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Assessment of Inbound Air Traffic Flow
Management Delay and Total Arrival Delay for

Amsterdam Airport Schiphol
P. J. A. Post∗, J. M. Hoekstra†, F. Dijkstra‡, M. Zorgdrager§

Air Transport Operations, Faculty of Aerospace Engineering
Delft University of Technology, Delft, The Netherlands

Abstract—In recent years Amsterdam Airport Schiphol (AAS)
has been the airport with the highest Airport Air Traffic Flow
Management (ATFM) delay in Europe. EUROCONTROL delays
inbound flights heading towards AAS on departure, due to
reasons at or around AAS. There are two main reasons for
Airport ATFM delay at AAS, Weather and Aerodrome Capacity.
This study aims to find a better understanding of the operational
conditions that cause ATFM Aerodrome Capacity delay, such that
it can be addressed properly. This is done by applying a Bayesian
Network (BN) to AAS data, that includes variables from the
operational conditions at AAS. The BN shows the relationship
between variables and is based on conditional probabilities, so
it can show the stochastic behavior of the airport. A baseline
model is created using expert knowledge and through Structure
Learning (SL), additional relationships between variables are
identified which result in a model that best represents the
operational data. The results from the BN show that an increased
chance of ATFM Aerodrome Capacity delay most often occurs
in the first inbound peak of the day when the cumulative delay
is still low. In these conditions, the percentage of capacity used
according to the schedules is often between 75% and 100%.
However, at the actual time of operation the percentage of
capacity used is often above 100%, indicating that the available
capacity is exceeded. Interestingly, the conditions that increase
the chance of having ATFM Aerodrome Capacity delay do not
increase the chance of arriving too late. Having an ATFM
Aerodrome Capacity delay of 20 to 30 minutes, showed only
a 35% chance of arriving with more than 15 minutes of delay.
Moreover, there is a discrepancy in the strategic planning of
the landing slots, and the actual arriving traffic. Additionally,
airlines apply schedule buffers, that could nullify the ATFM
Aerodrome Capacity delay, but are unknown to other operators
in the air transportation system. More information should be
shared between operators to ensure all interests are met and a
safe and efficient operation can be realized.

Index Terms—Bayesian Networks (BN), Air Traffic Flow
Management (ATFM), Airport Arrivals, Probability Analysis,
Sensitivity Analysis, Amsterdam Airport Schiphol (AAS)

I. INTRODUCTION

In recent years, the complexity of the Air Traffic Man-
agement system has increased due to an increase in air-
craft movements and passenger movements [1]. This impacts
several stakeholders in the aviation industry. First, for Air
Traffic Control (ATC) it becomes more difficult to ensure
safe operations. Second, airlines suffer from delays which for

∗MSc student, †Supervisor TU Delft, ‡Supervisor Air Traffic Control the
Netherlands, §Supervisor Amsterdam Airport Schiphol.

some lead to missed connections for passengers. And third,
airports like London Heathrow and AAS are operating at their
operational limits, which ultimately induces delays for both
departures and arrivals. To anticipate the predicted growth in
air traffic in Europe, EUROCONTROL implemented an ATFM
system with the goal to match demand with the available
capacity for en-route sectors and airports in Europe, to ensure
safe operation and to prevent Air Traffic Controllers from
unexpected high workloads [2]. ATFM is an extensive and
complex process, which is initialized several months before
a flight takes place when airlines can file flight plans. Based
on the filed flight plans, EUROCONTROL can get a good
estimate of the traffic situation and hence, a good indication
of when certain ATC sectors or airports can get congested.
During planning, which ranges from months before the flight
up to the day of operation, the aim is to identify and address
bottlenecks in the European air transportation network. Flight
plans are adjusted to accommodate for the existing bottlenecks,
however, as the system is subject to change, it is often the
case that even on the day of operation ATFM delay is issued
to ensure a safe and efficient operation.

