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SUMMARY

In this study research is performed into the accuracy of flood estimation. In particular
the rivers on the island of Java are considered. For these distinctive rivers, the GAMA I unit
hydrograph theory was developed (Sri Harto 1985) for flood estimation.

The GAMA theory defines 3 basic characteristics to represent a unit hydrograph; time
of rise (time from the beginning of the storm to the time of peak discharge), peak discharge
and base time (total time of run off). For these characteristics, relationships were derived by
meàns of regression analysis using measured data of floods and related catchment characteris-
tics.

In this study the GAMA equations are again derived by means of a program (REGR-
ES) including the calculation of the standard deviations and the correlations of the regression
coefficients. These indicate the accuracy of the model.
To include the inaccuracy of the input data a program (SIMCO) is constructed in which the
input data (measurements) are extended with stochastic features. It is assumed that all data are
normally distributed. A simulation is performed based on the Monte Carlo simulation
technique to derive a set of 150 equations for each GAMA equation. The standard deviations
and correlations are calculated and indicate the sensitivity of the GAMA equations due to
inaccurate measurements.
By means of a fault tree for each GAMA equation the propagation of errors in the derivation
is determined in a analytical and numerical way; analytically by means of the mean value
approach and numerically by means of Monte Carlo simulation. The influence of the
stochastic input data is very large and mainly dued to the variation of the measured unit
hydrograph, derived from discharge measurements. The equations for the peak discharge and
the base time seem to be very sensitive. Expressed in coefficients of variation the predictions
can deviate 200% and 80% respectively (time of rise 25%).
For further investigation only the model accuracy is taken into account; the predictions of the
time of rise, peak discharge and base time deviate approximately 20% , 28% and 15%
respectively.
For calculation of the total hydrograph another program (HYDROGRAPH) is constructed.
This program calculates the total hydrograph for a certain rainfall depth and rainfall distribu-
tion. The basic characteristics of the unit hydrograph are assumed to be normally distributed.
The program generates the required input data from its distributions. A set of 75 hydrographs
·can be simulated.
The model is applied to the river Putih in Java. Calculations show that the accuracy of the
predicted maximum discharge depends highlyon the rainfall distribution. The rainfall depth
has no influence on the accuracy.
The model HYDROGRAPH cao be applied to every river for which the GAMA equations are
valid and shows the accuracy of prediction.
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1. INTRODUCTION

Hydrologie models for flood estimation can be classified as deterministic, parametric,
stochastic or a combination of these.
A deterministic model would be one arrived at through consideration of the underlying
physical relationships and would require no experimental data for its application.
A parametrie model may be thought of as deterministic in a sense that once model parameters
are determined, the model always produces the same output from a given input. On the other
hand, a parametrie model is stochastic in the sense that parameter estimates depend on
observed data and will change as the observed data changes.
A stochastic model is one whose outputs are predictabie only in a statistical sense. With a
stochastic model, repeated use of a given set of model inputs produces output that are not the
same but follow certain statistical pattems.
Because the input for these models mostly have stochastic features it is expectable that the
output is also stochastic. From sueh an output judgement can be given on the accuracy of the
model prediction.
The aim of this study is focussed on the accuracy of flood estimation for the rivers of Java by
means of the GAMA I unit hydrograph. To determine the accuracy of this empirical,
parametrie model some stochastic elements are added. These elements find their origin in
errors of various kind. The errors include measurements errors, data transmittal errors,
processing errors and others. In this analysis it is assumed that the errors are random errors
following the normal distribution.
Research on the model derivation is required to locate sourees of errors. Therefore the model
will be described first. From here the accuracy of the model parameters is determined. For this
purpose use is made of the mean value approach next to the monte carlo simulation technique.
Because of its empirical character the accuracy consists of the model accuracy and the
accuracy of the measured data, which are used in the model derivation.
Finally the model with its stochastic model parameters is applied to estimate flood with a
certain return period for the river Putih in East-Java.
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- N Number of existing rain gauges
- SIM: Symmetry factor
- SAverage main stream slope.

The catchment characteristics are discussed in appendix IX.

2.2.4 Rainfall distribution

For a workable application of the unit hydrograph theory, hourly rainfall data are
needed. These are derived from the 24-hourly rainfall data.
To determine the duration of a storm, use is made of "depth-area-duration relationships" by
Melchior. Then a hourly distribution is assumed according to ECI (Engineerings Consuttanrs
Inc.), which showed good results for Java.

2.2.5 Discharge

The determination of the relationship between the waterlevel and the discharge at a
certain gauging site is done by plotting a rating curve. For each catchment a rating curve is
determined graphically.
To determine the magnitude of aflood with a specified return period, analysis of flood
frequency is needed. Therefore floods for analysis need to be selected.
Af ter inspeetion of the available record of each catchment the highest water levels are
determined. By means of rating curves these water levels are transformed into discharges.
Then the series are characterized statistically. After plotting on probability paper, statistical
tests of goodness of fit are applied.
The frequency equation which can commonly be applied is:

XT = X+K*S (2-2)

In which
- XT-X
- K
- S

Discharge with T years ret~rn period [m3/s]
Mean discharge [m3/s]
Frequency factor, depending on the type of the distribution
Standard deviation.

2.2.6 Unit hydrograph

Unit hydrographs can be derived from the selected hydrographs and the corresponding
rainfall. A unit hydrograph of 1 mm effective rainfall within 1 hour is selected. Base flow is
separated from the total hydrograph by the straight line method. Collins's iterative method is
used to derive the unit hydrograph from the selected hydrographs.
For each catchment some unit hydrographs are derived. By averaging those the representative
unit hydrograph for each catchment is determined.
Based on the result of that derivation the three basic characteristics of the unit hydrograph
could be determined for each catchment. Those are:

- Time of Rise (TR)
- Peak Discharge (QP)
- Base Time (TB).
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2.2 Determination of the measured unit hydrograph

2.2.1 Introduction

To determine a unit hydrograph for each catc ment. measurements on rainfall and
discharges over a considerable long period are required.
The rainfall network in the selected catchments will be discussed in order to check the
reliability of the rainfall data. The frequency of rainfall will be determined $0 that a proba-
bility of occurence of a certain rainfall depth cao be calculated. The hourly distribution, on
which the unit hydrograph is based, will also be discussed.
Measurements on discharge and derivation of the frequency curves are discussed briefly.
Finally the measured unit hydrograph is determined.

2.2.2 Rainfall network

Rainfall depth measured at a certain point is expected to represent the rainfall of a
certain area. In tropical area's rainfall varies greatly from place to place. Therefore more
rainfall stations are needed. The number of stations required is calculated with Kagan's
Method.
With a specified error of 5 and 10% (the error introduced by averaging point rainfall) the
number of required rainfall stations is determined. It cao be concluded that the number of
excisting stations in each catchment is smaller than the minimum demanded by Kagan's
principle. Therefore all excisting stations will be used for further analysis.

. With the number of excisting stations. Kagan's specified error for each cathment varies from
10 to 60%.

2.2.3 Rainfall freguency

The frequency curve is determined in the following way:
In a year a maximum rainfall value of a certain station is determined. Then for each
catchment the values are averaged.
This is done for all the years of which data are available.
After combinations of its statistles. the series are plotted on probability paper. Tests of
goodness of fit are applied and a frequency curve is constructed for each catchment.

To estimate the average rainfall for each catchment the maximum rainfall occuring at one
rainfall station is multiplied bya reduction coefficient B.
A relationship for B is determined as a function of some catchment characteristics. This is
done by meaos of regression analysis. Therefore measured B values for each catchment are
required. To determine these values the average catchment rainfall is derived from the
maximum catchment rainfall by means of Thiessen's Polygon. Then B is calculated by dividing
the average value by the maximum value. This is done for every catchment and every year.
The required B value for regression is averaged over the years of measurements.
The result of the regression aoalysis:

B = 1.5518 *A -0.1491 *N-O.2725 *5IM-0.0259 *5 -0.0733
(2-1)

In which:
- A :Catchment area [km2]
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- N Number of existing rain gauges
- SIM: Symmetry factor
- SAverage main stream slope.

The catchment characteristics are discussed in appendix IX.

2.2.4 Rainfall distribution

For a workable application of the unit hydrograph theory, hourly rainfall data are
needed. These are derived from the 24-hourly rainfall data.
To determine the duration of a storm, use is made of "depth-area-duration relationships" by
Melchior. Then a hourly distribution is assumed according te ECI (Engineerings Consultants
Inc.), which showed good results for Java.

2.2.5 Discharge

The determination of the relationship between the waterlevel and the discharge at a
certain gauging site is done by plotting a rating curve. For each catchment a rating curve is
determined graphically.
To determine the magnitude of aflood with a specified return period, analysis of flood
frequency is needed. Therefore floods for analysis need to be selected.
After Inspeetion of the available record of each catchment the highest water levels are
determined. By means of rating curves these water levels are transformed into discharges.
Then the series are characterized statistically. After plotting on probability paper, statistical
tests of goodness of fit are appHed.
The frequency equation which can commonly be applied is:

XT = X+K*S (2-2)

In which
- XT-X
- K
- S

Discharge with T years return period [m3/s]
Mean discharge [m3/s]
Frequency factor, depending on the type of the distribution
Standard deviation.

2.2.6 Unit hydrograph

Unit hydrographs can be derived from the selected hydrographs and the corresponding
rainfall. A unit hydrograph of 1 mm effective rainfall within 1 hour is selected. Base flow is
separated from the total hydrograph by the straight line methodeCollins's iterative method is
used to derive the unit hydrograph from the selected hydrographs.
For each catchment some unit hy~rographs are derived. By averaging those the representative
unit hydrogtaph for each catchment is determined.
Based on the result of that derivation the three basic characteristics of the unit hydrograph
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- Time of Rise (TR)
- Peak Discharge (QP)
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The recession limb of the unit hydrograph is estimated by:

(2-3)

Discharge at t hours af ter peak discharge [m3/s]
Peak discharge [m3/s]
Time passed since peak discharge [hours]
Storage coefficient [hours].

With Collin's method the storage coefficient is determined.
Because the Qt function decreases assymptotically to zero it is stated that from the time TB-l
to TB the Qt function decreases linearly to zero.
For a graphical presentation see Fig. 2-1.

OP

TR
TB

Fig. 2-1 Unit hydrograph characteristics

2.3 Results of the regression analysis

By means of regression analysis relations are found between the catchment characteris-
tics and the flow elements.
The results of this analysis are:

(2-4)

OP = 0.1836 *A 0.5886 *JNO.2381*TR -0.4008 (2-5)
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3. ACCURACY OF THE MEASUREMENTS

3.1 Introducûon

To detennine the accuracy of flood estimation by the GAMA I unit hydrograph
method (GAMA method) the derivation of it should be analyzed step by step. In every step
assumptions are made and errors introduced. From the first assumptions to the final result the
propagation of those errors detennine the reliability of the method.
In general, the most likely errors in data used for unit hydrograph derivation according to
Laurensons and O'Donnel (1969) are those due to :

- Assumption of a uniform loss rate
- Over or under estimation of the total storm rainfall
- Errors in the discharge rating curve, especially due to extrapolation of th is curve
- Erroneous base flow seperation
- Lack of synchronization between the rainfall and
streamflow record

- Lack of synchronization between the rainfall and
streamflow records of different stations on the catchment.

Next, measurements on required data also involve errors, which are mainly caused by:
- Instrumental inaccuracy
- Human observation.

These errors have to be accepted.
The first assumption made in the derivation of the GAMA method is the statement that the
data used are assumed to be the best available. From this point this study starts.
The determination of the measured unit hydrograph will briefly be discussed. Because of the
many assumptions made on stochastic processes, many errors are involved. Therefore only a
few remarks are put to the steps taken. Analysis of the propagation of errors is not made
because it would show high rates of variability in the measured unit hydrograph.
Next, the measurement of the catchment characteristics is discussed for this also includes a
souree of errors.

3.2 Measured unit hydrograph

Rainfall network
The excisting rainfall network in Java is not reliable. The number of excisting rainfall stations
is lower than required by Kagan's principle. If this principle may be used in Java then it is
shown (Sri Harto 1985) that the specified error for each catchment varies from 10 to 60% of
the true value.

Rainfall frequency
The frequency curve constructed for each catchment is dependent upon the accuracy of the
rainfall measurements at all the rainfall stations in the catchment. Because all the available
stations are used , both manual and automatic, the risk of poor measurement is high.
To ave rage the maximum rainfall a reduction coefficient B is used. This coefficient is related
to some catchment characteristics, as is shown in chapter 2. The accuracy of B is dependent
upon:

- Accuracy of measured B and catchment characteristics
- Accuracy of the regression.
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For every hour the rainfall depth is calculated. The effective rainfall depth is found af ter
substraction of the ,-index. For the last 4 hours the ,-index exceeds the rainfall depth and the
effective rainfall depth is set to zero.
In this case 3 hydrographs can be constructed by multiplying the effective rainfall depths by
the peak discharge QP. The sum of the 3 hydrographs plus the base flow QB gives the total
hydrograph.
This procedure can easily be pursued by means of a spreadsheet program. A plot of the
hydrograph is given in Fig. 2-2.
The maximum discharge seems to be 38.64 m3/s.

Hydrograph at mouth of Putih
for 105 rrm rainfall

40
r-o
Cl)......
M
E 30......
.ç;-Q)
.~ 20
+-'.._
0

10

o~~~~~~~~~~~~~~~~~-L~~-L~~
o 5 10 15

time in [hOLrs]
20 25 30

Fig.2-2 Example of a hydrograph at the mouth (muara) of the kali Putih.
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The latter showed (Sri Harto 1985) a low multiple correlation coefficient. It is concluded by Sri
Harto that B is not useful in estimating the average rainfall of a catch ment.
Further research on the accuracy of B will therefore not be performed in this study.

Rainfall distribution
It is very difficult to determine the hourly distribution needed for the unit hydrograph. By
assuming several distributions the effect on the hydrograph characteristics can be determined.
Then a coefficient of variation can be determined. In th is stage this will not be analysed.
However the influence of several distributions on the accuracy of the total hydrograph will be
discussed in chapter 6.

Discharge
For discharge measurements the same type of errors occurs as in rainfall measurements.
Besides the accuracy of the rating curves are of importance.
The frequency equation derived,shows a deviation around the mean discharge.

Unit hydrograph
The selected hydrographs for each catchment are transformed into unit hydrographs by means
of Collins's methode The unit hydrograph of the last iteration applied differs less than 5% from
the previous iteration result.
For each catch ment some 4 to 14 unit hydrographs are derived.
Af ter that the TR. QP and TB are averaged for each catchment. Of interest for the accuracy is
the standard deviation of the derived unit hydrographs for each catch ment.
The standard deviation is calculated according to "van Soest (1985)" as :

a = 1 n

~
-2-- (Xi-X)n-l -1

(3-1)

In which
- n Number of measured values
- Xj Measured value
- x Mean value, from

_ 1 n
X = -~Xint:t

Because of the small number of measurements the factor 1/n-l is used instead of l/n.
Results of these calculations are shown in Tab. 3-1 •

3.3 Catchment characteristics

To measure the various catch ment characteristics use is made of topographic maps
(scale 1:50.000) with the obtainable maximum accuracy, Other instruments used are planimeter
and chartometer. Errors in measurements are dued to:

- Human observation
- Inaccuracy of topographic maps
- Inaccuracy of the instruments.

The inaccuracy of the maps causes the main errors. It is difficult to estimate a coefficient of
variation on the measurements of catch ment characteristics. Therefore a value is initially
assumed in th is study. The influence of different values on the results will be examined.
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(4-6)

(4-7)
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~aylor series of Sjand öSj/öA, ÖS/&X,ös/öS and ös/öö at the optimum where E = 0 show with
x -x+ex:
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&Si (A' I E' ê ')

&& ,u"

Substituting these Taylor series in the equations (4-4) to (4-8) results in:
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4. DERIVATION OF GAMA-EQUATIONS

4.1 Introducûon

By means of multiple regression analysis. equations for TR. QP. TB and K are derived.
For this purpose computer software is available like SAS and SPSS. Because of some limitations
involved in these programs a new program is written in Turbo Pascal 5.5 .This program. called
"REGRES"(see appendix 1). is based on the Gauss-Newton non-linear regression method,

which will be discussed here.
The program has been tested by comparing the calculated regression coefficients of REGRES
with those done by SPSS and SAS.
The results will finally be discussed.

