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Abstract—Time series forecasting has been proved to
be relatively easier for stationary time series, compared
to non-stationary time series. This research proposes a
method to partially omit the non-stationarity of the data
using prioritized sampling. Using multiple feature selection
methods in combination with a random forest regressor
(RFR), we aim to predict the values for a non-stationary
time series. In particular, the principal component analysis
(PCA), kernel PCA, incremental PCA and independent
component analysis methods are used. The features ex-
tracted from these methods will be fed into an RFR
both individually and combined, using the union and
intersection operators. The features given by the IPCA
∪ PCA ∪ KPCA method, using prioritized sampling with
multiple features per day provide the best improvement
over the baseline.

Index Terms—time series, forecasting, non-stationary,
feature selection method, prioritized sampling

I. INTRODUCTION

Forecasting for a series of observations of a variable
can be a cumbersome task. If the observations of a
variable are made over time, then the series is called
a time series. Examples of time series are given by
the stock market, where the close prices of a stock are
observed over time, and by traffic, where e.g. the amount
of vehicles passing by a single point are observed over
time. The prediction of such time series gets easier when
the observed values tend to show the same statistical
properties, independent of which time the measurements
are made at. This time series, even though the preceding
definition was roughly put, is defined as (weakly) sta-
tionary. For a stationary time series up until time t we
can simply assume that in step t+ 1, the distribution of
the time series will remain the same and we can make
predictions based on this assumption.

However, there still remain many non-stationary time
series that do not have this property (e.g. in economics or
sounds analysis) [6] and thus, cannot be predicted using
traditional forecasting techniques, since these techniques,
such as ARIMA, rely on the stationary assumption [4]. In
their research on short term traffic flow forecasting, [25]

note that predictions of traffic flow time series do not
give any other information than the prediction itself. This
forms a barrier for traffic operations and management,
since they will not get to know why certain predictions
are given and thus cannot fully act upon them. However,
this observation is not limited to traffic flow forecasting
alone. Additional information in forecasting time series
in any domain can be, although domain specific, benefi-
cial. A step towards adding information to the prediction
can be made through the use of feature selection, where
the features can be researched for additional information.

The hypothesis made in this research is that some non-
stationary time series contain stationary components.
These components should be captured using prioritized
sampling, where the stationary components are sampled
with a higher probability than the non-stationary ones.
These samples can then be used for the prediction. A
suiting sampling method is proposed in Section IV-A.

The goal of this research is to construct a method for
the short-term forecasting of non-stationary time series
using multiple feature selection methods. To do this,
the stationary parts have to be extracted from the time
series using a sampling method, while also taking the
non-stationary parts in consideration when making the
prediction. In this step, we aim to partially omit the
non-stationarity of the time series, such that our training
data will be biased towards the stationary ones (i). It is
furthermore noted by [14] that prediction accuracy can
be improved using an additional variable that is closely
correlated with the current one. This might be present
in the current data set, but can also be from another
one. Thereafter, its usefulness will be analyzed using
correlation analysis (ii). Finally, using dimensionality
reduction methods, namely principal component analysis
(PCA), incremental PCA (IPCA), kernel PCA (KPCA)
and independent component analysis (ICA), as feature
selection methods and therefore as the input for a random
forest regressor (RFR), a prediction will be given for
the time series using the additional variable (iii). In
their paper on multiple feature selection methods, [24]
have indicated to use other methods of feature selection.
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The novel approaches are the applications of the KPCA,
IPCA and ICA methods. The first baseline that results
will be compared to are the predictions given by an
RFR, without using any feature selection methods. The
PCA method has been included to provide an additional
baseline to compare the other results to. The acquired
results will be compared to the baselines and to each
other.

II. RELATED WORK

Tsai et al. [24] have, similar to this research, used a
combination of multiple feature selection methods and an
artificial neural network (ANN) to forecast economical
time series. One of the differences of this research with
that of [24], is that they had used a classifier instead
of a regressor. By using a classifier, they predicted the
up or downward movement of the time series. In this
research, however, a random forest regressor will be
used to predict the actual time series. The choice for
a regressor is preferred since it adds more information
to the prediction, while the prediction of an up or
downward movement does not include information of
the intensity of the movement. Because of the difference
in classification and regression, the accuracy metric used
by [24] cannot be used. Instead, the mean squared error
will be used.

Furthermore, where [24] have used a sliding window
to determine the train and test sets, we have used a
prioritized sampling method, after which the acquired
samples are randomly split into the train and test sets of
sizes 2

3 and 1
3 of the samples, respectively.

Additionally, even though [24] have achieved accurate
results for their data sets using feature selection and
an ANN, the essence of feature selection, namely the
extraction of useful features for data representation and
potential explainability of generated results, gets over-
shadowed by the complexity and lack of interpretability
of the ANN. Hence, the usage of a random forest
becomes apparent.

III. THEORETICAL BACKGROUND

In this section, the required knowledge for the running
example and the used methods is explained. Namely,
time series are discussed in more detail and two station-
arity tests for time series are explained. Additionally,
the variable that will be analyzed and predicted on is
explained, along with the feature selection methods that
will be used. Finally, the workings of the random forest
regressor are explained and the evaluation metrics are
discussed.

A. Time series

A time series, denoted as {Xt}, is a set of observations
xt at time t. Stationary time series are time series
whose, roughly put, statistical properties are independent
of the time axis. To understand exactly what station-
ary time series are, we use the following definitions:
µX(t) = E[Xt] and γX(r, s) = Cov(Xr, Xs). Using
this terminology, (weakly) stationary time series are then
defined by Definition 1 for a series {Xt} [4].