When ATFM delay is issued for a flight, EUROCONTROL
expects that a flight will encounter en-route delays or delays at
the destination airport if it were to fly according to the flight
plan. Such scenarios can lead to additional flight time when a
flight has to avoid a certain sector, or it can lead to airborne
holding at the airport when it cannot land due to high traffic
demand or other reasons. As both scenarios lead to additional
fuel burn and inefficient situations like holding, ATFM delay is
most often issued at the departure airport. Instead of taking off
at the Estimated Take-Off Time (ETOT), a flight is assigned
Calculated Take-Off Time (CTOT), which is a later take-off
time with a -5 minute to a +10 minute window in which the
flight is allowed to be at the runway for take-off [3].

This research will focus on the Airport ATFM delay, which
is the ATFM delay issued at departure because of reasons at
or around the arrival airport of a flight. This can be due to
traffic congestion at the Estimated Time of Arrival (ETA) of
a flight, but there are many other reasons such as industrial
actions or ATC staffing. Recent years have shown that AAS is
the airport in the European air transportation system with the
highest number of Airport ATFM delay. The year 2019 even
showed numbers twice as high as the second airport in terms of
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Airport ATFM delay minutes [4]. Because of the complexity
of the network, but also the complexity of AAS itself, it is
difficult to find the main reason for this Airport ATFM delay
other than the breakdown presented by EUROCONTROL.
EUROCONTROL uses 16 ATFM delay codes. Over 2018
and 2019, 60% of the total airport ATFM delay was due to
Weather and 37% of the total airport ATFM delay was due to
Aerodrome Capacity. This research focuses on the latter, the
ATFM Aerodrome Capacity delay, which accounts for 614608
minutes for 2018 and 2019. The ATFM Aerodrome Capacity
delay can be operationally improved, whereas weather delays
are difficult to change. Additionally, AAS is the only hub air-
port in Europe that shows a high ATFM Aerodrome Capacity
delay. Providing insights for ATFM Aerodrome Capacity delay
could potentially lead to a reduction in delay minutes and a
better operation of the airport.

This research aims to find the main reasons contributing
to the high Airport ATFM delay and specifically ATFM
Aerodrome Capacity delay for AAS. The research objective is
formulated as follows. To get more insights into airport ATFM
delay and arrival delay for Amsterdam Airport Schiphol by
identifying the conditions that lead to airport ATFM delay or
arrival delay, understanding the interactions between opera-
tional parameters and identifying the parameters that influence
airport ATFM delay and arrival delay the most. Arrival delay
or total in-block delay, is included in the research objective
because many flights still arrive on time or even too early
despite the high number of airport ATFM delay minutes. As
ATFM Aerodrome Capacity delay is a part of the total arrival
delay, the interaction between the two delays is interesting
to study. The parameters that influence the ATFM Aerodrome
Capacity delay and total in-block delay will be studied, as well
as the combination of parameters that increase the chance of
ATFM Aerodrome Capacity delay or arriving too late. It will
also be studied whether a more detailed strategic planning can
result in a better predictability of arrival delay and a decrease
in ATFM Aerodrome capacity delay. Finally, the parameters
that can be changed in the operation of AAS to decrease the
ATFM Aerodrome Capacity delay are discussed as well as
future methods to decrease this delay.

A Bayesian Network (BN) will be used to provide the
insights for AAS. A BN is a probabilistic graphical model that
shows the dependencies between variables. For example, it can
be used to find dependencies that were previously unknown
and it can give insights into what combination of operational
variables lead to ATFM Aerodrome Capacity delay.

First, related work looking into ATFM delay is presented
in section II. More insights into the current operation of AAS
are presented in section III. Here, the scope of the research
is also presented. The methodology behind a BN and how
the BN is created is presented in section IV and section V
respectively. The results giving more insights into ATFM
Aerodrome Capacity delay are presented in section VI and
a further discussion is presented in section VII. Finally, the
conclusions of this research and recommendations for future
studies are presented in section VIII.