4.2 Gauss-Newton non-linear regression

To discuss the Gauss- Newton algorithm the following function will be used for

example:

Y = A.Xl Cl.X2 s.X3-1 (4-1)

This equation has the same features as the equation for QP.
The dependent variabIe is Y and the independent variables are Xl , X2 and X3. The regression
coefficients A. a. 8 and 6 will be calculated for n measured values of the variables.
The error function:

n
E - ~ (y -A*Xl Cl*X2s*X3 -1)2- i i i i

-1

(4-2)

In which subscri pt i represents a measured value.
To minimize the error function the derivatives of the function need to be zero. like:

6E =0, 6E =0, 6E =0 and 6E =0
6A 6« 68 66

Assume:

(4-3)

Substitution in (4-2) and the derivatives results in:

(4-4)

6E
6A

n

=~
(4-5)
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n 3s1

3CE =~ 2S1-- = 0
3CE

3E
n 3s1

38 =E 2s1 38 = 0
1-1

3E
n 3s1

ÖÖ =~ 2S1"66 = 0

(4-6)

(4-7)

(4-8)

~aylor series of Sj and ös/öA, ös/&t, ös/ö8 and ös/M at the optimum where E = 0 show with
x"x+ex:

3s1 (A' '8' 3') =3A ' CE, ,

3s1 (A' 'D' ë ')6« ,CE,J;),u

ÖS1(A' '8'3')ö8 ' CE, ,

ÖSi (A' 'j!,' ë ')3ö ' CE, ,

Substituting these Taylor series in the equations (4-4) to (4-8) results in:

12



This multiplication shows after neglecting the second derivatives and squared parts:

In matrix notation these equations can easily be solved for eA' eo' eS and e~.
The results :

eA = - 1 t, (1 691 )
n ( 691 691) • .1 366

91

~ 66 6A

1
n

( 1 6si )e. = *kn
( 6Si~)

3" 6~ Si

~ 6~ 6«

(4-9)

(4-10)

(4-11)

(4-12)

(4-13)

(4-14)
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4.3 Results

The program "REGRES' calculates the values of the regression coefficients in the
optimum (Error function minimal), the matrix of covariances cov(z) and the correlation
matrix.
Calculations show that the optimum is reached within 30 iterations.
The output for TR. QP. TB and K are shown in Tab. 4-1 to 4-4. For the basic equations see
§2.3.

Tab. 4-1 Time of Rise

Y = B * ( Xl ) 3 +C *X3 +D
lOOX2

Calculation of the regression coefficients for TR

Iteration step 17
B 0.431906
C 1.065065

eB: 0.000001
eC: -0.000027

D 1.283399 eD: 0.000064
sum of squares of the residual: 40.954657

The covariance matrix cov(z)

B C D
0.002371 0.001864 -0.008888
0.001864 0.101239 -0.072839
-0.008888 -0.072839 0.135287

The correlation matrix of the parameter estimates

B C D
1.000000 0.120321 -0.496269
0.120321 1.000000 -0.622386
-0.496269 -0.622386 1.000000

End of computation

Tab. 4-2 Peak discharge

The calculation of the regression coefficients for QP

Iteration step 29
A 0.170042 eA
a : 0.636760 ea

0.000000
0.000000
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(4-21)

(4-22)

The iteration procedure is started in the initial values (A1, «1' 81, ö1 ). The values for eA' ea,
eS and e~ are calculated. These values show deviations from the optimum coefficient values.
The next iteration step uses the adapted coefficients:

A2 - Al + eA
~ - «1 + ea
82 - 81 + eS
ö2 - ö1 + e~.

In each iteration eA' ea, eS and e~ are calculated. Those values need to converge to zero, the
optimum.
The iteration procedure now continues till the values of eA' ea, eS and e~ are smaller than the
desired accuracy.

Of interest for this study are the standard deviations of the regression coefficients.
They are estimated by means of the expected mean of sum of squares due to regression, c?- .
This is the variance of the derived equation due to the regression:

n
02 = 1 ~ (Yi-A••Xli.·.X2iS·.X3i-a·)2

n-p f:"{
(4-23)

In which
A• • 8· dJ:.· . ff· .- ,« , an u are the optimum coe IClents

- nis the number of measurements
- p is number of regression coefficients, in this case 4.

The estimation of the matrix of covarianees now is defined as (Haan 1977):

Cov (z) = 02 (A TA)-l (4-24)

The varianee of Zj is equal to the covarianee of Zj with itself and is therefore a2 times the ith

diagonal element of (ATAr1 • The covarianee of Zj with Zj is c?- times the i,jth element of
(ATAr1•

The program "REGRES" is based on the theory described. Details of the program are discussed
in appendix I.
In case of 3 and 5 regression coefficients to be calculated, like for the TR and TB, the same
program can be used after a few adaptations.
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matrix.
Calculations show that the optimum is reached within 30 iterations.
The output for TR, QP, TB and K are shown in Tab. 4-1 to 4-4. For the basic equations see
§2.3.

Tab. 4-1 Time of Rise

Y = B* ( Xl ) 3 +C*X3 +D
lOOX2

Calculation of the regression coefficients for TR

Iteration step 17
B 0.431906
C 1.065065
D 1.283399

eB: 0.000001
eC: -0.000027
eD: 0.000064

sum of squares of the residual: 40.954657

The covariance matrix cov(z)

B C D
0.002371 0.001864 -0.008888
0.001864 0.101239 -0.072839
-0.008888 -0.072839 0.135287

The correlation matrix of the parameter estimates

B C D
1.000000 0.120321 -0.496269
0.120321 1.000000 -0.622386
-0.496269 -0.622386 1.000000

End of computation

Tab. 4-2 Peak discharge

The calculation of the regression coefficients for QP

Iteration step 29
A 0.170042 eA
a : 0.636760 ea

0.000000
0.000000
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8 : 0.207035 eS : 0.000000
6 : 0.399456 e~ : 0.000000
Residual sum of squares: 874.812248

The covarianee matrix cov(z)

A a 8 6
0.007089 -0.008060 0.001575 -0.005151
-0.008060 0.018304 -0.011277 0.007156
0.001575 -0.011277 0.010501 -0.001073
-0.005151 0.007156 -0.001073 0.011150

The correlation matrix of the parameter estimates

A a 8 6
1.000000 -0.707574 0.182491 -0.579346
-0.707574 1.000000 -0.813404 0.500881
0.182491 -0.813404 1.000000 -0.099171
-0.579346 0.500881 -0.099171 1.000000

End of computation

Tab. 4-3 Base Time

The calculation of the regression coefficients of TB

Iteration step 34
E 28.753496 eE 0.000085
e 0.092441 ee 0.000000
x 0.118453 eK 0.000000
À 0.300227 e). 0.000000
v 0.852078 ev 0.000008
Residual sum of squares: 418.726940

The covarianee matrix cov(z)

E e x À v
80.631114 0.018228 -0.128597 0.211741 7.044342
0.018228 0.003186 -0.001158 -0.002923 0.004954
-0.128597 -0.001158 0.001119 0.001134 -0.005970
0.211741 -0.002923 0.001134 0.023216 -0.025313
7.044342 0.004954 -0.005970 -0.025313 0.814912
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5. ACCURACY OF THE GAMA EQUATIONS

5.1 Introduction

The accuracy of the GAMA equations is dependent upon the accuracy of the various
derivation steps, like the accuracy of the regression analysis. Errors made in different stages
propagate to the final equation. A way to locate errors and to schematize the derivation process
is to construct a fault tree for each equation.
The propagation of errors is determined both analytical and numerical.
The mean value approach is an analytical method which is used in case of analytical relation-
ships. The principles of this method are discussed in appendix IV.
The Monte Carlo simulation technique is an numerical method which is used in case there are
no analytical relationships present and is used next to the mean value approach for comparison.
The principles of this method are discussed in appendix 11.
The Gama equations for QP (Peak Discharge) and TB (BaseTime) depend both on TR (Time
of Rise). This means that the prediction of TR influences the prediction of QP and TB.
Therefore the accuracy of TR prediction is discussed first.

5.2 Time of Rise

5.2.1 Accuracy of regression coefficients (step 1)

The fault tree for TR is included in the fault tree for QP in Fig. 5-1 . Every box
indicates the error of the parameter in it. From the roots to the top of the tree the errors are
calculated step by step.
By means of regression analysis B,C and D are calculated. So far this is done by assuming that
the varia bles TR ,L ,SF and SIM have deterministic values.
If all 28 measured TR's are explained by the regression line then the regression variance, ~,
would be zero and therefore also the standard deviations of B,C and D.
It is shown in previous chapters that this is not the case and B,C and D are calculated having a
mean value and a standard deviation. Besides they are strongly correlated.
It can be stated that these standard deviations are due to the variability of the data used. This
will be indicated as error 1 (see also Kevelam 1984).
By assuming stochastic distributions of the variables another kind of standard deviation of B,C
and D is introduced. This is indicated as error 2 and is dued to the inaccuracy of the measured
variables.

20



Some remarks on the results:
_ It is clear that the regression coefficients derived are slightly different from those

derived in the Gama methode This can be explained by the multitude of data. which
causes some errors in transmission (typing).
Besides. the equations for QP.TB and K can be transformed into loglinear equations
on which linear regression analysis can be applied, which gives slightly different
results.

- It is shown by Haan (1977) that the number of decimal places of measured values
influences the calculations of the regression coefficients.
Because the measurements can not be performed so accurately it is not useful to
express the regression coefficients with 4 decimal places.

- It is stated that the covariances and correlations are not influenced by minor
differences as discussed.

_ The regression coefficients are in general strongly correlated. This means they are
not independent.

The standard deviation of the regression coefficients of all equations are derived from the
matrices of covariances, resulting in:

- For TR: B (0.43 : 0.0487)
C ( 1.0665: 0.3182)
D ( 1.2775: 0.3678)

- For QP: A ( 0.1836: 0.0842)
Cl ( 0.5886: 0.1353)
8 ( 0.2381: 0.1025)
Ö ( 0.4008: 0.1056)

- For TB: E (27.4132: 8.9792)
e ( 0.1457: 0.0565)
x ( 0.0986: 0.0335)
À ( 0.2574: 0.1524)
v ( 0.7344: 0.9028)

- For K : F ( 0.5617: 0.1870)
Q ( 0.1798: 0.0354)
t ( 0.1446: 0.0531)
'" ( 1.0897: 0.4264)
(1) ( 0.0452: 0.2161).
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5. ACCURACY OF THE GAMA EQUATIONS

5.1 Introduction

The accuracy of the GAMA equations is dependent upon the accuracy of the various
derivation steps, like the accuracy of the regression analysis. Errors made in different stages
propagate to the final equation. A way to locate errors and to schematize the derivation process
is to construct a fault tree for each equation.
The propagation of errors is determined both analytical and numerical.
The mean value approach is an analytical method which is used in case of analytical relation-
ships. The principles of this method are discusséd in appendix IV.
The Monte Carlo simulation technique is an numerical method which is used in case there are
no analytical relationships present and is used next to the mean value approach for comparison.
The principles of this method are discussed in appendix 11.
The Gama equations for QP (Peak Discharge) and TB (BaseTime) depend both on TR (Time
of Rise). This means that the prediction of TR influences the prediction of QP and TB.
Therefore the accuracy of TR prediction is discussed first.

5.2 Time of Rise

5.2.1 Accuracy of regression coefficients (step 1)

The fault tree for TR is included in the fault tree for QP in Fig. 5-1 • Every box
indicates the error of the parameter in it. From the roots to the top of the tree the errors are
calculated step by step.
By means of regression analysis B,C and D are calculated. Sa far this is done by assuming that
the variables TR ,L ,sF and SIM have deterministic values.
If all 28 measured TR's are explained by the regression line then the regression varianee, ;.,
would be zero and therefore also the standard deviations of B,C and D.
It is shown in previous chapters that this is not the case and B,C and D are calculated having a
mean value and a standard deviation. Besides they are strongly correlated.
It can be stated that these standard deviations are due to the variability of the data used. This
will be indicated as error 1 (see also Kevelam 1984).
By assuming stochastic distributions of the variables another kind of standard deviation of B,C
and D is introduced. This is indicated as error 2 and is dued to the inaccuracy of the measured
variables.
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OP

Fig. 5-1 Fault tree for QP

Deterrnination of error 2:
The measured TR's are derived from the UH analysis in §3.2. Table 3.1 shows the mean values
and the standard deviations for each catchment.
Research on the distribution of the TR values of each catch-
ment indicates in most cases a norrnal distribution. In some cases the number of TR values is
too small to deterrnine a distribution. It is assumed that a norrnal distribution represents best
the TR.
This is also assumed for the independent variables L,SF and SIM. The varia bles are indepen -
dent because the accuracy of measurement of one varia bIe has no influence on the accuracy of
another varia bIe. The deviations of these variables are unknown but it is reasonable to assume
they are smal1in comparison with TR.

The regression coefficients are ca1culated by means of the program "SIMCO". This program
generates variables from their distribution and ca1culates the optimum values for B,C and D.
The generation of variables is based on the Monte Carlo simulation. In appendix 111SIMCO is
discussed.
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It can be seen that the mean values are more influenced than the standard deviations. The
latter show very little fluctuation. It is remarkable that the standard deviations tend to decrease
as the coefficients of variation increase.
The mean values approximate the GAMA values till 10%variation.
From these figures it is concluded that for the coefficients of variation less than 10% the
standard deviations are assumed constant (thus a error of 10%of the measured variabie is
accepted).
Another point of interest is the distribution of the simulated B,C and D. In case of 150
simulations the values are ranged in successive intervalls. These histograms are shown in Fig.
5-4, in which also the equations for normal distributions are projected. It is reasonable to
assume that the regression coefficients B,C and 0 are normally distributed.

Distribution coefficient B,C,D
After 150 sirrutations
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Determination of total error:
The total standard deviation of B,C and 0 due to error 1 and error 2 is calculated by squared
propagation:

(5-5)

The results are shown in Tab. 5-2.
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The influence of VL'VSF and VSIM on the calculation of the mean values and the standard
deviations of the coefficients is shown in Fig. 5-2 and 5-3.
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Fig. 5-2 Mean value function of regression coefficients
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It can be seen that the mean values are more influenced than the standard deviations. The
latter show very Iittle fluctuation. It is remarkable that the standard deviations tend to decrease
as the coefficients of variation increase.
The mean values approximate the GAMA values till 10% variation.
From these figures it is concluded that for the coefficients of variation less than 10% the
standard deviations are assumed constant (thus a error of 10% of the measured variabie is
accepted).
Another point of interest is the distribution of the simulated B,C and D. In case of 150
simulations the values are ranged in successive intervalIs. These histograms are shown in Fig.
5-4, in which also the equations for normal distributions are projected. It is reasonable to
assume that the regression coefficients B,C and D are normally distributed.

Distribution coefficient B,C,D
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Determination of total error:
The total standard deviation of B,C and D due to error 1 and error 2 is calculated by squared
propagation:

(5-5)

The results are shown in Tab. 5-2.
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Tab. 5-2 Total standard deviation

~ 0'1 I 0'2 0'1+2

B 0.43 0.0487 I 0.1527 0.1603I

C 1.0665 0.3182 I 0.8761 O. 321I

I

D 1.2775 0.3678 I 0.5715 0.6796
I

It is clear that error 2 has the biggest influence on the total standard deviation.
For both error 1 and 2 the covariance and correlation matrix is determined. To calculate the
total covariance matrix no analytical solution is available such as 5-5:

By means of Monte Carlo simulation the total correlation matrix is derived from the correla-
tion matrices of error 1 and 2 in e following way:

- Choleski decomposition of the correlation matrices.
Because in the Monte Carlo simulation values are randomized from a uniform
distribution with ....-0 and 0'-1 the correlation matrices need to be adjusted. This is
done by means of the Choleski decomposition (van Kan). The method of Choleski
decomposition is discussed in appendix V. Besides a program is written for Choleski
decomposition.

- Generation of values for B,C and D.
- Calculation of the correlation matrix.

This procedure is pursued by the program "TOTVAR" (appendix VI) in which the number of
simulations is varied from 50 to 2000.
The total correlation matrix after a large number of simulations is:

B C D

B 1 -0.0279 -0.4933

C -0.0279 1 -0.6849

D -0.4933 -0.6849 1

To check the program the total variances of B,C and D are simulated and compared with the
variances derived from Tab. 5-2. For all three the differences between both results are less
than 1%.
The total covariance matrix is derived from the total correlation matrix:

B C D

B 0.0257 -0.0042 -0.0537

C -0.0042 0.8688 -0.4338

D -0.0537 -0.4338 0.4619
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The variances of L,SF and SIM are replaced by the coefficients of variation as :

OOX- VX* ....X·
Again the coefficients of variations are assumed constant.
Substituting the derivatives, the variances and covariances in (5-7) and rearranging the
equation gives:

(5-13)

Substituting numeric values gives OOlR as function of L,SF and SIM:

(5-14)

For the 28 catchments used, counts:
5.5 < L < 137 [km]
0.434 < SF < 0.656
0.14 < SIM < 3.89.
Plots are made of TR, OOTRand VTRas function of the stream length L. Fig. 5-5, 5-7 and 5-9
on the next pages show the results in case SF is constant (0.55) and SIM is 0.1, 1.1,2.1 and 3.1.
Fig. 5-6, 5-8 and 5-10 show the results in case SIM is constant (0.65) and SF is 0.4, 0.5, 0.6
and 0.7.
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Tab. 5-3 Accuracy of TR

Ct ~ VTR (%)
GAMA I MC Á(%) MV1 MV I MC Á(%)I I

1 1.43 I 1.45 1.84 23.95 41.88 I 42.9 2.44! !
2 6.87 I 6.75 1.71 15.72 46.26 I 46.01 0.54! !
3 3.08 i 3.05 1.05 13.63 38.8 I 38.3 1.29l I

4 2.11 I 2.10 0.54 14.47 21.64 r I 22.13 2.26I I

6 3.83 I 3.86 0.83 9.6 15.84 I 16.18 2.15! !
7 2.96 I 2.98 0.80 10.16 23 ! 22.94 0.26!

