sible that even the poisoned testing samples that are not successfully misclassified into
the target class will have a high recall score. We verify this hypothesis by extending the
target masks and predicted masks twice the feature trigger length, i.e., 2∗n, and comput-
ing the recall scores again. 2 The histogram of the new recall scores of the GCN model
on the Cora dataset is shown in Fig. 3.10. We also checked the prediction of the back-
doored model over the unsuccessfully misclassified nodes. The output indicates that all
these nodes are classified into their original classes. Comparing Fig. 3.9a and 3.10, we
observe that the recall scores of the successfully misclassified nodes generally reduce to
half of that without extended masks. We believe this is because, for these nodes, the
backdoored model recognizes the trigger location exactly, and when we extended the
masks twice the trigger length, only half of the features can be recalled. However, we can
also see that for the MIAS, the recall scores of the unsuccessfully classified nodes are still
as high as those without the extended masks. This is because the backdoored model rec-
ognizes the feature pattern for the original label (that is why these nodes are classified
into the original class and the attack is not successful), so even if the masks are extended,
the recall score is still high.

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

GCN-MIAS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 GCN-LIAS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 GAT-MIAS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 GAT-LIAS

(a) Cora.

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

GCN-MIAS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 GCN-LIAS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 GAT-MIAS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 GAT-LIAS

(b) CiteSeer.

Figure 3.8: Histogram of recall scores over the poisoned testing dataset.

2Here, we select an extension rate of 2. To verify the hypothesis, the extension rate can be set to γ> 1, and the
recall scores of the successfully misclassified nodes are expected to reduce to 1/γ of that without extended
masks.

3.4. CLEAN-LABEL BACKDOOR ATTACKS

3

37

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

MIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 MIAS-U

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-U

(a) Cora-GCN.

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

MIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 MIAS-U

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-U

(b) Cora-GAT.

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

MIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 MIAS-U

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-U

(c) CiteSeer-GCN.

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

MIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 MIAS-U

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-U

(d) CiteSeer-GAT.

Figure 3.9: Histogram of recall scores over two parts of the poisoned testing dataset (S means the nodes are
successfully misclassified into the target label, U means not).

3.4. CLEAN-LABEL BACKDOOR ATTACKS

3.4.1. METHODOLOGY

Problem Formulation
Given a pre-trained GNN modelΦo and its training dataset D tr ai n = {

(G1, y1), (G2, y2), . . . , (Gn , yn)
}

where Gi and yi respectively are the i -th training graph and its true label, the clean-label

3

38 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300

No

de
s

MIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 MIAS-U

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-S

0.0 0.5 1.0
Recall Score

0
50

100
150
200
250
300 LIAS-U

Figure 3.10: Histogram of recall scores of GCN model on Cora dataset with extended masks (S means the nodes
are successfully misclassified into the target label, U means not).

backdoor attack aims to forge a backdoored GNN Φb that will misclassify the testing
sample with a specific trigger into pre-determined labels (i.e., target label yt) without
affecting the performance on clean data. We assume the attacker can access the training
dataset D tr ai n . Unlike prior works [164, 143], which perform backdoor attacks on GNNs
by injecting a trigger into a sampled training dataset and changing their labels to the tar-
get label, the attacker of clean-label backdoor attack samples a subset of training dataset
with target label and injects trigger into them without changing their labels. Thus, the
poisoned samples have plausible labels.

General Framework
The general framework of a clean-label backdoor attack on GNNs is shown in Figure 3.11.
In the training phase, as presented in Figure 3.11a, the attacker samples data from the
original training dataset in the target class and injects a specific trigger to generate poi-
soned samples. The resulting poisoned samples are then utilized to backdoor the pre-
trained GNN model Φo to get the backdoored GNN model Φb . Here, we focus on the
subgraph-based backdoor attacks on GNNs for the graph classification task since most
graph classification tasks are implemented in GNNs by learning the network structure.
The backdoored GNN model is assumed to predict any testing sample (which can be
from an untarget class) with a specific trigger into the target class, as shown in Fig-
ure 3.11b.

Specifically, the implementation details of our attack are described in Algorithm 3.
The key point is backdoored dataset generation. Here, we adopt the Erdős-Rényi (ER)
model [44] to generate trigger g t (line 3 in Algorithm 3) as it is fast and more effective
than other random graph generation methods [164]. In particular, this model outputs a
random graph of s nodes, and the probability of an edge between each pair of nodes in
this graph is ρ. We sample subsets of the original training dataset (with target label) with
proportion r , as shown as D tmp , and the remaining is saved as clean training dataset
Dclean . For each sampled graph, we inject a trigger (by the ER model) into it by sampling
s nodes from the graph uniformly at random and replacing their connection with that
in the trigger graph. Under the setting of a clean-label backdoor attack, the attacker
does not re-label the sampled data. The backdoored dataset comprises the dataset with
trigger D tr i g g er and the remaining clean training dataset Dclean .

3.4. CLEAN-LABEL BACKDOOR ATTACKS

3

39

...
Trigger ...+

...

...

Original training dataset Backdoored training dataset
Pre-trainedGNN

Φo

Non-target class

Target class
Φb

Backdoored GNNNon-target class

Target class

(a) Training

Backdoored GNN
Target class

Input graph (non-target class)

+Trigger
G

Gg t Φb

(b) Testing

Figure 3.11: Clean-label backdoor attack framework.

3.4.2. EXPERIMENTAL RESULTS

Datasets. We perform experiments with two publicly available datasets: (1) MUTAG [33]
- structure graphs of the mutagenic and non-mutagenic molecules and (2) NCI1 [115] -
chemical compounds screened for activity against non-small cell lung cancer and ovar-
ian cancer cell lines. For each dataset, we randomly sample 80% of the data instances as
the training dataset and the rest as the testing dataset.

Target Models. We choose GCN [67] and GIN [146] as our target models to be attacked,
considering their excellent performance and widespread adoption [141, 142].
Evaluation. We use the attack success rate (ASR) to evaluate the attack effectiveness.
Specifically, we embed each testing data with the specific trigger graph and calculate the
ASR of the backdoored GNN model on the poisoned testing dataset. Here, we only em-
bed the testing dataset of the non-target label with a trigger to avoid the influence of
the original label. The ASR measures the proportion of trigger-embedded inputs mis-
classified by the backdoored GNN into the target class yt chosen by the adversary. The
trigger-embedded inputs are

D tr i g g er =
{
(G1,g t , y1), (G2,g t , y2), . . . , (Gn,g t , yn)

}
.

Here, g t is the graph trigger,
{
G1,g t ,G2,g t . . . ,Gn,g t

}
is the testing dataset embedded with

g t , and y1, y2, . . . , yn is the label set.
Formally, ASR is defined as:

At t ack Success Rate =
∑n

i=1 I(Φb(Gi ,g t) = yt)

n
,

3

40 3. BACKDOOR ATTACKS ON CENTRALIZED GNNS

Algorithm 3: Clean-label backdoor attack for the graph classification task

Input: Pre-trained GNN modelΦo , Training set Dtr ai n = {
xi , yi

}S
i=1, Target label

yt ∈ [0,C)
Output: Backdoored GNN modelΦb

1 Function CLEAN_LABEL_BACKDOOR_ATTACK():
2 Dtr i g g er ←;
3 gt ← ER(s,ρ)
4 Dtmp ← sample(Dtr ai n ,r, y = yt)
5 Dclean = {

d at a ∈ Dtr ai n : d at a ∉ Dtmp
}

6 foreach d ∈ Dtmp do
7 d [x] = I N JEC T (d [x], gt)
8 Dtr i g g er = Dtr i g g er ∪

{
d [x],d [y]

}
9 end

10 End Function
11 Dbackdoor = Dclean

⋃
Dtr i g g er

12 Φb = Tr ai n(Φo ,Dbackdoor)
13 returnΦb

where I is an indicator function andΦb refers to the backdoored GNN model.

Furthermore, we also use clean accuracy drop (CAD) to evaluate the attack evasive-
ness. CAD indicates the classification accuracy difference between the original GNN
modelΦo and the backdoored GNN modelΦb over the clean testing dataset.

Results. We set the number of nodes in the trigger graph to be 20% of the average num-
ber of nodes in the dataset. Next, we set the poisoning rate r and edge existing proba-
bility ρ to be 10% and 80%, respectively. We set those parameters following the setting
in prior backdoor attacks on GNNs [164]. Table 3.5 presents the attack results. We can
observe that overall, a clean-label backdoor attack can achieve high attack effectiveness
for both datasets and models, i.e., with an attack success rate over 84%, especially for the
NCI1 dataset with up to 98.47% ASR. It can also be observed that in most cases, a clean-
label backdoor attack has a low CAD, i.e., around 1%, which indicates that a clean-label
backdoor attack has a negligible impact on the original task of the model.

The results in [124] indicate that only poisoning inputs of the target class (i.e., with-
out changing the true labels) renders the attack ineffective. The authors argued the main
reason for the attack’s ineffectiveness is that the poisoned samples can be correctly clas-
sified by learning a standard classifier, so the backdoor attack is unlikely to be successful
since relying on the backdoor trigger is not necessary to classify these inputs correctly.
On the contrary, here, we find that without any other improvement, the clean-label back-
door attack is already successful on GNN models. This may be explained since the GNN
model predicts the input graph by learning information of specific structure(s), i.e., ex-
planation subgraph(s) [155], in the graph. If a graph is injected with a trigger graph, the
GNN model will also try to learn the trigger pattern and add it to the explanation sub-
graphs. Once the backdoored GNN model is trained, it will output a target label if one of
the explanation subgraphs, e.g., trigger graph, appears in the input graph.

3.5. CONCLUSIONS

3

41

Table 3.5: Attack performance (SD: standard deviation).

Dataset
ASR(%) | CAD(%)

Mean (SD)
GCN GIN

MUTAG 87.83(1.03) | 0.16(0.03) 84.86(1.68) | 2.24(0.15)
NCI1 98.47(1.30) | 0.88(0.01) 97.62(2.03) | 1.01(0.07)

3.5. CONCLUSIONS
This chapter designs and explores backdoor attacks in centralized GNNs. First, we take
the first step toward the explainability of the impact of trigger injecting position on the
performance of backdoor attacks on GNNs. We conduct research on two graph tasks -
graph classification and node classification. For the graph classification task, we apply
GNNExplainer to select the optimal subgraph in a graph to be replaced by the trigger
graph. For the node classification task, we propose a new backdoor attack using a subset
of node features as a trigger pattern, and then we apply GraphLIME to choose the opti-
mal subset of node features to change their values to a fixed value as the feature trigger.
Through empirical evaluation using benchmark datasets and state-of-the-art models,
we verify that our approach can quickly select the optimal trigger-injecting position to
implement a powerful backdoor attack on GNNs. Furthermore, we see that the attacker
can select the least important parts of the graph to inject the trigger, thus reducing the
chances of easy detection by the defender.

Next, we conduct a comprehensive analysis and explanation of graph backdoor at-
tacks with two trigger-injecting strategies, i.e., MIAS and LIAS, proposed above. We in-
vestigate the node classification task and compare the attack performance for these two
strategies. Our findings show that LIAS always achieves higher attack performance than
MIAS. We further explain the difference with quantitative analysis, which contributes
to a further understanding of the backdoor attack behavior in GNNs. Finally, in or-
der to implement a more insidious backdoor attack, we design a new backdoor attack
on GNNs that only poisons inputs of the target class without changing the true labels.
Our method leverages the GNN model’s redundant learning capability to learn the trig-
ger pattern. Initial experimental evaluations showed that a clean-label backdoor attack
could achieve a high attack success rate and low clean accuracy drop. We hope our study
highlights the concern of clean-label backdoor attacks on GNNs, which are more insidi-
ous.

For future works, we aim to expand the technique of explaining backdoor attacks on
GNNs for the node classification task to the graph classification task. More precisely,
we would compute the similarity between the new representative subgraph and the old
one by calculating the recall score of the target mask and the predicted mask. We also
expect to explore the clean-label backdoor attack’s effectiveness against filtering tech-
niques mentioned in Section 3.1.

4
BACKDOOR ATTACKS ON

FEDERATED GNNS

Previous studies have indicated that node-level GNNs are vulnerable to Membership In-
ference Attacks, which infer whether a node is in the training data of GNNs and leak the
node’s private information, like the patient’s disease history. The implementation of pre-
vious MIAs takes advantage of the models’ probability output, which is infeasible if GNNs
only provide the prediction label (label-only) for the input. In addition to MIAs, there are
also privacy concerns and regulation restrictions in GNNs when centrally trained, making
it promising to apply federated learning to train GNNs. Although several research works
have applied FL to train GNNs (Federated GNNs), there is no research on their robustness
to backdoor attacks. Therefore, in this chapter, we aim to answer the second subquestion
in Section 1.4. Specifically, we give solutions to the following research questions, i.e., Can
we design a label-only membership inference attack on GNNs? and Is it possible to design
backdoor attacks on Federated GNNs?

In this chapter, we propose a label-only MIA against GNNs for node classification. Our
attacking method achieves around 60% accuracy, precision, and Area Under the Curve
(AUC) for most datasets and GNN models. Also, this chapter conducts two types of back-
door attacks in Federated GNNs, i.e., CBA and DBA. We further explore the robustness of
DBA and CBA against two state-of-the-art defenses. We find that both attacks are robust
against the investigated defenses, necessitating the need to consider backdoor attacks in
Federated GNNs as a novel threat that requires custom defenses.

This chapter is based on: 1) "Label-Only Membership Inference Attack against Node-Level Graph Neural Net-
works." Conti, M., Li, J., Picek, S., Xu, J. (2022). the 15th ACM Workshop on Artificial Intelligence and Security,
2) "More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks." Xu, J., Wang, R.,
Koffas, S., Liang, K., & Picek, S. (2022). The Annual Computer Security Applications Conference, 3) "On Explor-
ing Backdoor Attacks in Federated Graph Neural Networks." Xu, J., Koffas, S., & Picek, S. (2022). The Learning
from Authoritative Security Experiment Results (LASER) workshop, 4) "Unveiling the Threat: Investigating Dis-
tributed and Centralized Backdoor Attacks in Federated Graph Neural Networks." Xu, J., Koffas, S., & Picek, S.

43

4

44 4. BACKDOOR ATTACKS ON FEDERATED GNNS

4.1. INTRODUCTION
Graph Neural Networks (GNNs) are gaining more and more attention for their broad ap-
plication in analyzing social networks, recommender systems, and biological networks.
Node classification, which predicts the label for nodes in the graph, is one of the popular
tasks [41, 129]. Usually, GNNs are trained in centralized setting, which leads to privacy
concerns, e.g., membership inference attack (MIA). MIA infers the existence of nodes in
the training data of GNNs, which means the adversary can determine which nodes be-
long to the training data of GNNs with the implementation of MIAs. It is crucial to study
MIAs as they can cause privacy leakage. For instance, we train a GNN model whose train-
ing data includes patients infected with COVID-19 and the goal of the GNN model is to
investigate, recognize, and classify the infection factors of COVID-19 [97]. By attacking
this GNN model, the adversary can utilize the probability vector output of the model
to predict whether one patient is in the training data or not, which is a severe privacy
leakage for the patient. The original intuition of MIA is that the overfitting model will
assign a higher probability value to the training data than the testing data. Hence, previ-
ous MIAs against GNNs utilize the prediction probability vector to act as attack features
or compute metric values [137, 58, 97]. However, they are ineffective when the model
only outputs the input’s label, which is a label-only condition. Furthermore, previous
label-only MIAs against CNNs and semantic segmentation models are not effective or
challenging to implement while being transferred to GNNs. To improve the attack per-
formance under the label-only condition, we propose our label-only MIA against GNNs,
which is more efficient and straightforward than previous methods.

In addition to MIAs, GNNs also face other challenges when centrally trained because
of privacy concerns, regulatory restrictions, and commercial competition. For example,
the financial institution may utilize GNN as a fraud detection model, but they can only
have transaction data of its registered users (no data of other users because of privacy
concerns). Thus, the model is not effective for other users. Similarly, in a drug discov-
ery industry that applies GNNs, pharmaceutical research institutions can dramatically
benefit from other institutions’ data, but they cannot disclose their private data for com-
mercial reasons [55].

Federated Learning is a distributed learning paradigm that works on isolated data.
In FL, clients can collaboratively train a shared global model under the orchestration of
a central server while keeping the data decentralized [66, 91]. As such, FL is a promising
solution for training GNNs over isolated graph data, and there are already some works
utilizing FL to train GNNs [55, 161, 72], which we denote as Federated GNNs. Although
FL has been successfully applied in diverse domains, e.g., computer vision [83, 81] or
language processing [168, 54], there could be malicious clients among millions of clients,
leading to various adversarial attacks [5, 42]. In particular, limited access to local clients’
data due to privacy concerns or regulatory constraints may facilitate backdoor attacks
on the global model trained in FL.

Backdoor attacks on FL have been recently studied [5, 10, 144]. However, these at-
tacks are applied in federated learning on Euclidean data, e.g., images and words. The
backdoor trigger generation methods and injecting position are different between graph

(2023). Digital Threats: Research and Practice (DTRAP) journal.

4.1. INTRODUCTION

4

45

data and images/words, as mentioned in Section 3.2. In particular, in [144], the authors
split a square-shaped trigger placed in the top left corner of an image into four parts so
that four malicious clients use each part in their poisoned datasets. When the training
ends, the adversary concatenates these parts to form a global trigger in the image’s up-
per left corner that activates the backdoor. This is impossible in GNNs as the data is
not Euclidean, and there is no position that we can exploit. Also, defenses like Fools-
Gold [43] filter out clients that use similar updates as malicious. This can be effective for
Euclidean data that use parts of the trigger in similar positions but may not be effective
in GNNs. Indeed, the graph data is not Euclidean, and different partial triggers vary the
graph structure resulting in non-aligned updates. Additionally, intensive research has
been conducted on backdoor attacks in GNNs [164, 143]. However, these works focus on
GNN models in centralized training. In federated learning, the malicious updates will
be weakened in the aggregation function. Finally, there can be more than one malicious
client, while in centralized GNNs, there is only one client. Thus, we should expect differ-
ent behavior of backdoor attacks in Federated GNNs. Then, it is crucial to investigate if
existing countermeasures that have been tested mostly with Euclidean data are still ef-
fective for backdoor attacks in Federated GNNs to understand how to deploy trustworthy
AI systems.

This chapter offers backdoor attack strategies in the Federated GNNs. First, in Sec-
tion 4.2, we propose a label-only MIA against GNNs for node classification with the
help of GNNs’ flexible prediction mechanism, e.g., obtaining the prediction label of one
node even when neighbors’ information is unavailable. Our attacking method achieves
around 60% accuracy, precision, and Area Under the Curve (AUC) for most datasets
and GNN models, some of which are competitive or even better than state-of-the-art
probability-based MIAs implemented under our environment and settings. Additionally,
we analyze the influence of the sampling method, model selection approach, and over-
fitting level on the attack performance of our label-only MIA. All of those three factors
have an impact on the attack performance. Then, we consider scenarios where assump-
tions about the adversary’s additional dataset (shadow dataset) and extra information
about the target model are relaxed. Even in those scenarios, our label-only MIA achieves
a better attack performance in most cases.

Second, in order to explore backdoor attacks in GNNs under distributed settings, we
conduct two types of backdoor attacks in Federated GNNs: centralized backdoor attacks
(CBA) and distributed backdoor attacks (DBA), in Section 4.3. CBA is conducted by em-
bedding the same global trigger during training for every malicious party, while DBA is
conducted by decomposing a global trigger into separate local triggers and embedding
them into the training datasets of different malicious parties, respectively. Our experi-
ments show that the DBA attack success rate is higher than CBA in almost all evaluated
cases. For CBA, the attack success rate of all local triggers is similar to the global trigger
even if the training set of the adversarial party is embedded with the global trigger. To
further explore the properties of two backdoor attacks in Federated GNNs, we evaluate
the attack performance for a different number of clients, trigger sizes, poisoning inten-
sities, and trigger densities.

4

46 4. BACKDOOR ATTACKS ON FEDERATED GNNS

4.2. LABEL-ONLY MIA TO GNNS

The MIA aims to distinguish the training (members) and testing data (non-members)
of the target model. Under the context of the node classification, the MIA determines
which nodes are in the training data. Generally, there are two types of attack strategies.
One is to train a classifier, with which we can predict the possibility of being a member
or non-member for a specific data point [107, 116]. The other is to directly or indirectly
compute the metric about the data point [78, 24, 86]. Then, the attacker determines the
data point as a member or non-member by comparing the metric value with a thresh-
old. Here, we focus on the classifier-based MIA, and the attack features are properties
of one data point (or node) for feeding into the attack model. The key of the classifier-
based MIA is to acquire the dataset (also called attack dataset) for training the classifier
to distinguish the training and testing data. Under the label-only condition, the adver-
sary cannot obtain the prediction probability vector from the target model for the at-
tack feature extraction. Usually, the adversary has access to a shadow dataset with the
same distribution as the target dataset. With this shadow dataset, the adversary trains
a shadow model to mimic the behavior of the target model. Even though the adversary
can only query the target model, the adversary has full knowledge of the shadow model.
To improve the effect of imitation, the adversary could relabel the shadow dataset with
the target model and train a relabelled shadow model. Then, the adversary utilizes the
prediction of the shadow model to construct the attack dataset. Finally, the attacker will
train an attack model based on the attack dataset for attacking the target model, i.e., dis-
tinguishing the training and testing data of the target model. One previous label-only
work (not on GNNs) acquires the prediction probability vector of the relabelled shadow
model as the attack features of the target dataset, called the transfer attack [78]. Be-
sides, Li et al. [78] and Choquette-Choo et al. [24] proposed to use the distance between
the original data point with its closest adversarial example to implement label-only MIA.
However, finding the adversarial example of a graph is difficult under the label-only con-
dition [139].

Unlike previous methods, we observe a flexible prediction mechanism of GNNs, which
means that we can obtain the prediction label of a specific node with or without its
neighbors’ features and connection information. Besides, inspired by previous data aug-
mentation methods for obtaining features [24] or reconstructing the prediction proba-
bility vector [105], we utilize feature masking and step-by-step edge dropping to mea-
sure the stability of the prediction label. Specifically, we obtain the attack features of
the attack model from three aspects. The first one is the fixed properties of the node,
including the number of neighbors and the ground truth of the node. The second one
is the prediction correctness of the target model while only feeding the node’s features
which are masked with different rates and values, into the GNN. The last one is feeding
the GNN with the node’s features, features of 1-hop neighbors, and connection informa-
tion. Specifically, the edges between the node and 1-hop neighbors are dropped step by
step, and the node’s features are masked with different rates and values to get the predic-
tion correctness of the node and its 1-hop neighbors. We obtain the attack features from
those three aspects to train the label-only attack model.

4.2. LABEL-ONLY MIA TO GNNS

4

47

4.2.1. OUR LABEL-ONLY MIA
GNNs for node classification tasks have two learning settings, i.e., inductive and trans-
ductive. Under the inductive setting, the GNN cannot access the testing nodes during
training. In the transductive environment, the GNN has knowledge of the whole graph
structure, including the connection information of the unlabelled testing nodes. In this
section, we do not consider the transductive setting because in the transductive setting,
the connection information of the testing data is also used for the model training, which
may influence the performance of MIA since the goal of MIA is to distinguish the training
and testing samples. He et al. [58] also only focused on the inductive setting. While pre-
dicting the label of a specific node in the graph, the GNN learns its features, neighbors’
features, and connection information. However, the GNN could also predict the node’s
label with only the property of a node, which is called the flexible prediction mechanism.
The flexible way of prediction benefits our label-only MIA, which only gets the label from
the model.

Problem Formulation
The goal of the MIA is to determine whether the target node Vt belongs to the training
data (member) or testing data (non-member) of the target model Ft . To implement the
MIA, the adversary has some external knowledge E. We formulate our label-only MIA A
as the following function:

A : Vt ,Ft ,E → {1,0}. (4.1)

Here, "1" means Vt is in the training data, and "0" otherwise (i.e., it is a binary classifica-
tion task). In the experiments, we train a binary classifier to solve this task.

Threat Model
The target model Ft is open to the adversary, which means the attacker can query it for
the label of the target node Vt . Considering flexible prediction mechanism and practi-
cal situation, we limit the query information to the target node’s feature, features of its
1-hop neighbors N (Vt), and connection information C (Vt). There are two reasons for
selecting 1-hop neighbors. The first one is that it requires less information than 2-hop
neighbors [58] while predicting the membership of one node. The second reason is that
the information of the target node is limited under the label-only condition. We cannot
get enough helpful distinguishable signals without neighbors’ information. Therefore,
we choose 1-hop neighbors. Besides, we expose the target node’s true label YVt to the
adversary.

The adversary has some external knowledge E . A shadow dataset Ds , extracted from
the same distribution as the target dataset D t used for training and testing the target
model Ft , is in the external knowledge. We relax this assumption and sample the shadow
dataset from the other distribution in experiments. Furthermore, the adversary knows
the target model’s architecture, training hyperparameters and algorithm. With that knowl-
edge, the attacker can train a shadow model Fs to mimic the behavior of the target model.
Similarly, we relax the assumption that the adversary knows the GNN architecture and
type of the target model within exploration. The relaxation of those two assumptions
tests the effectiveness of our label-only MIA under stricter conditions and makes our
MIAs closer to attack in the real world. He et al. [58] and Olatunji et al. [97] also relaxed

4

48 4. BACKDOOR ATTACKS ON FEDERATED GNNS

those assumptions.

Attack Methodology
The adversary obtains some external knowledge for the MIA implementation. Then the
question is how to apply our label-only MIA on GNNs with that knowledge and still sat-
isfy the threat model. To answer this question, we formulate the final attack model as a
binary classifier to predict whether the node is in the training data of the GNN or not.
Therefore, the acquisition of the attack features for training the attack model is the cru-
cial point.

General Steps. The overall process is illustrated in Figure 4.1. First, the total dataset
is split into target and shadow datasets. With a shadow dataset and knowledge about
the training of the target model, the adversary can train a shadow model to mimic the
behavior of the target model. The shadow model and membership situation of nodes
in the shadow dataset are transparent to the adversary. Thus, the attacker generates
the attack dataset via data points’ fixed properties and multiple queries for each data
point to the shadow model, which only outputs the prediction label. The features of the
data point in the attack dataset are attack features. If the node is in the shadow model’s
training data, the adversary assigns its attack features with the label "1" and otherwise
"0". Then, the adversary trains the attack model with the attack dataset extracted from
the shadow dataset and model.

Target Model

Attack Features

Shadow Model

Total Dataset

Target
Dataset

Shadow
Dataset

Train

Train

Query model with
target dataset

Query model with
shadow dataset

Nodes' properties

Nodes' properties

Evaluate

Train and test
Attack Dataset

Attack Model

Figure 4.1: The general process of our label-only MIA.

When the attack model is trained completely, the adversary can querys the target
model with target nodes from the target dataset to get each target node’s attack features.
Afterward, the attacker feeds the target nodes’ attack features into the attack model to get
the output which is a value between 0 and 1, indicating the probability of the target node
being from training data. Notably, the acquisition of the attack features is interpreted in
the next section.

Attack Features Acquisition. Under the label-only condition, the adversary only gets the

4.2. LABEL-ONLY MIA TO GNNS

4

49

prediction label of the target node from the target model. Therefore, obtaining the attack
features of target nodes in the target dataset is crucial. Previous label-only MIAs [78] (not
on GNNs) extract attack features of the target node from the prediction probability vec-
tor of relabelled shadow models, which are under the adversary’s control. The relabelled
shadow model utilizes the target model to relabel the shadow dataset, which is differ-
ent from the shadow model. One previous method feeds the target node into relabelled
shadow models to get the prediction probability vector as the attack features of this node
under the label-only condition because the target model does not expose the prediction
probability vector. For comparison, we present the result of this transfer attack under the
label-only condition in Table 4.3. Unlike previous methods, we construct target nodes’
attack features based on fixed properties of the node, data augmentation, flexible predic-
tion mechanism, and practical situation. The application of data augmentation obtains
inspiration from previous works [24, 35]. We consider the attack features from three as-
pects: fixed properties, 0-hop query, and 1-hop query. The specified properties, like the
ground truth of the target node in the target model, act as a part of features in previ-
ous attack models [116, 62]. Besides, the adversary has only access to 1-hop neighbors,
which means the attacker could query the target model with (1-hop query) or without
(0-hop query) information of 1-hop neighbors. Therefore, we extract features from the
three aforementioned aspects.

Acquisition with fixed properties. Olatunji et al. [97] mentioned that the connection
between nodes increases the vulnerability of GNN models to privacy attacks. Inspired by
this, we count the number of neighbors (n_num) and signal (w_i_node), which indicates
whether the node is independent of other nodes, as part of the attack features of the
target node Vt . Notably, the neighbors could be in the training or testing data of the
dataset while counting the number of neighbors in the target or shadow dataset. Besides,
we include the target node’s ground truth (o_label) into the attack features, which is the
same as the previous MIA [116].

Acquisition with the 0-hop query. The prediction of GNNs is flexible, which means
we can get the prediction label of a node with or without the features and the connec-
tion information of its neighbors fed into GNNs. For each target node Vt , we randomly
change different percentages of its feature values XVt to the largest and smallest value
in the feature space. Then we only input the target node with the changed feature to
the target model and record whether the prediction is the same as the ground truth of
the target node. Here, i _none_max_r ate and i _none_mi n_r ate are the record results
for each rate in r ate_set . The "1" means the prediction of the node with the changed
feature is the same as the ground truth, and the "0" means otherwise.

Acquisition with the 1-hop query. Due to the flexible prediction mechanism of
GNNs, we feed the features XVt of the target node Vt , the features XN (Vt) of its 1-hop
neighbors N (Vt), and connection information C (Vt) between the target node and its 1-
hop neighbors into the target model. At the same time, we apply two data augmentation
strategies. One is randomly changing different rates of feature values to the largest and
smallest value in the feature space. The other is removing the connected edges between
the target node and its 1-hop neighbors one by one. Then, we record two metrics: one is
the prediction accuracy of the 1-hop neighbors, and the other is whether the prediction
of the target node is the same as its ground truth.

4

50 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Specifically, we here explain the attack features’ names while acquiring with the 1-
hop query. Figure 4.2 consists of features with a high absolute SHAP value. The n_acc_
al l_max_r ate means the accuracy of the neighbors while keeping all the edges and al-
tering a percentage (rate) of the target node’s feature values to the maximum value in the
feature space. The n_acc_none_max_r ate is similar except all the edges are removed.
The n_acc_av g _max_r ate is the average accuracy of the neighbors during removing
edges. The i _al l_max_r ate indicates whether the prediction of the target node with the
changed feature (changing r ate percentage of features into to the maximum value) is the
same as its ground truth while keeping all the edges. The i _step_max_r ate presents
whether the prediction of the target node with the changed feature is the same as its
ground truth while reducing edges step by step. The names of attack features are slightly
different while changing the feature value to the smallest value, i.e., replacing max with
mi n. Besides, we record the real change percentage chang e_p_r ate of the feature val-
ues while randomly selecting a percentage (rate) of feature values for altering1.

Our label-only MIA combines fixed properties, the result of the 0-hop query, and the
result of the 1-hop query as the attack features. Previous studies [58, 97, 38] obtained
the prediction of the target node with 2-hop neighbors or all nodes in the training or
testing data as the input of the target model. They contain more information than our
label-only MIA when predicting the label of the target node. Under the label-only con-
dition, we cannot get the prediction probability vector from the target model. However,
while dropping edges or changing its feature values, the prediction accuracy of the target
model on the target node and its neighbors could also provide information for distin-
guishing the training and testing data.

4.2.2. EXPERIMENTS

Datasets
We conduct experiments on four datasets: Cora_ML, CiteSeer, DBLP, and PubMed [14].
The main reason for selecting those datasets is that the number of nodes and classes of
those datasets varies, which is beneficial for various experiments. Table 4.1 describes the
statistics of those four datasets.

Table 4.1: Statistical information of datasets.

Dataset Classes # Edges # Nodes Length of node feature

Cora_ML 7 16,316 2,995 2,879
CiteSeer 6 10,674 4,230 602

DBLP 4 105,734 17,716 1,639
PubMed 3 88,648 19,717 500

Model Architectures and Training Settings
The GNN models we consider are GCN, GAT, GraphSAGE, and GIN. We vary the model

1After randomly selecting a percentage (rate) of feature values, it’s possible that some selected feature values
are already the minimum or maximum value. Thus, the real change percentage (chang e_p_r ate) indicates
the percentage of feature values which are actually changed.

4.2. LABEL-ONLY MIA TO GNNS

4

51

Figure 4.2: The SHAP values of attack features (top 15). The left column indicates the attack features ranked
by the absolute SHAP value. The colorful right line represents the ruler of feature values. In the middle, the
cluster of points reflects data points in the dataset. The x-axis shows the SHAP value of each feature within one
data point.

architectures and training settings to explore the influence of the overfitting level on the
attack performance. Here, we discuss high and low overfitting levels of the target models
with various model architectures and training settings.

Low overfitting level. In this setting, we set four GNN models with three layers (in-
put, hidden, and output layers) and 16 neurons in the hidden layer. The optimization
algorithm of GNNs is Adam, with a learning rate of 6e-3 and a weight decay of 0.5. The
number of training epochs is 400. Besides, we apply the BatchNorm, Dropout (0.5),
and Jumping knowledge (concatenation) [147] to reduce the overfitting level. Jumping
knowledge (concatenation) concatenates the output of each layer as the input of the last
layer.

High overfitting level. Different from models with low overfitting level, we set the
number of layers to 5 (3 hidden layers) and the number of neurons in the hidden layer
to 64. The optimization algorithm of GNNs is Adam, with a learning rate of 0.001 and
without weight decay. The number of training epochs is 200. In addition, we do not
apply any strategies to reduce the overfitting level because we attempt to get the model
with a high overfitting level for comparison.

We decide on the training hyperparameters of models with a high or low overfitting
level by increasing or decreasing the overfitting level in a reasonable range. Besides, we

4

52 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Table 4.2: The attack performance of our label-only MIA after ten repetitions (low overfitting level).

Dataset GNN Used Nodes
Test Acc

(target model)
Train Acc

(target model)
Our Attack

(avg acc, pre, rec, auc, f1, low_fpr_0.01_tpr)

Cora_ML

GAT

1,344

0.736 0.883 [0.604, 0.605, 0.618, 0.658, 0.607, 0.059]
GCN 0.763 0.951 [0.613, 0.621, 0.606, 0.666, 0.607, 0.065]
GIN 0.664 0.875 [0.59, 0.624, 0.49, 0.631, 0.536, 0.041]

GraphSAGE 0.73 0.956 [0.602, 0.618, 0.559, 0.65, 0.581, 0.061]

CiteSeer

GAT

3,336

0.793 0.879 [0.598, 0.611, 0.585, 0.647, 0.583, 0.032]
GCN 0.81 0.942 [0.599, 0.622, 0.536, 0.645, 0.569, 0.031]
GIN 0.777 0.921 [0.592, 0.605, 0.563, 0.635, 0.571, 0.032]

GraphSAGE 0.795 0.937 [0.581, 0.571, 0.69, 0.617, 0.621, 0.032]

DBLP

GAT

7,920

0.732 0.83 [0.593, 0.604, 0.586, 0.645, 0.584, 0.048]
GCN 0.746 0.884 [0.593, 0.598, 0.618, 0.644, 0.596, 0.043]
GIN 0.715 0.865 [0.579, 0.59, 0.563, 0.621, 0.564, 0.026]

GraphSAGE 0.739 0.891 [0.579, 0.578, 0.643, 0.618, 0.595, 0.032]

PubMed

GAT

12,300

0.861 0.884 [0.583, 0.573, 0.661, 0.636, 0.61, 0.033]
GCN 0.867 0.907 [0.596, 0.601, 0.58, 0.657, 0.589, 0.059]
GIN 0.852 0.899 [0.568, 0.572, 0.571, 0.611, 0.563, 0.034]

GraphSAGE 0.866 0.923 [0.557, 0.548, 0.665, 0.597, 0.598, 0.033]

refer to the settings in previous works [58, 97].
The attack model is a multilayer perceptron (MLP) with 2 hidden layers, each of

which has 64 neurons. The optimization algorithm is Adam, with a learning rate of 0.001.
The number of training epochs is 300, and the batch size is 32. We use the Binary Cross
Entropy to guide the training of the attack model. Our attack model’s architecture is
similar to attack models in previous works [58, 97].

Evaluation Metrics
We train the attack model with the objective function related to the Binary Cross Entropy.
The output of the attack model is the probability of the input being a member of training
data. We evaluate the attack performance with six metrics: precision, recall, F1 with the
threshold of 0.5, accuracy, AUC, and True Positive Rate (TPR) with the False Positive Rate
of 0.1, which is inspired by the work of Carlini et al. [19].

