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Broken selection rule in the 
quantum Rabi model
P. Forn-Díaz1,2, G. Romero3, C. J. P. M. Harmans2, E. Solano4,5 & J. E. Mooij2

Understanding the interaction between light and matter is very relevant for fundamental studies 
of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi 
model captures the physics of a single atom interacting with a single photon at all regimes of coupling 
strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in 
the quantum Rabi model, implemented using an LC resonator and an artificial atom, a superconducting 
qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with 
a relative sign. When the qubit-resonator coupling strength is negligible compared to their own 
frequencies, the matrix element between excited eigenstates of different sign is very small in presence 
of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system 
operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator 
frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows 
that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the 
ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies 
of sign-preserving selection rules in multiqubit and multiphoton models.

The quantum Rabi model describes the dipolar interaction between a two-level system, a qubit of frequency ωq, and 
a quantized electromagnetic field mode, an oscillator of frequency ωr

1,2. The strength of the interaction g between 
qubit and oscillator defines different regimes of coupling, reflecting the dominating energy scales in the dynamics 
of the system. The limit of coupling strength g much smaller than qubit/resonator frequencies ω ωg { , }r q  is the 
well-known Jaynes-Cummings (JC) model3, where the rotating-wave approximation (RWA) holds. The ultrastrong 
coupling (USC) regime is defined by g/ωr ≥​ 0.1. Such condition implies that counter-rotating terms in the interac-
tion Hamiltonian cannot be neglected. The USC regime presents interesting features such as a non-trivial ground 
state with photonic excitations4, the generation of qubit-oscillator nonclassical states5 and ultrafast gates for quan-
tum computation6. The intricate ground-state structure has motivated various proposals for quantum simulation7,8. 
Despite its fundamental interest and applications, the experimental study of the USC regime is challenging. In this 
sense, superconducting quantum circuits9 are suitable systems to achieve large coupling strengths, despite some 
intrinsic limitations for most superconducting qubit types10. In fact, recent ideas have emerged11–13 on how to reach 
the USC regime using superconducting flux qubits. The latter can attain a large galvanic coupling to resonators14 
and have a huge anharmonicity, typically larger than ω π20GHz /2q , both of which are crucial to reach 
g/ωr >​ 0.1. USC in an open system has recently been reported using a superconducting flux qubit15.

In the JC model ω g/ 1r , the energy-level structure consists of a manifold of dressed-state doublets each 
containing n excitations |n, ±​〉​3. Each doublet |n〉​ is labeled with a quantum number ±​ corresponding to the rel-
ative sign in the superposition of uncoupled qubit-resonator states {|e, n −​ 1〉​, |g, n〉​}:

θ θ+ = − +n e n g n, cos( /2) , 1 sin( /2) , , (1)n nJC

θ θ− = − − .n e n g n, sin( /2) , 1 cos( /2) , (2)n nJC
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The mixing angle is defined as θ ω ω= −g ntan 2 /( )n q r . In the case of resonator driving represented by the 
operator Hd ~ (a +​ a†), transitions between dressed states of different sign, ± ↔ ± n n, 1,JC JC

, are much less 
favored than those preserving it, |n, ±​〉​JC ↔​ |n ±​ 1, ±​〉​JC. For USC rates, g/ωr ~ 0.1, one can still effectively describe 
the spectrum of the system using dressed-state doublets ±

∼n,  with correspondingly larger transition matrix 
elements and corrections of order g/(ωr +​ ωq) to manifolds with total number of excitations n ±​ 216–19. The consid-
erations on sign-changing transitions in the USC regime do not apply. Thus for coupling strength much smaller 
than qubit/resonator frequencies, one can establish a selection rule for the case of driven resonator Hd ~ (a +​ a†). 
In the USC regime, due to the different nature of the system eigenstates, the selection rule may be broken. For 
qubit driving Hd ~ σx, the selection rules are slightly different than the resonator driving case, as detailed in the 
results section.

Observations of sign-preserving transitions have been reported for superconducting transmon qubits coupled 
to transmission line resonators with g/ωr ~ 0.0220,21. To date, only a few experimental systems have reached the 
USC regime. In superconducting circuits, artificial atoms have been ultrastrongly coupled to resonators14,22–24 and 
transmission lines15, where new physics beyond the RWA were reported. Polaritons in quantum wells have been 
ultrastrongly coupled to microcavities, causing large frequency shifts due to enhanced nonlinearities25. Finally, 
electrons in a two-dimensional electron gas undergoing cyclotron transitions ωc were coupled to metamaterial 
cavities where the coupling strength achieved was g/ωc ~ 0.5826. None of the above cited experiments reported 
observations or was able to provide evidence of sign-changing transitions.

On the theory side, despite the considerable amount of recent progress on studying the physics of the USC 
regime1,7,27–32, only recently transitions between dressed states have been carefully analyzed33.

Here, we report the spectroscopy of a qubit-resonator system in the USC regime of the quantum Rabi model. 
We use the fact that our system is at finite temperature to excite several transitions between dressed states. One 
of the transitions is shown to break the sign-preserving selection rule, demonstrating another paradigmatic 
example of the unique physics occurring in the USC regime. Using a superconducting flux qubit coupled to a 
lumped-element LC resonator we are able to reproduce the quantum Rabi model of a qubit coupled to a single 
oscillator1. In our experimental system, the qubit and the resonator have no higher energy levels within the rele-
vant frequency range, which is advantageous for observing the breakdown of the sign-selection rule.