Definition 1. Stationary Time Series
µx(t) is independent of t and γX(t, t+h) is indepen-

dent of t for each h

It is also noted by [4] that some time series that may
seem non-stationary can be made stationary by removing
trends through mathematical operations, which will not
be discussed in this paper. Not all time series, however,
have the property of removable trends. Therefore, in this
research we will assume the negation of Definition 1.
We define this assumption using Definition 2.

Definition 2. Non-stationary Time Series
µx(t) is dependent on t or γX(t, t+ h) is dependent

on t for at least one h.

The stationarity of a time series can be tested
with statistical tests. Two of those will be used
to check for stationarity in our data, namely the
Augmented Dickey-Fuller (ADF) test and the
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test.
Both tests check for unit roots in the time series. The
ADF test is used for testing the null hypothesis, being
that the time series has a unit root, meaning it is
non-stationary. The alternative hypothesis in this case is
that the time series does not have a unit root and is thus
stationary [7]. The KPSS test is also used for testing
the null hypothesis, being that the time series does not
have a unit root and is thus stationary. The alternative
hypothesis is consequently that the time series does
have a unit root and is non-stationary [13]. For both
tests, a significance of α = 0.05 will be used, meaning
that if the resulting p-values are smaller than or equal
to 0.05, we will reject the null hypothesis. If this is not
the case, thus the p-values are larger than 0.05, then we
fail to reject the null-hypothesis.

B. Time series variable

As explained in Section III-A, a time series is a series
of observations for a variable X . This paper will use
historical stock prices as the running example. It may
be intuitive to think that the variable chosen for the
time series would be the close prices of a stock in
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every day, however, this is not preferred. This is because
stock prices can be too volatile for statistical analysis.
Instead, the logarithmic returns are used. To understand
this concept, first, simple returns should be introduced.
Simple returns are defined as the rate of change between
day t and t− 1, which is mathematically defined as

srt =
st − st−1

st−1
,

for a stock price st at day t. Simple returns can be seen
as the first order Taylor expansion of the log of one
plus the simple returns, such that log(1 + srt) = srt,
for arbitrarily small srt, such that sr2

t < ε for ε → 0.
Therefore, logarithmic returns are defined as

log(1 + srt) = log
(

1 +
st − st−1

st−1

)
= log

( st
st−1

)
,

for a stock price st and simple returns srt at day t. As
mentioned by [8], logarithmic returns are time additive,
and it is easier to derive the time series properties of
additive processes than multiplicative processes. In this
context, [8] notes that estimating returns over longer pe-
riods using the simple returns can be quite unsatisfactory.
Because of this, we will be using the logarithmic returns
as the observed variable. Logarithmic returns will be
referred to as log returns further on.

C. Autocorrelation function

The autocorrelation function, is defined as the cor-
relation of a variable with an earlier occurrence of the
variable. In the context of time series, the autocorrelation
function denotes the correlation of a variable Xt and a
variable Xt+h for a lag h ∈ Z. The lag thus denotes
the difference in measurement on the time axis. First, in
the terminology introduced in Section III-A, let us define
γX(h) = γX(t + h, t). Mathematically, [4] defines the
autocorrelation function then as

ρX(h) =
γX(h)

γX(0)
= Cor(Xt+h, Xt).

The autocorrelation function proves to be useful in deter-
mining the batch size when sampling data from the time
series. The batch size will be defined in terms of lag h,
such that the autocorrelation function until that specific
lag of h emits a sufficiently large correlation. The size
of the correlation is evaluated against a 100 − α%
confidence interval.

D. Feature selection

1) Principal component analysis: Principal compo-
nent analysis (PCA) is a statistical procedure that, using
mathematical transformations, converts a set of possibly

correlated variables into a set of linearly uncorrelated
variables, called principal components [10]. Each prin-
cipal component lies on a corresponding principal axis.
This process is called dimensionality reduction and can
be used as a feature selection method, as done by [24].
The amount of principal components extracted from
the PCA is less than or equal to the amount of initial
variables. The exact amount of principal components
to be extracted from the PCA method can be acquired
through a cumulative explained variance plot against the
amount of components. This plot show the amount of
variance that is explained by an n amount of principal
components. The explained variance is preferred to lie
close to 1, such that almost all of the variance within the
data set is covered.

2) Incremental principal component analysis: Incre-
mental principal component analysis (IPCA) is similar
to PCA. IPCA is more memory-efficient than PCA [16],
but there is no guarantee on the approximation of the
principal components [26]. In the specific example given
in this paper, PCA poses no problem to the memory,
since the size of the input data is not large. However,
this does not mean that this will be the case for other
areas where this method can be applied. Therefore, IPCA
is also covered in this paper.

3) Kernel principal component analysis: Kernel prin-
cipal component analysis (KPCA) is an extension of
PCA, in a sense that KPCA enables non-linear dimen-
sionality reductions [21]. This method is used for the
comparison of results with PCA, as mentioned by [24].

4) Independent component analysis: Independent
component analysis (ICA) can be seen as an extension
of PCA. ICA consists of searching for a linear trans-
formation of the initial non-Gaussian data, such that the
statistical dependence between components is minimized
[5]. It is noted by [9] that such a construction seems to
capture the essence of the data in the field of feature
selection and is therefore also used in this research.