II. RELATED WORK

With the increase of air traffic worldwide, the demand
for ATFM systems has increased. ATFM is about balancing
demand and available capacity. This section will first present
an overview of ATFM related research and possible solutions
presented in the literature. Secondly, this section will motivate
the use of a BN to investigate the ATFM delay for AAS.

A. ATFM Delay Studies

ATFM is a complex process, which involves multiple stake-
holders and spans over a time period of several months.
Additionally, the execution of a flight includes multiple stake-
holders as well, such as en-route ATC of the countries a flight
crosses. This introduces stochasticity in the air transportation
system, where one approach may not pose a solution for
the overall problem. This section will first introduce several
methods used in literature to assess ATFM delay.

1) Strategic Planning: In Europe, strategic planning starts
6 months before a flight departs up to a few days. 6 months
in advance, airlines are allowed to file flight plans to EURO-
CONTROL. At this stage, it is difficult to create a profile
that matches the exact day of operation. However, as it can
be beneficial to have a detailed traffic profile far in advance,
decision support tools are created to support the strategic
planning phase. Several studies look at the concept of strategic
planning, for example to introduce a decision support tool
that includes capacity, airport geometry and ATC capacity
[5]. Weather remains a very influential parameter for delay,
which is included in the decision support tool by Zhang
et al. [6]. Optimization techniques such as Mixed-Integer
Linear Programming (MILP) are often applied to minimize
congestion, delays [7] or even to decrease uncertainty along
waypoints of a flight plan [8], which leans more towards
4D planning. Changing the strategic airport planning might
decrease the need for airport ATFM delay.

During strategic planning at AAS landing slots are issued
in 20-minute windows. Within this window uncertainty exists
about when a flight will actually arrive, but closer to the day
of operation more detail is applied. Nonetheless, the question
arises whether a smaller window during strategic planning, for
example 10 minutes, could decrease the airport ATFM delay
for AAS as it could result in a better distribution of arriving
traffic.

2) 4D Planning and Trajectory Based Operations: 4D
planning aims at knowing the 3D position of a flight over
time. This way the predictability of a flight could be increased.
A concept for 4D gate-to-gate planning was presented by
Jonge [9], where airlines should focus on a required time
of arrival. This requires good communication between all
stakeholders in air transportation. In recent years, 4D planning
is often combined with MILP or machine learning algorithms
to optimize planning. Some studies have the goal to minimize
ATFM delay, for example by looking at 4D trajectories during
planning [10]. Other studies try to include the human-in-the-
loop, by modeling the interaction between airlines and the
Network Manager (NM), which is the EUROCONTROL entity
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that manages the flow in the European network [11]. Machine
learning methods show to optimize 4D planning, but while 4D
planning and Trajectory Based Operations have the potential
to reduce ATFM delay, many are still not accurate enough to
model real operations [12].

3) Arrival Sequencing: Arrival sequencing focuses on the
final phase of the flight and some include the stochastic
behavior of air transportation. Current sequencing often comes
down to First-Come First-Served (FCFS). The separation
between flights is based on the wake turbulence category of
each aircraft and with FCFS the sequence can be such that
the runway throughput is not maximized. However, altering
the arrival sequence can affect multiple flights, so the overall
delay has to be minimized as well. Arrival sequencing is also
combined with machine learning algorithms in [13], [14], but
such studies do not always include stochasticity. Including
the stochastic behavior of the system could give a better
representation of real operations, which is covered in queuing
theory. Queuing theory applied to airport arrivals, models
aircraft arriving at an airport according to a certain probability
distribution and are handled according to the same or another
probability distribution. Many different queuing models are
presented in literature which all try to model a different and
ideally a more realistic approach [15]–[17]. Most of these stud-
ies show to improve the arrival sequence by minimizing delays
compared to actual operation. This could mean that an airport
could increase its nominal arrival throughput resulting in fewer
ATFM delays. However, changing the arrival sequences from
FCFS to something different can be difficult for ATC, as most
controllers work according to the FCFS principle.

