A Multi-Agent Reinforcement
Learning Approach to Air Traffic
Control

Master of Science Thesis

Dennis van der Hoff
30 June 2020

Delft
e t University of
Technology

A Multi-Agent Reinforcement Learning
Approach to Air Traffic Control

Master of Science Thesis

MASTER OF SCIENCE THESIS

For obtaining the degree of Master of Science in Aerospace Engineering
at Delft University of Technology

Dennis van der Hoff

30 June 2020

Faculty of Aerospace Engineering - Delft University of Technology

]
TUDelft

Delft University of Technology

Copyright (© Dennis van der Hoff
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF
CONTROL AND SIMULATION

The undersigned hereby certify that they have read and recommend to the Faculty of
Aerospace Engineering for acceptance a thesis entitled “A Multi-Agent Reinforcement
Learning Approach to Air Traffic Control” by Dennis van der Hoff in partial fulfill-
ment of the requirements for the degree of Master of Science.

Dated: 30 June 2020

Readers:

Dr. ir. J.M. Hoekstra

Dr. ir. J. Ellerbroek

Dr. ir. P.C. Roling

4DTBO

Al

ATC

ATF

CNN
COMA
CPU
DDPG
Dec-MDP
Dec-POMDP
DLCQL
Double-DQN
DP

DQN
DRUQN
GPI

GPU

GRU

IAC

IQL

KL

LCQL

LoS

LRN
LSTM
MADDPG
MARL

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Acronyms

4D Trajectory based Optimization

Artificial Intelligence

Air Traffic Control

Average Temperature Folding

Convolutional Neural Network
Counterfactual Multi-Agent Policy Gradients
Central Processing Unit

Deep Deterministic Policy Gradient
Decentralized Markov Decision Process
Decentralized Partially Observable Markov Decision Process
Deep Loosely Coupled Q-network

Double Deep Q-network

Dynamic Programming

Deep Q-Network

Deep Repeated Update Q-network
Generalized Policy Iteration

Graphicals Processing Unit

Gated Recurrent Unit

Independent Actor-critic

Independent Q-learning

Kullback Leibler

Loosely Coupled Q-learning

Loss of separation

Lenient Reward Network

Long Short-term Memory

Multi-agent Deep Deterministic Policy Gradient
Multi-agent Reinforcement Learning

Dennis van der Hoff

6 Acronyms

MC Monte Carlo

MDP Markov Decision Process

MLP Multilayer Perceptron

MM Minorization-maximization

MVP Modified Voltage Potential

NF Normalizing Flows

PBRS Potential Based Reward Shaping

POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization

PS-TRPO Policy Sharing Trust Region Optimization
RL Reinforcement Learning

RLLIB Reinforcement Learning Library

RNN Recurrent Neural Network

RUQL Repeated Update Q-learning

TD Temporal Difference

TPU Tensor Processing Unit

TRPO Trust Region Policy Optimization

WDDQN Weighted Double Deep Multi-agent Reinforcement Learning
WDQ Weighted Double Q-learning

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Contents

Acronyms 5

| Preface 9
Il Scientific Paper 13
11l Preliminary Thesis 27
1 Introduction 29
1-1 Air Traffic Control and Reinforcement Learning 29
1-2 Markov Decision Process 33
1-3 Finding a solution to the MDP 35

2 Model Free Methods 41
2-1 Value Based Model Free methods 41
2-1-1 Monte Carlo methods 41

2-1-2 Temporal Difference methods, 44

2-1-3 Deep Q-learning 46

2-2 Policy gradient methods 47
2-2-1 Actor-Critic 49

2-2-2 Policy optimization 50

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

8 Contents

2-3 Hurdles of Reinforcement Learning 54
2-4 Function approximation by deep learning techniques 55
2-5 Extensions of the Markov Decision Process 57
2-5-1 Mathematical framework for MDPs 58

2-5-2 the Dec-POMDP Family 59

3 Problem Description and Research Question 63
4 How to apply Reinforcement Learning 65
4-1 The Multi-agent problemo 65
4-1-1 Value based reinforcement learning 66

4-1-2 Policy gradient methods and other approaches 75

4-2 How to define the state-space 79
4-2-1 The Markov state 80

4-2-2 How to present the state information 80

4-3 How to define the actionspace 81
4-3-1 Practical definition of the action space 81

4-3-2 How to implement the action space 82

4-4 How to define the reward structure 83

5 Simulated Air Traffic Control setting 87
6 Maximizing safety and efficiency 89
7 Experimental setup 91
8 Worap-up and Planning 95
8-1 Planning 99
References 101

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Part |

Preface

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

11

Preface

This document contains both the literature survey and final article of the thesis work sur-
rounding the topic ” A multi-agent reinforcement learning approach to air traffic control”. The
problem, as described in the title, is the application of reinforcement learning methods to the
air traffic control problem. Reinforcement learning is a machine learning paradigm in which
an agent, through trail and error, reinforces its own ”behaviour” towards better performance.
This performance is measured in the collected reward, which is given by the environment and
received by the agent. An solution to the problem is found by optimizing a decision making
model, called the policy. This decision making model is ”trained” by collecting experience,
experience in the form of state transitions, rewards and executed actions by the agent.

When I started working on this project there where a lot of blanks to be filled and trade-offs
to be made. An example of such an initial trade-off was how to represent an agent in the air
traffic control problem. Do I define centralized air traffic control towers as agents, or each
individual aircraft as an agent? Even so, is a multi-agent approach even needed? A single
”super” agent which decides for all aircraft simultaneously could also work. The advantages
and disadvantages of these approaches are closely linked to other limitations as well, such as
computational requirements. It is well known that deep learning methods consume lots of
computational power. Reinforcement learning even more so, as it has to generate the data
through simulations, which is subsequently used to train the model.

For example, when approaching the issue with the super agent as opposed to multiple simpler
agents, this would require a significant higher computational demand. This agent would have
an action space, i.e. the combination of all possible actions, that is significantly larger than
that of multiple, simpler agents. However, the simpler agents could be well, to simple and
not provide complex enough solutions.

Such trade-offs where common throughout the thesis work, and often there was no clear
scientific basis or related work to fall back on. Most reinforcement learning problems are one
of a kind, and have an unique environment and solution. Nevertheless, this ”adventure into
the unknown” made it an exciting problem to tackle. The in the end presented solution is
one of many different approaches, balancing advantages versus disadvantages.

A lot of work went into the actual creating of the software platform to facilitate learning.
The platform was proven to be capable of providing high data throughput, which enabled
”quick” learning. Quick as in a sense that training results where achieved in about 34 hours.
However, many previous iterations where slower, or had other problems. There have been
training sessions where my desktop was running for about 8 days straight, in which after
these 8 days the conclusion was; "No it’s indeed not working as I hoped it would”.

The scientific paper will contain the results of the thesis work, while the preliminary report
can provide some more detailed background information on techniques used. However, there
is no full match between information presented in the preliminary thesis and scientific paper,
as techniques used gradually changed between the preliminary and final work.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

12

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Part Il

Scientific Paper

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

A Multi-Agent Reinforcement Learning Approach
to Air Traffic Control

D.E. van der Hoff
under supervision of J.Ellerbroek and J.M. Hoekstra
Delft University of Technology, Kluyverweg 1, the Netherlands

Abstract—Reinforcement learning has shown that, when com-
bined with deep learning techniques, is able to provide solu-
tions to complex and dynamic problems. Air traffic control is
considered to be an problem of such nature, which bears the
question to mind; Can reinforcement learning be used to solve the
problem of air traffic control. This work explores the applicability
of reinforcement learning to the air traffic control problem
by setting up a distributed system for training and experience
collection. The problem is formulated as a decentralized system.
Each aircraft is modeled as an agent that uses local observations
while being limited to heading changes only. During learning,
information about the actions of surrounding agents are added. It
is shown that for low air traffic density scenarios the model is able
to provide collision avoidance and approach the correct runway
under realistic limitations. However, due to the lack of global
coordination and limited modeling of spatial relation between
states this method is unable to solve more complex and higher
air traffic density situations.

I. INTRODUCTION

Air traffic control is a ground service established to provide
guidance to airborne craft. Furthermore, air traffic controllers
prevent collision and organize the flow of traffic as well as
provide many information services. Due to the ever growing
density of air traffic, optimized methods are needed to reduce
the workload on the air traffic controllers as well as increasing
the efficiency of the used airspace. An example of such a
system is the concept of 4D-Trajectory Based Operations
(4DTBO) [1]. In short, aircraft follow a predetermined, conflict
free time-based contract that is known among all other aircraft.
This method relies on the precision of models to be able
to make accurate time based predictions. Uncertainties in
model predictions are the result of stochastic phenomena, such
as weather conditions and pilot errors. Also, the governing
principles behind 4DTBO and other such methods are limited
by the creativity of the author.

In search of a more exotic approach, and avoiding said
limitations, model free self-learning algorithms could offer
new insights and solutions. Reinforcement learning is such
a self-learning algorithm. Reinforcement learning is based
around the principle of trail and error and self reinforcement.
An agent, which is an actor that can exert control through
actions, exists within a certain environment. The definition
of an agent can differ vastly depending on the problem
formulation. With regards to the air traffic control scenario,
this can be a centralized entity such as an air traffic control
tower or an decentralized entity such as a single aircraft.
What action an agent performs depends on its policy. The

policy is the collection of learned behaviour, which translates
a certain environmentally determined state into an action. The
goal of reinforcement learning is to construct and improve this
policy in such way that it maximizes the cumulative reward.
Reward is a form of feedback from the environment, rewarding
the agent positively for good behaviour, and penalizes bad
behaviour. This interaction of state, action and subsequent
reward is the bedrock of reinforcement learning. Modern rein-
forcement learning approaches utilize deep learning techniques
to enable the application of reinforcement learning techniques
on more complex problems. What sets deep reinforcement
learning apart from other machine learning paradigms, is
that deep reinforcement learning influences the underlying
distribution that is being approximated. This in contrast to
for example image classification, where the underlying distri-
bution is stationary.

Recently reinforcement learning got notable attention due
to the successes of the deep reinforcement learning agent
AlphaGo [2] and OpenAl Five [3]. AlphaGo was able to defeat
Lee Sedol in the classical boardgame of Go, and OpenAl Five
attained superhuman performance beating the professional e-
sports team OG in the video game DOTA. Sparked by the
success of these agents this paper explores the application
of deep reinforcement learning techniques to the problem of
air traffic control. As impressive as the results obtained by
AlphaGo and OpenAl Five are, a lot of computational power
was required to find a solution. OpenAl Five, while being
a far more expensive environment than the one used in this
work, still required 180 years worth of experience each day
[4], while taking about 10 months to achieve top performance.

Simulation of the airspace is provided by BlueSky, an
air traffic management simulation platform. [5] BlueSky of-
fers extendability, parallel computing and accurate models to
correctly simulate aircraft dynamics making it suitable for
(distributed) reinforcement learning. To facilitate the imple-
mentation of various state-of-the-art reinforcement learning
algorithms as well as the handling of the various streams
of data, RLIib [6] is used. RLIlib is an open-source library
for reinforcement learning, which offers a dedicated platform
for multi-agent reinforcement learning problems as well as
computational scalability.

This paper explores the applicability of reinforcement learn-
ing to the air traffic control problem, by using an approach of
decentralized execution and centralized learning. The offered
solution provides basic avoidance in low density situations

and efficient navigation towards the goal states. However, due
to the decentralized and un-cooperative setting used solutions
diminish when air traffic density increases. Nevertheless, this
work presents detailed insight into an approach to solve the
air traffic control problem, while also providing an stepping
stone to more global or advanced solutions.

II. BACKGROUND INFORMATION
A. Reinforcement Learning

The most commonly used mathematical framework for
sequential decision making problems are Markov Decision
Processes. A Markov Decision Process (MDP) is a classical
formalization of sequential decision making. Each time step,
the process is in a certain state, s; € S, the agent (the decision
maker) chooses an action, a; € A, which transitions the agent
into the next state, s; € S. After the state transition, the agent
receives a reward, 7 € R, (s, s’). Additionally, for each action
there is the probability that a certain action leads to a certain
state, formalized in the state transition probability, P,(s,s’).

The goal of the agent is to maximize the cumulative received
reward over the full trajectory, which is called the return as
seen in equation 1. Gy is the return, -y is the discount factor,
which balances the importance between future or immediate

reward.
o0

Ge=) ' (1
t=0

However, the received reward depends on the action the agent
takes in each state. This behaviour is called the policy of the
agent. The policy is a mapping between state and action, and is
defined as 7(a|s). The value function is defined as the expected
return under policy 7 as seen in equation 2. v, (s) is the value
function under policy m, G is the return and s the current

state.
Vi (s) = E[G¢|St = $] 2)

Concurrently, the action-value function can be defined, which
relies on both the state s and the action taken a as seen in
equation 3.

Qn(s,a) = E[Gi|S; = s, Ay = d] 3)

An solution is reached by finding a policy 7 that maximizes
the return from the start state. A method of finding this optimal
policy is by iteratively estimating the value functions. An
example of a value based solution method is Q-learning, which
can be seen in equation 4. « is the step-size.

Q(s,a) + Q(s,a) + afr + 7 max Q(s',d') —Q(s,a)] @)

Q-learning iteratively updates the value function for each
state-action pair. When the value function is fully converged,
the optimal policy is simply a greedy policy, i.e. always taking
the action that results in the highest value. However, this
method requires multiple visitations of each state-action pair
to be able to estimate the correct values for all states. For
problems with a substantial state and action space it is un-
feasible to attain convergence, and generalisation is required.

This is where function approximation methods such as neural
networks are used. This allows for generalisation between
states and actions. One such combination of deep learning
and reinforcement learning is called Deep Q-learning [7],
where Q-values are approximated; Q(s,ald) ~ Q(s,a). The
parameters 6 are optimized by minimizing the loss function,
as seen in equation 5.

L;i(6;) ZE[T+7TI}I§XQ(SIaa/|9i—1) - Q(s,alb;)] 5

B. Policy Gradients

Opposite to value-based methods such as Q-learning, are
policy gradient methods. Instead of solving the value function
and extracting the policy from the converged value function,
policy gradient methods directly adjust the parameters of the
policy; m(als;0) =~ m(a|s). This is done by formulating a
loss, and using gradient decent methods to adjust the policy
parameters. The fundamental algorithm underlying all other
policy gradient methods is the policy gradient theorem [8],
as seen in equation 6. The policy gradient theorem has an
intuitive appeal.

VJ(8) = Ex[Vologm(als)Q™(s,a)] (6)

As can be see in equation 6, the gradient updates depend
on the value of Q™(s,a). This gives notion to a school of
algorithms called actor-critic. In this case, the actor represents
the policy my which is updated using equation 6. However,
concurrently Q™ (s, a) is estimated using function approxima-
tion; Q¥ (s,a) ~ Q™ (s,a). w are the model parameters.

When optimizing the policy using equation 6, excessively
large policy updates should be avoided. Unbounded and large
update steps often lead to instability, and weak convergence
properties. Avoiding large policy updates is done by imposing
an limit on the difference between the old and new policy with
each update step. The method of limiting this update step is
called Proximal Policy optimization (PPO) [9]. Schulman et al.
define r(6) = % Limiting the update steps is achieved
by ensuring this Tatio stays close to 1 during updates. This
results in the rewritten policy gradient loss as seen in equation
7. € is the step-size limit and A, is the estimated advantage
function.

LOHP(9) = E, [min(r,(0) Ay, clip(re(0), 1—¢, 1+€) A,] (7)

The classical definition of the advantage function is:
A™(s,a) = Q7(s,a) — V7(s). The intuition behind the
advantage function is that the action value is normalized
relative to the overall value of the state.

Often, the loss is augmented with an additional entropy
[10] term to improve exploration and smoother convergence.
Entropy is defined as the average amount of information
received from a probability distribution, which can be calcu-
lated as shown in equation 8. H(X) is the entropy of the
random variable X, z; are possible outcomes and Px(z;)
being the probability of that outcome. Entropy is a measure of
information; a low probability event carries more information
compared to an event that has an high probability of occurring.

The addition of entropy increases the chance of reinforcing
low probability actions, avoiding premature convergence to a
subset of proven and more frequent occurring actions.

H(X)=- Z Py (x;)logy Px (x;) (8)

C. Multi-Agent Reinforcement learning

Multi-agent reinforcement learning (MARL) consists of
multiple agents interacting with the same environment, and
each other. There are a few known “hurdles” within rein-
forcement learning, which are amplified when considering the
multi-agent domain. An example is the credit assignment prob-
lem. In the single agent domain it is difficult to determine what
actions in a certain sequence of states attributed positively or
negatively to received reward. In the multi-agent settings, this
effect is amplified because the received reward can be the
result of an action the agent took, or the result due to the
action of another agent.

This ambiguity of influence on the environment by either
the agent itself or other agents, increases the non-stationarity
of the environment. Furthermore, all agents evolve with each
policy update which further increases non-stationarity.

Lastly, the system will likely be partially observable. It is
not realistic for each agent to have full observability of the
system; the observations space grows exponentially with each
added agent when fully observable, exploding the state space.
So partial observability is needed, meaning that the agent
only considers its immediate surroundings. Luckily this is an
realistic setting for the ATC environment. Aircraft are flying
towards their far-off goal, while locally solving conflicts.

Recently a much used paradigm is that of centralized
training with decentralized excecution.

EGSH

EHTWETHE|
o
g |EDDG

EHBD BERCE
EyeD _eofR

EHEANG

ETNNEDDK
AU

Fig. 1. An overview of the simulated BlueSky environment, showing the blue
triangle goal states. The blue rectangle describes the area in which aircraft
are generated.

The idea behind this approach is that when training, each
agent has access to a more global state, while during execution
agents rely on local observations only. Using extra state

information during training has proven to increase convergence
towards an solution. [11]

ITI. PROBLEM DESCRIPTION

The goal of this research is to investigate the applicability
of reinforcement learning to an air traffic control scenario. To
maintain feasibility, the research scope is limited, which will
be discussed in the next sections. First the environment used
and limitation of the environment are discussed. After that,
the action space is expanded upon while finishing with the
definition of the reward structure.

A. Environment

The environment is simulated in BlueSky [5] and centered
around the airspace of the Netherlands. There are a total of 7
goal states defined as an approximation of an ILS intercept
beam; 3 runaways at EHAM, 2 runways at EHGR and 2
runways at EHGL. An overview can be found in figure 1.
The goal state is reached when an aircraft is in the drawn
triangle shaped area, while also approaching with the correct
heading.

Each aircraft is of the same type, a "B747-800”. The height
of the aircraft is set to 5000 feet, and will stay constant as
there are no height commands issued. Aircraft velocity is also
kept constant, and is initialized at 250 knots. These values are
chosen to approximate an landing approach.

A minimum horizontal separation is required between air-
craft. If this minimum is exceeded, a loss of separation occurs.
The minimum loss of separation distance is 5 nautical miles
horizontally around the aircraft.

B. Observation space definition

The perspective taken towards the problem is that each
individual aircraft makes decisions based on their local obser-
vations; each individual aircraft is an agent. The observation
space is homogeneous for all agents. Due to this property,
all agents share the same policy and subsequently use all
their individual trajectories to improve this policy. The local
observation space of each agent consists of roughly two parts,
personal information and the information of n neighbouring
aircraft. The agents personal information is given in the follow-
ing tuple: s, = (rwy_ID, lat, lon, hdg, rwy_dist, rwy_qdr).
Table I provides an description for these states.

TABLE I
OVERVIEW OF AGENT PERSONAL STATE INFORMATION Sp

State Description Unit
rwyID Runway goalstate identifier int
lat Current latitude deg
lon Current longitude deg
hdg Current heading deg
rwy_dist Distance to goal state nm
wpt_qdr | Relative bearing towards the goal state | nm

The observation space is extended by considering the n
closest agents. The full added state is a repetition of s,,, given

TABLE II
OVERVIEW OF NEIGHBOURING AGENT STATE INFORMATION sy,
State Description Unit
dist_plane Distance to neighbouring agent nm
qdr_plane | Relative bearing towards neighbouring agent | nm

Longituds

Latitude

Fig. 2. Visual representation of the observation space of each agent. Currently
taking into account two neighbouring aircraft.

in the following tuple s,, = (dist_plane, qdr_plane). Table II
describes both state values.

This results in the complete local observation for each agent;
s; = (8p, 51...5p). Sy, is ordered from closest to furthest away
neighbouring agent before being combined with s,,. Figure 2 is
an visual representation of the local observation space of each
agent. In this example n = 2, meaning that two neighbouring
aircraft being observed by the agent in the center.

C. Action space definition

The action space of each agent is limited to heading changes
only. The heading changes are done relative to the current
heading; like a steering wheel rather than absolute heading
selection. Relative headings compress the action space signifi-
cantly. Action space representation is discrete. Reason for this
is two-fold; continuous actions have a higher resolution, but
this high resolution is not needed for this scenario. Secondly,
discrete actions allow for an easier multi-modal representation
of the action space. Often Gaussian distributions are used
to represent the continuous action space. However, equal
probability of going either left or right cannot be properly
captured by an unimodal representation such as a Gaussian.
Discrete actions offer an simple solution. However, when using
discrete action representation spatial information of the actions
are lost. Spatial information refers to the ordering of values; an
action of 10 degrees is more than 5 degrees, and less than 15
degrees. To restore this ordering, a ordinal distribution network
architecture [12] is employed. The amount of discrete actions
is 7, equally distributed on a bandwidth of [—15,15] degrees.
Empirical results and reasoning to substantiate the different
action space representations can be found in appendix A.

D. Reward signal definition

Sparse rewards are used, in contrast to reward shaping.
Sparse rewards is an reward system that results in an zero
reward signal for most transitions, while only receiving posi-
tive or negative rewards when reaching the goal state. Reward
shaping on the other hand is a technique that ensures a reward
signal is received for all transitions. Sparse rewards encourage
more exotic behaviour, as there is less interference from the
author. Reward shaping is difficult to correctly implement
in a multi-agent multi-goal reinforcement learning setting,
and often leads to sub-optimal solutions. These sub-optimal
solutions are a result of the change in underlying solution
equilibria. [13]

Using sparse rewards however often good explorations prop-
erties. This is inherently solved by the method of simulation,
due to randomization of the initial state. Also, the generation of
multiple agents covers an substantial amount of the state space
in each episode. The reward for an loss of separation is minus
one, while reaching the goal state results in a reward of one.
To improve exploration around the goal states significantly, an
penalty of negative zero point five is given to agents that move
beyond 180 nautical miles away from their goal state.

IV. EXPERIMENT SETUP AND RESULTS

The problem is implemented as a distributed system. In this
distributed system there is communication between BlueSky
and a policy server. The policy server facilitates the deep
learning models that are being optimized. The policy server
receives the observation and reward, while returning an action.
The action is the result of an forward pass over the policy
model by using the observations as input, and receiving the
corresponding action as output. Figure 3 shows an simplified
overview of the interaction between BlueSky and the policy
server.

BlueSky is used to sample observations and rewards as
described in section III. Each agent takes into account 5
neighbouring aircraft. The policy server uses these trajectories
to optimize the actor and critic. Both the actor and critic are

Observations & rewards; Training

batch
\ 4

I Policy server

v v

Critic

BlueSky

T Actions:

Fig. 3. Overview of the used distributed system. To the left the multiple
threads of BlueSky are present, collecting experiences. These experiences are
collected in a batch and when filled up are use to optimize the critic and actor.
During experience collection, each time-step BlueSky queries the policy server
on what action each agent should take depending on the given observations.

multilayered perceptrons with 2 hidden layers containing 256
neurons each. The actor uses local observations only, while the
critic is a centralized critic. On top of the observation space
previously defined, the critic is also presented with actions of
neighbouring aircraft.