E. Random forest

To understand random forests, first classification and
regression trees (CARTs) have to be introduced. CARTs
first partition the training data into different regions.
These regions are accessed through binary conditions,
given by the splitting variables. For any new input to
make a classification or regression on, the region the
input falls in has to be determined. This is done through
following a path though the splitting variables, down to
the leaf nodes. The average value of the data points in
the region the new input data falls into is the prediction
in case of regression. The structure of a regression tree
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is determined by finding the right amount of regions,
splitting variables and their corresponding thresholds
through the minimization of the MSE [23].

An advantage of CARTs are that no inherent as-
sumptions are made on the distribution of the input
data. Another advantage is that CARTs are relatively
easy to interpret for non-statisticians, in a sense that
the decisions made by the tree are understandable and
explainable [15].

Random forests use multiple CARTs in combination
with bagging, with an additional layer. In bagging,
successive CARTs do not depend on earlier CARTs,
thus every CART is independently constructed [2]. The
additional layer changes the way CARTs are constructed,
such that every node is split using the best among a
subset of predictors randomly chosen by that tree [3].
Random forests using regression trees are often referred
to as regression trees and usually take the weighted or
unweighted average of the trees in the forest [22].

Random forests have the same property as CARTs in
a sense that the produced results are easy to interpret for
non-statisticians. Additionally, random forests are robust
against overfitting [3].

F. Evaluation metric

As opposed to [24], this research is considered with
prediction in the form of a regression for time series.
A widely used metric for measuring the quality of an
estimator is the mean squared error (MSE), which is
defined as

MSE =
1

N

N∑
i=0

(Xi − X̂i)
2,

for a variable Xi ∈ X , a prediction X̂i ∈ X̂ and N =
|X|. As can be seen, this metric measures the average
squared error of an estimator. This implies that the closer
the MSE lies to zero the smaller the error is and thus,
the better the estimator is.

Additionally, when combining feature selection meth-
ods, different amount of features will be selected. It is
expected to have lower MSEs for combinations having
many features, since these features would act as addi-
tional explanatory variables [11]. To counter this effect,
we introduce another measurement, which weights the
MSE based on the amount of features, relatively. This
method of evaluating models is preferred in cases where
the amount of features are critical in the selection of
a model. This metric gives a relative score that can be
used to compare the used models. We call this the feature
weighted MSE score (FWMS) and it is defined as

FWMS(t) =

(
F

F̂

)(
M

M̂

)t

, (1)

for an MSE of M and F features of a feature selection
method. The t variable indicates the spread of the relative
MSE. Furthermore, the M̂ and F̂ variables are then
defined as the averages of M and F , respectively, over all
feature selection methods. Ideally, we want F < F̂ and
M < M̂ , since this would mean that the model achieves
a relatively low MSE using relatively few features, as
FWMS→ 0. The MSE spread variable t determines how
large the spread of M

M̂
will be. For t→ 0, M

M̂
will revolve

closely around 1 for |M − M̂ | < ε, ε→ 0. However, for
t → ∞, M

M̂
will spread further away from 1, even for

|M − M̂ | < ε. Because of this effect, Eq. 1 will assume
values in a larger range.

IV. METHOD

This section discusses the methods used for the re-
search, including the sampling method (i), the selection
of an additional variable and correlation analysis (ii) and
the feature selection algorithm along with the random
forest regressor (iii). The sampling method involves
prioritized sampling, which, as the name suggests, pri-
oritizes certain regions in the data set to sample from
over other regions. Furthermore, an additional variable
is selected based on suggestions from literature and its
correlation with our time series is analyzed. Finally, the
feature selection methods are evaluated individually and
combined, using the union and intersection operators,
using a random forest regressor.

A. Sampling

Using a suitable sampling method, we want to sample
the stationary components from the time series with
a higher probability than the non-stationary compo-
nent. We will call this method prioritized sampling,
named after prioritizing stationary components over non-
stationary components. We will sample a batch of values,
instead of sampling a single value, such that the batch,
representing a sequence of days, can be used as the input
for the models.

The data used in this research is acquired from the
open data sets on Kaggle, which provides historical data
of the NASDAQ, NYSE and AMEX stock markets. Let
us look at the log returns of CPS Technologies (CPSH)
from 2011 until 2019 (Figure 1). It can be seen that
in the domain of 2012 - 2014, the log returns had a
different range of occurrence, namely in [−0.4, 0.4]. A
simple solution would be to simply cut off the data
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Fig. 1. Log returns for CPSH from 2011 until 2019.

until 2014 and sample the remaining data using uniform,
sequential sampling. However, by doing this, we may
lose the information of such an event reoccurring and our
predictions could be inaccurate. Furthermore, we also
see that the log returns after 2014 (and before 2012)
seem to be stationary. This observation is confirmed by
the results acquired in Section V-A, where the ADF and
KPSS tests are deployed. Because of this behavior, this
time series can be used as an example. Although drawing
conclusions from an observation in the data may work,
automating this process or having a systematic method
for it is not provided. The field of extreme value theory
may provide methods, such as the Peak-Over-Threshold
(POT) method, to systematically assess non-stationary
regions.

In essence, by using prioritized sampling, we want
to bias our samples towards stationary values, such that
we help our model in reproducing these regions. Let P
denote the probability of sampling a stationary batch.
Then we define P = a∗Q, where a is a positive number
and Q is the probability of sampling a non-stationary
batch. Since

∑
ω∈Ω p(ω) = 1, for a probability space Ω

and probability mass function p(x) [12], we have P +
Q = 1. Filling in and solving for Q gives Q = 1

a+1 .
Using this formula, we can make sure that we sample
one non-stationary batch for every a stationary batches.