4) Complex Systems: The air transportation system and its
subsystems are very complex. There are different stakeholders
and operators, which is also the case for AAS. Complexity
Science or Complex Network Theory (CNT) can be used
to find connections and interactions in a complex system,
which can also be applied to transportation systems. In CNT,
graph theory is often used to show the variables of a system
and the dependencies between them. Complexity science is
used to investigate air transportation, to study matters such
as uncertainty and emergent behavior [18]. It can be used
to find the interaction between variables, but in other studies
it is also used to study the resilience of the system. Again
machine learning algorithms are used, for example to study
the restorative performance after ATFM delay [19]. Network
Theory is also applied to ATM to get more insights into the
overall system [20]. As is presented in [18], there are many
ways to get a detailed understanding of complex systems,
among which are Bayesian Networks (BNs).

B. Bayesian Networks

In complex systems, it is often not one variable that leads
to degradation of the system, but rather a combination of vari-
ables that results in degradation. BNs represent the variables in
a system and their causal relationships, or conditional probab-
ilities, through graph theory. The interaction between these
variables is always one-directional, resulting in a Directed

Acyclic Graph (DAG). In a DAG all edges have one direction
and no nodes or variables are visited more than once [21]–[23].
The creation of a BN does require knowledge from the system
to establish the dependencies between variables. However,
BNs can also be created using a data-driven approach or a
hybrid approach through Structure Learning when the BN
structure is unknown. This will be explained in section IV. A
BN assumes that every variable is conditionally independent
of all its non-descendants, given all parents of this variable
[24].

Several studies used a BN to investigate air transport-
ation. Some focus on airlines, where complicated systems
for aircraft, crew, passengers and luggage all have to work
together. BNs have proven to provide more insights into such
systems [25], [26]. Rodríguez-Sanz et al. [27] present a study
to investigate departure delay for airports. A BN including
51 variables showed good performance for departure delay
prediction, and it proved to be insightful to find the main
contributors for departure delay. This BN was created using
operational data. Creating BNs from data can be a computa-
tionally intense process. Some studies show that combining
a learning algorithm with the Structure Learning algorithm
can decrease computational time and result in better departure
delay prediction [28]. Rodríguez-Sanz et al. [29] present a
study that uses a BN to get a better understanding of arrival
delay for airports. The focus in this study is on arrival
delay and airport congestion, the latter is expressed as the
percentage of capacity used. The BN in this study showed
good performance for arrival delay predictions and is finally
used to assess the reliability of the system.

BNs show to be useful in modeling real operations in air
transportation systems, including subsystems such as airlines
and airports, and are useful decision support tools under
uncertainty and with complex relations between variables.
BNs are also able to find main drivers behind delay types.
The reason for using a BN to address the ATFM aerodrome
capacity delay and arrival delay for AAS is further elaborated
in section III. The methodology will be further discussed in
section IV.

III. PROBLEM UNDERSTANDING

To provide a better understanding of the problem of ATFM
Aerodrome Capacity delay for AAS, it is important to have a
good understanding of what it is and what might cause it.

Over the time period of 2018 and 2019, 37% of the total
airport ATFM delay minutes for AAS were due to Aerodrome
Capacity reasons. Every instance ATFM regulations are issued,
the arrival capacity of AAS is reduced and ATFM delay is
assigned to some flights. In this period, 60% of all regulations
is due to Aerodrome Capacity reasons. So, 60% of the
ATFM regulations make up 37% of the total ATFM delay.
EUROCONTROL’s description of Aerodrome Capacity delay
is as follows: "Reduction in declared or expected capacity
due to the degradation or non-availability of infrastructure at
an airport. e.g. Work in Progress, shortage of aircraft stands,
etc. Or when demand exceeds expected aerodrome capacity"
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Figure 1: Daily ATFM Aerodrome Capacity delay vs. Daily total in-block
delay 2018-2019