The clipped loss from Proximal Policy Optimisation [9] is
used as loss function. Also, entropy regularization is included
to improve exploration and avoid premature convergence to a
subset of actions [10]. As gradient decent optimizer ADAM
[14] is used. Both entropy regularization and the use of ADAM
as optimizer are widely used for many different reinforcement
learning problems. An empirical comparison is made to justify
the use of these mechanisms, which can be found in appendix
B. This appendix also includes other hyper-parameters used
for the experiments. The output of the critic network is further
processed by using generalized advantage estimation [15].

To evaluate and show the performance of the learned model
two scenarios are used. The first scenario is an light scenario
showing model capabilities in guiding aircraft to a single goal
state. The second scenario involves all goal states and aircraft
being guided towards these goal, as well as merging streams
of traffic.

A. Training

During training each episode consisted of 25 aircraft, ran-
domly spawned in an squared shaped area as seen in figure
1. Each aircraft is assigned a runway as goal state, with
all runways being uniformly distributed amongst available
aircraft. An action would be selected every 4 seconds. When
an loss of separation between aircraft occurs or when the goal
state is reached aircraft are removed from the simulation. Each
episode has a maximum duration of 1500 time steps, or when
all but 6 aircraft landed. The premature ending of the episode
was done to avoid having the model learn how to deal with
the padded values in the observation space. When fewer than
6 aircraft remain in the environment, the closest neighbours
part of the observation space, s,,, is filled with dummy values.
It was shown that eventually the model would be able to
converge even with dummy values, but avoiding it all together
significantly lowered the required training time.

Training was done by collecting experience with 22 parallel
workers. Gradient updates where done after collecting an batch
of 200,000 state transitions. This means that a variable number
of episodes where collected before gradient updates where
done. Training was finished after approximately 3.4210° time
steps where used for training, which took about 32 hours.

Figure 4 shows the training results. Top left shows the mean
reward collected per episode. The maximum attainable reward
is 19. The top right figure shows the mean episode length.
Bottom left shows the mean amount of losses of separation
per episode. Bottom right shows the mean amount of aircraft
that landed at the correct runway.

Training can be split up in roughly three phases; First phase
is complete random behaviour which occurs at the start of
training. Second phase is when an sub-optimal solution is
found to the problem. During earlier training trails the model

Mean reward per episode Episode length

] 14007
101

gth

»12007

2
[=3
T

Mean reward
Episode len

8007

-10] 6007

Mean losses of separation per episode Mean landed aircraft per episode

B

Number of LoS

Number of aircraft landed
S

-

T100T T 2x10° T 3x100

Timesteps (s)

T A '2><'10‘) T .‘3><'10(5 T 5

Timesteps (s)

Fig. 4. Results of training for approximately 3.4210° time steps. Top left
shows mean reward, top right shows episode length. Bottom left shows amount
of losses of separation and bottom right shows number of landed aircraft.

would often be stuck at this sub-optimal solution due to lack
of proper exploration. Third phase consists of fine tuning the
found solution. The first and second phase are highlighted in
figure 5.

As can be seen in figure 5 initially the aircraft behaves
randomly. This behaviour results in an significant amount
of losses of separation, which simultaneously results in a
strong negative reward signal. Interesting to see is that also
the episode length is relatively short because all aircraft
get deleted. After the first phase, an sub-optimal solution is
quickly found in which all agents avoid each other. This often
resulted in flocking behaviour. Flocking means that all aircraft
start following the same heading as the neighbouring aircraft,
and move like a flock of birds. This behaviour ensures that

Mean reward per episode Episode length

1400

12001

Mean reward
Episode length

10004

Mean losses of separation per episode Mean landed aircraft per episode

Number of LoS
AL

i

Number of aircraft landed

L

1087 " 15x108 2x108 0"
Timesteps (s)

T5x107 108 15x108 2x108
Timesteps (s)

L ST

Fig. 5. Training results that highlight the first and second phase of the training.
Top left shows mean reward, top right shows episode length. Bottom left
shows amount of losses of separation and bottom right shows number of
landed aircraft.

Longitude (deg)

Visualization of the converged global value function.

Latitude (deg)

Fig. 6. Visualization of the converged value function. Note that this figure
only highlights the global portion of the value function, ignoring interaction
between agents.

there are a low amount of losses of separation, however there
is also little gained positive reward.

After sufficient exploration the model is able locate the goal
states which are then exploited, resulting in a quick ramp up
of gained reward. However, this also introduces an increase in
losses of separation as agents have to maneuver closer together
around the goal states.

The fine tuning in the last phase significantly influences
the mean episode length, having the model find more optimal
routes to the goal states. Also an slight increase in mean
reward, and decrease in losses of separation occur during this
phase.

Figure 6 shows the converged global portion of the value
function. The global portion aims at the part of the observation
space which is not influenced by proximity and actions of other
agents. As expected the states surrounding the goal states have
an high value.

B. Evaluation

In this section insight is given in the model performance
evaluated on two scenarios. The scenario will be evaluated on
a set of two simple metrics; Number of aircraft landed and
number of losses of separation, each accompanied with an
overview of flown trajectories. Figure 7 shows the metrics for
the two scenarios in question. Aircraft are randomly generated
with an interval of approximately 60 seconds.

The first scenario shows no aircraft crashed, and all aircraft
landed. As can be seen at the left hand side of figure 8, roughly
two lanes where formed towards the runway. Interesting to see
is that agents in the south-eastern lane have right of way when
closing in to the runway. Whenever two aircraft would risk an
loss of separation when simultaneously reaching the runway,
the aircraft on the north-western lane would avoid collision
and loop around whenever the other aircraft would land. This
can be seen by the clockwise spiral that is made close to the
runway.

The right hand side of figure 8 shows the second scenario. It
can be seen that the model is able to distinguish the different
goal states assigned to the aircraft, and is able to fly towards
them. What is also evident is that for the goal states, similar to
that in the first scenario, lane forming occurs. Also, the pattern
of clockwise circles are present at most of the goal states.
Looking at figure 7 it can be seen that losses of separation are
increased in comparison to the first scenario. Most evidently,
when the first aircraft started to land losses of separation
occurred. A significant portion of losses of separation occurred
at the west runway of EHAM; the blue “tornado” of lines
in the top center of figure 8. Aircraft would reach this goal
state, but would come stuck in this clockwise “tornado” that
would fill up with more aircraft trying to reach the goal state.
As each additional aircraft was increasingly interfering with
other aircraft ability to approach the goal state correctly, this
situation would eventually result in a significant portion of the
losses of separation.

It can be seen that behaviour has developed in which the
approach to the runway is often made by making clockwise
turns. Another point of interest is that the right-of-way be-
haviour occurs at most of the runways entries. When two or
more aircraft would approach the same runway while risking
an loss of separation, the aircraft to the left of the aircraft
that had right-of-way would avoid this situation by taking an
“outer ring” in the often seen clockwise approach.

V. DISCUSSION

This section will discuss the results of the training, as well
as the evaluation the performance on the scenario.

The multi-goal finding capabilities are highly depending
on proper exploration of the environment. During training,
an reward of minus zero point five was given to agents that
would fly further away than 180 nautical miles from the goal
state. In the early stages of the project, this penalty was not
added, which led to extremely poor exploration properties as
aircraft would settle for the sub-optimal flocking behaviour.

Scenario |

zj] — nraircraft landed

g 4 = nraircraft crashed

=3 201

S

=

E

£ 10]

S

Z

g A

— T
0 1000 2000 3000 4000 5000 6000
Scenario 11

Zj 1005 = nr aircraft landed

g 4 = nraircraft crashed

3 75

=

2]

5]

= 507

=]

S]

! 251

E 0]

" 6000 78000 710000 712000

Timesteps (s)

T0 T 2000 T 4000

Fig. 7. Scenario results showing the amount of aircraft landed and crashed.

Fig. 8. The results of scenario I are shown on the left hand side. Scenario II results are shown in the centre, and right hand side of the figure. The centre
two figures highlight the spiral like behaviour at the runways from scenario II.

However, after adding this penalty due to the many concurrent
simulated scenarios goal states where discovered rapidly. This
exploration through numbers also allows for the use of sparse
rewards; no reward shaping is necessary as exploration is
ensured through numbers and randomized initial states.

The maximum attainable reward is 19 each scenario, while
the model converges to an mean reward of approximately 17.
This is a result of the sub-optimal behaviour when there are
to many aircraft approaching the runway at the same time, as
seen in the scenarios. Episode length, without explicitly being
rewarded, also decreased. This is a wanted result, because
penalizing episode length would inhibit the finding of exotic
solutions. For example, if an longer trajectory would be needed
to solve an certain situation, the reward signal could be
convoluted due to the reward depending on episode length.
However, seen in the scenario examples the taken paths where
sub-optimal, as a single straight lane would be sufficient for
most approaches. This could be the result of no episode length
reward, or other factors such as state definitions.

As seen in the scenarios the solution found works well under
low density air traffic scenarios. The model is able to avoid
losses of separation when the density is low, by using this
right-of-way behaviour and lane forming. However, when the
aircraft density increases, aircraft get stuck due to the lack of
coordination. This was clearly seen in the ’tornado” behaviour
at some runways. Each agent is exerting individualistic be-
haviour, which results in an sub-optimal solution. The reason
for this lack of coordination and individualistic behaviour is
two fold; The reward definition and state representation. The
agents are all trained with the same policy, and rewarded
positively for landing, and negatively for losses of separation.
When agents collide, they both receive an negative reward.
This results in sharing of negative reward amongst the agents.
However, when a single agent lands only this agent gets an
positive reward, and neighbouring agents that are queuing
up to land do not receive any reward. Gaining no reward
for neighbouring agents that land is unsensible; other agents

landing makes room for another agent to approach the runway
which directly benefits other agents.

As for the state representation, agents are only aware of their
current state and do not keep track of a history of states. Also,
the state itself does not include any information about possible
trajectories. If agents would be able to model the resulting
trajectory of a sequence of actions, more elegant solutions
could emerge. For example, aircraft could disperse out of the
tornado and reform an approach sequence that would allow
for landing. However, with the current representation of the
state this is unfeasible.

Another limitation imposed on the problem is that of
limiting the action space to heading changes only. It is entirely
probably that velocity changes are required to avoid certain
deadlock scenario, or at least ease the finding of an solution.
Offering velocity changes as a second action is interesting,
as it makes the problem more difficult to solve by adding
more possible combinations of actions. But on the other hand,
velocity changes could offer an easy solution to certain conflict
scenarios.

VI. RECOMMENDATIONS

First off, the expansion of the state representation. There
are multiple ways of achieving this goal. An common method
is the use of deep learning network architectures that are
able to capture spatial relations in data. An recent and often
used architecture components are that of Long Short-Term
Memory [16] or Gated Recurrent Unit [17]. Both deep learning
methods enable the learning of spatial features time series,
which would allow the network to be trained on sequences
of states and actions. Another method would be to collect
multiple subsequent time steps, and present these as a single
state. This is done for example in Deep Q-networks [10].

Including global rewards shared amongst agents incentives
cooperation between agents. However, using global rewards
creates noise on the reward signal, as it becomes increas-
ingly difficult to determine what agent and what specific

actions of each agent contributed towards the global reward.
A solution to this is the use of a counterfactual baseline as
seen in Counterfactual Multi-agent Policy Gradients [18]. The
counterfactual baseline reduces noise in estimating the correct
personal contribution towards the attained global reward.

Communication could also be key in solving the global
coordination problem. Splitting up the problem and imple-
menting actual air traffic control agents which communicate
with the aircraft agents would create for a more realistic
scenario, as well as an interesting problem. An example of
communication between multiple agent is Reinforced inter-
agent Learning [19]. Reinforced inter-agent learning presents
a method of communication that is differentiable. This implies
that the agent that got the communication message, in this
case an aircraft, can provide “feedback” to the communicating
agent, the air traffic control agent. It was already shown
that the current distributed system allows for communication
structures, as changing the goal state of an agent during
simulation worked, and the agent changed course to this new
goal.

What is shown is that the decentralized aircraft agents can
control, avoid and solve simple problems based solely on local
observation. A method to increase the global coordination an
air traffic control agent could determine what runway and for
example time slot a certain agent would receive. This implies
that the observation space would be extended for each agent.
The feasibility of assigning time slots to agents is closely
related to the ability of the agents to predict and model it’s
own trajectories.

Currently, for training completely randomised starting loca-
tions are used for model learning. However, these scenarios
are often unrealistically chaotic and possibly not include
enough of the more realistic aircraft merging and sequencing
scenarios. However, the complete random starting locations
do benefit exploration. An suggestion would be to make an
best of both worlds. Instead of spawning an set amount of
agents, agents are randomly spawned over time. On top of
the randomized scenarios, more controlled starting conditions
can be included to highlight the more realistic occurrence
of inbound traffic. The chaotic collection of experience is
important for exploration, but also to avoid over-fitting of the
model. Over-fitting would make the model “remember” what
to do in each state, as opposed to generalise between states.

VII. CONCLUSION

This work explored the possibility of applying deep rein-
forcement multi-agent techniques on the problem of air traffic
control. This is realised by implementing an decentralized
multi-agent approach, where agents make decisions based on
their local observations. Goal states where realistically defined,
constraining both location and heading for the approach. Also
collision avoidance is taken into account by penalizing losses
of separation and proper observation space definition. Agents
had limited control, only heading changes where taken into
account. Action space representation was discrete, and an

ordinal distribution network architecture was employed to
retrieve the lost ordinal information.

To facilitate learning, BlueSky was employed in an dis-
tributed system which enabled training and large-scale ex-
perience collection. An actor-critic method is used which
employed state-of-the-art mechanisms in combination with
the distributed system to provide good training results. Dur-
ing training agents where trained on randomized scenario;
starting location and goal states where randomly assigned.
The evaluation scenarios presented a more realistic settings.
During evaluation the deep learning models achieved good
performance, especially when considering that the models
where trained on randomized scenarios.

It was shown that the current approach to the problem
was able to solve low density collision avoidance and multi-
goal state solutions. The model showed an low level set of
rules such as the right-of-way and lane forming to approach
the problem. However, when air traffic density increased and
problems that require coordination between agents emerged,
the method was not able to resolve these issues flawlessly. The
recommendations made should enable the model to capture
spatial relations between observations, and posses the ability
to plan ahead. On top of these requirements communication
in some form is needed to tackle the coordination problem,
as well as present global rewards to incentives cooperative
behaviour between agents.

(1]
[2]

(3]

(4]
[5]

(6]

(7]

[8]
[91

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

H. Erzberger, Transforming the NAS : The Next Generation Air Traffic
Control System, 2004, no. October.

D. Kumaran, D. Hassabis, T. Graepel, M. Lai, D. Silver, M. Lanctot,
L. Sifre, T. Hubert, K. Simonyan, I. Antonoglou, T. Lillicrap, J. Schrit-
twieser, and A. Guez, “A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play,” Science, vol. 362, no.
6419, pp. 1140-1144, 2018.

OpenAl :, C. Berner, G. Brockman, B. Chan, V. Cheung, P. D¢biak,
C. Dennison, D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Jozefowicz,
S. Gray, C. Olsson, J. Pachocki, M. Petrov, H. P. d. O. Pinto, J. Raiman,
T. Salimans, J. Schlatter, J. Schneider, S. Sidor, I. Sutskever, J. Tang,
F. Wolski, and S. Zhang, “Dota 2 with Large Scale Deep Reinforcement
Learning,” 2019.

OpenAl, “OpenAi Five,” 2018. [Online]. Available:
https://blog.openai.com/openai-five/

J. M. Hoekstra and J. Ellerbroek, “BlueSky ATC Simulator Project: an
Open Data and Open Source Approach,” 7th International Conference
on Research in Air Transportation, 2016.

E. Liang, R. Liaw, P. Moritz, R. Nishihara, R. Fox, K. Goldberg,
J. E. Gonzalez, M. 1. Jordan, and 1. Stoica, “RLIib: Abstractions for
distributed reinforcement learning,” 35th International Conference on
Machine Learning, ICML 2018, vol. 7, pp. 4768-4780, 2018.

M. R. Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Toannis Antonoglou, Daan Wierstra, “Playing Atari with Deep Rein-
forcement Learning,” IJCAI International Joint Conference on Artificial
Intelligence, vol. 2016-Janua, pp. 2315-2321, 2016.

R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Introduc-
tion,” 2020.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal Policy Optimization Algorithms,” 2017.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous Methods for Deep
Reinforcement Learning,” vol. 48, 2016.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” Ad-
vances in Neural Information Processing Systems, vol. 2017-Decem, pp.
6380-6391, 2017.

Y. Tang and S. Agrawal, “Discretizing Continuous Action Space for
On-Policy Optimization,” 2019.

S. Devlin, “Potential-Based Reward Shaping for Knowledge-Based,
Multi-Agent Reinforcement Learning,” no. July, p. 112, 2013.

D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” 3rd International Conference on Learning Representations, ICLR
2015 - Conference Track Proceedings, pp. 1-15, 2015.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
Dimensional Continuous Control Using Generalized Advantage Estima-
tion,” pp. 1-14, 2015.

S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” EMNLP 2014
- 2014 Conference on Empirical Methods in Natural Language Process-
ing, Proceedings of the Conference, pp. 1724-1734, 2014.

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, and
U. Kingdom, “Counterfactual Multi-Agent Policy Gradients,” 2007.

J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” Ad-
vances in Neural Information Processing Systems, pp. 2145-2153, 2016.
A. Graves, “Generating Sequences With Recurrent Neural Networks,”
pp. 143, 2013. [Online]. Available: http://arxiv.org/abs/1308.0850

P. Henderson, J. Romoff, and J. Pineau, “Where Did My Optimum
Go?: An Empirical Analysis of Gradient Descent Optimization in Policy
Gradient Methods,” vol. 14, no. October, 2018.

APPENDIX A
ACTION SPACE COMPARISON

Mean reward per episode Episode lenght per episode

1 —— No orderning
— 15 actions

—— 7 actions

Mean reward
Episode lenght
=)
S
i

—— No orderning 4
E — 15 actions

—— 7 actions 1

LAY SR S R R T T

Timesteps (s) Timesteps (s)

x10° x10°

Fig. 9. Training results that highlight the first and second phase of the training.
Top left shows mean reward, top right shows episode lenght. Bottom left
shows amount of losses of separation and bottom right shows number of
landed aircraft.

An empirical comparison is made between different action
space definitions; The impact of using vanilla action space
discretization versus the implementation of the ordinal distri-
bution network architecture [12]. Concurrently the influence
of the amount of discretization bins is investigated. Two
different amount of discretization bins are compared; 7 and 15
different actions. The maximum and minimum effectiveness of
the actions stay the same; [—15, 15] degrees relative heading
change. This resulted in two action space representations:

A7 = [—15,-10,-5,0,5,10,15]
A5 = [-15,-12,-10, -8, -6, —4,-2,0,2,4,6,8, 10, 12, 15]

In total, three different experiments where run;

e 7 actions and no ordinal architecture
e 7 actions with ordinal architecture
e 15 actions with ordinal architecture

Observation space representation and learning method are
the same throughout all experiments. The methods used are the
same methods used throughout this work. Figure 9 shows the
training result of three different settings. The left-hand side of
the figure shows mean reward, while the right hand side shows
episode length. It can be seen that the mean reward roughly
converges to the same value, with the 7 discrete action setting
performing slightly better at maximum training time. In the
initial phases of training the 15 actions setting is outperformed
by the 7 actions settings, while the unordered setting gets
significantly outperformed by the ordered methods. This is
more evidently seen in the right hand side of figure 9. Episode
length converges for both ordered methods relatively at the
same pace, except for differences in the initial stages of the
training. However, it can clearly be seen that the unordered

method struggles with convergence compared to the ordered
methods. Reason for quicker initial convergence with regard
to the 15 and 7 action setting can be explained due to the
fact that the 7 action is an easier method to solve; the to
be solved for action space is simply smaller. However, no
extra mean reward is attained due to this increase in resolution
when moving from 7 to 15 discrete actions. This implies that
the action resolution of 7 discrete actions does not limit the
solution finding capabilities of the model in its current form.

APPENDIX B
EXPERIMENT SETUP AND HYPERPARAMETERS

This section contains parameters used during training, and
the explanation of these parameters. It is well known that rein-
forcement learning problems can be sensitive to the correctly
tuning of these parameters. Table III gives an overview of the
hyper parameters, and their settings.

TABLE III
OVERVIEW OF USED PARAMETERS DURING TRAINING

Parameter Description Setting
n_ac Number of aircraft generated at start 25
n_neighbours Number of s,, states 5
LoS Loss of separation distance 5
spawn_sep Min separation of aircraft when generated 15

Ir Learning rate 0.0001
o1 Discount factor 0.99
A Lambda used for GAE 0.95

€ Clip parameter used for PPO 0.3
entropy_coef Coefficient for entropy regularization 0.01
train_batch_size | Experience collected each optimize step 200,000
num_sgd_iter Optimizer passes each training batch 10
minibatch_size size of optimizer minibatch 100,000

The value for the discount factor ~y is determined from other
work, as well as reasoning. 0.99 is an commonly used number
for the discount factor. Also logically the air traffic control
problem should look ahead as much as possible, so an low
discount factor is unwanted. The GAE parameter A is set based
on other work, and was not empirically justified.

The entropy coefficient is set at 0.01, which was determined
by an short comparison between an value of 0.01 and 0.001.
As seen in figure 10 it can be seen that there is not much
difference between gained reward based on this number. The
faded lines are standard deviation plots based on the moving
average of both datasets. It can be seen that there is a
slight reduction of variance due to the higher entropy setting.
The goal of entropy regularization is to improve exploration.
Due to the minimal differences an value of 0.01 is used.
Unfortunately due to time constrains, fully trained examples
where unfeasible.

There are two commonly used optimization methods that
are used to update the deep learning network weights; ADAM
[14] and RMSprop [20]. The origin of these optimizers have
their roots in deep learning tasks. However, most deep learning
tasks do not optimize for a moving underyling distribution.
RMSprop and ADAM workings on reinforcement learning
is poorly understood, however empirically showed that per-
formance is highly dependent on the problem [21]. Figure
B shows an comparison between ADAM and RMSprop as
optimizer, and the difference in performance of learning rate.

Hendreson et al [21] showed that most often an learning rate
between 1 x 1072 and 1 x 10~° showed the best performance.
This is also the case for many other reinforcement learning
problems, where the learning rates are within this bandwidth.
When the learning rate is to high, the problem cannot converge
due to large steps resulting in unstable gradient updates. An

Mean reward per episode

Mean reward

-8 —— Entropy le-2
—— Entropy le-3

0.0 02 04 0.6 0.8 1.0
Timesteps (s) %108

Fig. 10. Effect of entropy on learning performance. The fully coloured lines
represent the mean reward per timestep, and the faded lines is the standard
deviation of the data.

learning rate to low can lead to being stuck in local optima,
which is also unwanted. First off, the performance of the 1 x
10~2 learning rate is weak, and there is no convergence. This
option is quickly discarded. When looking at the performance
of an learning rate of 1 x 1072 and 1 x 10~% it can be seen
that an learning rate of 1 x 1073 results in significantly more
reward than an learning rate of 1 x 10~%.

When comparing ADAM and RMSprop, it can be seen
that RMSprop consistently performs weaker than ADAM.
Especially when comparing them with the same learning rate,
the difference is quite significant.