Results
Theoretical model.  Our experiment operates in the regime of g/ωr ~ 0.1, which will be referred to as the 
quantum Bloch-Siegert (QBS) regime. The eigenstates of the system in this regime are analogous to the doublet 
structure of dressed states of the JC model (see the methods section for more details):

ϕ λ ϕ λ+ = − + − − + − + +∼n e n n g n g n n e n, cos( /2)( , 1 1 , 2 ) sin( /2)( , 1 , 1 ), (3)n n

ϕ λ ϕ λ| − = | − + − | − − | − + | + .∼n e n n g n g n n e n, sin( /2)( , 1 1 , 2 ) cos( /2)( , 1 , 1 ) (4)n n

With respect to the JC model, a correction of order λ =​ g/(ωq +​ ωr) appears connecting to states containing 
n ±​ 2 number of excitations due to the effect of the counter-rotating terms. The mixing angle is here defined as

ϕ
δ

=
g n

tan
2

,
(5)n

n

n

which is different from the JC in a photon-number dependent detuning δn ≡​ δ +​ 2nωBS and a photon-number 
dependent coupling strength ω ω ω≡ − +g ng n g /( )n r q

3/2
BS . δ ≡​ ωq −​ ωr is the detuning in the JC model, 

ωBS ≡​ g2/(ωr +​ ωq) is the Bloch-Siegert shift that originates from the counter-rotating terms. The existence of a 
selection rule for transitions between dressed states of different sign depends on the relative magnitude of matrix 
elements for sign-changing/preserving transitions. The matrix elements =↔

˜ ˜T i H jXi j d  between dressed states 
for resonator-type driving Hd/ =​ Ar(a +​ a†) cos(ωdt) can be calculated to be

ϕ ϕ λ

ϕ ϕ λ
λ ϕ ϕ

∼ + −

+ + + +
−

+ ↔ + + +

+

+

∼ ∼T n n

n n

cos( /2) cos( /2) (1 ( 1))

sin( /2) sin( /2) 1 (1 ( 2))
sin( /2) cos( /2), (6)

X n n n n

n n

n n

, 1, 1
2

1
2

1

ϕ ϕ λ

ϕ ϕ λ
λ ϕ ϕ

∼ + −

+ + − +
+

− ↔ + − +

+

+

∼ ∼T n n

n n

sin( /2) sin( /2) (1 ( 1))

cos( /2) cos( /2) 1 (1 ( 2))
sin( /2) cos( /2), (7)

X n n n n

n n

n n

, 1, 1
2

1
2

1

ϕ ϕ λ

ϕ ϕ λ
λ ϕ ϕ

∼ + −

− + + +
−

+ ↔ + − +

+

+

∼ ∼T n n

n n

cos( /2) sin( /2) (1 ( 1))

sin( /2) cos( /2) 1 (1 ( 2))
sin( /2) sin( /2), (8)
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, 1, 1
2

1
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ϕ ϕ λ

ϕ ϕ λ
λ ϕ ϕ

∼ + −

− + + +
+ .

− ↔ + + +

+

+

∼ ∼T n n

n n

sin( /2) cos( /2) (1 ( 1))

cos( /2) sin( /2) 1 (1 ( 2))
cos( /2) cos( /2) (9)

X n n n n

n n

n n

, 1, 1
2

1
2

1

Clearly, the sign-preserving transitions are always possible while the sign-changing transitions are less likely 
to be excited. For vanishing qubit-resonator coupling g and δ >​ 0 (δ <​ 0), ϕn →​ 0 (ϕn →​ π), so sin(ϕn/2) →​ 0 
(sin(ϕn/2) →​ 1), cos(ϕn/2) →​ 1 (cos(ϕn/2) →​ 0). This implies that sign-changing transitions disappear when the 
coupling strength is much smaller than qubit/resonator frequencies, establishing a selection rule for this type of 
transitions.

For single qubit driving Hd/ =​ Aqσx cos(ωdt) the transition matrix elements σ ↔T i jx
 between dressed states 

read

ϕ ϕ λ ϕ ϕ

ϕ ϕ

∼ + +

− +

σ + ↔ + + + +

+

∼ ∼T n

n

sin( /2) cos( /2) ( cos( /2) cos( /2)

1 sin( /2) sin( /2)), (10)

n n n n n n

n n

, 1, 1 1

1

x

ϕ ϕ λ ϕ ϕ

ϕ ϕ

∼ − +

− +

σ − ↔ + − + +

+

∼ ∼T n

n

cos( /2) sin( /2) ( sin( /2) sin( /2)

1 cos( /2) cos( /2)), (11)

n n n n n n

n n

, 1, 1 1

1

x

ϕ ϕ λ ϕ ϕ

ϕ ϕ

∼ + +

+ +

σ + ↔ + − + +

+

∼ ∼T n

n

sin( /2) sin( /2) ( cos( /2) sin( /2)

1 sin( /2) cos( /2)), (12)

n n n n n n

n n

, 1, 1 1

1

x

ϕ ϕ λ ϕ ϕ

ϕ ϕ

∼ − +

+ + .