[30]. This is a wide range of reasons and not very conclusive.
Therefore additional analyses are made on operational data
from AAS, Air Traffic Control the Netherlands (LVNL) and
EUROCONTROL to get a better understanding of the opera-
tion. It is important to note that ATFM delay can only be issued
for intra-European flights, as EUROCONTROL only controls
the traffic in the EU region. An inbound intercontinental flight
will never encounter ATFM delay from EUROCONTROL.
Two brief analyses are presented to give more insights into
delays and operational conditions for AAS.

1) ATFM Aerodrome Capacity delay and total in-block
delay: One would expect that an airport with many minutes
of ATFM Aerodrome Capacity delay, would have a poor
performance in terms of total in-block delay, the delay when
the aircraft arrives at the gate. When comparing the total
ATFM Aerodrome Capacity delay minutes and the total in-
block delay minutes over 2018 and 2019 per day, a relationship
can be seen that presents some interesting insights. In fig. 1
it can be seen that there are some days where the ATFM
Aerodrome Capacity delay is high, but the total in-block delay
is low, and vice versa, but there are also days when both delays
are high or low. From fig. 1, no clear relationship between
ATFM Aerodrome Capacity delay and total in-block delay can
be seen, which is unexpected. When looking at the total in-
block delay distribution in fig. 2, it can be seen that most of
the traffic arrives between -15 and +5 minutes of total arrival
delay. This indicates that a lot of traffic arrives on time or
slightly early. It could be the case that most of the ATFM
Aerodrome Capacity delay issued is absorbed during a flight,
by either flying faster, asking for directs to waypoints to make
the route shorter or by airlines using schedule buffers.

2) Scheduled, initial and actual arrivals: Comparing the
landing schedule, demand and actual arrivals for AAS provides
an interesting view. During an inbound peak, the nominal capa-
city of AAS is 68 aircraft per hour. However, when Aerodrome
Capacity regulations are issued, this is often lowered to 65

Figure 2: Total in-block delay distribution over 2018 and 2019 for AAS

aircraft per hour, indicating that less traffic can be handled
and hence, delays are issued. A day at AAS has 5 inbound
peaks and 6 outbound peaks to separate the departing and
arriving traffic. In fig. 3, the inbound traffic for AAS on a day
can be observed. Fig. 3a presents the actual inbound traffic
load in orange compared to the declared arrival capacity in
blue. Fig. 3b presents the inbound traffic load according to
the flight schedules in red, again compared to the declared
capacity in blue. Lastly, fig. 3c presents the inbound traffic
load on that day if no ATFM Aerodrome Capacity delay was
issued in green, compared to the declared arrival capacity
in blue. To give an accurate but smooth representation of
the inbound traffic, a rolling average is taken from a ±20
minute window for every 10 minutes for the actual arriving
traffic, the scheduled arriving traffic and the traffic if no ATFM
Aerodrome Capacity delay was issued. These values are also
multiplied by 6 to compare it to the capacity in AC/h.

During an inbound peak the traffic load increases, as ex-
pected. However, what sometimes happens is that the traffic
starts increasing before the inbound peak started, meaning that
the available capacity is exceeded, as can be seen in fig. 3a
during the first and third inbound peak. It can be seen that
on this particular day, the 8th of July 2019, the available
capacity in the inbound peak is sometimes exceeded and the
traffic is not evenly distributed in the inbound peaks, leaving
some capacity unused. This day had a total of 1286 ATFM
Aerodrome Capacity delay minutes. Even though this amount
of ATFM Aerodrome Capacity delay is not considered much,
the inbound traffic still exceeds the declared capacity.