It is, however, not preferable to have Q larger than the
fraction of the non-sequential values with respect to the
whole data set. In this case, this fraction equals to 1

3.75 .
If this probability for Q would be used, then we would
acquire the same samples as we would with sequential
sampling. This is because in sequential sampling, 1

3.75 of
the acquired samples consists of non-stationary values.
Sequential sampled data is simply a loop through the
whole data, in chronological order, adding batches of a
given size z, such that data in the form of fi, ..., fi + z

is acquired for a feature fi, i = 0, 1, ..., N − z, where N
is the size of the data set.

Therefore, we need 1
a+1 <

1
3.75 . Solving for a results

in a > 2.75. A plot for various values of a is shown in
Figure 2. Note that for a→∞, lima→∞

1
a+1 approaches

0, thus the probability of taking a sample from the non-
stationary region is very close to zero. The anticipated
effect for a→∞ are that the predictions become biased
towards the stationary values since only samples from
those regions are drawn. Because of this, a higher MSE
is expected for this value compared to MSEs for a 6=∞.

The amount of samples also plays a role in the
sampling method. The data contains a total of 2087
entries. Obviously, sampling 100% of the data will not
distinguish the prioritized samples from the sequential
samples. However, we still want an optimal amount of
samples for all of our experiments. Therefore, we will
still use 100% of the data for sequential sampling. For
a→∞, this percentage is determined to be 72% of the
data, which is roughly the amount of stationary values
in the data. This percentage is just a little less than
1− 1

3.75 = 73.33, such that the sampling algorithm does
not have to include all of the stationary values, which
will make the algorithm finish faster. For a 6= ∞, this
value has been determined semi-empirically, meaning
that we took the average of the previous percentages,
being 72%+100%

2 , which resulted in 86% of the data and
empirically confirmed it to be the optimal value in this
case. However, there is as of now no systematic way of
determining the amount of samples for these values of
a, which further research may provide more clarity on.

A simulation for validation has been done using
Algorithm 1. In lines 5 and 7, a batch of a given size
from the stationary values and from the non-stationary
values, respectively, is added to the sample set S. In
the simulation, this batch size equals to 5, but will be
determined exactly in Section IV-B. Furthermore, two
means are calculated, namely the arithmetic mean of the
entire data set and the mean of samples produced by the
simulation for a = 3. The comparison of the two means
is done to validate the results of the simulation and to
check whether we can indeed approximate the chosen
value for a. Additionally, the mean of the stationary val-
ues and non-stationary values, separately, are calculated.
This is done such that we can conclude that the observed
non-stationary region is actually non-stationary.

B. Correlations

It is noted by [14] that the use of an additional variable
may improve prediction accuracy. In the case of the pre-
diction of stocks, [19] suggests the use of trading volume
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Fig. 2. Log returns for CPSH from 2011 until 2019 with the
probability of sampling a batch from the indicated regions for values
of a = 2, a = 3, a = 4 and a = 5.

Algorithm 1 Pseudocode for the simulation
1: S ← ∅
2: W ← 50000
3: while W > 0 do
4: if rand ≤ P then
5: Add batch to S from stat
6: else
7: Add batch to S from non-stat
8: end if
9: W ←W − 1

10: end while

as an additional variable for the prediction. A correlation
analysis should be deployed on the trading volume and
the log returns to deduce a correlation between the two
variables. Pearson’s correlation coefficient proposes a
measure for linear correlations, as mentioned by [1], but
it is not yet known whether the two variables are linearly
correlated. Instead, a histogram will be drawn to depict
the correlation. This will be done through the creation
of a probability distribution for the log returns using the
trading volumes. We define this distribution as follows:
let Lt be a random variable, representing the log returns
on day t. Furthermore, let m be the amount of days that
are being analyzed, then for k = 1, 2, ...,m, let V be
the list of tuples of log returns lk on day k and trading
volumes vk−1 on day k − 1 divided by 1000, such that
a list of tuples (lk, vk−1) is acquired. In practice, a new
list is constructed, to which all values lk are added vk−1

amount of times, hence the division by 1000 such that the
acquired list will not be too large to prevent long iteration
times. Additionally, let u ∈ U = {l | (l, v) ∈ V }. We
then define

Pr(Lt = u) =

∑
(u,v)∈V

v∑
(l,v)∈V

v
, (2)

such that the probability of a log return on day t
having a value of u is equal to the fraction of the sum
of all trading volumes (divided by 1000) for the log
return u divided by the sum of all trading volumes.
To furthermore prove that this is a valid probability
distribution, it is easy to see that

∑
u∈U Pr(Lt = u) = 1,

since the numerator in Eq. 2 will sum to the denominator
in Eq. 2 for all unique values of u:

∑
u∈U

( ∑
(u,v)∈V

v

)
=

∑
(l,v)∈V

v

Using this probability distribution function, the his-
togram in Figure 3 is plotted, using 30 bins. For the
sake of relevancy, the extreme values below -0.2 and
above 0.2 have been cut off. To this histogram, a Student-
t distribution with ν = 2.56 has been fitted, using a
scale factor of 3.11∗10−2 and multiplying the PDF with
400. To check whether the two probability distributions,
denoted further as N and M , differ, a Kolmogorov-
Smirnov test is applied. This hypothesis test uses the
null hypothesis that the distributions are the same and
the alternative hypothesis that the distributions differ. A
significance level of α = 0.05 will be used, such that
the acquired test statistic DN,M > 1.22

√
|N |+|M |
|N |∗|M | or the

acquired p-value should be smaller than 0.05 for us to
reject the null hypothesis [17]. Essentially, this means
that DN,M > 10.77 ∗ 10−3 or that p < 0.05 to reject
the null hypothesis. If we are not able to reject the null
hypothesis, the underlying distributions are likely to be
the same, which means that log returns at day t are
Student-t correlated with the trading volumes at day t−1.
The results of the test are noted in Section V-B.