σ − ↔ + + + +

+

∼ ∼T n

n

cos( /2) cos( /2) ( sin( /2) cos( /2)

1 cos( /2) sin( /2)) (13)

n n n n n n

n n

, 1, 1 1

1

x

For δ <​ 0, as is the case in our experiment, ϕ →σ σ− ↔ + + − ↔ + − +∼ ∼ ∼∼ ∼T T/ 1/tan( /2) 0n n n n n, 1, , 1, 1x x
 as g →​ 0, 

implying a sign-preserving rule. However, the other transitions do not follow the same rule since 
ϕ → ∞σ σ+ ↔ + − + ↔ + + +∼ ∼∼ ∼∼T T/ tan( /2)n n n n n, 1, , 1, 1x x

 as g →​ 0. Clearly for single-qubit driving, the selection rule 
considerations of driven resonator do not apply. In the rest of this work we only discuss the transitions  
|1, −​〉​ ↔​ |2, −​〉​ and |1, −​〉​ ↔​ |2, +​〉​ that follow the sign-preserving rule both for resonator-driven as well as 
qubit-driven transitions. The case of single-qubit σz driving is described in the Methods. Therefore all our conclu-
sions on broken selection rules still hold. Throughout the rest of the text we will drop the tilde to refer to the 
dressed states in the USC regime simply as |n, ±​〉​.

Analyzing spectra in the USC regime requires accounting for the out-of-equilibrium quantum dynam-
ics featuring the coloured nature of dissipative baths. One possibility is to project the master equation in the 
dressed-state basis |n, ±​〉​19. Another possibility is the second-order time-convolutionless projection operator 
method (TCPOM)34, which has been proven useful to correctly describe the open system dynamics in the USC 
regime18,35. Here, we follow the latter approach where the master equation reads

 ∑ρ ρ ρ ρ ρ ρ= + + + − −
=

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †d
dt i

H H U S S U S U U S1 [ , ] ,
(14)r a x z

r r r r r r r r0 drive
, ,

with = +ˆ ˆ ˆ†S a aa , σ=ˆ ˆSx x, σ=ˆ ˆSz z, and the operators Ûk are defined as

∫ ∫ν τ τ ν τ ω ω ω ω= = Γ + + .τ τ ωτ ωτ∞ −

−∞

∞ −ˆ ˆˆ ˆ
U e S e d n e n e d( ) , ( ) ( ){ ( ) [ ( ) 1] } (15)k k

i H
k

i H
k k k

i
k

i

0

( / ) ( / )0 0 

We consider thermal baths at temperature T for all dissipative channels, where the relaxation coefficients 
ω π ω α ωΓ = d( ) 2 ( ) ( )k k k

2  depend on the spectral density of the baths dk(ω) and the system-bath coupling strength 
αk(ω). Moreover, the system Hamiltonian includes the qubit-resonator interaction as well as the presence of clas-
sical microwave fields, that is


 

ω
σ ω θ σ θ σ= + + − +ˆ ˆ ˆ ˆ ˆ ˆ† †H a a g a a

2
(cos sin )( ), (16)

q
z r q z q x0

 ω σ ω= + + .ˆ ˆ ˆ†H A t A t a acos( ) cos( )( ) (17)D x r Dd qb

The qubit mixing angle θq is defined as tan θq =​ Δ​/ε, with Δ​ being the tunnel coupling between the qubit 
eigenstates and ε =​ 2Ip(Φ​ −​ Φ​0/2) the magnetic energy of the qubit (see Methods). The out-of-equilibrium 
dynamics assumes a perturbative treatment of driving mechanisms which is valid for amplitudes ωA A{ , }r qqb , 
ωr, g36, as is the case throughout this work. In all numerical simulations we use up to 6 Fock states in the resonator 
basis which is sufficient for g/ωr ~ 0.1.
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Sign-preserving transition.  In order to explore dressed-state transitions, we use a superconducting flux 
qubit galvanically coupled to an LC resonator. The results presented here are obtained with the same device where 
the Bloch-Siegert was first reported14. All relevant experimental details can be found there. The resonator has 
frequency ωr/2π =​ 8.13 GHz, while the qubit has persistent current Ip =​ 500 nA and a minimal splitting of  
Δ​/2π =​ 4.2 GHz, so the detuning is δ =​ Δ​ −​ ωr =​ −​2π ×​ 3.93 GHz at the symmetry point of the qubit. The cou-
pling strength is g/2π =​ 0.82 GHz. The latter implies ω .g/ 0 1r , so the system operates in the USC regime. The 
qubit and the resonator are thermally anchored to the mixing chamber stage of a dilution refrigerator at 20 mK. 
The qubit state is read out using a DC-SQUID magnetometer. An external superconducting coil is used to set the 
magnetic flux in the qubit loop near Φ​ =​ Φ​0/2. At this flux bias point the effects of the counter-rotating terms of 
the Hamiltonian are strongest (equation (16) with sin θq =​ 1).

A numerical diagonalization of the Hamiltonian in equation (16) leads to the spectrum shown in Fig. 1(a). The 
solid lines correspond to transitions from the ground state, while the dashed lines are transitions from the first 
excited state. The intermediate dashed transition |1, −​〉​ ↔​ |2, −​〉​ (see Fig. 1(b)) around 8 GHz is the one studied 
in detail in this section and corresponds to a sign-preserving transition. The highest-energy, dashed transition  
|1, −​〉​ ↔​ |2, +​〉​ is studied in the next section and is the first transition in ascending energy to break the 
sign-preserving selection rule, given our choice of parameters. At the qubit symmetry point Φ​ =​ Φ​0/2 only tran-
sitions connecting states of different parity are allowed37. Therefore, the red sideband |1, −​〉​ ↔​ |1, +​〉​ and blue 
sideband |0, g〉​ ↔​ |2, −​〉​ are forbidden at that point. Outside the symmetry point all transitions are permitted due 
to the asymmetry in the flux qubit potential38,39. At the qubit symmetry point Φ​ =​ Φ​0/2, the system eigenstates 
correspond to those in equations (3) and (4) and the selection rules introduced in the previous section are there-
fore expected.