Experimental Steps

The implementation of our label-only MIA is composed of several steps. First, we di-
vide the total dataset into two parts for target and shadow models, and each part dataset
is continuously split into training and testing data, i.e., the total dataset is split into four
sub-datasets. Then, we generate the attack dataset from the shadow model and shadow
dataset for training and testing the attack model. After extracting the attack features
from the target model and target dataset, we evaluate the attack performance of the at-
tack model with the extracted attack features as the input. Apart from implementing
our label-only MIA, we also implement previous probability-based MIAs under the same
environment and settings. Those settings consist of the same models trained with the
same sub-datasets, the training of the attack models, and the model selection strategy.
Besides, we explore the impact of several factors on our label-only MIA. Those factors
include the overfitting level, sampling methods, and attack model selection strategies.
Furthermore, we attempt to relax two assumptions about the shadow dataset and the

4.2. LABEL-ONLY MIA TO GNNS

4

53

target model. Finally, we analyze the effectiveness of some defenses.
Previous Probability-based MIAs. We use eight probability-based MIAs proposed in

previous papers [58, 97, 116, 107, 153, 118] as comparison with our label-only MIA. In
those methods, the attacker can obtain the prediction probability vector from the target
model and extract the attack features or metrics from the prediction probability vec-
tor, which is impossible under the label-only condition. Among these eight probability-
based MIAs, four MIAs utilize the classifier to determine membership. They train the
attack model based on the attack features. Specifically, the attack features of those four
probability-based MIAs with classifiers are the output of the 0-hop query (top two prob-
ability values), the 2-hop query (top two probability values), the combination of the out-
put of the 0-hop and 2-hop queries (four probability values in total), and the output of
the training (if the target node is from the training data) or testing data (if the target node
is from the testing data) (all probability values), respectively2. In our work, we name four
probability-based MIAs with classifiers: 0-hop, 2-hop, the combination of 0-hop and 2-
hop, and all probability methods. The other four MIAs calculate metrics based on the
prediction probability vector. They leverage prediction correctness (Gap Attack), prob-
ability of ground truth, cross-entropy, and modified cross-entropy of the prediction to
distinguish members and non-members. Notably, those four methods select thresholds
with the help of shadow models.

Overfitting. As mentioned in the model architectures and settings, we attempt to
explore the influence of the overfitting level on the attack performance. Thus, we train
models of different architectures with various settings to explore the impact of the over-
fitting level on our label-only MIA.

Sampling Methods. We focus on the node-level GNN in this section. The dataset for
training GNNs is composed of a graph with many nodes and edges. As we mentioned,
we need to sample four sub-datasets with equal or approximately equal data points in
each class. However, the number of nodes in each class is not equal and even has a
large gap. Therefore, the sampling cannot guarantee that each class has an equal num-
ber of data points in each sub-dataset unless decreasing the number of data points in
each sub-dataset. Based on this situation, we take three sampling methods into com-
parison. The first is a random sampling of four sub-datasets with maximum utilization
of data points (called the random sampling method). The second one is a strict class-
balanced sampling approach (called the balanced sampling method), which guarantees
non-overlapping, class-balanced, and fewer data points in each sub-dataset. The third
one is the partially balanced sampling method, which ensures the class balance in the
training data of target and shadow models and randomly samples data points for the
testing data.

Attack Model Selection Strategies. We train and test the attack model based on the
attack dataset. Then, we evaluate the attack performance of the attack model with attack
features from the target model. The selection of the attack model during the training
process impacts the final attack model. Here, we choose the attack model based on five

2In the training phase of the attack model, the adversary knows the membership of shallow dataset thus it
can use the total shallow training data (shallow testing data) if the target node is from the shallow training
data (shallow testing data) to query the shadow model getting the attack features. However, in the evaluation
phase, the adversary can only query the target model with the whole target dataset to get the attack features
of the target node since the adversary has no knowledge about the membership of the target node

4

54 4. BACKDOOR ATTACKS ON FEDERATED GNNS

metrics, including training accuracy (train_acc), testing accuracy (test_acc), training loss
(train_loss), testing loss (test_loss), and evaluation accuracy (evaluate_acc). Importantly,
the adversary cannot compute evaluation accuracy in a practical scenario because the
adversary cannot obtain the attack features of the target dataset for evaluation before
selecting the final attack model. We here implement the selection strategy based on
evaluation accuracy for comparison. Finally, we analyze the attack performance of those
model selection strategies.

Assumptions Relaxation. The assumptions about the shadow dataset and the target
model’s information (GNN type and architecture) are not always available in real-world
settings. Therefore, we relax those two assumptions alone and together to verify the
effectiveness of our label-only MIA.

4.2.3. RESULTS AND DISCUSSIONS

In this section, we provide the results of our experiments and discuss the findings from
the results. We first compare the attack performance of our label-only MIA with eight
previous probability-based MIAs. Then, we interpret the attack model with SHAP values.
What’s more, we explore the influence of different factors on the attack performance. Fi-
nally, we relax two assumptions about the shadow dataset and the target model’s archi-
tecture.

Attack Performance Comparison
As mentioned, the adversary trains the shadow model, which has the same architecture
as the target model, with the shadow dataset from the same distribution as the target
dataset. Table 4.2 provides the attack performance of our label-only MIA after ten rep-
etitions. Repeating each experiment ten times reduces the impact of the randomness,
which is the same as the repetition times in the previous work [97].

In this table, the number of data points used in each experiment is related to the bal-
anced sampling method. The overfitting level, measured by the gap between the training
and testing accuracy of the target model, is relatively low. From the table, we can see that
the attack accuracy, precision, and AUC value are around 0.6 in most experiments, indi-
cating the effectiveness of our label-only MIA on GNNs.

Table 4.3 indicates the attack performance of four previous probability-based MIAs
with classifiers, including 0-hop, 2-hop, the combination of 0-hop and 2-hop, and all
probability methods. We implement those four MIAs under the same settings as the
results of Table 4.2. The settings include the same target and shadow models (a low over-
fitting level) trained with the same dataset split, the training of the attack models, and
the model selection strategy. Each result row in Table 4.3 corresponds with the result
row under the same dataset and GNN model in Table 4.2. The "0-hop", "2-hop", "0-hop
and 2-hop combination", and "all probability" in the table indicate the results of four
probability-based MIAs with classifiers. Each result has six values: the average accuracy,
precision, recall, AUC value, F1 score, and TPR under low FPR (0.01) after ten repeti-
tions. We highlight the average accuracy of each result for a clear comparison in bold
and red. Comparing the average attack accuracy of each row in two tables, we can see
that our label-only MIA has higher average accuracy than previous probability-based
MIA in most cases. For instance, on the GCN model and PubMed dataset, our label-

4.2. LABEL-ONLY MIA TO GNNS

4

55

only MIA achieves the average attack accuracy of 0.596, while four previous probability-
based MIAs with classifiers obtain values of 0.506, 0.506, 0.504, and 0.507, respectively.
Table 4.4 presents the attack performance of the transfer attack (Li et al. [78]) and four
other previous probability-based MIAs with metrics. Four probability-based MIAs with
metrics utilize prediction correctness (Gap Attack), probability of ground truth, cross-
entropy, and modified cross-entropy to determine the membership of data by compar-
ing the metrics with a threshold [153, 116, 107, 118]. The evaluation metrics are the same
as Table 4.3. The "_" in the table means we cannot obtain this metric because no thresh-
old is related to metric calculation. Comparing the average attack accuracy (bold and
red) of Table 4.4 and Table 4.2, we can also find that our label-only MIA has a higher at-
tack performance than those MIAs. It reflects that our label-only MIA has a competitive,
even better performance than previous probability-based methods in most experiments
under our environment and settings.

4

56 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Ta
b

le
4.

3:
T

h
e

at
ta

ck
p

er
fo

rm
an

ce
o

ff
o

u
r

p
ro

b
ab

il
it

y-
b

as
ed

at
ta

ck
s

w
it

h
cl

as
si

fi
er

s
af

te
r

te
n

re
p

et
it

io
n

s.

D
at

as
et

G
N

N
p

ro
b

ab
il

it
y-

b
as

ed
m

et
h

o
d

s
w

it
h

cl
as

si
fi

er
s

(a
vg

ac
c,

p
re

,r
ec

,a
u

c,
f1

,l
ow

_f
p

r_
0.

01
_t

p
r)

0-
h

o
p

2-
h

o
p

0-
h

o
p

an
d

2-
h

o
p

co
m

b
in

at
io

n
al

lp
ro

b
ab

il
it

y

C
o

ra
_M

L

G
AT

[0
.5

76
,0

.5
52

,0
.6

34
,0

.6
26

,0
.5

46
,0

.0
76

]
[0

.5
49

,0
.5

08
,0

.4
57

,0
.6

1,
0.

40
9,

0.
03

3]
[0

.5
88

,0
.5

63
,0

.6
2,

0.
62

9,
0.

54
8,

0.
08

8]
[0

.5
71

,0
.5

11
,0

.4
93

,0
.6

52
,0

.4
54

,0
.0

78
]

G
C

N
[0

.6
91

,0
.6

7,
0.

87
4,

0.
76

5,
0.

74
6,

0.
15

7]
[0

.6
33

,0
.6

22
,0

.8
07

,0
.6

85
,0

.6
87

,0
.0

59
]

[0
.6

93
,0

.6
75

,0
.8

51
,0

.7
65

,0
.7

39
,0

.1
42

]
[0

.6
35

,0
.6

81
,0

.6
39

,0
.7

23
,0

.5
91

,0
.1

21
]

G
IN

[0
.6

13
,0

.6
11

,0
.7

61
,0

.6
92

,0
.6

55
,0

.0
92

]
[0

.5
75

,0
.5

77
,0

.7
22

,0
.6

04
,0

.6
09

,0
.0

09
]

[0
.6

,0
.5

8,
0.

72
4,

0.
66

6,
0.

62
9,

0.
10

6]
[0

.5
5,

0.
58

7,
0.

52
,0

.5
75

,0
.5

1,
0.

02
6]

G
ra

p
h

SA
G

E
[0

.6
27

,0
.6

8,
0.

73
2,

0.
74

7,
0.

63
6,

0.
13

6]
[0

.6
26

,0
.6

85
,0

.7
3,

0.
76

2,
0.

62
5,

0.
10

7]
[0

.6
39

,0
.6

6,
0.

79
3,

0.
74

,0
.6

8,
0.

12
4]

[0
.6

1,
0.

66
,0

.3
24

,0
.6

37
,0

.3
72

,0
.1

15
]

C
it

eS
ee

r

G
AT

[0
.5

33
,0

.4
78

,0
.3

29
,0

.5
62

,0
.3

38
,0

.0
13

]
[0

.5
18

,0
.4

22
,0

.4
36

,0
.5

39
,0

.3
99

,0
.0

09
]

[0
.5

24
,0

.4
26

,0
.4

67
,0

.5
55

,0
.4

14
,0

.0
14

]
[0

.5
15

,0
.3

8,
0.

28
1,

0.
53

1,
0.

29
5,

0.
01

]
G

C
N

[0
.5

55
,0

.4
56

,0
.4

5,
0.

56
7,

0.
43

9,
0.

01
1]

[0
.5

59
,0

.5
23

,0
.4

75
,0

.6
,0

.4
63

,0
.0

17
]

[0
.5

51
,0

.5
26

,0
.4

25
,0

.5
75

,0
.4

43
,0

.0
09

]
[0

.5
28

,0
.5

07
,0

.3
66

,0
.5

25
,0

.3
88

,0
.0

07
]

G
IN

[0
.5

35
,0

.4
8,

0.
61

8,
0.

56
2,

0.
50

8,
0.

01
]

[0
.5

41
,0

.5
35

,0
.7

59
,0

.5
67

,0
.6

01
,0

.0
11

]
[0

.5
34

,0
.5

34
,0

.7
28

,0
.5

68
,0

.5
81

,0
.0

1]
[0

.5
15

,0
.4

98
,0

.2
48

,0
.5

19
,0

.2
66

,0
.0

1]
G

ra
p

h
SA

G
E

[0
.5

22
,0

.4
76

,0
.4

11
,0

.5
34

,0
.3

48
,0

.0
14

]
[0

.5
4,

0.
41

6,
0.

38
1,

0.
55

1,
0.

35
4,

0.
01

2]
[0

.5
3,

0.
41

7,
0.

39
3,

0.
56

9,
0.

36
4,

0.
01

1]
[0

.5
19

,0
.3

12
,0

.2
6,

0.
52

3,
0.

26
8,

0.
01

]

D
B

LP

G
AT

[0
.5

16
,0

.5
39

,0
.1

75
,0

.5
47

,0
.2

31
,0

.0
11

]
[0

.5
14

,0
.4

71
,0

.2
76

,0
.5

39
,0

.2
78

,0
.0

11
]

[0
.5

17
,0

.4
79

,0
.2

74
,0

.5
4,

0.
29

9,
0.

01
]

[0
.5

03
,0

.5
2,

0.
16

1,
0.

52
1,

0.
18

8,
0.

01
5]

G
C

N
[0

.5
32

,0
.5

45
,0

.4
06

,0
.5

61
,0

.4
15

,0
.0

11
]

[0
.5

34
,0

.5
48

,0
.4

24
,0

.5
56

,0
.4

19
,0

.0
13

]
[0

.5
32

,0
.5

43
,0

.4
12

,0
.5

62
,0

.4
21

,0
.0

11
]

[0
.5

27
,0

.5
24

,0
.4

16
,0

.5
49

,0
.4

32
,0

.0
14

]
G

IN
[0

.5
14

,0
.4

36
,0

.3
25

,0
.5

31
,0

.2
99

,0
.0

12
]

[0
.5

17
,0

.4
99

,0
.3

73
,0

.5
29

,0
.3

39
,0

.0
06

]
[0

.5
24

,0
.4

53
,0

.3
58

,0
.5

38
,0

.3
18

,0
.0

06
]

[0
.5

07
,0

.3
72

,0
.2

77
,0

.5
27

,0
.2

66
,0

.0
06

]
G

ra
p

h
SA

G
E

[0
.5

31
,0

.5
3,

0.
49

,0
.5

53
,0

.4
65

,0
.0

11
]

[0
.5

38
,0

.5
37

,0
.4

74
,0

.5
58

,0
.4

63
,0

.0
12

]
[0

.5
39

,0
.5

48
,0

.3
91

,0
.5

62
,0

.4
23

,0
.0

15
]

[0
.5

54
,0

.5
57

,0
.5

76
,0

.5
83

,0
.5

36
,0

.0
17

]

P
u

b
M

ed

G
AT

[0
.4

98
,0

.4
15

,0
.1

85
,0

.5
03

,0
.1

98
,0

.0
08

]
[0

.5
,0

.3
41

,0
.3

84
,0

.4
97

,0
.3

06
,0

.0
09

]
[0

.4
97

,0
.4

42
,0

.3
65

,0
.5

01
,0

.3
52

,0
.0

09
]

[0
.5

05
,0

.4
64

,0
.5

31
,0

.5
11

,0
.4

56
,0

.0
1]

G
C

N
[0

.5
06

,0
.3

53
,0

.2
17

,0
.5

15
,0

.2
29

,0
.0

09
]

[0
.5

06
,0

.4
78

,0
.2

91
,0

.5
12

,0
.2

86
,0

.0
09

]
[0

.5
04

,0
.4

46
,0

.2
03

,0
.5

08
,0

.2
24

,0
.0

08
]

[0
.5

07
,0

.4
76

,0
.3

42
,0

.5
16

,0
.3

53
,0

.0
07

]
G

IN
[0

.5
02

,0
.3

93
,0

.6
49

,0
.5

08
,0

.4
55

,0
.0

07
]

[0
.5

02
,0

.3
98

,0
.3

76
,0

.5
08

,0
.2

94
,0

.0
07

]
[0

.5
01

,0
.2

67
,0

.3
75

,0
.5

04
,0

.2
62

,0
.0

09
]

[0
.4

99
,0

.2
39

,0
.1

25
,0

.4
97

,0
.1

34
,0

.0
06

]
G

ra
p

h
SA

G
E

[0
.5

04
,0

.4
04

,0
.2

73
,0

.5
13

,0
.3

07
,0

.0
08

]
[0

.5
08

,0
.4

03
,0

.2
95

,0
.5

21
,0

.3
02

,0
.0

09
]

[0
.5

04
,0

.4
51

,0
.2

93
,0

.5
2,

0.
33

8,
0.

00
9]

[0
.5

11
,0

.4
16

,0
.3

34
,0

.5
25

,0
.3

51
,0

.0
08

]

4.2. LABEL-ONLY MIA TO GNNS

4

57

Attack Model Explanation
We describe the details of acquiring the features for training the attack model in Sec-
tion 4.2.1. To better understand the model’s behavior and explain the model, we calcu-
late the SHAP value [88] of each feature. The SHAP value implies the contribution or
importance of each feature to the prediction of the model. Figure 4.2 gives the SHAP val-
ues of each feature in the attack model under the Cora_ML and GCN setting, which has a
higher attack performance which helps to demonstrate the importance of each feature.

The left column in the figure displays features’ names, ranked by the absolute SHAP
values of each feature over total data points. In the middle, a large number of colorful
points represent total data points with different feature values and SHAP values in each
row. The x-axis means the SHAP value. The right line implies the feature values for data
points in the middle. We can see that the feature named "i_all_min_1.0" has the top
absolute SHAP value. This feature presents whether the prediction of the target model
to the target node is the same as the ground truth while keeping all the edges between
the target node with 1-hop neighbors and changing 100% of the target node’s features
to the minimum value. In addition, we can observe that most features have an apparent
positive or negative impact on model output while being assigned high or low values. Be-
sides, the features with the prefix "n_acc" have higher SHAP values than other features,
which indicates that neighboring nodes’ accuracy under various settings is beneficial for
distinguishing the training and testing data.

Influence Factors
This section explores the influence factors of our label-only MIA’s, including the overfit-
ting level, sampling methods, and attack model selection strategies.

Overfitting. Table 4.5 shows the attack performance of our label-only MIA on tar-
get models with a high overfitting level. We compare the results in this table with Ta-
ble 4.2 and highlight the average attack accuracy in bold and red. The average attack
accuracy can increase with the increasing of the overfitting level. For example, on the
DBLP dataset, the average attack accuracy increases from 0.593 and 0.593 (low overfit-
ting level) to 0.6 and 0.599 (high overfitting level) for GAT and GCN models, respectively.
On the contrary, the increase in the overfitting level could also degrade our label-only
MIA’s attack performance. For instance, the average attack accuracies reduce from high
(0.604, 0.613, 0.59, and 0.602) to low values (0.597, 0.596, 0.536, and 0.593) under com-
binations of Cora_ML with GAT, GCN, GIN, and GraphSAGE, respectively. Therefore, the
higher overfitting level impacts the attack performance, i.e., it could increase or decrease
our label-only MIA’s attack accuracy in specific cases. We use the target models with a
low overfitting level for the following experiments.

Sampling Methods. As mentioned in the experimental steps, we explore the im-
pact of three sampling methods, including the (0) random, (1) balanced, and (2) par-
tially balanced sampling methods. Table 4.6 presents the number of data points in four
sub-datasets, including the training and testing data of shadow and target models under
different sampling methods. In the table, target_train, target_test, shadow_train, and
shadow_test represent four sub-datasets. The "total" means the number of data points
in this sub-dataset. The "one class" indicates the number of data points in each class of

4

58 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Table 4.4: The attack performance of transfer attack and four probability-based attacks with metrics after ten
repetitions.

Dataset GNN
Test Acc
(target
model)

Train Acc
(target
model)

Attack performance
(avg acc, pre, rec, auc, f1, low_fpr_0.01_tpr)

‘_’ means that this setting does not have a corresponding metric
label-only method probability-based methods with metrics

Transfer Attack Gap Attack
Probability of
Ground Truth

Cross-Entropy
Modified

Cross-Entropy

Cora_ML

GAT 0.722 0.855
[0.516, 0.532, 0.288,

0.526, 0.367, 0.02]
0.567, 0.542, 0.855,

_, 0.664, _
[0.506, 0.503, 0.994,
0.731, 0.668, 0.191]

[0.502, 0.4, 0.197,
0.274, 0.138, 0.014]

[0.486, 0.453, 0.813,
0.269, 0.556, 0.007]

GCN 0.753 0.95
[0.628, 0.63, 0.625,
0.685, 0.625, 0.081]

[0.598, 0.558, 0.95,
_, 0.703, _]

[0.51, 0.505, 0.997,
0.818, 0.671, 0.232]

[0.57, 0.623, 0.231,
0.196, 0.24, 0.018]

[0.424, 0.422, 0.774,
0.182, 0.54, 0.001]

GIN 0.673 0.877
[0.515, 0.54, 0.234,
0.521, 0.32, 0.017]

[0.602, 0.566, 0.877,
_, 0.687, _]

[0.51, 0.505, 0.993,
0.726, 0.669, 0.024]

[0.517, 0.259, 0.146,
0.301, 0.132, 0.009]

[0.472, 0.469, 0.861,
0.274, 0.598, 0.003]

GraphSAGE 0.719 0.957
[0.524, 0.551, 0.259,

0.535, 0.35, 0.02]
[0.619, 0.571, 0.957,

_, 0.715, _]
[0.514, 0.507, 0.999,
0.819, 0.673, 0.215]

[0.557, 0.586, 0.265,
0.21, 0.239, 0.021]

[0.429, 0.409, 0.737,
0.181, 0.516, 0.0]

CiteSeer

GAT 0.798 0.895
[0.501, 0.501, 0.492,
0.505, 0.495, 0.009]

[0.549, 0.529, 0.895,
_, 0.665, _]

[0.506, 0.503, 0.996,
0.583, 0.668, 0.006]

[0.513, 0.157, 0.139,
0.434, 0.129, 0.005]

[0.485, 0.481, 0.865,
0.417, 0.606, 0.004]

GCN 0.8 0.936
[0.512, 0.511, 0.521,
0.514, 0.515, 0.011]

[0.568, 0.539, 0.936,
_, 0.684, _]

[0.501, 0.501, 1.0,
0.603, 0.667, 0.008]

[0.498, 0.113, 0.013,
0.422, 0.022, 0.006]

[0.502, 0.501, 0.987,
0.397, 0.665, 0.001]

GIN 0.779 0.915
[0.513, 0.514, 0.521,
0.517, 0.516, 0.011]

[0.568, 0.54, 0.915,
_, 0.679, _]

[0.511, 0.506, 0.998,
0.591, 0.671, 0.004]

[0.502, 0.101, 0.121,
0.437, 0.098, 0.006]

[0.489, 0.464, 0.882,
0.409, 0.601, 0.002]

GraphSAGE 0.794 0.943
[0.509, 0.509, 0.53,
0.512, 0.517, 0.012]

[0.574, 0.543, 0.943,
_, 0.689, _]

[0.51, 0.505, 0.999,
0.617, 0.671, 0.009]

[0.523, 0.227, 0.242,
0.406, 0.224, 0.005]

[0.468, 0.452, 0.762,
0.383, 0.551, 0.001]

DBLP

GAT 0.737 0.828
[0.508, 0.508, 0.523,
0.509, 0.515, 0.011]

[0.546, 0.529, 0.828,
_, 0.646, _]

[0.502, 0.501, 0.996,
0.577, 0.667, 0.01]

[0.505, 0.121, 0.06,
0.44, 0.058, 0.007]

[0.493, 0.494, 0.945,
0.423, 0.644, 0.006]

GCN 0.752 0.886
[0.513, 0.512, 0.552,
0.518, 0.531, 0.011]

[0.567, 0.541, 0.886,
_, 0.672, _]

[0.501, 0.5, 1.0,
0.606, 0.667, 0.008]

[0.499, 0.111, 0.009,
0.423, 0.016, 0.007]

[0.501, 0.5, 0.991,
0.394, 0.665, 0.003]

GIN 0.721 0.863
[0.511, 0.511, 0.507,
0.514, 0.509, 0.012]

[0.571, 0.545, 0.863,
_, 0.668, _]

[0.501, 0.5, 1.0,
0.587, 0.667, 0.005]

[0.498, 0.048, 0.003,
0.457, 0.005, 0.004]

[0.502, 0.501, 0.997,
0.413, 0.667, 0.003]

GraphSAGE 0.733 0.892
[0.511, 0.511, 0.543,
0.514, 0.526, 0.012]

[0.579, 0.549, 0.892,
_, 0.68, _]

[0.506, 0.503, 0.997,
0.624, 0.669, 0.01]

[0.502, 0.24, 0.108,
0.411, 0.085, 0.005]

[0.49, 0.471, 0.898,
0.376, 0.609, 0.002]

PubMed

GAT 0.859 0.885
[0.506, 0.506, 0.539,

0.506, 0.517, 0.01]
[0.513, 0.508, 0.885,

_, 0.645, _]
[0.502, 0.501, 0.987,

0.53, 0.665, 0.008]
[0.503, 0.251, 0.234,

0.477, 0.2, 0.009]
[0.494, 0.489, 0.782,

0.47, 0.571, 0.008]

GCN 0.868 0.905
[0.505, 0.504, 0.61,
0.505, 0.551, 0.01]

[0.519, 0.51, 0.905,
_, 0.653, _]

[0.502, 0.501, 0.994,
0.529, 0.666, 0.009]

[0.503, 0.252, 0.172,
0.482, 0.148, 0.008]

[0.495, 0.491, 0.837,
0.471, 0.596, 0.005]

GIN 0.849 0.895
[0.508, 0.507, 0.575,

0.508, 0.537, 0.01]
[0.523, 0.513, 0.895,

_, 0.652, _]
[0.504, 0.502, 0.989,
0.527, 0.666, 0.006]

[0.502, 0.102, 0.175,
0.488, 0.128, 0.007]

[0.494, 0.484, 0.837,
0.473, 0.583, 0.005]

GraphSAGE 0.867 0.92
[0.507, 0.506, 0.599,

0.508, 0.548, 0.01]
[0.526, 0.515, 0.92,

_, 0.66, _]
[0.504, 0.502, 0.994,
0.547, 0.667, 0.007]

[0.507, 0.234, 0.213,
0.467, 0.194, 0.008]

[0.489, 0.483, 0.794,
0.453, 0.579, 0.004]

this sub-dataset. The "-" means uncertainty indicating that the number of data points
in each class is not fixed due to random selection. From the table, the uncertainty repre-
sents the class imbalance in the random and partially balanced sampling methods.

Table 4.7 provides the attack performance of different datasets and GNN models un-
der three sampling methods. From the table, we can observe that the third sampling
method achieves the best average attack accuracy in all datasets and GNN models except
the GIN model on the CiteSeer dataset, which obtains the highest average attack accu-
racy with the first sampling method. From Table 4.6, we can see that the attack accuracy
is higher under the first and third sampling methods, which implies class imbalance can
improve the attack accuracy. Besides, the difference in average attack accuracy reaches
7% between the second and third sampling methods on the GAT model with the DBLP
dataset. It indicates that the sampling method influences the attack performance via
class imbalance and achieves a maximum gap of 7% for average attack accuracy. Olatunji
et al. [97] used the partially balanced sampling method, while He et al. [58] leveraged the
random sampling method. We use the balanced sampling method by default to avoid
the disturbance brought by the class imbalance.

Attack Model Selection Strategies. In the experimental steps, we explain that we se-
lect the attack model during the training process based on five metrics, including train-
ing accuracy (train_acc), testing accuracy (test_acc), training loss (train_loss), testing loss
(test_loss), and evaluation accuracy (evaluate_acc). Table 4.8 gives the average attack ac-
curacy of the selected attack model. From the table, we could observe that selection

4.2. LABEL-ONLY MIA TO GNNS

4

59

Table 4.5: The attack performance of our label-only MIA after ten repetitions (high overfitting level).

Dataset GNN
Test Acc
(target
model)

Train Acc
(target
model)

Our Attack
(avg acc, pre, rec, auc,
f1, low_fpr_0.01_tpr)

Cora_ML

GAT 0.658 0.973
[0.597, 0.635, 0.504,
0.652, 0.545, 0.056]

GCN 0.684 0.96
[0.596, 0.605, 0.586,
0.634, 0.586, 0.033]

GIN 0.298 0.577
[0.536, 0.539, 0.525,
0.554, 0.525, 0.022]

GraphSAGE 0.619 0.999
[0.593, 0.602, 0.595,

0.637, 0.59, 0.054]

CiteSeer

GAT 0.748 0.913
[0.592, 0.612, 0.546,
0.641, 0.567, 0.042]

GCN 0.767 0.922
[0.603, 0.62, 0.572,
0.656, 0.586, 0.043]

GIN 0.327 0.578
[0.538, 0.536, 0.569,
0.556, 0.549, 0.029]

GraphSAGE 0.732 0.874
[0.591, 0.618, 0.532,
0.637, 0.557, 0.027]

DBLP

GAT 0.716 0.916
[0.6, 0.617, 0.585,

0.648, 0.582, 0.044]

GCN 0.722 0.917
[0.599, 0.627, 0.549,
0.653, 0.572, 0.062]

GIN 0.428 0.652
[0.555, 0.561, 0.509,
0.583, 0.522, 0.025]

GraphSAGE 0.666 0.856
[0.579, 0.586, 0.593,
0.618, 0.577, 0.029]

PubMed

GAT 0.828 0.912
[0.58, 0.616, 0.477,
0.62, 0.524, 0.033]

GCN 0.838 0.909
[0.596, 0.611, 0.561,
0.653, 0.575, 0.058]

GIN 0.586 0.639
[0.522, 0.52, 0.607,
0.537, 0.542, 0.018]

GraphSAGE 0.836 0.921
[0.561, 0.558, 0.672,
0.594, 0.603, 0.031]

strategies based on testing accuracy and loss have a slightly better attack accuracy than
those based on training accuracy and loss with a maximum gap of 1% average attack
accuracy. Therefore, we use testing accuracy for selecting the attack model in our MIAs.

Under our environment and settings, previous probability-based methods with clas-
sifiers might not achieve the attack performance reported in their papers [58, 97]. This
kind of difference can be explained by three influence factors analyzed in this section
and the change in the attack environment, including the model’s architecture, training
process, and hyperparameters.

Assumptions Relaxation
We design and conduct an ablation study on the relaxation of two assumptions about
the shadow dataset and the target model’s information. In the first experiment, we uti-
lize shadow datasets from other distributions. Secondly, we train the shadow model with
different types and architectures from the target model. Finally, we relax those two as-
sumptions together.

4

60 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Table 4.6: The number of data points in each sub-dataset under different sampling methods.

Dataset
Sampling
Method

target_train target_test shadow_train shadow_test
total one class total one class total one class total one class

Cora_ML
0 749 - 749 - 748 - 749 -
1 336 48 336 48 336 48 336 48
2 630 90 630 - 630 90 630 -

CiteSeer
0 1,058 - 1,057 - 1,058 - 1,057 -
1 834 139 834 139 834 139 834 139
2 600 100 600 - 600 100 600 -

DBLP
0 4,429 - 4,429 - 4,429 - 4,429 -
1 1,980 495 1,980 495 1,980 495 1,980 495
2 3,200 800 3,200 - 3,200 800 3,200 -

PubMed
0 4,929 - 4,929 - 4,930 - 4,929 -
1 3,075 1,025 3,075 1,025 3,075 1,025 3,075 1,025
2 4,500 1,500 4,500 - 4,500 1,500 4,500 -

Table 4.7: The average attack accuracy of four datasets and GNN models under three sampling methods after
ten repetitions.

Sampling
Method

Dataset GNN
Test Acc

(target model)
Train Acc

(target model)
Avg Acc

0

Cora_ML GCN 0.68 0.851 0.621
CiteSeer GIN 0.742 0.956 0.613

DBLP GAT 0.653 0.682 0.614
PubMed GraphSAGE 0.871 0.919 0.55

1

Cora_ML GCN 0.749 0.935 0.608
CiteSeer GIN 0.775 0.927 0.591

DBLP GAT 0.732 0.837 0.594
PubMed GraphSAGE 0.87 0.925 0.574

2

Cora_ML GCN 0.777 0.941 0.651
CiteSeer GIN 0.728 0.946 0.568

DBLP GAT 0.771 0.82 0.664
PubMed GraphSAGE 0.866 0.919 0.581

Figure 4.3 shows the average attack accuracy comparison of the first experiment. We
fix the target model and shadow model to GCN. And we train the target and shadow
models with Cora_ML, CiteSeer, DBLP, and PubMed datasets, as shown in the x-axis
and y-axis in the figure. While the target models are trained with Cora_ML, CiteSeer,
DBLP, and PubMed (each row in the figure), we obtain the largest attack accuracy with
shadow datasets trained with PubMed (0.679), DBLP (0.646), PubMed (0.653), and Cite-
Seer (0.62), which are not from the same datasets as the target datasets. Figure 4.4 shows
the result of the second experiment. We fix the target dataset and shadow dataset to
Cora_ML. The main reason for selecting Cora_ML is that the average attack accuracy
of Cora_ML is relatively higher than other datasets, which means the change is evident
while relaxing the second assumption. From the figure 4.4, we obtain the highest attack
accuracy while the combination of target and shadow models are, GCN-GAT, GIN-GCN,
GAT-GCN, and GraphSAGE-GraphSAGE, most of which do not have the same model
type for target and shadow models. Figure 4.5 illustrates the average attack accuracy
of the third experiment. Similarly, the maximum attack accuracy is not from the settings
where the target model is trained with the same dataset and model type as the shadow

4.2. LABEL-ONLY MIA TO GNNS

4

61

Table 4.8: The average attack accuracy of four datasets and GNN models with five model selection strategies
after ten repetitions.

Dataset GNN
Test Acc

(target model)
Train Acc

(target model)
Average accuracy of the attack model selected by different strategies
train_acc test_acc train_loss test_loss evaluate_acc

Cora_ML GCN 0.744 0.943 0.607 0.616 0.603 0.617 0.644
CiteSeer GIN 0.771 0.924 0.585 0.589 0.582 0.596 0.615

DBLP GAT 0.734 0.837 0.582 0.592 0.583 0.589 0.604
PubMed GraphSAGE 0.874 0.924 0.572 0.578 0.565 0.589 0.604

model. From those three figures, we surprisingly find that the relaxation of those two as-
sumptions will not reduce the attack performance but increase the attack performance
in most cases, which reflects on relatively light colors on the diagonal. Even when the
attack performance decreases, the reduction degree is low. Therefore, the attack per-
formance primarily increases while relaxing the assumptions about the shadow dataset
and target model’s information. The possible reason for this phenomenon is that the
attack features of members (or non-members) are similar or are converted to be alike
in the attack model under settings where the shadow dataset’s distribution is different
from the target dataset, and the shadow model is different from the target model. This
phenomenon is also discussed in previous works [107, 58].

Cora_ML CiteSeer DBLP PubMed
shadow model

Co
ra

_M
L

Ci
te

Se
er

DB
LP

Pu
bM

ed
ta

rg
et

 m
od

el

0.613 0.681 0.652 0.679

0.645 0.599 0.646 0.636

0.618 0.637 0.593 0.653

0.594 0.62 0.589 0.596 0.60

0.62

0.64

0.66

0.68

Figure 4.3: The average attack accuracy after ten repetitions while the shadow dataset is from the other dis-
tribution. The fixed GNN for shadow and target models is GCN. The x-axis means the setting of the shadow
model. The y-axis represents the setting of the target model.

Defenses
Table 4.9 shows the average attack accuracy of ten repetitions against four different de-
fenses. The defenses include Normalization (the BatchNorm), Dropout (0.5), Regular-
ization (the Adam with weight decay of 0.5), and Jumping knowledge (concatenation).
Here, we select the GCN model on the Cora_ML dataset with a high overfitting level to
evaluate the robustness of our MIAs against these defenses. From the table, we can ob-

4

62 4. BACKDOOR ATTACKS ON FEDERATED GNNS

GCN GIN GAT GraphSAGE
shadow model

GC
N

GI
N

GA
T

Gr
ap

hS
AG

E
ta

rg
et

 m
od

el

0.613 0.605 0.616 0.61

0.609 0.59 0.605 0.607

0.612 0.591 0.604 0.605

0.586 0.598 0.58 0.602

0.580

0.585

0.590

0.595

0.600

0.605

0.610

0.615

Figure 4.4: The average attack accuracy after ten repetitions while the target model’s information is relaxed.
The shadow and target datasets are from Cora_ML.

Cora_ML, GCN CiteSeer, GIN DBLP, GAT PubMed, GraphSAGE
shadow model

Cora_ML, GCN

CiteSeer, GIN

DBLP, GAT

PubMed, GraphSAGE

ta
rg

et
 m

od
el

0.613 0.658 0.645 0.646

0.644 0.592 0.632 0.597

0.604 0.636 0.593 0.581

0.568 0.555 0.577 0.557

0.56

0.58

0.60

0.62

0.64

Figure 4.5: The average attack accuracy after ten repetitions while the shadow dataset and the target model’s
information are relaxed together.

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

63

serve that the average accuracy decreases when applying Normalization (row 1, 0.586)
or Regularization (row 3, 0.573) compared with no defenses (row 0, 0.596). However, the
average accuracy slightly increases when only using the Dropout (row 2, 0.602) or Jump-
ing knowledge (row 4, 0.606). Besides, the combinations between four defenses could
raise (row 5, 7, 9, 11, 12, 13, 15) or lower (row 6, 8, 10, 14) the average accuracy. Although
the application of Regularization decreases the average accuracy, e.g., in four rows (6,
8, 10, 14), the combination of Regularization and other defenses can increase the aver-
age accuracy, like rows 11 and 13. The results show that Regularization and Normaliza-
tion could slightly decrease the average attack accuracy while applying alone. Moreover,
those four defenses cannot prevent our label-only MIA completely with average accu-
racy of less than 0.5 apart from row 14.

We apply and compare four regular defense mechanisms, all of which cannot prevent
our label-only MIA completely. One possible defense against our MIAs is to explore a
defense mechanism that takes the GNNs’ particular properties into consideration, e.g.,
flexible prediction strategy and unique connection between nodes and their neighbors.
Currently, we do not find an efficient defense mechanism for our label-only MIA and
leave it as future work.

Table 4.9: The average attack accuracy after ten repetitions under different defenses (Cora_ML, GCN).