8 2.80 i 2.82 0.83 11.09 26.43 I 26.96 2.01l I

10 3.63 I 3.63 0.24 10.43 17.61 I 18.07 2.61I I

11 3.45 I 3.41 1.08 13.28 38.46 I 39.29 2.16I !
12 1.82 I 1.81 0.46 16.28 26.95 I 26.04 3.38! I

13 11.70 I 11.93 1.96 14 31.53 I 31.67 0.44! I

14 6.54 I 6.55 0.22 11.9 25.29 I 26.72 5.65l I

15 4.25 I 4.30 1.25 10.44 19.18 I 19.57 2.03I 1
16 1.58 I 1.55 2.13 20.81 35.07 I 35.35 0.80I I

17 2.38 I 2.40 0.55 13.44 20.74 I 21.36 2.99! I

18 2.11 I 2.12 0.53 13.41 23.16 I 22.95 0.91I I

19 3.05 I 3.06 0.32 11.45 18.59 I 18.86 1.45I 1
20 4.56 I 4.56 0.11 9.08 16.93 I 17.47 3.19! I

21 1.64 i 1.64 0.35 19.11 31.53 I 31.9 1.17! I

22 6.83 I 6.87 0.66 11.91 25.4 I 25.83 1.69I I

23 3.08 I 3.11 0.74 10.30 24.83 I 25.68 3.421 1
24 1.73 I 1.73 0.32 17.7 28.76 I 28.81 0.17! !
25 1.63 I 1.62 0.52 20.41 34.44 I 33.82 1.80I I

26 1.77 I 1.78 0.24 17.76 28.45 I 27.66 2.78I I

27 2.05 I 2.06 0.36 13.83 22.44 I 21.68 3.39! l
28 2.16 I 2.17 0.50 14.32 21.62 I 21.75 0.601 !
29 2.13 I 2.11 0.71 13.19 20.37 I 20.3 0.34I I

30 3.21 I 3.25 1.28 10.69 16.81 I 16.64 1.01I I

MV1
MV
MC

• model accuracy (error 1 only)
mean value approach
Monte Carlo simulation
difference between MV and MC.

•
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Monte Carlo simulation

The theory of the Monte Carlo simulation technique is a1ready discussed. In appendix
111the program ":SIMCO "is printed. This program generates values for L.sF,SIM and
B,C,D. Because the variables are independent, generation of values is aIso independent. The
coefficients on the contrary are correlated (see correlation matrix §5.2.1). By applying the
Choleski decomposition on the correlation matrix, a matrix is obtained which contains
multipliers for the generated values with N(O:l).
SIMCO calculates the mean values, standard deviations and coefficients of variation for
TR from histograms.

First the used catchments are simulated. For each catchment 1000simulations are applied. The
simulated mean values for TR and the coefficients of variations are shown in Tab. 5-3 next to
the results obtained with the meao value approach.
Of importance for further study is the accuracy of TR due to error 1 only and is printed in the
sth column.

The simulated mean values for TR (J.'TR) differ very slightly from the values calculated with
the GAMA equation for TR.
For the VlA results are also reassuring.
It can be stated that the mean value approach gives good results; It is correct, for TR, to
assume that substituting the meao values of the independent variables gives the mean value for
the dependent variabie.
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Tab. 5-3 Accuracy of TR

Ct ~ VlA (%)
GAMA I MC 4(%) MV1 MV I MC 4(%)I l

1 1.43 I 1.45 1.84 23.95 41.88 ! 42.9 2.44I
2 6.87 i 6.75 1.71 15.72 46.26 I 46.01 0.54I I

3 3.08 i 3.05 1.05 13.63 38.8 I 38.3 1.29I I

4 2.11 i 2.10 0.54 14.47 21.64 '! 22.13 2.26I

6 3.83 I 3.86 0.83 9.6 15.84 ! 16.18 2.15I

7 2.96 I 2.98 0.80 10.16 23 i 0.26I l 22.94

8 2.80 I 2.82 0.83 11.09 26.43 I 26.96 2.01I I

10 3.63 I 3.63 0.24 10.43 17.61 I 18.07 2.61I I

11 3.45 i 3.41 1.08 13.28 38.46 i 39.29 2.16I l
12 1.82 i 1.81 0.46 16.28 26.95 i 26.04 3.38I l
13 11.70 i 11.93 1.96 14 31.53 i 0.44: I 31.67

14 6.54 I 6.55 0.22 11.9 25.29 I 26.72 5.65I I

15 4.25 I 4.30 1.25 10.44 19.18 I 19.57 2.03I I

16 1.58 I 1.55 2.13 20.81 35.07 I 35.35 0.80I l
17 2.38 I 2.40 0.55 13.44 20.74 I 21.36 2.99I l
18 2.11 i 2.12 0.53 13.41 23.16 i 22.95 0.91I l
19 3.05 I 3.06 0.32 11.45 18.59 I 18.86 1.45I I

20 4.56 I 4.56 0.11 9.08 16.93 I 17.47 3.19I I

21 1.64 I 1.64 0.35 19.11 31.53 I 31.9 1.17: I

22 6.83 I 6.87 0.66 11.91 25.4 I 25.83 1.69I l
23 3.08 i 3.11 0.74 10.30 24.83 i 25.68 3.42I l
24 1.73 I 1.73 0.32 17.7 28.76 i 28.81 0.17I l
25 1.63 I 1.62 0.52 20.41 34.44 i 33.82 1.80I I

26 1.77 I 1.78 0.24 17.76 28.45 I 27.66 2.78: I

27 2.05 i 2.06 0.36 13.83 22.44 I 21.68 3.39: I

28 2.16 I 2.17 0.50 14.32 21.62 I 21.75 0.60I I

29 2.13 I 2.11 0.71 13.19 20.37 I 20.3 0.341 l
30 3.21 I 3.25 1.28 10.69 16.81 I 16.64 1.01I I.

MV1
MV
MC -

model accuracy (error 1 only)
mean value approach
Monte Carlo simulation
difference between MV and MC.
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5.2.4 Kali Putih

For the calculation of the accuracy of TR for several stations in the Kali Putih use is
made of previous investigation by the Gadjah Mada university in Yogyalcarta. At 5 stations in
the river the GAMA hydrograph characteristics are determined.
Now the accuracy of TR is calculated with the mean value approach and Monte Carlo
simulation. The calculations are done with a coefficient of variation for L.SF and SIM of 3%
and with a number of 10.000 simulations.
The results are shown in Tab. 5-4.

Tab. 5-4

No IJ. cs V

GAMA I Me MV i Me MV1
I MV i MeI ! I :

1 1.84 I 1.84 0.49 I 0.50 0.16 I 0.27 i 0.27I ! I :
2 1.89 I 1.88 0.48 I 0.48 0.15 I 0.25 i 0.25I I I :
3 2.25 I 2.25 0.51 I 0.50 0.12 I 0.23 i 0.22I I I :
4 2.21 I 2.22 0.40 I 0.41 0.13 I 0.18 i 0.18! I ! :
5 5.17 I 5.21 1.20 I 1.22 0.12 I 0.23 I 0.23I I I I

Accuracy of TR of Kali Putih

For station number 5 • the mouth of the kali Putih, the distribution of TR is derived from the
histogram. In Fig. 5-11 the result is shown. The normal distribution is weU approximated.
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Fig. 5-11 Distribution TR at the mouth of the river
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The distribution of A,a,8 and {,is derived from the histograms in case of 150 simulations and
shown in Fig. 5-14 and 5-15.
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The calculations are done for coefficients of variation of 0.03 for AR and JN. For TR the
values in table 5.3 are used. These are determined in case of 3% variability of L.SF and SIM.
To show the influence of the variation of the independent variables Fig. 5-12 and 5-13 are
constructed. Herein only V AA and V JN are varied. For V AA and V JN smaller than 10% the
influence on the mean and standard deviation is negligible.
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Fig. 5-12 Mean value function of the regression coefficients
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Fig. 5-13 Standard deviation function
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The distribution of A,ex,8and ö is derived from the histograms in case of 150 simulations and
shown in Fig. 5-14 and 5-15.
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Determination of total error:
By means of squared propagation the total error as result of errors 1 and 2 is calculated. The
results are shown in Tab. 5-6.

Tab. 5-6 Total standard deviation
I

IJ. "1 I "2 "1+2l

A 0.1836 0.0842 I 0.1717 0.1912I

0.5886 0.1353 I 0.2104 0.2501a I

S 0.2381 0.1025 I 0.1719 0.2001I

0.1056
I

6 0.4008 I 0.2056 0.2311
I

The total correlation matrix is calculated by means of the program TOTVAR (Appendix VI).
Af ter a large number of simulations the correlation matrix is:

A a S 6

A 1 -0.6536 0.2077 -0.5162

a -0.6536 1 -0.8421 0.3448

S 0.2077 -0.8421 1 0.0545

6 -0.5162 0.3448 0.0545 1

The total covariance matrix is derived from the correlation matrix and Tab. 5-6 •
The total covariance matrix is:

A a S 6

A 0.0366 -0.0313 0.0079 -0.0228

a -0.0313 0.0626 -0.0421 0.0199

S 0.0079 -0.0421 0.04 0.0025

6 -0.0228 0.0199 0.0025 0.0534

~ Mean value approach

Now different from the procedure pursued in step 2 for the accuracy of TR step 4 for
the accuracy of QP is performed along 2 ways; firstly, only error 1 is included and secondly
both error 1 and 2 are included.
The equation for QP:

QP • A-AR· .JN.-TR. ...

Inwhich:
(5-15)

AR - N(IJ.AR"AR)
JN - N(IJ.JN:"JN)
TR - N(~"lR)'
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Tab.5-7 Accuracy of QP

Ct Ilop (m3/s) Vop (%)

GAMA I MC1 MC2 MV1
I MC1 MC!:)I l

1 3.07
I 2.96 1.84 25.08 I 28.19 207I I

2 5.43 I 5.45 3.11 24.13 i 30.91 217I I
3 7.84 I 7.70 4.44 20.81 i 26.25 159! I
4 27.99

I 25.34 11.76 20.15 i 22.89 180I I
6 24.62 i 22.14 10.83 19.67 i 23.17 176! I
7 21.63 I 19.40 7.57 18.97 I 25.16 195! I
8 18.34 I 16.55 7.71 17.73 I 23.12 163I I

10 38.04 I 33.72 13.44 18.95 I 21.02 168I I

11 10.25 I 9.60 4.77 23.52 I 27.14 181I I

12 4.97 I 4.50 2.17 22.76 I 31.13 167I I

13 28.61 I 26.19 8.45 20.82 I 32.44 290I I

14 56.08 I 50.06 11.18 20.31 I 25.67 336! I

15 18.50 I 16.76 8.18 19.59 I 23.46 185I I

16 21.27 I 19.19 6.66 19.42 I 29.92 226I !

17 50.49 I 44.79 6.05 19.73 i 30.23 329I I

18 19.70 I 17.40 6.16 19.66 i 25.46 179I I
19 53.38 I 47.25 13.75 20.59 i 25.80 217I I
20 50.49 I 44.20 14.18 19.05 I 27.40 218I I

21 11.59 I 10.88 6.61 . 21.98 I 22.83 126I I

22 58.73 I 52.72 19.45 20.26 I 21.66 186I I

23 24.64 I 21.89 9.21 18.36 I 24.72 201I I

24 7.61 I 7.00 3.97 19.72 I 23.30 133I I
25 24.14 i 22.43 9.39 22.46 i 24.96 195I I
26 13.95 I 12.81 5.73 19.72 i 26.14 178I I
27 14.06 i 12.52 5.58 19.58

I 28.26 183I I
28 24.90 i 22.22 8.12 19.49 I 26.32 215I I

29 26.65 I 23.49 8.40 19.79 I 27.10 201I I

30 54.34
I

48.43 15.26 20.08
I

24.74 229I I

MV 1 • Mixed analytical numerical method for case 1
MC1 • Monte Carlo simulation for case 1
MC2 • Monte Carlo simulation for case 2.
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In th is equation VTR cao have 2 values; in case only error 1 is concemed and in case of both
errors (values in Tab. 5-3).
Till now only first order Taylor is applied in the mean value approach. Because of the strong
non-linearity of the equation for QP and the high variances in the coefficients it is reasonable
to assume that higher orders Taylor play a not negligible role.
The second order Taylor is applied in this analysis and the derivation is discussed in appendix
VII.
The problem which arises is th at parts of the extended equation for Vop are not analytical
defined. For example:

a-I

can not be expressed as some kind of {co)variance.
This problem can be solved by means of simulation. The result then is a combined analytical
numerical approach. By means of Monte Carlo simulation th is second order Taylor is deter-
mined. The results of calculation for the 2 cases are shown in Tab. 5-7

5.3.3 Monte Carlo simulation

By means of the program SIMCO the mean values, standard deviations and
coefficients of variation for the 28 catchments are calculated. This is done for both situations.
The results of simulation are shown also in Tab. 5-7.

For situation 2 simulation shows a large shift from the GAMA mean. This means that the
mean value approach may not be applied. Therefore Vop in situation 2 is only simulated.
Large values for VOP are found.

For situation 1 the mean value approach may be applied because of the relative small
difference in I'Qp. However the secend order Taylor is included still the Vop differs from the
simulations. Satisfying results might be obtained by including more Taylor derivatives.
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Tab. 5-7 Accuracy of QP

Ct I-Lop (m3/s) Vop (%)

GAMA I MC1 MC, MV1
I MC1 MC,I !

1 3.07 I 2.96 1.84 25.08 T 28.19 207I !

2 5.43 I 5.45 3.11 24.13 I 30.91 217! !

3 7.84 I 7.70 4.44 20.81 I 26.25 159! !

4 27.99 T 25.34 11.76 20.15 I 22.89 180
-- ! !

6 24.62 1 22.14 10.83 19.67 I 23.17 176! I

7 21.63 I 19.40 7.57 18.97 I 25.16 195! I

8 18.34 I 16.55 7.71 17.73 I 23.12 163I I

10 38.04 I 33.72 13.44 18.95 I 21.02 168I I

11 10.25 I 9.60 en 23.52 I 27.14 181I I

12 4.97 I 4.50 2.17 22.76 I 31.13 167! I

13 28.61 i 26.19 8.45 20.82 I 32.44 290! I

14 56.08 1 50.06 11.18 20.31 I 25.67 336! !

15 18.50 I 16.76 8.18 19.59 I 23.46 185I !

16 21.27 I 19.19 6.66 19.42 i 226I ! 29.92

17 50.49 I 44.79 6.05 19.73 i 30.23 329! !

18 19.70 I 17.40 6.16 19.66 I 25.46 179I !

19 53.38 I 47.25 13.75 20.59 I 25.80 217I I

20 50.49 I 44.20 14.18 19.05 I 27.40 218I I

21 11.59 I 10.88 6.61 21.98 I 22.83 126I I

22 58.73 I 52.72 19.45 20.26 I 21.66 186! I

23 24.64 I 21.89 9.21 18.36 I 24.72 201! I

24 7.61 T 7.00 3.97 19.72 I 23.30 133! !

25 24.14 I 22.43 9.39 22.46 I 24.96 195! !

26 13.95 T 12.81 5.73 19.72 I 26.14 178I I

27 14.06 I 12.52 5.58 19.58 I 28.26 183I !

28 24.90 I 22.22 8.12 19.49 I 26.32 215I I

29 26.65 I 23.49 8.40 19.79 I 27.10 201I I

30 54.34
I 48.43 15.26 20.08

I 24.74 229I I

MV1 - Mixed analytical numerical method for case 1
MC1 - Monte Carlo simulation for case 1
MC2 - Monte Carlo simulation for case 2.
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~ Kali Putih

For 5 stations in the Kali Putih the QP is determined. Calculations are only performed
for case 1. in which only the variability of the data used, is taken into account.
The mean value approach with a simulated second order effect (MV1) gives better results than
the mean value approach without second order infuence. The latter method showed deviations
of 20% from the simulated VOp•
Again the calculations are done with coefficients of variation of AR.JN of 3% and a number
of 10.000 simulations. The results are in Tab. 5-8.