The choice was eventually made to keep the learning rate
at 1 x 107%, and use ADAM as optimizer. Even though that
an higher learning rate results in quicker convergence, there
is also a risk that the model settles for sub-optimal behaviour
due to quickly adjusting parameters to this found sub-optimal
solution, with the risk of being stuck there. An example
from the OpenAl team when working on the OpenAl Five

Mean reward per episode

10.0

7.5

5.0

Mean reward

ADAMLR le-2
ADAMLR le-3
ADAMLR le-4
RMSprop LR le-3
RMSprop LR le-4

N TN

0.0 0.2 0.4 0.6 0. 1.0
Timesteps (s) %108

S

Fig. 11. Comparison between performance of two different optimizers;
ADAM and RMSprop as well as the effect of the learning rate.

project, was that their philosophy was that an high enough
batch size with a small learning rate would result in the best
outcome. This luxury of infinite computing power is of course
unfeasible, so an compromise was made.

Part 1l

Preliminary Thesis

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

Chapter 1

Introduction

In recent years reinforcement learning (RL) gained notable attention due to the defeat of Lee
Sedol by the RL agent AlphaGo [1] in the game Go, and the performance of a full team on
team match of the OpenAl Five agent [2] against OG, a professional E-sports team. The
results of these matches gained widespread media attention, mainly due to the fact that these
7 Al’s” showed some form of insight into the game. Inspired by these performances, the idea
came to life of applying reinforcement learning to another form of game; the routing of aircraft
in an airspace, i.e. Air Traffic Control.

Before diving into the exact workings of reinforcement learning, first an introduction is given
regarding air traffic control, as well as setting up an example to grasp the general concept. This
chapter also introduces the underlying principles of reinforcement learning, namely Markov
Decision Processes.

In chapter two the basics of reinforcement learning are discussed, as well as some general
information regarding reinforcement learning is given. Then in chapter three, the research
questions are presented. These research questions are used to subsequently structure the
chapters after that, using the research questions as guidelines for information. Chapter four
will contain the bulk of the literature survey, as this concerns itself with finding a solution
to the multi agent nature of the problem. Chapter five presents arguments for the practical
side of the experiment. Chapter six will shortly discuss safety and efficiency, and how to
measure these to serve as experiment variables. Chapter seven will concern itself with the
practical implementation and setup of the experiment. Chapter eight will wrap-up all the
aforementioned information, to serve as a stepping stone for the planning. The planning will
be presented in chapter nine.

1-1 Air Traffic Control and Reinforcement Learning

Air traffic control is a ground service that provides guidance for airborne craft, to prevent
collisions, organize the flow of air traffic and provide information and other support systems.
The application of reinforcement learning on air traffic control will limit itself to the

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

30 Introduction

organization of air traffic, which includes routing, preventing collisions and optimizing the
air flow. To test the performance of a reinforcement learning model, a platform is required
that simulates air traffic control. Luckily this is available in the form of the BlueSky, an air
traffic control simulation platform|3].

For now avoiding the details of reinforcement learning, a few basic requirements have to be
set. Like most other machine learning techniques, reinforcement learning is based on a natural
occurring process; learning from interaction with the environment. The process of an agent in
a certain environmentally determined state, subsequently executing an action which in turn
changes your state in the environment while receiving some form of reward. This interaction
between agent, environment and reward can be seen in figure 1-1, using an air traffic control
scenario as an example.

Agent

state reward action
S, | R, o

E_‘- Rt+1 [

Se | Environment

Figure 1-1: Depiction of interaction between environment and Agent

As seen in the figure 1-1, the fundamentals of reinforcement learning are: Environment, Agent
and Reward. Figure 1-2 shows an overview of the BlueSky ATC simulator. In this figure the
environment can be described as the airspace simulated in BlueSky, in this case the airspace
of the Netherlands. The environment provides a certain depiction of the physical world. It
includes locations, waypoints, airports and other physical properties of the environment. The
agent in this environment is a single aircraft, depicted on the screen by the green triangle
shape. The agent has a certain state determined by the environment. As an example, the
agent’s state is defined as a tuple containing its longitude, latitude and current heading. This
could be expanded to current speed, current height, total available fuel etc. However for this
example the three previously defined states are used.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

1-1 Air Traffic Control and Reinforcement Learning 31

EHVE
O

EHVE
L)

EHRD
EHRD
e O

EHVK
EL

EHDP DEHGR
EHWO EHEH O
O O

EL

EHGR
L EHDP

EHWO EHEH U
O O

EHBD
o EHBD
E E-1 O EE’ Es |_ L,
= 2k EBAW EBBL
= O O

Figure 1-2: Overview of the environment provided by BlueSky

The left side of figure 1-2 is the initial situation starting at ¢ = 0. The agent can now execute
an action. The tuple that contains all the available actions can vary in size. One could define
all available actions as small as a single rudder deflection. However, to keep things simple,
actions are defined as selecting a new heading ranging from 0 to 359 degrees. The agent
executes a heading change of 60 degrees. On the next timestep the aircraft would start to
turn, impacting its own state. This can be seen in figure 1-2. The ability of an agent to
impact its own state is an important aspect of the reinforcement learning process.

Reinforcement learning is based around a numerical reward signal. The recurrent interaction
of actor, environment and received reward is the basis for reinforcement learning. In this
case, the heading change affects the perceived reward. The reward can again be defined in
numerous ways. However, the goal of the reward is to facilitate an indication of ”good” and
"bad” behaviour of the agent. In the example the reward signal is defined in proportion to
the distance of the agent’s location and its destination, EHAM. As can be seen in the right
side of figure 1-2, the heading change turns the aircraft away from its destination, which
intuitively results in a lower reward compared to flying straight to EHAM.

The learning part of reinforcement learning is the mapping of set of states to actions that
maximize the reward signal. This maximization can be a maximization of the reward each
timestep, but in general the total cumulative reward is maximized across an episode, i.e.
each step contributes to a larger goal. If correctly defined, to achieve this larger goal, the
cumulative reward will always be maximized when achieving this larger goal. Figure 1-2
assumes a timestep large enough to accommodate for an action, i.e. the heading change, to
be executed in full.

Table 1-1 summarizes this single agent-environment step as seen in figure 1-2, displaying the

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

32 Introduction

change of state. Note the change in all three states through the executed action of a heading
change to 60 deg.

Table 1-1: Change in state values due to an action, a heading change from 0 to 60 degrees.

to t
Latitude 51.41 | 51.27
Longitude | 5.15 | 5.11
Heading 0 60

As can be seen, the state values are defined in a continuous fashion. To create a clearer
example, discretization of the action space and state space is desired. This discretization
will make the subsequent explanation of key concepts within reinforcement learning easier to
visualize. Figure 1-3 shows this discretization. Each grid can be seen as a state the aircraft
can be in. Heading of the plane is ignored, and the assumption is made that the aircraft can
hop between those grids. As for the action space, the amount of actions available is equal to
the amount of connected grids to the grid the plane currently is in. This results in an action
space of 8 different movements.

Figure 1-3: Discretization of the action space

To properly formalize the process of reinforcement learning Markov Decision processes are
used. Markov Decision Processes provide the mathematical framework for reinforcement
learning.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

1-2 Markov Decision Process 33

1-2 Markov Decision Process

A Markov Decision Process (MDP) is the classical formalization of sequential decision
making, where actions influence not just immediate rewards, but also subsequent states, and
through those affect future rewards. Each time step, the process is in a certain state, s € S.
The agent (the decision maker) chooses an action, a € A, dependent on the state, which
returns a reward, R(s,s’). This action then subsequently moves the agent into the next
state, s’ € S. Additionally, for each action there is a probability that certain action leads to
a certain state, formalized as the state transition probability, P, (s, s’).

A general remark concerning the content of this section; most is based on the extensive
reinforcement learning bible Reinforcement Learning: An Introduction by R. Sutton, and A.
Barto [4].

An important fundamental assumption regarding MDPs is the Markov Property. A state is
said to be a Markov state, i.e. has the Markov Property, when the current state contains
all information needed to determine the state transition, and is not depended on previous
states. In short, ” The future is independent of the past given the present”.

In the current running example, this is true. The state currently consists of longitude,
latitude and heading. These properties are absolute. When executing an action the
subsequent latitude, longitude and heading changes can all be determined based on the
current state information. To summarize, an MDP is defined as a size 4-tuple (S, A, Py, R),
where S represents the finite set of different states, A the different available set of actions,
P, the state transition matrix and R the reward function.

As stated before, the agent’s goal is to maximize the cumulative reward it receives over the
full trajectory. To formalize this, the return is defined as the sequence of reward received over
the trajectory, as seen in equation 1-1.

T
Gi= Y 'R, (1-1)
k=t+1

G is the return. ~ is the discount factor, which balances the importance of future reward
versus immediate reward. T is the timestep at the end of the trajectory. The return
encompasses the total future discounted reward from the current timestep forward. More
specifically, forward means that it is an accumulation of reward looking in the future, not
look backwards at already received reward.

Another widely used group of functions for all reinforcement learning algorithms are called
the value functions. These value functions are needed to estimate whether or whether not
the current state is a "good” or "bad” state to be in. This "good or "bad” is determined
by the expected return, i.e. the expected cumulative reward. However, rewards depend on
the actions the agent takes in each state. This behaviour of the agent is called a policy. A
policy is a mapping between the state and the probability of selecting each possible action,
and is defined as 7(a|s). To be precise, the value function under a certain policy is defined in

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

34 Introduction

equation 1-2.
vr(s) = E[G¢|Sy = s] (1-2)

vr(s) is the value function under policy 7, Gy is the return and s the current state. Formally,
vy ($) is called the state-value function for policy w. Concurrent with the state-value function,
the action-value function is defined. The difference between the value functions is that the
action-value relies on both the state and action, as can be seen in equation 1-3.

qr(s,a) = E[G¢|S; = s, Ay = d] (1-3)

The action-value function g (s, a) is the expected return starting from state s, taking action
a and then subsequently following policy mw(a|s). Take careful note of the then subsequently
following policy m(als) part.

Figure 1-4 gives a visual interpretation of how a fully determined state-value function would
look like under a certain policy would look like. As can be seen, each grid contains a colour.
Red means a low value, while green indicates a high value for that state. What is also shown
in the figure are my extraordinary garbage figure creation skills.

More complex reward signals are difficult to determine visually, but eventually the value
function has to converge to a shape that indicates being in the vicinity of EHAM is preferred
to being further away. How the actual numerical values of the value- and action-value function
are determined is shown in the next section.

To end this section, an important recursive relation is highlighted. The return, which is an
summation of the expected reward, can also be defined as a recursive equation with itself.
This can be seen in equation 1-4.

Gt = Riy1 +YRipo + Y Rigs + ...
= Rt+1 + ’}/(Rt+2 + ’YRH_g +) (1—4)
= Riy1 + 7G4

This relation is used in the following section to find a recursive relation for the value-functions.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

1-3 Finding a solution to the MDP 35

Figure 1-4: Graphical depiction of a state-value function. Green indicates a higher value, while
red indicates a lower value.

1-3 Finding a solution to the MDP

The previous introduction of value-functions and policies expand the arsenal with which
information is given about how the agent is doing, as well as what the agent’s behaviour is.
The question remains how to determine the behaviour which results in the maximization of the
cumulative reward. In short, a policy 7(a|s) has to be found that maximizes the cumulative
reward, v,(s). However, the previous definitions of the value functions are not fit for any
numerical solution method, so to be able to find this optimal policy, a recursive relation is
needed for the state-value and action-value functions. The following recursive relations use
the property of the recursiveness of the return as baseline, as seen in equation 1-4.

Consider figure 1-5a; this figure shows two of the eight available actions to take in this
particular state. To determine the current value of this state under policy 7(a|s), the value
function v, (s) is utilized as seen in equation 1-5. The total value of that state is the summation
of all the action-value functions weighted by the probability of selecting the corresponding
action.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

36 Introduction

UW(S) = ZW(G‘S)QW(&G’) (1_5)

a€A

However, just as v(s) is dependent on ¢ (s, a), ¢=(s,a) is dependent on v, (s) When a certain
action is taken, the action-value function gives a value to this action. However, there is a
certain probability on the outcome of the action. As an unrealistic example, wind might
blow the plane in another direction than intended. The chance of taking a certain action and
ending up in a certain state is encapsulated in the state transition probability, PZ,. Figure 1-
5b shows an example. The red arrow is the action chosen, while the yellow arrows indicate the
other locations the aircraft can end up in due to wind. Taking this action and transitioning
to this state also results in a certain reward, specified by the environment. This results in the
following equation for the state-action value function

qﬂ—(S, CL) = RZ +7 Z Pz?s’vﬂ'(s,) (1_6)
s'es

o
Illiil

(a) Depiction of actions (red arrows) in a (b) Effect of the transition probability on
discretized environment final end state.

Figure 1-5: Left side: Discretized actions. Right side: Effect of transitional probability

Equation 1-5 and 1-6 can be combined to create a recursive relation between initial state and
the transition state. This can be done for both v, (s) and ¢(s,a). These equations are shown
in equation 1-7 and 1-8 respectively.

vn(s) = 3 w(als (RGHZ (s) (1-7)

a€A s'eS
Gr(s,0) = RS+~ Y Pl > 7(d|s)gx(s a) (1-8)
s'es a’€A

These equations are called the Bellman Equations. They express the relationship between
the value of the current state and its successor state. As a final form of visualization, figure
1-6 shows a backup diagram of the above defined process for the value function. A backup
diagram can be viewed as a form of search tree, in which each leg is a certain action, and
every hollow circle is a new subsequent state.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

1-3 Finding a solution to the MDP 37

vr(8') 8

Figure 1-6: Backup diagram of the value function [4]

Now that the recursive relation is established it is time to search for a method to find the
optimal policy; a policy that maximizes the accumulated reward over the long run. The policy
defines the behaviour of the agent, and is of significant influence on the value of both value
functions. A policy 7 is better than or equal to a policy 7 if the expected return is greater
than or equal to that of 7 in all states. Luckily, the value function facilitates this. In short;

7> if and only if vy (s) > v.s(s) for all s € S

There is always a policy that adheres to this statement, which by definition is an optimal
policy. Note the is an optimal policy. Multiple optimal policies can exist, however they all
share the same value function. From this, the optimal state-value function and state action
value function can be defined as v.(s) = max vr(s) and gy (s,a) = max . Finding these,

especially ¢, facilitates the optimal policy to be found. To summarize:

e There exists an optimal policy m, that is better than or equal to all other policies,
Ty > VT

e All optimal policies achieve the optimal value function, vy, (s) = v.(s)

e All optimal policies achieve the optimal action-value function, ¢, (s,a) = ¢«(s,a)

Combining the above with the previously defined Bellman equations seen in equation 1-7 and
equation 1-8, the Bellman equations can be rewritten for the case of an optimal policy. These
result in the Bellman Optimality Equations, seen in equation 1-9 and equation 1-10. Note the
absence of m(a|s). This is due to the fact that under an optimal policy, the value functions
depict the maximum expected return for that state. This means that simply taking the action
that results in the maximum expected return is an optimal policy. Always selecting an action
that results in the maximization of the value is called a greedy policy. Once either v, (s) or
d«(s,a) are found, the solution to the MDP is then relatively simple; always acting greedily
with respect to the value-functions is the optimal policy.

0u(s) = max (Rg 73 Pgs,v*(s’)) (1-9)
s'es

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

38 Introduction

gx(s,a) = R 4+~ E P&, max q, (s, a’) (1-10)
a/
s'eS

A fundamentally important method of computing the optimal policy is a collection of
algorithms called Dynamic Programming (DP). DP algorithms are however of limited
practicality due to the requirement of knowing the environment’s perfect model as well
as their computational expense. Nevertheless, all other methods that attempt to find the
optimal policy can be seen as an approximation attempt at DP, but with less computational
effort and without perfect knowledge of the environmental model. The idea behind DP is
that the value functions are used to structure the search for optimal policies.

A first step in DP is to be able to compute the state-value function v, for a given policy 7(als).
Recall equation 1-7, which gives the recursive relation for state-value function calculation.
Determining the state-value function for a given policy is called policy evaluation. Converting
equation 1-7 into a iterative update rule results in equation 1-11, given that the policy is
stationary.

veri(s) = Y wlals) (RS +7 Y Phoon(s)) (1-11)

a€A s'esS

Because this is an iterative process, initial conditions have to be set. Depending on the
problem description these conditions can vary, but often are vg(s) = 0 for all s € S. In
general, it can be shown that vy — v, for &k — oo.

Policy evaluation enables a method of evaluating the ”quality” of a certain policy through
iterative solving of the state-value function. This however also set the stage for finding better
policies. Suppose the state-value function v, is fully determined under a arbitrary policy 7.
For each state s an assessment can be made to see if there is an action a that is a # m(s) which
results in better behaviour, i.e. a higher value. Luckily, the action-value function, ¢, (s, a),
does just that. So if there is an action that can be selected which results in more value and
thereafter following policy 7, it can be said that selecting this action in this state will always
result in more value for the whole trajectory. In short, g (s, 7 (s)) > vy (s), where 7' (s) is
the new policy that results in better behaviour in the current state. This subsequently also
implies that 7T/(S) > 7(s), hence a better policy is found. This is called policy improvement.
So for all states, selecting the action that maximizes the value through ¢, (s, a) can be written
as seen in equation 1-12. Using this form of maximization for each action is called a greedy
optimization policy.

7 (s) = argmax ¢x(s,a) (1-12)
a

Now that both a method for policy evaluation and policy improvement are found, these can be

used in an alternating sequence to first evaluate the policy, then improving it, then evaluate

and so on. This is called policy iteration, as seen in equation 1-13. The E stands for evaluation

step and I for the improvement step.

E I E I E I E
Mo — Uy —> ML —> Upy —> T3 —> ... —> Ty —> U, (1-13)

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

1-3 Finding a solution to the MDP 39

However, generally it is not necessary for policy evaluation to go to full convergence in each
step. To expand, when evaluating a certain policy the value function often takes a multiple
iterations for convergence to the true value function. For most application the absolute
converged value is not necessary, only the ordering and general tendency of these values.
Reducing the amount of iterations will decrease computational requirements. A special case
of reducing the policy evaluation iterations is called walue iteration. Value iteration only
does a single policy evaluation iteration. Then, this can subsequently be combined with the
policy improvement step and reduce the multiple policy evaluations and subsequent policy
improvement to a single update rule. The equation for value iteration is shown in equation
1-14.

vpr1(s) = max Z P¢y[Ra(s,s") + yur(s')] (1-14)

Note the relation of value iteration to the Bellman Optimality equation. Value iteration
takes the greedy policy improvement step and merges this with the update of the value
function under the new policy.

The previously mentioned iterative scheme for interaction between evaluation and improve-
ment is called generalized policy iteration (GPI). The idea of GPI is seen often in reinforcement
learning methods; the interaction of improving the policy depending on the current value func-
tion, and then updating the value function under this new policy. Figure 1-7 summarizes this
interaction. When both the updates to the policy and the value function stabilize, i.e. the
updates each step get below a certain threshold, the Bellman optimally equations are cor-
rectly approximated and the optimal policies and value function are found. As a final note on
DP, DP actually provides a consistent way of finding the optimal policies and value functions.
However, bigger state representations require a lot of complete sweeps resulting in strain on
computational requirements. Also, and even more mentionable, they require the full model
of the environment. This is where model free methods are introduced. Model free methods
rely on probing the environment through exploration, and try to estimate the value functions
and policy based on feedback from the environment alone. Model free methods that rely on
experience are called Reinforcement Learning methods.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

40

Introduction

Dennis van der Hoff

evaluation

Vs vg

?T V

Vg, Ty improvement

L

— of eedy

T s = > Vi

Figure 1-7: GPI trajectory for a state-value function

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 2

Model Free Methods

Model free reinforcement learning methods lack the knowledge about the transition probabil-
ity of the environment, and learn solely from interaction with the environment. A distinction
can be made between value function based solutions and policy gradient methods. Value
function based solutions are a model free extension to the dynamic programming methods
discussed in the previous section. Policy gradient methods are a more recent development,
where the policy space is parameterized and estimated directly. First, value based model free
methods are discussed. After that policy gradient methods are expanded upon and a few
widely used concepts are introduced.

2-1 Value Based Model Free methods

First a few traditional and widely used methods are explained, which originate from dynamic
programming to tackle model free problems. Then, at the end of the section deep learning
is combined with value based methods, providing a foundation for many state-of-the-art
reinforcement learning methods.

2-1-1 Monte Carlo methods

Monte Carlo (MC) methods are a school of learning methods that depend on the sampled
return, i.e. gained experience of a complete episode. This sets the requirement that each
problem needs to have a finite horizon. In contrast to DP methods where the value functions
are directly calculated for all states, MC methods learn the value-functions from sample
returns gained on a trajectory through the environment. In this section, the same structure
is used as seen in the DP section. First Monte Carlo Prediction, also often named Monte
Carlo value estimation, is shortly explained. Then a step is made towards Monte Carlo for
action-values functions and finally Monte Carlo control is explained.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

42 Model Free Methods

Like with DP, a method of evaluating a certain policy has to be put in place. The main
difference between DP and MC is the fact that not all information is available, and conse-
quently the experience, or rewards, have to directly fill up the value function estimation.
So how to estimate V(s) = vr(s), under an certain policy = and an arbitrarily initialized
value function V(s). This is done by keeping track of all the gained reward-state pairs
during a single episode, i.e. trajectory. Then for each visited state s during this trajectory,
calculate the return G(s). When the returns are calculated the value function V(s) is
simply estimated by taking the average of the returns for each state visited over all episodes;
V(s) = average(G(s)). An important note is that for every trajectory done, a single state
can be visited multiple times. The choice can be than made of determining the value
function depending on every-visit of the state or only taking into account the first-visit of
each state. In general, first-visit is preferred. The previously stated is known as First-visit
MC' Prediction, where prediction is a term for policy evaluation which provides a more
natural and describing term to the method. As calculating the return for a state requires the
estimated return of the states before it, updating the value function can only happen when
the full trajectory is complete. When complete, the returns are then estimated by working
backwards from the end of the trajectory towards the beginning.

However, estimating the state-value function is of lesser interests compared to the estimation
of the action-value function, Q(s,a) =~ ¢(s,a). The reason is, is that for any control problem
it is more convenient to know the value a certain action contributes to the return. The
downside of estimating the action-value function is that the amount of to-be-estimated
parameters increases significantly depending on the amount of available actions. Another
hurdle to overcome is the fact that when the policy that is being evaluated is deterministic,
i.e. for each state-action pair a certain action is always chosen, for each state only one
action-value is being estimated. This ties in closely with the exploration problem, which will
be discussed later. So to apply First-visit MC prediction naively to action-value functions, a
policy has to be used that ensures a non-zero probability for all actions in each state.