Row Normalization Dropout Regularization
Jumping

Knowledge
Avg Acc

0 × × × × 0.596
1

p × × × 0.586
2 × p × × 0.602
3 × × p × 0.573
4 × × × p

0.606
5

p p × × 0.609
6

p × p × 0.581
7

p × × p
0.615

8 × p p × 0.55
9 × p × p

0.607
10 × × p p

0.52
11

p p p × 0.609
12

p p × p
0.614

13
p × p p

0.618
14 × p p p

0.497
15

p p p p
0.613

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS
Federated Learning enables n clients to train a global model w collaboratively without
revealing local datasets. Unlike centralized learning, where local datasets must be col-
lected by a central server before training, FL performs training by uploading the weights
of local models ({wi | i ∈ n}) to a parametric server. Specifically, FL aims to optimize a
loss function:

min
w

ℓ(w) =
n∑

i=1

ki

n
Li (w),Li (w) = 1

ki

∑
j∈Pi

ℓ j (w, x j), (4.2)

4

64 4. BACKDOOR ATTACKS ON FEDERATED GNNS

where Li (w) and ki are the loss function and local data size of i -th client, and Pi refers
to the set of data indices with size ki .

At the t-th iteration, the training can be divided into three steps:

• Global model download. All clients download the global model wt from the server.

• Local training. Each client updates the global model by training with their datasets:
wi

t ← wi
t −η ∂L(wt ,b)

∂wi
t

, where η and b refer to learning rate and local batch, respec-

tively.

• Aggregation. After the clients upload their local models {wi
t | i ∈ n}, the server up-

dates the global model by aggregating the local models. In this section, we use the

averaging aggregation function: wt+1 ←
n∑

i=1

1
n wi

t .

Backdoor attacks are common in FL systems involving multiple training dataset own-
ers. In such attacks, the adversary A manipulates one or more local models to generate
poisoned models, denoted as W̃ i , which are then aggregated into the global model Gt ,
thereby compromising its properties. There are two common techniques used in back-
door attacks in FL, as shown in Figure 4.6: 1) data poisoning, where A manipulates local
training dataset(s) D i

local used to train the local model [96, 144], and 2) model poison-
ing, where A manipulates the local training process or the trained local models them-
selves [5]. Regarding data poisoning backdoor attacks in FL, during the local training
phase, one or more malicious clients can inject triggers into local benign datasets to pro-
duce backdoored datasets. By training on the backdoored datasets, malicious updates
can be obtained. Consequently, if the server aggregates with these malicious updates,
the global model will exhibit misclassification on the samples with the injected triggers.
In the model poisoning backdoor attacks in FL, to enhance the effect of the attacks, the
adversaries can also use the method of scaling [5] to increase their weight.

Gt−1

Dlocal
j

Train W t
j

Honest clients

Dlocal
i Train

Malicious clients

Data poisoning Model poisoning

Constraining Scaling

Aggregation
Funtion Gt

Figure 4.6: Overview of backdoor attacks on FL.

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

65

Gt+1

federated learning aggregator

Gt

...

client 1
...

client client K
...

i

local graphs local graphs local graphs

Figure 4.7: Framework of federated GNNs for graph-level task. Each client trains its local GNN model based on
local graphs, and the federated learning aggregator aggregates the local models to obtain the global model. Gt
and Gt+1 define the global models at iteration t and t +1 respectively. K is the number of clients.

FL has gained increasing attention as a training paradigm where data is distributed
at remote devices and models are collaboratively trained in a central server. While FL
has been widely studied in Euclidean data, e.g., images, texts, and sound, there are in-
creasing studies about FL in graph data. Figure 4.7 illustrates the framework of feder-
ated GNNs for a graph-level task. FL on graph data was introduced in [72], where each
client is regarded as a node in a graph. When it comes to detecting financial crimes (e.g.,
fraud or money laundering), traditional machine learning tends to lead to severe over-
reporting of suspicious activities. Thanks to the reasoning ability of the graph neural
network, its advantages can be well-reflected. Considering the need for privacy, [121]
proposed the framework for Federated GNNs to optimize the machine learning model.
Besides, other research works [64, 21, 138] have been dedicated to enhancing the secu-
rity of Federated GNNs. By using secure aggregation, [64] proposed a method to predict
the trajectories of objects via aggregating both spatial and dynamic information without
information leakage. With differential privacy, [21] and [138] put forward a framework to
train Federated GNNs for vertical FL and recommendation system, respectively. More-
over, SpreadGNN was proposed in [56] to perform FL without a server. Although there is
an increasing number of works on FL for graph data, the vulnerability of Federated GNNs
to backdoor attacks is still underexplored. In this section, we focus on data poisoning
for our attacks in Federated GNNs as model poisoning requires multiplying large fac-
tors to model weights when conducting attacks, which can be detected by traditional
byzantine-robust aggregation rules such as Median [154] and Krum [12].

4.3.1. PROBLEM FORMULATION

Overview
FL is a practical choice to push machine learning to users’ devices, e.g., smart speak-
ers, cars, and phones. Usually, federated learning is designed to work with thousands
or even millions of users without restrictions on eligibility [5], opening up new attack
vectors. As stated in [15], training with multiple malicious clients is now considered a
practical threat by the designers of federated learning. Because of the data privacy guar-

4

66 4. BACKDOOR ATTACKS ON FEDERATED GNNS

antee among the clients in the federated learning, local clients can modify their local
training dataset without being noticed. Furthermore, existing federated learning frame-
works do not provide a functionality to verify whether the training on local clients has
been finished correctly. Consequently, one or more clients can submit their malicious
models trained for the assigned task and backdoor functionality.

Threat Model
Unlike traditional machine learning benchmarking datasets, graph datasets, and real-
world graphs may exhibit non-independent and identical distribution (non-i.i.d) due to
factors like structure and feature heterogeneity [55]. Therefore, following the FL assump-
tions, we assume that graphs among K clients are non-i.i.d. distributed. The clients
engaging in training can be divided into honest and malicious clients. In Table 4.10,3

we summarize the settings of different experiments shown in Section 4.3.3. Molecular
machine learning is a paramount application in the Federated GNNs, where many small
graphs are distributed between multiple institutions [55]. Therefore, we run experiments
(Exp. I and II) on two molecular datasets, i.e., NCI1 and PROTEINS_full. For these ex-
periments, we set 5 clients in total because, with more clients, the local dataset of each
client becomes very small, resulting in severe overfitting for the local models. Similar
settings and phenomena can also be found in prior works on Federated GNNs [55]. The
choice of small datasets may be a limitation of our work, but real-world cross-silo set-
tings could involve only a few different organizations (from two to one hundred) [66].
Besides the molecular domain, substantial attention has also been given to Federated
GNNs in real-world financial scenarios [161, 130]. In such scenarios, clients can be dif-
ferent organizations, e.g., banks, and a GNN model is trained on siloed data, leading to a
cross-silo federated learning setting [66]. As shown in Exp. III and IV, we assume 10, 20,
and 100 clients for a synthetic dataset, i.e., TRIANGLES, which is a realistic real-world
cross-silo scenario [114].

Table 4.10: Summary of the experimental setting (K : number of clients, M : number of malicious clients).

Experiment Dataset K M
Exp. I NCI1, PROTEINS_full, TRIANGLES 5 2
Exp. II NCI1, PROTEINS_full, TRIANGLES 5 3

Exp. III TRIANGLES
10 4,6
20 8,12

Exp. IV TRIANGLES 100 5,10,15,20
Prior work [55] Molecules 4 0

All clients strictly follow the FL training process, but the malicious client(s) will in-
ject graph trigger(s) into their training graphs. We also assume the server is conducting
model aggregation correctly. Our primary focus is to investigate backdoor attack effec-
tiveness on Federated GNNs, so we adopt two backdoor attack methods as defined below
(the definitions of the local trigger and global trigger used in these two attacks are also
given).

3Exp. I, Exp. II, Exp. III, and Exp. IV represent the experiments of the honest majority attack scenario, malicious
majority attack scenario, the impact of the number of clients, and the impact of the percentage of malicious
clients, respectively.

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

67

Definition 7 (Local Trigger & Global Trigger.) The local trigger is the specific graph trig-
ger for each malicious client in DBA. The global trigger is the combination of all local
triggers.4

Definition 8 (Distributed Backdoor Attack (DBA).) There are multiple malicious clients,
and each of them has its local trigger. Each malicious client injects its local trigger into its
training dataset. All malicious clients have the same backdoor task. An adversary A con-
ducts DBA by compromising at least two clients in FL.

Definition 9 (Centralized Backdoor Attack (CBA).) A global trigger consisting of local trig-
gers is injected into one client’s local training dataset. An adversary A conducts CBA by
usually compromising only one client in FL.

Adversary’s capability. We assume the adversary A can corrupt M (M ≤ K) clients to
perform DBA. We perform a complete attack in every round, i.e., a poisoned local dataset
is used by malicious clients in every round, following the attack setting in [144]. The
adversary cannot impact the aggregation process on the central server nor the training
or model updates of other clients.

Adversary’s knowledge. We assume that the adversary A knows the compromised
clients’ training dataset. In this context, the adversary can generate local triggers as
described in Section 4.3.2. Additionally, we follow the original assumptions of FL. The
number of clients participating in training, model structure, aggregation strategy, and a
global model for each iteration is revealed to all clients, including malicious clients.

Adversary’s goal. Unlike some non-targeted attacks [103] aiming to deteriorate the
accuracy of the model, the backdoor attacks studied in this section aim to make the
global model misclassify the backdoored data samples into specific pre-determined la-
bels (i.e., target label yt) without affecting the accuracy on clean data.

In distributed backdoor attacks, each malicious client injects its local trigger into its
local training dataset to poison the local model. Therefore, DBA can fully leverage the
power of FL in aggregating dispersed information from local models to train a poisoned
global model. Assuming there are M malicious clients in DBA, each has its local trigger.
Each malicious client i in DBA independently implements a backdoor attack on its local
model. The adversarial objective for each malicious client i is:

w i
t
∗ = argmin

w i
t

(
∑

j∈D i
tr i g g er

ℓ(w i
t−1(Φ(xi

j ,κi), yt))

+ ∑
j∈D i

clean

ℓ(w i
t−1(xi

j), y i
j)),∀i ∈ [M],

(4.3)

where the poisoned training dataset D i
tr i g g er and clean training dataset D i

clean satisfy

D i
tr i g g er ∪D i

clean = D i
local and D i

tr i g g er ∩D i
clean =∅. D i

local is the local training dataset

of client i . Φ is the function that transforms the clean data with a non-target label into

4Since it is an NP-hard problem to decompose a graph into subgraphs [32], we first generate local triggers and
then compose them to get the global trigger used in CBA.

4

68 4. BACKDOOR ATTACKS ON FEDERATED GNNS

poisoned data using a set of trigger generation parameters κi . In this section, κi consists
of trigger size s, trigger density ρ, and poisoning intensity r : κ= {

s,ρ,r
}
.

Trigger Size s: the number of nodes of a local graph trigger. Here, we set the trigger
size s as theγ fraction of the graph dataset’s average number of nodes. Note that this does
not violate our threat model (the adversary does not have access to the whole dataset),
as the average number of nodes in the local dataset is similar to that of the whole dataset.
Trigger Density ρ: the complexity of a local graph trigger, which ranges from 0 to 1, and
is used in the Erdős-Rényi (ER) model to generate the graph trigger.
Poisoning Intensity r : the ratio that controls the percentage of backdoored training
dataset among the local training dataset.

Unlike DBA with multiple malicious clients, there is only one malicious client in
CBA.5 CBA is conducted by embedding a global trigger into a malicious client’s train-
ing dataset. The global trigger is a graph consisting of local trigger graphs used in DBA,
as explained further in Section 4.3.2. Thus, the adversarial objective of the attacker k in
round t in CBA is:

wk
t
∗ = argmin

wk
t

(
∑

j∈Dk
tr i g g er

ℓ(wk
t−1(Φ(xk

j ,κ), yt))

+ ∑
j∈Dk

cl ean

ℓ(wk
t−1(xk

j), yk
j)),

(4.4)

where κ is the combination of κi . Utilizing the power of FL in message passing from
local models to the global model, the global model is supposed to inherit the backdoor
functionality.

4.3.2. BACKDOOR ATTACKS AGAINST FEDERATED GNNS

General Framework
We focus on subgraph-based (data poisoning) backdoor attacks and the graph classifi-

cation task. Attackers can perform DBA or CBA as shown in Figure 4.8. In DBA, multiple
malicious clients engage in attacking, and they inject local triggers into corresponding
malicious clients’ local training datasets. CBA is conducted with one malicious client,
whose training data is poisoned with the global trigger that consists of the local triggers
used in DBA. We describe the notations used throughout the section in Table 4.11.

Distributed Backdoor Attack. For DBA in Federated GNNs, we assume there are M
(M ≤ K) malicious clients among K clients, as shown in Figure 4.8(a). Each malicious
client embeds its local training dataset with a specific graph trigger to poison its local
model. For instance, in Figure 4.8(a), each malicious client has a local trigger highlighted
by a specific color (i.e., orange, green, red, yellow).6 In this section, we did not use the
same local trigger for different malicious clients in DBA as it would mean poisoning in-
tensity for this specific local trigger is increasing, but simultaneously, the total trigger

5In practice, the centralized attack can poison more than one client with the same global trigger, as mentioned
in [5]. Here, we assume there is one malicious client

6Although we use the triangle as the graph trigger for each malicious client, in practice, the local triggers are
more complex and different from each other.

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

69

Table 4.11: Notations used in this section.

Notations Descriptions
yt target label
Gt joint global model at round t
E local epochs
K number of clients
M number of malicious clients

Ch ,Cm honest clients, malicious clients
Dlocal client’s local training dataset splitted from dataset D tr ai n

D test testing dataset splitted from dataset D
tg l obal global trigger
tl ocal local trigger

wk
t client k’s local trained model at round t

r poisoning ratio
s number of nodes in graph trigger
ρ edge existence probability in graph trigger

D tr i g g er dataset with trigger embedded
Dclean clean training dataset

Dbackdoor backdoored training dataset
B local minibatch size
η learning rate

pattern activating the backdoor is reduced. We evaluated this setting by running some
additional experiments, and we found the attack under this setting is not stronger than
the current setting (i.e., different local triggers). Through training with these poisoned
training datasets, the poisoned local models are uploaded to the server to update the
global model. The final adversarial goal is to use the global trigger to attack the global
model. Algorithms 4 and 5 illustrate the distributed backdoor attack in Federated GNNs.
We first split the clients into two groups, the honest (Ch) and the malicious one (Cm)
(line 2, Algorithm 4). In each round, each client updates its weights through local train-
ing (line 13, Algorithm 4), and finally, the global server aggregates local models’ weights
to update the global model through averaging (line 15, Algorithm 4).

The local training for every client is described in Algorithm 5. If the client is malicious
(line 2, Algorithm 5), the local training dataset will be backdoored (line 4, Algorithm 5)
with the local trigger (line 3, Algorithm 5. As mentioned in Section 4.3.1, all the local
triggers form the global trigger (line 5, Algorithm 5).

We conduct experiments for the malicious majority and honest majority settings to
explore the impact of different percentages of malicious clients on the attack success
rate. We provide additional motivation for the malicious majority setting in Section 4.3.3.

Centralized Backdoor Attack. Unlike DBA conducted with multiple malicious clients,
CBA performs the attack with only one malicious client. CBA is a general approach in a
centralized learning scenario. For example, in image classification, the attacker poisons
the training dataset with a trigger so that the model misclassifies the data sample with
the same trigger into the attacker-chosen label. As shown in Figure 4.8(b), the malicious
client embeds its training dataset with the global trigger highlighted by four colors. This
global trigger consists of local triggers used in DBA, as shown in Line 5 of Algorithm 5.
Specifically, the attacker in CBA embeds its training data with four local patterns, to-

4

70 4. BACKDOOR ATTACKS ON FEDERATED GNNS

...

honest clients

...

malicious clients

local trigger 1 local trigger 2 local trigger 3 local trigger 4

Gt+1

federated learning aggregator

global trigger

...

honest clients

...

malicious client(s)

Gt+1

federated learning aggregator

(a) DBA

(b) CBA

Gt

Gt

Figure 4.8: Attack Framework.

gether constituting a complete global pattern as the backdoor trigger.7

To compare the attack performance between the distributed backdoor attack and
centralized backdoor attack in Federated GNNs, we need to make sure the trigger pat-
tern in CBA is the union set of local trigger patterns in DBA. We can use two strategies:
1) first generate local triggers in DBA and then combine them to get the global trigger, or
2) first generate a global trigger in CBA and then divide it into M local triggers. We utilize
the first strategy as it is an NP-hard problem to divide a graph into several subgraphs [32].
Thus, in different attack scenarios (i.e., honest majority or malicious majority attack sce-
narios), the CBA performance is different since the global trigger has been changed due
to the different number of malicious clients.

Backdoored Data Generation

We adopt the Erdős-Rényi (ER) model [44] to generate triggers (function GenerateTrig-
ger in Algorithm 5) as it is more effective than the other methods (e.g., Small World
model [134] or Preferential Attachment model [7]) [164]. In particular, GenerateTrigger
(line 3 in Algorithm 5), creates a random graph of s nodes. An edge between a pair of
nodes in this graph is generated with probability ρ.

7Here, the four colors are only used to denote four trigger patterns.

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

71

Algorithm 4: Distributed Backdoor Attacks in Federated GNNs
Input: Dataset D , Target label yt
Output: Backdoored Global model Gt+1, global trigger tg l obal

1 Function DBA():
2 Ch ,Cm ←C l i entSpl i t (C l i ent s)
3 Dl ocal ,Dtest ← Dat aSpl i t (D)
4 tg l obal ←∅
5 Server executes:
6 initialize G0, f = F al se
7 foreach round t = 0,1,2, ... do
8 foreach client k ∈ (Ch ∪Cm) do
9 wk

t =Gt
10 if k ∈Cm then
11 f = Tr ue
12 end

13 wk
t+1 ←C l i entUpd ate(k, wk

t , f , tg l obal)

14 end

15 Gt+1 ←∑K
k=1

wk
t+1
K

16 end
17 End Function
18 return Gt+1, tg l obal

Algorithm 5: ClientUpdate
Input: Client k, Local training dataset Dlocal , Current global model w , flag f , global trigger tg l obal
Output: Updated model w

1 Function ClientUpdate():
2 if f is Tr ue then
3 tl ocal ←Gener ateTr i g g er (s,ρ)
4 Dl ocal ← B ackdoor Dat aset (Dlocal , tlocal , yt)
5 tg l obal = tg l obal ∪ tlocal

6 end
7 B ← (split Dl ocal into batches of size B)
8 foreach local epoch i from 1 to E do
9 foreach b ∈B do

10 w ← w −η▽ l (w,b)
11 end
12 end
13 End Function
14 return w

Backdoored data is generated (line 4 in Algorithm 5) through the following process,
as illustrated in Algorithm 6. We sample subsets of the local training datasets (with non-
target labels) with proportion r , and the rest are saved as clean datasets. For each sam-
pled data, we inject a trigger into it by sampling s (trigger size) nodes from the graph
uniformly at random and replacing their connection with that in the trigger graph, as
shown in Figure 4.9. The node features of the trigger graph are the nodes’ one-hot de-
gree. Additionally, the attacker re-labels the sampled data with an attacker-chosen target
label. The backdoored data is composed of the dataset with trigger and the original clean

4

72 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Clean dataTrigger

+

Data with trigger

Figure 4.9: Adding trigger into sampled data.

dataset.

Algorithm 6: BackdoorDataset

Input: Local Training Dataset Dlocal =
{

xi , yi
}S

i=1, Target label yt ∈ [0,C), local
trigger tlocal

Output: Backdoored Training Dataset Dbackdoor

1 Function BackdoorDataset():
2 D tr i g g er ←∅
3 D tmp ← sample(Dlocal ,r, y ̸= yt)
4 Dclean = {

d at a ∈ Dlocal : d at a ∉ D tmp
}

5 foreach d ∈ D tmp do
6 x = AddTr i g g er (d [x], tlocal)
7 y = yt

8 D tr i g g er = D tr i g g er ∪
{

x, y
}

9 end
10 End Function
11 Dbackdoor = Dclean

⋃
D tr i g g er

12 return Dbackdoor

4.3.3. EXPERIMENTS

Experimental Setting
We implemented FL algorithms using the PyTorch framework. All experiments were run
on a server with 2 Intel Xeon CPUs, one NVIDIA 1080 Ti GPU with 32GB RAM. Each
experiment was repeated ten times to obtain the average result. Our code is blinded for
review but will be made public.

Datasets. We run experiments on three publicly available datasets: two molecular
structure datasets - NCI1 [92], PROTEINS_full [16], and one synthetic dataset - TRIAN-
GLES [68], which is a multi-class dataset. Table 4.12 provides more information about
these datasets.

Dataset splits. For each dataset, we randomly sample 80% of the data instances as
the training dataset and the rest as the test dataset. To simulate non-i.i.d. training data
and supply each participant with an unbalanced sample from each class, we further split
the training dataset into K parts following the strategy in [42] with hyperparameter 0.5
for TRIANGLES (10 classes) and hyperparameter 0.7 for other datasets (2 classes). In this
section, apart from experiments where we analyze the effect of trigger factors, we set

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

73

Table 4.12: Datasets statistics.

Dataset # Graphs Avg. # nodes Avg. # edges Classes Class Distribution

NCI1 4,110 29.87 32.30 2 2,053[0],2,057[1]
PROTEINS_full 1,113 39.06 72.82 2 663[0],450[1]

TRIANGLES 45,000 20.85 32.74 10 4,500[0−9]

trigger factors as follows: γ = 0.2, ρ = 0.8, and r = 0.2. As we show in later experiments,
these hyperparameters yield an effective attack. By choosing them, we model a strong
adversary that helps in evaluating the attack’s behavior in the worst-case scenario.

Models and metrics. In our experiments, we use three state-of-the-art GNN models:
GCN [67], GAT [127], and GraphSAGE [53].

We use the attack success rate (ASR) to evaluate the attack effectiveness, as shown in
Algorithm 7. We embed the testing dataset with local triggers or the global trigger and
then calculate the ASR of the global model on the poisoned testing dataset. We only
embed the testing dataset of the non-target label with triggers to avoid the influence of
the original label. The ASR measures the proportion of trigger-embedded inputs that are
misclassified by the backdoored GNN into the target class yt chosen by the adversary.
The trigger-embedded inputs are

Dg t =
{
(G1,g t , y1), (G2,g t , y2), . . . , (Gn,g t , yn)

}
.

Here, g t is the graph trigger,
{
G1,g t ,G2,g t . . . ,Gn,g t

}
is the test dataset embedded with

graph trigger g t , and y1, y2, . . . , yn is the label set. Formally, ASR is defined as:

At t ack Success Rate =
∑n

i=1 I(Gbackdoor (Gi ,g t) = yt)

n
,

where I is an indicator function and Gbackdoor refers to the backdoored global model.
Here, the graph trigger g t can be local triggers or a global trigger.

We use the clean accuracy drop (CAD) to measure the effect of the backdoor attack
on the original task. It is calculated by comparing the performance of the backdoored
and clean models on a clean testing set. The accuracy drop should generally be small to
keep the attack stealthy. Given the clean inputs

Dclean = {
(G1, y1), (G2, y2), . . . , (Gn , yn)

}
,

CAD is defined as:

C l ean Accur ac y Dr op =
∑n

i=1 I(Gclean(Gi) = yi)

n
−

∑n
i=1 I(Gbackdoor (Gi) = yi)

n
, (4.5)

where Gclean refers to the clean global model.

Backdoor Attack Results
We evaluate multiple-shot attack [5], which means that the attackers perform attacks
in multiple rounds, and the malicious updates are accumulated to achieve a successful
backdoor attack. We do not evaluate the single-shot attack [5] because the multi-shot

4

74 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Algorithm 7: Evaluate Backdoor Attack

Input: Global Model Gt , Testing Dataset D test , Target label yt , graph trigger g t

Output: Attack Success Rate ASR
1 Function Evaluation():
2 D tmp ← d ∈ D test if d [y] ̸= yt

3 foreach d ∈ D tmp do
4 x = AddTr i g g er (d [x], g t)
5 y = yt

6 D tmp = D tmp ∪{
x, y

}
7 end
8 End Function
9 ASR = accur ac y(Gt ,D tmp)

10 return ASR

is stealthier [102]. The multi-shot attack does not require multiplying large factors to
model weights when conducting the attack, while the single-shot needs to multiply large
factors to maintain the effectiveness of backdoor attacks, which can be filtered out or de-
tected by traditional anomaly detection-based approaches such as Krum [12]. Since our
main goal is conducting backdoor attacks on FL, we chose a multiple-shot attack with
a high attack success rate and stealthiness. As mentioned in Section 4.3.1, we perform
a complete attack in every round, showing the difference between DBA and CBA in a
shorter time [144].

Cao et al. took into account the situation of backdoor attacks in the malicious ma-
jority of clients and proposed a method of defense-FLTrust [18]. Before training begins,
an honest server collects and trains on a small dataset. The server takes the updates
obtained by training on a small dataset as the root of trust in each iteration. It is then
compared to the updates uploaded by the clients. If the cosine similarity between them
is too small, the updates will be filtered out. With this approach, the accuracy of the
global model remains equivalent to that of the baseline. Based on FLTrust, Dong et al.
considered the setting of two semi-honest servers and malicious majority clients and
proposed FLOD to ensure that gradients are not leaked on the server side [37]. To explore
the impact of different percentages of malicious clients on the attack performance, we
evaluate the honest majority and malicious majority attack scenarios according to the
percentage of malicious clients among all clients. Specifically, we set two and three ma-
licious clients among five clients for the honest majority and malicious majority attack
scenarios, respectively.

In our experiments, we evaluate the ASR of CBA and DBA with the global trigger and
local triggers. The goal is to explore:

• In CBA, whether the ASR of local triggers can achieve similar performance to the
global trigger even if the centralized attacker would embed a global trigger into the
model.

• In DBA, whether the ASR of the global trigger is higher than all local triggers even

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

75

if the global trigger never actually appears in any local training dataset, as men-
tioned in [144].

Honest Majority Attack Scenario. The attack results of CBA and DBA in the honest
majority attack scenario are shown in Figure 4.10. Notice that the DBA ASR with a spe-
cific trigger is always higher than or at least similar to that of CBA with the corresponding
trigger. For example, in Figure 4.10a (the result for the GAT model), the DBA ASR with the
global trigger is higher than CBA with a global trigger. The only exception happens for
GCN on TRIANGLES. We also find that the ASR of the two attacks in TRIANGLES is sig-
nificantly lower than the other two datasets but still higher than random guessing. The
TRIANGLES is a multi-class dataset containing complex data relations. Thus, more in-
formation needs to be encoded in each model’s weights for the class features compared
to the other datasets. As a result, there is not enough remaining space to learn our trig-
gers easily. In most results on NCI1 and PROTEINS_full, there is an initial drop in the
attack success rate for both DBA and CBA, resulting from the high local learning rate of
honest clients [5]. Based on the result for CBA, surprisingly, the ASR of all local triggers
can be as high as the global trigger even if the centralized attacker embeds the global trig-
ger into the model, which is inconsistent with the behavior in [144]. We analyze it through
further experiments shown in Figure 4.18.

Moreover, the results for the PROTEINS_full dataset show that in DBA, the attack suc-
cess rate of the global trigger is higher than (or at least similar to) any local trigger, even
if the global trigger never actually appears in any local training dataset. This indicates
that the high attack success rate of the global trigger does not require the same high
attack success rate of local triggers. However, for the other two datasets (NCI1 and TRI-
ANGLES), the attack success rate of the global trigger is close to all local triggers (except
the result of GraphSage on TRIANGLES). This indicates that in some cases, the local trig-
ger embedded in local models can successfully transfer to the global model so that once
any local trigger is activated, the global model will misclassify the data sample into the
attacker-chosen target label. This phenomenon is not consistent with the observations
in [144] as in Euclidean data, most locally triggered images are similar to the clean image,
but any (small) change in the structure of a graph will result in a significant dissimilarity.

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(a) NCI1

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(b) PROTEINS_full

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

(c) TRIANGLES

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

(d) Legend

Figure 4.10: Backdoor attack results in the honest majority attack scenario.

4

76 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Malicious Majority Attack Scenario Figure 4.11 illustrates the attack results in the
malicious majority attack scenario. Compared with the honest majority attack scenario,
in most cases, the attack success rate of DBA and CBA increases as with more malicious
clients, more malicious updates are uploaded to the global model, making the attack
more effective and persistent. Moreover, the increase in DBA is more significant than
in CBA. For instance, based on the NCI1 dataset and GAT model, the DBA ASR with the
global trigger in the honest majority attack scenario is 17.54% higher than CBA, while in
the malicious majority attack scenario, the ASR difference is 20.65%. Thus, increasing
the number of malicious clients is more beneficial for DBA than CBA. With more mali-
cious clients, more local models are used to learn the trigger patterns in DBA, while there
is only one malicious local model in CBA.

For CBA, the ASR with the global trigger is higher while the attack performance with
local triggers stays at a similar level or even decreases. One possible reason is that more
malicious clients mean a larger global trigger, requiring more learning capacity of the
model. If there is not enough learning capacity for every local trigger in the global trigger,
the backdoored model can have poor attack performance with a specific local trigger but
will behave well with the union set of the local triggers, i.e., the global trigger.

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(a) NCI1

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(b) PROTEINS_full

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0

Local Trigger 1
Local Trigger 2

DBA
CBA(c) TRIANGLES

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0

Local Trigger 1
Local Trigger 2

DBA
CBA

(d) Legend

Figure 4.11: Backdoor attack results in the malicious majority attack scenario.

Impact of the Number of Clients We only set the number of clients as 5 for these
graph datasets because some of these datasets, i.e., NCI1 and PROTEINS_full, are small
(less than 5,000 graphs). However, to explore the impact of the number of clients on
DBA and CBA, we also conduct experiments with more clients on the largest dataset -
TRIANGLES. We set the number of clients as 10 and 20 and keep the ratio of malicious
clients among the total clients the same as before, i.e., 0.4 and 0.6 for the honest majority
and malicious majority attack scenarios, respectively. Here, we provide the results of the
honest majority attack scenario, as shown in Figure 4.12. The results of the malicious
majority attack scenario are given in Figure 4.13, and the phenomenon between the two
attack scenarios with 10 and 20 clients is similar to that with 5 clients.

It is obvious that with the increase in the number of clients, the attack success rate
of CBA decreases dramatically while the attack performance of DBA keeps steady. This
is reasonable because, in CBA, there is only one malicious client whose malicious up-

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

77

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0
Local Trigger 1

Local Trigger 2
Local Trigger 3

DBA
CBA(a) 10 clients

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0
Local Trigger 1

Local Trigger 2
Local Trigger 3

Local Trigger 4
Local Trigger 5

Local Trigger 6
Local Trigger 7

DBA
CBA(b) 20 clients0 10 20 30 40 50

Round
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0
Local Trigger 1

Local Trigger 2
Local Trigger 3

Local Trigger 4
Local Trigger 5

Local Trigger 6
Local Trigger 7

DBA
CBA

(c) Legend

Figure 4.12: Backdoor attack results of TRIANGLES with more clients in the honest majority attack scenario.

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(a) 10 clients

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(b) 20 clients0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0
Local Trigger 1

Local Trigger 2
Local Trigger 3
Local Trigger 4

Local Trigger 5
Local Trigger 6
Local Trigger 7

Local Trigger 8
Local Trigger 9
Local Trigger 10

Local Trigger 11
DBA
CBA

(c) Legend

Figure 4.13: Backdoor attack results of TRIANGLES with more clients in the malicious majority attack scenario.

dates contribute less to the global model with more clients in total. On the contrary, in
DBA, the proportion of malicious clients among total clients is the same, meaning the
malicious updates contribute the same to the global model regarding the different num-
ber of clients. Therefore, as shown in Figures 4.12a and 4.12b, the number of clients has
negligible impact to the DBA.

Impact of the Percentage of Malicious Clients Although we have analyzed the exper-
iments with the honest majority and malicious majority scenarios, we further explore the
impact of the percentage of malicious clients on the attack performance by calculating
their Pearson Correlation Coefficient (PCC), as shown in Figure 4.14, (we provide the re-
sults for the GraphSage model as the example as they are more stable, and the results
of other models are aligned). Recall that M represents the number of malicious clients,
and each number over the line is the corresponding PCC. As we can see, for all datasets,
PCC in DBA is larger than CBA, meaning the increase in M has a more positive impact
on DBA than CBA. This is intuitive as more malicious clients in DBA lead to more local
models embedded with local triggers, while in CBA, it means a larger global trigger due
to more local triggers. Specifically, in DBA, more malicious clients mean more model
weights to learn the trigger. In CBA, there is only one attacker, and learning a larger
global trigger can be out of the model’s representation capability. Additionally, as we
keep the poisoning intensity of DBA and CBA the same for each malicious client, there
are more poisoned training data in DBA than in CBA as more malicious clients are used.

We also explore the attack performance with more clients and less percentage of ma-
licious clients on the large dataset - TRIANGLES. Figure 4.15 shows the attack results

4

78 4. BACKDOOR ATTACKS ON FEDERATED GNNS

0.98
0.98
0.96
0.99
0.93
0.84

Figure 4.14: Correlation between ASR and M .

on TRIANGLES with 100 clients and fewer malicious clients, ranging from 5% to 20%
(here, we also take the results of the GraphSage model as the example, the results of other
models are presented in Figure 4.16 and 4.17). Table 4.13 illustrates the specific attack
results. We can see from Figure 4.15 that DBA’s ASR gradually increases with more ma-
licious clients while CBA’s ASR stays below 10%, further verifying that the increase in M
has a more positive impact on DBA than CBA. From Figure 4.15, we can still observe that
with 20% malicious clients, DBA can also achieve ASR of more than 20%, which means
with less percentage (e.g., 20%) of malicious clients, the DBA is still effective. With more
clients in total, the attack performance of CBA decreases, consistent with the observa-
tion in Figure 4.12. Thus, adding more clients does not change our previous conclusions
(with 5 clients).

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

5%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

10%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

15%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

20%
Global Trigger
Local Trigger 0
Local Trigger 1
Local Trigger 2
Local Trigger 3
Local Trigger 4
DBA
CBA

Figure 4.15: Backdoor attack results of TRIANGLES with less percentage of malicious clients (K = 100, Graph-
Sage).

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

5%

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

10%

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

15%

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

20%
Global Trigger
Local Trigger 0
Local Trigger 1
Local Trigger 2
Local Trigger 3
Local Trigger 4
DBA
CBA

Figure 4.16: Backdoor attack results of TRIANGLES with less percentage of malicious clients (K = 100, GCN).

Analysis of CBA results In Figure 4.10, for CBA, the attack success rate of all local
triggers can be as high as the global trigger, which is counterintuitive as the centralized

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

79

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

5%

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

10%

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

15%

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

20%
Global Trigger
Local Trigger 0
Local Trigger 1
Local Trigger 2
Local Trigger 3
Local Trigger 4
DBA
CBA

Figure 4.17: Backdoor attack results of TRIANGLES with less percentage of malicious clients (K = 100, GAT).

Table 4.13: Attack success rate of CBA and DBA with less percentage of malicious clients in TRIANGLES (K =100,
GraphSage).

Model
Attack Success Rate (CBA% | DBA%)

5% 10% 15% 20%

GCN 6.50 | 2.03 1.36 | 1.39 1.28 | 1.06 1.52 | 1.95
GAT 1.48 | 3.91 1.11 | 3.65 1.22 | 6.97 1.51 | 8.01

GraphSage 7.64 | 6.89 2.85 | 8.80 2.87 | 10.93 5.53 | 20.49

attack only embeds the global trigger into the model. To explain these results, we further
implement an experiment (NCI1 on GraphSage model) where we evaluate the attack
success rate of the global trigger and local triggers in both the malicious local model 8

and the global model. As shown in Figure 4.18, in the malicious local model, the ASR
of all local triggers is already close to the global trigger, which means that the malicious
local model has learned the pattern of each local trigger. After aggregation, the global
model inherits the capacity of local models. Once any local trigger exists, the global
model will misclassify the data sample into the attacker-chosen target label.

Still, in [144], for the CBA, the attack success rate of all local triggers is significantly
lower than the global trigger. There, the malicious local model learns the global trigger
instead of each local trigger, so the poisoned model can only misclassify the data sample
once there is a global trigger in the data. The different results in CBA between [144] and
our work can be explained since there, the local triggers composing the global trigger are
located close to each other (i.e., less than three pixels distance). In our work, the location
of local triggers is random since a graph is non-Euclidean data where we cannot put
nodes in some order. When the local trigger graphs are further away from each other,
the malicious local model in CBA can only learn the local trigger instead of the global
trigger.

Analysis of Backdoor Hyperparameters
This section studies the backdoor hyperparameters discussed in Section 4.3.1. We only
modify one factor for each experiment and keep other factors as in Section 4.3.3. We
provide results for TRIANGLES and the GraphSage model as an example as those results
are more stable, i.e., have the smallest standard error, and the results of other models are
aligned. For each factor, we evaluate the global trigger’s ASR and the test accuracy on
the clean test dataset. We illustrate the results on TRIANGLES in two attack scenarios to
analyze the effects of each factor for DBA and CBA. The results are shown in Figure 4.19.