Tab. 5-8 Accuracy of QP of Kali Putih

No IJ. (m3/s) a (m3/s) V (%)

GAMA • MC MV1 • MC MV1
i MC: • :

1 0.55 • 0.53 0.22 • 0.22 39.25 i 41.62! ! !
2 0.64 • 0.61 0.26 • 0.25 40.45 • 41.81: : •

3 0.66 i 0.64 0.27 • 0.27 40.85 • 42.22: : •
4 0.75 • 0.71 0.32 i 0.30 42.29 • 42.53• ! •

• • •5 0.74 • 0.72 0.38 • 0.35 51.40 • 47.69• • •

It seems in case of the Kali Putih that the method MV1 gives better results than in case of the
selected catchments (Tab. 5-7). This is due to the relative small values of the variables; For
large values of AR.JN and TR higher order derivatives in the Taylor Series become of
importance and in the case of high variances in the coefficients they might increase with
regard to first and second order derivatives.
Inspecting the values of VOP it is clear that the lower limit of the 95% confidence interval is
bigger than zero. Simulation shows that less than 5% of the total number give negative values
for QP.
The histogram of the simulation is shown in Fig. 5-17. The normal distribution is again weil
approximated.

Distribution CP
at MJara

-- nonna'r::::::J CP

5000

4000

j 3000

2000

1000

0

:-- "-.,.!~. .

o ().5g 1.21
range Cm3/el

1.83 2.45

Fig. 5-17 Statistical distribution of QP at the mouth of kali Putih
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Fig. 5-20 Mean and standard deviation function for e,A
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Fig. 5-21 Mean and standard deviation function for x,v

f.1e,Oe And 1Lt<,0K and 0x seem to be less influenced by the coefficients of variation than the
others. The OEand 0v even decrease for increasing coefficients of variation.
From these figures it is reasonable to accept an accuracy of measurement of S,RUA and SN of•10% around the mean without influencing the siandard deviations (0 ) of the regression
coefficients.
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Tab. 5-8 Standard deviation due to error 2

• •
1'2 (12 .... (1

E 29.8710 15.0387 27.4132 15.2906

9 0.0460 0.0893 0.1457 0.1343

x 0.1336 0.0563 0.0986 0.0665

À 0.3542 0.2483 0.2574 0.2675

v 0.4896 1.3177 0.7344 .3484

Due to the large variation in TR all the meao values of the coefficients (1'2) except E show a
relative large deviation from the GAMA means (.....). The standard deviations are adapted «1.)

and used for further analysis.
The correlation matrix of error 2 in case of 150 simulations:

E 9 x À v

E 1 0.2314 0.6026 0.6564 0.6903

9 0.2314 1 0.2173 0.1809 0.0504

x 0.6026 0.2173 1 0.6766 0.2125

À 0.6564 0.1809 0.6766 1 0.0766

v 0.6903 0.0504 0.2125 0.0766 1

To check the influence of the values for VS,VRUA and VSN on the regression calculations,
Fig. 5-19, 5-20 and 5-21 are constructed.
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Fig. 5-19 Meao and standard deviation function for E
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25 silTlJlationS
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Fig. 5-20 Mean and standard deviation function for a,i..
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Fig. 5-21 Mean and standard deviation function for x,v

!la,aa And ~,aK and aÀ seem to be less influenced by the coefficients of variation than the
others. The aE and aveven decrease for increasing coefficients of variation.
From these figures it is reasonable to accept an accuracy of measurement of S,RUA and SN of
10% around the mean without influencing the standard deviations (a·) of the regression
coefficients.
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The distributions of the regression coefficients are derived from the histograms in Fig. 5-22,
5-23 and 5-24 ,in which the nonna! distribution ,as aspected, is weIl approximated.,
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The derivatives of TB:

6f E.TR 8.S -IC.RUA1.SN" *8*TR-1
6TR =
6f -E*TR8*S -IC.RUAl*SN"*x*S-l
6s =
6f E* TR8*S-IC*RUA 1*SN' *.1*RUA-1=6RUA
6f E.TR8.S -tt.RUA1*SN".v *SN-1
6SN =
6f = TR 8.S -IC*RUAl*SN"
6E
6f E*TR 8.S -1t*RUAl*SN" *ln (TR)
68 =
6f = -E*TR8*S-IC*RUA1*SN"*ln(S)
6x
6f E*TR 8*S -IC*RUAl*SN".ln (RUA)
6.1 =
6f = E*TR 8.S -IC*RUAl*SN" *ln (SN)
6v

The coefficient of variation for TB, VTB, is derived from (5-20) after substituting the
derivatives and the (co)variances. The result:

V:(v In(SN»z +~1n(TR)0. - ~ln(S) 0. +~ ln(RUA)0&\+~ln(SN) 0B9-21n(TR)ln(S) oh +B B B B
21n(TR)In(RUA)oel +2ln(TR)ln(SN)oe. -2ln(S)ln(RUA)oû -2Jn(S)In(SN)on +

2ln(RUA)ln(SN) °19
(5-27)

This equation only includes taylor series of the first order. Like in the case of QP, higher
orders might be of importance. The second order can be calculated by means of simulation. To
give an indication of the amount of work if higher order Taylor is included the number of
derivatives to be calculated is:

TB QP
1st order: 9 7
2nd order: 45 28
3rd order: 154 78.

For TB also only the second order will be simulated. The results of calculation for the 2 cases
are shown in table 5.10.

Monte Carlo simulation

The simulation procedure is performed for both cases. The number of simulations is
1000. The results are included in Tab. 5-10.
Comparing the results of VTBwith the results of VQP in Tab. 5-7 it is clear that for VTB
MV1 is better approximated by MC1 than for VQP • Next also for TB the simulated mean
values show a negative trend for increasing variances (error 1 and 2).
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The total covariance matrix is derived from Tab. 5-9 and the correlation matrix. The total
covariance matrix is:

E 8 x À v

E 314.4274 0.4666 0.4402 2.8729 21.1661

8 0.4666 0.0212 0.0006 0.0033 0.0133

x 0.4402 0.0006 0.0056 0.0129 0.0108

À 2.8729 0.0033 0.0129 0.0948 -0.0021

v 21.1661 0.0133 0.0108 -0.0021 2.6332

5.4.2 Mean value approach

Step 4 in the fault tree of Fig. 5-18 is calculated along 2 ways. as in the case of QP ;
firstly. only error 1 and secondly both error 1 and 2 are included.
The equation for TB:

In which:

- TR
- S

• N(1lTR : O'lR )
• N(I-'g : O's ) - SN

N(1l : 0'1 : 0'2
• N(27.4132: 8.9792 : 17.7321)
• N( 0.1457: 0.0565: 0.1457)
• N( 0.0986: 0.0335: 0.0745)
• N( 0.2574: 0.1524: 0.3079)
• N( 0.7344: 0.9028: 1.6227)

- E
- 8
- x
- À

- v

O'E8 • ( 0.0182: 0.4666) O'eK
O'EK • (-0.1286: 0.4402) O'ex
O'a. • ( 0.2118: 2.8729) O'ev
O'Ev • ( 7.0445:21.1661) O'KX
O'Xv • (-0.0253:-0.0021) O'KV

The variance of TB is expressed as:

(5-25)

- RUA • N(IlRUA:O'RUA)
• N(I-'gN :O'SN )

)

• (-0.0012: 0.0006)
• (-0.0029: 0.0033)
- ( 0.0050: 0.0133)
- ( 0.0011: 0.0129)
- (-0.0060: 0.0108).

2 2 ( 6f)2 2( 6f)2 2 ( 6f )2 2 ( 6f r 2( 6f r 2( 6f)2 2( 6f)2 2( 6f rOm - On -- +0, - +0atJA-- +0. -- +0. - +0. - +0. - +0 ...- +6TR. 6S 6RUA 6SN 6S 68 6lt 61

02(~r+20 (6f6f )+20 (6f&f )+20 (&f&f )+20 (~)+20 (&f&f )+20 (6f&f)+
• 6" • 6B68 BIc 6B6lt B1 6B61 .. 6Bh la 686lt .1 6861

20 (6f6f )+20 (&f6f )+20 ( 66f )+20 (6f6f)
h 686v d 6lt61 p 6lt6v h 616"

(5-26)
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Tab. 5-10 Accuracy of TB

Ct JA.TB (hours) VTB (%)

GAMA I MC1 MC2 MV1
I MC1 MC~! !

1 20.04 I 18.89 15.67 18.21
I 19.60 119I I

2 43.29 I 39.99 41.94 11.57
I 14.31 92I I

3 30.96
I 28.92 27.33 11.26

I 12.46 84I I

4 28.92
I 27.17 24.21 10.93

I 12.59 94I I

6 35.94
I 33.83 34.22 10.59

I 11.57 80! I

7 32.61 I 30.58 28.63 11.15 I 11.43 83! I

8 31.02
I 29.09 26.60 11.98

I 15.01 87! I

10 33.63 I 31.77 30.96 10.76 I 10.87 73I I

11 30.76 I 28.86 28.25 11.99 I 11.81 72I I

12 26.89 I 25.25 22.85 12.52 I 14.52 75I I

13 49.20 I 45.95 51.06 11.60
I 12.34 97I I

14 36.81 I 34.53 33.75 11.79 I 11.99 82I I

15 39.22 I 36.89 37.05 11.03
I 12.15 88I I

16 25.46 I 23.87 21.48 12.32 I 13.30 70I I

17 28.28 I 26.89 25.12 10.51 I 10.71 72! I

18 26.87 I 25.38 22.50 12.34 I 15.32 83! I

19 31.02 I 29.14 27.81 10.65 I 11.50 78! !

20 33.22 I 31.22 29.95 11.53
i 12.83 81! !

21 27.19 I 25.47 23.69 11.99 i 13.89 76! !
22 36.90

I 34.78 34.64 13.52
i 12.89 78! !

23 32.25
'r 30.53 29.55 11.92

i 12.49 71! !

24 27.56
I 25.76 23.49 10.97 I 13.07 80! I

25 28.46
I 26.60 24.64 11.26 I 12.89 71I I

26 30.41
I 28.62 26.41 12.09 I 12.25 81! I

27 34.40 I 32.74 33.13 12.67 I 14.35 68I I

28 34.94
I 32.89 32.14 12.10 I 13.81 86I I

29 34.47 I 32.48 32.45 11.02 I 13.10 80I I

30 34.36
I

32.37 31.65 10.83
I

12.92 78I I

MV 1 • Mixed analytical numerical approach for case 1
MC1 • Monte Carlo Simulation for case 1
MC2 • Monte Carlo Simulation for case 2.
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Kali Putih

For 5 stations in the Kali Putih the accuracy of the Base Time is determined. Using the
results of previous investigations (Gadjah Mada University 1986) and previous chapters of this
study, calculations are performed in case of error 1 (variability of the measured data only).
The number of simulations is again 10,000 and the coefficients of variation of S,RUA and SN
again 3%. The results are shown in Tab. 5-11 .

No 1.1 (hours) a (hours) V (%)

GAMA I MC MV I Me MV I MC: I I

1 22.54 1 21.34 4.30 I 3.80 19.09 i 17.76
1 1 1

1

2 24.37 I 22.91 3.42 I 3.25 14.02 i 14.14
I I :

3 24.77 I 23.27 3.32 I 3.35 13.42 1 14.37
I I I

I I

4 25.31 i 23.80 3.35 i 3.33 13.23 1 13.99
1 : 1

1 1 1

5 28.03 I 26.45 3.85 I 3.79 13.74 1 14.28
I I I

Accuracy of TB of Kali PutihTab. 5-11

For station number 5 at the mouth of the river the distribution of TB is derived from the
histogram as shown in Fig. 5-25.
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Fig. 5-25 Statistical distribution of TB at the mouth of the Putih
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5.5 Conclusions

In case of strong non-linear relationships as for QP and TB it is proved that the mean
value approach for accuracy calculations does not give satisfying results. By including higher
order Taylor Series satisfying results might be obtained. But for equations with a large number
of variables the amount of work to calculate the accuracy increases tremendously.
Simulation by means of the Monte Carlo method showed to be a good substitute in case of such
relationshi ps.
Regression analysis is very sensitive for inaccurate measurements. If the data used for
regression are not measured accurately the results are not reliable. In case of QP and TB high
coefficients of variation are obtained if inaccuracy of the measurements is taken into account
(error 2).
If only the variability of the data is used then the coefficients of variation for QP and TR are
bigger than for TB.
So far calculations are done for measurements on the catchment characteristics with a variation
of 3%. The influence of higher variation, thus less accurate measurements, on the accuracy of
TR,QP and TB at the mouth of the kali Putih (muara=mouth) is shown in Fig. 5-26 till 5-28.
In these figures the maximum coefficient of variation accepted is 10%. Higher values would
influence the accuracy of the regression coefficients.
First TR is investigated. The Mean value approach is used to show the influence of increasing
coefficients of variation of the variables. From Fig. 5-26 it can be seen that the symmetry
factor SIM has no influence. The main stream length L and the souree frequency SF have
equal influence.

coefficient of variation TR
as fl.nction of V(LSF.SIM)

28

~ V(l ...)=V(SF)

~ 21

ê
~ V(S!M>,V(O)

> 14 ~ VLSF.SIM)

o ~~~~~~-L~~~-L~~~-L~

o 1 2 3 4 5 6 7 8 9 10
V(U.V(SF),V(sim) (%)

Fig. 5-26 Influence of the accuracy of the variables on TR

For QP and TB values are simulated. If all measurements are 100% accurate the coefficients of
variation are determined by the accuracy of the regression coefficients of both TR and QP,
and TR and TB ,V(O) in Fig. 5-26 and 5-27 respectively. Increasing variation has Iittle in-
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fluence. Between the data points lines are drawn. This is done for iIIustration; there is no
relationship between the data points.
Different from the case of TR the regression coefficients of the QP and TB determine the
accuracy.

coefficient of variation QP
as function of V<TR,AR,..N
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Fig. 5·27 Influence of the accuracy of the variables on QP

coefficient of variation TB
as function of V(TR.S,RUA,SN>
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Fig. 5-28 Influence of the accuracy of the variables on TB
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To visualize the accuracies of TR, QP and TB in one figure, 200 unit hydrographs are
calculated for the station at the mouth of the kali Putih. This is done in case of the maximum
allowable coefficient of variation, 10%, of the catchment characteristics. In Fig. 5-29 the
simulated QP 's as function of the time are marked, next to the TB 'Se

If the QP is too small, it is possible that the unit depth is not equal to 1 mm rainfall depth for
K-+00 .22% of 200 simulated QP 's is too small and therefore not included in the figure.

simulation of TR"QP"TB
711Sof 200
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Fig. 5-29 Scatter diagram of simulated unit hydrograph characteristics for the mouth of
the Putih
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6. ACCURACY OF FLOOD ESTIMATION FOR KALI PUTm

6.1 Introduction

In the previous chapters the GAMA I unit hydrograph is ana1yzed. For the three unit
hydrograph characteristics TR,QP and TB coefficients of variation are detennined to indicate
the accuracy of the unit hydrograph.
The unit hydrograph is the base for the flood estimation. Other factors or input for the flood
estimation are the rainfall depth with a certain return period, the rainfall losses (,-index), the
hourly distribution and the base flow.
All these factors have stochastic features. So the accuracy of the total hydrograph is deter-
mined by the accuracy of these factors. To visualize the influence a fault tree is constructed
(Fig. 6-1).
In this chapter the factors of importance will briefly be discussed. A total hydrograph for a
station in the Kali Putih is simulated from the distributions TR,the catchment characteristics
and the factors mentioned above.

catchment characteristics

Fig. 6-1 Fault tree for the tota1hydrograph

6.2 Rainfall

The main input in the estimation of floods is the rainfa11depth with a certain return
periode By means of frequency analysis a va1ue for the rainfa11depth is derived from the
frequency curve. The frequency curve is a cumulative distribution curve, e.g. Log Pearson,
Log Normal. Normal. which fits best to the available rainfall data.
As already mentioned in §3.2 the available data are subject to different sourees of errors.
Therefore it is difficult to detennine the accuracy of the rainfa11data. An extra dificulty is
that the frequency curves of the catchments can differ from eachother. So for every cathment
a study needs to be made of the accuracy of the rainfall prediction.
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In this stage it is not of importance to know if a storm with a return period of 30 years gives
100 mm or 130 mm rainfall. Of importance is the influence of the amount of rainfall depth on
the accuracy of flood estimation irrespective the return periode This influence can be checked
by changing the rainfall depth in the input of the program "HYDROGRAPH", which will be
explained in §6.5.