Additionally, the Pearson correlation for the whole
data set is plotted using a heatmap in Figure 4. This
heatmap gives the correlation between the volume, open,
high, low and close (OHLC) prices, years and the log
returns at time t and the same variables at time t − 1.
Since the time series we use is that of the log returns,
we are only interested in variables that are correlated
with this. Note that the correlation between the OHLC
variables is close to 1, since these variables lie close to
each other when looked at a daily domain. As previously
mentioned, the Pearson correlation for the log returns
and the volume is close to zero, which is confirmed by
the histogram in Figure 3, since the two variables are not
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Fig. 3. The log return PDF is depicted in blue with cut off extremes,
being smaller than -0.2 or larger than 0.2. The Student-t distribution,
along with ν = 2.56, a scale factor of 3.11 ∗ 10−2 and multiplied
by 400, is depicted in red.

Fig. 4. Pearson correlation between the variables at time t (y-axis)
and at time t− 1 (x-axis).

linearly correlated. The correlation between the OHLC
prices and the log returns also seems close to zero.

Furthermore we aim to analyze the autocorrelation
based on the log returns from the prioritized samples. In
this analysis, the simulation described in Section IV-A is
run again with a sufficiently large batch size (20), such
that we can analyze the AC function for lags up to 20.
The plot is displayed in Figure 5.

From Figure 5, it can be seen that the ACF seems
to show relevant correlations until a lag of 9. Because
of this, the batch size mentioned in Section IV-A gets
corrected from 5 to 10. This is done because the lag at
0 was omitted.

C. Feature selection and regression

In Section IV-B, it was found that the trading volume
of CPSH is likely to be Student-t correlated with its log
returns. It was furthermore found that the usable batch
size for prioritized sampling (PS) for the input of the

Fig. 5. Plotted AC function for the prioritized CPSH samples (2011-
2019). The blue region depicts a confidence interval of 95% (α =
0.05). The point for lag = 0 is omitted since this correlation would
equal to 1.

feature selection model will equal to 10. This means
that there will be used a total of 10 + 10 = 20 variables
per training instance, being 10 log returns on sequential
days and their corresponding trading volumes. Out of the
20 variables, 18 variables will be used as the data for 9
sequential days. The log return of the 10th day will be
used as the target for the prediction, whereas the volume
of the 10th day will be dismissed. The 18 variables will
be preprocessed (PP), such that every value will lie in
the range [0, 1]. The PP data will be fed to the feature
selection methods, being PCA, IPCA, KPCA and ICA,
after which they will both independently and combined
be fed to the random forest regressor, from which a mean
squared error will result. The preprocessed data will also
be fed to the RFR, without feature selection, to set a
baseline to compare the results of the feature selection
models to. This procedure is depicted in Figure 6. The
block depicted by the N, U and I tag, represents the
individual evaluation of the feature selection methods
(N), the combination of the methods using the union
operator (U) and the intersection operator (I).

To determine the amount of components to be ex-
tracted from PCA, a plot of the amount of components
against the cumulative explained variance can be made.
These components will be the features that will be used
and will be fed into the RFR. This graph is depicted in
Figure 7. It can be seen that at 15 components, more or
less all of the variance within the data set is explained.
Therefore, 15 features will be used to be fed into the
RFR. For comparability, the same amount of features
for the IPCA, KPCA and ICA methods will be used.

The KPCA method enables us to use a multitude of
kernel methods to recognize patterns within the data. In
this study, we use the common Gaussian radial basis
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Fig. 6. The procedure of the first and second experiments.

function (RBF) kernel for KPCA, along with γ = 5
which was determined empirically. The RBF implemen-
tation in KPCA does not yield the principal component
axes. Instead, the obtained eigenvectors are seen as
projections of the data onto the principal components
[20]. For the sake of generality, these eigenvectors shall
still be referred to as the principal axes.

The preprocessed data is fed into the feature selection
methods with a feature size of 15 and are hereafter fed
into an RFR with a depth of 20 and a tree count of 500.
The depth has been chosen such that it is slightly bigger
than the feature size, such that every tree has the room
to process some features more than once. The tree count
has been chosen sufficiently big such that the overfitting
of trees will be countered by the voters’ overrule.

Initially, six tests are deployed using the mentioned
methods, similar to the tests of [24]. The whole set is
split into a train and test set, being two thirds and one
third, respectively. These sets are shuffled using seeds
234, 847, 392, 721, 394, 123, respectively, for TEST1-
TEST6.