8For the CBA, we assume there is one centralized attacker, so there is only one local model that will be poisoned
and we define this model as the malicious local model

4

80 4. BACKDOOR ATTACKS ON FEDERATED GNNS

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Malicious local model

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Global model
Global Trigger
Local Trigger 1
Local Trigger 2

(a) Honest majority attack scenario

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Malicious local model

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

Global model
Global Trigger
Local Trigger 1
Local Trigger 2
Local Trigger 3

(b) Malicious majority attack scenario

Figure 4.18: Centralized backdoor attack results on the malicious local model and global model with different
triggers.

Effects of Trigger Size From the ASR results in Figure 4.19, for both attacks and attack
scenarios, with the increase of trigger size, the attack success rate rises significantly, e.g.,
the DBA’s ASR increases from 0.09 to 0.80 with trigger size rising from 0.15 to 0.30 (honest
majority attack scenario). There is no significant effect of trigger size on the test accuracy
of the global model, implying that the trigger size has little impact on the original main
task.

Effects of Poisoning Intensity Similar to the impact of trigger size on the attack suc-
cess rate, a higher poisoning intensity gives a higher attack success rate. Intuitively, a
backdoor attack can perform better with more poisoned data. Nevertheless, the in-
crease is less significant than that of different trigger sizes. Specifically, in comparison
with [143], where there is no obvious difference between the impact of poisoning in-
tensity and trigger size, here, a larger trigger size has a more positive influence on ASR
than a larger poisoning intensity. We consider this an interesting observation and plan
to investigate it in future work. Moreover, in DBA, the test accuracy decreases with the
increasing poisoning intensity, and with more malicious clients, the drop is more signif-
icant, as shown in Figures 4.19a and 4.19b. This can be explained as with higher poison-
ing intensity, and more malicious clients, more model weights (including some for the
original task) are influenced by the malicious trigger patterns, and the performance on
the main task degrades more. We can also observe that with higher poisoning intensity,
there is no obvious drop in the testing accuracy for CBA, as presented in Figures 4.19c
and 4.19d. Although more local data is poisoned, the other honest clients (the majority
part) still guarantee the performance on the main task.

Effects of Trigger Density From Figure 4.19b, DBA’s ASR improves from 30.10% to
47.96% when the trigger density increases from 0.50 to 0.80. This is because the average
complexity of the TRIANGLES dataset is 0.16 [104]. Thus, when the trigger density is
set close to this value, the difference between the original graph and the trigger graph is
harder to distinguish. However, the effect of the trigger density in CBA’s ASR is not strong.
We see a slight fluctuation as the trigger density increases, but its range is very small to
be considered a trend. In CBA, we use only one malicious client, and the weak effect of
the trigger density is smoothed by the averaging operation.

In Figure 4.19, in most cases, there is no significant drop in the test accuracy with an
increase in the trigger size and trigger density. On the contrary, in the backdoor attacks
in centralized GNNs [145], as trigger size increases, the test accuracy decreases. This
can be explained as, in FL, the influence of backdoor functionality on the main task is

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

81

weakened by the aggregation of local models.

0.0
0.2
0.4
0.6
0.8
1.0

AS
R

0.15 0.20 0.25 0.30
Trigger Size

0.7

0.8

0.9

1.0

Te
st

in
g

ac
cu

ra
cy

0.05 0.10 0.15 0.20
Poisoning Intensity

0.20 0.50 0.80 1.00
Trigger Density

(a) DBA in honest majority attack scenario

0.0
0.2
0.4
0.6
0.8
1.0

AS
R

0.15 0.20 0.25 0.30
Trigger Size

0.7

0.8

0.9

1.0

Te
st

in
g

ac
cu

ra
cy

0.05 0.10 0.15 0.20
Poisoning Intensity

0.20 0.50 0.80 1.00
Trigger Density

(b) DBA in malicious majority attack scenario

0.0
0.2
0.4
0.6
0.8
1.0

AS
R

0.15 0.20 0.25 0.30
Trigger Size

0.7

0.8

0.9

1.0

Te
st

in
g

ac
cu

ra
cy

0.05 0.10 0.15 0.20
Poisoning Intensity

0.20 0.50 0.80 1.00
Trigger Density

(c) CBA in honest majority attack scenario

0.0
0.2
0.4
0.6
0.8
1.0

AS
R

0.15 0.20 0.25 0.30
Trigger Size

0.7

0.8

0.9

1.0

Te
st

in
g

ac
cu

ra
cy

0.05 0.10 0.15 0.20
Poisoning Intensity

0.20 0.50 0.80 1.00
Trigger Density

(d) CBA in malicious majority attack scenario

Figure 4.19: Results on TRIANGLES with different trigger parameters.

Clean Accuracy Drop
The goal of the backdoor attack is to make the backdoored model simultaneously fit the
main task and backdoor task. Therefore, it is critical that the trained model still behaves
normally on untampered data samples after training with the poisoned data. Here, we
use clean accuracy drop (CAD) to evaluate if the backdoored model can still fit the origi-
nal main task. CAD is the classification accuracy difference between global models with
and without malicious clients over the clean testing dataset. CBA’s and DBA’s final clean
accuracy drop results in the honest and malicious majority attack scenarios are given
in Tables 4.14 and 4.15, respectively. In most cases, both attacks have a low CAD, i.e.,
around 2%, and only in a few cases is there a significant CAD. These results imply that,
in most cases, both attacks have a negligible impact on the original task of the model.
Additionally, in some cases, DBA’s CAD is significantly higher than CBA’s, e.g., DBA’s CAD
is 5.74% in the GraphSage model on TRIANGLES while CBA’s is 3.24%, as shown in Ta-
ble 4.15. At the same poisoning intensity for each client, there are more poisoned data in
DBA than in CBA, leading to worse performance in the main task. The substantial clean
accuracy drop in DBA can also be observed in [144].

Attack performance in Real-world Social Network Datasets
Two real-world social network datasets We already used two molecular structure datasets

4

82 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Table 4.14: Clean accuracy drop of CBA and DBA in the honest majority attack scenario.

Dataset
Clean Accuracy Drop (CBA% | DBA%)
GCN GAT GraphSage

NCI1 2.54 | 2.01 0.84 | 1.42 0.93 | 0.16
PROTEINS_full 1.81 | 4.06 0.49 | 0.46 2.31 | 2.82

TRIANGLES 0.01 | 1.32 3.71 | 2.87 3.31 | 4.45

Table 4.15: Clean accuracy drop of CBA and DBA in the malicious majority attack scenario.

Dataset
Clean Accuracy Drop (CBA% | DBA%)
GCN GAT GraphSage

NCI1 4.45 | 2.74 1.03 | 1.07 1.29 | 2.22
PROTEINS_full 2.78 | 1.30 0.03 | 2.65 2.72 | 4.59

TRIANGLES 0.14 | 0.30 5.10 | 5.84 3.24 | 5.74

and one synthetic dataset to explore the distributed backdoor attacks and centralized
backdoor attacks in the Federated GNNs. However, in order to further explore the DBA
and CBA in real-world applications and scenarios, we in this section extend our analysis
of DBA and CBA to two additional real-world social network datasets. In recent years,
with the rapid development of internet technology, social network graphs have played
an increasingly important role in people’s lives [51]. These graphs contain valuable in-
formation regarding individuals’ behavior and interactions, making them applicable in
various domains such as sentiment analysis, recommendation systems, and spam de-
tection. Federated GNNs can also be employed in these areas. Nonetheless, the vul-
nerability of Federated GNNs to backdoor attacks poses significant risks. For instance,
in the scenario of applying the Federated GNNs on spam detection, if the attacker ex-
ecutes a backdoor attack on the system, the model will detect any input graph with a
specific trigger as benign, potentially leading to severe safety issues. Consequently, it is
crucial to also explore the attack performance of the Federated GNNs on social network
datasets. What is more, these two social network datasets have different graph charac-
teristics from the aforementioned two molecular structure datasets and one synthetic
dataset. Specifically, these two datasets have a larger average number of edges, e.g., the
average number of edges of COLLAB is 2,457.78 while that of NCI, PROTEINS_full, and
TRIANGLES datasets are 32.30, 72.82, and 32.74 respectively. Through experiments on
these two social network datasets, it can be verified that our attacks are effective not only
on simple datasets but also on complex datasets.

• COLLAB. This scientific-collaboration dataset is derived from three public collab-
oration datasets, namely, High Energy Physics, Condensed Mater Physics, and Astro
Physics. It consists of ego-networks 9 of different researchers from each field, with
each graph labeled according to the researcher’s field. The task is to determine
whether the ego-collaboration graph of a researcher belongs to High Energy, Con-
densed Matter, or Astro Physics field.

• IMDB-BINARY. This dataset is a movie-collaboration dataset where actor/actress
9An ego network is defined as a portion of a social network formed for a given individual, termed ego, and the

other persons with whom the user has a social relationship, termed alters [4].

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

83

Table 4.16: Datasets statistics of two social network datasets.

Dataset # Graphs Avg. # nodes Avg. # edges Classes Class Distribution

COLLAB 5,000 74.49 2,457.78 3 2600[0],775[1],1625[2]
IMDB-BINARY 1,000 19.77 96.53 2 500[0],500[1]

and genre information of different movies on IMDB was collected. Collaboration
graphs are generated based on Action and Romance genres, and ego-networks are
derived for each actor/actress. Similar to the COLLAB dataset, each ego-network
is labeled with the genre graph it belongs to. The task is to identify to which genre
an ego-network graph belongs. Table 4.16 describes the information about these
two social network datasets.

Attack results The attack results of DBA and CBA on two social network datasets in
the honest majority attack scenario are presented in Figure 4.20. As seen in the figure, we
can observe that for both GCN and GAT models, the ASR of DBA with a specific trigger
is consistently higher than that of CBA with the corresponding trigger. For instance, for
GAT on IMDB-BINARY, the ASR of DBA with the global trigger is typically 10% higher
than that of CBA with the global trigger. However, for the GraphSage model, the ASR
of the two attacks is similar. It can be explained that the GraphSage model has a more
redundant learning capacity, making it easier for CBA to learn the global trigger pattern.
As a result, the ASR of CBA is higher than the other two models and is similar to that of
DBA. Similar to the results obtained from the prior datasets, i.e., NCI1, PROTEINS_full,
and TRIANGLES, for CBA on the two social network datasets, the ASR of all local triggers
can be as high as the global trigger even if the centralized attacker embeds the global
trigger into the model. This observation highlights the vulnerability of the GNN models
to even the slight structure manipulation in the graph. Furthermore, in DBA, the ASR
of the global trigger is also close to all the local triggers, which further indicates that in
DBA, the local trigger embedded in local models can successfully transfer to the global
model. It implies that the attacker can compromise the global trigger by embedding a
simple local trigger into the local models, leading to significant security concerns.

Figure 4.21 shows the attack results of two social network datasets in the malicious
attack scenario. In comparison to the honest majority attack scenario, the ASR of DBA
increases for GCN and GraphSage models as more malicious clients participate in the
attack, more model capacity is used to learn the trigger pattern, and more malicious up-
dates are uploaded into the global model, making it easier to achieve the attack. For ex-
ample, for the GCN model on COLLAB, the ASR of DBA in the malicious majority attack
scenario is around 15% higher than that in the honest majority attack scenario. On the
other hand, the ASR of CBA notably decreases in the malicious majority attack scenario,
especially for the global trigger in GCN and GraphSage models. One possible explana-
tion for this observation is that in the CBA, there is only one malicious local model and
the global trigger is larger in the malicious majority attack scenario than in the honest
majority attack scenario, which requires more learning capacity of the model to learn
every local trigger. It is likely that the backdoored model cannot learn the local trigger
patterns clearly, and therefore, it cannot recognize the global trigger effectively. These
findings indicate that DBA is generally more effective than CBA in the malicious ma-

4

84 4. BACKDOOR ATTACKS ON FEDERATED GNNS

jority attack scenario. Moreover, the results demonstrate that the number of malicious
clients participating in the attack significantly impacts the effectiveness of the backdoor
attacks in the Federated GNNs. It is essential to develop more robust and secure models
that can resist these backdoor attacks, especially when the attacker has access to more
clients in the federated learning setting.

Clean accuracy drop: Here, we also use CAD to evaluate the impact of backdoor
attacks on the original mask task on the social network datasets. The testing accuracy
of DBA and CBA on the two social network datasets are shown in Figure 4.22 (honest
majority attack scenario) and 4.23 (malicious majority attack scenario). Specifically, the
clean accuracy drop results in the honest and malicious majority attack scenarios are
given in Table 4.17 and 4.18, respectively. In most cases, the CAD of both attacks is less
than 5% for both datasets. Additionally, we observe that the clean accuracy drop of DBA
is generally higher than that of CBA, with a difference of more than 3% in most cases.
This observation is consistent with the results obtained in the prior experiments.

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(a) COLLAB

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(b) IMDB-BINARY
0 10 20 30 40 50

Round
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

(c) Legend

Figure 4.20: Backdoor attack results in the honest majority attack scenario (social network datasets).

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(a) COLLAB

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

(b) IMDB-BINARY
0 10 20 30 40 50

Round
0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger
Local Trigger 0

Local Trigger 1
Local Trigger 2

DBA
CBA

(c) Legend

Figure 4.21: Backdoor attack results in the malicious majority attack scenario (social network datasets).

Table 4.17: Clean accuracy drop of CBA and DBA in the honest majority attack scenario (social network
datasets).

Dataset
Clean Accuracy Drop (CBA% | DBA%)
GCN GAT GraphSage

COLLAB 2.44 | 3.46 1.75 | 2.27 2.52 | 4.40
IMDB-BINARY 3.75 | 2.89 1.38 | 8.06 4.35 | 2.97

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

85

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GIN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) COLLAB

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GIN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) IMDB-BINARY

Figure 4.22: Testing accuracy in the honest majority attack scenario (social network datasets).

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GIN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) COLLAB

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GIN

0 20 40
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) IMDB-BINARY

Figure 4.23: Testing accuracy in the malicious majority attack scenario (social network datasets).

Table 4.18: Clean accuracy drop of CBA and DBA in the malicious majority attack scenario (social network
datasets).

Dataset
Clean Accuracy Drop (CBA% | DBA%)
GCN GAT GraphSage

COLLAB 3.83 | 7.37 9.07 | 3.16 1.14 | 5.09
IMDB-BINARY 1.22 | 3.58 0.74 | 6.72 2.37 | 0.61

4.3.4. DEFENSES

Potential Countermeasures
FLAME [95] is one of the state-of-the-art defenses against backdoor attacks in FL, com-
bining the benefits of both defense types (Byzantine-robust aggregation mechanisms
and differential privacy techniques) to eliminate the impact of backdoor attacks while
maintaining the performance of the aggregated model on the main task. FoolsGold [43]
is a robust FL aggregation algorithm that can identify attackers in federated learning
based on the diversity of client updates. It reduces the aggregation weights of detected
malicious clients while retaining the weights of other clients. One of the assumptions
in this defense is that each client’s training data is non-i.i.d and has a unique distribu-
tion, which fits the non-i.i.d data distribution setting in this section. Ozdayi et al. also
proposed a defense mechanism against backdoor attacks in federated learning [99]. The
idea is to adaptively adjust the learning rate of the server’s aggregation function, per di-
mension and per round, based on the sign information of agents’ updates. In this work,
we focus on evaluating the attack effectiveness of DBA and CBA against FoolsGold and
RLR (Robust Learning Rate).

Results against FLMAE

4

86 4. BACKDOOR ATTACKS ON FEDERATED GNNS

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) NCI1

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) PROTEINS_full

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(c) TRIANGLES

Figure 4.24: Backdoor attack results against FLAME (in the honest majority attack scenario).

Figure 4.24 shows the attack performance of the NCI1, PROTEINS_full, and TRIANGLES
datasets under FLAME in the honest majority attack scenario (the results in the mali-
cious majority attack scenario are similar). One important parameter in FLAME is the
Gaussian noise level σ, and σ is set to be 0.01 for Figure 4.24 as default. Compared with
the attack performance before FLAME (Figure 4.10), for GCN and GAT models, the ASR
of both DBA and CBA decreases around 10% for NCI1 and PROTEINS_full datasets while
for TRIANGLES dataset, the ASR even decreases to nearly 0. However, we can also ob-
serve that for the GraphSage model, the ASR under FLAME increases for all datasets,
and the testing accuracy decreases dramatically. Given that for PROTEINS_full and NCI1
datasets, the attack performance under FLAME does not degrade obviously, we further
evaluate the attack performance under FLAME on PROTEINS_full and NCI1 datasets
with different Gaussian noise levels, as shown in Figure 4.25 and 4.26. It can be observed
that with a higher Gaussian noise level, there is more fluctuation in the attack perfor-
mance under FLAME, i.e., more standard deviation. Generally, with a larger Gaussian
noise level, the ASR under FLAME for these two datasets decreases while the testing ac-
curacy also reduces significantly. Based on the experimental results against FLAME, we
find that FLAME can indeed degrade the attack performance of DBA and CBA, especially
for TRIANGLES datasets with GCN and GAT models. However, generally, it can only re-
duce the ASR of both attacks for less than 10% for PROTEINS_full and NCI1 datasets, and
it does not work for the GraphSage model.

Results against FoolsGold

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

87

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) σ= 0.08

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) σ= 0.10

Figure 4.25: Backdoor attack results against FLAME on NCI1 with different σ (in the honest majority attack
scenario).

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) σ= 0.08

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) σ= 0.10

Figure 4.26: Backdoor attack results against FLAME on PROTEINS_full with different σ (in the honest majority
attack scenario).

4

88 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Figure 4.27 shows the attack performance for the TRIANGLES dataset under FoolsGold in
the honest majority attack scenario (the results in the malicious majority attack scenario
are similar). As illustrated in Figure 4.27, we can observe that for DBA, the ASR under
FoolsGold remains consistent for the GraphSage model, whereas it rises along with a
decrease in testing accuracy for the GAT model. Moreover, generally, under FoolsGold,
there is a significant increase in CBA’s ASR in all models, but the testing accuracy of CBA
reduces significantly at the same time. For example, the CBA’s ASR increases by about
20% for the GraphSage model. However, the testing accuracy of CBA on GraphSage has
a drop of more than 20% (Figure 4.27b). Our hypothesis for this situation is that under
FoolsGold, the malicious client in CBA is assigned a higher weight (recall the description
of the FoolsGold mechanism from the paragraph above) than other clients, so malicious
updates contribute more to the aggregated model. Simultaneously, the low weights on
the honest clients’ updates lead to the failure of the performance on the original task. To
verify this hypothesis, we reported FoolsGold’s weights on every client in DBA and CBA in
Table 4.19. Here, the FoolsGold weight for each client ranges from 0 to 1. As we can see, in
CBA, the weight of the malicious client is 1, and the weights of other clients are 0, which
means only the malicious updates are aggregated into the global model. Therefore, the
attack success rate of CBA increases significantly under FoolsGold. On the other hand,
in DBA, the weights of the malicious clients are similar to the honest clients, indicating
that the malicious and honest updates contribute equally to the aggregated model, as
in the aggregation function without the defense, i.e., the average aggregation function.
Therefore, there is no obvious difference between the attack performance of DBA before
and after the defense. One possible reason is that in CBA, there is only one malicious
client whose updates are likely to appear dissimilar from those of other honest clients,
so FoolsGold cannot identify the malicious updates successfully.

The ASR under FoolsGold on NCI1 and PROTEINS_full datasets (honest majority at-
tack scenario) are shown in Figures 4.28 and 4.29, respectively. There is a slight increase
in the attack success rate of DBA and CBA under FoolsGold, which indicates that this
defense fails to identify the malicious updates and misclassifies them as benign. The
graph data are not Euclidean data, e.g., images, so the slightly different subgraphs used
as triggers do not induce aligned updates. As a result, the cosine similarity cannot be
used to detect malicious clients based on their updates. Even though there are more
malicious clients in the malicious majority scenario and the probability of detecting the
malicious updates should be higher, we observe the same behavior. This further verifies
our hypothesis that the defense based on cosine similarity between updates is not very
effective in the graph domain. The clean accuracy drop under FoolsGold on these two
datasets is similar to that without the defense.

Based on the experimental results against FoolsGold, we find that the tested defense
cannot detect malicious updates successfully. One reason may be that this defense ap-
plies cosine distance to try to identify malicious models, i.e., the distance between ma-
licious updates is smaller between honest updates. Still, in our attacks, the malicious
clients’ updates could already be very dissimilar to each other, so the malicious updates
are likely to be clustered into honest updates.

Results against RLR

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

89

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

(a) Attack success rate

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) Testing accuracy

Figure 4.27: Backdoor attack results of TRIANGLES on FoolsGold for the honest majority.

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

(a) Attack success rate

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) Testing accuracy

Figure 4.28: Attack success rate on NCI1 on FoolsGold (in the honest majority attack scenario).

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

(a) Attack success rate

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) Testing accuracy

Figure 4.29: Attack success rate on PROTEINS_full on FoolsGold (in the honest majority attack scenario).

4

90 4. BACKDOOR ATTACKS ON FEDERATED GNNS

Table 4.19: FoolsGold weight in DBA and CBA on TRIANGLES (honest majority attack scenario).

Attacks Attacker 1 Attacker 2 (client 2 in CBA) Client 3 Client 4 Client 5 Attackers (sum)

DBA 1.00±0.00 1.00±0.00 0.82±0.15 0.81±0.09 0.78±0.12 2.00±0.00
CBA 1.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 1.00±0.00

The attack performance of NCI1, PROTEINS_full, TRIANGLES against RLR is shown in
Figure 4.30 (honest majority attack scenario) and 4.31 (malicious majority attack sce-
nario) including the attack success rate and testing accuracy. The results reveal some
interesting insights, and the ASR of DBA and CBA against RLR varies significantly across
different datasets and models. In the honest majority attack scenario, compared to the
attack performance before the defense, as shown in Figure 4.10, we can observe that
the ASR of DBA and CBA decreases for the NCI1 dataset in the GCN model. For exam-
ple, the ASR of CBA decreases from around 100% to 20%, while it increases for GAT and
GraphSage models. On the other hand, for the PROTEINS_full dataset, the ASR of both
attacks decreases dramatically, i.e., the decrease is up to 60% compared to Figure 4.10b,
for all models. In contrast, for the TRIANGLES dataset, the ASR of DBA and CBA sur-
prisingly increases after RLR. Compared to the NCI1 and PROTEINS_full datasets, the
TRIANGLES dataset has fewer average nodes, which makes it more challenging to create
a backdoor trigger pattern. Thus, as we can see from Figures 4.10 and 4.11, TRIANGLES
has lower ASR than other datasets. Moreover, the undistinguished backdoor trigger pat-
tern in the TRIANGLES dataset leads to the inefficiency of RLR. Another intriguing dis-
covery is that the testing accuracy of all datasets and models reduces significantly under
RLR, dropping to around 50% for NCI1 and PROTEINS_full, which is random guessing
for these two datasets. The large testing accuracy drop here is not consistent with that
in [99]. One possible reason behind this observation is that in the RLR defense, the ma-
licious updates are generally detected as benign and then assigned a positive learning
rate. In contrast, benign updates are detected as malicious ones and assigned a negative
learning rate. Therefore, the malicious updates contribute more to the aggregated global
model, leading to a higher attack success rate and poorer performance on the original
task. Moreover, RLR only works under the assumption that the number of malicious
clients is sufficiently below θ (learning threshold) [99]. However, in our threat model,
the number of malicious clients can be higher than θ.

When there are more malicious clients (Figure 4.31), the attack success rate of DBA
decreases dramatically in most cases compared to the honest majority attack scenario,
while the ASR of CBA remains relatively stable. For instance, the ASR of DBA in the TRI-
ANGLES in the malicious majority attack scenario is around 36% while that in the hon-
est majority attack scenario is around 75%. It may be explained that in CBA, there is
only one malicious local model, while in DBA, there are multiple malicious local mod-
els. Thus with an increase in the number of malicious clients, the malicious updates in
DBA increase more than in CBA. This makes it easier for RLR to detect malicious updates
in DBA, resulting in a decrease in DBA’s ASR. Despite the decrease of ASR in DBA under
RLR in the malicious majority attack scenario, the clean accuracy drop under RLR is still
very high in both attacks, i.e., more than 25% in most cases. Our experimental results
against RLR indicate that this defense mechanism is not effective in detecting malicious

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

91

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
At

ta
ck

 S
uc

ce
ss

 R
at

e
GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) NCI1

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) PROTEINS_full

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(c) TRIANGLES

Figure 4.30: Backdoor attack results against RLR (in the honest majority attack scenario).

updates, and it can significantly degrade the original main task.

4.3.5. GENERAL TAKEAWAYS ON THE EXPERIMENTAL ASPECTS

Here, we detail and reflect on the experimental aspects of our two backdoor attacks,
i.e., DBA and CBA, in the federated GNNs, and draw general takeaways. Specifically,
we introduce technical details, present how we have designed the experiments to com-
prehensively evaluate and compare the attack performance of these two attacks, and
especially how we designed the global and local triggers’ generation. We also present
the implementation details for our two attacks, along with general discussions on avail-
ability of artifacts and reproducibility of the results. We finally report our failures and
unexpected results when running or reproducing our experiments, together with solu-
tions we devised to solve the problem and lessons learned from the unexpected results.
During our exposition, we aimed to provide the reader with a summary of the lessons
learned when implementing the DBA and CBA in the Federated GNNs. We expect that
other researchers and practitioners may use those lessons to learn from our experimen-
tal methodologies, execution, and results.

Experiments Design
Experimental Setting The settings of different experiments on backdoor attacks in the
federated GNNs are summarized in Table 4.10. To eliminate our implementation mis-
takes, we followed several steps for both the training and backdoor attack perspectives.
First, during the model training, we selected to implement the small dataset first and

4

92 4. BACKDOOR ATTACKS ON FEDERATED GNNS

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 Local Trigger 2 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(a) NCI1

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 Local Trigger 2 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(b) PROTEINS_full

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

At
ta

ck
 S

uc
ce

ss
 R

at
e

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Global Trigger Local Trigger 0 Local Trigger 1 Local Trigger 2 DBA CBA

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

in
g

ac
cu

ra
cy

GCN

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GAT

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
GraphSage

Clean model DBA CBA

(c) TRIANGLES

Figure 4.31: Backdoor attack results against RLR (in the malicious majority attack scenario).

then the large dataset as it takes less time to load the small dataset and train it. Once the
training for a small dataset had no errors, we continued training for the large dataset,
e.g., TRIANGLES. Second, in the implementation of a backdoor attack, we first run ex-
periments with extremes (large poisoning rate and large trigger size) to make sure that
the poisoning pipeline works and then use more realistic poisoning hyperparameters.
We also implemented backdoor attacks in the centralized setting first and then moved
to the distributed setup because training in the distributed setting is more complex.

Non-i.i.d. Distribution We followed [18] to distribute the training dataset among
clients. Assuming there are M classes in a dataset, we randomly split the clients into M
groups. A training example with label l was assigned to group l with probability p > 0
and to any other groups with probability 1−p

M−1 . Within the same group, data was uni-
formly distributed to each client. p controlled the distribution difference of the clients’
local training dataset. If p = 1

M , then the clients’ local training datasets are independent
and identically distributed (i.i.d.). Otherwise, the clients’ local training datasets are non-
i.i.d. Moreover, a larger p indicates a higher degree of non-i.i.d. among the clients’ local
training dataset. In our work, we set p > 1

M to simulate the non-i.i.d. setting.
Trigger Generation To compare the attack performance between the distributed back-

door attack and centralized backdoor attack in Federated GNNs, we need to ensure the
trigger pattern in CBA is the union set of local trigger patterns in DBA. We can use two
strategies: 1) first generate local triggers in DBA and then combine them to get the global
trigger, or 2) first generate a global trigger in CBA and then divide it into M local triggers.
We utilize the first strategy as it is an NP-hard problem to divide a graph into several sub-
graphs [32]. Thus, in different attack scenarios (i.e., honest majority or malicious major-

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

93

ity attack scenarios), the CBA performance is different since the global trigger has been
changed due to the different number of malicious clients. Moreover, DBA should be im-
plemented before CBA so that the local triggers used in DBA can be saved and combined
as the global trigger in CBA.

To obtain the local triggers, we adopted the Erdős-Rényi (ER) model [44]. There are
two closely related variants of the ER model, one of which is the G(n, p) model. In the
G(n, p) model, a graph with n nodes is constructed by randomly connecting nodes. Each
edge is included in the graph with probability p, independently from every other edge.
An example of ER graph with 50 nodes at different edge probabilities, p = 0.02,0.05,0.1
is shown in Figure 4.32. A trigger graph generated using networkx [52] is shown in List-
ing 4.1.

import networkx as nx
n = 50
p = 0.05
t_g = nx . erdos_renyi_graph (n , p , directed=False)

Listing 4.1: Generate trigger graph with networkx

(a) n = 50, p = 0.02 (b) n = 50, p = 0.05 (c) n = 50, p = 0.1

Figure 4.32: Examples of graphs generated by ER model with 50 nodes and different values of p.

Implementation Details
Running Environment We implemented DBA and CBA in the Federated GNNs on Py-
Torch framework with the version of 1.9.0+ cu111. All the experiments are run in TU
Delft’s cluster consisting of CentOS-based worker machines. The architecture of the
cluster we used is illustrated in Figure 4.33. There are multiple NVIDIA GPUs in the
cluster, such as Tesla P100 and V100, GeForce GTX 1080 Ti and RTX 2080 Ti, and A40.
We created a virtual environment with python>=3.6 and installed the dependencies
(torch>=1.9.0, torchvision>=0.10.0, numpy>=1.23.2, dgl>=0.9.1, networkx>=
2.4, hdbscan==0.8.28, joblib==1.1.0). As shown in Figure 4.33 we first need to con-
nect through ssh to a virtual machine in the cluster network (login node). From this ma-
chine we can submit our experiments to the cluster’s worker nodes. The cluster is shared
among different members of the university and for that reason everything is managed
by slurm workload manager.10 Each researcher creates tasks by declaring the resources

10https://slurm.schedmd.com/documentation.html

https://slurm.schedmd.com/documentation.html

4

94 4. BACKDOOR ATTACKS ON FEDERATED GNNS

needed (amount of memory, number of CPUs, type of GPU, estimated execution time
etc.) and the executable that is going to be run in a bash-like file. This file is used by
sbatch which is a tool provided by slurm to submit jobs in the cluster. Slurm keeps
track of all the pending tasks and according to the resources they need it assigns them to
the corresponding worker nodes. The results are saved in a network file system (nfs) that
the worker nodes have mounted which is also accessible from the login node.

ssh

worker nodes

sbatch

login nodeuser

shared storage

Figure 4.33: Cluster’s architecture.

Experimental Setup Our experiments were run on graph datasets from TUDataset [92].
TUDataset is a collection of benchmark datasets for graph classification and regression.
We also adopted Deep Graph Library (DGL) [131], which is one of the most popular deep
learning libraries for graph data processing to conduct experiments on graph data. DGL
provides a powerful graph object that can reside on either CPU or GPU. It provides var-
ious functions, from loading graph datasets, processing graph datasets, loading GNN
models, to computing with graph objects. For instance, we used three graph datasets
(NCI1, PROTEINS_full, TRIANGLES), and they can be loaded as shown in Listing 4.2:

import dgl . data
dataset = dgl . data . TUDataset (’DataName ’)

Listing 4.2: Import data with dgl

We implemented our GNN models on top of a popular open-source framework used
for benchmarking graph neural networks [39]. In addition to evaluating the effectiveness
of our attacks in the Federated GNNs, we also evaluated the robustness of our attacks
against state-of-the-art defenses. We selected two defenses against backdoor attacks
in federated learning. For one defense, we could not find a public release of the code,
which means we needed to reproduce it ourselves. Additionally, in our past experience
in experimental evaluation, re-implementation is often required, representing extra ef-
fort. Moreover, we may fail to respect original implementation decisions because some
design choices may be needed to obtain the original results. Thus, researchers in the
security field should be encouraged to make their code available and provide documen-
tation for reproduction.

4.3. BACKDOOR HORIZONTAL FEDERATED GNNS

4

95

Observation 1

It should be encouraged to make the code available and provide documentation
for reproduction.

For the other selected defense, there is open-source code, and the public code is
intended for the image domain. Although the selected defenses proved to be effective
against the backdoor attacks in the federated learning in the image domain, our experi-
mental results verified that our attacks could not be fully eliminated without influencing
the original task. Therefore, what we observed is that the methods proven to be effective
in one domain may not work in other domains.

Observation 2

The methods proven to be effective in one domain may not work well in other
domains.

Availability and Reproducibility The source code for DBA and CBA in the Federated
GNNs has been released on GitHub11, including the material to reproduce the exper-
imental evaluation. The README file consists of 1) small graph datasets used in our
experiments (TRIANGLES dataset is not uploaded but can be downloaded directly from
the TUDataset), 2) requirements.txt file to create the virtual environment, 3) python files
to run DBA and CBA, 4) pkl files generated during our evaluation, and 5) instructions to
reproduce experiments. We also provided python scripts in the GitHub repository, which
set the appropriate parameters, e.g., dataset, model config, number of clients, number
of malicious clients, results saving path, etc. For example, to train a clean Federated GCN
model over the NCI1 dataset, we run a python script:

$ python clean_fedgnn . py −−dataset NCI1 \\
−−config . / configs /TUS/ TUs_graph_classification_GCN_NCI1_100k . json \\
−−num_workers 5 \\
−−num_mali 0 \\
−−filename . / Results /Clean \\

Listing 4.3: Script to train a clean Federated GNNs

The results are saved in the folder ./Results/Clean, which is used to calculate the
clean accuracy drop.

To run DBA or CBA, the value of some arguments in the python script is changed,
e.g., the number of malicious clients and the results saving path. The argument “config”
defines the GNN architecture and training details, such as the number of layers in the
GNN model, dropout rate, etc.

During running, the generated local triggers will be saved and used in later experi-
ments of CBA. From each script used for our attacks, we can get the training and testing
loss and accuracy, the attack success rate with the global trigger, and the attack suc-
cess rate with each local trigger for each client separately and for the global model. For
each experimental setting, we repeated the experiment 10 times to eliminate random-
ness introduced from our algorithms. We used numpy.average and numpy.std to cal-

11https://github.com/xujing1994/bkd_fedgnn

https://github.com/xujing1994/bkd_fedgnn

4

96 4. BACKDOOR ATTACKS ON FEDERATED GNNS

culate the average value and standard deviation. Finally, we used matplotlib.plot and
matplotlib.fill_between to plot the figures, such as ax.plot(x, y) and ax.fill_
between(x, y-std, y+std).

Based on the comments from the artifact evaluation, our GitHub repository docu-
mentation is well-detailed and easy to follow. All scripts are runnable and cover all com-
ponents relevant to the experimental Section 4.3.3. In addition, the obtained results are
reproducible.

Takeaways During the experimental evaluation, commonly, running machine learn-
ing (ML) experiments is resource intensive and time-consuming. Thus, it is better to
record too much information than not enough. For example, we had to rerun all experi-
ments of DBA because we did not record the generated local triggers, which we realized
later should be used in CBA to make sure the trigger pattern in CBA is the union set of
local trigger patterns in DBA. In addition, diverse metrics are useful for debugging and
can give insights into how the model training is progressing. For instance, we calculated
the attack success rate with the global trigger, each local trigger for the global model,
as well as the attack success rate with each local trigger for each client. Therefore, we
recorded plenty of information during our analysis while only part of it was used in the
Section 4.3.

It is important to motivate the required experiments and design them carefully prior
to the coding part. In this way, we can avoid running unnecessary experiments that can
be very time-consuming. Additionally, careful planning could eliminate mistakes in our
code, which is crucial as our cluster is shared and code that crushes may affect the clus-
ter’s job scheduler. We learned the hard way that we need to document everything that
we already run to avoid wasting time in the same experiments. Moreover, there are many
implementation choices in our experiments. Thus, it is very useful to comment on the
code and use descriptive commit messages because it is easy to forget the reason behind
some of the decisions, especially if the project takes longer time to complete. Addition-
ally, we realized that it would be useful to add unit testing in our pipeline to decrease
the debugging time and avoid trivial mistakes. Finally, we believe that security confer-
ences should follow the example of software engineering and programming language
conferences and include an artifact evaluation committee to encourage authors to share
artifacts.

Failure and Unexpected Results
Failures with Experiments In our experiments, we found the backdoor attack perfor-
mance for a specific case, i.e., the TRIANGLES dataset and the GCN model, was ob-
viously lower than other cases. After checking the classification accuracy of GCN over
TRIANGLES, we realized the performance was poor, which can be the cause of the bad
attack performance. Considering that the classification task of the TRIANGLES dataset is
counting the number of triangles in a graph, and also the concept of message passing in
the GNN model, a solution we devised was to change the Aggregation function in the
GCN model from the default mean to sum. Then, the classification performance of GCN
over TRIANGLES was improved significantly, as well as the attack performance. From
this failure, we learned that we need to take into account the property of each dataset
when configuring the experiments.

4.4. CONCLUSIONS

4

97

Unexpected Results In our experiments, we found for CBA, the attack success rate of
all local triggers for the global model can be as high as the global trigger, which is coun-
terintuitive as the centralized attack only embeds the global trigger into the model in the
training phase. This phenomenon was not consistent with observations in [144]. For
these unexpected results, the first step we took was to check the code to make sure that
there is no error. Next, we proposed a hypothesis, i.e., the attack success rate of all local
triggers is already high for the malicious client in the CBA. To verify this hypothesis, we
designed additional experiments and finally explained this unexpected phenomenon in
the Section 4.3. Thus, the results of the experiment are not always as expected and addi-
tional experiments are required to explain the current experimental results. Sometimes,
obtaining unexpected results is not a problem as it can lead to new findings. What is
more, we also learned that in machine learning, it is very useful to save the models after
training to avoid spending time again when we evaluate them against defenses or run
analysis experiments with them.