Figure 2(a) shows the spectrum of the system at low power near the resonator frequency ωr/2π =​ 8.13 GHz. 
The solid and dashed curves are a fit of equation (16). The dotted line is the JC model with the same fitted param-
eters. The difference between the JC and Rabi models is the Bloch-Siegert shift ωBS

14, with a maximum of 55 MHz 
at Φ​ =​ Φ​0/2. A negative (positive) shift of the frequency corresponds to a resonator (qubit)-like dressed state 
transition. Figure 2(b) shows a spectroscopy trace at Φ​ =​ Φ​0/2. The measurements are performed following a 
similar protocol as the one developed previously for a tunable-gap flux qubit40 (see also Methods). Following from 
Fig. 1, we find that the higher frequency resonance in Fig. 2(b) corresponds to the transition |0, g〉​ ↔​ |1, +​〉​, which 
given the detuning δ/2π =​ −​3.93 GHz is mostly a resonator-like excited dressed state. The lower frequency reso-
nance corresponds to |1, −​〉​ ↔​ |2, −​〉​, therefore it is a sign-preserving transition. The finite temperature in our 
system enables the excitation of this transition. The signal from this resonance is weak given the small amount of 
population of qubit-like state |1, −​〉​ in thermal equilibrium. The fact that we can observe this transition at low 
driving strength indicates a large matrix element as predicted by equations (6–13). The low signal-to-noise ratio 
leads to spurious peaks and dips which do not represent additional transitions, as verified by the spectrum in 
Fig. 1. The geometry of our system is such that qubit and resonator driving amplitudes have a comparable value, 

A Arqb  (see Methods), therefore both systems are simultaneously driven in all measurements presented.
The resonances in this spectrum look broad due to the low relaxation time of this particular device, mostly due 

parasitic capacitance to the SQUID readout circuitry. Other flux qubit experiments have shown much better 
performance, even with SQUID detectors41,42. There is a clear asymmetry between the two resonances in Fig. 2(b). 
This difference allows us to approximately calibrate the electronic temperature of the system. Solving the master 
equation iteratively to reach steady-state is a lengthy process, making it impractical to run a fit of the observed 
spectrum. Instead, the unknown parameters are swept in order to find the optimal set that leads to a calculated 
spectrum closest to the measurements. We plot the expectation value of the qubit current operator 

ρσ∼ˆ ˆ ˆI Tr( )zcirc , where ρ̂ is the steady-state solution of the TCPOM master equation, equation (14) using the 
eigenstates from equation (16). More details can be found in the Methods. The optimal set of parameters is 

Figure 1.  Qubit spectrum and transitions. (a) Numerical diagonalization of system Hamiltonian in 
equation (16), as function of external magnetic flux. Solid lines correspond to transitions from the ground state. 
Dashed lines correspond to transitions from the first excited state. (b) Energy levels at the symmetry point, with 
the sign-changing and sign-preserving transitions highlighted. |1, −​〉​ ↔​ |1, +​〉​ and |0, g〉​ ↔​ |2, −​〉​ are forbidden 
here by parity selection rules.
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πΓ /2 1MHzr , πΓ /2 15MHz1 , π π= A A/2 /2 12MHzrqb . For the temperature, we plot T =​ 90 mK (blue 
asterisks) and T =​ 150 mK (red circles) to indicate the possible range of temperatures. Other experiments using 
superconducting qubits have observed comparable finite electronic temperatures43.

The results of the simulation clearly indicate an asymmetry between the two resonances near 8 GHz. A global 
scaling factor and an offset have been applied to the numerical solution to match the amplitude of the experimen-
tal resonances. The scaling factor gives the transduction between average persistent current in the qubit to SQUID 
switching probability. In the experiment, the offset value is chosen to be 50% probability of the DC-SQUID to 
switch to the running state where a finite voltage is generated42. The differences between simulation and experi-
ment for the resonance at 8.02 GHz is most likely due to the low signal-to-noise, leading to an imprecise determi-
nation of the temperature of the system.

Broken sign-preserving selection rule.  In this section, we perform spectroscopy of the qubit-resonator 
system with driving amplitude approximately 5 times larger than the one used in Fig. 2. The enhanced driving 
strength enables additional transitions to occur, both one- and two-photon transitions. The high-power spectrum 
of the system is shown in Fig. 3(a), showing a rich spectral structure. For frequencies below 8 GHz, multi-photon 
processes can be identified. The frequency of each multi-photon transition follows the proper scaling 
ω ω θ= −− n g/ sin / 2n r q , as was already reported for a transmon qubit coupled to a resonator44. θq is the qubit 
mixing angle defined below equation (16). The resonance at 8.25 GHz from Fig. 2 has been power-broadened, 
overlapping with the sign-preserving transition |1, −​〉​ ↔​ |2, −​〉​ at 8.02 GHz. The large signal generated by this 
resonance may be related to a buildup of the population in the resonator due to the strong drive45.