Now, again on par with the sequence of steps seen in the DP section, a method of improving
the policy is implemented. Recall general policy iteration (GPI) in which the evaluation and
iteration steps are executed in a alternating fashion. The GPI for the action-value function
is shown in equation 2-1

E I E I E I E
T — Qny —> T1 — Gy —> T2 — oo = Ty —> qr, (2-1)

The evaluation step is discussed in the previous, however the iteration step differs from that
of DP. This is due to the fact that in DP, state-value functions where used, which require
the known model. However, when using action-value functions the policy can easily be
reduced; for every state the action is taken that will maximize the reward, i.e. a greedy
policy. However, instead of at each evaluation step waiting for full convergence, the amount
of iterations can be truncated. An earlier version of this was seen in DP, which was value
iteration. Value iteration only took a single evaluation step and then did policy improvement.
The GPI for MC would follow this general behaviour; After each episode (trajectory) the
returns are used for policy evaluation for each visited state. Then a policy improvement is
done for each visited state.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-1 Value Based Model Free methods 43

In the above the problem of exploration is not managed. Exploration on its own is a
recurring topic for reinforcement learning techniques, some more light is shed on exploration
in section 2-3. Control methods face a dilemma; they seek to learn action values conditional
on subsequent optimal behaviour, but to determine what optimal behaviour is, sub-optimal
behaviour is required to explore all actions. In general, a distinction can be made between
two methods of evaluation, on-policy and off-policy. On-policy methods evaluate or improve
the policy that is also used to make decisions. This in contrast to off-policy, where the policy
that is used to evaluate or improve is different from the policy that is used to generate data
(trajectory). An on-policy method for improved exploration is called e-greedy. In contrast to
a normal greedy policy, e-greedy behaves greedy with a probability of 1 — e, while choosing
an action at random with a probability of e. This method forces actions that are considered
sub-optimal which in turn result in exploratory behaviour.

Consider the idea of having two separate policies. One policy which converges to the optimal
policy, while another policy is made that ensures exploratory behaviour. This is where
off-policy methods come in. The policy that is being learned is called the target policy, while
the exploratory policy is called the behaviour policy. This division is the underlying principle
for off-policy methods. The data that is learned from is off the target policy. Off-policy is a
powerful tool, however some additional care is needed. The reason for this extra care is the
fact that the target policy is being estimated, while the data gathered is not actually from
this policy, inducing greater variance and slower convergence.

The target policy is denoted by m, while the behaviour policy is b. Note that for off-policy
methods, both the target policy and behaviour policy have to ensure that both policies result
in visitation of the same set of state-action values. This is called coverage. Before moving
towards off-policy MC control, first MC evaluation is considered. Due to the difference in
the target and behaviour policy compensations have to be made to correct this difference
when learning. This is done by importance sampling. Importance sampling tries to determine
the expected values of a distribution by using samples of another distribution; in this case
the target policy and behaviour policy. Importance sampling is used to weight the returns
according to relative probability of their trajectories occurring under the target and behaviour
policies. This weighting is called the importance-sampling ratio, and can be seen in equation
2-2. pp7_1 is the importance-sampling ratio from time-step ¢ to the end of the current
trajectory T — 1.

m(AglS,
pero1 = Hb e (22)

An extension to importance sampling is by using weighted importance sampling. In contrast
to ordinary importance sampling this uses an weighted average instead of an absolute average.
Using the weighted importance sampling ratio, to estimate V(s), the returns are scaled by
the weighted importance sampling ratio. This can be seen in equation 2-3. Note that the
sum denotes every first-visited occurrence over all episodes.

> per-1Gy
Zpt:Tfl

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

V(s) = (2-3)

44 Model Free Methods

Weighed importance sampling is in practice almost exclusively used in contrast to ordinary
importance sampling.

However, as most methods an incremental update rule for the weighed importance sampling
ratio, which is shown in equation 2-4. W} is the importance sampling ration and Gy the
return.

n—1

i1 WiGy
n—1
k=1

Vn = (2_4)

For each update the value of the previously applied weights has to be known, Wj. This is
done by keeping track of previously applied weights in a new variable, C},. The update rule
for V41 and Cj41 are shows in equation 2-5 and equation 2-6 respectively.

W,
Vn+1 - Vn + F[Gn - Vn] (2-5)
On+1 = Cn + Wn+1 (2'6)

Now that all elements are in place, Off-policy Monte Carlo Control is introduced, combining
all of the aforementioned. As a clear overview of the workings of off-policy MC control, the
pseudo code is given. This can be seen in algorithm 1.

Algorithm 1: Off-policy MC control
Initialize, for all s € S,a € A(s):
Q(s,a) + arbitrary
C(s,a) + 0
7(s) < arg max, Q(S, a)
Repeat forever:
b + any policy with coverage of 7
Generate an episode using b:
S(], AQ, Rl, ey ST—l, AT—l, RT, St
G+ 0
W<+1
Fort=T—-1,T —2,..., down to 0:
G+ 7G + Riy1
C(St, Ay« C(Sy, Ay) + W
Q(St, Ar) < Q(St, Ar) + %[G — Q(St, At)]
7(S¢) ¢ argmax, Q(St, a)
If Ay # w(S;) then exit For loop

1
W Wb(At\St)

2-1-2 Temporal Difference methods

Temporal Difference (TD) methods are another school of methods that are highly correlated
with DP and MC methods. Compared to MC, it also uses experience and does not need to

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-1 Value Based Model Free methods 45

know the system dynamics. However TD does not wait for a full episode, but rather learns
based on other learned estimates. First, as done before, a method for policy evaluation is
given. Subsequently, a method for control is given, based on the GPI.

The policy evaluation step in TD is similar to that of MC, however with a slight but impactful
difference. MC waits till the end of the episode to exactly calculate the return, and updates
its value functions accordingly. TD does not wait until the end of the episode, but updates
its estimate of the value function after each time step. Equation 2-7 first shows the MC
Prediction step, while the bottom equation shows the TD prediction step. This is done for
ease of comparison between the two methods. Note that this is a slightly different formulated
MC prediction step as seen before, but still under the same mechanics. « is a constant
step-size.

V(Sy) « V(Sy) + oGy — V(Sy)] 27)

V(St) — V(St) + a[Rt+1 + ’)/V(St_H) — V(St)]
As seen in these equations, the main difference is that for MC the estimated return is used
as an update target, while for TD the reward is used in conjunction with the discounted
estimated value of the next state as a target. Updates based on existing estimates are called
a bootstrapping method. The aforementioned TD equation is called one-step TD, because it
only bootstraps one step ahead, V(S¢+1). Note the definition of Ryt1 + 7V (Si+1) — V(Sy).
This is basically the error between the old value, V(S;) and the new value estimate
Riy1 + 4V (Si+1). This is called the TD error 6 and is a widely used term throughout
reinforcement learning.

On-policy TD control follows as DP and MC did the pattern of GPI, only now using the TD
method of evaluation. The same as with MC methods, instead of evaluating the state-value
function the action-value function is used. The update rule is shown in equation 2-8.

Q(St, Ay) < Q(St, At) + a[Ri1v7Q(St 11, Arr1) — Q(S, Ay)] (2-8)

For the update to be done a few elements are required, and achieved in the following manner;
St, Ay, Ryt1, St41, Aer1. This sequence gives name to this on-policy TD method, namely
SARSA.

Naturally, an off policy method also exists for TD Control. This method is one of the most
widely used value based learning algorithms, namely Q-learning. Q-learning, as SARSA does,
bootstraps. However, its off policy behaviour is dictated by the use of the max, operator.
Equation 2-9 shows the Q-learning update rule.

Q(St, Ap) + Q(Si, Ay) + a[Ryp1 + 7y max Q(St+1,a) — Q(St, A)] (2-9)

The nature of off-policy for Q-learning is how action A; is selected. So the behavioural policy
b for Q-learning is often € — greedy for selecting A;, while the target policy is greedy, i.e. the
max, operator. Up until now, it is assumed that the Q-values are stored in a tabular fashion.
Q-learning is at the basis of most modern value-based deep learning extensions. The deep

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

46 Model Free Methods

learning extensions come in the form of Q-value approximation using deep learning as function
approximation. One of the most noteworthy combination of Q-learning with deep learning
techniques, is Playing Atari with Deep Reinforcement Learning by Mnih et al.[5]. This paper
will now be discussed to provide an introduction to value-based deep reinforcement Learning.
An more in-depth explanation of how various deep Learning methods work can be found in
section 2-4.

2-1-3 Deep Q-learning

Playing Atari with Deep Reinforcement Learning gained widespread attention due to the
generalization performance of the algorithm, being able to play Atari games solely based
on visual input on par with human performance. However, naively applying deep learning
methods for Q-value estimation results in poor performance and a few modifications have to
be put in place to overcome these. Firstly, reinforcement learning depends on a reward signal
for learning. This reward signal can often be sparse, noisy and delayed. The delay between
certain actions and subsequent reward is problematic especially when most deep Learning
methods rely on directly gained feedback on their estimation performance, for example in
many supervised learning applications. Another hurdle is the fact that the data feedback
from reinforcement learning is often highly correlated. For example, the state of an aircraft
after a certain action is closely related to the previous state. Lastly, due to the change in policy
the data distribution changes. This non-stationarity of the data distribution is unwanted for
deep learning techniques, as they assume a fixed underlying data distribution.

The update rule is working on the same principles as equation 2-9, however with slightly
different notation.

Qs,a) < Q(s,a) + afr + ymax Q(s', ') — Q(s, a))] (2-10)

To use deep learning as a function approximator the action-value function, Q(s,a), has to
be parameterized. This results in Q(s,a;0) ~ Q(s,a) where Q(s,a;0) is parameterized with
weights 6. To update the weights a differentiable loss function is required on which gradient
decent or other optimization method can be applied. The loss function is defined in equation
2-11.

Li(0;) = (yi — Q(s,a;06;)) (2-11)

L; is the loss function for iteration ¢ and y; is the target. In this case, the target is the left
side of the TD error, y; = r + ymax, Q(s’,a’;0;—1). Note that the target is being kept fixed
with respect to its older parameters. This is done to stabilize the network updates, while
alleviating the non-stationarity and corrolation issues. Finally, the loss function has to be
differentiated with respect to the network weights 6;. This differentiation is a underlying
requirement for any deep learning optimization technique. This results in equation 2-12.

Vo, Li(0;) = (7’ + Y max Q(s',ad';0;_1) — Q(s, a; Qi))VgiQ(s, a; ;) (2-12)

Now that the mechanics are in place, there is still no ”hard” solution for the aforementioned
problems when applying deep learning to Q-learning methods. Mnih et al. utilized a
technique called experience replay. Experience replay stores for each iteration the gained

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-2 Policy gradient methods 47

experience, action and transition states; e; = (s, as, rt, S¢+1. This information is subsequently
saved in a database called the replay memory. Instead of learning directly from each executed
action at runtime, the replay memory is sampled and transitions from the memory are used
for learning. This method has multiple advantages. First, the data efficiency is increased
greatly, because transitions are used multiple times for weight updates. Secondly, randomly
sampling from the replay memory breaks the correlation normally found when learning
from consecutive samples, which aids in the non-stationarity and correlated data problems
discussed in the beginning of this section.

Mnih et al. used a Convolutional Neural Network (CNN) as a function approximator. As
input to the CNN the raw pixel values where used that normally would be shown on the
screen, and as output the CNN would return the estimated Q-values for each state-action
pair. Using a CNN allowed for generalization across multiple games, due to the fact that
instead of hand crafted state vectors, the screen is given as an input and interpreted by the
CNN much like a human would do. The Deep Q-network (DQN) returned state-of-the-art
results for 6 out of the 7 games the DQN was trained over. Figure 2-1 shows an ensemble of
the games the DQN learned.

Figure 2-1: An example of the games played by the DQN [5]

2-2 Policy gradient methods

Up until now all methods discussed resolve around the estimation of a value function, that in
term determine the policy by taking an action in the direction of the highest return. In this
section the policy is directly optimized. In short, 7(als,0) = Pr{A; = a|S; = s,0; = 0}, where
0 are the policy weights. To allow for the policy to be optimized, equation 2-13 is given. «
is the step-size and J(6;) is an arbitrary performance measure. A requirement for gradient
optimization methods is that the underlying function approximation is differentiable.

0t+1 = Qt + aVJ(@t) (2—13)

This arbitrary performance measure often takes shape in the form of a value function. The
use of a value function in conjunction with an policy estimation method results in a school
of methods called actor-critic methods. The value function is considered the critic, which
serves an opinion about how ”good” or "bad” the state is to be in. The actor is the policy,
which determines what action to take.

Parameterization of the policy brings some advantages compared to the greedy policies com-
monly used with value based methods. First off, the policy space can be approximated using

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

48 Model Free Methods

stochastic function approximation. Depending on the problem, stochastic function approx-
imation enables for the policy to converge to a stochastic optimal policy. An example of
a situation that would require an stochastic policy would be that of the game; rock, paper
scissors. The optimal policy would be an equal chance of selecting each action. Another
advantage is that estimating the policy itself in some cases is easier than finding the estimat-
ing the complete value function for the complete problem. As previously shown with value
iteration (section 2-1), full convergence of the value function is not required to determine
the optimal policy. A final advantage is that when using policy optimization, the action
probabilities change smoothly during updates. When using a value based approach, when a
certain action-value would surpass that of another action-value, under a greedy policy this
other action would be chosen instantly. This can result in erratic behaviour

To allow weight updates for the function approximation, the performance measure J(#) has
to be defined. An example is defining the performance measure as the value of the starting
state so, where vr,(so) is the true value function for policy mp. This results in the following
definition:

J(0) = vmy(s0) (2-14)

The performance measure varies between different problems, and can be constructed as seen
fit. The effect of the policy on this performance measure is needed, and more specifically the
gradient of the performance measure with respect to the parameters. Based on the Policy
Gradient Theorem, which establishes a proportional relationship between the gradient of the
performance measure and the gradient of the policy, an definition can be given. This is shown
in equation 2-15. The derivation of this relationship is quite extensive, and can be found in
[4].

Vor(A¢|St, 0)

VJ(0) = B [G A5)

(2-15)

S and Ay are the sampled actions and visited states and Gy is the trajectory return. Com-
bining equation 2-13 and equation 2-15 results in a classic policy gradient method, called
REINFORCE, as shown in equation 2-16.

Va?T(At’St, 9)
7T(At|5t, 9) (2—16)
= et + aGtVQ In W(At’St, 9)

01 = 0 + oGy

Equation 2-16 has an intuitive appeal. The parameters are moved in the direction of space that
increases or decreases its probability of repeating the action, weighted by the received return.
This implies that high returns for certain actions will be updated more heavily. Meanwhile,
the division by the actual probability of selecting the action will result in balancing out the
updates depending on the probability of selection. Otherwise action that are already visited
frequently would be updated unfairly due to the higher chance of taking that action.

REINFORCE uses the full return at each time step, putting it in the same school as Monte
Carlo methods. Updates are only done at the end of each episode when the full trajectory
and return is known.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-2 Policy gradient methods 49

An extension can be made to the REINFORCE algorithm that introduces a baseline with
which the action value can be compared to. This sets the stage for the introduction of actor-
critic methods. When using action values for the parameter updates the interest is not the
absolute value of the action values but more the difference between them; which action is
relatively better compared to the other available actions. When using the absolute values the
variance between states can be high, and subsequent update steps. The baseline is used to
normalize the updates, reducing the variance in each update step. The modified algorithm,
REINFORCE with baseline is shown in equation 2-17, where b(S;) is a arbitrary baseline
value depending on the current state.

V97T(At|5t, 9)

9t+1 = 9t + Ol(Gt - b(St)) W(At|st 9)

(2-17)

The baseline value can be any arbitrary value. However, baseline should have as property
that when in a state where the actions have high value, the resulting baseline should be high
in value as well. When all actions in a certain state are of low value, the baseline should be
low of low value. An solution for this would be the use of an estimated state value, (S, w).
w are the weights for the state value estimation. Due to the REINFORCE algorithm being
a Monte Carlo method, the value function is estimated using a Monte Carlo method. Using
an approximated state value function as baseline is closely related to actor-critic methods,
which will be discussed next.

2-2-1 Actor-Critic

The REINFORCE with baseline is not considered an actor-critic method, however still gives
the general intent of the critic in actor-critic methods. The reason that it is not considered an
critic is that the value function is not used as an estimate, but as a baseline with respect to
the return. Also, an episodic method of estimation such as MC converge slowly and are not
suitable for online estimation. A natural step is to replace the return with an value function
estimate. The value function is updated using a bootstrapping methods, as seen previously
done with TD methods. Recall that E(G¢) = V(S;) = 9(S¢, w). This results in a one step
actor-critic method showed in equation 2-18, where d; is the TD error.

A) Vor (A S, 0
01 = 0, + a(RtH + Y0(St41, w) — 0(S, w)) W (2-18)
= Ht —+ aét In W(At‘St) 9)

This results in a online process, that can be updated every step. For clarity, the critic in this
case is the estimation of the value function, Ry41 + y0(Si41, w) — 0(St, w). The actor is the
policy estimation part, %. This double estimation is the basis for all actor-critic

methods.

Often the critic and actor are both estimated by using deep learning as function approximation
techniques. The combination of deep learning and actor-critic methods will be expanded
on in section 4-1-2. Now that the basics of policy gradient methods are presented, there
are a few more challenges to overcome. When using deep learning in combination with

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

50 Model Free Methods

policy gradient methods, additional to the policy optimizations steps have to be introduced
to provide stability for the gradient updates. This will be covered in the next section, as well
as expand on the application of deep learning with policy gradient methods.

2-2-2 Policy optimization

In this section two different policy optimization methods are expanded upon, namely Trust
Region Policy Optimization (TRPO) [6] and Prozimal Policy Optimization (PPO) [7] b
Schulman et al. The aforementioned papers are discussed as they are used often in subsequent
literature, as well required to extend policy gradient methods to the deep learning domain.
First TRPO is expanded upon and lastly PPO.

The goal of TRPO is to provide a method that guarantees policy improvement for nonlinear
policy approximation methods that use thousands of parameters. Schulman et al. first
provides a theoretical basis on which the algorithm TRPO is founded. The goal of TRPO is
to find a method of regulating the step-size, which is required for complex nonlinear policies.
Simply using a constant step-size will mostly result in non-convergence or local optima,
especially for nonlinear policies. However using an step size that is to small most likely never
converge.

Additions are made to the previously defined variables. First, the advantage function is
defined. The advantage function is an often used substitution for either the state-value
or action-value function. The advantage function normalizes the value function’s value, by
subtracting the state-value function from the action-values, as shown in equation 2-19.

Ar(s,a) = Qx(s,a) — Vz(s) (2-19)

Ay is the advantage function, while @, (s, a) is the action-value function and V;(s) the state-
value function. Note that the value functions are discounted. Another term that needs
introduction is the policy performance n, which is the discounted expected reward as defined
in equation 2-20.

() = Esgap.. [Zw St] (2-20)

Schulman et al. utilized an useful identity that expresses the policy performance of one
policy in terms of another policy and the advantage function, which was proven by Kakade
and Langford [8]. Equation 2-21 shows this identity, where 7 and 7 are both policies, and A,
is the advantage function determined by policy .

n(®) = () + Expaq, [Zv st,a1)] (2-21)

This identity is expanded towards a form that resolves around states instead of timesteps,
which adheres more to the "sample” based nature of reinforcement learning. This results in
equation 2-22, where pz(s) is the discounted visitation frequency, a measure of state visitation.

77 + Zpﬂ' Z ‘ (37 a) (2'22)

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-2 Policy gradient methods 51

Equation 2-22 states in short that when the expected advantage at every state s is nonnega-
tive, that the policy performance of 7 is atleast equal or higher than the policy performance
of policy 7. This equation carries a lot of similarities when compared to the policy iteration
theorem presented in section 2-2.

Note that in equation 2-22 there is a dependency on the state visitation frequency of the
new policy. This is difficult to determine when using information from the old policy, so an
approximation has to be made to the state visitation frequency. This is done by using the
state visitation frequency of the old policy p(m) instead of p(7) as an approximation. Proof
is given that for a sufficiently small policy improvement step the derived identity still holds,
now the question remains on how to determine the size of this step. Equation 2-23 gives the
final local approximate identity depending on mentioned constrains.

La(7) = n(m) + Y _ p(s) Y 7(als)Ax(s,a) (2-23)

As stated before, the question remains on how to determine a step size that is sufficiently
small to not break the policy improvement guarentee, but still assures policy improvement.
Kakade and Langford derived a theoretical lower bound for this stepsize, guaranteeing an
improvement in policy. Schulman et al. expanded this to a theorem by utilizing the KL
divergence between the old and new policy, resulting in equation 2-24. KL divergence is a
measure of difference between two probability distributions. Using the KL divergence allowed
the theorem to be of practical use for most policies.

n(7) > Lx(7) — CDRY" (m,7) (2-24)

Wi¥(m,w) is the KL divergence between the two policies, C = (14_%)2 and € =
mazxsq|Ar(s,a)|. The combination of the KL divergence and the variable C' define the lower
bound approximation of the performance function. Before giving an explanation for the
use of this equation, another term is introduced. Assume M;(m) = Ly, (7) — CDR*(m;,7),

combining this with equation 2-24 results in equation 2-25.
n(miv1) —n(mi) 2 Mi(mig1) — M(m) (2-25)

Equation 2-25 shows that the actual policy performance is always higher or equal to that of
M;. This means that maximizing M; will always result in a policy performance improvement.
This algorithm of optimization is called a minorization-mazimization (MM) algorithm. An
overview of this process can be seen in figure 2-2.

Due to the fact that parameterized policies are learned, all the previous notations concerning
a policy 7 will be subsituted for the policy parameters, 6. The resulting objective function is
then the maximization of M;(6), parameterized by the policy parameters 6;

max};mize (Lo, (0) — CDP4" (014, 6)] (2-26)

Schulman et al. noted that the when using C' to penalize the function, the updates would
be to small to result in convergence. Also determining a constant C' that would give good

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

52 Model Free Methods

n(e) Mi(e) L(6)

Figure 2-2: An graphical overview of the different used approximations of the performance
measure (edited from source: [9])

performance posed difficult due to the dependency on the KL divergence. This is why instead
of penalizing the KL divergence, a constraint is set on the KL divergence; D%7 (014,0) < 6.
Note that the determination of the max KL divergence is deemed unstable, so the average KL
divergence is used. Also, KL divergence has no upper bound, posing the threat of instability.
This results in the final set of constrains that encapsulate Trust Region Policy Optimization,
as shown in equation 2-27.

maximize Ly ,,(6)
o _ (2-27)
subject to Dxr(6o1q,0) < 9

Now that the theoretical limits are in place, lets define a practical objective function to be
optimized subjected to the theorem provided by equation 2-27. Recall equation 2-23. Rewrite
the objective function in more convenient and widely used form. Equation 2-28 shows the
subsequent surrogate objective function.

A= pr, () mlals)Ar, (s,a)

rola (2-28)
= Zsjpﬂ'eold Zﬂ-Gozd als) [Zi(| |)) 0,14 (s, a)}

The first part of the equation, > pr, (5)>2,7g,,(als) is determined by the trajectory

returns of the old policy. The part that has to be optimized is contained in the brackets,

[WZLQ(‘;RS)AM ld(s,a)}. Combining equation 2-27 and equation 2-28 and converting it to a
old o

sample based approach results in equation 2-29.

s [mo(atlst) 5

maxiemize E; (s¢,at)

T0,q(at]s) ool (2-29)
subject to Et[DKL(QOld, 0)] <o

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-2 Policy gradient methods 53

The TRPO method of optimizing this objective function results in the use of Monte Carlo
roll outs to determine the state visitations, Q-values and KL divergence estimate. Then
to optimize the policy parameters a conjugate gradient algorithm is used, which requires a
local approximation of both the objective function and the constraint on the KL divergence.
TRPO showed promising results on continuous state and action problems, such as a
locomotion problem. Also it showed good convergence properties on a wide range of Atari
games.

While TRPO has a good theoretical basis, the actual computational requirements are heavyg,
and incompatible with some methods used in the field of deep learning. However, TRPO
has set the stage for the use of Trust Regions and proven its worth. Trust Regions, atleast
as an idea, are extensively used in most RL algorithms. From this point PPO is introduced,
which is an computational less expensive method and easy to implement while building on
the foundation of TRPO.