4.4. CONCLUSIONS
This chapter investigates backdoor attacks on Federated GNNs. In Section 4.2, we pro-
pose a method of implementing MIA against GNNs under the label-only condition. The
average attack accuracy, precision, and AUC values of our label-only MIA are around 0.6
in most experiments, which are competitive or even better than previous probability-
based MIAs implemented in the same environment and settings. In addition, we explore
the influence factors of our label-only MIA. The higher overfitting level impacts the at-
tack performance, i.e., it could increase or decrease our label-only MIA’s attack accuracy.
The sampling method also influences the attack performance and achieves a maximum
gap of 7% on average attack accuracy. Model selection strategies with testing accuracy
and loss have a slightly better attack accuracy than training accuracy and loss with a
maximum gap of 1% on average attack accuracy. Then, we consider scenarios where
two assumptions about the shadow dataset and the target model’s information are re-
laxed. Surprisingly, the relaxation of those two assumptions will increase the attack per-
formance in most experiments. Finally, we explore label-only MIA against four defense
methods and their combinations. The results show that those four defenses cannot pre-
vent our label-only MIA completely. This section only focuses on node classification
tasks. We leave label-only MIA against graph-level GNNs as feature work.

In Section 4.3, we explore how Centralized and Distributed Backdoor attacks be-
have in Federated GNNs. Through extensive experiments on two molecular structure
datasets, one synthetic dataset and two real-world social network datasets, and three
popular GNN models, we showed that generally, DBA achieves a higher attack success
rate than CBA. We showed that in CBA, the ASR of local triggers could be as high as the
global trigger even if, during training, only the global trigger is embedded in the model.
The impact of the percentage of malicious clients on DBA’s ASR is analyzed with correla-
tion, where we confirm the intuition that more malicious clients lead to more successful
attacks. We analyzed the critical backdoor hyperparameters to explore their impact on
the attack performance and the main task. We also demonstrated that DBA and CBA are
robust against two defenses for the backdoor attack in FL. Interestingly, the ASR of DBA
and CBA can be even higher under the defenses. We consider our work to provide new

4

98 4. BACKDOOR ATTACKS ON FEDERATED GNNS

challenges when exploring adversarial attacks in Federated GNNs, a domain unexplored
before our work. Furthermore, a powerful defense targeting backdoor attacks in Feder-
ated GNNs is required. The experimental setting in this work verifies the effectiveness of
our method in a cross-silo federated learning setting and motivates further research in
exploring backdoor attacks in Federated GNNs considering cross-device FL [114]. Future
work will include exploring backdoor attacks in Federated GNNs for the node classifica-
tion task. For example, in a social media app where each user has a local social network
Gk and {Gk } constitutes the latent entire human social network G , the developers can
train a fraud detection GNN model through FL. In such a case, an attacker can conduct
a backdoor attack to force the trained global model to classify a fraud node as benign.

Furthermore, in Section 4.3, we also focus on the experimental aspects of two back-
door attacks on Federated GNNs and also present the lessons we learned. In particular,
artifact evaluation and sharing are necessary for reproducible research, and they also
greatly help the progress of research, making it possible for other researchers to reuse
benchmarks, compare their work, build upon the artifacts, etc. Thus, we believe that se-
curity conferences should include an artifact evaluation track to encourage researchers
to share their artifacts. Regarding the failures in the experiments, we argue that there
can be many possible causes for them, and it may be useful to analyze the datasets’
properties and the model’s learning task. We also argue that experimental results are
not always as expected, and additional experiments are often required to support the
current results. Finally, it is not trivial to run or reproduce results. We suggest that all
the experiments be documented carefully so there is a clear motivation for the deployed
experiments.

5
PROTECTING OWNERSHIP OF

GNNS

Graph Neural Networks (GNNs) have achieved promising performance in various real-
world applications. Building a powerful GNN model is not a trivial task, as it requires
a large amount of training data, powerful computing resources, and human expertise.
Moreover, with the development of adversarial attacks, e.g., model stealing attacks, GNNs
raise challenges to model authentication. To avoid copyright infringement on GNNs, ver-
ifying the ownership of the GNN models is necessary.

This chapter presents a watermarking framework for GNNs for both graph and node clas-
sification tasks. We 1) design two strategies to generate watermarked data for the graph
classification task and one for the node classification task, 2) embed the watermark into
the host model through training to obtain the watermarked GNN model, and 3) verify the
ownership of the suspicious model in a black-box setting. The experiments show that our
framework can verify the ownership of GNN models with a very high probability (up to
99%) for both tasks. We also explore our watermarking mechanism against an adaptive
attacker with access to partial knowledge of the watermarked data. Finally, we experi-
mentally show that our watermarking approach is robust against a state-of-the-art model
extraction technique and four state-of-the-art defenses against backdoor attacks.

This chapter has been published as "Watermarking Graph Neural Networks based on Backdoor Attacks." Xu,
J., Koffas, S., Ersoy, O., & Picek, S. (2023). The IEEE European Symposium on Security and Privacy

99

5

100 5. PROTECTING OWNERSHIP OF GNNS

5.1. INTRODUCTION
Many real-world data can be modeled as graphs, e.g., social networks, gene interactions,
and transport networks. Similar to the great success of deep learning algorithms on, e.g.,
image recognition [57, 69, 117], speech recognition [49, 59], and natural language pro-
cessing [46], deep graph models such as graph neural networks (GNNs) [67, 127, 53] have
also achieved promising performance in processing graph data. Such successful results
can be attributed to their superior ability to incorporate information from neighboring
nodes in the graph recursively [142]. Still, building and training a well-performed graph
neural network is not a trivial task, as it usually requires a large amount of training data,
effort in designing and fine-tuning a model, and powerful computing resources, making
the trained model have a monetary value. For instance, the cost of training a machine
learning model can be more than one million USD [120].

As graph neural networks are more widely developed and used, their security also
becomes a serious concern. For instance, the adversary can steal the model through a
model stealing attack. Recent works have shown the high effectiveness of model stealing
attacks on complex models even without knowledge of the victim’s architecture or the
training data distribution [122, 98, 101], which leads to model copyright infringement.
Moreover, if the model is intended to be released for commercial purposes, the stolen
model would even lead to financial loss. Therefore, it is crucial to verify the ownership
of a GNN model.

Digital watermarking is typically used to identify ownership of the copyright of me-
dia signals, e.g., audio, video, and image data [73]. The information to be embedded in
a signal is called a digital watermark. The signal where the watermark is embedded is
called the host signal. A digital watermarking system is usually divided into two steps:
embedding and verification. Figure 5.1 shows a typical digital watermarking life cycle.
In the embedding step, an embedding algorithm E embeds the watermark into the host
signal to generate the watermarked data Sw . After embedding, the watermarked data
is transferred or modified (dashed frame, this part is optional). During the watermark
verification step, a verification algorithm is applied to attempt to extract the watermark
from the watermarked signal. If the extracted watermark is equal to or within the accept-
able distance of the original watermark, we can confirm that the signal is the protected
signal. More recently, with the development of deep neural networks, new watermark-
ing methods were designed to protect the DNN models by embedding watermarks into
DNN models [125, 22, 2]. The idea of watermarking neural networks is similar to tra-
ditional digital watermarking in multimedia data. To implement digital watermarking
in neural networks, we can assume the multimedia data that we want to protect is the
model, and the embedding and verification steps of the watermarking correspond to the
training and inference phase of the protected model. A neural network watermarking
model should satisfy the following requirements [75, 13]: robustness, fidelity, capacity,
integrity, generality, efficiency, and secrecy (see Section 5.3.2).

Multiple works discuss embedding watermarks into DNN models to protect the IP
of the models [125, 2, 162, 151, 63, 28, 87]. For instance, Uchida et al. [125] presented a
framework to embed watermarks into the parameters of DNNs via the parameter regu-
larizer during training leading to its white-box setting. In such a white-box scenario, the
internal details of the suspicious model, including the network structure and parame-

5.1. INTRODUCTION

5

101

Host signal
S

Watermark
w

Embedding
Function

E

Sw
Verification

Function
V

Result
Modification

 Function
M

Sw
,

Figure 5.1: Digital watermarking life cycle.

ters, must be accessible to the model owners, which significantly limits the application
of this watermarking method since the suspicious model (a model which is suspiciously
stolen from the host model) are usually developed as a cloud service, so only the output
predictions of the model can be acquired. To address the limitations of watermarking
DNNs in the white-box setting, Adi et al. used random training instances and random
labels to watermark a neural network in a black-box way [2]. The authors based their ap-
proach on backdoor attacks. Additionally, Zhang et al. [162] extended the threat model
to support black-box setting verification for DNN models. To enhance the robustness
of the watermarking, Yang et al. proposed to leverage the concept of fault attack to em-
bed a watermark into a DNN model for IP protection [151], and Jia et al. presented an
approach to force the model to entangle representations for legitimate task data and
watermarks [63]. A robust black-box watermarking scheme for self-supervised learning
pre-trained encoders was proposed by Cong et al. [28]. The general idea of watermark-
ing a model in a black-box setting is to train the model using specific samples so that the
model can memorize the watermark information and be verified when predicting on
these samples. The discussed works focus on the image and audio domains, not graph
data, making the selection of datasets and neural network models different and direct
comparisons difficult.

The watermark generation methods and injecting position differ between image and
graph data [167, 145]. Specifically, as non-Euclidean data, the graph has rich structural
information that can be used to generate the watermark. In the image domain, the wa-
termark injecting position can be defined, which is impossible in graph data as there is
no position information one can exploit in a graph. Thus, the discussed watermarking
mechanism cannot generate watermarks for graph data.

To the best of our knowledge, only one work considers watermarking graph data and
GNNs. Zhao et al. presented a watermarking framework for GNNs by generating a ran-
dom graph associated with features and labels as the watermark [167]. However, this
work only studies the watermarking in GNNs for the node classification task while ne-
glecting other relevant settings, e.g., the graph classification task. The applications of
graph classification are numerous and range from determining enzymes in bioinformat-
ics, categorizing documents in NLP, and analyzing social networks. Furthermore, the
presented method only works for the GNN models trained through inductive learning.
If the owner’s model is trained by transductive learning, the proposed method in [167]
is not feasible as the graph structure of the training graph has been changed. GNNs can
take advantage of transductive learning, thanks to the natural way they make informa-
tion flow and spread across the graph, using relationships among patterns [25]. Thus,
various transductive approaches have been widely applied and implemented in many

5

102 5. PROTECTING OWNERSHIP OF GNNS

domains, such as natural language processing (NLP), surveillance, graph reconstruction,
and ECG classification [106]. In this chapter, we present the first watermarking frame-
work for GNNs suitable for both graph and node classification tasks as well as models
trained by both inductive and transductive learning. Besides broadening the applicabil-
ity of watermarking in GNN settings, our framework has significant improvements com-
pared to state-of-the-art [167]. First, we present a statistical analysis for evaluating our
watermarking framework. Specifically, we apply Welch’s t-test to verify the effectiveness
of our watermarking mechanism. We also calculate a threshold to ensure a low false pos-
itive rate (FPR) and false negative rate (FNR), i.e., less than 0.0001. Second, together with
the two backdoor defenses (model pruning and fine-tuning) evaluated against the pro-
posed watermarking mechanism in [167], we show that our framework is robust against
a model extraction attack (knowledge distillation), two more backdoor defenses (ran-
domized subsampling, and fine-pruning) and an adaptive attacker. Finally, in [167], the
experiments were conducted on only two node classification datasets and one model.
In our work, we test our framework with three datasets and three GNN models for graph
classification and two datasets and three GNN models for node classification. The exten-
sive experiments show that our method is not limited to specific GNN models. Our wa-
termarking method can achieve higher watermark accuracy than [167], i.e., up to 100%.

Following the idea of [2], our watermarking method utilizes backdoor attacks. Back-
door attacks in GNNs aim to misclassify graph data embedded with a trigger. In our
work, instead of considering backdoor attacks in GNNs [135, 143, 164] for offensive pur-
poses, we use them to protect the IP of the GNN models. More precisely, we use the
backdoor triggers as digital watermarks to identify the ownership of a GNN model. Our
watermarking framework includes three phases:

• Watermarked data generation. We designed two strategies to generate water-
marked data for the graph classification and one for the node classification.

• Watermark embedding. We train the host model with the watermarked data. The
intuition is to explore the memorization capabilities of GNNs to learn the trigger
pattern of the watermarked data automatically.

• Ownership verification. Once the watermark is embedded into the model, we can
verify the ownership of remote suspicious models by sending watermarked data
generated in the first phase. Only the models protected by the watermarks are as-
sumed to output matched predictions. To address the limitations of [167], we use
the feature trigger as the watermark pattern by modifying the feature information
of the graph instead of changing the graph’s structure.

We evaluate our watermarking framework with five benchmark datasets: two for the
node classification task and three for the graph classification task. The results show that
our watermarking framework can verify the ownership of suspicious models with high
probability. At the same time, the performance of the watermarked GNN on its original
task can be preserved. Our main contributions can be summarized as follows:

• We propose a watermarking framework to verify the ownership of GNN models for
both the node and graph classification tasks. It is the first watermarking framework
for GNNs on the graph classification task.

• We use hypothesis testing in our watermarking mechanism to provide statistical
analysis for the model ownership verification results.

5.2. GNN WATERMARKING

5

103

• We propose two watermark generation mechanisms to generate watermarked data
for the graph classification task. One strategy is based on classical backdoor at-
tacks, and the other is based on embedding the watermark into random graphs,
which experimentally shows superior performance.

• For the node classification task, we propose a training-agnostic framework that
also applies to a model trained by transductive learning. Specifically, we only mod-
ify the feature information of the graph in the watermarked data generation phase.

• We explore our watermarking mechanism against an adaptive attacker who has
knowledge of partial watermarked data. The experiments show that it is difficult to
unlearn the watermark functionality without influencing the main task for graph
classification.

• We investigate the robustness of our method against a model extraction attack
and four defenses against backdoor attacks. Experimental results show our wa-
termarked model is robust against these mechanisms.

We evaluate our watermarking framework with several benchmark datasets and popular
GNN models. Experimental results show that the proposed method achieves excellent
performance, i.e., up to 99% accuracy, in IP protection of the models while having a
negligible impact on the original task (less than 1% clean accuracy drop).

5.2. GNN WATERMARKING

In this section, we propose a framework to generate watermarked data, embed a wa-
termark into GNNs, and verify the ownership of GNNs by extracting a watermark from
them. The framework’s purpose is to protect the IP of the graph neural networks by veri-
fying the ownership of suspicious GNNs with an embedded watermark. The framework
first generates watermarked data and trains the host GNNs with the watermarked data.
The GNNs automatically learn and memorize the connection between the watermark
pattern and the target label through training. As a result, only the model protected with
our watermark can output predefined predictions, i.e., the assigned target label, when
the watermark pattern is observed in the queries sent to the suspicious model. Figure 5.2
illustrates the workflow of our GNN watermarking framework.

5.2.1. THREAT MODEL

In our threat model, we model two parties, a model owner, who owns a graph neural
network model m for a certain task t , and a suspect, who sets up a similar service t

′
from

the model m
′
, where two services have a simillar purpose t ≈ t

′
. In practice, there are

multiple ways for a suspect to get the model m. For example, it could be an insider at-
tack from the owner’s organization that leaks the model, or it could be stolen by various
model stealing attacks, e.g., [122, 9]. Although the exact mechanism of how a suspect ob-
tains the model m is out of the scope of this chapter, we still evaluate our watermarking
method against a model extraction attack in Section 5.4. Our goal is to help the model
owner protect his/her model m, an intellectual property with a concrete value. Intu-
itively, if model m is equivalent to m

′
, we can confirm that the suspect is a plagiarizer

5

104 5. PROTECTING OWNERSHIP OF GNNS

Training data
(or random graphs)

Original graph

1. Generate watermarked
data

2. Embed watermark into
model by training

3. Ownership
verification

Host GNN Suspicious
GNN

Graph classification task Node classification task

m
m'

Figure 5.2: GNN watermarking framework.

and m
′

is a plagiarized model of m.1 We define the owner’s model m as the host model
and the model m

′
, which is likely to be stolen from m as the suspicious model. In this

work, we assume that as an IP protector, we can only query the suspicious model m
′

in a
black-box manner. As the model owners, we have full access to the model m, including
its architecture, training data, and the training process.

5.2.2. WATERMARKED DATA GENERATION

Graph classification. Since most graph classification tasks are implemented using GNNs
to learn the network structure, we focus on utilizing the subgraph-based backdoor at-
tacks [164, 143] to verify the ownership of GNNs for the graph classification task. Here,
we investigate two watermarking data generation strategies for GNNs on the graph clas-
sification task.

Embedding watermark into original training data. Specifically, we select a sub-
set of samples in training data and embed a generated random watermark (i.e., a ran-
dom graph) into it. A random graph including n nodes and e edges is generally gen-
erated by starting with n isolated nodes and inserting e edges between nodes at ran-
dom. A classical method to generate random graphs is called Erdos-Renyi (ER) random
graph model [44] in which each possible edge occurs independently with a probability
p ∈ (0,1). This chapter utilizes ER random graphs as the watermark graph for watermark-
ing GNNs on the graph classification task since ER model is commonly used in the graph
domain and has shown to be more effective than the other models like Small World (SW)
model [134] and Preferential Attachment (PA) model [7]. Once the watermark graph is
generated, we embed it into each graph of the selected subset of training data by ran-
domly choosing n nodes in the graph and changing their connections to be the same as
the watermark graph. Since we only change the graph’s structure, we do not modify the
node’s features. The watermark information is also carried by the label of the watermark

1The chances that various entities created the same model independently are small, especially when consid-
ering real-world applications.

5.2. GNN WATERMARKING

5

105

embedded graphs. We assume the value of the label of the watermarked graphs is in the
range [0,C), where C is the number of classes, and the label for watermarked graphs can
be determined in advance. We emphasize that the labels of the sampled training data are
different from the label of the watermark-embedded graphs. In this way, three parame-
ters - r (proportion of training data selected to be injected with the watermark graph), n
(number of nodes in the watermark graph), and p (the probability of the edge existence
in the watermark graph) would have a significant impact on the watermark generation,
then affecting the watermark embedding and verification later.

Embedding watermark into generated random graphs. In addition to embedding
a watermark graph into the original training data, we propose first generating random
graphs and then embedding a generated watermark into these random graphs. The in-
tuition here is that by embedding a watermark graph into the original training data, as
discussed in the previous paragraph, the watermark will have some side effects on the
original functionality of our watermarked graph neural networks. We design this strategy
to decrease the impact of watermarking in the original task. First, we generate a num-
ber of random graphs with the ER method, where we define that number as a specific
proportion (r) of the training data. The number of nodes and edge existence probability
are the same as the average number of nodes and edges of the training data. Then, we
generate the watermark graph in the same way described in the previous approach and
embed the watermark graph into the random graphs generated in the first step. We use
the node degree as the node feature for the generated random graphs. We also assign the
label for the watermark-embedded graphs in advance, similar to the first strategy. There
are also three parameters r , n, and p in this strategy.

The detailed comparison and analysis of these parameters in the above two strategies
are given in Section 5.3. Concerning the adversary capability, the first watermarked data
generation strategy requires access to a partial training dataset, and the second strategy
requires none as it uses extra random graphs to generate the watermarked data.

Node classification. We apply the backdoor attack as proposed in [145] to implement
watermarking GNNs for the node classification task, which can be applied in not only in-
ductive learning but also transductive learning-based models. Specifically, we randomly
select a proportion r of the total number of nodes in the graph as the watermark carrier
nodes and change their subset node features2 into a predefined fixed value3 to generate
the watermarked data. Given an arbitrary node in the graph, by changing the value of a
subset of its features as a feature trigger and assigning a target label to it, the host model
m aims to learn and memorize the watermark pattern.

5.2.3. WATERMARK EMBEDDING
Graph classification. Once the watermarked data are generated, the next step in the
framework is to embed the watermark into the host GNN model m. Here, we explore
the intrinsic learning capability of graph neural networks to embed the watermark. We
first train a clean model mc based on the original training data D tr ai n and then continue
training the model using the watermarked data. The detailed GNN watermark embed-
ding process is shown in Algorithm 8. The inputs are the pre-trained clean model mc ,

2Here, the number of node features whose values are changed is defined as watermark length l .
3The fixed value is uniformly selected between 0 and 1.

5

106 5. PROTECTING OWNERSHIP OF GNNS

original training data D tr ai n and target label for the watermarked data, and the outputs
are the watermarked GNN model mw and watermarked data Dwm . The model owner
defines the target label of the watermarked data. In the main function, we sample data
D tmp from the original training data uniformly at random. The data we sample has a la-
bel that is different from the target label (Line 3 in Algorithm 8) so that we can avoid the
influence of the original label in the ownership verification phase. For the second water-
marking strategy for the graph classification task, which is based on generating random
graphs as watermark carrier data, we utilize the ER method to generate random graphs
with an average number of nodes and edges of the training data and proportion r (Line
5 in Algorithm 8). Then, for each data in D tmp , we add the generated watermark to x and
relabel it with yt (Lines 7-11 in Algorithm 8). Therefore, we obtain the watermarked data
Dwm , which is later used in the verification process. We train the pre-trained clean GNN
model with both the sampled original data D tmp and Dwm (or just Dwm for the second
strategy).4 We assume that the GNN model will learn the watermark pattern during the
training process and, thus, be protected against the model stealing attacks.

Algorithm 8: Watermark embedding for graph classification task

Input: Pre-trained clean model mc , Training set Dtr ai n = {
xi , yi

}S
i=1, Target label yt ∈ [0,C)

Output: Watermarked GNN model mw , Watermark data Dwm
1 Function WATERMARK_EMBEDDING():
2 Dwm ←;
3 Dtmp ← sample(Dtr ai n ,r, y ̸= yt) // strategy 1
4 // or
5 Dtmp ←GR APH_GE N ER AT E(nav g , pav g ,r)) // strategy 2
6 foreach d ∈ Dtmp do
7 xwm = ADD_W AT ERM ARK (d [x], w ater mar k)
8 ywm = yt
9 Dwm = Dwm ∪{

xwm , ywm
}

10 end
11 End Function
12 mw = Tr ai n(mc ,Dwm ,Dtmp)
13 (or mw = Tr ai n(mc ,Dwm))
14 return mw ,Dwm

The watermarking embedding process for the node classification is the same as the
graph classification task.

5.2.4. OWNERSHIP VERIFICATION
After training our model with watermarked data, if adversaries steal and further fine-
tune the watermarked model, they will likely set up an online service to provide the AI
service of the stolen model. Then, it is difficult to access the architecture and parame-
ters of the suspicious model directly. As we have explained in Section 5.2.1, to verify the
ownership of the suspicious model m

′
in a black-box manner, we can send Dwm , which

is returned in the previous watermark embedding process to the suspicious model. If,
for part of samples in Dwm , the suspicious model outputs the target label ywm , we can
assume that m

′
is stolen (developed) from our watermarked model mw . However, the

premise of this assumption is that our watermarked model has statistically different be-

4We use both the sampled original data and watermarked data for the first strategy to decrease the impact of
watermarking on the model’s original main task.

5.2. GNN WATERMARKING

5

107

havior from the clean model, leading to different watermark accuracy between these two
models. To provide a statistical guarantee with the model ownership verification results,
we can adopt statistical testing with the ability to estimate the level of confidence to
determine whether the watermark accuracy of our watermarked model is significantly
different from the clean model. We define the null hypothesis H0 as follows:

H0 : Pr (mw (xwm) = ywm) ∼= Pr (mc (xwm) = ywm),

where Pr (mw (xwm) = ywm) represents the watermark success probability of the water-
marked model and Pr (mc (xwm) = ywm) represents the watermark success probability of
a clean model.

The null hypothesis H0 states that the watermark success probability of the water-
marked model is equal or approximate to the clean model, i.e., there are no significant
differences between the watermark accuracy of the watermarked model and a clean
model. On the contrary, the alternative hypothesis H1 states that the watermarked
model has significantly different watermark accuracy from the clean model, which veri-
fies the effectiveness of our watermarking mechanism. If we can reject the null hypothe-
sis H0 with statistical guarantees, we can claim that our watermarking method success-
fully verifies the ownership of the suspicious models.

Through querying a series of watermarked and clean models with q watermarked
samples, we can obtain their prediction results for each watermarked model and clean
model, which can be used to calculate the watermark accuracy, denoted as αk and βk ,
respectively:

αk =
∑q

i=1 I(y wk
i = ywm)

q
,k ∈ [1,n] (5.1)

βk =
∑q

i=1 I(yck
i = ywm)

q
,k ∈ [1,n] (5.2)

where n is the number of watermarked and clean models. We set n to 10 in our experi-
ments.

The value of watermark accuracy can be considered as an estimation of the water-
mark success probability. We apply the Welch’s t-test [136]5 to test the hypothesis. Ac-
cording to the watermark accuracy of n watermarked models and clean models, denoted
as {α1, · · ·αn} and

{
β1, · · ·βn

}
respectively, we can calculate the t statistic:

t = ᾱ− β̄√
s2
α

n + s2
β

n

, (5.3)

where s2
α and s2

β
are the unbiased estimators of the population variance.

The degrees of freedom ν associated with variance estimate is approximated using
the Welch-Satterthwaite equation [108, 136]:

ν≈
(N −1)(s2

α+ s2
β

)2

s4
α+ s4

β

. (5.4)

5We use the Welch’s t-test since the watermark accuracy of clean and watermarked models can be treated as
normal distributions according to a Shapiro-Wilk Test [112], and they may have different variances.

5

108 5. PROTECTING OWNERSHIP OF GNNS

According to the theoretical analysis above, we can formally state under what con-
ditions the model owner can reject the null hypothesis H0 at the significance level 1−τ
(i.e., with τ confidence) with watermark accuracy of watermarked and clean models.
Specifically, we take the watermark accuracy results of NCI1 and DiffPool as an exam-
ple, as shown in Table 5.4. According to a Shapiro-Wilk Test [112], the p-values [133]
of these two populations, i.e., watermark accuracy of clean and watermarked models,
are 0.77 and 0.16, respectively. Given a significance level of 0.05, these p-values indicate
these two populations can be assumed to be normally distributed, and a Welch’s t-test
is applicable. With significance level 1−τ = 0.05, and the degree of freedom calculated
with Eq. (5.4), i.e., ν ≈ 16, the t critical value tτ is 2.120. Based on Eq. (5.3), we calcu-
late t statistic t = 45.82, which is significantly larger than tτ = 2.120. Thus, we can reject
the null hypothesis H0 at the significance level 0.05 for the NCI1 dataset on the Diff-
Pool model in our work. The watermark accuracy of the watermarked models and clean
models of other datasets and models are presented in Table 5.1, 5.2, and 5.3. The corre-
sponding t statistics and t critical values are also presented in these tables. As we can
observe for each setting, we can reject the null hypothesis H0 at the significance level
0.05, which provides a statistical guarantee for our watermarking method. Based on the
statistical analysis above, we can also calculate a threshold for each dataset and model to
ensure a low false positive rate (FPR) and false negative rate (FNR), i.e., less than 0.0001,
of our watermarking method. More details are presented in Section 5.3.

If the watermark accuracy of clean and watermarked models are not normally dis-
tributed, we can apply the Mann-Whitney U test [90] to test the hypothesis. The U statis-
tic is calculated as:

U1 = R1 − n1(n1 +1)

2
; U2 = R2 − n2(n2 +1)

2
, (5.5)

where R1,R2 are the sums of ranks in watermark accuracy of clean and watermarked
models respectively, and n1,n2 are the numbers of two populations. Then, the smaller
value of U1 and U2 is used to check the significance of the difference between the dis-
tributions. Here, we still take the watermark accuracy results of NCI1 and DiffPool as
an example (Table 5.4 where n1 = n2 = 10). Based on Eq. (5.5), we calculate U statis-
tic and obtain U1 = 0 and U2 = 100. Thus, the value U1 = 0 is used for the significance
check. According to the reference table6, the critical value is 23 with significance level
1−τ = 0.05. For our example, U1 = 0 is lower than the critical value. Moreover, U = 0
is the lowest possible value and implies the complete separation of the groups (water-
mark accuracy of clean and watermarked models). For other datasets and models, the
calculated U statistics are all less than the critical value. Thus, given the populations of
the watermark accuracy of clean and watermarked models are not normally distributed,
we can still reject the null hypothesis H0 for a 0.05 significance level, which indicates
that our watermarking method is also valid for the watermark accuracy of non-Gaussian
distribution.

6https://math.usask.ca/~laverty/S245/Tables/wmw.pdf

https://math.usask.ca/~laverty/S245/Tables/wmw.pdf

5.2. GNN WATERMARKING

5

109

Ta
b

le
5.

1:
A

cc
u

ra
cy

o
ft

h
e

w
at

er
m

ar
ke

d
m

o
d

el
s

an
d

cl
ea

n
m

o
d

el
s

o
n

D
t w

fo
r

gr
ap

h
cl

as
si

fi
ca

ti
o

n
ta

sk
(n

=
10

).

Se
tt

in
g

M
o

d
el

s
W

at
er

m
ar

k
A

cc
u

ra
cy

(%
)

t
ν

t τ

N
C

I1
_G

IN
m

c
0.

21
3.

17
8.

00
13

.7
8

14
.4

7
8.

27
16

.0
0

9.
02

8.
44

12
.6

9
26

.0
4

14
2.

14
5

m
w

94
.4

2
89

.4
0

85
.2

2
79

.2
6

83
.9

8
99

.4
0

99
.7

3
99

.0
7

85
.9

1
77

.7
5

N
C

I1
_.

SA
G

E
m

c
0.

10
0.

40
1.

64
0.

49
3.

65
0.

28
0.

87
9.

58
0.

39
0.

79
59

.1
0

16
2.

12
0

m
w

94
.2

1
93

.1
6

93
.4

3
87

.5
0

89
.9

9
99

.9
8

95
.4

0
87

.4
7

94
.5

4
90

.0
2

C
O

LL
A

B
_D

if
f.

m
c

13
.6

3
10

.8
4

7.
39

7.
62

10
.4

6
12

.4
7

20
.7

2
11

.4
9

10
.4

4
7.

06
39

.1
7

17
2.

11
0

m
w

76
.1

9
83

.5
1

85
.1

6
92

.9
1

82
.8

3
87

.4
2

84
.5

3
80

.8
4

84
.5

1
82

.6
6

C
O

LL
A

B
_G

IN
m

c
14

.1
7

9.
88

9.
01

16
.8

9
21

.2
3

17
.6

5
19

.7
1

14
.3

7
7.

67
16

.8
2

25
.4

1
15

2.
13

1
m

w
84

.8
0

91
.0

9
77

.2
8

73
.5

7
88

.9
3

91
.0

1
91

.7
3

78
.5

7
76

.3
5

92
.0

6

C
O

LL
A

B
_.

SA
G

E
m

c
14

.6
7

17
.6

6
16

.6
5

17
.5

9
11

.9
6

22
.5

1
7.

85
17

.5
6

8.
23

13
.4

1
37

.0
6

17
2.

11
0

m
w

85
.6

0
80

.3
4

83
.5

4
79

.6
8

82
.8

3
77

.7
8

81
.5

2
83

.1
1

88
.2

4
89

.0
5

R
E

D
D

IT
._

D
if

f.
m

c
11

.9
9

11
.0

8
8.

65
7.

33
9.

61
0.

87
5.

70
3.

96
9.

57
12

.3
5

49
.7

0
18

2.
10

1
m

w
83

.4
8

94
.4

9
94

.7
6

88
.6

6
89

.8
5

93
.0

3
88

.2
3

92
.6

5
86

.4
9

92
.7

5

R
E

D
D

IT
._

G
IN

m
c

13
.6

4
15

.9
9

10
.2

4
13

.1
9

11
.2

7
11

.5
5

4.
79

14
.1

6
11

.9
8

2.
04

32
.8

6
16

2.
12

0
m

w
92

.5
5

86
.0

7
97

.0
1

91
.4

6
77

.5
2

83
.9

9
80

.1
5

86
.0

0
91

.7
3

89
.2

3

R
E

D
D

IT
._

.S
A

G
E

m
c

0.
05

0.
04

0.
21

2.
52

1.
64

1.
18

2.
74

0.
79

0.
40

0.
52

16
4.

02
15

2.
13

1
m

w
96

.2
1

98
.8

1
99

.0
9

99
.6

1
99

.5
3

97
.4

6
97

.5
7

94
.6

8
98

.1
4

99
.0

9

5

110 5. PROTECTING OWNERSHIP OF GNNS

Ta
b

le
5.

2:
A

cc
u

ra
cy

o
ft

h
e

w
at

er
m

ar
ke

d
m

o
d

el
s

an
d

cl
ea

n
m

o
d

el
s

o
n

D
r w

fo
r

gr
ap

h
cl

as
si

fi
ca

ti
o

n
ta

sk
(n

=
10

).

Se
tt

in
g

M
o

d
el

s
W

at
er

m
ar

k
A

cc
u

ra
cy

(%
)

t
ν

t τ

N
C

I1
_D

if
f.

m
c

51
.0

3
47

.5
1

43
.0

6
51

.3
0

43
.8

1
48

.0
1

39
.3

6
52

.0
8

41
.3

8
42

.9
2

26
.3

7
17

2.
11

0
m

w
95

.6
2

90
.3

3
93

.5
0

94
.3

4
96

.7
1

99
.2

8
97

.4
2

99
.0

6
95

.4
4

87
.5

4

N
C

I1
_G

IN
m

c
35

.0
0

47
.0

2
55

.1
5

52
.4

8
52

.6
5

34
.1

5
50

.7
4

40
.1

7
51

.0
1

45
.2

0
17

.7
1

13
2.

16
0

m
w

89
.7

6
96

.3
4

89
.7

6
95

.4
4

99
.4

8
88

.5
3

95
.1

4
91

.8
7

99
.2

7
97

.1
1

N
C

I1
_.

SA
G

E
m

c
48

.6
1

50
.8

5
41

.0
2

55
.5

3
47

.8
7

51
.6

2
46

.4
7

44
.0

7
44

.1
8

50
.6

2
30

.1
5

15
2.

13
1

m
w

95
.4

7
93

.6
7

97
.2

0
99

.3
3

99
.6

0
99

.9
5

97
.8

2
98

.7
2

99
.4

9
91

.5
2

C
O

LL
A

B
_D

if
f.

m
c

26
.9

0
30

.4
9

30
.4

6
26

.3
7

28
.6

1
34

.0
8

25
.7

2
24

.3
3

27
.6

3
30

.3
7

54
.2

2
17

2.
11

0
m

w
99

.0
2

98
.6

9
93

.0
4

99
.1

6
94

.8
9

93
.7

4
99

.4
5

99
.9

2
93

.7
1

96
.6

7

C
O

LL
A

B
_G

IN
m

c
34

.5
2

30
.7

6
20

.4
9

26
.6

8
33

.9
3

33
.4

4
30

.7
2

31
.6

7
30

.9
9

36
.6

8
30

.8
1

17
2.

11
0

m
w

91
.8

2
88

.0
0

99
.2

5
88

.1
6

89
.5

5
99

.5
2

92
.8

6
93

.5
1

99
.2

6
92

.5
3

C
O

LL
A

B
_.

SA
G

E
m

c
23

.0
7

29
.2

3
24

.5
4

24
.7

9
28

.3
6

32
.1

0
34

.9
9

28
.2

0
31

.5
3

25
.0

1
49

.0
0

14
2.

14
5

m
w

99
.5

9
95

.2
8

93
.2

4
99

.2
5

98
.1

0
96

.0
7

99
.9

8
99

.3
7

99
.6

7
97

.1
5

R
E

D
D

IT
._

D
if

f.
m

c
42

.8
7

41
.5

9
46

.0
1

42
.8

5
46

.2
0

40
.4

0
39

.2
3

41
.2

2
40

.5
0

47
.8

1
44

.8
9

17
2.

11
0

m
w

95
.5

8
95

.7
9

99
.2

7
94

.3
6

97
.2

9
92

.6
1

99
.1

6
99

.7
4

99
.9

5
96

.3
9

R
E

D
D

IT
._

G
IN

m
c

49
.9

0
43

.2
9

46
.3

9
47

.7
9

45
.6

0
44

.4
4

48
.1

6
40

.2
7

46
.8

6
45

.6
3

31
.2

4
15

2.
13

1
m

w
86

.3
8

92
.0

3
97

.1
6

99
.9

2
98

.4
4

99
.2

7
99

.3
9

95
.3

5
92

.9
9

97
.1

4

R
E

D
D

IT
._

.S
A

G
E

m
c

50
.8

9
43

.9
3

47
.7

1
47

.4
4

47
.9

3
45

.8
3

53
.1

2
53

.6
8

44
.4

5
44

.6
5

39
.5

2
13

2.
16

0
m

w
93

.8
5

99
.3

3
97

.3
4

96
.4

9
97

.4
9

96
.1

5
97

.4
2

99
.3

9
99

.1
7

99
.4

7

5.2. GNN WATERMARKING

5

111

Ta
b

le
5.

3:
A

cc
u

ra
cy

o
ft

h
e

w
at

er
m

ar
ke

d
m

o
d

el
s

an
d

cl
ea

n
m

o
d

el
s

o
n

w
at

er
m

ar
ke

d
d

at
a

fo
r

n
o

d
e

cl
as

si
fi

ca
ti

o
n

ta
sk

(n
=

10
).