6.3 +-index

The ,-index is the amount of water loss due to infiltration, depression storage,
evatransporation, interception and other phenomena that prevent rain water to be transported.
Sri Harto 1985 states that the ,-index is dependent upon catchment characteristics such as
catchment area A and souree frequency SN. By means of regression analysis a functional
relationship is derived. The result:

(6-1)

In which , in mm/hour.
This equation has a low coefficient of correlation. So estimating the ,-index with this equation
gives inaccurate results. Realizing this, the number of decimal pi aces of the regression
coefficients in (6-1) should be reduced in order to avoid apparently accurate results.
So it is for practical application recommended to reduce equation (6-1), like:

(6-2)

Because SN is almost constant for all considered catchments the influence of increasing
catchment area can be shown graphicalIy. In Fig. 6-2, is plotted as function of A and for
SN-0.73.
From this figure it can be seen that the ,-index is constant for small catchment area's (A<200
km2).

phi-index
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Fig. 6-2 Rainfalilosses related to catchment area

55



It is assumed that the ,-index is constant during the storm. In reality the losses are usually
higher at the beginning of a storm than at the end. So at the beginning of the storm the ,-
index is overestimated and at the end of the storm underestimated (Laurensons and O'Donnel
1969).
It is difficult to find reliable values for the rainfalilosses. Because of its generally small values
it is less important to know the exact values • In this study no further attention is paid to the
accuracy of the ,-index. In HYDROGRAPH the ,-index is calculated according to equation
(6-1) in which A and SN are generated from their distributions.

6.4 Base flow

Base flow. QB. is the flow in streams in the absence of rain. The existing flow in
streams is sustained by ground water discharge and a small amount of depletion of channel
storage. The magnitude of the groundwater discharge is roughly proportional to the ground
water storage. Besides, it depends also on the catchment permeability. length of streams and
the penetration of streams into the aquifer.
The amount of recharge is in proportion to the catchment area. The larger the area the higher
the recharge. The totallength of streams is expressed as the length per unit area. or as the
drainage density D.
The magnitude of the measured QB of each catchment is obtained by drawing depletion curves
as an enveloping straight line on semi -logarithmic paper. log Q versus t.
Again regression analysis is applied to find a relationship between QB and A.D. The equation
calculates a constant value for QB:

(6-3)

Also for QB the accuracy of the regression coefficients is smaIl because of a low coefficient of
correlation. Because the QB is roughly estimated no further research will be performed on its
accuracy. In HYDROGRAPH the QB will be calculated with generated values for A and D.

6.5 Hydrograph

The accuracy of the total hydrograph can be calculated by means of simulation. The
program "HYDROGRAPH" is based on the Monte Carlo method (see appendix VIII). The
input characteristics, as mentioned previously. are generated from their distributions.
HYDROGRAPH calculates a number of hydrographs according the GAMA I method. The
hydrographs are stored in a m*n matrix. in which m the number of simulated hydrographs and
n the time of discharge (see appendix VIII). By transforming the output to a spreadsheet
matrix operations can be performed.
For the Kali Putih calculations are done at the mouth. The input for calculation:

- rainfall depth with return period of 30 years: 105 mm
- storm duration : 7 hours
- hourly distribution: 10.8% 53.3% 13% 9.2% 5.6% 5.3% 2.8%
- catchment characteristics:

Akm2 Lkm S SIM SF SN JN

32.76 24.4 0.047 0.2320 0.1197 0.6667 1

56



- Time of Rise TR : ~ - 5.17 hours, V • 0.12
- lag time K : 16.4 hours (initial value).

The results of calculation are shown in Fig. 6-3 in which 4 of the 75 simulated hydrographs
are plotted next to the hydrograph calculated with the mean values (see also Fig. 2-2).
The hydrographs have remarkable sharp peaks. This is caused by the shape of the unit
hydrograph and the hourly distribution.

How to determine the accuracy from the hydrographs?
It is not possible to average the discharge of all the hydrographs for each hour of discharge.
because the obtained mean hydrograph wouldn't enclose 105 mm anymore. For further analy-
sis, like the influence on the accuracy of morphological predictions, all the hydrographs have
to be taken into account.

simulated hydrographs
105 "'" In 7 110.....
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Fig.6-3 A number of simulated hydrographs for 7 hourly storm

However characteristics of the hydrographs can be discussed. For the maximum discharge
QP·, the time to maximum discharge TR· and total time of run off TB· it shows:

• QP· (m3/s) •TR (hours) TB (hours)

~ 6.39 41.46 28.46

a 0.69 14.78 4.28

V 10.8 % 35.6% 15.0%
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For QP· the distribution is shown in figure 6.4.

Distribution cp.
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Fig.6-4 Statistical distribution of maximum discharge at the mouth

•Calculations with varying rainfa11depth showed a linear change of the QP and therefore the
coefficient of variation remained constant. This is due to the linear relationship between Q(t)
and PE (effective rainfall). So the accuracy of flood estimation is not influenced by the
rainfall depth.
Calculations with a different hourly distribution however give remarkable results. The hourly
distribution as recommended by Sri Harto (1985) for a storm duration of 9 hours is : 24% 26%
17% 11%7% 5% 4% 3% 3%.The hydrographs have a less peaky shape and the maximum values
are flattened (see Fig. 6-5).

Fig. 6-5 A number of simulated hydrographs for 9 hourJy storm
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Examination of the hydrograph characteristics show:

• • •TR (hours) QP (m3/s) TB (hours)

J1 6.58 32.32 29.26

CJ 0.83 10.16 4.28

V 12.6 % 31.4% 14.6%

It is clear that flood estimation is more accurate in case of the latter distribution. In genera!
this means that for large varying rainfall distributions flood estimation is less accurate.
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7. CONCLUSIONS AND RECOMMENDATIONS

The empirical, parametrie model .the GAMA I unit hydrograph, for flood estimation for
the rivers on Java is extended with stochastic features. The model HYDROGRAPH cao be
used to calculate the accuracy of the flood estimation.

The following conclusions are drawn from this study:

To apply non -linear regression analysis for the derivation of equations, accurately
measured data are required. If this is not the case then the obtained equations are not
reliable.

The Monte Carlo simulation technique is areliabie method for calculating the accuracy
of (non -)linear relationshi ps.

The GAMA equations can be simplified by reducing the number of decimal places of the
regression coefficients. Calculations showed that the differences of the results are
negligible in comparison with the accuracy of the model.
The following equations can be used:

TR = 0.43*( __ L_ ) 3 +1.07*SIM+l.28
lOOSF

Further topics of investigation in future studies can be:

Application of the model HYDROGRAPH to catchments of which records of measured
floods are available.

Improvement of the rainfall network in Java.

Investigation of the rainfall distribution.

Extension of the model HYDROGRAPH by including the accuracy of the rainfall depth.
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APPENDIX 1

NON-LINEAR REGR

The program REGRES is written in order to calculate the regression coefficients 0

Iinear and non-linear relationships. This program is of a classical type. which means that the
input and output are stored in files. This makes REGRES user unfriendly. But then software
like SP$ and SAS. which are more user friendly. already excists.
On the other hand the structure of REGRES makes it easy to make adaptions for other
purposes. like extensions with stochastic processes.
This simple program is discussed by means of the following scheme:

Step 1

Step 2

Step 3
Step 4

values : z 1.z2.z3.Z4 1.

calculation E 2.
surn of squares

4.

3.
covariance & 12.
correlation

calculation derivatives 5.

read matrix B
read matrix C 6:

calculation inverse of B 7.

To start the iteration procedure initial values for the regression coefficients are
defined. In case of the equation for TR: B.C.D; and QP: A. a. 8. ó; where the
latter is expressed in the program as zl.z2.z3.z4.
The error function and the difference with the previous iteration step is calcula-
ted.
Criterium for E to continue the iteration procedure.
Reading the variables from tbe input file. For QP(Y). Xl(AR). X2(JN). X3(TR)
are read.

1-63



Step 5
Step 6

Step 7
Step 8
Step 9
Step 10:
Step 11:

Step 12:

Calculation of the derivatives: ÓY/ózl,óY /&2 etc.
Matrix B is equal to the matrix (A*AT).
Matrix C is equal to the matrix (AT*s) as mentioned in §4.2.
Procedure "Inverse" in REGRES calculates the inverse matrix of B.
Procedure "Matrixmultiplication" in REGRES calculates: (A*ATr1*(A T*s).
The deviations from the optimum are determined.
Procedure "Newvalues" in REGRES assigns new values to zl,z2,z3,z4.
Procedure "Result" in REGRES writes the optimum coefficients if the accuracy
criterium of the iteration is met.
Finally the matrices for the covariances and correlations is determined.

Explanation of the parameters used in REGRES:
- zl,z2,z3,z4: Regression coefficients
- Y: Dependent variabie
- Xl,X2,X3: Independent variables
- sdY: Standard deviation of Y
- dzl:
- ezl:
- sum:
- ms:
- corr:

Derivative of Y to zl
Deviation of zl
Sum of squares due to regression
Mean square :sum/n-4
Correlation matrix.

program REG RES(input,output)~
type matrix = array [1..10,1..10] of real;
type vector" array [1..10] of real;
var zl ,z2,z,z3,z4,P ,SI,Y,sdY,X 1,X2,X3,sdX3,dzl ,dz2,dz3,dz4: real;

ezl ,ez2,ez3,ez4,sum,E,El ,ms: real;
b,corr:matrix;
c.d: vector;
i,j,k,l,m,n,q,iter: integer;
r,f: text;
s,t, u,v,w:real;

(inverse of matrix)

procedure inverse (s,t,u,v,w: real);
. begin

for i:-2 to 4 do
begin

s:- b[i, 1]/b[l, 1];
for j:=1 to 8 do b[i,j]:=b[i,j]-s*b[l,j];

end;
for i:-l to 1 do
begin

t:..b[i,2]/b[2,2];
for j:"1 to 8 do b[i,j]:- b[i,j] -t*b[2,j];

end;
for i:-3 to 4 do
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begin
c-b[i,2]/b[2,2];
lor j:-l to 8 do b[i,j]:-b[i,j]-t*b[2,j];

end;
lor i:-l to 2 do
begin

u:- b[i,3]/b[3,3]:
lor j:-l to 8 do b[i,j]:-b[i,j]-u*b[3,j];

end:
lor i:-4 to 4 do
begin

u:- bei,3]/b[3,3]:
lor j:-l to 8 do b[i,j]:..b[i,j]-u*b[3,j];

end:
lor i:..1 to 3 do
begin

v:- b[i,4]/b[4,4]:
lor j:-l to 8 do b[i,j]:-b[i,j]-v*b[4,j];

end:
lor i:-l to 4 do
begin

w:-b[i,i];
lor j:-l to 8 do b[i,j]:- b[i,j]/w:

end;
end:

{matrixmultiplication}

procedure matrixproduct (b:matrix: c:vector);
begin

lori:-l to 4 do
begin

d[i]:-O;
lor j:-S to 8 do d[i]:-d[i]+b[i,j]*c[j];

end:
end;

{clearingmatrices}

procedure clearmatrix;
begin

lor i:-l to 4 do
begin

lor j:-l to 8 do b[i,j]:-O;
end;
lor i:-S to 8 do c[i]:-O:

end;

{readmatrices}
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procedure readb;
begin

b[1,1]:..b[1,1]+sqr(dz I); b[2,2]:..b[2,2]+sqr(dz2);
b[3,3]:- b[3,3]+sqr(dz3); b[4,4]:- b[4,4]+sqr(dz4);
b[l ,2]:- b[l,2]+dzl *dz2; b[l,3]:- b[l,3]+dzl *dz3;
b[l,4]:- b[l,4]+dzl *dz4; b[2,3]:- b[2,3]+dz2*dz3;
b[2,4]:- b[2,4]+dz2*dz4; b[3,4]:=b[3,4]+dz3*dz4:
for i:=1 to 4 do
begin

for j:"1 to 4 do b[j,i]:- b[i,j):
end:
b[I,5]:=I; b[2,6]:"'I; b[3;7]:=I: b[4,8]:=I;

end;

procedure readc:
begin

c[5]:-c[5)+dzl *SI:
c[6]:"c[6]+dz2*S1;
c[7]:-c[7]+dz3*S1:
c[8]:=c[8]+dz4*SI;

end;

{new values}

procedure newvalues(d:vector):
begin

ezl:=-(l/3)*d[l]: if abs(ezl)<O.OOOOOIthen ezl:=O:
ez2:=-(l/3)*d[2]: if abs(ez2)<0.000001 then ez2:"'0:
ez3:=-(l/3)*d[3]: if abs(ez3)<O.00000I then ez3:"'0;
ez4:=-(l/3)*d[4]; if abs(ez4) <0.000001 then ez4:-0;

end;

procedure result;
begin

writeln (f);
writeln (f', 'Iteration step' .iter):
writeln (f,'A :',zl:10:6,'eA :',ezl:10:6):
writeln (f,'alfa :',z2:10:6,'ealfa :',ez2:10:6);
writeln (f,'beta :',z3:10:6,'ebeta :',ez3:10:6);
writeln (f,'delta:' ,z4:10:6,'edelta:' ,ez4:10:6);
writeln (f,'Residual sum of squares: ',sum:l0:6);
writeln (f); writeln (f);

end:

{correlation of parameters}

procedure correlation;
begin

writeln (f,'The covariance matrix cov(z)');
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writeln (f);
write (f.' A alfa
writeln (f.'delta');
writeln (f);
ms:-sum/(n -4);
for i:-l to 4 do
begin

for j:-l to 4 do
begin

b[i .j]:- b[i.j +4];
b[i.j]:- b[i,j]*ms;
write (f,b[i,j]:10:6);

beta ');

{mean square}

end;
writeln (f);

end;
writeln (f); writeln (f);
write (f,'The correlation matrix of the ');
writeln (f,'parameter estimates');
writeln (f);
write (f,' A alfa beta ');
writeln (f,'delta');
writeln (f);
for i:-l to 4 do
begin

for j:-l to 4 do
begin

corrlî.jlr= b[i,j]! (sqrt(b[i,i]*b[j,j]»;
write (f,corr[i,j]:IO:6);

end;
writeln (f);

end;
end;

{main program}

begin
assign (r, 'b:insimqp.pas');
assign (f,'a:outcmqp.pas');
rewrite (f);
writeln (f);
write (f, 'The calculation of the regression ');
writeln (f,'coefficients for QP');
writeln (f);
zl:-O.lO; z2:-0.5; z3:-0.25; z4:-0.35;
k:-O;
ezl:-O; ez2:-0; ez3:-0; ez4:-0;
E:-l; El:-O;
iterr=I;
while (abs(E»O.OOOOOl) and (iter<-40) do
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begin
zl:"'zl +ezl; z2:-z2+ez2; z3:-z3+ez3;
z4:-z4+ez4;
sum:-O;
clearmatrix;
reset (r);
readin (r,n);
readin (r);
for q:"1 to n do
begin

readin (r,Y,sdY,XI,X2,X3,sdX3);
P:-exp(z2*ln(X I) )*exp(z3*ln(X2) )*exp( -z4*ln(X3»;
SI:-Y-zI*P;
dzl:=-P;
dz2:..-zl *P*ln(X 1);
dz3:- -z l *P*ln(X2);
dz4:-z1 *P*ln(X3);
readb;
reade;
kr=k+ 1;
sumr=sum+sqrtêl):

end;
inverse (s,t,u,v,w);
matrixproduct (b,c);
newvalues (d);
E:zEI-sum;
EI:=sum;
iter: ..iter+ I;

end;
result;
correlation;
writeln (f);
writeln (f,'End of computation');
close (f);

end.
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APPENDIX II

MONTE CARLO SIMULATION

Due to the increasing technological development of personal computers with increasing
memory and decreasing calculation time simulation techniques have become more and more
popular.
Simulation techniques are mainly applied to check the results of analytical calculations on
stochastic processes. If no analytical methods are available simulation has proved to be a
reliable altemative.
The Monte Carlo simulation method makes use of the possibility to generate random values
from a uniform distribution. This is offered byall nowadays computer languages. In this case
Turbo Pascal 5.5 .
It is possible to generate values from any distribution. For example, if a number of generated
values from the random generator is added then according to the central theorem a normal
distributed stochast y is obtained, for which counts:

In which
- Xu is uniformly distributed O<Xu<l
- N is number of generations.

The stochast y has a normal distribution with a mean of 0 and a standard deviation of 1
(N(O:I».
To obtain a value with any mean and standard deviation the following transformation is
applied:

XN = o·Y+J.L

Substituting y gives:

For other distributions than the normal one, similar procedures are available (Vrouwenvelder
and Vrijling 1987).
The application of the Monte Carlo similation will be explained by means of an exam ple .
Assume the function Y as function of the independent variables Xl,X2,X3 ; y..f(Xl,X2,X3).
The independent variables have anormal distribution with means 1l1'J.12and 1'3 and standard
deviations C11,C12 and C13.
Aim of simulation is to determine the mean and standard deviation of Y.
Assume that x1,x2 and Ka are generated values from the distributions of respectively X1,X2
and X3•
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The Monte Carlo simulation proceeds as follows:

generate 1

X1 X2 X3

1
calculate
Y=f(X1,X2,X3)

1
range

ky

1
frequency
N(ky)=N(ky)+ 1

T

2.