For the second experiment, the feature selection meth-
ods are, similar to [24], combined using the union and
intersection operations. To combine the features, first,
the principal axes are calculated for all feature selec-
tion methods. These axes will denote which principal
components of the feature selection methods should be
combined. To check when two principal axes are equal to
each other, the dot product of the unit vectors (principal

Fig. 7. The amount of components of PCA against the cumulative
explained variance.

axes) is taken. This is the cosine similarity, namely being
cos(θ) = A·B

||A||∗||B|| , for two principal axes A and B. The
principal axes will be pointing in the same direction if
cos(θ) = 1, so to check whether two vectors are similar,
we use the condition 1 − cos(θ) < ε, for a value of
ε→ 0.

For the union operation for two feature selection
methods, all of the principal components of the first
method will be added to a set. After this, we iterate
through the principal axes of the second feature selection
method. If we encounter a principal axis which is not
an axis in the first feature selection method, we add
the corresponding principal component to the set. As
for the intersection operation for two feature selection
methods, we start with an empty set. We iterate through
the principal axes of the first method. For every axis, we
check whether it is included in the principal axes of the
second method - according to the condition above - and
add the corresponding principal component to the set.

In the second experiment, the power set of the feature
selection methods is calculated, filtering out any subsets
in the power set if the cardinality of the subset is smaller
than two. Every subset in the power set is then fed into
the union and intersection functions. This way, all pos-
sible combinations of the feature selection methods will
be combined using the union and intersection functions.
The resulting features are hereafter fed into the RFR.

The RFR has a variable tree depth, since the selected
amount of features can differ significantly based on
the used feature selection methods and the union or
intersection operators. Let z be the amount of features
in a combination, then the depth of the tree will be set
to 11

3z. If z = 15, the depth of the tree will be equal to
20. This makes the second experiment comparable to the
first experiment, where a tree depth of 20 was used too.
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TABLE I
SAMPLING EXPERIMENT MSE AVERAGES FOR SEQUENTIAL SAMPLING AND PRIORITIZED SAMPLING. ALL VALUES IN THE TABLE ARE

MULTIPLIED BY 104 . THE AMOUNT OF SAMPLES THAT HAVE BEEN GENERATED ARE DENOTED IN PERCENTAGES, WHERE 100%
DENOTES 2087 SAMPLES.

RFR PCA IPCA KPCA ICA a % of entire data set
SSSF1 38.37 38.99 39.07 37.46 39.18 - 100
SSMF2 39.01 38.63 38.73 37.99 38.95 - 100
PSSF3 16.46 16.21 15.96 18.40 15.69 3 86
PSMF4 15.36 14.86 14.95 20.36 15.13 2.75 86
PSMF4 14.94 14.65 14.73 19.60 14.48 3 86
PSMF4 14.59 14.04 13.96 18.76 14.39 4 86
PSMF4 15.73 15.43 15.54 20.13 15.54 5 86
PSMF4 19.78 19.14 19.07 19.11 19.64 ∞ 72
1 Sequential sampling, single feature per day
2 Sequential sampling, multiple features per day
3 Prioritized sampling, single feature per day
4 Prioritized sampling, multiple features per day

Additionally, the same random seeds are used and thus
the same amount of tests are deployed per run. There
are a total of four runs, where each run uses ε = 10−k

for k = 1, 2, 3, 4 for runs 1 to 4, respectively. Only the
top three performing methods of every run are displayed
along with the acquired MSEs for every test.

V. RESULTS

In this section we discuss the results acquired from the
experiments mentioned in Section IV. We evaluate the
usefulness of the sampling method, the suitability of the
time series for this research and discuss the performances
of the feature selection methods.

A. Sampling

Calculating the arithmetic mean of the whole data set
(Figure 1) equals −6.7 ∗ 10−5 whereas the mean of the
prioritized sampling simulation equals 4.6 ∗ 10−5. If we
look at the means of the stationary and non-stationary
values, we get 2.5 ∗ 10−5 and −3.2 ∗ 10−4, respectively.
The mean of the stationary values is higher, which is why
the mean of the prioritized sampling simulation is higher
too, because we sample more stationary values than non-
stationary ones. Since these means differ in value and
depend on the time t the measurements are made at,
we conclude that µx(t) is dependent on t and therefore,
according to Definition 2, the used time series is non-
stationary. Additionally the stationary values are tested
using the ADF and KPSS tests to check whether our
observations were correct. Both tests gave the results of
p = 3.2 ∗ 10−28 and p = 0.1, respectively. This means
that we reject the null hypothesis for the ADF test and
fail to reject the null hypothesis for the KPSS test. The
implication in both cases is that the observed components

are indeed stationary. Therefore, this data set is suitable
for the research. Additionally, the count of the amount
of sampled stationary and non-stationary values are also
tracked, in which if we divide the former by the latter,
we get the ratio of 2.98, which approximates a = 3. The
seed used for the simulation was 6437. These results
confirm our expectations for the acquired samples.

Furthermore, results of sequential sampling and pri-
oritized sampling have been compared to each other.
The sequential samples have been generated by using
a for-loop, starting the loop at 2011 and ending it at
2019. Every iteration, the log returns and the trading
volumes up to ten days (batch size) ahead are added to
the samples, such that instances like lt, vt, ..., lt+10, vt+10

are acquired, for a log return lt and trading volume vt
at time t. There have been eight runs in total for the
RFR, PCA, IPCA, KPCA and ICA methods, of which
the averages are listed in Table I. Every run, six different
seeds have been used, which are the same seeds as
mentioned in Section IV. Of the eight runs, two runs
have been been of sequential sampling and six runs have
been of prioritized sampling. For both sampling methods,
one run was made where only the log returns are used
as the feature per day (SF). For all other runs, both the
log returns and the trading volumes are used as features
per day (MF). The runs for prioritized sampling with
multiple features per day have been run for a = 2.75,
a = 3, a = 4, a = 5 and a→∞.