Se
tt

in
g

M
o

d
el

s
W

at
er

m
ar

k
A

cc
u

ra
cy

(%
)

t
ν

t τ

C
o

ra
_G

C
N

m
c

0.
33

0.
17

6.
25

3.
23

6.
17

3.
83

4.
03

0.
20

0.
93

2.
96

88
.7

8
17

2.
11

0
m

w
99

.6
6

93
.1

4
99

.4
2

94
.3

7
96

.9
7

99
.9

1
98

.1
1

95
.7

3
98

.4
7

99
.8

6

C
o

ra
_G

AT
m

c
10

.3
9

3.
73

10
.1

4
0.

87
5.

81
10

.6
6

4.
66

2.
63

9.
74

7.
61

53
.5

1
17

2.
11

0
m

w
92

.3
0

99
.9

0
99

.7
3

87
.9

0
97

.9
8

95
.0

1
99

.2
4

95
.5

5
99

.5
7

95
.1

6

C
o

ra
_.

SA
G

E
m

c
1.

15
4.

94
1.

61
4.

57
3.

12
4.

81
0.

67
0.

22
0.

52
1.

25
89

.1
9

15
2.

13
1

m
w

97
.5

2
93

.2
4

92
.4

4
99

.9
7

95
.2

2
99

.9
4

99
.1

7
96

.2
5

97
.9

9
99

.8
0

C
it

e.
_G

C
N

m
c

0.
92

2.
06

3.
22

10
.0

8
0.

72
1.

26
4.

11
6.

76
7.

70
0.

23
78

.0
0

13
2.

16
0

m
w

99
.9

6
99

.8
6

95
.9

4
95

.1
7

99
.0

7
97

.5
9

96
.3

0
99

.7
1

97
.8

1
99

.0
9

C
it

e.
_G

AT
m

c
2.

50
0.

55
0.

86
3.

32
0.

61
2.

03
1.

41
2.

56
0.

37
0.

37
12

9.
83

13
2.

16
0

m
w

99
.3

0
99

.1
3

99
.0

1
97

.7
8

98
.2

0
94

.1
3

95
.8

7
94

.6
9

99
.9

9
99

.2
0

C
it

e.
_.

SA
G

E
m

c
0.

99
1.

05
0.

73
1.

14
0.

81
0.

35
0.

34
0.

28
1.

33
0.

22
38

1.
65

14
2.

14
5

m
w

99
.7

5
97

.8
3

99
.9

5
99

.4
1

99
.7

4
99

.8
5

98
.2

2
99

.1
3

99
.3

6
99

.0
1

5

112 5. PROTECTING OWNERSHIP OF GNNS

Table 5.4: Watermark accuracy of the watermarked and clean models on NCI1 with DiffPool (n = 10).

Models Watermark Accuracy (%)
Clean 0.70 6.49 4.27 9.77 14.85 7.43 1.59 5.71 14.09 10.94

Watermarked 94.98 94.88 99.32 92.67 92.11 99.73 99.58 89.52 99.78 97.50

Table 5.5: Datasets statistics.

Datasets # Graphs Avg. # nodes Avg. # edges Classes

NCI1 4,110 29.87 32.30 2
COLLAB 5,000 74.49 2,457.78 3

REDDIT-BINARY 2,000 429.63 497.75 2

Cora 1 2,708 5,429 7
CiteSeer 1 3,327 4,608 6

5.3. EVALUATION
In this section, we evaluate the performance of our watermarking mechanism in GNNs
for graph classification and node classification tasks. We run the experiments on a re-
mote server with one NVIDIA 1080 Ti GPU with 32GB RAM. We use PyTorch, and each
experiment is repeated ten times.

Dataset. For the graph classification task, we use three publicly available real-world
graph datasets (one chemical dataset and two discussion datasets): (i) NCI1 [92] - a sub-
set of the dataset consisting of chemical compounds screened for activity against non-
small cell lung cancer, (ii) COLLAB [150] - a scientific collaboration dataset, derived from
three public collaboration datasets, and (iii) REDDIT-BINARY [150] - a dataset consist-
ing of graphs corresponding to online discussions on Reddit. For the node classification
task, we use two real-world datasets: (i) Cora [110] and (ii) CiteSeer [110]. These two
datasets are citation networks in which each publication is described by a binary-valued
word vector indicating the absence/presence of the corresponding word in the collec-
tion of 1,433 and 3,703 unique words, respectively. Table 5.5 shows the statistics of all
considered datasets.

Dataset splits and parameter setting. For each graph classification dataset, we sam-
ple 2/3 as the training data and the rest as the test data. We set the watermark graph size
as γ fraction of the graph dataset’s average number of nodes. We then sample or generate
an r fraction of the training data (with an un-target label) to embed the generated wa-
termark. For each node classification dataset, we use 20% of total nodes as the training
data. We set the size of the feature watermark to l and then sample r fraction of the train-
ing data to embed the generated feature watermark. The comparison of watermarking
performance under different variants is shown in Section 5.3.1.

Models. We use three state-of-the-art GNN models for the graph classification task:
DiffPool [156], GIN [146], and GraphSAGE [53]. For the node classification task, we use

5.3. EVALUATION

5

113

GCN [67], GAT [127], and GraphSAGE [53] as the host models. The hyperparameters for
the neural networks (Table 5.6) are commonly used, see [143, 156, 146].

Table 5.6: Default hyperparameter setting. G: graph classification, N:
node classification.

Type Hyperparameter Setting

DiffPool† Architecture 2 DIFFPOOL layers
GIN Architecture 2 aggregation layers

GraphSAGE
Architecture 2 aggregation layers
Aggregator Mean [53]

GCN Architecture 5 aggregation layers
GAT #Heads 3

Training

Learning rate 0.01
Optimizer Adam

Weight decay 5e-4
Dropout 0.5
Epochs 350 (G), 100 (N)

Batch size 32
† Here, the GNN model used for DiffPool is built on top of the Graph-
SAGE architecture [156].

Metrics. The main purpose of our watermarking framework is to verify the owner-
ship of the suspicious GNN model successfully. According to the statistical analysis in
Section 5.2.4, we can guarantee that our watermarking method can successfully verify
the ownership of the suspicious models. Specifically, based on the watermark accuracy
distribution of our watermarked models and clean models, we can calculate a threshold
of watermark accuracy for each dataset and model to ensure a low FPR and FNR, i.e.,
less than 0.0001, as shown in Tables 5.7 and 5.8 for graph classification task and node
classification task, respectively. In Table 5.7, D t

wm is the watermarked data generated
by embedding a watermark into sampled training data, while Dr

wm is the watermarked
data generated by embedding a watermark into the generated random graphs. From
Table 5.7, the watermark accuracy threshold of the second strategy is obviously higher
than the first strategy. It can be explained that, in the first strategy, the clean model will
likely classify the watermarked data into the original label since it is generated based
on the training data, and the clean model does not learn the watermark pattern. In the
second strategy, the watermarked data is generated based on random graphs, and the
clean model is likely to classify it uniformly at random. Thus, the watermark accuracy
of the clean models in the first strategy is nearly 0%, and that in the second strategy
is around 1/C (C is the number of classes). As a result, the watermark accuracy of the
watermarked models in the second strategy should be higher than the first strategy to
ensure the distinguishable difference between the watermarked models and the clean
models. The dataset with more classes (COLLAB) has a lower threshold than the other
datasets (i.e., two classes), as shown in Table 5.7. Once the watermark accuracy thresh-
old is defined, we send queries of generated watermarked data to the suspicious model

5

114 5. PROTECTING OWNERSHIP OF GNNS

Table 5.7: Watermark accuracy threshold for each dataset and model on the graph classification task.

Dataset
Watermark Acc. Threshold (%) (D t

wm | Dr
wm)

DiffPool GIN GraphSAGE

NCI1 53.5|72.0 44.0|76.5 45.50|75.5
COLLAB 47.0|63.0 44.5|62.5 50.5|65.5
REDDIT-

49.5|71.0 46.5|68.0 48.5|76.0
BINARY

Table 5.8: Watermark accuracy threshold for each dataset and model on the node classification task.

Dataset
Watermark Accuracy Threshold (%)
GCN GAT GraphSAGE

Cora 50.0 51.0 48.0
CiteSeer 53.0 48.0 49.5

m
′
. If the watermark accuracy of the suspicious model is over the corresponding thresh-

old, we can reach the conclusion that the suspicious model is stolen or developed from
the host model.

Besides a good performance on the ownership verification task, a well-designed wa-
termarking method should have only slight side effects on the host model’s original task.
Thus, we check whether our watermarking framework reduces the performance of the
watermarked GNN model on its original task. We compare watermarked and clean mod-
els’ accuracy on the normal test data.

5.3.1. EXPERIMENTAL RESULTS

Graph classification. As discussed in Section 5.2.2, there are two strategies for generat-
ing watermarked data Dwm . For each strategy, three parameters (watermarking rate r ,
watermark graph size n, and watermark graph density p) will affect the generated wa-
termarked data and the final watermarking performance. The watermark accuracy of
different datasets and models with different variants (r,n, p) is shown in Figure 5.3. In
Figure 5.3, the watermark accuracy of the second watermarked data generation strategy
is generally higher than the first strategy, which means the watermark pattern in the ran-
dom graphs is more likely to be successfully learned by the model. In the first strategy,
the original feature pattern in the graph may influence the learning of the watermark
pattern, whereas, in the second strategy, embedding the watermark in random graphs
can reduce this influence as it is the only important feature in the graph.

From Figure 5.3a, for both datasets, with the increase of the watermarking rate, the
watermark accuracy of all three models based on the first strategy is generally increasing,
as well as for the second strategy. Indeed, with a higher watermarking rate, more training
data will be embedded with the watermark so that the host model can learn the water-
mark pattern better. However, even with the lowest watermarking rate, the watermark
accuracy on all models and datasets is higher than the threshold in Table 5.7, indicating

5.3. EVALUATION

5

115

Table 5.9: Watermark accuracy for graph classification task (r = 0.15,γ= 0.2, p = 1.0).

Dataset
Watermark Accuracy (%) (D t

wm | Dr
wm)

DiffPool GIN GraphSAGE

NCI1 96.01|94.92 89.41|94.27 92.57|97.28
COLLAB 84.05|96.83 84.54|93.45 83.17|97.77

REDDIT-BINARY 90.43|97.01 87.57|95.81 98.02|97.61

that the model owner can use a very small watermarking rate, e.g., 0.01 to watermark the
models. From Figure 5.3b, in terms of watermark graph size from γ= 0.1 to γ= 0.20, the
watermark accuracy of all three models and datasets gradually increases, and then there
is no significant increase (even slight decrease in some cases, e.g., REDDIT-BINARY)
from γ = 0.20 to γ = 0.25. When the watermark graph gets larger, it is intuitive that the
model can learn the watermark pattern easier and better. With continuous growth in
the size of the watermark graph, there may not be enough model capacity to learn the
watermark pattern. From Figure 5.3c, for the NCI1 and REDDIT-BINARY datasets, the
watermark accuracy grows slightly with the increase in the edge existence probability of
the watermark graph. For the COLLAB dataset, the watermark accuracy first decreases
for the range p = 0.2 to p = 0.5 and then increases. The reason may be that when the wa-
termark graph density is farther away from the graph density of the dataset, the trained
model is more likely to recognize the watermark graph successfully. The watermark ac-
curacy is the lowest when p = 0.5 for the COLLAB dataset, which has a density of 0.5089.
Moreover, there is no apparent increase for the other two datasets, which have a density
of 0.0889 and 0.0218, respectively.

Based on the analysis of the results in Figure 5.3 and the later experimental results
about the impact of watermarking GNNs on the original task, we set the parameters for
the graph classification task as follows: r = 0.15,γ = 0.2, p = 1.0. Specifically, Table 5.9
shows the watermark accuracy of model mw for the graph classification task with the se-
lected parameters. For the binary-class datasets (NCI1 and REDDIT-BINARY), the accu-
racy on D t

wm is around 90% while that of COLLAB is around 80%. This can be explained
since COLLAB is a multi-class dataset, and it requires more model capacity to learn the
features of each class so that the model has fewer redundant neurons to learn the wa-
termark pattern compared to the other datasets. The watermark accuracy on Dr

wm can
mostly reach around 95% for all datasets.

Table 5.10: Watermark accuracy for the node classification.

Dataset
Watermark Accuracy (%)

GCN GAT GraphSAGE

Cora 97.56 96.23 97.15
CiteSeer 98.05 97.73 99.22

Node classification. For the node classification task, the generated watermarked

5

116 5. PROTECTING OWNERSHIP OF GNNS

0.01 0.03 0.05 0.1 0.1560

70

80

90

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0.01 0.03 0.05 0.1 0.15
Watermarking rate

60

70

80

90

100

0.01 0.03 0.05 0.1 0.1560

70

80

90

100

(a) different watermarking rate r (γ= 0.2, p = 1.0)

0.10 0.15 0.20 0.2560

70

80

90

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0.10 0.15 0.20 0.25
Fraction of average nodes

60

70

80

90

100

0.10 0.15 0.20 0.2560

70

80

90

100

(b) different fraction of average nodes γ (r = 0.15, p = 1.0)

0.2 0.5 0.8 1.060

70

80

90

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0.2 0.5 0.8 1.0
Edge existence probability

60

70

80

90

100

0.2 0.5 0.8 1.060

70

80

90

100

NCI1 COLLAB REDDIT-BINARY T R

(c) different edge existence probability p (r = 0.15,γ= 0.2)

Figure 5.3: Watermark accuracy on graph classification task (DiffPool (left), GIN (center), GraphSAGE (right),
T: first watermarked data generation strategy, R: second watermarked data generation strategy).

data is decided by two parameters (watermarking rate r and feature watermark length
l). The watermark accuracy of three GNN models, i.e., GCN, GAT, and GraphSAGE, for
the node classification task is shown in Figure 5.4. From Figure 5.4a, for all datasets and
models, the watermark accuracy has a dramatic rise with r ranging from 0.01 to 0.1 and
a slight increase when r is in the range of [0.1,0.15]. From Figure 5.4b, for the GCN and
GAT models, there is a significant increase between l = 5 and l = 20 and when l con-
tinues rising to l = 50, there is no obvious effect for both datasets. For the GraphSAGE
model, the watermark accuracy gradually increases from l = 5 to l = 35 and stays steady.
This is expected since, with more nodes embedded in the feature watermark, the GNN

5.3. EVALUATION

5

117

0.01 0.03 0.05 0.1 0.1550

60

70

80

90

100
W

at
er

m
ar

k
ac

cu
ra

cy
(%

)

0.01 0.03 0.05 0.1 0.15
Watermarking rate

50

60

70

80

90

100

0.01 0.03 0.05 0.1 0.1550

60

70

80

90

100

(a) different watermarking rate r

5 10 15 20 25 30 35 40 45 5070
75
80
85
90
95

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

5 10 15 20 25 30 35 40 45 50
Watermark length

70
75
80
85
90
95

100

5 10 15 20 25 30 35 40 45 5050

60

70

80

90

100

Cora CiteSeer

(b) different watermark length l

Figure 5.4: Watermark accuracy on node classification task (GCN (left), GAT (center), GraphSAGE (right)).

model can learn the watermark pattern better. Additionally, the GNN model can better
memorize the watermark pattern with a larger watermark. However, there is a decrease
in the watermark accuracy for all datasets, as shown in Figure 5.4b. We believe this is
because when the watermark size gets too large, e.g., l = 50, the GNN model does not
have adequate capacity left to learn the watermark pattern well. Moreover, for water-
marks with a watermark length of less than 35, the watermark accuracy for GCN and
GAT models is higher than the GraphSAGE model, indicating that GCN and GAT models
learn small watermarks better than the GraphSAGE model. Since transductive learn-
ing has the advantage of being able to directly use training patterns while deciding on a
test pattern [11], it is easier for the GCN and GAT models (under transductive learning
setting) to learn the watermark pattern of specific size than for the GraphSAGE model
(under inductive learning setting). Considering the results in Figures 5.4 and 5.7 (which
will be further analyzed later), we set the parameters for the node classification task as
follows: r = 0.15, l = 20 for the GCN and GAT models, and r = 0.15, l = 35 for the Graph-
SAGE model. Table 5.10 shows the watermark accuracy of three models for the node
classification task with the selected parameters.

We also compare our watermarking mechanism on node classification with the state-
of-the-art [167], as shown in Figure 5.5. With the increasing watermarking rate, the wa-
termark accuracy in that work declines to 79% and 38% for Cora and CiteSeer, respec-
tively. Contrarily, in our watermarking method, the watermark accuracy keeps increas-

5

118 5. PROTECTING OWNERSHIP OF GNNS

ing to 100% for both datasets. The decline of watermark accuracy is consistent and ex-
plained in [167]. Thus, our watermarking method can achieve similar or higher water-
mark accuracy than the state-of-the-art.

0.01 0.03 0.05 0.1 0.1530
40
50
60
70
80
90

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0.01 0.03 0.05 0.1 0.1530
40
50
60
70
80
90

100

Cora CiteSeer
Watermarking rate

Figure 5.5: Comparison between our method (left) and [167] (right) on GraphSAGE model (inductive learning
setting).

Impact on the original task. To measure the impact of our watermarking mech-
anism on the watermarked model’s original task, we measure the accuracy of models
on the normal test data. The test data is not used to train the host model. Figures 5.6
and 5.7 illustrate the testing accuracy of models with and without embedding water-
marks under different variants for graph and node classification tasks, respectively. We
use the testing accuracy of the clean model as the baseline, i.e., if the testing accuracy of
the watermarked model is close to the baseline, we can confirm that our watermarking
mechanism will not affect the watermarked model’s original task. From Figure 5.6, for all
three models and datasets, the testing accuracy of the second watermarked data gener-
ation strategy is always much closer to the baseline than the first strategy, which means
the second strategy has less impact on the model’s original task. In the first strategy, the
watermarked data is generated by embedding a watermark into sampled training data,
so it is possible to embed a watermark into a graph structure, which has a critical effect
on the final prediction. As a result, the watermarking process of the first strategy will
probably affect the parameters in the networks used for the original task. In the second
strategy, random graphs are used as the watermark carrier data, so the model will try to
explore redundancy in the network capacity to learn the watermark pattern while not
affecting the original task. On the other hand, in the second approach, the watermark is
embedded via random graphs without affecting the distribution of the original training
dataset. Therefore, it has fewer side effects than the first approach.

For node classification (Figure 5.7), the watermarking rate has a negligible impact on
the testing accuracy, while when the watermark length is larger than 20, there is a signif-
icant reduction in the testing accuracy for GCN and GAT models. For GraphSAGE, the
testing accuracy fluctuates with the increase in watermark length. Referring to the wa-
termark accuracy in Figure 5.4b, one possible reason is that if the watermark size contin-
uously increases, the model’s redundant capacity will be fully occupied, and the model
will use some neurons originally for the main task to keep high watermark accuracy.

5.3. EVALUATION

5

119

Thus, the testing accuracy for GCN and GAT decreases when the watermark length is
larger than 20. For GraphSAGE, the testing accuracy does not reduce significantly be-
cause the GraphSAGE model has more redundant neurons than the other two models.
Tables 5.11 and 5.12 show the testing accuracy with the selected parameters for graph
and node classification tasks, respectively. For the graph classification task, the testing
accuracy of the first strategy is about 3% less than that of the second strategy. There is
less than 1% clean accuracy drop for the node classification task.

0.01 0.03 0.05 0.1 0.1570

75

80

85

90

Te
st

in
g

ac
cu

ra
cy

(%
)

0.01 0.03 0.05 0.1 0.15
Watermarking rate

70

75

80

85

90

0.01 0.03 0.05 0.1 0.1570

75

80

85

(a) different watermarking rate r (γ= 0.2, p = 1.0)

0.10 0.15 0.20 0.2570

75

80

85

90

Te
st

in
g

ac
cu

ra
cy

(%
)

0.10 0.15 0.20 0.25
Fraction of average nodes

70

75

80

85

90

0.10 0.15 0.20 0.2570

75

80

85

(b) different fraction of average nodes γ (r = 0.15, p = 1.0)

0.2 0.5 0.8 1.070

75

80

85

90

Te
st

in
g

ac
cu

ra
cy

(%
)

0.2 0.5 0.8 1.0
Edge existence probability

70

75

80

85

90

0.2 0.5 0.8 1.070

75

80

85

NCI1 COLLAB REDDIT-BINARY T R Clean Model

(c) different edge existence probability p (r = 0.15,γ= 0.2)

Figure 5.6: Testing accuracy on graph classification task (DiffPool (left), GIN (center), GraphSAGE (right), T: the
first watermarked data generation strategy, R: the second watermarked data generation strategy).

Impact of adaptive attacker. In our threat model, we assume that the watermarking-
relevant data (the watermarked data and the hyperparameters used to generate it) is
securely stored after the training, which can be achieved through cryptographic tech-

5

120 5. PROTECTING OWNERSHIP OF GNNS

0.01 0.03 0.05 0.1 0.1570

75

80

85

90

Te
st

in
g

ac
cu

ra
cy

(%
)

0.01 0.03 0.05 0.1 0.15
Watermarking rate

70

75

80

85

90

0.01 0.03 0.05 0.1 0.1570

75

80

85

90

(a) different watermarking rate r

5 10 15 20 25 30 35 40 45 5065

70

75

80

85

90

Te
st

in
g

ac
cu

ra
cy

(%
)

5 10 15 20 25 30 35 40 45 50
Watermark length

65

70

75

80

85

90

5 10 15 20 25 30 35 40 45 5065

70

75

80

85

90

Cora CiteSeer Clean Model

(b) different watermark length l

Figure 5.7: Testing accuracy on node classification task (GCN (left), GAT (center), GraphSAGE (right)).

Table 5.11: Testing accuracy for graph classification task (r = 0.15,γ= 0.2, p = 1.0).

(a) NCI1

Testing Accuracy (%) DiffPool GIN GraphSAGE

Clean Model 77.09 78.71 75.46
D t

wm 74.80 75.18 72.01
Dr

wm 77.85 77.80 74.79

(b) COLLAB

Testing Accuracy (%) DiffPool GIN GraphSAGE

Clean Model 80.56 81.27 79.91
D t

wm 77.86 78.96 77.09
Dr

wm 80.71 81.63 79.88

(c) REDDIT-BINARY

Testing Accuracy (%) DiffPool GIN GraphSAGE

Clean Model 86.30 87.65 77.23
D t

wm 83.11 83.73 74.71
Dr

wm 86.55 87.08 77.95

niques. Additionally, to the best of our knowledge, there is no work on reversing back-
door triggers in GNNs, meaning that the attackers cannot retrieve our watermarked data

5.3. EVALUATION

5

121

Table 5.12: Testing accuracy for the node classification.

Dataset
Testing Accuracy (%) (C l eanModel |D t

wm)
GCN GAT GraphSAGE

Cora 87.21|86.82 87.94|86.98 84.04|83.88
CiteSeer 78.67|78.23 80.33|79.57 75.12|75.04

from the provided model. Thus, we consider it safe to assume our watermarked data is a
secret that the adversaries have no access to, like the private key in encryption schemes.
Nonetheless, we explore the performance of our watermarking mechanism against an
adaptive attacker that has access to different percentages of our watermarked data and
fine-tunes the watermarked model with the stolen watermarked data trying to remove
the watermark functionality. Assuming the adaptive attacker steals from 0% to 100% of
our watermarked data, we fine-tune the previously watermarked GNN model with the
stolen watermarked data using the original labels. The results of watermarking perfor-
mance with different stolen watermarked data rates for the graph and node classifica-
tion tasks are shown in Figure 5.8 and 5.9, respectively. For graph classification, grad-
ually, with the increase of the stolen watermarked data rate, the watermark accuracy
decreases significantly, i.e., reducing to 0%. There is also an obvious accuracy drop on
the main task, e.g., more than 30% decrease for DiffPool on the NCI1 dataset. This phe-
nomenon is known as catastrophic forgetting in fine-tuning, i.e., after fine-tuning, the
trained model tends to perform poorly in the source domain [149]. Thus, it is difficult
for the watermarked GNN model to unlearn the watermark functionality without influ-
encing the main task, which can also be observed in [23]. In contrast, for node clas-
sification (Figure 5.9), the watermark accuracy drops dramatically with more than 10%
stolen watermarked data while the testing accuracy stays steady. This can be explained
since, in node classification, we insert the watermark only to the feature vector, while
in graph classification, the watermark also alters the graph structure. Thus, the water-
mark pattern in node classification contains less information, and it is easier to remove
it from the trained model without affecting the performance on the main task. We be-
lieve the performance difference in watermark unlearning through fine-tuning between
graph and node classification tasks is an interesting finding, and we plan to investigate
it in the future.

5.3.2. ON THE WATERMARKING REQUIREMENTS
Next, we explain the well-known watermarking requirements for neural networks [13]
and how our watermarking framework achieves them.

Robustness: resistance of the watermarking against the modifications that can be
caused by malicious perturbations7 or benign processing. A robust GNN watermarking
should be recoverable even after the model has been modified by fine-tuning and net-
work pruning. As shown in Section 5.4, our watermarking model achieves robustness
against the modifications in the model.

7In [75], this is separately defined as the security requirement.

5

122 5. PROTECTING OWNERSHIP OF GNNS

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0 0.2 0.4 0.6 0.8 1.0
Stolen watermarked data rate

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

NCI1 COLLAB REDDIT-BINARY T R

(a) watermark accuracy

0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

(%
)

0 0.2 0.4 0.6 0.8 1.0
Stolen watermarked data rate

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1.00

20

40

60

80

100

NCI1 COLLAB REDDIT-BINARY T R

(b) testing accuracy

Figure 5.8: Watermarking performance for different stolen watermarked data rates on graph classification task
(DiffPool (left), GIN (center), GraphSAGE (right)).

0.0 0.2 0.4 0.6 0.8 1.0
Stolen watermarked data rate

0

20

40

60

80

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

Cora CiteSeer

(a) watermark accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Stolen watermarked data rate

0

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

(%
)

Cora CiteSeer

(b) testing accuracy

Figure 5.9: Watermarking performance for different stolen watermarked data rates on node classification
(GraphSAGE).

Fidelity: maintaining the quality of the watermarked object while watermarking. A
GNN watermarking model satisfies the fidelity requirement if it does not significantly
degrade the performance of the GNN model. Our experimental results presented in Ta-
bles 5.11 and 5.12 show that our watermarking (with random graphs) on graph classifi-
cation and node classification tasks leads to a smaller than 1% decrease on the accuracy

5.4. ROBUSTNESS AGAINST BACKDOOR DEFENSES

5

123

of the original task. Detailed discussion is given in Section 5.3.1.
Capacity: the watermark’s capability to carry information, and two watermarking

schemes, zero-bit, and multi-bit, are distinguished by it [13]. Our work applies zero-bit
watermarks because they do not carry additional information, such that they solely serve
to indicate the presence or the absence of the watermark in a model.

Integrity: the correct classification of the watermarking. A GNN watermarking mech-
anism satisfying integrity should have low FPR and FNR.8 The false positive requirement
states that a benign model not copied from the watermarked GNN model should not be
seen as a malicious copy. The false negative implies that a malicious copy of the wa-
termarked GNN model should be classified as a copy. As mentioned in Sections 5.2.4
and 5.3, we select a watermark accuracy threshold for each dataset and model to make
sure the FPR and FNR are less than 0.0001.

Generality: the generalization of the watermarking method. A GNN watermarking
would have generality if it is not tailored to a specific model but can be applied to other
architectures or models. Our watermarking method has been evaluated in several state-
of-the-art GNN models. In addition, our watermarking method does not depend on the
architectures of the GNN models and can be applied to any other GNN models and graph
datasets.

Efficiency: the overhead required for embedding and verifying a watermark into an
object. An efficient GNN watermarking model should not add too much computational
cost by adding the watermark. In our watermarking method, according to the watermark
embedding algorithm 8 and the watermarking rate we set, the overhead in embedding
a watermark into a GNN model is retraining a clean GNN model with 30% or 15% of
the original training data. The overhead in verifying the watermark is the number of
the watermarked data related to the watermarking rate, i.e., between 0.01 and 0.15. As
explained in Section 5.3.1, in our watermarking method, the model owners can use low
watermarking rates, e.g., 0.01, to watermark their models.

In [13], the authors also defined secrecy property concerning the detectability of the
presence of the watermark. This property is out of scope for our watermarking frame-
work because we expect our watermarking mechanism still works even if the adversaries
know the existence of the watermark. Nevertheless, the watermark itself should be secret
to the adversaries.

5.4. ROBUSTNESS AGAINST BACKDOOR DEFENSES
Our watermarking method is based on backdoor attacks. If attackers suspect the model
is protected by a watermark based on backdoor attacks, they would like to use back-
door removal techniques (defenses) to remove the backdoor, i.e., our watermark. Con-
sequently, it is intuitive here to explore whether our watermarking method is resistant to
state-of-the-art defenses against backdoor attacks. The state-of-the-art defenses against
backdoor attacks can be summarized in four categories: input reformation, input filter-
ing, model sanitization, and model inspection [100]. NeuralCleanse (NC) [128] is the
most representative defense in the model inspection defense category. However, it is
not feasible to be applied in this work because (1) NC requires a large number of input

8In [75], the false negative case is the reliability requirement.

5

124 5. PROTECTING OWNERSHIP OF GNNS

samples to achieve good performance [85] while in our work, the plagiarizer has no ac-
cess to the training data, and (2) NC cannot reverse engineer large triggers [36, 85, 148],
while in our work, ideally, there is no restriction on the watermark size. Similarly, as one
of the most representative defenses in the input filtering defense category, Activation-
Clustering (AC) [20] is not applicable because it requires access to poisoned training
data to remove the backdoor, but in our setting, the plagiarizer has no knowledge of
the watermarked data. On the other hand, Randomized-Smoothing (RS) [26] (input ref-
ormation defense) can be applied because it can only reform the input samples without
the requirement of knowledge of watermarked data. Three model modifications (i.e.,
fine-tuning, model pruning, and fine-pruning), which can be categorized into the model
sanitization defenses, are also applied in our work to explore the robustness of our wa-
termarked model.

Next, we investigate the robustness of our watermarked model against a state-of-
the-art model extraction technique: knowledge distillation and four state-of-the-art de-
fenses against backdoor attacks: randomized subsampling, fine-tuning, pruning, and
fine-pruning.

Robustness against knowledge distillation. Knowledge distillation aims at transfer-
ring knowledge from a teacher model to a student [34]. It has been used in the model
extraction attacks where the teacher model is the victim model, and the student model
is the stolen extracted model [123]. Here, we suppose the plagiarizer applies knowledge
distillation to extract the knowledge from the host model to train the plagiarized model,
and we explore the robustness of our watermarking method against this attack. Specifi-
cally, we follow the offline distillation strategy in [48] since the host model is pre-trained.
We assume the student model has the same model structure as the teacher model, and
we use half of the test data to be the training data for the knowledge distillation.9 We
evaluate the distilled model, i.e., the student model, with the second half of the test data.

Tables 5.13 and 5.14 show the watermark accuracy and testing accuracy of the model
after knowledge distillation on the graph classification task. We can observe that the
watermark accuracy decrease is less than 3.25% for two watermarked data generation
strategies, for all datasets and models, except 4.99% decline for the NCI1 dataset with
the GIN model. As for the testing accuracy, we see that knowledge distillation has little
impact on the model’s original task. For the node classification task, the watermarking
performance after the knowledge distillation is shown in Table 5.15. As we can see, the
watermark accuracy after the knowledge distillation even increases a little on the node
classification task. Since the knowledge distillation can improve the generalization of
the student model [119], it may reduce the overfitting in the original model. Moreover,
the testing accuracy decreases negligibly except for CiteSeer with the GAT and Graph-
SAGE models. One possible explanation is that in our work, the GAT and GraphSAGE
models are more complex than GCN, so it is more difficult for these two models to trans-
fer the knowledge completely from the teacher model to the student model. Based on
the observations above, we can claim that knowledge distillation can transfer the knowl-
edge of the host model on the original task to the student model successfully. Still, it can
also transfer the watermarking function, which means our watermarking mechanism is

9We assume that the plagiarizer has access to the testing data aiming to explore the robustness of our method
under a strong adversary.

5.4. ROBUSTNESS AGAINST BACKDOOR DEFENSES

5

125

robust against knowledge distillation.

Table 5.13: Accuracy on watermarked data after knowledge distillation for graph classification task (r =
0.15,γ= 0.2, p = 1.0).

Dataset
Watermark Accuracy (%) (D t

wm |Dr
wm)

DiffPool GIN GraphSAGE

NCI1 92.99|93.88 87.90|89.28 90.36|96.27
COLLAB 83.11|95.87 82.66|92.75 80.77|94.54

REDDIT-BINARY 87.74|96.92 89.71|97.45 97.53|97.67

Table 5.14: Testing accuracy after knowledge distillation for graph classification task (r = 0.15,γ= 0.2, p = 1.0).

Dataset
Testing Accuracy (%) (D t

wm |Dr
wm)

DiffPool GIN GraphSAGE

NCI1 75.92|77.30 78.50|78.88 76.83|76.46
COLLAB 76.18|80.79 77.67|81.09 75.08|79.60

REDDIT-BINARY 83.63|86.35 83.82|87.54 77.65|78.25

Table 5.15: Watermarking performance after knowledge distillation on the node classification task.

Dataset
Watermark Accuracy (%) | Testing Accuracy (%)

GCN GAT GraphSAGE

Cora 99.64|88.22 98.98|86.28 99.23|82.19
CiteSeer 99.51|78.26 99.59|73.65 99.30|73.54

Robustness against fine-tuning. As discussed before, training a well-performed GNN
model from scratch requires a large amount of training data and powerful computing re-
sources. Fine-tuning is a practical attack on GNNs since it can be used to apply existing
state-of-the-art models to other but similar tasks with less effort than training a network
from scratch when sufficient training data is not available [157]. Therefore, fine-tuning
is likely to be used by a suspect to train a new model on top of the stolen model using
only a small amount of training data.

In this experiment, for each dataset, we use half of the test data to fine-tune the pre-
viously trained watermarked GNN model, and the second half is used to evaluate the
new model. Then, we use the watermark accuracy to determine whether the watermark
embedded in the previously trained GNN model stayed effective in the new model. Ad-
ditionally, the testing accuracy is used to evaluate the performance of the newly trained
model on its original task. Tables 5.16 and 5.17 show the watermark accuracy and test-
ing accuracy of the model after fine-tuning for the graph classification task. Comparing
the results from Tables 5.9 and 5.16, we can see that fine-tuning does not significantly
reduce (less than 4.65%) the watermark accuracy for all datasets and models. Triggers

5

126 5. PROTECTING OWNERSHIP OF GNNS

rarely appear in the fine-tuning dataset; consequently, the backdoor functionality will
not be eliminated [165]. As for the testing accuracy, from Tables 5.11 and 5.17, we can
observe that after fine-tuning, the embedded watermark in the model still has only a
slight effect on the model’s original task. For the node classification task, fine-tuning
is not feasible for transductive learning-based GNN models because, once the training
data change, the model should be retrained from scratch. Thus, we show here the results
for the GraphSAGE model (inductive learning) for the node classification task, as shown
in Table 5.18, and the observations are similar to that for the graph classification task. To
compare our watermarking mechanism with the state-of-the-art [167], we also present
the watermark performance for the method in [167] after fine-tuning in Table 5.18. As
we can observe, our method achieves higher watermark accuracy after fine-tuning than
the state-of-the-art, e.g., more than 10% higher on the CiteSeer dataset. Regarding the
testing accuracy after fine-tuning, the difference between our method and [167] is less
than 0.5% for both datasets.

Table 5.16: Watermark accuracy after fine-tuning for graph classification task (r = 0.15,γ= 0.2, p = 1.0).

Dataset
Watermark Accuracy (%) (D t

wm |Dr
wm)

DiffPool GIN GraphSAGE

NCI1 94.00|93.69 88.71|89.64 91.92|97.17
COLLAB 83.71|96.50 82.96|91.83 80.48|94.11

REDDIT-BINARY 87.61|96.78 90.11|97.87 98.68|97.90

Table 5.17: Testing accuracy after fine-tuning for graph classification task (r = 0.15,γ= 0.2, p = 1.0).

Dataset
Testing Accuracy (%) (D t

wm |Dr
wm)

DiffPool GIN GraphSAGE

NCI1 73.61|77.15 75.05|77.84 71.92|74.89
COLLAB 76.10|80.67 77.63|80.92 75.93|78.31

REDDIT-BINARY 82.10|86.20 80.63|86.89 73.82|77.85

Table 5.18: Watermarking performance of GraphSAGE model after fine-tuning on the node classification task.

Dataset
Watermark Accuracy (%) Testing accuracy (%)

Ours [167] Ours [167]

Cora 98.51 97.84 84.39 84.51
CiteSeer 99.45 86.36 75.10 75.41

Robustness against model pruning. Model pruning is a technique to develop a
neural network model that is smaller and more efficient by setting some parameters to
zero while maintaining the performance on the primary task [162]. We apply the prun-
ing algorithm used in [125], which prunes the parameters whose absolute values are very
small. Specifically, for all the watermarked models, we remove a certain number of pa-
rameters with the smallest absolute values by setting them to zero. The ratio between

5.4. ROBUSTNESS AGAINST BACKDOOR DEFENSES

5

127

the number of pruned parameters and the total number of parameters is the pruning
rate (here from 10% to 90%). Then, we measure the watermark and the testing accuracy
of the pruned watermarked model.