3.

4.

Step 1 The generation of values x1'X2 and x3 from the distributions of X1,X2 and X3·
For each generated varia bie N times a Xu has to be determined. The higher N the
more a normal distribution is approximated. A good approximation is achieved for
N-IO.
Calculation of the dependent variabie Y with the generated x1,x2 and x3'
Determination of the range in which the value for Y is located.
If the range for Y is found the frequency in this range is upgraded with one.

Step 2
Step 3
Step 4

The resuIt of the simulation is a histogram of Y values. From this histogram the mean and
standard deviation can easily be calculated.
For areliabie result the number of simulations needs to be large; The Iarger the number of
simulations the more accurate the prediction of mean and standard deviation.
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APPENDIXm

SlMULATION OF REGR~ON COEFFICIENTS

The program SIMCO is derived from the program REGRES which is already discussed.
REGRES is extended with the possibility to generate variables from normal distributions
according to the Monte Carlo method.
In this study it is shown that the dependent and the independent variables have stochastic
features.
In SIMCO also the input and output are stored in seperate files, which is not quite user
friendly.
So the program SIMCO is developed with the possibility to randomize variables from its
distributions and calculate the regression coefficients.
The program consists of a main part and some procedures.
The structure of the program is visualized in the following scheme:

calculation E 3.

derivatives 5.

read matrix B
read matrix C 6.

calculation inverseof B 7.

8.

Most steps are already explained in appendix 1 for the program REGRES. Nevertheless all
steps in SIMCO are briefly discussed.
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Step 1

Step 2

Step 3
Step 4

Step 5
Step 6

Step 7

Step 8

Step 9
and 10
Step 11:

Step 12:

There are 28 catchments and for each catchment the variables are generated from a
normal distribution.
In case of the equation for QP this means that a quartet (QP,AR,JN and TR) is
generated for each catchment. In the program these are expressed as Y,X I ,X2 and
X3 respectively.
To start the iteration procedure initial values for the regression coefficients are
defined. In case of the equation for QP: A,a,8,ó, which are expressed in the
program as zl,z2,z3 and z4.
The error function and the difference of it with the previous iteration is calculated.
If the difference is smaller than the desired iteration accuracy, e.g, IOE-6, then the
iteration procedure is ended.
Calculation of the derivatives: ÓYlóA, ÓY/&1. etc.
Matrix B is equal to the matrix (A*AT).
Matrix C is equal to the matrix (AT*s) as mentioned in §4.2.
Procedures "readb" and "readc" in the program.
The inverse of the matrix B is calculated.
Procedure "inverse" in program.
The matrices are multiplied as (A*ATr1*(AT*s).
Procedure "matrixmultiplication" in program.
The deviations eA,eo,eS and e~ are determined.
Procedure "newvalues" in the program.
Matrix h is filled with the optimum values for the coefficients. If the number of
generations is ISO then the dimensions of hare 150*4 in case of Qp.
The matrix h is written to the output file. It is also possible to write the result of
each generation, Iike is shown §4.3, to the output file.
Procedure "coefficients" and for the latter "result" in the program.

Explanation of the parameters used in SIMCO:
- 1 Number of generations
- zl Regression coefficient
- SI Deviation of regression 'i in §4.2
- Y Dependent variabie (e.g. QP)
- X I Independent variabie
- dzl: Derivative of Y to zl
- ezl:
- sum:

Deviation zl
Sum of squares due to regression.

program SIMCO(input,output);
const I:integer .. ISO;
type matrix" array [1..200,1..10] of real;
type vector" array [1..10] of real;
var zl ,z2,z,z3,z4,P,SI,X u,Y,sdY,X 1,X2,X3,sdX3,dzl ,dz2,dz3,dz4: real;

ezl ,ez2,ez3,ez4,s,t,u, v,w,E,EI,sum: real;
b,g,h:matrix;
c,d: vector;
i,j,k,max,n,q,iter,gen: integer;
r,f: text;
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{inverse of matrix}

procedure inverse Cs,t,u,v,w:reat);
begin

for i:-2 to 4 do
begin

s:-b[i,ll/b[l, I];
for j:-I to 8 do b[i,j]:=b[i,j]-s*b[l,j];

end;
for ir=I to I do
begin

t:- b[i,2]/b[2,2];
for j:-I to 8 do b[i,j]:-b[i,j]-t*b[2,j];

end;
for i:-3 to 4 do
begin

t:..b[i,2]/b[2,2];
for j:-I to 8 do b[i,j]:- b[i,j]-t*b[2,j];

end;
for i:-I to 2 do
begin

u:- b[i,3]/b[3,3];
for j:-I to 8 do b[i,j]:-b[i,j]-u*b[3,j];

end;
for i:-4 to 4 do
begin

u:"b[i,3]/b[3,3];
for j:-I to 8 do b[i,j]:- b[i,j]-u*b[3,j];

end;
for i:-I to 3 do
begin

v:- b[i,4]/b[4,4];
for j:-I to 8 do b[i,j]:...b[i,j]-v*b[4,j];

end;
for i:-I to 4 do
begin

w:-b[i,i];
for j:-I to 8 do b[i,j]:=b[i,j]/w;

end;
end;

{matrixmultiplication}

procedure matrixmultiplication (b:matrix; c:vector);
begin

for i:-I to 4 do
begin

d[i]:-O;
for j:-5 to 8 do d[i]:-d[i]+b[i,j]*c[j];

end;
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end;

{clear matrices}

procedure clearmatrix;
begin

for ir=I to 4 do
begin

for jr=I to 8 do b[i,j]:=O;
end;
for i:=5 to 8 do c[i]:=O;

end;

{read matrices}

procedure readb;
begin

b[1, l]:-b[1, 1]+sqr(dzl); b[2,2]:"b[2,2]+sqr(dz2);
b[3,3]:- b[3,3]+sqr( dz3); b[4,4]:" b[4,4]+sqr(dz4);
b[1 ,2]:-b[1,2]+dz1 *dz2; b[1,3]:-b[1,3]+dzl *dz3;
b[ 1,4]:- b[1 ,4]+dz1 *dz4; b[2,3]:- b[2,3]+dz2*dz3;
b[2,4]:= b[2,4]+dz2*dz4; b[3,4]:= b[3,4]+dz3*dz4;
for i:-1 to 4 do
begin

for j:=l to 4 do b[j,i]:=b[i,j];
end;
b[ 1,5]:= 1; b[2,6]:-1; b[3, 7]:=1; b[4,8]:= 1;

end;

procedure readc;
begin

c[5]:=c[5]+dz1 *SI;
c[6]:=c[6]+dz2*S1;
c[7]: =c[7] +dz3*S1;
c[8]:=c[8]+dz4*SI;

end;

{new values}

procedure newvalues(d:vector);
begin

ezl:=-(1/3)*d[1]; if abs(ezl)<O.OOOOOl then ezl:-O;
ez2:=-(1/3)*d[2]; if abs(ez2)<0.00000l th en ez2: ..0;
ez3:" -(1 /3)*d[3]; if abs(ez3) <0.000001 th en ez3:"O;
ez4:--(1/3)*d[4]; if abs(ez4)<0.000001 then ez4:-0;

end;
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{write results of I simulation}

procedure results;
begin

writeln (f); writeln (f);
writeln (f,'Iteration step' ,iter);
writeln (f,'number of catchments ',kl;
if sum < 10000 then
begin

writeln (f,'A : ',zl:10:6,ezl:l0:6,d[1]:10:6);
writeln (f,'alfa: ',z2:10:6,ez2:10:6,d[2]:10:6);
writeln (f,'beta: ',z3:10:6,ez3:10:6,d[3]:10:6);
writeln (f, 'delta: ',z4:10:6,ez4:10:6,d[4]:10:6);
writeln (f);
writeln (f,'Sum of squares: ',sum);

end
else writeln (f,'Convergence criterium not met');

end;

procedure coefficients;
begin

writeln (f); writeln (f);
writeln (f, 'Coefficients of TR of ',gen,' generations');
writeln (f,' A alfa beta delta');
for i:-l to I do
begin

for j:-l to 6 do write (f,h[i,j]:10:6,' ');
wri teln (f);

end;
end;

{main program}

begin
assign (r,'b:insimqp.pas');
assign (f,'b:outsimqp.pas');
rewrite (f);
writeln (f);

writeln (f,'The simulation of the regression coefficients of QP');
writeln (f); writeln (f);
for gen:-l to 1do
begin

reset (r);
readin (r ,n);
readin (r);
for i:-l to n do
begin

readin (r,Y,sdY,Xl,X2,X3,sdX3);
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Xu:-O;
for j:-l to 10 do Xur=Xu+randomj
Y:-sdY*«Xu-lO/2)/sqrt(lO/12»+ Y;
if Y<0 then Y:-abs(Y);
Xu:-o;
for j:-l to 10 do Xur=Xu-random;
Xl:-0.03*Xl *«Xu-IO/2)/sqrt(lO/12»+ XI;
if Xl <0 then Xl:-=abs(X1);
Xu:-O;
for j:-l to 10 do Xu:=Xu+random;
X2:-0.03*X2*«Xu -10/2)/sqrt(l 0/12»+ X2;
if X2<0 then X2:-abs(X2);
Xu:=O;
for j:-l to 10 do Xu:=Xu+random;
X3:-sdX3*«Xu-lO/2)/sqrt(lO/12»+ X3;
if X3<0 then X3:-abs(X3);
g[i,l]:-Y; g[i,2]:"Xl: g[i,3]:-X2: g[i,4]:=X3:

end;
zl:-0.18; z2:-0.56: z3:-0.24; z4:-0.4;
ezl:-O; ez2:-0; ez3:-0; ez4:-0;
E:-l; El:-O;
max: ...40;
itert=I;
while (abs(E»O.OOOOOl)and (iter<max) do
begin

zl:-zl +ezl; z2:-z2+ez2; z3:-z3+ez3; z4:-z4+ez4;
sumr=û;
k:-O;
cleannatrix;
for q:-l to n do
begin

Y:-g[q,l]; X1:-g[q,2]; X2:-g[q,3];
X3:=g[q,4];

P:-exp(z2*ln(X 1))*exp(z3*ln(X2) )*exp( -z4*ln(X3»:
SI:-Y-zl*P;
dzl:--P;
dz2:- -zl *P*ln(X 1);
dz3:- -zl *P*ln(X2);
dz4:-zl *P*ln(X3);
readb;
reade;

{read matrices}

kz=k+ I;
sum:-sum+sqr(SI);

end;
inverse (s,t,u,v,w);
matrixmultiplication (b,c);
newvalues (d);
E:-El-sum;
El:-sum;
iterr=iter+ 1;



end;
for j:-l to 4 do h[gen,j]:-O;
if sum < 10000 then
begin

h[gen,l ]:-z 1; h[gen,2]:-z2; h[gen,3]:-z3;
h[gen,4]:-z4; h[gen,6]:-sum;
end;
{results;)

end;
coefficients;
writeln (f); writeln (f);
writeln (f,'End of computation');
close (f);

end.
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APPENDIX IV

MEAN VALUE APPROACH

This analytical metbod calculates the mean and the standard deviation of a dependent
variabIe Y. wbich is a function of independent variables X1•••Xn ;Y-f(X1 ••••Xn).
The assumption made in this approach is that if the mean values of X1...Xn are substituted in
the equation for Y then the mean value for Y is obtained. This is true for linear relationships
and for non-Iinear relationships tbis method is an approach.
An advantage of tbis method is that the relative influence of errors on the final error can
easily be determined.

If the function of Y is linear in X1....Xn • for example
Y - aX1 + bX2 then :

j.l(Y) - 8j.l(X1) + bj.l(~) and
a2(Y)a a2a2(X1) + b ~(X2) + 2ab*Q(X1X2)*a(X1)a(X2).

In which Q(X1X2) is the correlation coefficient.
Witb a(X,lX2) - Q(X1X2)*a(X'_>a(X2) tbe equation for a2(Y) becomes:

~(Y)- a2a2(X1) + b2~(X2) + 2ab*a(X1X2). .

If tbe function of Y is not linear in X1.•.•Xn • for example
Y - X1*X2 then an approximation based on Taylor series is used:

In wbich
(XlI X2)

are the mean values of the independent variables.

For Y it counts:

JoL (Y) = f (Xl' X2)

02 (y)

The coefficient of variation is defined as:

v» (Y) = 0
2 (Y)

JoL 2 (Y)

If X1 and X2 are not correlated then a(X1,X2) - 0 and for tbe coefficient of variation is
found:

This equation is known as the squared propagation of errors.
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APPENDIX V

CHOLESKI-DECOMPOSITION

The Choleski decomposition is a variant of the LU decomposition and applicable to
positive definite matrices.
The correlation matrix R is positive definite when:

(1) the matrix R is symmetrie
(2) for every x eR" \ {Ol counts: (x.Rx»O.

(x.Rx) - 1: "ïY, for i-I to n.
First the LU decopmposition is applied to the correlation matrix R.
By means of Gauss-elimination the correlation matrix R is transformed into a triangle matrix
U:

rll r12 r13 r1n

0 r(l) r (1) r(l)
22 23 .2n

U = 0 0 r (2) r (2) r (2)
33 34 3n

0 0 r'::-l)

At the same time multipliers mj,i are calculated which are stored in a triangle matrix L:

1 0 0

~1 1 0 0

L = 1n:31 1n:32 1 0 0

0

Illol ~ IDn,n-l 1

In which

~1 = ~, j =2,3, 0 0 on
all

a (1) a~ m, a
jk = -:Ik - -"Jl lk ' k=l, 0 on

And

a (1)_j2
~2 = ,a (1)

22

j =3,4, .• 0 n

a (2) - a (1) m. a (1)
jk - jk --"J2 2k , k=2, • 0 0 n
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The matrix U can be written as U-D*U' with Dvdiag (a11,~(1), ••••'B"n(n-1» and U':

1 au .. .. .. aln
all all

a (1) a(l)
0 1 23 2n

U' = a (1) .. . . .. a(l)22 22

o 1

Thus, R - L*D*U' and because R is symmetrie also R • RT .. (L*D*U,)T Ol U,T*D*LT.
Because R is also positive definite with positive values in D it is allowed to write T2=D.
besides it is demonstrabie that U'-LT and therefore R • L*D*LT .
Substituting ~ gives R - L*~*LT .. (LT)*(LT)T.
With G - L*T:
R - G*GT•
This procedure is called the Choleski decomposition.

Because the calculation of the G matrix is quite complicated for large R matrices a program is
written.
The output of the program is also printed.

program CHOLESKI (input,output);
type matrix - array [1..10,1..10] of real;
var i,j,n,k:integer;

h,L,G,T: matrix;
r,f: text;

begin
assign (r,'b:inLUlqp.pas');
reset (r);
assign (f,'b:outLUlqp.pas');
rewrite (f);
writeln (f,'The correlation matrix of QP coefficients');
writeln (f);
writeln (f,' A
writeln (f);
readin (r.n):
for i:-l to n do
begin

for j:=1 to n do
begin

T[i,j]:=O; h[i,j]:-O; G[i,j]:=O;L[i,j]:-O;

alfa beta delta ');

end;
end;
for i:-l 10 n do
begin

for j:-l to n do
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begin
read (r,h[i,j]);
write (f ,h[i,j]:8:4);

end;
readin (r);
writeln (f);

end;
writeln (f);
writeln (f,'Matrix G of Choleski');
writeln (f);
for j:-l to n -1 do
begin

i:-j+l;
while (i <=n) do
begin

L[i,j]:-h[i,j]/h[j,j];
for k:-l to n do h[i,k]:-h[i,k]-L[i,j]*h[j,k];
i:-i+ I;

end;
end;
for i:-l to n do
begin

T[i,i]:-sqrt(h[i,i]);
L[i,i]:-I;
end;

for i:-l to n do
begin

for j:-I to n do
begin

G[i,j]:-O;
for k:-l to n do
begin

on.n-ou.n- L[i,k]*T[k,j];
end;
write (f,G[i,j]:8:4);
end;

writeln (f);
end;
writeln (f,'End');
close (f);

end.

V-81



output for QP:

The correlation matrix of QP coefficients

A alfa beta delta

1.0000 -0.6536 0.2077 -0.5162
-0.6536 1.0000 -0.8421 0.3448
0.2077 -0.8421 1.0000 0.0545
-0.5162 0.3448 0.0545 1.0000

Matrix G of Choleski

1.0000 0.0000 0.0000 0.0000
-0.6536 0.7568 0.0000 0.0000
0.2077 -0.9333 0.2930 0.0000
-0.5162 0.0098 0.5831 0.6272
End
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APPENDIX VI

TOTAL CORRELATION

The program TOT ALCOR calculates the total correlation matrices for different
number of simulations. The input for the program are the G (Choleski) matrices of error 1 and
2.
TOTALCOR pursues the scheme below.
The number of simulations is varied between 50 and 2000. The results on the correlations are
shown in the figures below. These figures show that the correlations with low numbers of
simulations (till 500) vary stronger than ot hers.