PPO is an simplification to the TRPO method, which allows the use of standard gradient
decent methods in contrast to more extensive methods such as conjugate gradients required
for TRPO. There are two general ideas behind PPO. TRPO provides a constraint on the
update step by calculating the KL divergence between two policies. PPO suggests instead of
applying a constraint, the update step should be limited depending on the actual probability
ratios between the old and new policy. Recall equation 2-29 and define the probability ratio

ri(0) = —elals) - Now instead of using the constraint, a new loss function is made that
T0oq (at]5t)

limits the update step due to constraints invoked on 7(6), as seen in equation 2-30.

LOHP(9) = Ey[min(ry(0) Ay, clip(re(6), 1 — €, 1 + €) Ay] (2-30)

Where € is a tuneable hyper parameter. The min operator considers either the clipped or
unclipped probability ratio. Lets take a look at figure 2-3. Figure 2-3 shows the effect
of the modified loss function. In short, when under the new policy a certain action has a
high chance of being executed with respect to the old policy, and the associated advantage
function is positive, this can result in a large update step when unbounded. However, with
this update rule the size of the step is limited by the clip boundaries, in this case ranging
between [1 — €, 1 + €]. This ensures more conservative update steps. The same happens for a
negative advantage function and a probability ratio that is well below 1.

The results presented in the PPO paper showed significant performance gains over other policy
gradient methods. This in combination with ease of implementation and the ability to use
more commonly used gradient methods makes PPO an state-of-the-art policy optimization
method used in many different RL problems.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

54 Model Free Methods

A<O
,poLp A>0
l-¢1

t r

|

|

|

|

|

|

|

|

|
0 1 1+4€ _ LeLe
Figure 2-3: Depiction of interaction between environment and Agent

2-3 Hurdles of Reinforcement Learning

Reinforcement learning is notorious for instability and difficulty on converging towards an
(optimal) solution. In any multi-agent extension of reinforcement learning these problems are
amplified. In this section a few of the "hurdles’ are put in the spotlight, to keep them in mind
when implementing RL techniques. Note that the single agent variants are discussed in this
section, while the effects of multi-agent are discussed in section 4-1.

First off, the Curse of dimensionality is discussed. This ”curse” depicts the growth of the
state and action space when problem complexity increases. Simple discrete gridworlds, such
as the example used in chapter 1-1, are on the lower end of the spectrum. They require
relatively little iterations for convergence. When using a method such as Q-learning, each
state has to be repeatedly visited in combination with every available action to build up
the required value estimation. Assuming a tabular approach for this case, increasing the
size of the gridworld and selection of available actions exponentially increases the amount of
samples required to build up the value estimation. Then, shifting towards continuous state
and action domains this increases even further. Generalization by function approximation,
such as a neural network, will allow for generalization across the state space to counter act
this. However, one can still imagine that more complex problems quickly strain computational
requirements, which in turn demand better and more efficient function approximation. This
comes most of the time at a cost, such as increased variance or other stability issues.

This exponential path of the increase in ”search space” ties in closely to another hurdle,
that of the explore or exploit dilemma. As stated before, to build up a representation of the
environment through the use of values, states have to be visited. Initially, the agent begins
its trajectory without any knowledge about the states. When visiting these states, it assigns
value through the feedback of a reward signal. As an example for Q-learning, an e-greedy
policy is taken. This policy will take an action randomly with probability €, while moving
in the direction of maximum return otherwise. In the first few iterations of learning, only a
few different trajectories are taken and consequently assigned a value. It will only deviate
of its path of known value when taking a random action. When the search space increases,

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-4 Function approximation by deep learning techniques 55

chances are that certain areas of this search space are never visited, implying that potential
better solutions are also not found. In short, the solution presented is that of a local optima.
This is where the explore vs exploit dillema originates from. When to use currently available
knowledge and exploit this in search of the optimal solution, or when to deviate from this
path to explore the search space in hopes of a finding a better solution.

Another hurdle is that of the credit assignment problem. The credit assignment problem
originates from the difficulty in determining what actions have led to a certain reward. A
certain trajectory of actions can lead to a reward, however determining what actions con-
tributed positively towards the received reward is a problem. This can be partly overcome by
decreasing the sparseness of the reward signal, however this ties into the problem of giving
the agent to much information. This constrains the finding of exotic solutions by the RL
agent, one of the core additions of value when using RL in the first place.

2-4 Function approximation by deep learning techniques

In this section, a quick overview is given of the various different deep learning techniques.
They are explained to give a brief insight in how they work and most importantly their use.
At the end a short section is given that will expand on the use of regularization and its
importance.

The term deep learning originates from the use of multiple layers of mathematical neurons,
that when put in a sequence will form a deep layered network. These neurons are the bread
and butter of all neural network based techniques. The neuron in itself is strikingly simple
in its form. Figure 2-4 shows a depiction of a single neuron, with the output of multiple
neurons as input. Each neuron gives a certain value as output x;, which is multiplied by a

/l 1/\1\ b
— R |
@)W\
\
h = ‘ / \
U»z ~ v
Lf%'f b+ E TW;
/
o /4//.)/
(a n) Wn

Figure 2-4: A graphical depiction of a neuron, at the core of Neural Network based techniques[10]

weight w;. These values are then summed and shifted by the neuron with a bias b. This
resulting value is then transformed by an activation function, which results in a the neurons
output. The part that ”learns” are the weights and biases, which can be modified by a wide
range of numerical optimization methods, such as stochastic gradient descent. Also, a range
of different activation functions are available to tailor the behaviour of the network to the
problem. The concept underlying the activation function is that of enabling the neuron to
"fire” when enough input signal is given. Most activation functions have step like behaviour,

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

56 Model Free Methods

it will output zero until a certain threshold is met. After this threshold is met the activation
function ”allows” information to be propagated forward. Note that an important aspect of
the activation function is that it should be differentiable. This is needed to calculate the
shift of weights and biases depending on the loss function.

Using these individual neurons as building blocks for layered networks is the essence of deep
learning. The first and most classical use of these neurons in deep learning is that of the
Multi-layered Perceptron (MLP). The MLP are multiple layers of neurons stacked sequentially,
creating a network. This is the most common method of function approximation.

When dealing with higher dimensional data, such as images, extensions are needed to cope
with this extra dimension as well as to capture the spatial relation between values. In simple
image examples, one could flatten the image and feed this into a MLP. However, when spatial
features are important this relation has to be captured. This is where Convolutional Neural
Networks (CNN) come into play. A CNN uses trainable kernels that convolute over an image,
giving an output of the product of kernel and image. This kernel can be seen as a trainable
”lens” which is used to view the image. Using multiple kernels and layers of convolutions
and stacking these in sequence establishes an network architecture that is able to detect a
variety of various spatial features. CNN’s are commonly used for image classification or other
computer vision based problems. The information is compressed through the architecture
which in the end is then fed to an MLP for classification. Figure 2-5 shows an overview of
such an architecture.

Convolution Pooling Convolution Pooling Fully Fully Output
+RelU +RelU Connected ~ Connected perdictions

dog (0.01)

"""""" Cat (0.01)
- [Boat (0.94)
—~ i - Bird (0.94)

Figure 2-5: An overview of an CNN architecture, with an MLP at the end for classification [11]

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-5 Extensions of the Markov Decision Process 57

For spatial information not originating from an 3D field such as an image, but for a sequence in
time, Recurrent Neural Networks are used. Recurrent Neural Networks gain their recurrency
from the fact that the past output of the network is used as an input, in conjunction with
the new input. This is visualized in figure 2-6.

v
v
@—> @

® ®
r
=
& &

Figure 2-6: Structure of a Recurrent Neural Network [12]

X—
@—>—@®

The idea behind these types of networks is to have a form of “memory” that enables learning
over sequences. For example, they are widely used in speech recognition or text classification.
The RNN is a basis for more modern approaches to this memory property in neural networks,
which resulted in Gated Recurrent Unit (GRU) and Long Short-term Memory (LSTM).
These are more advanced successors to the RNN, however their intent is the same.

Regularization and overfitting, which are basically the same but from a different point of
view, is a big gripe within the neural network domain. An example of what happens when
the network architecture is wrongly defined; If the network has to many layers, instead of
”understanding” the underlying behaviour of the process, it could simply ”remember” all the
given inputs and outputs. When validating this network then on a new set of data, its success
rate will be low, as this is new information not seen before and only knows what to do with
the information already stored. The idea behind using any machine learning technique is to
find the underlying structure of the information, not learning this information by heart. This
understanding of the underlying structure is called generalization, which is achieved through
regularization. Overfitting ties into the remembering of the answers. This is a delicate process
that can be balanced with various techniques, different architectures and correctly presenting
the data to the network.

2-5 Extensions of the Markov Decision Process

The Markov decision Process (MDP) is widely used as a mathematical framework for decision
making problems. The MDP was introduced in section 1-2. In this section, variations of the
MDP are expanded upon. These variants expand on the basis of the normal MDP, extending
them to be utilized for various different schools of problems. The structure of this section
is odd at first, but clearifies later on. In the first sections, the Markov Decision Process,
Partial Observable Markov Decision Process (POMDP) and Decentralized Partial Observable

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

58 Model Free Methods

Markov Decision Process (Dec-POMDP) are explained in sequence. These sections will mostly
contain mathematical definitions. In the final section, the order is reversed and more practical
explanation is given. The reason for this is that in order to grasp the concept, extending from
MDP to Dec-POMDP is a natural order. However, it is then shown that the MDP and
POMDP are special cases of the Dec-POMD), which constitutes the reversal of order. Figure
2-7 shows the relation between the different MDP forms.

— [

G o
o o o
s ;

[}

(a) (b) (c)

Figure 2-7: (a) Markov decision process. (b) Partially observable Markov decision process. (c)
Decentralized partially observable Markov decision process with two agents.

The reason for this section is to provide insight in the various ways of defining decision making
problems. This includes the fact that depending on the definition of the Markov process, the
difficulty in solving the problem can scale from solvable to exceptionally hard. To define
the solving difficulty, in most work complexity classes are used to categorize the difficulty
of finding solutions. In this document however, these are omitted for the sake of simplicity.
However, a relative difficulty is given for each framework compared to a standard MDP.
Another reason is to generalize the multiple variants of the MDP to be used as baseline in
following sections. Most Reinforcement Learning solutions use MDPs or variants thereof as a
basis. This section is based on Complezity analysis and optimal algorithms for decentralized
decision making by Bernstein [13, 14] and Autonomous Agents and Multi-Agent Systems by
Shani et al.[15].

2-5-1 Mathematical framework for MDPs

The MDP models an agents actions in an environment, with the goal of maximizing long-term
reward. An MDP is described by the tuple (S, A, P, R). S is a finite set of possible states,
where s € S describes each state in this set. A is the finite set of possible actions, where
a € A describes each action available in this set. P are the transition probabilities, which
describe the chance that when taking an action a in state s, that the agent ends up in state
s'. In short, P(s'|s,a). R is the reward function, quantifying the amount of received reward
when taking action a in state s, described by R(s,a).

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-5 Extensions of the Markov Decision Process 59

Partially Observable Markov Decision Process

In comparison to an MDP, when an agent is unable to directly observe the state of the
environment, it has partial observability. Instead it receives noisy observations of the state
in comparison to direct state observations when looking at an MDP. A Partially Observable
Markov Decision Process (POMDP) can be described by the following tuple, (S, A, P, R, w, O)
where S, A, P, R are defined exactly the same as for an MDP. w is the observation the agent
receives after taking action a, and O is the conditional probability of the observation the
Agent receives; O(ola,s’). This implies that the Agent has no direct observability of the
environment states, s, but makes a observation w that are under probability O of reflecting
the true state.

Decentralized Partially Observable Markov Decision Process

Now the POMDP is extended to the case when the Markov Process is controlled by a team
of distributed agents. This means that actions are taken based on each agents own local
observations, not by a centralized party that has knowledge of the full system. Decentralized
Partially Observable Markov Decision Proceses (Dec-POMDP) is a multi-agent generaliza-
tion of a POMDP. Assume m are the number of Agents, a Dec-POMDP is described by
the following tuple; (m,S, Ay, P, R,wn,0). S is the finite set of states. A,, is the set
of actions taken by each agent, i.e. the set of joint actions (aj,...,an). P is the transi-
tion probability, P(s'|s,a1,...,an). R the reward function, R(s,aq, ..., am). wp, the joint set
of observations by each agent, i.e. (o1,...,0m). O contains the observational probabilities,
O(o1, ..., 0mla1, ..., am, s'), the probability of Agents seeing observation o, given that a was
taken resulting in state s'.

2-5-2 the Dec-POMDP Family

All techniques explained in the previous section can all be seen as special cases of a Dec-
POMDP, as seen in figure 2-8.

DEC-POMDP i
//'J LR S - = — T ,
i > e '-.\\‘ % : _....I
[POMDP (MDP) DEC-MDP | |
-, .\\‘ /’. 4 ';"l.
o, T 3

Figure 2-8: Relationship among the different MDP models

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

60 Model Free Methods

First, lets expand the running example to fit the description of a Dec-POMDP. Note, that
the state definition is anything from well defined for this problem, but is used as an intuitive
example. The state definitions are defined this way to exaggerate the partial observability
of the example. Looking at figure 2-9, the problem can now be defined into a distributed
system.

Figure 2-9: Example of a multi-agent system, used to describe the various MDP variants

Each aircraft is considered an agent, where each agents observes its own state; longitude,
latitude, current heading and distance and relative bearing to the destination. Also, each
agent observes the distance to the other agent. The current definition of distance to another
agent makes agent’s location partially observable, due to the fact that heading of the other
agent is not included.

Now each agent makes decisions based on its local observations. The subsequent state transi-
tion depends on the collection of joint actions of each individual agent. More so, the collection
of joint actions result in a collective reward, where each agent contributed to this reward. Note
that there is now a strong decoupling between each agents individual action and contribu-
tion to the reward. A Dec-POMDP is proven to be significantly more difficult to solve in a
worst-case scenario, compared to a standard MDP.

A special case of the Dec-POMDP is the Dec-MDP. The difference between the two is that
when the observations of all agents in the environment collectively encapsulate the whole
state, it is considered an Dec-MDP, even though no single agent observes the whole state.
This opens up some flexibility in solving the problem, however in the worst case scenario it
is still proven to be significantly more difficult to solve compared to a standard MDP. The
example problem would be considered a Dec-MDP when the heading of the other agent would
also be observable.

Moving from a Decentralized approach, Dec-POMDP, to a centralized approach, POMDP,
reduces the number of agents to one. Instead of each aircraft making its own decisions, a cen-
tralized agent is used to determine the action of each aircraft from a global point of view. As
an example relative distances between aircraft would become obsolete, due to having access
to full state, i.e. each location of the aircraft etc. As an example, the observations of this

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

2-5 Extensions of the Markov Decision Process 61

agent would include all location and heading information of the aircraft simultaneously. The
action space would consists of two heading changes that are given to the two aircraft in the
sector, all determined by the centralized agent. In contrast to the decentralized approach,
where each agent would only determine a single action for itself. In the running example,
partial observability would be difficult to express, due to the completeness of information
available. However, partial observability could be seen as instead of receiving absolute carte-
sian coordinates of each aircraft, a noisy estimates of these coordinates are given. POMDP
are considered relatively solvable compared to their decentralized variants, however still more
difficult than a standard MDP. Decentralization add lots of decision and state space com-
plexity. When considering this example without the noise on the coordinates, the problem is
subsequently reduced to a standard MDP. A MDP is considered the least difficult framework
to use and solve.

The different presented frameworks offer different ways of approaching the problem. Logically,
a standard MDP framework is desired due to the fact that these are significantly easier to
solve compared to the other frameworks. However, the size of the MDP would grow rapidly
when adding more agents, exploding state space and action space representation. More insight
in this is provided throughout the document. Lots of research dive into the use of different
MDP representations, and multiple representations can be combined to reduce complexity
locally and creating a more computationally efficient and solvable problem, such as centralized
learning with decentralized execution.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

62 Model Free Methods

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 3

Problem Description and Research
Question

As stated in the introduction of this document, there is less of a problem, but more of a
curiosity present. Reinforcement Learning has seen promising results over the years, and
applying this to air traffic control could lead to new emergent behaviour or other air traf-
fic management solutions. The ”ultimate” goal would consists of a reinforcement learning
method that could fully take over the task of air traffic control while ensuring safety and
maximizing efficiency. However, finding ”a” solution will also be considered satisfactory. To
summarize this vision, a research question is established.

How to apply reinforcement learning to the air traffic control task of merging and spacing
while maximizing safety and efficiency?

As can be seen, this research question can be split up in three distinct parts, which can be
answered through sub-questions.

How to apply reinforcement learning:

e How to deal with the multi-agent nature of the problem?
e How should the state space be defined?
e How should the action space be defined?

e How should the reward structure be defined?
Air traffic control:

e How to simulate the Air Traffic Control setting?

e How to setup the experiment?

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

64 Problem Description and Research Question

e How to maximize data throughput?
Maximizing safety and efficiency

e How to define efficiency?

e How to ensure safety?

The questions will be used as chapters, and the subsequent sub-questions as sections. By using
these questions as guide, a complete overview of the required knowledge to solve the questions
is provided. Note that, while not clearly stated before, it is assumed that from this point
onwards a Multi-Agent Reinforcement Learning (MARL) approach is used as baseline. The
reason why MARL is taken as baseline is that the problem most likely will be categorized as
a MARL problem. When this is not the case, MARL gives insight in how to deal with certain
aspects of the ATC problem that persist even when taking a single agent based approach.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 4

How to apply Reinforcement Learning

In this chapter, the question How to apply Reinforcement Learning is being investigated. The
sections are divided along the predefined sub-question structure. First, the multi-agent prob-
lem is expanded upon. Prior understanding of Reinforcement Learning explained previously
in this document is well advised, as the rate in which more advanced techniques will be ex-
panded upon will increase rapidly. Then, defining state, action and reward structures will be
discussed in this order.

4-1 The Multi-agent problem

Air traffic control concerns itself with a region containing multiple aircraft that all need
to be guided towards their destination. Each aircraft has its own destination and current
position in the airspace, which can result in conflicts with other aircraft while navigating.
For reinforcement learning to be effective while guiding these aircraft, solutions need to be
made with regard to all aircraft, due to the fact that changes made to one aircraft, influence
the options available of other aircraft. This is the first main challenge that arises from using
multi-agent systems, the non-stationarity of the environment. All agents observe the impact
of actions on the environment of other agents, instead of only the result of their own action.
This makes learning difficult, due to the fact that an action a single agent took, can possibly
not be accredited solely to that agent himself, but also due to the action of other agents.
On top of this, each agent evolves with each time step by updating its policy, increasing
unpredictability from a single agent’s point of view. This non-stationarity of the environment
violates the Markov Property, which implies no guarantee of convergence to the optimal policy.

Another issue is how conflicts are resolved in a multi-agent setting. In a multi-agent setting,
the distinction can be made between either cooperation or competition between agents. This
means that either the total reward is prevalent, or the agents individual reward is more
important with disregard for the other agents performance. In the air traffic control scenario,
solely cooperative tasks are considered. The reason for this is that in air traffic control the

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

66 How to apply Reinforcement Learning

global optimal solution is required, compared to a single aircraft having the least amount of
travel time, while the other agents behave sub-optimal.

Another important factor is the availability of information regarding other agents for each
agent. For cooperative behaviour to be fully cooperative, knowledge of each agent action is
required. An good example of this would be conflict resolution within the airspace. When
two aircraft are heading towards an LoS, a solution is needed. When there would be no
cooperation or communication about each agents action intent, when both aircraft would
turn west, the conflict would persist. However, communicating that one of the two agents
will only take action, or both turning in opposite direction would resolve the conflict.

Lastly, the system will likely be partially observable. This is due to the fact that it is not
realistic for each agent to have full observability of the system. The state space of each agent
grows exponentially with each added agent, when full observability is wanted, exploding the
state space. So partial observability is needed, for the agent to only consider its immediate
surroundings. This is a realistic setting in an ATC environment. Single aircraft are flying
towards their far-off goal, while locally solving conflicts. [16][17]

Multi-agent Reinforcement Learning (MARL) is a field on its own, due to the differences in
environment and communication compared to single agent reinforcement learning. In the
next section multiple different approaches are presented that work with the non-stationarity
and communication problems of MARL. A distinction is made between value based methods,
such as extensions of DQN techniques and policy gradient based methods, such as COMA.

4-1-1 Value based reinforcement learning

This section will contain multiple value based reinforcement learning techniques that are
designed to work with MARL problems. First off, an fundamental first step towards MARL
is presented, namely independent Q-learning. After that, an solution is presented to the
principle of Q-value overestimation and its non-stationarity. Then an section is given about
how to implement specific communication into RL algorithms. Finally the concept of leniency
is introduced, in conjunction with double Q-learning techniques.

Independent Q-learning

As introduced in section 2-1, Q-learning is a fundamental technique for off-policy reinforce-
ment learning. Q-learning was extended by approximating the Q-values using a CNN, dubbed
Deep Q-networks (DQN). For MARL, an extension is made to Q-learning called independent
Q-learning [18], which basically means that every agent learns its own Q-function that only
depends on its own state and actions. IQL considers other agents stationary parts of the
environment. In practice, this can work for more simple MARL problems. However, for
more complex problems, IQL is extended by using deep learning. This is done by applying
the working principles of Deep Q-networks (DQN) on IQL

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-1 The Multi-agent problem 67

As discussed in subsection 2-1, DQN is stabilized by experience replay. However, when
applied to multi-agent problems, experience replay does not hold, due to non-stationarity.
The used experience that is learnt from does not reflect the environment correctly, due to
the ever changing policies of all the agents. To make DQN work, a few modifications have
to be presented to experience replay mechanic. First off all, the state space of each agent
could include the whole environment including policies of all other agent. This makes the
environment non-stationary, but at great costs of exploding state-space. To work around
this, Foerster et al. [19] proposes two techniques, Multi-Agent Importance Sampling and
Multi-Agent Fingerprints.

Multi-Agent Importance Sampling is an extension of importance sampling. Importance
Sampling is used in off-policy methods that optimize over expected values. This is due to
the fact, that inherently to off-policy methods, the agent gathers experience with a different
policy than the to be learned optimal policy. This distinction in policies are called the
behavioural policy and target policy, already touched upon in section 2-1. The agent is
trying to find the optimal target policy, while learning from behaviour done under another
policy. The target en behavioural policies can be seen as two different random variables
under high correlation. [4]

Foerster et al. state that the non-stationarity of the environment can be reduced by using
importance sampling not for correcting off-policy gained data, but on off-environment gained
data. What this means is that in both naive IQL and DQN each agent considers the other
agents as part of the environment. However, with time each agent changes its behaviour,
indirectly changing the environment (because the agents are considered part of the envi-
ronment). The experience replay consequently stores, instead of only off-policy data, also
off-environment data. This can be corrected for by using multi-agent importance Sampling.
Equation 4-1 shows the augmented loss function. Note that in the explanation of all variables,
joint means a collective. For example, u_, means the collective actions of all agent other

than a
° b U_q|S DN
£y =3 Talelpon o oy (1)

o ma(u-als)

0 : The parameters of the value-function approximation.
e b : The amount of sampling batches from Experience Replay memory.

e 7 : Denotes the joint policy.

—a : Denotes joint quantities over all agents other than a.

e u : Joint actions.

e 5 : State.

e ¢ : Time, of either the time of the replay ¢, or time of the collected sample t;.