Tables 5.19 and 5.20 present the watermarking performance after model pruning
on the graph and node classification tasks, respectively. We firstly take the results for
NCI1 and Cora as examples. For the NCI1 dataset, even when 40% of the parameters are
pruned, our watermarked model still has a high watermark accuracy, i.e., less than 1%
drop in all models. Especially for the GraphSAGE model, there is only a 0.68% drop even
though 70% of the parameters are pruned. We can also observe that when 90% of the
parameters are pruned, the watermark accuracy drops dramatically for all models, e.g.,
it drops to less than 10% for the DiffPool model. We also notice that in this case, there
is a significant testing accuracy drop for the model (more than 20%), which means the
plagiarizer has to take the expense of dramatically degrading the model’s performance
on the original task to eliminate our watermark. As for the Cora dataset, the watermark
accuracy decreases gradually, as well as the testing accuracy for GCN and GAT models.
For the GraphSAGE model, model pruning also leads to a more obvious watermark ac-
curacy drop, i.e., more than 60%, as well as an apparent testing accuracy drop (more
than 10%). Thus, our watermarking mechanism is generally robust to model pruning.
The plagiarizer can only eliminate our watermarks with the cost of a considerable accu-
racy drop in the main task. The watermarking performance after model pruning on the
COLLAB, REDDIT-BINARY, and CiteSeer datasets is shown in Tables 5.21, 5.22, and 5.23,
respectively. For the COLLAB dataset, when the pruning rate is less than 50%, the water-
mark accuracy drops slightly. With a pruning rate of more than 50%, the watermarking
accuracy decreases significantly, as well as the testing accuracy for all models. The re-
sults for REDDIT-BINARY have the same behavior. As for the CiteSeer dataset, even with
90% of the parameters pruned, the watermark accuracy on the GCN and GAT models is
still high, i.e., more than 99%. On the other hand, with more than 50% of the parameters
pruned, the watermark accuracy on the GraphSAGE model drops dramatically, but the
testing accuracy decreases significantly as well. Therefore, these results further verify
that our watermarking mechanism is robust to model pruning, but the plagiarizer can
still eliminate our watermarks with the cost of high accuracy drop in the main task.

Table 5.19: Watermarking performance on graph classification task after model pruning (NCI1).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm)

10% 77.77%|77.86% 95.52%|95.40% 78.21%|77.81% 89.96%|90.38% 74.66%|74.83% 93.06%|97.65%
20% 77.72%|77.84% 95.47%|95.26% 77.79%|77.62% 89.82%|90.51% 74.77%|74.46% 92.83%|97.68%
30% 77.61%|77.69% 94.70%|95.48% 77.24%|76.95% 89.41%|90.63% 73.56%|73.93% 92.78%|97.55%
40% 76.79%|77.25% 94.68%|95.36% 72.93%|71.76% 89.33%|90.50% 73.32%|72.36% 92.71%|97.47%
50% 70.77%|74.71% 86.89%|95.21% 63.34%|61.31% 83.96%|90.23% 70.08%|70.12% 92.58%|97.54%
60% 60.17%|66.46% 68.92%|84.61% 57.60%|56.66% 76.53%|88.43% 61.62%|62.71% 92.65%|97.45%
70% 52.46%|55.14% 34.31%|75.71% 56.39%|52.79% 73.90%|89.45% 53.58%|52.91% 92.38%|97.48%
80% 50.66%|51.35% 7.58%|60.71% 54.11%|51.55% 62.71%|88.65% 50.26%|51.10% 89.17%|97.45%
90% 50.66%|50.36% 7.58%|51.00% 52.00%|50.47% 58.77%|89.54% 49.67%|49.07% 76.90%|82.74%

5

128 5. PROTECTING OWNERSHIP OF GNNS

Table 5.20: Watermarking performance on node classification task after model pruning (Cora).

Pruning rate
GCN GAT GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
10% 86.51% 99.51% 85.23% 97.05% 83.40% 99.62%
20% 86.49% 98.50% 85.22% 96.80% 83.37% 99.58%
30% 86.24% 98.27% 85.26% 96.46% 83.24% 99.23%
40% 85.68% 98.20% 85.24% 95.80% 82.45% 98.12%
50% 83.63% 97.39% 85.29% 95.55% 82.35% 98.08%
60% 82.60% 97.14% 85.28% 94.80% 80.94% 98.04%
70% 82.52% 96.70% 85.25% 93.69% 80.37% 71.48%
80% 82.41% 96.40% 85.19% 93.46% 78.20% 42.48%
90% 82.20% 90.64% 84.97% 93.30% 72.00% 34.64%

Table 5.21: Watermarking performance on graph classification task after model pruning (COLLAB).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm)

10% 80.36%|80.69% 85.30%|98.01% 81.39%|81.66% 85.24%|94.08% 79.65%|79.89% 82.89%|97.19%
20% 80.12%|80.55% 85.35%|97.88% 80.71%|81.49% 84.70%|94.02% 79.59%|79.90% 82.91%|97.10%
30% 79.89%|80.15% 84.71%|97.91% 79.28%|81.44% 83.49%|93.56% 79.37%|79.69% 82.90%|96.39%
40% 78.43%|79.28% 84.78%|97.53% 77.13%|80.84% 83.34%|92.46% 78.96%|79.57% 82.72%|96.50%
50% 70.29%|76.36% 70.79%|84.06% 73.46%|79.24% 78.70%|69.19% 76.97%|79.34% 81.45%|96.48%
60% 59.58%|64.80% 64.05%|63.23% 71.12%|76.55% 78.16%|43.72% 72.91%|77.91% 76.84%|96.43%
70% 50.64%|47.63% 61.47%|35.44% 67.22%|70.30% 75.53%|43.72% 62.64%|72.64% 62.68%|96.32%
80% 47.93%|36.60% 63.13%|35.44% 60.99%|63.52% 73.98%|43.72% 47.54%|57.77% 44.52%|82.91%
90% 47.90%|32.53% 63.09%|28.50% 55.86%|42.34% 74.33%|30.99% 35.17%|37.26% 36.40%|62.39%

Table 5.22: Watermarking performance on graph classification task after model pruning (REDDIT-BINARY).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm)

10% 86.75%|86.55% 90.05%|98.40% 87.41%|87.05% 91.81%|99.09% 78.30%|77.94% 99.35%|98.87%
20% 86.78%|86.58% 90.15%|97.99% 87.20%|87.11% 91.34%|98.84% 78.33%|77.89% 99.30%|99.09%
30% 86.79%|86.24% 89.98%|98.40% 87.30%|86.84% 91.14%|98.69% 78.33%|77.77% 99.48%|99.00%
40% 86.58%|86.42% 89.79%|98.41% 87.26%|85.92% 91.24%|98.78% 77.96%|77.74% 99.00%|98.82%
50% 86.91%|86.55% 89.10%|98.63% 84.76%|84.98% 91.75%|98.77% 77.70%|77.48% 99.05%|98.08%
60% 86.43%|85.70% 89.43%|97.73% 81.45%|83.57% 88.26%|96.09% 76.85%|77.56% 99.66%|98.91%
70% 82.61%|82.89% 88.94%|93.02% 77.99%|80.72% 77.11%|76.73% 73.40%|76.34% 99.43%|99.20%
80% 72.62%|74.39% 80.58%|87.82% 73.48%|76.22% 70.71%|82.72% 64.95%|72.43% 99.48%|98.81%
90% 60.69%|63.94% 31.76%|66.76% 68.11%|70.56% 67.31%|77.22% 53.79%|59.67% 98.36%|99.08%

Robustness against randomized subsampling. Randomized smoothing [26] is a
state-of-the-art technique for building robust machine learning. For binary data, a ran-
domized smoothing method based on randomized subsampling can achieve promising
certified robustness [162]. Here, we explore the robustness of our watermarking method
against randomized subsampling [143]. In particular, we apply a subsampling function

5.4. ROBUSTNESS AGAINST BACKDOOR DEFENSES

5

129

Table 5.23: Watermarking performance on node classification task after model pruning (CiteSeer)

Pruning rate
GCN GAT GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
10% 74.50% 99.45% 78.55% 99.59% 80.25% 93.90%
20% 74.42% 99.42% 78.42% 99.55% 80.34% 93.82%
30% 74.47% 99.40% 78.57% 99.57% 80.24% 93.86%
40% 74.45% 99.35% 78.49% 99.60% 80.28% 93.90%
50% 74.41% 99.31% 78.51% 99.52% 80.45% 93.80%
60% 74.35% 99.24% 78.35% 99.59% 75.32% 82.79%
70% 74.22% 99.01% 78.32% 99.53% 74.27% 49.52%
80% 73.93% 99.74% 78.08% 99.43% 73.20% 16.02%
90% 72.93% 99.95% 77.59% 99.87% 72.00% 8.46%

over a given graph G to create a set of subsampled graphs Gs1 ,Gs2 , . . . ,Gsn by keeping
some randomly subsampled nodes in G and removing the remaining nodes. We then
feed the subsampled graphs to the watermarked model and take a majority voting of
the predictions over such graphs as G’s final prediction. In the randomized subsampling
technique, there is an important parameter β (subsampling ratio) that specifies the ran-
domization degree. For example, ifβ= 0.2, for the graph classification task, we randomly
keep 20% of G’s nodes and remove the rest of the nodes, and for the node classification
task, we randomly keep the 20% of the nodes’ features in the graph and set the remain-
ing features to 0. Similar to [143], in this chapter, the randomized subsampling is only
used to work on graphs instead of training smoothed models (thus, we use it to make
robust samples). Figures 5.10 and 5.11 show the watermarking performance with differ-
ent subsampling ratios in the graph classification task and the node classification task,
respectively. We see that for the graph classification task, a decrease of β decreases the
watermark accuracy, and in most cases, the testing accuracy is significantly lower than
the clean model’s. For the node classification task, the reduction of the subsampling ra-
tio leads to a significant drop in watermark accuracy, but the testing accuracy is still close
to the clean model. Therefore, randomized subsampling is not effective in attacking our
watermarking mechanism for the graph classification task, as the penalty in the testing
accuracy is unacceptable. However, it is effective for the node classification task.

Robustness against fine-pruning. Fine-pruning is an effective defense against back-
door attacks on deep neural networks, combining two promising defenses, pruning and
fine-tuning [82]. As shown in the results for the two defenses above, i.e., fine-tuning and
pruning, neither is sufficient to eliminate the watermarking function. Therefore, we as-
sume the plagiarizer applies fine-pruning, a more effective defense, to train a new model
on top of the stolen model. We follow the settings in the experiments of two defenses be-
fore, i.e., model pruning and fine-tuning. The pruning ratio is set from 10% to 90%. We
also take the results for NCI1 and two node classification task datasets as examples, as
shown in Tables 5.24 and 5.25, respectively. We can observe that the test accuracy of the
second watermarked data generation strategy reduces slightly, which is different from
the model pruning, where the test accuracy drops significantly. Thus, fine-pruning is a
more powerful technique than model pruning for the plagiarizer to try to steal the model

5

130 5. PROTECTING OWNERSHIP OF GNNS

0.2 0.4 0.6 0.80

20

40

60

80

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0.2 0.4 0.6 0.8
Subsampling Ratio

0

20

40

60

80

100

0.2 0.4 0.6 0.80

20

40

60

80

100

(a) watermark accuracy

0.2 0.4 0.6 0.80

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

(%
)

0.2 0.4 0.6 0.8
Subsampling Ratio

0

20

40

60

80

100

0.2 0.4 0.6 0.80

20

40

60

80

100

NCI1 COLLAB REDDIT-BINARY T R Clean Model

(b) testing accuracy

Figure 5.10: Watermarking performance for different subsampling ratios on graph classification task (DiffPool
(left), GIN (center), GraphSAGE (right), T: first watermarked data generation strategy, R: second watermarked
data generation strategy).

Table 5.24: Watermarking performance on graph classification task after fine-pruning (NCI1).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm)

10% 81.32%|77.20% 95.69%|95.44% 82.32%|79.18% 90.24%|90.61% 74.96%|75.71% 93.46%|97.92%
20% 81.00%|77.43% 94.46%|92.10% 82.01%|79.12% 90.19%|89.45% 75.00%|75.51% 93.39%|97.29%
30% 81.16%|77.52% 93.46%|88.64% 81.57%|78.99% 90.07%|89.46% 74.58%|75.50% 92.79%|97.62%
40% 80.35%|77.43% 93.38%|88.44% 81.12%|79.06% 90.05%|89.54% 73.74%|75.43% 92.90%|97.02%
50% 79.20%|77.58% 89.78%|87.61% 80.10%|78.98% 90.14%|89.32% 72.37%|75.66% 92.71%|96.80%
60% 76.83%|77.48% 88.36%|86.80% 78.93%|78.92% 90.03%|89.17% 68.01%|75.17% 93.10%|96.75%
70% 75.14%|77.48% 88.10%|83.30% 75.74%|78.70% 89.89%|89.10% 61.86%|74.25% 92.66%|96.82%
80% 69.73%|77.20% 81.67%|82.87% 72.01%|77.78% 89.93%|89.30% 55.62%|73.95% 93.05%|96.77%
90% 66.71%|75.21% 67.42%|82.45% 66.93%|75.89% 82.64%|83.06% 50.71%|66.37% 92.91%|73.55%

while keeping the model’s performance on the original task. As we can also see from the
results on the NCI1 dataset, with a pruning rate of 80%, the watermark accuracy de-
creases less than 2% for the GIN and GraphSAGE models. For the DiffPool model, with
the increasing of the pruning rate, the watermark accuracies for two watermarked data
generation strategies drop to 67.42% and 82.45%, respectively. Still, they are larger than
the corresponding thresholds, i.e., 53.5% and 72.0%, respectively. As for the node classifi-
cation task, based on the explanation in the fine-tuning experiments, we show the results
for the GraphSAGE model. We can see from Table 5.25 that when half of the parameters

5.4. ROBUSTNESS AGAINST BACKDOOR DEFENSES

5

131

0.2 0.4 0.6 0.80

20

40

60

80

100

W
at

er
m

ar
k

ac
cu

ra
cy

(%
)

0.2 0.4 0.6 0.8
Subsampling ratio

0

20

40

60

80

100

0.2 0.4 0.6 0.80

20

40

60

80

100

(a) watermark accuracy

0.2 0.4 0.6 0.80

20

40

60

80

100

Te
st

in
g

ac
cu

ra
cy

(%
)

0.2 0.4 0.6 0.8
Subsampling ratio

0

20

40

60

80

100

0.2 0.4 0.6 0.80

20

40

60

80

100

Cora CiteSeer Clean Model

(b) testing accuracy

Figure 5.11: Watermarking performance for different subsampling ratios on node classification task (GCN
(left), GCN (center), GraphSAGE (right)).

Table 5.25: Watermarking performance on the node classification task after fine-pruning (GraphSAGE).

Pruning rate
Cora CiteSeer

Test Acc. Watermark Acc. Test Acc. Watermark Acc.
10% 84.04% 99.70% 72.12% 99.27%
20% 83.45% 99.83% 71.37% 99.49%
30% 83.06% 99.53% 71.00% 99.14%
40% 83.45% 99.23% 71.56% 99.59%
50% 83.26% 99.07% 71.93% 99.65%
60% 82.48% 98.06% 71.56% 88.96%
70% 83.06% 69.18% 71.19% 51.60%
80% 71.70% 36.24% 61.93% 16.75%
90% 64.87% 26.71% 56.55% 8.86%

are pruned in the fine-pruning, the drop on the watermark accuracy is less than 1% for
both datasets. With the pruning rate continuously increasing to 70%, the watermark
accuracy decreases obviously, i.e., it drops to 69.18% and 51.60% for Cora and CiteSeer
respectively, but it is still higher than the verification threshold. When the pruning rate
is higher than 70%, the watermark accuracy reduces below the verification threshold,
but simultaneously, the test accuracy drops dramatically. Thus, even if the plagiarizer
performs fine-pruning to train a new model, our watermarking mechanism can verify
the ownership of the model. The watermarking performance after fine-pruning on the
COLLAB and REDDIT-BINARY datasets is shown in Tables 5.26 and 5.27, respectively.
For the COLLAB dataset, with the increase in the pruning rate, the watermark accuracy
gradually decreases. However, even with the 90% pruning rate, most of the watermark
accuracy is still higher than the threshold in Table 5.7. The results for REDDIT-BINARY

5

132 5. PROTECTING OWNERSHIP OF GNNS

follow the same behavior. Therefore, these results further verify that our watermarking
mechanism is robust to fine-pruning.

Table 5.26: Watermarking performance on graph classification task after fine-pruning (COLLAB).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm)

10% 71.77%|92.62% 85.37%|97.95% 69.55%|87.42% 85.21%|94.66% 69.07%|92.06% 82.93%|96.59%
20% 72.07%|92.71% 85.37%|80.59% 69.52%|87.56% 85.03%|88.29% 69.39%|91.98% 82.93%|95.19%
30% 70.50%|93.07% 85.33%|71.91% 68.04%|87.48% 83.97%|87.96% 69.20%|92.00% 82.91%|85.19%
40% 65.29%|93.08% 85.33%|71.88% 65.80%|87.07% 81.24%|87.77% 69.38%|91.93% 82.91%|87.12%
50% 60.62%|93.28% 85.31%|71.74% 62.80%|86.84% 81.08%|56.46% 69.20%|91.84% 82.90%|86.02%
60% 56.44%|93.25% 85.22%|71.66% 57.29%|86.10% 80.45%|50.09% 65.23%|91.87% 82.15%|85.77%
70% 53.53%|93.35% 84.73%|63.22% 53.28%|86.47% 79.86%|49.53% 60.01%|91.59% 82.00%|85.02%
80% 52.39%|93.16% 84.46%|63.14% 52.93%|85.95% 78.57%|43.72% 54.77%|91.00% 81.41%|83.92%
90% 52.45%|92.70% 84.20%|63.09% 52.44%|84.64% 78.04%|43.38% 51.94%|89.87% 80.23%|73.79%

Table 5.27: Watermarking performance on graph classification task after fine-pruning (REDDIT-BINARY).

Pruning
DiffPool GIN GraphSAGE

Test Acc. Watermark Acc. Test Acc. Watermark Acc. Test Acc. Watermark Acc.
rate (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm) (D t

wm |Dr
wm)

10% 83.29%|95.52% 90.20%|98.59% 84.83%|93.35% 92.14%|99.04% 73.76%|88.37% 99.51%|99.21%
20% 83.02%|95.52% 88.02%|96.13% 84.47%|93.03% 90.73%|96.31% 73.67%|87.86% 99.96%|98.90%
30% 83.20%|95.52% 87.54%|96.08% 85.97%|92.82% 86.78%|98.35% 73.85%|87.77% 99.28%|99.32%
40% 84.84%|95.67% 86.45%|95.65% 85.10%|93.06% 86.67%|97.62% 73.94%|87.83% 99.80%|99.20%
50% 84.45%|95.91% 86.11%|95.60% 84.65%|93.09% 87.13%|97.19% 73.88%|88.07% 99.68%|98.54%
60% 84.72%|96.15% 74.72%|94.74% 83.51%|93.20% 66.76%|82.40% 73.49%|87.86% 99.46%|98.80%
70% 83.62%|95.94% 74.04%|93.58% 83.00%|93.65% 65.47%|82.07% 72.60%|87.56% 99.40%|98.42%
80% 82.66%|95.73% 71.52%|92.76% 80.18%|93.71% 35.34%|81.18% 72.30%|88.58% 99.50%|98.33%
90% 78.17%|95.94% 54.68%|84.63% 73.74%|93.74% 28.87%|79.52% 69.07%|90.00% 99.52%|98.39%

5.5. CONCLUSIONS AND FUTURE WORK
This chapter proposed a watermarking framework for GNNs, which includes generat-
ing watermarked data with different strategies, embedding the watermark into the host
model through training, and verifying the ownership of the suspicious model using pre-
viously generated watermarked data. We designed a watermarking mechanism for two
GNN applications: the graph classification task and the node classification task, and
provided statistical analysis for the model ownership verification results. We conducted
a comprehensive evaluation of our watermarking framework on different datasets and
models and demonstrated that our method could achieve powerful watermarking per-
formance while having a negligible effect on the host model’s original task. We also ex-
plored our watermarking mechanism against an adaptive attacker who has knowledge
of the watermarked data. We further show that our method is robust against a model
extraction attack and four state-of-the-art defenses for backdoor attacks: randomized
subsampling, fine-tuning, model pruning, and fine-pruning. For future work, we are in-

5.5. CONCLUSIONS AND FUTURE WORK

5

133

terested in exploring methods that are more robust, e.g., against randomized smoothing
for the node classification task and studying embedding watermarks into various types
of GNNs besides node and graph-level tasks.

6
DISCUSSION

Graph Neural Networks are powerful in processing graph data due to their superior abil-
ity to incorporate information from neighboring nodes in the graph recursively. How-
ever, GNNs are vulnerable to backdoor attacks, which can be implemented by training
GNNs with poisoned training datasets. There are studies on backdoor attacks on Con-
volutional Neural Networks, but the unique characteristics of graph data make it chal-
lenging to explore backdoor attacks on GNNs. The results and findings in this thesis
pave the way toward more powerful and efficient backdoor attacks on GNNs, including
centralized and federated settings.

In this chapter, we present our findings and discuss their limitations and possible
future work. In Section 6.1, 6.2 and 6.3, we will address the three subquestions intro-
duced in Section 1.4. Limitations and future work are discussed in Section 6.4 and 6.5,
respectively.

6.1. BACKDOOR ATTACKS ON CENTRALIZED GNNS
In this section, we explain our contributions to the first subquestion:

RQ: Can we design backdoor attacks on centralized GNNs?

To answer this question, in Chapter 3, we explore and design backdoor attacks on
centralized GNNs. Specifically, we give solutions to the following research questions,
i.e., What is the impact of trigger injection position on graph backdoor? How can we ex-
plain it? and Can we design the clean-label backdoor attack on GNNs? The motivation for
this question comes from the necessity of understanding the influence of trigger inject-
ing position on the backdoor attack performance on GNNs. Compared to the Euclidean
data, e.g., images, there is no location information in a graph, which means the attacker
cannot inject a trigger into a specific spatial location. Although there is no location in-
formation in a graph, we can get insight into which part of the graph contributes more

135

6

136 6. DISCUSSION

to the final prediction of the GNN model with the help of explanation techniques. Fol-
lowing this idea, in this chapter, we apply two powerful GNN explainability approaches
to select the most or least important area of the sample as the trigger-injecting position
for both graph and node classification tasks. The experimental results show that the at-
tacker can select the least important parts of the graph to inject the trigger, thus reducing
the chances of easy detection by the defender.

Through experiments, we find that there are indeed some differences between the
two trigger-injecting strategies, i.e., LIAS (Least Important Area Strategy) always achieves
higher attack performance than MIAS (Most Important Area Strategy). To further explain
the different attack performances of these two trigger-injecting strategies, we also design
a novel explanation framework with quantitative analysis. We compute the similarity of
the predicted mask of the representative features from the backdoored model and the
target mask of the representative features from the clean model.

From the experimental results, first, we can observe that most poisoned testing sam-
ples have a recall score of more than 0.5 in both MIAS and LIAS, which results in a high
attack success rate for both strategies. Second, we notice that LIAS has fewer nodes with
low recall scores than MIAS, which we believe is the reason for the higher ASR (Attack
Success Rate) of LIAS than MIAS.

Dirty-label backdoor attacks are commonly used on GNNs, i.e., the adversary is as-
sumed to have the capability to introduce arbitrary, often clearly mislabeled, inputs to
the training set. However, these poisoned inputs are very likely to be detected as out-
liers. To make the resulting poisoned inputs appear consistent with their original labels
so that it is more difficult to detect the poisoned inputs, we design a clean-label back-
door attack on GNNs. We sample subsets of the original training dataset, which is from
the target class, and we inject a trigger (a graph) into the selected samples by sampling a
specific number of nodes in the graph uniformly at random and replacing their connec-
tion with that in the trigger graph.

We observe that overall, a clean-label backdoor attack on GNNs can achieve high
attack effectiveness, i.e., with an attack success rate over 84%. It can also be observed
that generally, a clean-label backdoor attack on GNNs has a low clean accuracy drop, i.e.,
around 1%, which indicates that a clean-label backdoor attack on GNNs has a negligible
impact on the original task of the model.

6.2. BACKDOOR ATTACKS ON FEDERATED GNNS
In this section, we discuss the second subquestion of this thesis:

RQ: Can we design backdoor attacks on federated GNNs?

To answer this question, in Chapter 4, we aim to answer the following research ques-
tions, i.e., Can we design label-only membership inference attack on GNNs? and Is it pos-
sible to design backdoor attacks on Federated GNNs? GNNs can face MIAs (Membership
Inference Attacks) when centrally trained, which aims to classify whether the samples
are used to train the target model. If GNNs only provide the prediction label for the in-
put instead of the model’s probability output, previous MIAs are not feasible anymore. A

6.3. PROTECTING OWNERSHIP OF GNNS

6

137

natural solution is to train a shadow model with a shadow dataset to mimic the behav-
ior of the target model, considering that the shadow model and membership situation
of nodes in the shadow dataset are transparent to the adversary. Following this idea,
in this chapter, we propose a label-only MIA against GNNs for node classification with
the help of GNNs’ flexible prediction mechanism. The average attack accuracy, preci-
sion, and AUC values of our label-only MIA are competitive or even better than previous
probability-based MIAs under the same settings.

In addition to the aforementioned MIAs, there are also other concerns on the cen-
tralized GNNs, e.g., privacy concerns, regulatory restrictions, and commercial compe-
tition. Considering these concerns, Federated GNNs are proposed to train GNNs over
isolated graph data. Given that federated learning is designed to work with thousands or
even millions of users without restrictions on eligibility, there are two ways to implement
backdoor attacks on Federated GNNs: 1) We assume there are multiple (i.e., at least two)
malicious clients and each of them has its local trigger. Each malicious client injects its
local trigger into its training dataset. All malicious clients have the same backdoor task;
2) We assume there is only one malicious client in FL, and a global trigger consisting
of local triggers is injected into this malicious client’s local training dataset. Following
this idea, in this chapter, we also design two backdoor attacks on Federated GNNs, i.e.,
Centralized Backdoor Attack and Distributed Backdoor Attack.

Through extensive experiments, we showed that, generally, DBA achieves a higher
attack success rate than CBA. We showed that in CBA, the ASR of local triggers could be
as high as the global trigger even if, during training, only the global trigger is embedded
in the model. The impact of the percentage of malicious clients on DBA’s ASR is analyzed
with correlation, where we confirm the intuition that more malicious clients lead to more
successful attacks. We also observe that DBA and CBA are robust against two defenses
for the backdoor attacks in FL.

6.3. PROTECTING OWNERSHIP OF GNNS
In this section, we discuss the third subquestion:

RQ: Is it possible to design backdoor attacks on GNNs
for defensive purposes, e.g., watermarking GNNs?

To answer this question, in Chapter 5, we propose a watermarking method to protect
the ownership of GNNs. Indeed, GNNs are very powerful in processing graph data, but
building a powerful GNN model is not a trivial task. Also, with the development of model
stealing attacks, there is a significant risk of trained GNN models being stolen by adver-
saries, potentially resulting in substantial commercial losses. Thus, from the perspective
of a GNN model owner, it’s necessary to verify the ownership of his/her model. Embed-
ding watermarks into DNN models to protect the IP of the models has been conducted
in multiple works, one of which is based on backdoor attacks. Backdoor attacks possess
the secrecy characteristic, which makes it intuitive to consider watermarking GNNs by
training the model with the backdoor functionality and verifying the ownership of sus-
picious GNN models with pre-determined backdoored data. Following this idea, in this

6

138 6. DISCUSSION

chapter, we present a watermarking framework for GNNs for both graph and node clas-
sification tasks. We 1) design two strategies to generate watermarked data for the graph
classification task and one for the node classification task, 2) embed the watermark into
the host model through training to obtain the watermarked GNN model, and 3) verify the
ownership of the suspicious model in a black-box setting along with statistical analysis.

The experiments show that our framework can verify the ownership of GNN models
with a very high probability (up to 99%) for both tasks while having a negligible effect on
the host model’s original task. We also explored our watermarking mechanism against
an adaptive attacker who has knowledge of the watermarked data. We further show that
our method is robust against a model extraction attack and four state-of-the-art defenses
for backdoor attacks: randomized subsampling, fine-tuning, model pruning, and fine-
pruning.

6.4. LIMITATIONS
Although this thesis explores and designs effective and powerful backdoor attacks on
centralized and federated GNNs, several limitations still need to be addressed.
Limited subset of practical datasets. The experiments conducted in this thesis primar-
ily utilize publicly available datasets that are widely used in the literature for comparing
GNNs. It is crucial to recognize that they do not represent "standard" benchmarks and
encompass only a limited subset of practical datasets. Consequently, the proposed ap-
proaches may not be comprehensively evaluated based on these datasets. For instance,
regarding the node classification task in this thesis, the utilization of small graph datasets
such as Cora and CiteSeer is common. However, to further assess the effectiveness of the
proposed approaches, experiments on datasets with different distributions or sizes (e.g.,
larger graphs) are important. Additionally, the dataset splitting methodology employed
in this thesis involves a single dataset split for model evaluation and selection. Nonethe-
less, research indicates that the performance of GNN models can be significantly influ-
enced by the specific choice of dataset splitting [113, 40]. Therefore, it is recommended
in future work to select and evaluate GNNs on multiple data splits to ensure a fair com-
parison and robust assessment of their performance.
Attack scenarios from a research perspective. The attack scenarios of this thesis are
mostly from a research but not practical perspective. For example, the experimental
setting in the work of exploring backdoor attacks on federated GNNs is in a cross-silo
federated learning setting which assumes a maximum of 100 clients. However, in the
real-world applications of FL, cross-device FL, which assumes more than 100 clients, is
considered.
No investigation on other advanced backdoor attacks. In this thesis, we focus on the
classical dirty-label and clean-label backdoor attacks on GNNs. There are also many
other advanced backdoor attacks that were proposed in regular data, e.g., SSBA [76] and
WaNet [94]. More exploration and evaluation of advanced backdoor attacks on GNNs
are expected.
Inadequate explanation for experimental results. In all experimental parts of this the-
sis, we try to analyze and explain the experimental results from different perspectives,
such as dataset characteristics, model capability, and threat models. Nonetheless, some
of our experimental results are only provided with hypotheses that are not finally ver-

6.5. FUTURE WORK

6

139

ified. For instance, in the analysis of Chapter 4 we make a hypothesis for the ineffec-
tiveness of the RLR defense against our attacks. While this hypothesis can explain the
poor performance of RLR against our backdoor attacks on Federated GNNs, it would be
advisable to investigate this hypothesis with extended experiments.

6.5. FUTURE WORK
In this thesis, we offer solutions to develop effective backdoor attacks on centralized and
federated GNNs. However, considering the complexity of graph data and the difference
between graph and other regular data (i.e., image), the backdoor attack scenarios in this
thesis are limited. There are still many interesting new directions. We here discuss some
open problems in the backdoor attacks on GNNs that could help future research on this
topic.
Multi-target backdoor attacks on GNNs This thesis focuses on exploring backdoor at-
tacks that have a single backdoor target and are triggered by a single backdoor. However,
on the centralized GNNs, the backdoor attacks against multiple target classes, and back-
door attacks triggered by multiple backdoors have not been studied yet. If we refer the
backdoor attacks on centralized GNNs in our thesis to One-to-One attack, how to design
the One-to-N attack where the attacker can trigger multiple backdoor targets by control-
ling the different properties of the same backdoor, and N-to-One attack where there are
multiple triggers and such attack is triggered only when all the triggers are satisfied?
Backdoor attacks on Federated GNNs for other tasks Federated GNNs are also popular
in node-level tasks. For example, in a social media app where each user has a local social
network Gk , and {Gk } constitutes the latent entire human social network G , the develop-
ers can train a fraud detection GNN model through FL. In such a case, an attacker may
conduct a backdoor attack to force the trained global model to misclassify a fraud node
into benign. In Chapter 4, we evaluated the backdoor attack on Federated GNNs only
for graph classification tasks. Is it also possible to design backdoor attacks on Federated
GNNs for other tasks, e.g., node classification task?
Defenses against backdoor attack on Federated GNNs In Section 4.3.4, we evaluated
the robustness of our backdoor attacks on Federated GNNs against two defenses. Based
on experimental results, we find that the defense based on cosine similarity between
updates is not effective in the graph domain. One reason may be that this defense ap-
plies cosine distance to try to identify malicious models, i.e., the distance between ma-
licious updates is smaller between honest updates. Still, in our attacks, the malicious
clients’ updates could already be very dissimilar to each other, so the malicious updates
are likely to be clustered into honest updates. Is it possible to design a novel defense
against backdoor attacks on Federated GNNs combining the specific characteristics of
graph data?
Ownership verification for GNNs based on dataset inference In our thesis, we used the
watermarking technique to protect the ownership of the GNN models. The aim of water-
marking GNNs is to detect theft by allowing the victim to claim ownership by verifying
that a suspicious model responds with the expected outputs on watermarked inputs.
This strategy requires re-training, and it can be vulnerable to adaptive attackers that
try to remove the watermarks. Dataset inference is a process of identifying whether a
suspicious model has private knowledge from the original model’s dataset as a defense

6

140 6. DISCUSSION

against model stealing. It is based on the observation that knowledge contained in the
stolen model’s training set is what is common to all stolen copies. We believe it would
be a promising direction to use dataset inference to conduct ownership resolution on
GNNs.

BIBLIOGRAPHY

[1] Ahmed Abusnaina, Aminollah Khormali, Hisham Alasmary, Jeman Park, Afsah An-
war, and Aziz Mohaisen. Adversarial learning attacks on graph-based iot malware
detection systems. In 2019 IEEE 39th international conference on distributed com-
puting systems (ICDCS), pages 1296–1305. IEEE, 2019.

[2] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny Pinkas, and Joseph Keshet.
Turning your weakness into a strength: Watermarking deep neural networks by
backdooring. In 27th USENIX Security Symposium (USENIX Security 18), pages
1615–1631, 2018.

[3] Marco Ancona, Cengiz Oztireli, and Markus Gross. Explaining deep neural net-
works with a polynomial time algorithm for shapley value approximation. In In-
ternational Conference on Machine Learning, pages 272–281. PMLR, 2019.

[4] Valerio Arnaboldi, Marco Conti, Massimiliano La Gala, Andrea Passarella, and
Fabio Pezzoni. Ego network structure in online social networks and its impact
on information diffusion. Computer Communications, 76:26–41, 2016.

[5] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. In International Conference on
Artificial Intelligence and Statistics, pages 2938–2948. PMLR, 2020.

[6] Pierre Baldi and Gianluca Pollastri. The principled design of large-scale recursive
neural network architectures–dag-rnns and the protein structure prediction prob-
lem. The Journal of Machine Learning Research, 4:575–602, 2003.

[7] Albert-László Barabási and Réka Albert. Emergence of scaling in random net-
works. science, 286(5439):509–512, 1999.

[8] Luciano Baresi and Reiko Heckel. Tutorial introduction to graph transformation:
A software engineering perspective. In International Conference on Graph Trans-
formation, pages 402–429. Springer, 2002.

[9] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. {CSI}{NN}: Reverse
engineering of neural network architectures through electromagnetic side chan-
nel. In 28th USENIX Security Symposium (USENIX Security 19), pages 515–532,
2019.

[10] Arjun Nitin Bhagoji, Supriyo Chakraborty, Prateek Mittal, and Seraphin Calo. Ana-
lyzing federated learning through an adversarial lens. In International Conference
on Machine Learning, pages 634–643. PMLR, 2019.

141

6

142 BIBLIOGRAPHY

[11] Monica Bianchini, Anas Belahcen, and Franco Scarselli. A comparative study of
inductive and transductive learning with feedforward neural networks. In AI* IA
2016 Advances in Artificial Intelligence: XVth International Conference of the Ital-
ian Association for Artificial Intelligence, Genova, Italy, November 29–December 1,
2016, Proceedings XV, pages 283–293. Springer, 2016.

[12] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Ma-
chine learning with adversaries: Byzantine tolerant gradient descent. Advances in
neural information processing systems, 30, 2017.

[13] Franziska Boenisch. A systematic review on model watermarking for neural net-
works. Frontiers in big Data, 4:729663, 2021.

[14] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of
graphs: Unsupervised inductive learning via ranking. In International Conference
on Learning Representations.

[15] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Inger-
man, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi, Brendan
McMahan, et al. Towards federated learning at scale: System design. Proceedings
of machine learning and systems, 1:374–388, 2019.

[16] Karsten M Borgwardt, Cheng Soon Ong, Stefan Schönauer, SVN Vishwanathan,
Alex J Smola, and Hans-Peter Kriegel. Protein function prediction via graph ker-
nels. Bioinformatics, 21(suppl_1):i47–i56, 2005.

[17] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geomet-
ric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv preprint
arXiv:2104.13478, 2021.

[18] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-
robust federated learning via trust bootstrapping. arXiv preprint arXiv:2012.13995,
2020.

[19] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Flo-
rian Tramer. Membership inference attacks from first principles. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 1897–1914. IEEE, 2022.

[20] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Benjamin Ed-
wards, Taesung Lee, Ian Molloy, and Biplav Srivastava. Detecting backdoor attacks
on deep neural networks by activation clustering. arXiv preprint arXiv:1811.03728,
2018.

[21] Chaochao Chen, Jun Zhou, Longfei Zheng, Huiwen Wu, Lingjuan Lyu, Jia
Wu, Bingzhe Wu, Ziqi Liu, Li Wang, and Xiaolin Zheng. Vertically federated
graph neural network for privacy-preserving node classification. arXiv preprint
arXiv:2005.11903, 2020.