Looking at Table I, it can be seen that the prioritized
sampling method using multiple features per day for
a = 4 had the lowest MSEs out of all entries. It is notable
that for a → ∞, the MSEs were relatively large, com-
pared to the other MSEs for prioritized sampling. This,
as anticipated in Section IV-A, is the result of biasing
our models towards stationary values, while ignoring the
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non-stationary ones. The fact that our model contains
more stationary values than non-stationary ones, helps
the model to predict for regions alike. There is a clear
difference in the MSEs obtained from using a = 2.75
and a = 3, where in the former, the non-stationary
values are sampled with the probability of 1

3.75 , which
is the actual fraction of the non-stationary values in the
entire data set. This indicates that, indeed, by sampling
non-stationary values with a lower probability, lower
MSEs are acquired. Interestingly enough, the value for
a = 2.75 should result in an approximation of sequential
sampling, since in both cases the non-stationary values
get sampled with the same frequency, however, this does
not seem to be the case when looking at the MSEs. This
could be caused by the way the samples are fed into
the feature selection methods: the prioritized samples
are ordered randomly, while the sequential samples are
ordered chronologically.

Additionally, there seems to be an optimal value for
a, which is a = 4, looking at the acquired results. A
theoretical explanation of this optimal value could be,
that for low values of a, the non-stationary values tend to
be sampled too frequently and bias the data towards these
values. For high values of a, the data gets biased towards
the stationary values. In both cases, the biases result
in a higher MSE. As of now, there is no algorithm to
determine an optimal value for a, which future research
may provide more clarity on.

B. Correlation

As mentioned in Section IV-B, the Kolmogorov-
Smirnov test is applied to the log returns and the pro-
posed Student-t distribution. The calculated test statistic
DN,M is 10.50 ∗ 10−3 and the corresponding p-value is
0.9. Because of this, DN,M < 10.77∗10−3 and p > 0.05,
which means that we fail to reject the null hypothesis
and that the log returns are most likely distributed as the
proposed Student-t distribution.

C. Single feature selection methods

The average MSEs for the prioritized sampling with
multiple features per day are displayed for various values
of a in Table I. From these results, it can be seen that the
PSSF method for a = 3 performed better than the PSMF
method for a = 2.75 and a > 4. A very notable point
is the improvement provided by prioritized sampling
compared to sequential sampling. The lowest MSE is
provided by the IPCA method using PSMF for a = 4,
and compared to the baseline RFR method using SSSF
the improvement is

13.96− 38.37

38.37
= −63.62%.

It should be, however, noted that all of the feature
selection methods use the same amount of features to
select, being 15. This has been done for comparability,
even though the optimal amount of components for
KPCA and ICA may differ. Because the amount of
features is the same for every method, the FWMS of
the methods will not differ and is hence not included
in Table I. Another point worth mentioning is the initial
amount of features, which is 9 ∗ 2 = 18. It may be
possible to achieve better results when more features are
used.

D. Multiple feature selection methods

In Table II, the results for the second experiment are
listed for ε values of ε = 10−1, ε = 10−2, ε = 10−3 and
ε = 10−4. The FWMS of the methods, using t = 100, is
multiplied by 100. The selection for t is done because we
are interested in a significance of two decimals behind
the comma, resulting in t = 102. It is seen that the
average of the features generated by the IPCA ∪ PCA ∪
KPCA method gives the best MSE in all tests, which is,
compared to RFR method using SSSF in Table I, being
38.37, an improvement of

13.45− 38.37

38.37
= −64.94%,

which is a slight improvement of the improvement men-
tioned in Section V-C. The MSEs of this combination
for ε = 10−1 and ε = 10−3 are the same, however,
the amount of features selected by the union operator
is significantly less for the former case, compared to
the latter. This can be seen by looking at the FWMS
of the two methods, where for ε = 10−1, the FWMS
is smaller than for ε = 10−3. Furthermore, it should
be noted that all of the top three combinations listed
in Table II, regardless of the used error ratio ε, are all
feature selection methods under the union operator. It
is, however, notable that the top three methods for all
tests for different values for ε are all the same. A smaller
value for ε does, according to the results, not necessarily
result in a lower average MSE. However, the lowest
FWMS score is given by the IPCA ∪ KPCA method
for ε = 10−1, which means that this method yields the
lowest MSE for the lowest amount of features, relatively.
In particular, the improvement over the baseline provided
by this method is 64.92%.

The intersection operator, in contrast to the results
achieved by [24], performed worse than the union oper-
ator. A sensible explanation as to why their intersection
operator yielded the best results is that features will be
chosen more selectively, compared to the union operator.
This, however, was not the case in our results. One of
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TABLE II
TOP THREE LOWEST MSE RESULTS FOR COMBINATIONS OF FEATURE SELECTION METHODS FOR ε = 10−1 , ε = 10−2 , ε = 10−3 AND

ε = 10−4 . ALL VALUES IN THE TABLE ARE MULTIPLIED BY 104 .