Above 8 GHz, there are two distinctive resonances near Φ Φ /20 . The transition increasing in frequency away 
from the symmetry point corresponds to the blue sideband, |0, g〉​ ↔​ |2, −​〉​. The reason it vanishes at Φ​ =​ Φ​0/2  
is due to parity selection rules37. The other weaker resonance corresponds to the transition |1, −​〉​ ↔​ |2, +​〉​ and is, 
therefore, a sign-changing transition that breaks the sign-preserving selection rule explained in the introductory 
section. To our knowledge, this is the first observation of this kind of transitions between excited states of the 
quantum Rabi model. The small signal from this resonance evidences the difference in magnitude of the transi-
tion matrix elements as compared to the one for |1, −​〉​ ↔​ |2, −​〉​ given the difference in driving amplitudes used 
to acquire the data in Figs 2 and 3.

The spectroscopic sign of any resonance detected by the SQUID magnetometer relates to the magnetic field 
generated by the qubit in steady-state when an external drive is present. The transition |1, −​〉​ ↔​ |2, +​〉​ increases 
the switching probability above the reference at 50%, compared to all other resonances where the switching prob-
ability decreases below 50%. This implies that in steady-state the qubit is more polarized to the ground state than 
in thermal equilibrium, contrary to the other resonances where the qubit ends up with more population in the 
excited state. The resonance |1, −​〉​ ↔​ |2, +​〉​ therefore cools the qubit down by transferring its excess thermal 
energy to the resonator, since the state |2, +​〉​ is a resonator-like excited dressed state. A spectroscopy trace at the 
symmetry point can be observed in Fig. 3(b). The switching probability at 12.3 GHz increases with respect to the 
background set at Psw =​ 0% (referenced to 50%).

Discussion
In Fig. 4(a,b) we calculate the matrix element for transitions T|1−〉↔|2−〉, T|1−〉↔|2+〉, respectively, as function of 
normalized coupling strength g/ωr for driving the resonator ≡ +∼ ˆ †H X a a( )d . The blue solid line is calculated 
numerically from equation (16), the green-dashed line corresponds to the quantum Bloch-Siegert (QBS) regime 

Figure 2.  Sign-preserving transition. (a) Measured spectrum with fit of equation (16). Solid lines correspond to 
transitions from the ground state, cf. Fig. 1. The dotted lines correspond to the JC model using the fitted parameters 
from equation (16). The red-dashed line is the sign-preserving transition |1, −​〉​ ↔​ |2, −​〉​. Near Φ​ =​ Φ​0/2 the deviation 
from the JC model is given by the Bloch-Siegert shift ω ω ω π≡ + ×g /( ) 2 55MHzr qBS

2 . (b) Spectrum at  
Φ​ =​ Φ​0/2. The switching probability of the SQUID detector is referenced to 50%. A numerical simulation of master 
equation equation (14) is shown for T =​ 90 mK (T =​ 150 mK) with blue asterisks (red circles). The low amplitude of 
the sign-preserving transition at 8.02 GHz is related to the qubit thermal population in equilibrium.
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equations (7), (8), (11) and (12) and the red-dotted line is the Jaynes-Cummings model calculated from the states 
in equations (1) and (2). In Fig. 4(c,d) we also plot the matrix elements T|1−〉↔|2−〉, T|1−〉↔|2+〉 for the case of 
single-qubit driving Hd ~ σx. The difference in matrix elements for sign changing/preserving transitions is very 
clear for both types of driving. Figure 4(b,d) show that in our experiment the broken-sign transition is mostly 
driven by the direct qubit drive. As shown in Fig. 4(e), the relative weight T|1−〉↔|2−〉/T|1−〉↔|2+〉 decreases with 
increasing g/ωr for both types of driving since we consider finite detuning δ/2π =​ −​3.91 GHz. If we had the reso-
nance condition ωr =​ ωq =​ 2π ×​ 8.13 GHz, the relative weight of the matrix elements for resonator (qubit) driving 
would reach T|1,−〉↔|2,−〉/T|1,−〉↔|2,+〉≈​7(1) at g/ωr =​ 0.1, instead of 234(4.8) as shown in Fig. 4(e). The dashed vertical 
line in Fig. 4(a–e) marks the operating point of our device. The observation of the sign-changing transition  
|1, −​〉​ ↔​ |2, +​〉​ in this experiment can therefore be attributed to the system operating in the USC regime.

In Fig. 5 we compare the measured spectrum near 12 GHz (Fig. 5(a)) with a simulation (Fig. 5(b)) with the 
TCPOM master equation (14) using larger drive amplitude, Aqb/2π =​ Ar/2π =​ 50 MHz, keeping the rest of terms 
equal as those found in the previous section, with T =​ 100 mK. The increased driving amplitude used here is 
approximately a factor of 5 larger compared to the amplitude used for the simulations in Fig. 2(b), closely match-
ing the ratio of driving amplitudes used in the measurements of Fig. 3 relative to those in Fig. 2. The results are 
plotted in Fig. 5(b) for the probability to find the system excited, ρ− |g g1 0, 0, 2, where ρ is the density matrix 
of the coupled system calculated with the master equation in steady-state. The position of the main two reso-
nances appearing in the experiment in Fig. 5(a) are clearly reproduced up to ~−​1 mΦ​0, particularly at the symme-
try point Φ​ =​ Φ​0/2 where only the sign-changing transition |1, −​〉​ ↔​ |2, +​〉​ is excited. Beyond −​1 mΦ​0, the 
experimental signal in Fig. 5(a) disappears due to an increase of the dephasing rate of the qubit away from the 
symmetry point41,46,47 which is not taken into account in the numerical simulations.