° yiDQN : Output of the DQN.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

68 How to apply Reinforcement Learning

Equation 4-1 instead of using importance sampling to correct for a older policy with respect
to the newer policy, it corrects the change of all the other agents policies with the current
policies of all other agents. Which in turn depicts the change in environment.

Another method for improving experience replay, is the use of multi-agent fingerprints. As
stated before, but repeated for clarity, IQL treats other agents as part of its environment
and ignores the fact that the policies of other agents are changing, making the Q-function
non-stationary. This means that if the Q-function could take into account the change
in behaviour, i.e. the policy of other agents, the Q-function could be made stationary.
This could be done by directly incorporating the policy of all other DQN agents into
the observation space. However, due to the amount of parameters 6 each DQN has, the
observation space would explode. However, Foerster et al. noted that not all possible
network configurations where required, only those that appear in the replay memory. The
sequence of policy data can be seen as a single trajectory of improvement through the
high-dimensional policy space. For the DQN to be able to keep track of this trajectory, i.e.
link the changes of the environment with that of the policy changes, a fingerprint is needed.
Foerster et al. created a simple fingerprint, consisting of € and e. ¢ is the training iteration
number, and e is the rate of exploration. This fingerprint was added to the agents state-space.

It was shown that both methods where able to improve experience replay in a MARL
setting. Both techniques are made around solving the non-stationarity problem, resulting in
comparable results between multi-agent importance sampling and multi-agent fingerprints.

Q-value overestimation and Deep Repeated Update Q-networks

Castaneda [20] proposes a method for stabilizing non-stationary environments, Deep Repeated
Update Q-network (DRUQN). DRUQN is based on an inherent deficiency when using function
approximation with Q-learning, the tendency to overestimate Q-values. This overestimation
is amplified by a non-stationary environment. First, the origin of Q-value overestimation is
discussed, as this is a recurrent topic in MARL. After that DRUQN is expanded upon.

Thrun and Schwartz [21] quantified the overestimation problem with Q-learning using function
approximation. Equation 4-2 shows the Q-learning update rule, where s is the state, taking
action a, resulting in state s’ and receiving a reward r?. v is the discount factor.

Q(s,a) < r{ +ymaxQ(s',a) (4-2)

When using function approximation for @), it introduces noise, depicted in equation 4-3, where
QPProT is the Q-value approximation, Q"9 the true value and Y the introduced random
variable that depicts noise due to function approximation. Y is assumed to have a zero
mean.

Qappro:rf — Qtarget 4 s(} (4_3)

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-1 The Multi-agent problem 69

Thrun and Schwartz then created a simple comparison to show the effect of this noise com-
ponent on Q-learning, shown in equation 4-4, where Z; is the newly defined random variable.

Zy = r 4y max QUPO(s',) — (12 4 max QI a)
a a

— ,Y(m@x Cgapprox(sl7 d) _ m@x Qtarget(sl’ &)) (4 4)
a a

When looking at equation 4-4, when taking into account the added noise component YS‘% to
QPPT°% in combination with taking the max of available actions, will often result in a positive
value. This means that even if E[Y$] = 0, often E[Z,] > 0. This is the result of using the max
operator in Q-learning in combination with stochastic function approximation. This results
in a upwardly bias of Q-learning, frequently reinforcing certain actions that have a high
value. In non-stationary environments this effect is amplified even further, due to changing
policies. Previously optimal actions would still be selected, even when sub-optimal[20].

Note that, even considering this upward bias and non-stationary of the environment,
with enough iterations Q-learning can still converge to the optimal values. However, the
probability of this happening diminishes rapidly in higher order state space environments.

Abdallah and Kaisers [22] addressed this issue by introducing Repeated Update Q-learning
(RUQL). They introduced a term called policy-bias. This refers to the dependency between
the rate of update for an action value and the probability of selecting the corresponding
action. This phenomena is more severe when considering the trend of Q-value overestimating,
especially in combination with non-stationary environments, as explained in the previous.
The main idea of RUQL is to repeat the update of an action inversely proportional to the
probability of choosing that action, i.e. ﬁ times. So when less frequently visited actions
are taken, this action value is then reinforced multiple times in comparison to high probability
actions. However, directly using m poses issues, due to the fact that the times of updates
explodes when 7(s|a) approaches zero, as well as fact that only a integer number of iterations
can be done, and ﬁ results often in a non-integer. To solve for this, the final RUQL
Equation 4-5 shows the augmented Q-learning update rule.

Q" (s,0) = [1 — o] TTQ!(s,0) + [1 — (1 — @) T3 | [r + ymax Q'(s', a')]

using zq(sq) = 1 — (1 — a)w(sl,a) (4-5)

= Q(Sa a) + Zr(s,a) [’I“ + ’Ym(?XQ(Sla a,) - Q(Sv a)]

Castaneda extended RUQL to the Deep Learning domain, dubbed DRUQN. DRUQN requires
only slight modification to the loss function differentiation. Combining equation 4-5 with the
deep learning extension mentioned above results in equation 4-6.

aVo,Li(0i) = E(s.ar.s 2, (0.0 ~U (D) [Zi (Wi — Q5,0 : 6:))Ve,Q(s, a; 0;)] (4-6)

« is included in equation 4-6 for clarification in the differences compared to ordinary
Q-learning. z; now contains the modified learning rate, which is the addition of the RUQL,
i.e. the factor that balances the frequency of Q-value updates.It was shown that DRUQN
improved multi-agent behaviour on almost all environments compared to naive DQN methods.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

70 How to apply Reinforcement Learning

Communication with Deep Loosely Coupled Q-networks

Castaneda also introduced the concept of Deep Loosely Coupled Q-network(DLCQL), which
is an deep learning extension of Loosely Coupled @Q-Learning (LCQL)[23]. DLCQN works
around the non-stationarity problem by issuing a mode of communication between agents
when required. Communication is only done when other agents significantly influence each
others state, while the influence is minimal the agent only takes its own local observations
into consideration. First, LCQL fundamentals are considered, then the deep learning
approach by Castaneda is given.

Yu et al. used the difference in various MDP frameworks to split up the problem into grades
of independence of each individual agent. Described in section 2-5 are the various MDP
frameworks. Yu et al. expanded on the definition of a Dec-MDP by stating that the tran-
sition function P and reward function R could be split up in a function that is solely build
up from each agents individual reward and transitions, which is called transition/reward-
independent Dec-MDP. For the transition probabilities it was stated that the next local state
of a single agent, is independent of the local states of other agents, only depending on its
own previous local state and taken action. For the reward function it was stated that this
could be build up as a function of each agents individually gained reward during each step;
R(s,a) = f(Ri(s1,a1), ..., Rn(Sn,an). This special case of a Dec-MDP results in the ability
to split up the Dec-MDP in n independent MDPs which can be solved for separately. This
however can only be achieved when the agents are indeed not influencing each other. In most
problems, this is not the case, and agents do influence each others local states. The problem
can then be split up in parts where agents are either independent or dependent. To quantify
this an independence Degree £ is introduced, as well as two Q-functions that define the local
and dependent part of the problem. Equation 4-7 shows the composition of the Q-function,
where Q¥ (s, az,) is the local value function, Q’(s,a) is the dependent value function and & is
the degree of independence. Note, the local value function depends on sj and ag, which are
the local states and actions of each agent individually, where the dependent function relies
on the full state and action representation.

Qx(s,a) = EXQ* sk, ar) + (1 — EM)Q'(s,a) (4-7)

To implement this independence degree, a few definitions are required. First, it is assumed
that when an agent receives negative reward, i.e. a collision occurs, that coordination is
required in the corresponding state. However, not only the state the agent is in now is fully
responsible for the collision. Previously visited states that led to this situation contributed to
this state. First the similarity between state is calculated. Yu et al. defined this as absolute
numerical difference between states, where (s, s*) is the similarity between state s and the
target state s*. ((s,s*) is then used to create a diffusion function, that depending on the
similarity, creates an factor of influence to be used as a reflection of contribution towards
the negatively gained reward. Equation 4-8 is the diffusion equation, where r is the gained
reward, s* the target state that contained the reward and s the state considered to have had

influence on this reward.

1 1pi56%2
firls) = —smem 360 (48)

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-1 The Multi-agent problem 71

However, not only similarity is required to determine independence due to the fact that
multiple states can share similarity but not having had influence on the current trajectory
towards the negative reward. To solve for this, an eligibility trace € is introduced to keep
track of the previously visited states. An eligibility trace is a numerical value that keeps
track of what states are visited, decaying in intensity each time step. Combining these result
in a definition of the independence degree, as seen in equation 4-9. Yu et al. showed in an
experimental setting that the proposed approach resulted in near-optimal performance on
multiple environments.

EF(t+1) = EF(t) + & (8) f1- (sF) (4-9)

Castaneda extended this principle to the deep learning domain. The first problem encountered
with determining the independence degree is the fact that when using function approximation,
it is unfeasible to do the required similarity comparison between each state. Castaneda
proposed to adjust the independence degree based on if another agent is observed when
receiving negative reward. The similarity degree is then defined based on the similarity
between states of both agents, ((sj, s;). The eligibility trace is now used to keep track of when
other agents are observed, instead of what states are visited.For DLCQL two value functions
have to be parameterized. The local agents Q-value function, QQ and the cooperative variant,
Q.. Q-value parameterization and parameter loss function can be found in section 2-1-3.

In conclusion Castaneda showed results on multiple environments, where DLCQL would out
perform standard DQN. However, depending on the specific environment the performance
changed drastically.

Solving Q-value overestimation with Weighted Double DQN'’s

Another method of working around the Q-value overestimation problem, that inherently
helps against the non-stationarity problem of MARL, is Weighted Double Deep Multi-agent
Reinforcement Learning (WDDQ@N) [24] by Zheng et al. This method is an extension to the
Double Deep Q-networks (Double DQN’s) [25] introduced by Hasselt et al, with the addition
of a Lenient Reward Network (LRN) [26]. However, before WDDQN is explained, the origins
of double Q-networks are expanded upon. After that, leniency and its use are considered.
Finally, the workings of WDDQN are presented.

Hasselt et al. tackled the Q-value overestimation problem by learning two separate Q-value
functions. For completeness, a small recap is given, however approached from an different
angle. The overestimation arises from the fact that the Q-value is estimated on the future ex-
pected reward. The future expected reward is calculated by using the Q-value in transitioned
state, and picking the action that maximizes this value. There is now a significant chance that
this action that maximizes the Q-value is based on an overestimated Q-value. Subsequently,
the Q-function is updated by this overestimated Q-value which results in an positive upwards
bias. Hasselt et al. wanted to decouple this process, by learning two separate Q-functions.
Both Q-functions are estimated using Q-learning, but without any overlap in samples so that
both functions are estimated on their own distinct subset of the complete sample space. This
reduces the chance of overestimating the same Q-value twice. The two functions are used
in cohesion. One is used to determine the action to maximize the future expected reward

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

72 How to apply Reinforcement Learning

Q-value, while the other one is used to determine the actual Q-value while using the deter-
mined best action. This can be seen in equation 4-10. For clarity, this equations shows the
tabular implementation of Double Q-networks. Q4 and QF are the two Q-functions, while
the rest follows the standard notation already introduced. Note that during each step, either
the action selection comes from Q# and QP is the target, or the other way around.

define a* = argmaz,Q” (s, a)
QA(s,a) — QA(s,a) + a(r + ’yQB(s/, a*) — QA(S, a))
define b* = argmaz,Q5 (s, a)
QB(s, a) < QB(S, a) + a(r + vQA(s’, b*) — QB(S, a))

(4-10)

It was proved that Double-QN significantly reduced overestimation of the Q-value, however
it introduced an underestimation of the Q-value. It is proven empirically that this under-
estimation is preferable to overestimation, but still unwanted. To solve either the over- or
underestimation of the Q-value, Weighted Double Q-learning (WDQ) by Zhang et al. [27] was
introduced. WDQ balances normal Q-learning, which leads to overestimation, with Double-
QN, which leads to underestimation. This is done by introducing a dynamic heuristic value
[depending on a set constant ¢ that determines this balancing. This heuristic value is based
around the Kullback-Leibler divergence, which gives a notion of difference between two ran-
dom distributions. In this case, the two sets of data used for the updating of the Double-QN.
As seen in equation 4-10, depending on the Q-value used to determine the best action, a*,
the other Q-value is used to update the Q-value. When the same Q-value that is used to
determine the best action is used to update its Q-value, the equation reduces to ordinary
Q-learning. This is what WDQ balances, and can be seen in equation 4-11.

define a* = argmaz,Q” (s, a)
QMVPR(s,a) = Q% (s, ") + (1 - B)Q" (s,a)
define b* = argmaz,QP (s, a)

QP WPR(s,a) = BQP(s,b%) + (1 — B)Q"(s,b")

(4-11)

As can be seen in equation 4-11, the equation reduces to ordinary Q-learning when 3 is 1.
So the first term is the term that induces the overestimation. When £ is 0, the equation
used ordinary Double Q-learning, which tends to underestimate.

However, all of the above is still considering the case of tabular Q-values, and a leap to the
deep learning domain has to be made. This is done in the same fashion as with DQN’s, which
can be seen in section 2-1-3. Zheng et al. extended WDQ to the deep learning domain, as
well as introducing auxiliary mechanisms to stabilize the multi agent setting for the MARL
problem. One of these auxiliary mechanism is a Lenient Reward Network, based on Lenient
Multi-Agent Deep Reinforcement Learning [26].

Rewards tend to have a stochastic nature due to the non-stationarity of the environment.
Zheng et al. used a neural network to approximate the reward function, R(s, a). This function
approximation averages the reward for each state-action pair, and is trained by using the
stored transitions in the replay memory. However, due to the mentioned above multi-agent

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-1 The Multi-agent problem 73

interference on the reward additional enhancements are needed to the reward signal, which
resulted in the aforementioned Lenient Reward Network. The update rule for this network is
as follows:

Ri(st,at) +ad ifd > 0o0rx > I(s¢,ay).

B (s a0) = {Rt(st, a) otherwise

Ry(st,at) is the reward approximation of the state-action pair, § = 7,"“ — Ry(sy, a¢) is the error
between the approximation and the target reward, 7;"*. The target reward is the average of
all immediate rewards of that state-action pair stored in the transition memory. [(s;, a;) is the
leniency that is associated with the state-action pair. Leniency ensures that in initial stages
of the training, the agent remains optimistic, ignoring negative reward updates. Palmer et al.
[26] introduced the general concept of leniency, however applied to Q-value updates in contrast
to the lenient reward network, but the driving principles are the same. In short, lenient agents
map Q-values to a decaying temperature value that determines the leniency towards negative
Q-value updates. This results in optimistic Q-value update behaviour, favouring positive over
negative updates. Empirically it is proven that this stimulates cooperation between agents in
a cooperative MARL setting. Another problem in MARL is called relative overgeneralization.
This occurs when agents gravitate towards working, but sub-optimal joint policies. This is
due to the fact that the mutual influence of multiple agents on the environment creates noise
for the policy updates. Leniency has shown that it increases likelihood of convergence towards
a global optimal solution in contrast to sub-optimal solutions, due to the inherent property of
leniency promoting exploration of unvisited and positive effect states. The leniency towards
more frequently visited state-action pairs decreases over time, while less visited state-action
pairs retain their optimism, encouraging exploration. To put the concept of temperature
and leniency into context, equation 4-12 is given, where T(s¢, a¢) is the current temperature,
K the leniency moderation factor determining the rate of decay and I(s, a;) is the leniency
value. Note that each state-action pairs is initialized with a maximum temperature, and is
decayed each time this state-action pair is visited.

l(sg,a;) =1— e~ IxTi(se.at) (4-12)

After an update, the temperature is adjusted by a simple rule using a discount factor [;
Ti1(st, ar) = BTi(st, ar).

Leniency is then subsequently applied to the Q-value update as follows:

Q(st,at) +ad ifd > 0o0rx > (s, at).

Q(s¢,at) = {Q(St,at) ifo < O0andx < (s, ar).

where ¢ is the TD-error, § = Y; — Q(s¢,a¢;0;) and ~ U(0,1) is a random variable used to
ensure that an negative update is done with a probability of 1 — [(s¢, a).

The above considers Q-values that are stored in a tabular fashion. Like all the other methods,
this is expanded towards the deep learning domain. However, when the concept is used for
a continuous state space, a function approximation for the temperature value is also needed
to generalize across similar states. Palmer et al. solved this by training an auto encoder to

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

74 How to apply Reinforcement Learning

cluster states, which in turn allows for applying a temperature value. An auto-encoder tries
to replicate its input, while creating a ”bottleneck” in the network structure. This basically
implies that the state representation is compressed, resulting in a so called ”hash-key”. This
hash-key is then a compressed representation of the state.

Applying leniency however is not straight forward, and a few algorithmic auxiliary methods
have to be introduced. A problem with the temperature decay, is that when a similar initial
state are used, states in close proximity of the initial state decay rapidly due to often visitation
of these states. This is where Palmer et al. introduced Average Temperature Folding (ATF).
The principle behind ATF is that the temperature of the current state is adjusted by balancing
the change in temperature using the specific state-action decay and the average temperature
of the next state. This balancing is done by another hyper-parameter v, as seen in equation
4-13. Ty(s41) is the average temperature of the state transition.

Tt+1 = ﬁ(]. — 'U)ﬂ(st, at) + UTt(St—i-l) (4—13)

It is shown however, that in certain cases where rewards are sparse, that ATF is not sufficient
in solving the rapid decay problem. So on top of ATF, a Retroactive Temperature Decay
Schedule is introduced. In short, this is a in-episode schedule that decreases decay in earlier
phases of the episode in contrast to later phases where decay is higher. This balances decay
even more for more visited initial states, balancing decay across the whole episode. This
is done by making a schedule for the temperature discount faction 5. The scheduled (is
determined by using an exponential function that can be adjusted using a certain decay
rate,d’, and exponent p, as seen in equation 4-14. n is the step limit, where maxn is the step
limit, i.e. terminal state.

By = ePd" (4-14)

Finally, an modification is made to the standard e-greedy exploration strategy. Intuitively,
the temperature that is used throughout the Lenient-DQN is also an indication of visitation
of certain state-action pairs, which in turn when temperature is low gives a certain degree of
certainty to the state-action values. So, in contrast to the standard e-greedy, T'(s;)-Greedy is
used. T'(s;) is the average temperature of all state-action values. ¢ is used to control the pace
in which agents transition from explorers to exploiters. So, in short, the agent selects action

a = argmaz,Q(s,a) with probability 1—T;(s;)¢ and a random action with probability T;(s;)¢.

An overview of the Lenient-DQN architecture can be seen in figure 4-1

Palmer et al. showed that the Lenient-DQN outperformed other similar technique networks
on a complex fully cooperative task. They also showed that the auto encoder worked for
generalization of the state-space.

After a rather long detour, all elements are finally in place to finalize the concept of Weighted
Double Deep Q-networks. WDDQN combines the use of leniency with that of double Q-
learning and normal Q-learning, extended into the deep learning domain. WDDQN solves
the under- and overestimation problem of Q-learning, while using leniency to solve certain
MARL induced problems. Leniency also comes with the added benefit of increasing the

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-1 The Multi-agent problem 75

Environment] ‘ Lenient DQN Loss %—
A 4
‘.?ursgiems 0/5.0:0 maxQls',a";@’

Loss S

Target Q-Network

A

g Replay Memory

(s,a, rs")

Figure 4-1: An overview of the full Lenient-DQN architecture including all auxiliary
mechanics.[26]

exploratory behaviour, because the temperature can be seen as an indication for the frequency
of visitation. Zheng et al. showed that WDDQN outperformed all other "lesser” variants that
are mentioned above, on a standard test environment.

4-1-2 Policy gradient methods and other approaches

In this section a mix of various different approaches to solving the MARL problem are dis-
cussed. The previous section focused mainly on how to use value functions in a MARL envi-
ronment, while this section will take a look into direct parameterization of the policy space.
However, next to the use of policy gradients, there are many different ways to work around
the MARL issues. For example, centralized learning and decentralized execution, which learns
a global policy for all agents, but executes action based on local observation. Or methods
that handle the MARL issues by using different forms of machine learning techniques, such as
Recurrent Neural Networks or Communication Neural Networks. The reason for the coarse di-
vision between on on hand value based and the other policy gradients and other techniques is
that value based approaches are applicable to other methods that are policy based, through
the use of actor-critic methods. This section will give general insight in various potential
useful techniques that approach the MARL problem from multiple angles.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

76 How to apply Reinforcement Learning

Coarse comparison of various policy based approaches to MARL

Gupta et al. [28] compared three different RL training schemes for a MARL domain. First,
a centralized learning approach was considered. A centralized approach means that the
observations and actions are all collected in a single joint observation and joint action
respectively. The downside to this approach is that the observation and action spaces grow
exponentially with the increase of the amount of agents. Gupta et al. addressed this by
factoring the joint action space to collection of individual actions of each agent. This allows
the mapping from observations to action be executed by a number of sub-policies that each
map the joint observation space to a single agents action. The disadvantage is that the
observation space is still growing exponentially.

Another training scheme is that of concurrent learning. In concurrent learning each agent
learns its own individual policy based on its own local observations. This is advantageous
when there are different types of agents for different tasks. However, the downside is is
that the sample efficiency is drastically reduced because experience is not shared among
agents. Also, the change in policy for each agent causes non-stationarity. Concurrent training
could be augmented with a form of communication, which works around this non-stationarity.

Finally parameter sharing is considered. When all agents are homogeneous the policy can
be shared between those agents. The policy gets trained by the collective experience of
all agents. Each agent can still exhibit different behaviour, due to the fact that the local
observations for each agent are used, as well as their index, during control.

These training schemes where applied by using three different RL algorithms, namely Deep
Deterministic Policy Gradient (DDPG), Deep Q-Networks (DQN) and Policy Sharing Trust
Region Policy Optimization (PS-TRPO). These where then applied to a few scenarios, with
both discrete and continious state and action space representations. Also on the side of
function approximation, three different neural network architectures where compared. The
standard feed-forward MLP, a recurrent neural network using GRU units and a convolutional
neural network (CNN).

The first experiment was one in a discrete setting that had multiple agents catch a ”thief”.
This experiment requires coordination between agents due to the fact that the ”thief” has
to boxed in. The optimization method used was PS-TRPO, while a comparison was made
between the different network architectures and training schemes. Gupta et al. showed that
the decentralized and concurrent approach outperformed the centralized approach, while
using a MLP as an function approximator. Combining the GRU network with decentralized
approach resulted in the highest return. The reason why a recurrent net such as GRU
outperforms a feed-forward network such as a MLP is that the observations are correlated
in time. Having an function approximator that can capture these correlations improves the
performance. This notion was found among all other experiments where this correlation is
present. An comparison was also made between PS-DQN/DDPG an PS-TRPO, where PS-
TRPO outperformed the other methods on all experiments. The next experiment was in the
continious state domain. Again the centralized method performed significantly worse than

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-1 The Multi-agent problem 77

the decentralized and concurrent approaches. MLP performed better than the GRU network,
which was credited to the fact that a GRU network is difficult to train. Still PS-TRPO
outperformed the other methods. The final experiment on another domain showed similar
results. Another results was that for all experiments, local rewards showed better perfor-
mance than global rewards. Finally it was shown that when the number of agents increased,
the performance degraded significantly. However, Gupta et al. used a curriculum for training
which showed significant performance improvement. The curriculum was setup in a way that
the environment that was trained on could include any number of agents. First, a distribution
was sampled that determined the amount of agents. Then a environment was generated
containing this amount of agents and trained on for enough iterations to reach a certain return
threshold. This was done continuously till a certain treshold was reached for all environments.