ε = 10−1 ε = 10−2 ε = 10−3 ε = 10−4

IPK1 IK2 PK3 IPK1 IK2 PK3 IPK1 IK2 PK3 IPK1 IK2 PK3

TEST1 13.69 13.58 13.71 13.73 13.77 13.79 13.59 13.77 13.79 13.60 13.77 13.79
TEST2 13.95 14.01 14.21 14.06 14.05 14.16 14.06 14.05 14.16 14.11 14.05 14.16
TEST3 12.28 12.32 12.30 12.20 12.32 12.23 12.21 12.22 12.27 12.21 12.22 12.27
TEST4 13.62 13.65 13.60 13.67 13.62 13.80 13.69 13.62 13.80 13.72 13.62 13.80
TEST5 13.36 13.33 13.64 13.37 13.43 13.63 13.37 13.42 13.63 13.40 13.42 13.63
TEST6 13.76 13.84 13.92 13.78 13.79 13.87 13.79 13.79 13.87 13.84 13.78 13.87
Avg. MSE 13.45 13.46 13.56 13.47 13.50 13.58 13.45 13.48 13.59 13.47 13.48 13.59
Avg. Features 33 28 27 38 30 30 39 30 30 39 30 30
FWMS (∗100) 67.73 61.90 125.13 90.48 89.23 161.11 80.04 76.94 173.42 92.86 76.94 173.42
1 IPCA ∪ PCA ∪ KPCA
2 IPCA ∪ KPCA
3 PCA ∪ KPCA

the causes might be the difference in feature selection
methods and another one being the amount of selected
features. We have used a total of 15 features for every
feature selection method, so an intersection between the
methods will only result in less than 15 features. Even
though we were selective in our choice of features,
the resulting features were too few to yield accurate
predictions. This also opens up opportunities for future
research, which, as mentioned in Section V-C, may
involve the usage of more features than the log returns
and the corresponding trading volumes.

The union operator, however, proves to be useful in
filling in for the missed explained variance by other
feature selection methods. Additionally, we acquire more
features and thus provide the RFR with more information
to base its predictions on. This, however, might not be
sensible right away, because essentially, the principal
components captured by the used methods will try to
explain the same variance of the data, but each will do
so in a different way. It might thus not be obvious that the
union operator will actually help with the prediction. An
explanation as to why we actually have received better
results, may have to do with the RFR, which does not
make any assumptions on the underlying distribution of
the input data. We may then hypothesize that the prin-
cipal components generated by the methods increase the
accuracy of the prediction, because of the different way
they explain the variance and therefore add information
to the predictor. These features may even be used by
the RFR to add splitting variables for validation to its
CARTs.

VI. FUTURE WORK

One of the parameters introduced in this paper is
the a parameter, which determines the amount of bias

the prioritized sampling simulation has towards the sta-
tionary or non-stationary data. This parameter has been
tuned manually, however, future research could provide
a method to systematically find the optimal value for
a. Additionally, the selection of the non-stationary parts
has been done through observation. This process could
also be optimized, mainly through the field of extreme
value theory, which provides methods like the Peaks-
Over-Threshold method to determine extreme values, in
which case the non-stationary data could be seen as
those. Additionally, the amount of samples drawn from
the data for a 6= ∞ may also be systematically defined
in future research.

With the rise of deep learning techniques and deep
feature selection methods, newer methods of feature
selection and their combinations are introduced. One of
these combination methods are discussed by [18], which
introduces rankings to features and combines only the
top k ranked features of two (or more) methods. Future
research may involve the usage of this combination
technique. Another point, as mentioned in Section V, is
the usage of more features to achieve a better accuracy
and to fully make use of the feature selection methods. In
this research, the PCA, IPCA, KPCA and ICA methods
were used as feature selection methods. Future work may
also explore more feature selection methods, apart from
PCA, such as a Continuous Restricted Boltzmann Ma-
chine (CRBM) or Nonzero Matrix Factorization (NMF).
Furthermore, the hypothesis mentioned in Section V-D,
may be researched in future work by comparing the
results acquired from different predictors using the same
input data, being the union of the used feature selection
methods.
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VII. CONCLUSION

This research was aimed at the usage of multiple
feature selection methods in the short-term prediction
of non-stationary time series. The non-stationarity of the
time series is partially omitted by the use of prioritized
sampling, in which batches from stationary parts of the
data are drawn with a higher probability than batches
from non-stationary parts. This way, the effects the non-
stationary values have on the entire data set are also
taken into consideration, but have lesser weight in the
prediction. The chosen parameter for sampling is a = 4,
for which batches from the non-stationary data will be
sampled with a probability of 1

5 and batches from the
stationary data will be sampled with a probability of 4

5 .
The results of our tests have confirmed our hypothesis
to be true, namely, that forecasting non-stationary time
series can be done more accurately with the usage of
prioritized sampling and feature selection methods. As
mentioned by [14], an additional variable has been used
in the prediction, being the trading volume in the case
of the stock market. This variable has been analyzed on
its correlation with the log returns of the sampled data
and has been found to be Student-t correlated with the
log returns. Finally, multiple feature selection methods
are deployed on the data, after which the features are fed
into an RFR. The best features were given by the IPCA
∪ PCA ∪ KPCA method, which gave an improvement of
64.94% compared to the MSE of an RFR for sequential
sampling using one feature per day. The lowest FWMS is
given by the IPCA ∪ KPCA method, which is the model
that achieves the lowest MSE using as few features
as possible, relatively. Its improvement over the same
baseline is 64.92%. All in all, the proposed methods
can be used to forecast non-stationary time series, which
contain stationary component. Because of the use of
feature selection methods and a random forest, more
information about the prediction can be acquired and
can be acted upon accordingly.
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