Conclusions
We report the observation of transitions between excited states of a superconducting flux qubit-resonator system 
in the ultrastrong coupling regime. The strength of the coupling combined with initial thermal population of the 
qubit permits the observation of a transition between excited states that was never detected before. Such transition 
changes the relative sign in the superposition of bare qubit-resonator states in the dressed-state level structure. 
We developed a theoretical model based on the time convolutionless projection operator method that reproduces 
all transitions observed spectroscopically. Our work, therefore, verifies the existence of sign-changing transitions 
in the ultrastrong coupling regime of the quantum Rabi model, despite their weak strength. Until now, evidence 
for superconducting qubit-resonator systems to operate in the USC regime was found as spectral deviations from 
the Jaynes-Cummings model14,22,23. We instead put forward the observation of sign-changing transitions in the 
quantum Rabi model as a direct signature of any physical system in the USC regime for resonator-type driving. 

Figure 3.  Broken sign-preserving selection rule. (a) Spectrum of the qubit-resonator system at high driving 
power. Multi-photon transitions to higher-photon number dressed states are visible below the resonance at 
8 GHz. Above 12 GHz, the blue sideband |0, g〉​ ↔​ |2, −​〉​ can be clearly observed, together with an additional 
weaker resonance. The latter corresponds to |1, −​〉​ ↔​ |2, +​〉​, breaking the sign-preserving selection rule. The 
transition disappears away from the symmetry point due to the decrease of the coupling strength with the 
mixing angle in equation (16), and the increase of dephasing rate of the qubit41,46,47. (b) Spectroscopy trace at the 
symmetry point of (a). Above 12 GHz, the transition |1, −​〉​ ↔​ |2, +​〉​ is visible as a peak in switching probability.
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Our work can be extended to multi-qubit33 or multi-photon48 quantum Rabi models where forbidden transitions 
play a key role in understanding and manipulating the energy-level structure of the system.

Methods
Quantum Bloch-Siegert Hamiltonian and eigenenergies.  For a qubit coupled to a resonator the 
Hamiltonian that describes the full system dynamics is the quantum Rabi model1. When g/ωr, ω g/ 1q  the 
rotating-wave approximation (RWA) holds and the Jaynes-Cummings (JC) model is obtained3. In the regime 

Figure 4.  Matrix elements calculation. Driven resonator transitions |1, −​〉​ ↔​ |2, +​〉​ (a) and |1, −​〉​ ↔​ |2, −​〉​ 
(b). (c,d) correspond to the same transitions as in (a,b) for the case of single-qubit driving. Equation (16) is 
numerically solved (solid line) and compared to the Bloch-Siegert (BS) Hamiltonian Equations (7), (8), (11) 
and (12) (dashed line) and the Jaynes-Cummings (JC) Hamiltonian (dash-dotted line). (e) Relative weight 
T|1−〉↔|2−〉/T|1−〉↔|2+〉 of the matrix elements calculated in (a–d) for resonator (solid blue) and qubit (dashed 
green) driving. The value decays due to the increased similarity between the structure of the eigenstates when 
approaching the deep strong coupling regime1,27. The vertical dashed lines mark the operating conditions of the 
current experiment.

Figure 5.  Numerical simulation of qubit spectrum. (a) Zoom-in of the broken sign-preserving selection rule 
transition. (b) Numerical simulation using equation (14). The z-scale corresponds to probability to find the 
system excited, ρ− = − |P g g1 1 0, 0,g

2, where ρ is the steady-state solution of the master equation. The 
transition |1, −​〉​ ↔​ |2, +​〉​ breaking the sign-preserving selection rule is clearly visible at all fluxes while the blue 
sideband generates much more signal away from the symmetry point. For this simulation T =​ 100 mK, 
Aqb/2π =​ Ar/2π =​ 50 MHz.
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g/ωr ~ g/ωq ~ 0.1 the RWA is no longer valid but a perturbative treatment still permits deriving the Hamiltonian of 
the system analytically16,17, as well as a model on dissipation18,19,36.

The Bloch-Siegert Hamiltonian derives from the quantum Rabi Hamiltonian via perturbative treatment of the 
parameter λ ω ω= + g/( ) 1r q

16,17,19. In this perturbative regime, the counter-rotating terms are treated as 
off-resonant fields and the quantum Rabi model can be transformed in an effective dispersive picture. The result-
ing Hamiltonian is:


ω
σ ω ω σ σ σ= − +


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 +


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 +
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−
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( )( ),
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where the Bloch-Siegert shift ωBS is defined as

ω
θ

ω ω
=

+

g sin
,

(19)
q

q r
BS

2 2

with photon-dependent coupling strength ˆg n( )

θ
ω
ω ω

=



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−

+






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(20)
q
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Here ω ε= ∆ +q
2 2  is the flux qubit splitting with ε =​ 2Ip(Φ​ −​ Φ​0/2) being the magnetic energy of the qubit 

in its truncated two-state Hilbert space. The qubit mixing angle θq is defined as tan θq =​ Δ​/ε.
Projecting the Hamiltonian on the product state |Ψ​〉​ =​ |i, n〉​, i =​ {e, g} has a box-diagonal representation that 

simplifies the full diagonalization:

For box n, the following eigenvalues are found:

ω ω δ ω θ
ω
ω ω

= − ± + +



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−

+




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±E n n g n n1

2
( 2 ) 4( sin ) 1 ,

(22)
n r q

q r
, BS BS

2 2 BS

2

with ground state

δ ω= − −E
2

, (23)g ,0 BS

where n ≥​ 1 represents the number of total excitations in the uncoupled basis. All levels are shifted by ωBS as com-
pared to the JC model. In addition, both the effective detuning between levels δ +​ 2nωBS as well as the effective 
coupling constant (second term in the square root of equation (22)) depend on the number of excitations. The 
latter is the second-order correction in this dispersive picture. Using the following definitions:

δ δ ω= + n2 , (24)n BS

θ
ω
ω ω

=





−

+






g g n nsin 1 ,

(25)
n q

q r

BS

ω ω ω= −n , (26)r n r, BS

the eigenenergies take the form

ω δ= ± +±E g1
2

4 , (27)n r n n n, ,
2 2

exactly analogous to the JC model9. Following this analogy the eigenstates of the system can be expressed sim-
ilarly to the eigenstates of the JC model, with corrections to states with different total number of excitations, as
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ϕ λ ϕ λ+ = − + − − + − + +∼n e n n g n g n n e n, cos( /2)( , 1 1 , 2 ) sin( /2)( , 1 , 1 ), (28)n n

ϕ λ ϕ λ− = − + − − − − + + .∼n e n n g n g n n e n, sin( /2)( , 1 1 , 2 ) cos( /2)( , 1 , 1 ) (29)n n

where the mixing angle is defined as

ϕ
δ

= .
g n

tan
2

(30)n
n

n

Equations (28) and (29) show that the energy eigenstates of the Bloch-Siegert Hamiltonian correspond to dou-
blets of superpositions exactly as with the Jaynes-Cummings model, with coefficients having a different depend-
ence on the number of photons n and corrections of order λ =​ g/(ωr +​ ωq) to other states with different number of 
excitations. Therefore the selection rule considerations between transitions that change the sign quantum number 
explained in the introduction break down in the USC regime.

Dissipation dynamics.  Here, the parameters of the qubit-resonator system described in the main text are 
derived using numerical simulations. Besides the temperature of the bath T, there are a set of unknown param-
eters that need to be determined: the qubit relaxation and decoherence rates Γ​1, Γ​2, the resonator decay rate Γ​r 
and the amplitudes of the external fluxes Aqb and Ar driving the qubit and the resonator, respectively. Estimates 
of the mutual inductance between qubit/resonator and microwave line permit setting Aqb =​ Ar by geometry (see 
Fig. 6). We also assume that qubit decoherence is governed by relaxation alone Γ​2 =​ Γ​1/2 since this device shows 
very short T1 ~ 10 ns times near the symmetry point Φ​ =​ Φ​0/2.

A technique to characterize the temperature of a transmon qubit by driving Rabi oscillations was already 
developed43, but due to the short relaxation time of our qubit this technique is not suitable. We would like to 
emphasize that the coherence of the flux qubit used in this experiment is limited by spontaneous emission to the 
readout circuitry of the SQUID detector42. Using proper filtering49 and a more symmetric circuit design40 would 
allow better quantitative study of the spectroscopic resonances. Other experiments have shown much longer 
values of qubit lifetime at the symmetry point41,46,47, exceeding 10 μs.

We run a numerical simulation of the master equation presented in the theory section and compare the 
steady-state solution to the spectroscopy measurements. The numerical simulation of the master equation 
(Equation (14) in the main article) is performed by a Runge-Kutta method considering a Fock space of up to 6 
Fock states in the resonator, sufficient for the relative coupling strength g/ωr =​ 0.1. The operators Û  and Ŝ are 
numerically built by means of projecting them into the eigenstates of the qubit-resonator Hamiltonian, 

ψ ω ψ| 〉 = | 〉Ĥ j j j0 , where

ω
σ ω θ σ θ σ= + + − + .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H a a g a a

2
(cos sin )( ) (31)

q
z r q z q x0


 

For instance, the operator Ûk can be represented as
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,

, 0

( )

Notice that taking into account Equation (16) from the main article in the above expression will lead to inte-
grals of the form

Figure 6.  Device images. Left and center images are optical pictures of the device. (Left) The large squares are 
the interdigitated finger capacitor of the resonator. (Center) The white block in the center is a gold heat sink for 
the SQUID magnetometer. Scale bar is 150 μm (40 μm) for the left (center) picture. (Right) Scanning electron 
microscope image of the qubit and the SQUID sitting on top of it. The microwave antenna is the loop seen at the 
bottom-left with mutual inductance to the qubit Mmw−qb and to the resonator Mmw−r. Scale bar is 5 μm.
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where ω ω ω= −′ ′   

. The second term in the above equation stands for the Cauchy principal value. The latter 
leads to small Lamb shifts that we have neglected in our numerical simulation.

An example of the dynamical evolution governed by the master equation can be seen in Fig. 7. The plots 
show the probability to populate the lowest four energy levels from Fig. 1 in the main text as function of applied 
driving time. The parameters used to obtain each figure are ρ(0) =​ |1, −​〉​〈​1, −​|, T =​ 90 mK, Γ​r/2π =​ 0.1 MHz,  
Γ​qb/2π =​ 15 MHz, ωD/2π =​ 4.12 GHz, Aqb =​ Ar =​ 90 MHz (12 MHz) Fig. 7(a,b). The value of the driving frequency 
ωD is resonant with the transition |0, g〉​ ↔​ |1, −​〉​. Figure 7(a) features small oscillations due to a driving amplitude 
stronger than the qubit decay rate. Figure 7(b) shows a smooth behavior given that the dissipative mechanisms 
surpass the driving microwave fields.