BIBLIOGRAPHY

6

143

[22] Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar.
Deepmarks: A secure fingerprinting framework for digital rights management of
deep learning models. In Proceedings of the 2019 on International Conference on
Multimedia Retrieval, pages 105–113, 2019.

[23] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and
Yang Zhang. Graph unlearning. In Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages 499–513, 2022.

[24] Christopher A Choquette-Choo, Florian Tramer, Nicholas Carlini, and Nicolas Pa-
pernot. Label-only membership inference attacks. In International conference on
machine learning, pages 1964–1974. PMLR, 2021.

[25] Giorgio Ciano, Alberto Rossi, Monica Bianchini, and Franco Scarselli. On
inductive–transductive learning with graph neural networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(2):758–769, 2021.

[26] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness
via randomized smoothing. In international conference on machine learning,
pages 1310–1320. PMLR, 2019.

[27] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob Pitts, and Kevin
Wampler. A system for graph-based visualization of the evolution of software. In
Proceedings of the 2003 ACM symposium on Software visualization, pages 77–ff,
2003.

[28] Tianshuo Cong, Xinlei He, and Yang Zhang. Sslguard: A watermarking scheme
for self-supervised learning pre-trained encoders. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, pages 579–593,
2022.

[29] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. A (sub) graph
isomorphism algorithm for matching large graphs. IEEE transactions on pattern
analysis and machine intelligence, 26(10):1367–1372, 2004.

[30] Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu,
Jiliang Tang, and Suhang Wang. A comprehensive survey on trustworthy graph
neural networks: Privacy, robustness, fairness, and explainability. arXiv preprint
arXiv:2204.08570, 2022.

[31] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. Ad-
versarial attack on graph structured data. In International conference on machine
learning, pages 1115–1124. PMLR, 2018.

[32] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. Algo-
rithms. McGraw-Hill Higher Education New York, 2008.

[33] Asim Kumar Debnath, Rosa L Lopez de Compadre, Gargi Debnath, Alan J Shuster-
man, and Corwin Hansch. Structure-activity relationship of mutagenic aromatic

6

144 BIBLIOGRAPHY

and heteroaromatic nitro compounds. correlation with molecular orbital energies
and hydrophobicity. Journal of medicinal chemistry, 34(2), 1991.

[34] Xiang Deng and Zhongfei Zhang. Graph-free knowledge distillation for graph neu-
ral networks. arXiv preprint arXiv:2105.07519, 2021.

[35] Kaize Ding, Zhe Xu, Hanghang Tong, and Huan Liu. Data augmentation for deep
graph learning: A survey. ACM SIGKDD Explorations Newsletter, 24(2):61–77, 2022.

[36] Bao Gia Doan, Ehsan Abbasnejad, and Damith C Ranasinghe. Februus: Input pu-
rification defense against trojan attacks on deep neural network systems. In An-
nual computer security applications conference, pages 897–912, 2020.

[37] Ye Dong, Xiaojun Chen, Kaiyun Li, Dakui Wang, and Shuai Zeng. Flod: Oblivious
defender for private byzantine-robust federated learning with dishonest-majority.
In Computer Security–ESORICS 2021: 26th European Symposium on Research in
Computer Security, Darmstadt, Germany, October 4–8, 2021, Proceedings, Part I,
pages 497–518. Springer, 2021.

[38] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying privacy leakage
in graph embedding. In MobiQuitous 2020-17th EAI International Conference on
Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 76–
85, 2020.

[39] Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. Benchmarking graph neural networks. arXiv preprint
arXiv:2003.00982, 2020.

[40] Federico Errica, Marco Podda, Davide Bacciu, and Alessio Micheli. A fair
comparison of graph neural networks for graph classification. arXiv preprint
arXiv:1912.09893, 2019.

[41] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
Graph neural networks for social recommendation. In The world wide web con-
ference, pages 417–426, 2019.

[42] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning
attacks to byzantine-robust federated learning. In USENIX Security, 2020.

[43] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. Mitigating sybils in feder-
ated learning poisoning. arXiv preprint arXiv:1808.04866, 2018.

[44] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 1959.

[45] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E
Dahl. Neural message passing for quantum chemistry. In International conference
on machine learning, pages 1263–1272. PMLR, 2017.

BIBLIOGRAPHY

6

145

[46] Yoav Goldberg. A primer on neural network models for natural language process-
ing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

[47] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[48] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge
distillation: A survey. International Journal of Computer Vision, 129:1789–1819,
2021.

[49] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In 2013 IEEE international conference on
acoustics, speech and signal processing, pages 6645–6649. Ieee, 2013.

[50] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Eval-
uating backdooring attacks on deep neural networks. IEEE Access, 7:47230–47244,
2019.

[51] Sensen Guo, Xiaoyu Li, and Zhiying Mu. Adversarial machine learning on social
network: A survey. Frontiers in Physics, 9:766540, 2021.

[52] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dy-
namics, and function using networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[53] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning
on large graphs. Advances in neural information processing systems, 30, 2017.

[54] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Françoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ra-
mage. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604, 2018.

[55] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao
Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. Fedgraphnn: A feder-
ated learning system and benchmark for graph neural networks. arXiv preprint
arXiv:2104.07145, 2021.

[56] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and
Salman Avestimehr. Spreadgnn: Serverless multi-task federated learning for graph
neural networks. arXiv preprint arXiv:2106.02743, 2021.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[58] Xinlei He, Rui Wen, Yixin Wu, Michael Backes, Yun Shen, and Yang Zhang. Node-
level membership inference attacks against graph neural networks. arXiv preprint
arXiv:2102.05429, 2021.

6

146 BIBLIOGRAPHY

[59] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed,
Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. Deep neural networks for acoustic modeling in speech recogni-
tion: The shared views of four research groups. IEEE Signal processing magazine,
29(6):82–97, 2012.

[60] Yifan Hu and Lei Shi. Visualizing large graphs. Wiley Interdisciplinary Reviews:
Computational Statistics, 7(2):115–136, 2015.

[61] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang.
Graphlime: Local interpretable model explanations for graph neural networks.
IEEE Transactions on Knowledge and Data Engineering, 2022.

[62] Bo Hui, Yuchen Yang, Haolin Yuan, Philippe Burlina, Neil Zhenqiang Gong, and
Yinzhi Cao. Practical blind membership inference attack via differential compar-
isons. arXiv preprint arXiv:2101.01341, 2021.

[63] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, and Nicolas
Papernot. Entangled watermarks as a defense against model extraction. In 30th
USENIX Security Symposium (USENIX Security 21), pages 1937–1954, 2021.

[64] Meng Jiang, Taeho Jung, Ryan Karl, and Tong Zhao. Federated dynamic gnn with
secure aggregation. arXiv preprint arXiv:2009.07351, 2020.

[65] Zhihua Jin, Yong Wang, Qianwen Wang, Yao Ming, Tengfei Ma, and Huamin Qu.
Gnnlens: A visual analytics approach for prediction error diagnosis of graph neu-
ral networks. IEEE Transactions on Visualization and Computer Graphics, 2022.

[66] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-
nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al. Advances and open problems in federated learning.
Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

[67] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph con-
volutional networks. In ICLR, 2017.

[68] Boris Knyazev, Graham W Taylor, and Mohamed Amer. Understanding attention
and generalization in graph neural networks. Advances in neural information pro-
cessing systems, 32, 2019.

[69] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Advances in neural information pro-
cessing systems, 25, 2012.

[70] Aditya Kuppa and Nhien-An Le-Khac. Adversarial xai methods in cybersecurity.
IEEE transactions on information forensics and security, 16:4924–4938, 2021.

[71] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the
physical world. In Artificial intelligence safety and security, pages 99–112. Chap-
man and Hall/CRC, 2018.

BIBLIOGRAPHY

6

147

[72] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar. Peer-
to-peer federated learning on graphs. arXiv preprint arXiv:1901.11173, 2019.

[73] Gerhard C Langelaar, Iwan Setyawan, and Reginald L Lagendijk. Watermarking
digital image and video data. a state-of-the-art overview. IEEE Signal processing
magazine, 17(5):20–46, 2000.

[74] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and Xinpeng Zhang.
Invisible backdoor attacks on deep neural networks via steganography and regu-
larization. IEEE Transactions on Dependable and Secure Computing, 18(5):2088–
2105, 2020.

[75] Yue Li, Hongxia Wang, and Mauro Barni. A survey of deep neural network water-
marking techniques. Neurocomputing, 461:171–193, 2021.

[76] Yuezun Li, Yiming Li, Baoyuan Wu, Longkang Li, Ran He, and Siwei Lyu. Invisi-
ble backdoor attack with sample-specific triggers. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 16463–16472, 2021.

[77] Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph
matching networks for learning the similarity of graph structured objects. In In-
ternational conference on machine learning, pages 3835–3845. PMLR, 2019.

[78] Zheng Li and Yang Zhang. Membership leakage in label-only exposures. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 880–895, 2021.

[79] Lingyu Liang, Lianwen Jin, and Yong Xu. Adaptive gnn for image analysis and
editing. Advances in Neural Information Processing Systems, 32, 2019.

[80] Xiang Ling, Lingfei Wu, Wei Deng, Zhenqing Qu, Jiangyu Zhang, Sheng Zhang,
Tengfei Ma, Bin Wang, Chunming Wu, and Shouling Ji. Malgraph: Hierarchi-
cal graph neural networks for robust windows malware detection. In IEEE IN-
FOCOM 2022-IEEE Conference on Computer Communications, pages 1998–2007.
IEEE, 2022.

[81] Fenglin Liu, Xian Wu, Shen Ge, Wei Fan, and Yuexian Zou. Federated learning for
vision-and-language grounding problems. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 11572–11579, 2020.

[82] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending
against backdooring attacks on deep neural networks. In International symposium
on research in attacks, intrusions, and defenses, pages 273–294. Springer, 2018.

[83] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen, Lican
Feng, Tianjian Chen, Han Yu, and Qiang Yang. Fedvision: An online visual ob-
ject detection platform powered by federated learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 34, pages 13172–13179, 2020.

6

148 BIBLIOGRAPHY

[84] Yang Liu, Yan Kang, Tianyuan Zou, Yanhong Pu, Yuanqin He, Xiaozhou Ye,
Ye Ouyang, Ya-Qin Zhang, and Qiang Yang. Vertical federated learning. arXiv
preprint arXiv:2211.12814, 2022.

[85] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and Xi-
angyu Zhang. Abs: Scanning neural networks for back-doors by artificial brain
stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1265–1282, 2019.

[86] Yunhui Long, Lei Wang, Diyue Bu, Vincent Bindschaedler, Xiaofeng Wang, Haixu
Tang, Carl A Gunter, and Kai Chen. A pragmatic approach to membership infer-
ences on machine learning models. In 2020 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 521–534. IEEE, 2020.

[87] Nils Lukas, Edward Jiang, Xinda Li, and Florian Kerschbaum. Sok: How robust is
image classification deep neural network watermarking? In 2022 IEEE Symposium
on Security and Privacy (SP), pages 787–804. IEEE, 2022.

[88] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model pre-
dictions. Advances in neural information processing systems, 30, 2017.

[89] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen,
and Xiang Zhang. Parameterized explainer for graph neural network. Advances in
neural information processing systems, 33:19620–19631, 2020.

[90] Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statis-
tics, pages 50–60, 1947.

[91] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks from
decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

[92] Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel,
and Marion Neumann. Tudataset: A collection of benchmark datasets for learning
with graphs. arXiv preprint arXiv:2007.08663, 2020.

[93] Azqa Nadeem, Daniël Vos, Clinton Cao, Luca Pajola, Simon Dieck, Robert Baum-
gartner, and Sicco Verwer. Sok: Explainable machine learning for computer secu-
rity applications. arXiv preprint arXiv:2208.10605, 2022.

[94] Anh Nguyen and Anh Tran. Wanet–imperceptible warping-based backdoor attack.
arXiv preprint arXiv:2102.10369, 2021.

[95] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Möllering,
Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza
Zeitouni, et al. {FLAME}: Taming backdoors in federated learning. In 31st USENIX
Security Symposium (USENIX Security 22), pages 1415–1432, 2022.

BIBLIOGRAPHY

6

149

[96] Thien Duc Nguyen, Phillip Rieger, Markus Miettinen, and Ahmad-Reza Sadeghi.
Poisoning attacks on federated learning-based iot intrusion detection system. In
Proc. Workshop Decentralized IoT Syst. Secur.(DISS), 2020.

[97] Iyiola E Olatunji, Wolfgang Nejdl, and Megha Khosla. Membership inference at-
tack on graph neural networks. In 2021 Third IEEE International Conference on
Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pages
11–20. IEEE, 2021.

[98] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz. Knockoff nets: Stealing
functionality of black-box models. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 4954–4963, 2019.

[99] Mustafa Safa Ozdayi, Murat Kantarcioglu, and Yulia R Gel. Defending against
backdoors in federated learning with robust learning rate. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 9268–9276, 2021.

[100] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng Cheng,
and Ting Wang. Trojanzoo: Everything you ever wanted to know about neural
backdoors (but were afraid to ask). arXiv preprint arXiv:2012.09302, 2020.

[101] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,
and Ananthram Swami. Practical black-box attacks against machine learning. In
Proceedings of the 2017 ACM on Asia conference on computer and communications
security, pages 506–519, 2017.

[102] Krishna Pillutla, Sham M Kakade, and Zaid Harchaoui. Robust aggregation for
federated learning. IEEE Transactions on Signal Processing, 70:1142–1154, 2022.

[103] Omid Poursaeed, Isay Katsman, Bicheng Gao, and Serge Belongie. Generative ad-
versarial perturbations. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4422–4431, 2018.

[104] Pavel Pudlák, Vojtěch Rödl, and Petr Savickỳ. Graph complexity. Acta Informatica,
25:515–535, 1988.

[105] Shadi Rahimian, Tribhuvanesh Orekondy, and Mario Fritz. Differential privacy
defenses and sampling attacks for membership inference. In Proceedings of the
14th ACM Workshop on Artificial Intelligence and Security, pages 193–202, 2021.

[106] Alberto Rossi, Matteo Tiezzi, Giovanna Maria Dimitri, Monica Bianchini, Marco
Maggini, and Franco Scarselli. Inductive–transductive learning with graph neu-
ral networks. In Artificial Neural Networks in Pattern Recognition: 8th IAPR TC3
Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018, Proceedings 8, pages
201–212. Springer, 2018.

[107] Ahmed Salem, Yang Zhang, Mathias Humbert, Mario Fritz, and Michael Backes.
Ml-leaks: Model and data independent membership inference attacks and de-
fenses on machine learning models. In Network and Distributed Systems Security
Symposium 2019. Internet Society, 2019.

6

150 BIBLIOGRAPHY

[108] Franklin E Satterthwaite. An approximate distribution of estimates of variance
components. Biometrics bulletin, 2(6):110–114, 1946.

[109] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In Proceedings of the IEEE international
conference on computer vision, pages 618–626, 2017.

[110] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. Collective classification in network data. AI magazine, 29(3):93–
93, 2008.

[111] Giorgio Severi, Jim Meyer, Scott E Coull, and Alina Oprea. Explanation-guided
backdoor poisoning attacks against malware classifiers. In USENIX Security Sym-
posium, pages 1487–1504, 2021.

[112] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for nor-
mality (complete samples). Biometrika, 52(3/4):591–611, 1965.

[113] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan
Günnemann. Pitfalls of graph neural network evaluation. arxiv 2018. arXiv
preprint arXiv:1811.05868, 2018.

[114] Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. Back to
the drawing board: A critical evaluation of poisoning attacks on production feder-
ated learning. In 2022 IEEE Symposium on Security and Privacy (SP), pages 1354–
1371. IEEE, 2022.

[115] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and
Karsten M Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learn-
ing Research, 12(9), 2011.

[116] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE symposium on
security and privacy (SP), pages 3–18. IEEE, 2017.

[117] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[118] Liwei Song and Prateek Mittal. Systematic evaluation of privacy risks of machine
learning models. In 30th USENIX Security Symposium (USENIX Security 21), pages
2615–2632, 2021.

[119] Samuel Stanton, Pavel Izmailov, Polina Kirichenko, Alexander A Alemi, and An-
drew G Wilson. Does knowledge distillation really work? Advances in Neural In-
formation Processing Systems, 34:6906–6919, 2021.

[120] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy con-
siderations for deep learning in nlp. arXiv preprint arXiv:1906.02243, 2019.

BIBLIOGRAPHY

6

151

[121] Toyotaro Suzumura, Yi Zhou, Natahalie Baracaldo, Guangnan Ye, Keith Houck,
Ryo Kawahara, Ali Anwar, Lucia Larise Stavarache, Yuji Watanabe, Pablo Loyola,
et al. Towards federated graph learning for collaborative financial crimes detec-
tion. arXiv preprint arXiv:1909.12946, 2019.

[122] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
Stealing machine learning models via prediction {APIs}. In 25th USENIX security
symposium (USENIX Security 16), pages 601–618, 2016.

[123] Jean-Baptiste Truong, Pratyush Maini, Robert J Walls, and Nicolas Papernot. Data-
free model extraction. In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4771–4780, 2021.

[124] Alexander Turner, Dimitris Tsipras, and Aleksander Madry. Clean-label backdoor
attacks. 2018.

[125] Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding
watermarks into deep neural networks. In Proceedings of the 2017 ACM on inter-
national conference on multimedia retrieval, pages 269–277, 2017.

[126] Maria V Valueva, NN Nagornov, Pavel A Lyakhov, Georgii V Valuev, and Nikolay I
Chervyakov. Application of the residue number system to reduce hardware costs
of the convolutional neural network implementation. Mathematics and computers
in simulation, 177:232–243, 2020.

[127] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. Graph Attention Networks. International Conference on
Learning Representations, 2018.

[128] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating backdoor at-
tacks in neural networks. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 707–723. IEEE, 2019.

[129] Hongwei Wang, Fuzheng Zhang, Mengdi Zhang, Jure Leskovec, Miao Zhao, Wen-
jie Li, and Zhongyuan Wang. Knowledge-aware graph neural networks with la-
bel smoothness regularization for recommender systems. In Proceedings of the
25th ACM SIGKDD international conference on knowledge discovery & data min-
ing, pages 968–977, 2019.

[130] Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. A review on graph neural
network methods in financial applications. arXiv preprint arXiv:2111.15367, 2021.

[131] Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou,
Chao Ma, Lingfan Yu, Yu Gai, et al. Deep graph library: A graph-centric, highly-
performant package for graph neural networks. arXiv preprint arXiv:1909.01315,
2019.

6

152 BIBLIOGRAPHY

[132] Xiao Wang, Hongrui Liu, Chuan Shi, and Cheng Yang. Be confident! towards trust-
worthy graph neural networks via confidence calibration. Advances in Neural In-
formation Processing Systems, 34:23768–23779, 2021.

[133] Ronald L Wasserstein and Nicole A Lazar. The asa statement on p-values: context,
process, and purpose, 2016.

[134] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. nature, 393(6684):440–442, 1998.

[135] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio Bellei,
Tom Robinson, and Charles E Leiserson. Anti-money laundering in bitcoin: Exper-
imenting with graph convolutional networks for financial forensics. arXiv preprint
arXiv:1908.02591, 2019.

[136] Bernard L Welch. The generalization of ‘student’s’problem when several different
population varlances are involved. Biometrika, 34(1-2):28–35, 1947.

[137] Bang Wu, Xiangwen Yang, Shirui Pan, and Xingliang Yuan. Adapting membership
inference attacks to gnn for graph classification: approaches and implications.
In 2021 IEEE International Conference on Data Mining (ICDM), pages 1421–1426.
IEEE, 2021.

[138] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. Fedgnn:
Federated graph neural network for privacy-preserving recommendation. arXiv
preprint arXiv:2102.04925, 2021.

[139] Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. Adversarial examples on graph data: Deep insights into attack and defense.
arXiv preprint arXiv:1903.01610, 2019.

[140] Lingfei Wu, Yu Chen, Heng Ji, and Bang Liu. Deep learning on graphs for natural
language processing. In Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, pages 2651–2653,
2021.

[141] Lingfei Wu, Peng Cui, Jian Pei, Liang Zhao, and Le Song. Graph neural networks.
In Graph Neural Networks: Foundations, Frontiers, and Applications, pages 27–37.
Springer, 2022.

[142] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu
Philip. A comprehensive survey on graph neural networks. IEEE transactions on
neural networks and learning systems, 32(1):4–24, 2020.

[143] Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. Graph backdoor. In USENIX
Security Symposium, pages 1523–1540, 2021.

[144] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. Dba: Distributed backdoor at-
tacks against federated learning. In International conference on learning represen-
tations, 2020.

BIBLIOGRAPHY

6

153

[145] Jing Xu, Minhui Xue, and Stjepan Picek. Explainability-based backdoor attacks
against graph neural networks. In Proceedings of the 3rd ACM Workshop on Wire-
less Security and Machine Learning, pages 31–36, 2021.

[146] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are
graph neural networks? In International Conference on Learning Representations,
2019.

[147] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with
jumping knowledge networks. In International conference on machine learning,
pages 5453–5462. PMLR, 2018.

[148] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter, and Bo Li. Detect-
ing ai trojans using meta neural analysis. In 2021 IEEE Symposium on Security and
Privacy (SP), pages 103–120. IEEE, 2021.

[149] Ying Xu, Xu Zhong, Antonio Jose Jimeno Yepes, and Jey Han Lau. Forget me not:
Reducing catastrophic forgetting for domain adaptation in reading comprehen-
sion. In 2020 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE, 2020.

[150] Pinar Yanardag and SVN Vishwanathan. Deep graph kernels. In Proceedings of
the 21th ACM SIGKDD international conference on knowledge discovery and data
mining, pages 1365–1374, 2015.

[151] Peng Yang, Yingjie Lao, and Ping Li. Robust watermarking for deep neural net-
works via bi-level optimization. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 14841–14850, 2021.

[152] Wenkai Yang, Yankai Lin, Peng Li, Jie Zhou, and Xu Sun. Rethinking stealthiness
of backdoor attack against nlp models. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 5543–
5557, 2021.

[153] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk
in machine learning: Analyzing the connection to overfitting. In 2018 IEEE 31st
computer security foundations symposium (CSF), pages 268–282. IEEE, 2018.

[154] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. In International
Conference on Machine Learning, pages 5650–5659. PMLR, 2018.

[155] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gn-
nexplainer: Generating explanations for graph neural networks. Advances in neu-
ral information processing systems, 32, 2019.

6

154 BIBLIOGRAPHY

[156] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling.
Advances in neural information processing systems, 31, 2018.

[157] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? Advances in neural information processing sys-
tems, 27, 2014.

[158] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. Xgnn: Towards model-level
explanations of graph neural networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 430–438,
2020.

[159] Wayne W Zachary. An information flow model for conflict and fission in small
groups. Journal of anthropological research, 33(4):452–473, 1977.

[160] He Zhang, Bang Wu, Xingliang Yuan, Shirui Pan, Hanghang Tong, and Jian Pei.
Trustworthy graph neural networks: Aspects, methods and trends. arXiv preprint
arXiv:2205.07424, 2022.

[161] Huanding Zhang, Tao Shen, Fei Wu, Mingyang Yin, Hongxia Yang, and Chao Wu.
Federated graph learning–a position paper. arXiv preprint arXiv:2105.11099, 2021.

[162] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph Stoecklin, Heqing
Huang, and Ian Molloy. Protecting intellectual property of deep neural networks
with watermarking. In Proceedings of the 2018 on Asia conference on computer and
communications security, pages 159–172, 2018.

[163] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. An end-to-end
deep learning architecture for graph classification. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 32, 2018.

[164] Zaixi Zhang, Jinyuan Jia, Binghui Wang, and Neil Zhenqiang Gong. Backdoor at-
tacks to graph neural networks. In Proceedings of the 26th ACM Symposium on
Access Control Models and Technologies, pages 15–26, 2021.

[165] Zhengyan Zhang, Guangxuan Xiao, Yongwei Li, Tian Lv, Fanchao Qi, Zhiyuan Liu,
Yasheng Wang, Xin Jiang, and Maosong Sun. Red alarm for pre-trained models:
Universal vulnerability to neuron-level backdoor attacks. Machine Intelligence Re-
search, 20(2):180–193, 2023.

[166] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen, and Yu-Gang
Jiang. Clean-label backdoor attacks on video recognition models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages 14443–
14452, 2020.

[167] Xiangyu Zhao, Hanzhou Wu, and Xinpeng Zhang. Watermarking graph neural net-
works by random graphs. In 2021 9th International Symposium on Digital Foren-
sics and Security (ISDFS), pages 1–6. IEEE, 2021.

BIBLIOGRAPHY

6

155

[168] Xinghua Zhu, Jianzong Wang, Zhenhou Hong, and Jing Xiao. Empirical studies of
institutional federated learning for natural language processing. In Findings of the
Association for Computational Linguistics: EMNLP 2020, pages 625–634, 2020.

[169] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. Adversarial attacks
on neural networks for graph data. In Proceedings of the 24th ACM SIGKDD in-
ternational conference on knowledge discovery & data mining, pages 2847–2856,
2018.

ACKNOWLEDGEMENTS

I am not sure whether doing a PhD is one of the best decisions in my life but I am sure it
undeniably becomes one of the most unforgettable experiences in my life. Over the past
four years, I have encountered many moments — happiness, sadness, struggle, loneli-
ness, and excitement. At the end of my PhD journey, I would like to express my gratitude
to the people who have enriched these years.

First and foremost, I would like to thank my daily supervisor Dr. Stjepan Picek, my
promotors Prof.dr.ir Inald Lagendijk, and Dr. Frans Oliehoek. Stjepan, I could not have
undertaken this journey without your help, guidance and support. I was not confident
in my research and ability at the beginning. Thank you for your unwavering encourage-
ment and assistance which have strongly supported my pursuit of PhD studies. Many
thanks for your weekly online meetings with me during the pandemic of COVID-19,
which gave me great support to get through that tough time. In addition to supporting
my research study, you also behaved like my mentor who offered me encouragement so
that I could have the courage to face the difficulties I encountered. Inald, thank you for
always giving me professional and detailed advice. Your passion for research is truly ad-
mirable, and the discussions during our meetings were quite helpful for my exploration
of machine learning and security. Thank you for your control of the overall direction of
this PhD research, which allowed me to finish this meaningful study. I am also extremely
grateful to Frans. This wonderful journey would not be possible without your crucial
role in initiating my PhD study at TU Delft. Thank you for the constructive and insight-
ful comments you have always given me. In addition to the research insight and ability,
I admire and hope to learn from your extensive knowledge and attitude of always keep
learning.

I also extend my gratitude to the committee members Prof.dr. Georgios Smaragdakis,
Prof.dr. Ahmad-Reza Sadeghi, Prof.dr. Lorenzo Cavallaro, and Dr. Elvin Isufi for their
commitment to reviewing my thesis, providing valuable feedback, and being part of the
defense ceremony.

Throughout my PhD journey, I have been lucky to have met many wonderful col-
leagues. I would like to extend my sincere thanks to the lovely people currently or for-
merly in the Cybersecurity group. Geroge, I will miss the jokes you made. I will al-
ways cherish the memories of your warm hugs and smiles. Thank you for being our
"Big Geroge". Zeki, I know you love playing jokes, and I enjoy our conversations by the
coffee machine. Mauro, thank you for supporting my research visit to Padova. Collab-
orating with you has been rewarding and enriching. Sicco, thanks for your every time’s
早安 (good morning in Chinese). Kaitai, thanks for your advice on whether to join the
industry or academia after my PhD graduation. Sandra, your assistance and support
throughout my stay in the Cybersecurity group have been invaluable. I am grateful for
the vibrant atmosphere you created and the various group events you organized, which
fostered a sense of belonging.

157

6

158 BIBLIOGRAPHY

Stefanos, working alongside you in the same office has been an absolute delight. You
are so friendly, funny, and always ready to help everyone. It is enjoyable to work with
you, especially when we complain together about the review comments, repeated ex-
periments and your every "last minute" story. Marina, I can still remember your kind-
ness and support during a particularly challenging moment in the first year of my PhD.
Thanks so much for your warm comfort. I hope you continue to find joy in both your
work and life. I would also like to express my gratitude to Tianyu Li, Huanhuan Chen,
Rui Wang, Yanqi Qiao, Dazhuang Liu, and Zeshun Shi. Thanks for all the memorable mo-
ments we shared playing board games, enjoying BBQs, and celebrating at parties. Ozzy,
collaborating with you was truly enjoyable. I admire your knowledge of mathematics.
Daniël, thanks for your assistance with the Dutch summary of this thesis. I can (hope-
fully) recognize you and Jelle now. Clinton, I have witnessed your remarkable progress
in speaking Chinese. I look forward to our next conversation, in Chinese. Florine, you
are one of the bravest people I met. May you continue living as you like. Stefano, thanks
for all the joyful talks we had during your stay at TU Delft. I miss your infectious laughter
and hope you can smile like a child always. I also want to thank Ruud and Bart, who of-
fered me technical support throughout my entire PhD journey. Although, unfortunately,
I experienced computer breakdowns several times, I was able to continue working with
timely help from Ruud. Thank you very much.

Also, I want to thank my colleagues in AISyLab at Radboud University. Azade, thanks
for inviting me to the relaxing citywalk in Delft. Gorka, Behrad, the time we tried to
catch a deadline together in Belgium brought me a "joyful" memory. I would also like
to express my appreciation to my PhD fellows, including Leo Weissbart, Luca Mariot,
Guilherme Perin, Xiaoyun Xu, and Lichao Wu.

Outside of work, I am fortunate to have amazing friends who provided invaluable
support during my PhD journey. Fenghua, there are too many unforgettable memories
we have created together throughout this journey. Thank you for doing silly things with
me, making tasty birthday cakes for me, and comforting me when I was down. Chen,
thank you for being my "elder brother", although my birthday is actually earlier than
yours. Biyue, I remember the gathering at your home every Friday evening during the
second and third years of my PhD, which brought me great joy. Yawei, thanks for intro-
ducing your friends to me so that this long journey was much more enjoyable. It was
quite enjoyable staying with you all, no matter what we did. So many times, we shared
fun stuff, had Chinese dishes together, and played switch games, so on and so forth, like
a family. I cannot imagine finishing my PhD without you.

Huimin, you are not only my colleague in the same office but also one of my closest
friends at TU Delft. Your never-giving-up attitude gives me valuable mental support, es-
pecially during challenging times like the lockdown period. Shenglan, our conversations
over drinks about random topics like dating shows have brought me great enjoyment.
Sitong, thank you for the warm hospitality and delicious dishes you prepared during the
many invitations to your home. They were truly the best meals I’ve had in the Nether-
lands. Fengqiao, thank you for inviting me to the delicious hotpots at your home. Your
and Lichao’s hospitality at the beginning of my PhD study was heartwarming and unfor-
gettable. Yun Zeng, Zhangyue Wei, I really like playing board games with you, even if I
was often the last one. Dingding, thanks for your valuable suggestions in the first year

BIBLIOGRAPHY

6

159

of my PhD. I also would like to extend my warm thanks to Li Zou, Bo Sun, Shilun Zhang,
Huiyuan Lai, Jiaxin Li, Junhan Wen, Wei Yuan, Qisong Yang, Li Wang, Langzi Chang,
Longjian Piao, Yunlong Guo and Lili Ma.

My most special thanks go to my boyfriend, Jinke He. During the last four years,
you have been my unlimited source of support. Every time I was happy, sad, stressed,
or confused, you were always the first one I wanted to share my feelings with, and you
were always ready to give me unconditional support. Your wisdom and broad perspec-
tive have often guided me when I felt stuck. Thank you for tolerating my impatience,
supporting every decision I made, and telling me that it’s perfect to be imperfect. Our
paths crossed in 2019 when we both just started our PhD study, and since then, you have
become an important part of my PhD journey.

Words cannot express my gratitude to my family. I am grateful to have a loving family.
Especially, I would like to express my sincere appreciation to my parents. Thank you for
offering me unconditional love and support, which have empowered me to pursue my
dreams fearlessly. I also want to express my heartfelt appreciation to my grandparents.
The cherished memories of my childhood spent with you remain etched in my heart,
reminding me of the warmth and love that surrounded me all the time.

Over the past four years, I continued asking myself what is the meaning of pursuing
a PhD. Now my answer is to find out how many possibilities you have. These four years
will certainly be one of the most valuable assets in my life. Thank you all for being with
me on this wonderful journey!

CURRICULUM VITÆ

Jing XU

Jing Xu was born in Zhejiang, China on April 8, 1994. She obtained her bachelor’s de-
gree in Engineering with distinction from Shanghai University, Shanghai, China in 2016.
After that, she received her master’s degree in Optical Engineering from Beihang Univer-
sity, Beijing, China in 2019.

In 2019, Jing Xu started her PhD research at the Department of Intelligent Systems,
Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University
of Technology, with a grant from the China Scholarship Council. In the first year of her
PhD, Jing focused on research about adversary attacks on reinforcement learning under
the supervision of dr. F.A. Oliehoek. During that time, she found her special interest in
the security of machine learning, and then she joined the Cybersecurity group and was
additionally supervised by prof. dr. ir. R.L. Lagendijk and dr. S. Picek. In the next three
years of her PhD, Jing focused on the security of machine learning, especially backdoor
attacks on graph neural networks. She designed various backdoor attacks on centralized
and federated GNNs. During her PhD, she has published and presented her works at
multiple international conferences.

161

LIST OF PUBLICATIONS

Published

10. Xu, J., Koffas, S., & Picek, S., Unveiling the Threat: Investigating Distributed and Central-
ized Backdoor Attacks in Federated Graph Neural Networks, Digital Threats: Research and
Practice (DTRAP 2023).

9. Xu, J., Picek, S., Poster: Multi-target & Multi-trigger Backdoor Attacks on Graph Neural Net-
works, ACM Conference on Computer and Communications Security (CCS 2023).

8. Xu, J., Koffas, S., Ersoy, O., & Picek, S., Watermarking Graph Neural Networks based on Back-
door Attacks, IEEE European Symposium on Security and Privacy (Euro S&P 2023).

7. Xu, J., Abad, G., & Picek, S., Rethinking the Trigger-injecting Position in Graph Backdoor
Attack, International Joint Conference on Neural Networks (IJCNN 2023).

6. Xu, J., Koffas, S., & Picek, S., Exploring Backdoor Attacks in Federated Graph Neural Net-
works, The Learning from Authoritative Security Experiment Results (LASER workshop 2022).

5. Xu, J., Wang, R., Koffas, S., Liang, K., & Picek, S, More is Better (Mostly): On the Backdoor
Attacks in Federated Graph Neural Networks, Annual Computer Security Applications Con-
ference (ACSAC 2022).

4. Xu, J., Picek, S., Poster: Clean-label Backdoor Attack on Graph Neural Networks, ACM Con-
ference on Computer and Communications Security (CCS 2022).

3. Conti, M., Li, J., Picek, S., Xu, J., Label-Only Membership Inference Attack against Node-Level
Graph Neural Networks, 15th ACM Workshop on Artificial Intelligence and Security (AISec
2022).

2. Koffas, S., Xu, J., Conti, M., & Picek, S., Can you hear it? backdoor attacks via ultrasonic
triggers, ACM Workshop on Wireless Security and Machine Learning (WiseML 2022).

1. Xu, J., Xue, M., & Picek, S., Explainability-based Backdoor Attacks Against Graph Neural

Networks, ACM Workshop on Wireless Security and Machine Learning (WiseML 2021).

Under review

2. Abad, G., Xu, J., Koffas, S., Tajalli, B., & Picek, S., A Systematic Evaluation of Backdoor Trigger
Characteristics in Image Classification, arXiv preprint (2023).

1. Arazzi, M., Conti, M., Koffas, S., Krcek, M., Nocera, A., Picek, S., Xu, J., Label Inference Attacks

against Node-level Vertical Federated GNNs, arXiv preprint (2023).

163

	Summary
	Samenvatting
	Summary
	Introduction
	Graph-structured Data
	Machine Learning on Graph Data
	Convolutional Neural Networks
	Graph Neural Networks
	Federated GNNs

	Backdoor Attacks on GNNs
	Problem Statement
	Contribution of the Thesis
	Outline

	Background
	What is a graph?
	Representative GNN models
	Applications of GNN
	Federated Learning on GNNs

	Backdoor Attacks on Centralized GNNs
	Introduction
	Explainability-based Backdoor Attacks
	Explainable Backdoor Attacks
	Experimental Analysis

	Rethinking the Trigger-injecting Position
	Methodology
	Experimental Results

	Clean-label Backdoor Attacks
	Methodology
	Experimental Results

	Conclusions

	Backdoor Attacks on Federated GNNs
	Introduction
	Label-only MIA to GNNs
	Our Label-only MIA
	Experiments
	Results and Discussions

	Backdoor Horizontal Federated GNNs
	Problem Formulation
	Backdoor Attacks against Federated GNNs
	Experiments
	Defenses
	General Takeaways on the Experimental Aspects

	Conclusions

	Protecting Ownership of GNNs
	Introduction
	GNN Watermarking
	Threat Model
	Watermarked Data Generation
	Watermark Embedding
	Ownership Verification

	Evaluation
	Experimental Results
	On the Watermarking Requirements

	Robustness Against Backdoor Defenses
	Conclusions and Future Work

	Discussion
	Backdoor attacks on centralized GNNs
	Backdoor attacks on federated GNNs
	Protecting ownership of GNNs
	Limitations
	Future Work

	Bibliography
	Acknowledgements
	Curriculum Vitæ
	List of Publications