Counterfactual Multi-Agent Policy Gradients

Counterfactual Multi-Agent Policy Gradients by Foerster et al. [29] is an approach to multi
agent learning that addresses several MARL problems. These problems are based on an
actor-critic implementation of independent Q-learning, called Independent actor-critic (IAC).
To recap, independent Q-learning is a multi agent implementation of Q-learning in which
each agent learns its own value function and policy. Extend this to independent actor-critic
the difference is also learning an individual parameterized policy. Every agent learns on its
own local observations, which results in the first problem with TAC. There is no centralized
learning, which makes cooperation difficult. Secondly, there is the problem of multi-agent
credit assignment discussed in section 4-4.

TAC fails to exploit the fact that learning is centralised. COMA overcomes this limitation.
Firstly, COMA instead conditions its critic on the global state s opposed to that of only
local agent observations, u®. Assume the case that based on this critic the policy gradient is
calculated by calculating the TD error of this critic, as seen in equation 4-15.

g =V, logm(u|m)(r + vV (st11) — V(st))g = Vg, log m(u|") A(st, ar) (4-15)

However, this approach does not address the multi-agent credit assignment problem. To solve
this, COMA introduces a counterfactual baseline which is inspired by difference rewards [30].
As seen in section 2-2, using a baseline for policy gradient methods reduces its variance. A
widely used method for a baseline is that of the advantage function. In difference rewards
the agents learns from a shaped reward given by equation 4-16, where u is the joint action
and ¢, a default action.

D =r(s,u) —r(s,(u"%¢cq)) (4-16)

The idea behind difference rewards is to figure out an agents individual contribution towards
a certain global reward. The difference is taken between the global reward, and the reward
that would be received when that particular agent would have no influence on the reward.
This is what 7(s, (u™%,¢,) depictates, the action of an agent is replaced by a default action
to be able to measure this difference. However, to determine the difference reward for each
agent a full simulation cycle has to be executed per agent to determine the impact of each
individual agents default action. Also deciding on what a default action is can be cumbersome.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

78 How to apply Reinforcement Learning

Foerster et al. solved this by using approximation techniques that allow the determination
of the difference reward in a single pass for each agent. This is done by cleverly utilizing the
underlying neural network for the critic.

For each agent an advantage function is computed, A%(s,u), which calculates the advantage
value that compares the Q-value for the current action u, to a counterfactual baseline that
marginalises u® out. This can be seen in equation 4-17.

A%(s,u) = Z (w7 Q(s, (™, u'®)) (4-17)

Note that 7 are the local observations of the agent a. This is not an exact copy of the process
described earlier, where the exact reward contribution is determined by using a default action.
In this case the default action is the average action value of all possible actions by agent a,
while keeping the other agents actions, u™¢, fixed. In this case, the last part of equation 4-17
is considered the baseline. Figure 4-2 shows an overview of the architectural setup of COMA.

1 2 a a a
A% Critic A% 7 =x(h?, €) A
frr(h?, &) a(h?, &)
(e) (v, 7")| cOMA

Q=1 LQue=1u) w0

1 1 2
h us, u®,

C Actor 1 Actor 2 D
(h?.)— GRU —>(ha)

Environment a a -a a
(o s u t_1) (u 0 Sp07p “t-1)

(a) (b) (c)

Figure 4-2: In (a), information flow between the decentralised actors, the environment and the
centralised critic in COMA. In (b) and (c), architectures of the actor and critic. [19]

As can be seen in figure 4-2 the critic network architecture is set up in a way that as input,
it receives all actions of the other agents and as output the Q-value for each available action
for a single agent. This allows for calculation of the counterfactual baseline in a single pass,
reducing computational overhead. Note that only during learning this exchange of information
is done between the critic and actors, when executing the policies no communication is done.
Foerster et al. showed that COMA improved learning and maximum reward compared to
simpler but widely used methods, such as IQL, on a difficult test bed. COMA is particularly
interesting in that it shows a potential way of dealing with the credit assignment problem.

Multi-Agent Actor-Critic for Mixed Cooperative-competitive Environments

Multi-Agent Actor-Critic for Mized Cooperative-Competitive Environments by Lowe et al.
[31] is a commonly mentioned paper that extends the method of DDPG, Deep Determinisitic
Policy Gradients, to that of the multi-agent domain. In contrast to the COMA method,
MADDPG learns a separate critic for each agent, however learning is centralized. MADDPG
build on the single agent algorithm DDPG, which is a policy gradient method that uses deter-
ministic policies in contrast to stochastic policies. The centralized critic is defined as follows;

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-2 How to define the state-space 79

QT (x,a1,...,an), where x is the global state information and a, the actions of each other
agent. Note, that by incorporating the actions of each agent into the critic, the environment
is made (sort of) stationary from the point of view of the critic for each agent. DDGP uses
an experience replay buffer which is used to sample trajectories. Note that for updating both
the critic and actor, a target network is used. This is generally an older state of the neural
network, to ease convergence. Figure 4-3 gives an overview of MADDPG.

execution

-

Figure 4-3: Overview of MADDPG, decentralized actor centralized critic approach. [31]

A danger, especially with competitive environments, is that of over fitting with respect
to another agents policy. The policy of an agent that is overfitting on the behaviour of
another agent can suddenly collapse when the other agent changes policy drastically. Lowe
et al. tackled this by learning an ensemble of k£ multiple sub-policies, where each policy is
randomly selected for each agent to execute, and subsequently updated. This increases the
computational overhead significantly, however spreads out learning more gradually by using
these sub policies. Each policy has its own replay buffer.

Lowe et al. demonstrated that MADDPG showed significant performance increase compared
to single agent methods applied to various MARL problems. However, no comparison was
made between different MARL approaches.

4-2 How to define the state-space

In this section the representation of the state space is discussed. This can be split up roughly
in two parts. A description is needed of what state information is required to define the
Markov state. Secondly, a more technical description of how to present state information to
the deep learning algorithm. Note that this section will be used to try to paint a picture of
what thought is required to tackle this problem, in contrast to giving a full solution. The
solution to the problem is highly dependant on the final choice of algorithm and general
approach.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

80 How to apply Reinforcement Learning

4-2-1 The Markov state

As a baseline for the required state information a look is given to current conflict detection
and resolution methods, such as modified voltage potential [32] or 4DTBO [33]. While both
methods differ in approach, they use the same set of state information or a close variation.
Note however that depending on the reinforcement learning algorithm applied, the represen-
tation of the state information also varies. When using an centralized approach, i.e. an all
seeing eye, the state information is different than that from a decentralized local perspective.
Nonetheless enough information has to be provided to paint a clear picture for all variants in
algorithm.

First off, the velocity vector is required. This consists of the heading and ground speed.
However, due to the fact that action space will consist of heading changes only, and velocity
will stay the same across all agents, velocity can be omitted. Secondly the location of each
agent has to be known. There are two options; absolute cartesian coordinates and heading, or
relative distance and heading. A cartesian system makes more sense in a centralized approach,
as this will provide all information including relative distances inherently. The latter makes
more sense in a decentralized approach. Knowing the distance and heading information of
neighbouring aircraft is a more concise representation compared to a set of grid coordinates
and heading. This is also seen in the conflict detection and resolution method of modified
voltage potential and 4DTBO. Basically all information that is required are velocity and
heading information, as well as time. Time is used to make predictions about the aircraft’s
future position to determine whether or whether not the plane is on a course that results
in a conflict. The addition of this closest point of approach could be added to the state
information of each agent. Time is somewhat incorporated in the algorithm by the step size
of the simulator, and having an absolute time will not have any influence due to the calculation
being in a relative time frame. However, depending on the goal formulation, absolute time
can be a needed feature. Such as being done in 4DTBO where a time of arrival is added to
the goal in combination with the location of the to be landed airport. Another important
piece of information is the distance to the goal, i.e. airport. This can be described in the
same fashion as stated above, depending on the scenario. Note that in the case of relative
distances and heading the agent does not need any information about its own location, as
this is determined relative to all other instances, such as other agents and goal.

4-2-2 How to present the state information

All RL algorithms use neural networks as the technique for function approximation. There is
a lot variability in how the neural networks are setup, varying from a multilayered perceptron
to recurrent neural networks. To start there are a few subjects to take into account when
presenting the state information. First, there is a continuity in time. Current states are
highly correlated with past states. This information of correlation is important to provide
to the algorithm for stabilization and generalization when training the neural networks, as
well as insight in the influence of the control action on the dynamics of the system. [28, 29]
However, this information can also lead to stability issues when there is to much correlation,
as seen with for example Deep Q-networks [5]. There are multiple ways of incorporating
this time continuity. Providing the state information as a set of trajectories gives insight
in the continuity of states, while an MLP would be able to capture this spatial relation.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-3 How to define the action space 81

When representing the state at each time point individually, the network is not trained on
this continuity. This can be resolved by using a form recurrent neural networks. These
networks ”remember” past states for a set amount of time allowing the network to pick up
on these continuities. A commonly used method in reinforcement learning is that when a
display output is available, that instead of creating feature vectors of state information a
convolutional neural network is used directly on the display output. Using convolutional
neural networks to interpret the state information the network can adapt itself to extract
as much information as possible, in contrast to directly providing the state information as a
feature vector on which information is extracted.

Secondly, a common problem with deep learning is that of regularization, as discussed in sec-
tion 2-4. There are various methods that focus on the network itself to provide regularization,
but regularization is also increased by how information is fed to the network. An method to
improve regularization would be to present the algorithm with a dynamic scenario, varying
for example the starting position and the goal state. As seen in section 4-1-2, varying the
number of agents in a form of an curriculum also assists in the convergence and regularization.
Varying starting states also ties into the exploration dilemma found often in reinforcement
learning problems.

The choice of neural network and way of presenting the state information is highly dependant
on the final selection of approach and algorithm. Gupta et al. [28] did a short survey between
the use of RNN and MLP’s. They concluded that in general the RNN showed better result,
due to the aforementioned ability to capture spatial relations.

4-3 How to define the action space

In this section the action space definition is given, both from a representational and imple-
mentation perspective. First the representational part will be discussed, which will cover how
the action space should be represented. In the implementation part the perspective will be
more from a reinforcement learning point of view.

4-3-1 Practical definition of the action space

As discussed in section 4-2 the actions of each agent are limited to heading changes only,
in comparison to also using velocity and height changes. However, on the matter of how
an heading change should be performed there a few options are available. First and the
most intuitive method is allowing each agent to directly select its new absolute heading as an
action. The action space subset would then consists of a € A where A = [0,359]. However,
the problem with this definition is the presence of an continuity at 0 and 360 degrees, which
could be difficult for a RL algorithm to be trained on. Another way of describing the action
space would be to use a relative heading change. Instead of absolute changes, the actions
would act more as a ”steering wheel” with relative control commands to its own heading. The
action space is then defined as; a € A where A = [—90,90]. The strength of relative action
commands is discussed in Learning Dexterous In-Hand Manipulation [34], where relative
action command where used for the continuous control task of a robot arm. Relative control
reduces the action space while also denying the circular behaviour in the action space. There

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

82 How to apply Reinforcement Learning

are more exotic methods of action space implementation, such as using changable waypoint
locations as actions or presenting a waypoint location inside a certain precalculated solution
space as an action. However, these options would be considered when the more ”free” choices
do not work satisfactory.

4-3-2 How to implement the action space

The action space, or better said the policy, can take on several forms. First off, the decision
between a continuous or discrete action space representation has to be chosen. The difference
between them is that a discrete representation has a fixed number of discrete actions in
contrast to a continuous action space, which samples from a distribution. A continuous
action space representation is done by learning two defining distribution variables, p and o,
the mean and variance respectively. The action is then sampled from a normal distribution
constructed with these two parameters. This also ties in to either a stochastic or deterministic
policy. A stochastic policy returns a chance of selecting a certain action, such as what is done
by a normal distribution. A deterministic policy maps each state to a specific action, without
any probabilistic element. A stochastic policy would turn into a deterministic policy when
its variance, o, is reduced to 0.

Depending on the definition of the Markov problem, such as a centralized or decentralized
approach, the action space is represented differently. For example, when using a centralized
approach a single policy will represent all actions for each agent in a single pass. There will be
the same amount of end nodes for each agent, returning an action for each. However, when
a more decentralized approach is done a single output will be sufficient, however multiple
passes over the policy are required to determine actions for each agent individually.

Difficulties with how to represent the action space lies in what is needed from the environment
as well as what is computationally feasible. When discretizizing the current ATC environment,
a bin size has to be selected. This can be done based on the required accuracy from the
environment. Another factor to take into account is to avoid the curse of dimensionality.
An increase in amount of different action to take when discretizing increases the amount of
information needed about each action, especially when in multi-agent environments.

Tang et al. [35] investigated the use of discretization of an continuous action space. An
advantage of this discretization is that a discrete distribution can be more expressive. The
reason is that probabilities of action can be divided over the whole action space, in contrast
to an Gaussian distribution where there is a single ”hill” that covers a certain part of the
action space. This distinction between distribution types is called multi-modal and unimodal
respectively. The downside of discretization is that when having a to coarse discretization
the policy does not have enough capacity to achieve good performance. Another issue with
discretization of an continuous action space is the loss of information that was given by the
ordering of the action space. However, based on the stick-breaking parameterization [36],
Tang et al. proposed to incorporate this ordering by modifying the output of the policy. The
idea behind this principle is to slightly distribute the probability of a high probability action
to neighboring discrete action bins. Tang et al. showed that discretization of the action
space while keeping the ordering, improved learning on most multi-action continuous control
problems. For the ATC problem however there is a relatively simple continuous action space

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-4 How to define the reward structure 83

available. Nevertheless, it provides an argument for discretization of the action space and a
solution for the unimodal nature of Gaussian policies.

Another method of creating a more expressive policy space while remaining in the continu-
ous policy space is the use of normalizing flow (NF), also done by Tang et al. [37]. They
applied the principle of normalizing flows as a policy to TRPO to enable multi-modal poli-
cies as well as better exploratory behaviour. First off, the concept of normalizing flows is
introduced. The idea behind normalizing flows is to create a sequence of invertible non-
linear transformations,gy, that transform a source noise, €, to a certain output distribution,
x. Equation 4-18 shows this process.

T = G0x ©905_1 © - © 96, © 9o, (6) (4'18)

As the technique behind this is quite extensive, the general concept is presented. The se-
quenced transformations transform a source to any probability distribution as output. This
is done by the fact that these transformation layers are trainable, such as a neural network.
This allows for highly expressive probability density functions, which would function as a
policy representation. An overview for this process can be seen in figure 4-4

f1(zo) fi(zi—l) fi+1(zi)
U2 N R N 2 L

e N e Y

’ AY 7’ AY 7/ A
7 AY ’ AY 1 \
! 1 1 1 1 \
1 [l I 1 I 1
\ 1 v 1 \ 1
\ 7 \ I \ I

\ ’ \ ’ \
N // N /’ N ,’
S - S - S -

Zg ~ po(zo) Z; ~ pi(zi) ZKg ~ PK(ZK)

Figure 4-4: The process of Normalizing Flows [38]

Tang et al. investigated the performance of normalizing flow when combining it with TRPO.
As TRPO updates restrict the update step for the policy, having a more expressive policy
space the convergence rate is improved. Tang et al. examined the difference between the
expressiveness of a normal Gaussian policy versus a NF policy. They showed that Gaussian
policy distributions tend to get stuck on local optima, due to the step size restriction of TRPO
in combination with the fact that Gaussians are less expressive. NF increased expressiveness,
which in turn allowed for better exploratory behaviour due to the fact that samples with a
much higher variance could be achieved. They showed that on nearly all continuous control
benchmarks performance was improved, especially on problems that are ambiguous on its
control actions. This means action spaces where certain actions are not implicitly tied to a
certain state, but for example both left and right are actions of equal probability. A game
such as rock, paper and scissors would be a good example.

4-4 How to define the reward structure

Differentiating various reward contributions to an agent is one of the hurdles of reinforcement
learning. In one case, the reward can be sparse and delayed, increasing the difficulty for the

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

84 How to apply Reinforcement Learning

RL agent to determine what actions let to this reward, if getting any reward at all. However,
using sparse reward does put emphasis on ”exotic” behaviour as the agent is completely left
to his own devices. An example of a sparse reward would be a reward of 0 at all times, while
giving a reward of 1 at the goal state.

The reward should be tailored towards the envisioned goal. For example, when it is paramount
for the system to achieve globally optimal solution, each agent should receive the globally
achieved amount of reward. In contrast to this, each agent could also receive locally obtained
rewards. However, this tends to gravitate towards selfish behaviour. The global reward could
be an accumulation of all the locally achieved rewards. This would also assist in determining
what agent contributed what reward, due to the fact that the global reward is build up of these
individual contributions. The use of creating global rewards solely from local observations
has to be investigated empirically.

Another issue with rewards, especially in the multi agent case, is that of credit assignment.
Credit assignment embodies the difficulty to differentiate what agent contributed to the global
reward. On this subject was touched in section 4-1-2, by COMA, which used difference
rewards. Difference rewards are a method of determining how much a single agent contributed
towards the total receive reward each step, and uses that to correctly reinforce the agents
behaviour. Equation 4-19 gives the definition of difference rewards.

Di(z) = G(2) — G(2—) (4-19)

D;(z) is the difference reward of agent ¢ depending on state z, which can be either the state
or state-action pair. G(z) depicts the global reward. D;(z) can either be directly calculated
or estimated using various methods. For example, when using cumulative local rewards as a
global reward.

Another commonly method that is used to guide the agent to optimal behaviour is the use of
reward shaping. The idea behind reward shaping is to provide a supplementary reward signal
that simplifies learning. This idea is incorporated in Potential-based reward shaping (PBRS),
which is defined in equation 4-20.

PBRS =1 +~®(s'") — ®(s) (4-20)

r is the original reward received, v the same discount factor while ® is a potential function
that is defined over a source s and a destination state s’.

Tumer et al. [30] investigated the use of both reward shaping and difference rewards on
multi-agent systems. Reward shaping is a delicate matter, and cannot naively be applied.
Tumer et al. proved that when correctly using PBRS the underlying optimal solution to the
MDP does not change. They united both techniques into a single framework, as shown in
equation 4-21.

T'shaped = 7’(8, a, S/) + F(Sa S/>
r(s,a,s) = G(s,a,s) (4-21)
F(s, ') = 7(s') — B(s)

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

4-4 How to define the reward structure 85

Where G(s,a, s") is the global received reward, and F'(s, s’) the reward shaping function. The
used values in equation 4-21 are typically used, however this can be anything. For example,
the received rewards r(s,a, s’) could also be a locally received reward, L;(s,a, s"). Note that
s and s are in terms of state transitions, meaning that F(s,s’) is the discounted difference
in shaped reward due to the transition.

Based on this framework Difference Rewards incorporating Potential-Based Reward Shaping
(DRiP) is introduced, as seen in equation 4-22.

Tshaped = T(Sv a, 5/) + F(Sv 5/)
r(s,a,8") = G(s,a,s) (4-22)
F(s,s") = =G(s_;) + 72(s') — 2(s)

Where —G(s";) is the difference reward, and ®(s) a potential function that incorporates
knowledge. The potential function can be used to incorporate environmental knowledge.
Tumer et al. showed that this drastically increased the learning in a discrete MARL environ-
ment. The extension to a continuous domain would be possible, as well as using the framework
to include various other reward signals. The biggest take-away of this theory is that if reward
shaping is desired, it should be a relative value, instead of an continuous absolute addition.

As seen in section 4-1-2, multiple methods where shown that also manipulate the reward
structure to its benefits.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

86 How to apply Reinforcement Learning

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 5

Simulated Air Traffic Control setting

In this section, all three sub-questions are answered jointly; How to simulate the Air Traffic
Control setting?, How to setup the experiment? and How to maximize data throughput?.
Albeit each sub-question having its own significance and therefore reason for mention, they
are closely related to each other. Choices made for one sub-question, directly weight on the
choices for the other.

As discussed in the example at the beginning of the document, the actual experiment setup
will be quite similar. First off, BlueSky is used as an environment for simulation. BlueSky
offers easy interaction with each agent, as well as all the necessary data streams available
for the reinforcement learning. BlueSky also offers an interface, to visualize progress that is
made during training[3|. Reinforcement Learning is very sensitive to learning parameters as
well as problem definitions. Being able to visualize what the agent is doing, is a good basis
for a trail-and error approach in solving the problem.

There are multiple different machine learning libraries available that are performance opti-
mized and ease the strain of implementing the various different algorithms. For reinforcement
learning various platforms are available, such as OpenAl baselines, RLLIB and keras-RL.
For this experiment, RLLIb is used. RLLib offers good performance as well as one of the few
libraries that is build around multi-agent reinforcement learning problems. Deep learning
made serious leaps through the past few years, both in facilitating ease of implementation as
well as computational efficiency. While reinforcement learning hinges on these improvements,
there is a general lack in systems that specifically target reinforcement learning. RLLib
fills this gap by creating a from the ground up reinforcement learning implementation
that enables centralized program control and parallelism encapsulation[39]. RLIlib achieves
this through the use of Ray, general-purpose cluster-computing framework that enables
simulation, training, and serving for RL applications[40]. Ray offers the ability to parallelise
various calculations, as well as asynchronous updates invoking both the CPU and GPU.

The importance of computing performance cannot be understated. Success stories
about reinforcement learning applications such as Alpha Zero and OpenAl five required lots

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

88 Simulated Air Traffic Control setting

of computational power. It took Alpha Zero, a single agent discrete state game, 13 days of
training for the game Go while utilizing 5000 first-generation TPU’s and 16 second generation
TPU’s [1]. OpenAl five, a multi-agent reinforcement learning problem with continuous state
and action space, required 128000 CPU cores and 256 P100 GPU’s for training, generating
around 180 years of experience each day|[2]. In contrast to the well known Moore’s law, which
states that the transistor density of electronic hardware has a 18 month doubling period,
a 3.5 month doubling time in required computing power for machine learning is observed
[41]. This can be seen in figure 5-1. Luckily, this research problem has a considerably lower
requirement when looking at computing requirements. However it is still relevant due to the
fact that huge amounts of computing power are not available.

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

10,000
e AlphaGo Zero
1,000
e AlphaZero
100 e Neural Machine Translation
£s) o Neural Architecture Search
C
< 10 . eTI7 Dota vl
'é e Xception
=
% 1
© VGG e DeepSpeech2
@ 1 ®Seq2Seq e ResNets
5
fram 01 e GoogleNet
© .
5 e AlexNet ® Visualizing and Understanding Conv Nets
a e Dropout
.001
.0001
eDQN
.00001
2013 2014 2015 2016 2017 2018 2019
Year

Figure 5-1: Trend seen in the increase of computational requirements for state of the art machine
learning [41]

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 6

Maximizing safety and efficiency

In this relatively short chapter a few key points are discussed regarding the maximization
of safety and efficiency. First, an method of measuring the overall practical performance of
the algorithm is established. This is done by comparison of the algorithm versus a baseline
solution. Secondly the performance of the algorithm can be investigated further with more
reinforcement learning specific method. Finally, a short explanation is given about safety.

The goal, as described in the introduction, consists of creating an algorithm that is able to
guide aircraft efficiently to their destinations, while providing safe merging and spacing. A well
performing conflict resolution method currently available is called Modified Voltage Potential
(MVP)[42]. The governing principles of MVP are the repulsive properties of similarly charged
particles. Simulating aircraft as these similar charge particles results in a ”in-between” push
between aircraft, due to repelling forces. This repelling force is centered around the closest
points of approach, ensuring that a loss of separation is avoided. This push then translates
to certain required displacement, which is used as a control input for both aircraft that are
in conflict. Figure 6-1 gives an overview of this process.