~generate 11.
-1

! !
error 1 error 2

a:1 a:2 2.
I I

la: = a: 1+a:2+ Ma.l 3.

4.
I summate I { matrix JI I 5.

Step I
Step 2

Generation of random numbers from random generator
Multiplication with G matrix of error 1 and 2, which gives values for a1 and ~
for a of QP
Simulated values for the coefficients as a-a1+~+IlQ
Summation of the values (I:(a)2, I:(a8),I:(aó) etc).
Calculation of the correlation matrix if the number of simulations is reached.

Step 3
Step 4
Step 5

program TOTALCOR (input,output);
type matrix - array [1••200,1..10] of real;
type vector - array [1..10] of real;
var A,al,be,de,Al ,all ,bel ,del ,A2,a12,be2,de2,dAI ,dA2,dall ,dal2,dbel:real;

dbe2,dde I ,dde2,Am,alm, bem,dem,den:real;
Xu: real;
i,j,l,n,sim,max:integer;
sum,h, v: matrix;
g,y: vector;
r,f: text;

begin
assign (f, 'b:outtotq.pas');
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rewrite (f);
write (f,'The total correlation matrix of QP ');
writeln (f, 'coefficients and variances');
writeln (f, 'af ter simulation ');
writeln (f);
writeln (f,'number of simulations');
writeln (f);
writeln (f,' A
writeln (f);
{mean values}
Am:-0.1836; alm:-0.5886; bem:=0.2381; dem:=0.4008;
{standard error I}
dAl:=0.0842; dall:-0.1353; dbel:=0.1025; ddel:=0.1056;
{standard error 2}
dA2:=0.1717; da12:=0.2104; dbe2:=0.1719; dde2:"'0.2056;

alfa beta delta');

max:-50; n:=I;
while (max<2050) do
begin

for i:-I to 4 do
begin

g(i]:-O;
for j:= I to 4 do sum[i,j]:=O;

end;
for simr=I to max do
begin

for 1:=1 to 8 do
begin

Xu:-O;
for j:-I to 10 do Xu: ..Xu+random;
y[l]:-«Xu-IO/2)/sqrt(lO/12»;

end;
AI:-dAI *y[l];
al lr=dal l *( -0.7076*y[1]+0.7066*y[2]);
be l i=dbe 1*(0.1 825*y[1]-0.9684*y[2]+0. 17*y[3]);
del:=ddel *( -0.5793*y[1]+0. 129*y[2] +0.77 18*y[3]+O.2285*y[4]);
A2:=dA2*y[5];
a12:-da12*( -0.6463*y[5]+0.7631 *y[6]);
be2:-dbe2*(0.2177*y[5]-0.9333*y[6]+0.2855*y[7]);
de2:"dde2*( -0.5061 *y[5]-0.0448*y[6]+0.6221 *y[7]+0.5957*y[8]);
A:-AI+A2+Am;
ak=al l +a12+alm;
bes-bel +be2+bem;
der=de.l +de2+dem;
sum[l, l]:-sum[l, 1]+sqr(A);
sum[2,2]:-sum[2,2]+sqr(al);
sum[3,3]:-sum[3,3]+sqr(be);
sum[ 4,4]:"sum[ 4,4]+sqr(de);
sum[ 1,2]:-sum[l.2]+ A*al; sum[2.1]:=sum[l.2];
sum[ 1.3]:-sum[ 1.3]+A*be; sum[3, I]:-sum[l.3];
sum[ 1.4]:-sum[ 1.4]+A*de; sum[ 4,1 ]:-sum[ 1.4];
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sum[2,3]:-sum[2,3]+al*be; sum[3,2]:-sum[2,3];
sum[2,4]:-sum[2,4]+al*de; sum[4,2]:-sum[2,4];
sum[3,4]:-sum[3,4]+ be*de; sum[4,3]:-sum[3,4];
g(l]:-g(l]+A;
g(2]:-g(2]+al;
g(3]:-g(3]+be;
g(4]:-g( 4]+de;

end;
writeln (f,max);
for i:-l to 4 do
begin
{variances}

v[n,i]:-(sum[i,i]-(sqr(g(i]))/max)/(max-l); {variance matrix}
for j:-l to 4 do
begin

den:-sqrt«sum[i,i]-(sqr(g(i]»/max)*(sum[j,j]-(sqr(g(j]»/max»;
h[i, j]:-(sum[i ,j] -(g(i]*g[j])/max) / den;
write (f,h[i,j]:lO:6);

end;
writeln (f);

end;
writeln (f);
maxr=max+Sû; nr=n+ 1;

end;
writeln (f);
writeln (f,'End');
close (f);

end.

Result of calculation:

total correlation
0.12

0.1

0.08

0.06

0.04

0.02

W 0

~ -0.02..• -0.04•.. -0.0611
u

-0.01

-0.1

-0.12

-0.14

-0.1&

-0.1.
100 soo 1000 1SOO 2000

~ of a... ,..tlorw
- corr.l.tlot<8C> - _n (-0._7)
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APPENDIXVD

TAYLOR SERIFS

The varianee of a dependent variabie Y • f(X1,X2,X3 ••Xn) can be expressed as a
function of the variances of the independent variables X1,X2,X3"Xn and the derivatives.
Use can be made of the Taylor series. For linear relationships Taylor series give exact solution
for the variances of Y. For non-linear relationships Taylor series approximate the exact
solution for the varianee of Y, so called linearization.
In general. Taylor series of the first order give satisfying results. In case of large variances of
the independent variables and multiple differential relationships higher order Taylor have to
be included in the linearization.
Assume the equation:

A at S
Y = *X1*X2

Taylor series to approximate Yi gives:

---- - ( 6f) - ( af) - (af) - (af)YI - f(Xl~,CI.a)+(XII-Xl) - +~I-XJ - +(CI.-Cl)- +(8.-8) - +aXI ex, 6C1 68

~[<x.,-x,>(a~} (X,,-x.> ( a~) +(.,-«>(aa.)+ <B.-8)( :8)r +

R,(XI~,ëï.i.xU~I,CI.,aJ

(VII-I)

In which the derivation in the mean values of the variables.
Mean Value Approach assumes:

(VII-2)

Substituting (VII-2) in (VII-I) and summing the squared equation gives:

~ ~ ~ ( - ( &f) - ( af) - ( af) - ( af)LJ (YI- XJ - L.." (XU-XI) - +~I-XJ - +(ClI-Cl)- +(81-8) - +
I-I i-I &X. a~ aCl &8

(VII-3)

Dividing both sides of equation (VII-3) by the number of values n gives the varianee of Y as
function of the (co)variances of X1,X2,a and 8 and other (analytical undefined) combinations.
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APPENDIXVllI

HYDROGRAPH

Application of the GAMA I unit hydrograph theory concerns the determination of the
unit hydrograph characteristics TR,QP and TB. These characteristics are normally distributed
with a mean value and a standard deviation. By means of simulation values from these
distributions are generated. The program "HYDROGRAPH" is based on th is principle (see next
page).
For better understanding the foUowing scheme is constructed:

-Step 1:

-Step 2:

-Step 3:

-Step 4:
-Step 5:

-Step 6:

-Step 7:

1.

effective rainfall

1 hour hydrograph 5.

sum hydrographs
6.

The input for the program is read from an external file (see next page), and
contains the rainfall depth P, the duration of the storm, the hourly distribution
and the catchment characteristics of importance for QP and TB.
Values for TR,QP and TB are generated from their distributions (TR directly
and QP,TB indirectly because they depend on TR).
Fitting the unit hydrograph to a an area of 1 mm rainfall depth evenly distri -
buted over the area. This is done by varying the lag time K.
Kmax is set to 60 to prevent instability, which can occur if the iteration
procedure does not converge. Hydrographs with K ..60 are deleted.
The effective rainfall per hour is determined af ter substraction of the losses.
The hydrograph for each hour is constructed by multiplying the effective
rainfall depth with the unit hydrograph ordinates.
Summation of all hydrograps of one storm, which is 1 simulated total hydro-
graph.
Ordinates of each simulated hydrograph are stored in a matrix for later matrix
operations.
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input file:

lOS {rainfall depth}
7 {duration of storm}
0.108 0.533 0.13 0.092 0.056 0.053 0.028 {distribution}
5 {number of stations}
No AR JN TR S RUA SN D VTR K
5 32.76 I 5.1671 0.046840.42370.6667 0.74 0.12 16.3765

program HYDROGRAPH(input,output);
const l:integer .. 75;
type matrix l > array [1..80,1..40] of real;
type matrix2 .. array [1..80,1..10] of real;
type vector - array [1..20] of real;
var QP,QB,Qt,TB,TR,T,X 1,X2,X4,X5,X6,X7, VC,VTR,K,Xu,areal ,area2,area3,E :real;

z1,z2,z3,z4,z5,z6,z7 ,z8,z9,sdz1,sdz2,sdz3,sdz4,sdz5,sdz6,sdz7:real;
sdz8,sdz9,P, phi:real;
Ctch,sim,time,i,j,n,duration:integer;
r,f:text;
G,H,UH:matrixl;
test:matrix2;
v,distr ,PE:vector;

begin
assign (r, 'a:inputhg.pas');
assign (f,'a:outputhg.pas');
rewrite (f);
for i:"l to 1do
begin

for j:-l to 40 do
begin

UH[i,j]:"O; H[i,j]:"O;
end;

end;
VC:-0.I0;
for simt=1 to 1do
begin

for i:...1 to duration do
begin

for j:"l to 40 do G[i,j]:=O;
end;
reset (r);
readin (r,P);
readIn (r,duration);
for i:-l to duration do read (r,distr[i]);
readIn (r);
readin (r,n); readin (r);
readin (r,ctch,X 1,X2,TR,X4,X5,X6,X7, VTR,K);
zl:-O.1836; sdzl:"0.0842; z3:-0.2381; sdz3:=0.1025;
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z2:-0.5886; sdz2:-0.1353; z4:-0.4008; sdz4:=0.1056;
z5:-27.4132; sdz5:=8.9792; z8:=0.2574; sdz8:"0.1524;
z6:- 0.1457; sdz6:-0.0565; z9:-0.7344; sdz9:-0.9028;
z7:- 0.0986; sdz7:-0.0335;
for i:-l to 16 do
begin

v[i]:-O;
Xu:-O;
for j:-l to 10 do Xu:=Xu+random;
v[i]:-(Xu-l0/2)/sqrt(10/12);

end;

alr=sdal *v[l]+zl;
z2:-sdz2*( -0.7076*v[I]+0.7066*v[2])+z2;
z3:-sdz3*( 0.1825*v[l]-0.9684*v[2]+0.1700*v[3])+z3;
z4:-sdz4*( -0.5793*v[I]+0.1290*v[2]+0.7718*v[3]+0.2285*v[4])+z4;
z5:-sdz5*v[5]+z5;
z6:-sdz6*( 0.0360*v[5]+0.9994*v[6])+z6;
z7:-sdz7*( -0.4282*v[5]-0.5986*v[6]+0.6770*v[7])+z7;
z8:-sdz8*( 0.1548*v[5] - 0.3457*v[6]+0.1209*v[7]+0.9176*v[8]) +z8;
z9:-sdz9*( 0.8690*v[5]+0.0660*v[6]+0.3159*v[7]-0.3639*v[8]+0.0908*v[9])+z9;

Xl:-VC*Xl *v[I0]+Xl; X5:-VC*X5*v[I4]+X5;
X2:"round(VC*X2*v[II]+X2); X6:=VC*X6*v[I5]+X6;
TR:-abs(VTR*TR*v[I2]+TR); X7:-VC*X7*v[16]+X7;
X4:- VC*X4*v[I3]+ X4;

QP:-abs(zl *exp(z2*ln(X 1))*exp(z3*ln(X2) )*exp( -z4*ln(TR»);
TB:-z5*exp(z6*ln(TR) )*exp( -z7*ln(X4) )*exp(z8*ln(X5) )*exp(z9*ln(X6»;
QB:-0.4751 *exp(0.6444*ln(X 1))*exp(0.9430*ln(X7»;
phir=l 0.4903- 3.85ge-6*sqr(X 1)+1.6985e-13*exp(4*ln(X I/X6»;
T:-TB-TR -1;
areal:-0.5*QP*3.6*TR/Xl;
E:-l;
while (abs(E»O.OOOl) do
begin

area2: ..(3.6*QP*K -3.6*QP*K*exp( -T /K»/(Xl);
area3:-(0.5*3.6*QP*exp( -T /K»/(Xl);
E:-l-areal-area2-area3;
if E<O then K:=0.9*K else x.-r.i-x.
if abs(K»60 then
begin

E:-O;
K:-60;

end;
end;
timer=I; (time 0)
while (TR > (time -1» do
begin

Qt:-(time-l)*(QP/TR); (in m3/s)
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UH[sim, time]:-Qt;
timer-time+ I;

end;
while «TB-l»(time-l) do
begin

Qt:-QP*exp( -(time-I-TR)/K);
UH[sim,time]:-Qt;
timer-time+ I;

end;
UH[sim, time):-O;
test[sim, 1]:-K; test [sim,2]:=area 1+area2+area3;
for i:-I to duration do
begin

PE[i]:"'distr[i]*P- phi;
if PE[i]<O then PE[i]:",O;

end;
for i:-I to duration do
begin

for j:-I to time do
begin

G[i,j+i -I ):- PE[i]*UH[sim,j);
end;

end;
for i:-l to 40 do
begin
H[sim,i]:"'O;
for j:-l to duration do H[sim,i]:-H[sim,i]+G[j,i];
H[sim,i]:- H[sim,i]+QB;

end;
end;
writeln (f);
writeln (f,'Simulation of Hydrograph');
writeln (f);
for i:"'l to Ido
begin

if test[i,1)<60 then
begin

for j:-l to 40 do
begin

write (f ,H[i,j):4:1,' ');
end;
writeln (f);

end;
end;
writeln (f);
for i:-l to Ido writeln (f,'K-',test[i,I):8:4,'area-',test[i,2):5:4);
writeln (f);
writeln (f,'End');
close (f);

end.
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Output file

S;mulat;on of hydro9raph
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2.6 4.2 7.7 12 16.4 19.1 19.7 19.5 19 18.6 18.1 17.7 17.3 16.9 16.5
3.4 10.4 25.2 43.6 62.5 81. 3 73.4 45.8 22.6 11. 2 6.5 4.7 3.9 3.6 3.5
3.2 4.2 6.4 9 11. 8 14.5 17.1 18.5 18.7 18.4 18 17.6 17.3 16.9 16.5
3.6 4.9 7.8 11.4 15.1 18.9 22.2 23.7 23.4 22.4 21. 3 20.3 19.4 18.5 17.6
3.3 4.8 8.2 12.3 16.5 20.5 22.5 22.7 22 21. 3 20.7 20 19.4 18.8 18.2
2.9 4.6 8 12.3 16.7 21.1 25 26.7 26.2 24.9 23.6 22.4 21. 3 20.2 19.2
3.9 5.6 9.3 13.9 18.5 23.2 26.4 27.2 26.5 25.3 24.2 23.1 22.1 21.2 20.2
3.4 5.2 9.1 14 18.9 23.9 26.8 27 25.8 24.5 23.2 22 20.8 19.8 18.8
3.5 5.5 9.8 15.1 20.5 25.2 27.3 27.1 26 24.8 23.7 22.6 21.6 20.7 19.8
4.1 5.5 8.6 12.4 16.4 20.3 23.1 24.1 23.8 23.2 22.5 21.8 21. 2 20.6 20

3 5.9 11.9 19.3 26.9 32.6 33.7 31.3 28 24.9 22.2 19.9 17.8 16 14.4
3.3 5 8.6 13 17.5 22.1 26.6 29.1 29 27.7 26.4 25 23.8 22.6 21. 5
3.3 5.7 10.9 17.3 23.9 30.5 35 35.1 32.1 28.3 24.8 21.9 19.3 17.1 15.2
3.5 5.4 9.4 14.4 19.5 24.6 28.3 29.4 28.5 27.1 25.7 24.3 23.1 21. 9 20.8
3.6 5.3 8.8 13.1 17.6 22.1 25.5 26.7 26.3 25.3 24.3 23.3 22.4 21.5 20.7
3.4 5.9 11.1 17.6 24.2 30.9 35.8 36.8 34.8 31.9 29.1 26.6 24.4 22.3 20.5
3.6 9.321.4 36.3 47 48.7 44.1 38.1 32.8 28.3 24.5 21.3 18.6 16.3 14.3
3.9 7.2 14.3 23.1 32.1 40.6 43.1 39.4 33.8 28.8 24.6 21.1 18.3 15.8 13.8
2.8 4.1 6.8 10.1 13.5 16.9 18.9 19.3 19 18.6 18.3 17.9 17.5 17.2 16.9
3.6 5.5 9.7 14.9 20.2 25.6 30.9 34 34.1 32.4 30.4 28.5 26.8 25.1 23.6
2.9 6.1 13 21. 6 30.3 38.1 40.4 37.7 33.5 29.4 26 22.9 20.3 18 16
3.5 6.9 14.1 23.1 32.2 37.6 37.4 34.1 30.4 27.1 24.1 21.6 19.3 17.4 15.7
3.3 5.3 9.8 15.2 20.8 26.4 30.7 31.6 30 27.7 25.4 23.4 21. 5 19.9 18.3
3.9 6 10.5 16 21.7 27.4 31. 6 32.8 31.9 30.3 28.7 27.2 25.8 24.5 23.2
2.8 4.2 7.2 11 14.9 18.7 22.1 23.3 22.5 20.8 19.2 17.8 16.5 15.3 14.1
3.1 7.8 17.9 30.3 43 50.7 49.4 42.6 35.3 29.1 24.1 20 16.8 14.1 12
3.7 6.6 12.9 20.7 28.7 34.3 35.8 34.8 33.1 31.4 29.8 28.2 26.8 25.4 24.2