In order to compare the numerical simulations with the actual data we need to take into account that the 
DC-SQUID detector is sensitive to the flux generated by the qubit, Φ​qb =​ MSQ−qb〈​Icirc〉​, where MSQ−qb is the 
SQUID-qubit mutual inductance and 〈​Icirc〉​ the expectation value of the circulating current operator of the qubit. 
The current operator has the form α ϕ= α

ˆ ˆI I sin( )Ccirc  with ϕαˆ  the phase operator across the α junction. Using the 
two-level approximation of the flux qubit, σ=ˆ ˆI I p zcirc  calculated in the energy basis of the qubit, with Ip being 
the persistent current. In this case it is easy to show that for a pure state 〈​σz〉​ =​ ±​cos θq, with θq defined in the 
previous section. The sign depends on whether the qubit is in the ground or the excited state, respectively. For a 
mixed state ρ = | | + | |ˆ p p0 0 1 10 1 , σ ρσ θ= = −ˆ ˆ p pTr( ) cos [ ( )]z z q 1 0 .

Measurement protocol.  To perform measurements at the symmetry point we use a protocol developed 
in previous experiments40. The qubit is initiated in an external bias flux Φ​i =​ −​2.4 mΦ​0 where it produces a net 
magnetic field. Then a flux square pulse is applied to the qubit via the microwave line, followed by a long micro-
wave burst. The length of the burst is sufficient to bring the system in steady-state for all resonances. At the end 
of the burst the flux pulse is ramped down until the qubit is brought back to the initial point. The rise time of the 
pulse (~2 ns) is slow enough that the Landau-Zener tunneling probability is below 1% when the qubit is brought 
across the avoided-level crossing with the resonator, so the qubit population is transferred adiabatically from the 
symmetry point to the readout point.

Selection rule for longitudinal driving.  A longitudinal single-qubit driving characterized by a σz operator 
will not break the parity symmetry of the quantum Rabi model (QRM) at the qubit symmetry point. 
Correspondingly, the driving may induce transitions between states of the same parity subspace. For instance, 
transitions will be allowed between states −∼n,  to +∼n,  or to ± ±

∼n 2, . Such transitions are activated by a 
proper choice of the resonance condition, with the signal amplitude being much smaller than the energy differ-
ences between higher-level states in the QRM. This assures the validity of the rotating-wave approximation. Away 
from the symmetry point, the QRM breaks its parity symmetry and consequently its selection rule associated 
with cavity and/or qubit driving.

More explicitly, let us consider the QRM with a flux qubit at its symmetry point driven by a microwave field 
along the longitudinal axis σz. The total Hamiltonian reads:

Figure 7.  Numerical simulation of the TCPOM master equation. The driving frequency ωD is resonant 
with the transition |0, g〉​ ↔​ |1, −​〉​. Blue, green, red, cyan refer to probability to populate ground |0, g〉​, first 
|1, −​〉​, second |1, +​〉​ and third |2, −​〉​ eigenstates of the system. The parameters used were ρ(0) =​ |1, −​〉​〈​1, −​|, 
T =​ 90 mK, Γ​r/2π =​ 0.1 MHz, Γ​qb/2π =​ 15 MHz, ωD/2π =​ 4.12 GHz, Aqb =​ Ar =​ 90 MHz (a), Aqb =​ Ar =​ 12 MHz 
(b). The parameters in (b) are the same as those used in Fig. 2(b) in the main article to obtain the spectroscopy 
traces to reproduce the experimental data.
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ω σ= +H H A tcos( ) , (34)D zQRM z

where σ ω σ= + + +
ω

ˆ ˆ ˆ ˆ ˆ ˆ† †H a a g a a( )z r xQRM 2
q  

 . The Hamiltonian (34) can be written in terms of the eigen-
states of HQRM, that is, HQRM|j〉​ =​ ωj|j〉​. Notice that the basis | 〉 = … ∞j{ } j 1, ,  contain states that belong to the parity 
subspace +​1 and states that belong to the parity subspace −​1. The Hamiltonian (34) can be rewritten as

∑ ∑ω ω= +H j j A t Z j kcos( ) ,
(35)j

j D
j k

jkz
,

 

where σ= ˆZ j kjk z . As previously mentioned, the longitudinal driving acting upon the qubit does not break the 
parity symmetry characterized by the parity operator = π σ + +ˆ ˆ ˆ ˆ†

P e ( )i a a( )z
1
2 , as clearly σz commutes with P̂. The 

consequence is that the matrix elements Zjk are different from zero only for j =​ k and for states that belong to the 
same parity subspace.

If we go to an interaction representation with respect to HQRM, the Hamiltonian (35) reads

∑ ∑ω=

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+ +



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ω ω

>
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i t

kj
i t

j
jjint z

,

kj kj

where we explicitly assume that for k >​ j, ωk >​ ωj. From the above Hamiltonian it is clear that if we satisfy the 
condition ωA Z jj Dz , then time-dependent corrections to the QRM eigenstates might be neglected. Moreover, 
if the condition ω ω| + |A Z jk kj Dz  is satisfied, so that the rotating-wave approximation holds, it might be pos-
sible to activate transitions between states belonging to the same parity subspace under the resonance condition 
ωD =​ ωkj.
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In this Article, there is an error in Figure 6. The arrows in the right-hand portion of the image are misplaced. The 
correct Figure 6 appears below as Figure 1.
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