The MVP can be used as a baseline solution in conflict resolution, measuring efficiency as the
amount of losses of separation and total travel time during conflict resolution. A few other
measures of efficiency can also be established. The amount of heading changes for the aircraft
trajectory from begin point to destination are going to be compared. Also total trajectory
time is a measure of efficient flight.

Collecting these dependent variables and comparing the MVP and autopilot performance as
baseline versus the algorithm’s performance can be used as validation and efficiency compar-
ison.

An obvious reinforcement learning specific performance measure would be the total accumu-
lated reward during a single episode. This information can be collected throughout learning,
to give an indication if the algorithm is converging. Most reinforcement learning papers also
use this as their foremost benchmarking tool. Another method of determining performance
would be to check the weight distibution of the underlying neural network. This could aid in
determining if there is any overfitting present.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

920 Maximizing safety and efficiency

® ®
/

T /
D @

(a) (b) (¢) Conflict
Conflict Charged resolution
detection particle

behavior

Figure 6-1: Workings of the Modified Voltage Potential. Source:[42]

As for safety, this can only be steered by using the proper reinforcement learning tools.
Ensuring safety is mostly done through the use of a proper reward structure. One that
penalizes conflicts, but awards efficiency. If safety is lacking, either the rewards have to be
adjusted or there is not enough state information present to provide solutions.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 7

Experimental setup

In this chapter the experimental setup is presented. The experimental setup will go into more
detail of the actual implementation in Python, as well as expand on the requirements of the
setup.

This section will expand on the practical implementation, which can be split up in roughly
three parts; the BlueSky side, RLIlib side and Tune. An overview can be found in figure 7-1.
In this section both sides of the experiment will be expanded upon.

Tune
AL A
I I
BlueSk . RLIlib
Yy Gym Environment

- Learnin:
BlueSky Environments |l o Preproccesor RL Model eep 9
‘ Server as clients M‘ [0bs and rewar: 5.{ (for observations) Filter (RL or MARL) M» ‘_Te:‘;fr:“]w)

Client for visual Acti
inspection ction
P distribution

Action’

Figure 7-1: Overview of data flows for the experimental setup

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

92 Experimental setup

First, the RLIlib side. A few requirements are set which are; computational efficiency and ex-
tensibility. First off, computationally efficiency is achieved by RLIlib in twofold; the highly in-
tegrated use of optimized deep learning libraries, such as Tensorflow, and the high throughput
communication channels with BlueSky. RLIib allows for policy or value function evaluations
to be done by Tensorflow, which is a GPU optimized library as well as allowing for ease of
implementation. RLIlib offers a ”preprocessor” in its pipeline. This can be used to transform
observations and rewards to their required format. The ”filter” section is implemented to
stabilize the information stream in such way that deep learning methods converge with more
ease. This mostly contains normalization filters to prevent exploding gradients withing any
neural network based function approximation.

Extensibility is given in the form of the section ”RL model”, the selected ”deep learning
method” and ”action distribution”. These are all external modifiable section, which allow
for customization of various aspects of the required RL algorithms. For the RL model, this
varies to all the previously mentioned methods. Also either a MARL or normal single agent
solution can be implemented. With MARL, depending on the definitions, multiple policies
can be trained at once. The deep learning methods can be varied to all different available
techniques. The action distribution is a transformation of the model output to actions useable
by the environment, as well as an intermediate step for deep learning methods calculate their
policy losses.

The general idea behind the RLlib implementation is to provide a basis that is easy customiz-
able with various different RL techniques, allowing for ease of experimentation.

On the side of BlueSky, a few different aspects can be differentiated. BlueSky offers the
ability to run a server, in which clients can be connected to. For RLIlib to gather trajectories
and returns, a Gym environment is used as a client. Gym was introduced by OpenAl to
provide a standardized format for RL problem implementations, to allow for ease of use and
extendability to other RL libraries. Gym requires the environment to be able to provide as
output the observations and rewards, while accepting an action as input. The BlueSky client
functionality is converted to be compatible with the gym format, while remaining compatible
with the server/client architecture of BlueSky itself. This allows for proper communication
with on one side RLIlib, and the other the BlueSky server. By using this server/client interface,
visual inspection and manual commands are also allowed by using BlueSky’s own observer
client system. On top of this, the use of an server/client architecture ties in nicely with the
parallelization abilities of RLlib, allowing multiple workers to gather trajectory returns.

As a final addition to the experimental setup, Tune [43] can be used for hyperparameter
determination as well as properly conducting experiments over various configurations. De-
pending on the RL technique used, various hyperparameters have to be set before training.
Hyperparameters are subjective to the actual problem, and can only be determined based on
the problem definition, trail and error and example papers. As an example for hyperparam-
eters, some commonly used are; -, the discount rate and «, the learning rate. Tune assists
in determining the hyperparameters by doing efficient rollouts of the algorithm when varying
these hyperparameters. Another usefull property of Tune is to allow multiple configurations
to be executed sequentially, while collecting pre-set dependent variables. An example of these
measurements are reward per episode, neural network convergence rate, loss at each update
step, weight distribution of the used neural networks etc. This on top of the variables dis-
cussed in section 6 These measures are usefull in determining the stability and performance

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

93

of the to be tested RL algorithms.

A final addition is that of Tensorboard. Tensorboard allows the user to monitor the perfor-
mance of the algorithm while training. This is usefull to monitor progress, as it can take long
periods of time before an RL algorithm obtains convergence.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

94 Experimental setup

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Chapter 8

Wrap-up and Planning

This chapter contains a wrap-up with regards to all the gathered information. This section
will focus mainly on combining all the aforementioned information, and present it with my
opinion on how to proceed. This section also functions as an foundation for the planning,
which can be found at the end.

Throughout the document the problems with reinforcement learning and more specific, multi-
agent reinforcement learning are viewed from different perspectives. While many sources
tackle certain problems from different point of view, there is no unison in what ”the” solution
would be. This section tries to alleviate that issue and present a top down overview of the
different aspects. However, note that not all possibilities to move forward are considered,
but more of a general tendency is presented with which to move forward. Still some coarse
decisions are made to narrow the area of investigation.

Note figure 8-1, which present a break down of different aspects to the problem. Concatenated
arrows represent choices, while spaced out arrows represent a further breakdown. The larger
grey blocks are used as a reference for the text. For colours, red indicates a disregarded
option. Orange is an disregarded option in a certain layer, but the information is still useful
later on. Purple indicates some extra consideration for that respective block.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

Wrap-up and Planning

96

H Disregarded

Reinforcement

[] Addtional information Leaming
Disregarded but still used _
Policy based
(Actor-critic) Value based
Cin-policy Off-policy
Underlying deep What observations to Actor Critic Underlying deep Dealing with the
learning technigue present learning technigue hurdies
A A A A
Local observation |, | . F 3 " | __ 4| Global observation
M ek L Decentralized Centralized Decentralized Centralized > e Trahim
h 4
Action space Policy optimization Rewards

|

l

|

v

v

“W Unimodal

Multi-modal

PPO

TRPO

Difference rewards

Reward shaping

Figure 8-1: Property profile of the diverse library compared to the compound pool.

C-value estimation

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

Dennis van der Hoff

97

1:

Policy gradient methods and value function based methods where extensively discussed. This
coarse division between two categories of methods was based around the fact that all value
methods base their policy directly on the estimated value function, often resulting in a
€ — greedy policy. This in contrast to policy gradient methods, which directly parameter-
ize the policy space and use gradient optimization methods to update this policy. These
gradients are often calculated with respect to a value function, hence the term actor-critic.
Both methods are often extended to the deep learning domain, using some form of gradient
optimization. Value based methods however struggle with complex scenarios where the un-
derlying environment is highly non-stationary. Value based methods also do not leverage the
additional benefits of policy parameterization, as described in section 2-2. Even though value
based functions are more robust when able to determine the optimal value function, in the
case of MARL problems the finding of the optimal value function is unlikely. That is why
actor-critic methods are the preferred route. Actor-critic allows for keeping certain options
open, while also be able to leverage the stability techniques made for value based approaches
as seen in sections 4-1-1.

On-policy and off-policy methods both have their advantages and disadvantages. The main
advantages of off-policy is the better sample efficiency, because the trajectories are stored
and used multiple times to update the algorithm. However, to be able to use off-policy
methods properly extra mechanics have to be in place to correct between the difference in
policies. This difference increases even more with MARL, due to the non-stationarity of
the environment. This renders older trajectories obsolete at a higher pace. This is why an
on-policy method is preferred, it eases implementation as well as there are many hurdles
to overcome while using off-policy methods. However, if computational strain get to high,
off-policy may be required to increase sample efficiency.

2:

Many of the different approaches to the problem considered either a centralized or decentral-
ized approach. Centralized and decentralized imply the use of a critic or actor that has full
observability, or is restricted to only local observations. A widely used scenario within MARL
is the use of centralized learning with decentralized execution. This allows the critic to have
full state observability in training, while actions are sampled from local observations only. An
example of this is COMA, found in section 4-1-2. An example of decentralized learning and
execution would be that of independent Q-learning, found in section 4-1-1. On top of these
principles, the method of function approximation can differ as well. For example, as seen in
section 4-1-2, a single policy can be trained conditioned on each agents local observations.
MADDPG, as seen in section 4-1-2, does this the other way around. It learns a policy for
each agent individually, but shares the parameters of the critic, which turns it towards the
centralized learning with decentralized execution approach.

All these different shapes of the macro level approach to the problem concern themselves
around two points; computational efficiency and application. For the latter, some of the
problems that are being solved with reinforcement learning assume that each agent has limited
observability. As an example, robots with a set of sensors that have a limited field of view.
Luckily this is not the case for the ATC problem, however limiting state information may still
be required to lower the computational load.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

98 Wrap-up and Planning

Regarding computational efficiency, it is generally the case that having full state access for a
MARL scenario will pose high computational requirements, as learning a joint action based on
a joint observations takes into account all available information. While this is by far the most
complete approach, this is generally unfeasible due to the high computational requirements.
On top of this not all information is needed to solve the problem from an outside perspective.
In the case of the ATC problem it makes sense to have a single policy that is conditioned on
local observations by each agent, due to the uniformity of all agent. As an aircraft only has
to solve its conflicts locally, where conflicts far away have little on local states. This would
require a mix of the principles of policy sharing with decentralized execution.

The local observation definition has a practical limitation, as most deep learning techniques
require a set input length. This means that having a dynamic input as local observations is
cumbersome. Dynamic inputs would be the case when for example all aircraft in a certain
radius will be included in the local observation of each agent. The structure behind recurrent
neural networks would allow for dynamic input. The efficiency of this however has to be
tested, however for theoretical purposes this is the ideal situation. Static inputs can be made
by limiting the amount of state information of other agents as local observation by a set
number of maximum agents.

The idea of a centralized critic ties in nicely with the concept of ATC, as well as looking
promising due to various other groups applying this with success. Unfortunately the problem
regarding computational requirements still persist when given complete state information.

3:

Regarding the action space definition, a multimodal representation offers many benefits over
a unimodal representations. Increased tendency for exploration and a more expressive action
space are both preferential elements to have. Due to the interaction between multiple agents,
the chances of a non converging policy are increased. Expressiveness of the action space
assists with the finding of better solutions, as more ground can be covered when selecting
actions. A disadvantage is the feasibility of implementation, however the difficulty of this has
to be determined later during implementation.

Another aspect of the critic is that it should be able to converge to an solution within this
non-stationary environment, as well as deal with the problems described in the ”hurdles
of reinforcement learning” section 2-3. The application of for example a variant of double
Q-learning, as described in section 4-1-1, could aid with the non-stationarity.

In terms of the reward, the credit assignment problem could be alleviated by using difference
rewards, as described in section 4-4. Difference rewards allow the critic to be trained by
reducing the noise of the received rewards by multiple agents. As for reward shaping, this
ties in to the problem of exploration. Reward shaping assists by presenting a constant reward
signal, while not altering the underlying optimal solution.

As for the policy optimization method, there are two widely used techniques available. TRPO
and PPO, explained in section 2-2-2, are both good candidates. However, as PPO is the easier
to implement while also being less stringent on computational requirements makes this the
preferred method.

Finally, the hurdle of exploration could be lightened by various techniques. As said, difference
rewards will help, as well as a more expressive action space. The concept of leniency, as seen
in section 4-1-1, shows promise in mitigating the exploration promise. However, leniency has

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

8-1 Planning 99

not been applied extensively towards continuous space domain problems. The use of random
starting locations and goals for the agents is an easy but effective way of increasing the rate
of exploration, as well as assist in the regularization of the deep learning method.

8-1 Planning

In this section the planning is given, using the wrap-up as foundation. Figure 8-2 gives an
overview of the required steps remaining for the experiment.

Week 51-52 Week 1-2

Setup Single agent centralized model

Improve client/server
Check time step influence
Determine initial hyperparameters

Enable regularization by initial conditions

Week 3-4

Implement centralized critic

Implement centralized actor

Test various policy space representations
Test various state space representations
Investigaie effect of reward shaping

State space deep leaming comparison

Week 5-8

Multi agent centralized model

Cenfralized critic decentralized execution

Test reward shaping under MARL
Test difference rewards
Test MARL state space representation

Implement expressive policy

Implement decentralized actor
Define local observations
Increase number of agents

Investigate dynamic input

Peformance testing and comparison

Figure 8-2: Planning for the experiment

The first box ”setup” concerns itself mostly with the improvement of the server and client
functionality described in chapter 6. A basic implementation is already present, but to lever-
age the full capability of the architecture a few improvements are still needed. Another
important aspect to investigate before beginning with actual testing is the influence of the
simulator timestep on certain aspects of the simulation. The timestep will increase the resolu-
tion of each simulation step, however this can have negative consequences to the convergence
rate of the RL techniques. Also, the timing between the server actions and the output of the
RL algorithm has to be in sync. Hyperparameter determination for the various RL algorithms
has to be investigated to be sure these have no averse effects on the subsequent step. Finally
a system has to be made that allows for dynamic scenarios, to improve regularization. The
second step of the planning, a single agent centralized model is used to determine the effects
of various different approaches and implementations. The underlying idea of first using a
simpler single agent model is that most of these results will be comparable to the results

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

100 Wrap-up and Planning

under an MARL environment, however without the extra stability issues MARL invokes on
the environment. The results of this section will determine with what techniques to move for-
ward. Then, a multi agent scenario is made and compared to the single agent case. If needed,
various extra stability techniques can be implemented. Most notably, an more expressive
policy is likely required. Finally, depending on computational constrains and the previous
results, a centralized critic and decentralized configuration is implemented. As these effects
are difficult to predict, hopefully it will increase capacity for an richer MARL environment,
as well as allow for better convergence.

Note that for each stage of the planning, data and results will be stored and the trajectory
itself will be kept track of. As the process itself towards an working solution is a result in
itself. Also, the configurations of each stage are stored. This allows for experiment validation
later on, when doing performance comparison in contrast to MVP.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

References

[1] Dharshan Kumaran, Demis Hassabis, Thore Graepel, Matthew Lai, David Silver, Marc
Lanctot, Laurent Sifre, Thomas Hubert, Karen Simonyan, loannis Antonoglou, Timothy
Lillicrap, Julian Schrittwieser, and Arthur Guez. A general reinforcement learning algo-
rithm that masters chess, shogi, and Go through self-play. Science, 362(6419):1140-1144,
2018.

[2] OpenAl. Openai five. https://blog.openai.com/openai-five/, 2018.

[3] Jacco M Hoekstra and Joost Ellerbroek. BlueSky ATC Simulator Project: an Open
Data and Open Source Approach. 7th International Conference on Research in Air
Transportation, pages 1-8, 2016.

[4] Richard S Sutton and Andrew G Barto. Reinforcement learning Complete Draft. 2017.

[5] Martin Riedmiller Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves,
Toannis Antonoglou, Daan Wierstra. Playing Atari with Deep Reinforcement Learning.
IJCAI International Joint Conference on Artificial Intelligence, 2016-Janua:2315-2321,
2016.

[6] John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust
region policy optimization. 32nd International Conference on Machine Learning, ICML
2015, 3:1889-1897, 2015.

[7] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Prox-
imal Policy Optimization Algorithms. pages 1-12, 2017.

[8] Sham Kakade and John Langford. Approximately optimal approximate reinforcement
learning. In Proceedings of the Nineteenth International Conference on Machine Learn-
ing, ICML ’02, pages 267-274, San Francisco, CA, USA, 2002. Morgan Kaufmann Pub-
lishers Inc.

[9] J. Schulman. Advanced policy gradient methods: Natural gradient, trpo, and more.
Slides, 26 august, 2017.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

https://blog.openai.com/openai-five/

102 References

[10] Aditya Sharma. Understanding activation functions in deep learning, 2017.
[11] Missing Link AI. Convolutional neural network tutorial: From basic to advanced, 2017.
[12] Prajjwal. Everything you need to know about recurrent neural networks, 2018.

[13] DS Bernstein. Complexity analysis and optimal algorithms for decentralized decision
making. Complete Thesis, (September), 2005.

[14] Daniel S Bernstein, Shlomo Zilberstein, and Neil Immerman. The Complexity of Decen-
tralized Control of Markov Decision Processes. Complexity, 1999.

[15] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based POMDP solvers.
Autonomous Agents and Multi-Agent Systems, 27(1):1-51, 2013.

[16] Dipti Srinivasan and Lakhmi C. Jain. Innovations in Multi-Agent Systems and Applica-
tions. 2001.

[17] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep Reinforcement
Learning for Multi-Agent Systems: A Review of Challenges, Solutions and Applications.
(1992):1-27, 2018.

[18] Ming Tan. Game theory and Multi-Agent RL. Machine Learning Proceedings 1993,
pages 330-337, 1993.

[19] Jakob Foerster, Nantas Nardelli, Gregory Farquhar, Triantafyllos Afouras, Philip H. S.
Torr, Pushmeet Kohli, and Shimon Whiteson. Stabilising Experience Replay for Deep
Multi-Agent Reinforcement Learning. 2017.

[20] Alvaro Ovalle Castaneda. Thesis: Deep Reinforcement Learning Variants of Multi-Agent
Learning Algorithms. 2016.

[21] Sebastian Thrun and Anton Schwartz. Issues in Using Function Approximation for
Reinforcement Learning. Proceedings of the 4th Connectionist Models Summer School
Hillsdale, NJ. Lawrence Erlbaum, pages 1-9, 1993.

[22] Sherief Abdallah, Shario@ieee Org, Michael Kaisers, and Jan Peters. Addressing En-
vironment Non-Stationarity by Repeating Q-learning Updates *. Journal of Machine
Learning Research, 17:1-31, 2016.

[23] Chao Yu, Minjie Zhang, Fenghui Ren, and Guozhen Tan. Multiagent learning of co-
ordination in loosely coupled multiagent systems. IEEE Transactions on Cybernetics,
45(12):2853-2867, 2015.

[24] Yan Zheng, Zhaopeng Meng, Jianye Hao, and Zongzhang Zhang. Weighted double deep
multiagent reinforcement learning in stochastic cooperative environments. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 11013 LNAT:421-429, 2018.

[25] Hado Van Hasselt, Arthur Guez, and David Silver. Double DQN.pdf. Aaai, pages 2094—
2100, 20016.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

References 103

[26]

[27]

[35]

[36]

[37]

Gregory Palmer, Karl Tuyls, Daan Bloembergen, and Rahul Savani. Lenient Multi-Agent
Deep Reinforcement Learning. (July), 2017.

Zongzhang Zhang, Zhiyuan Pan, and Mykel J. Kochenderfer. Weighted double Q-
learning. IJCAI International Joint Conference on Artificial Intelligence, (2):3455-3461,
2017.

Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative Multi-agent
Control Using Deep Reinforcement Learning. Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), 10642 LNAI:66-83, 2017.

Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, Shimon
Whiteson, and United Kingdom. Counterfactual Multi-Agent Policy Gradients. 2007.

Kagan Tumer. Modeling Difference Rewards for Multiagent Learning (Extended Ab-
stract). pages 1397-1398.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in Neural
Information Processing Systems, 2017-December:6380-6391, 2017.

J. M. Hoekstra, R. N.H.W. Van Gent, and R. C.J. Ruigrok. Designing for safety: The
'free flight’ air traffic management concept. Reliability Engineering and System Safety,
75(2):215-232, 2002.

Siqi HAO, Shaowu CHENG, and Yaping ZHANG. A multi-aircraft conflict detection
and resolution method for 4-dimensional trajectory-based operation. Chinese Journal of
Aeronautics, 31(7):1579-1593, 2018.

OpenAl, Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob
McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray,
Jonas Schneider, Szymon Sidor, Josh Tobin, Peter Welinder, Lilian Weng, and Wojciech
Zaremba. Learning Dexterous In-Hand Manipulation. 2018.

Yunhao Tang and Shipra Agrawal. Discretizing Continuous Action Space for On-Policy
Optimization. 2019.

Mohammad Emtiyaz Khan, Shakir Mohamed, Benjamin M. Marlin, and Kevin P. Mur-
phy. A stick-breaking likelihood for categorical data analysis with latent Gaussian models.
Journal of Machine Learning Research, 22:610-618, 2012.

Yunhao Tang and Shipra Agrawal. Boosting Trust Region Policy Optimization by Nor-
malizing Flows Policy. (1), 2018.

Lilian Weng. Flow-based deep generative models, 2018.

Eric Liang, Richard Liaw, Philipp Moritz, Robert Nishihara, Roy Fox, Ken Goldberg,
Joseph E. Gonzalez, Michael I. Jordan, and Ion Stoica. RLlib: Abstractions for Dis-
tributed Reinforcement Learning. 2017.

A Multi-Agent Reinforcement Learning Approach to Air Traffic Control Dennis van der Hoff

104 References

[40] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica.
Ray: A Distributed Framework for Emerging Al Applications. 2017.

[41] Open Ai. Ai and compute. https://openai.com/blog/ai-and-compute/, 2018.

[42] J Maas, E Sunil, J Ellerbroek, and J Hoekstra. The Effect of Swarming on a Voltage
Potential-Based Conflict Resolution Algorithm. Proceedings of the 7th International
Conference on Research in Air Transportation, (June), 2016.

[43] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion
Stoica. Tune: A research platform for distributed model selection and training. arXiv
preprint arXiw:1807.05118, 2018.

Dennis van der Hoff A Multi-Agent Reinforcement Learning Approach to Air Traffic Control

https://openai.com/blog/ai-and-compute/

	Acronyms
	Contents
	I Preface
	II Scientific Paper
	III Preliminary Thesis
	Introduction
	Air Traffic Control and Reinforcement Learning
	Markov Decision Process
	Finding a solution to the MDP

	Model Free Methods
	Value Based Model Free methods
	Monte Carlo methods
	Temporal Difference methods
	Deep Q-learning

	Policy gradient methods
	Actor-Critic
	Policy optimization

	Hurdles of Reinforcement Learning
	Function approximation by deep learning techniques
	Extensions of the Markov Decision Process
	Mathematical framework for MDPs
	the Dec-POMDP Family

	Problem Description and Research Question
	How to apply Reinforcement Learning
	The Multi-agent problem
	Value based reinforcement learning
	Policy gradient methods and other approaches

	How to define the state-space
	The Markov state
	How to present the state information

	How to define the action space
	Practical definition of the action space
	How to implement the action space

	How to define the reward structure

	Simulated Air Traffic Control setting
	Maximizing safety and efficiency
	Experimental setup
	Wrap-up and Planning
	Planning

	References