3 5.6 11 17.7 24.6 28.8 29 27 24.6 22.4 20.4 18.6 17 15.6 14.3
3.7 6.5 12.6 20.2 27.9 34.4 36.1 33.9 30.4 27.1 24.3 21.8 19.5 17.6 15.9
3.4 4.8 7.8 11.4 15.2 18.9 21.1 21. 3 20.8 20.1 19.4 18.8 18.2 17.6 17.1
2.4 4 7.2 11.3 15.4 18.3 19.1 18.8 18.1 17.4 16.8 16.2 15.6 15 14.5
3.1 7 15.4 25.7 36.4 41.5 39.7 34.6 29.5 25.1 21. 5 18.5 16 13.8 12.1
3.8 5.5 9.2 13.8 18.5 23.1 26.2 26.9 26.4 25.6 24.8 24 23.2 22.5 21.8
3.4 4.9 8.2 12.3 16.5 20.7 23.6 24.4 23.8 22.9 22 21.1 20.3 19.5 18.7
3.2 5.6 10.6 16.8 23.1 29.5 35.8 38.2 35.6 30.8 26.2 22.4 19.2 16.5 14.3
3.2 5.8 11.3 18.1 25.1 31.9 34.4 32.3 28.6 25.1 22.1 19.5 17.3 15.4 13.7
3.4 6.1 11.7 18.7 25.9 33.1 38.7 40 37.9 34.8 31.9 29.2 26.7 24.5 22.5
3.3 5.3 9.6 15 20.5 26 30.1 30.7 28.8 26.2 23.7 21. 5 19.5 17.8 16.2
3.5 6.2 11.9 19.1 26.4 33.7 37.3 36.1 32.6 29 25.8 23 20.6 18.4 16.6
2.9 5.2 10.2 16.3 22.6 28.9 35.1 37 33.9 28.9 24.4 20.6 17.5 15 12.9
3.5 5.2· 8.8 13.4 18 22.4 24.8 25 24.4 23.6 22.8 22.1 21. 4 20.7 20
3.5 5.8 10.8 16.9 23.2 27.9 29.2 28.1 26.3 24.5 22.8 21. 3 19.9 18.6 17.4
3.4 6.6 13.4 21.8 30.5 39.1 45.6 45.7 40.7 34.5 29.2 24.7 21.1 18 15.5
3.7 6.2 11.5 18.1 24.8 31.6 35.4 35 32.2 28.9 26 23.4 21.2 19.1 17.3
3.5 4.5 6.8 9.5 12.4 15.2 18 20.2 21.1 21.1 20.9 20.6 20.3 20 19.7
3.4 5.5 10.1 15.7 21.5 26.1 27.7 27.1 25.7 24.3 23 21.8 20.7 19.6 18.6
3.1 5.1 9.2 14.2 19.4 24.6 27.8 28 26.4 24.4 22.6 20.9 19.3 17.9 16.6
2.8 4.3 7.6 11.7 15.9 20 24.2 26.7 26.7 25.2 23.4 21.7 20.2 18.7 17.4
3.5 6.3 12.3 19.6 27.1 34.6 38.1 36.4 32.3 28.1 24.5 21.5 18.9 16.6 14.7
3.2 5.8 11.2 17.9 24.8 31.7 38 38.5 33.4 27 21.7 17.6 14.4 11. 9 10
3.9 5.3 8.5 12.4 16.4 20 21.8 22 21.5 21 20.4 19.9 19.4 18.9 18.4
3.8 5.8 9.8 14.9 20 25.2 29.5 31 30 28 26.1 24.3 22.7 21.2 19.8
3.7 6.1 11.2 17.5 24 29.3 31. 3 30.4 28.6 26.7 25 23.4 21.9 20.5 19.3
2.8 4.7 8.9 14 19.3 24.5 27.3 27.1 25.5 23.8 22.2 20.7 19.3 18 16.9
3.9 6.9 13.2 21 29 37 43.9 45.5 42.3 37.5 33.2 29.4 26.1 23.2 20.7
2.9 5.9 12.4 20.4 28.5 36.7 42.6 42.5 38 32.6 27.8 23.8 20.4 17.6 15.2
3.1 5.2 9.7 15.3 21 24.5 25.1 24.3 23.1 22 21 20 19.1 18.3 17.4
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15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
16.2 15.8 15.4 15.1 14.8 14.4 14.1 13.8 13.5 13.2 9.2 4.8 2.9 2.6 2.6
3.5 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

16.2 15.9 15.5 15.2 14.9 14.6 14.3 14 13.7 13.5 13.2 9.4 5.3 3.5 3.2
16.8 16.1 15.4 14.7 14.1 13.5 12.9 12.4 11.9 11. 4 10.9 10.5 10.1 9.8 9.4
17.6 17.1 16.5 16 15.6 15.1 14.6 14.2 13.8 13.4 13 12.6 9.1 5.2 3.5
18.2 17.3 16.5 15.7 14.9 14.2 13.5 12.9 12.3 11.8 11.2 10.8 10.3 7.4 4.4
19.4 18.6 17.8 17.1 16.4 15.7 15.1 14.5 13.9 13.4 12.9 12.4 12 11.6 8.6
17.8 16.9 16.1 15.3 14.6 13.9 13.3 12.7 12.1 11. 6 8.4 5 3.6' 3.4 3.4
18.9 18.1 17.3 16.6 15.9 15.3 14.7 10.4 5.8 3.8 3.5 3.5 3.5 3.5 3.5
19.5 18.9 18.4 17.9 17.4 17 16.5 16.1 15.7 15.3 14.9 14.5 14.1 13.8 13.4

13 11.8 10.7 9.8 8.9 8.2 7.6 7 6.5 6.1 5.7 5.4 4.4 3.5 3.1
20.5 19.5 18.6 17.7 16.9 16.1 15.4 14.7 14.1 13.4 9.5 5.3 3.6 3.3 3.3
13.6 12.2 11 9.9 9 8.2 7.6 5.8 4.1 3.4 3.3 3.3 3.3 3.3 3.3
19.8 18.8 17.9 17 16.2 15.4 14.7 14 13.4 12.8 12.2 11.7 11. 2 10.7 10.3
19.9 19.1 18.4 17.7 17 16.4 15.8 15.2 14.7 14.2 10.1 5.8 3.9 3.6 3.6
18.8 17.3 16 14.8 13.7 12.7 11.8 11 10.2 9.6 9 8.4 8 7.5 5.9
12.7 11.3 10.1 9.1 8.3 7.6 7 6.4 5.3 4.1 3.7 3.6 3.6 3.6 3.6
12.2 10.8 9.6 8.7 7.9 7.2 6.6 6.2 5.8 5.5 5.2 5 4.8 4.6 4.5
16.5 16.2 15.9 15.6 15.3 15 14.7 14.5 14.2 13.9 9.8 5.1 3.1 2.8 2.8
22.2 20.8 19.6 18.5 12.6 6.5 3.9 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
14.3 12.8 11.5 10.4 9.4 8.5 7.8 7.1 6.6 6.1 5.7 5.3 5 4.7 4.5
14.1 12.8 11. 7 10.7 9.8 9 8.3 7.7 6 4.3 3.6 3.5 3.5 3.5 3.5
16.9 15.7 14.5 13.5 12.5 11. 7 8.3 4.9 3.5 3.3 3.3 3.3 3.3 3.3 3.3
22.1 21 20 19 18.1 17.2 16.4 15.7 15 10.7 6.1 4.2 3.9 3.9 3.9
13.1 12.2 11.4 10.6 9.9 9.3 8.7 8.2 7.7 7.3 6.9 6.5 6.2 5.9 5.6
10.3 8.9 7.8 6.9 6.2 5.6 5.1 4.7 4.4 4.2 4 3.8 3.7 3.6 3.5

23 21.9 20.8 19.8 18.9 18 17.1 11.9 6.4 4 3.7 3.7 3.7 3.7 3.7
13.2 12.1 11. 2 10.4 9.6 8.9 8.3 7.8 7.3 6.9 6.5 6.1 5.8 4.7 3.6
14.4 13.1 11.9 8.5 5.2 3.9 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
16.5 16 15.5 15 14.6 14.1 13.7 13.3 12.9 12.5 12.2 11.8 11.5 11.2 10.9

14 13.5 13 12.6 12.1 11.7 11. 3 10.9 10.6 10.2 9.9 9.6 6.9 3.9 2.6
10.6 9.4 8.3 7.5 6.7 6.1 5.6 5.2 4.9 4.6 4.3 4.1 3.9 3.6 3.2
21.1 20.5 19.8 19.2 18.7 18.1 17.6 17 16.5 16.1 15.6 15.2 10.8 6.1 4.1

18 17.3 16.7 16.1 15.5 14.9 14.4 13.8 13.4 12.9 12.4 12 11.6 11. 2 10.9
12.4 10.9 9.6 8.6 7.7 6.9 6.3 5.8 5.4 5 4.7 4.5 4.3 4.1 3.9
12.3 11 10 9 8.2 7.6 7 6.5 6 5.6 5.3 5 4.8 4.1 3.5
20.7 19.1 12.8 6.5 3.8 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
14.8 13.5 12.4 11.4 10.6 9.8 9.1 8.4 7.9 7.4 5.7 4.1 3.4 3.3 3.3
14.9 13.5 12.2 11.1 10.2 9.3 8.6 8 7.4 6.9 6.5 6.1 5 4 3.5
11.1 9.7 8.5 7.5 6.7 6.1 5.5 5.1 4.7 4.4 4.1 3.9 3.7 3.6 3.5
19.4 18.8 18.2 17.7 17.1 16.6 16.1 15.6 15.2 14.7 14.3 10.2 5.7 3.8 3.5
16.3 15.3 14.4 13.5 12.7 12 11. 3 10.7 10.1 9.6 7.2 4.7 3.6 3.5 3.5
13.4 11.7 10.3 9.1 8.1 7.3 5.7 4.1 3.5 3.4 3.4 3.4 3.4 3.4 3.4
15.8 14.4 13.1 12 11.1 10.2 9.5 8.8 8.2 7.7 7.2 6.8 5.6 4.3 3.8
19.4 19.2 18.9 18.7 18.4 18.1 17.9 17.7 17.4 17.2 16.9 16.7 16.5 16.3 11.5
17.6 16.7 15.9 15.1 14.4 13.7 13 12.4 11.9 11. 3 10.9 10.4 9.9 9.5 9.2
15.5 14.4 13.4 12.5 11.7 10.9 10.3 9.6 9.1 8.5 8.1 7.6 7.3 6.9 5.4
16.2 15.1 14.1 13.2 12.3 11. 5 10.8 10.2 9.5 6.9 4.1 2.9 2.8 2.8 2.8
13.1 11.7 10.5 9.5 8.6 7.9 7.2 6.7 6.2 5.9 5.5 5.2 5 4.8 4.6
8.5 7.3 6.4 5.7 5.1 4.7 4.4 4.1 3.9 3.6 3.4 3.3 3.2 3.2 3.2

17.9 17.5 17 16.6 16.2 15.8 15.4 15.1 14.7 14.4 14 13.7 13.4 13.1 12.8
18.6 17.4 16.3 15.3 14.4 13.6 12.8 9.3 5.6 4.1 3.8 3.8 3.8 3.8 3.8
18.1 17 16 15.1 14.2 13.4 12.7 12 11.4 10.8 8 5.1 3.9 3.7 3.7
15.8 14.8 13.9 13 12.2 11. 5 10.8 10.2 9.6 9.1 8.6 8.2 6 3.8 2.9
18.5 16.6 15 13.5 12.3 11.2 10.2 9.4 8.7 8.1 7.5 7.1 6.7 6.3 6
13.3 11.6 10.2 9 8 7.2 6.5 5.9 5.5 5 4 .7 4.4 4.2 4 3.8
16.7 15.9 15.2 14.6 13.9 13.4 12.8 9 5 3.3 3.1 3.1 3.1 3.1 3.1

V1ll-92



max Q m3/s
30 31 32 33 34 35 36 37 38 39

2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 19.7
3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 81.3
3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 18.7
9.1 6.9 4.7 3.7 3.6 3.6 3.6 3.6 3.6 3.6 23.7
3.3- 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 22.7
3.1 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 26.7
5.5 4.1 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 27.2
3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 27
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 27.3
9.9 6 4.3 4.1 4.1 4.1 4.1 4.1 4.1 4.1 24.1

3 3 3 3 3 3 3 3 3 3 33.7
3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 29.1
3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 35.1
9.9 9.5 9.1 7 4.6 3.6 3.5 3.5 3.5 3.5 29.4
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 26.7
4.2 3.5 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 36.8
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 48.7
4.4 4.2 4 3.9 3.9 3.9 3.9 3.9 3-.9 3.9 43.1
2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 19.3
3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 34.1
4.2 4.1 3.6 3.1 2.9 2.9 2.9 2.9 2.9 2.9 40.4
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 37.6
3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 31. 6
3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 32.8
5.4 4.3 3.3 2.8 2.8 2.8 2.8 2.8 2.8 2.8 23.3
3.4 3.3 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 50.7
3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 35.8
3.1 3 3 3 3 3 3 3 3 3 29
3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 36.1

10.6 7.9 4.9 3.6 3.4 3.4 3.4 3-.4 3.4 3.4 21.3
2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 19.1
3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 41.5
3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 26.9

8 4.9 3.6 3.4 3.4 3.4 3.4 3.4 3.4 3.4 24.4
3.8 3.7 3.6 3.6 3.5 3.5 3.4 3.3 3.2 3.2 38.2
3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 34.4
3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 40
3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 30.7
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 37.3
3.4 3.3 3.1 3 -2.9 2.9 2.9 2.9 2.9 2.9 37
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 25
3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 29.2
3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 45.7
3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 35.4
6.2 3.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 21.1
.8 6.7 4.5 3.5 3.4 3.4 3.4 3.4 3.4 3.4 27.7

3.9 3.2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 28
2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 26.7
4.4 4.1 3.7 3.6 3.5 3.5 3.5 3.5 3.5 3.5 38.1
3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 38.5

12.5 12.2 12 11. 7 8.7 5.5 4.1 3.9 3.9 3.9 22
3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 31
3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 31.3
2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 27.3
5.7 5 4.3 4 3.9 3.9 3.9 3.9 3.9 - 3.9 45.5
3.7 3.3 3 2.9 2.9 2.9 2.9 2.9 2.9 2.9 42.6
3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 25.1
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APPENDIX IX

CATCHMENT CHARACTERISTICS

WF Width factor, which is defined as the ratio of the width of the catchment measured
at 3/4 and at 1/4 of the stream length (L) measured from the gauging site (see
figure IX -1).

WUWF--
WL

In which
WF: Width factor [-]
WU: Width of the catchment at the point 3/4 L from the gauging site

[km]
WL: Width of the catchment at the point 1/4 L from the gauging site

[km].

SIM Symmetry factor, presented as

SIM • RUA*WU • RUA*WF
WL

In which
SIM: Symmetry factor [-]
RUA: Relative upstream area of catchment [-].

SF Source factor, defined as

In which
SF: Souree factor [-]
:tL1: Totallength of the first order streams [km]
I:Lu: Totallength of streams of all order [km].

SN Source frequency, defined as

In which
SN: Souree frequency [-]
:tN 1: Total number of segments of the first order streams [-]
I:Nu: Total number of stream segments [-].

JN Total number of stream junctions, defined as the number of segments of the first
order streams minus one (:tN1-1).
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s Average main stream slope [-].

L Main stream length [km].

x-e c =·0,75 L
= \-J I \.:_

u LFa \( t 0 r -1 eba r
(\·Jidth fe.ctor )

RUA = AUlA
B terdekat dengan titik

berat DAS
( B nearest to the center

of grav~ty)
... --

Fig. IX -1 Diagram of determining the width factor and the relative upstream area
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