To get a sense of where the demand comes from, fig. 3b
presents the airline schedules. A fairly uneven distribution can
be seen in the inbound peaks with some capacity imbalances.
It is also interesting to see what the inbound traffic would have
looked like if no ATFM Aerodrome Capacity delay was issued
for this day. Assuming no flights had Aerodrome Capacity
delay and were able to arrive at AAS without any disturbances,
it can be seen in fig. 3c that the first inbound peak would have
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(a) Actual inbound traffic per 10 minutes with a rolling average over a ±20 minute window compared to the declared arrival capacity

(b) Scheduled inbound traffic per 10 minutes with a rolling average over a ±20 minute window compared to the declared arrival capacity

(c) Inbound traffic without ATFM Aerodrome Capacity delay per 10 minutes with a rolling average over a ±20 minute window compared to the declared arrival capacity

Figure 3: Actual, scheduled and initial arrivals compared to the declared capacity

had serious capacity issues and that the third inbound peak
would have had quite some flights arriving too early. This is
partly mitigated by assigning Aerodrome Capacity delay as
can be seen in by the actual arriving traffic in fig. 3a, but
it differs a lot when compared to the schedules in fig. 3b.
Although this only illustrates one day of operations, it gives
an idea of the differences between the scheduled arrival times
and actual arrival times. Fig. 3 shows the effect of ATFM
Aerodrome Capacity delay, in this case flattening the traffic
in the first inbound peak which could have resulted in a more
disrupted operation. Nonetheless, the declared capacity is still
exceeded in the first inbound peak and the traffic could be
distributed better within the inbound peaks, indicating that
possibly more ATFM Aerodrome Capacity delay should have
been issued or other measures should have been taken.

Many variables have been compared to the ATFM Aero-
drome Capacity delay such as daily arrivals, early arrivals and
weather, yet none showed a strong correlation. As was stated in
section II, in a complex system it is often not one variable that
leads to degradation of the system, but rather a combination of
multiple variables. A thorough analysis showed no variables
had a strong relationship to ATFM Aerodrome Capacity delay,
stressing the complexity of ATFM Aerodrome Capacity delay.
To find the combination of variables that lead to the disruption,

the relations between variables need to be found. A stochastic
approach could provide insights from a different angle. This
can be achieved by applying a Bayesian Network. Thus, a BN
will be created as this has the potential to create more insights
into the reasons for Aerodrome Capacity delay for AAS.
Additionally, it was found that while Aerodrome Capacity
delay is issued often, many flights still arrive early or on time.
Hence, this research will also focus on the total in-block delay
to study this interaction.

IV. BAYESIAN NETWORK

This section will discuss the methodology used in this study.
It discusses the theory behind Bayesian Networks, Structure
Learning and how it will be applied to find the operational
conditions of interest. At the end of this section, a conceptual
framework is presented as the outline of the model creation.

A. Bayesian Network

Section II briefly touched upon the subject of Bayesian Net-
works. BNs are DAGs with nodes that represent the variables
and edges that represent conditional probabilities between two
nodes. Every variable is conditionally independent of all its
non-descendants, given the parents of this variable. In fig. 4
a simple representation of a BN can be seen, in this BN x3
and x4 are the parents of x5. Over a BN a joint probability
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Figure 4: Bayesian Network example

distribution can be found using eq. (1) [22]. In the case of the
BN in fig. 4 this results in eq. (2).

P (x1, x2, ..., xn) =

P (xn|xn−1, ..., x1) · · ·P (x3|x2, x1)P (x2|x1)P (x1) (1)

P (x1, x2, x3, x4, x5) =

P (x5|x4, x3)P (x4|x2)P (x3|x2, x1)P (x2)P (x1) (2)

In a BN, every variable has its own probability distribu-
tion. To know which variables influence each other, expert
knowledge is necessary to create the structure. The number
of possible BN structures grows super-exponentially with the
number of variables, which makes it difficult to create models
by hand for a large number of variables [31]. However, there
are also data-driven methods to establish the structure of a BN
when the structure is unknown.

B. Structure Learning

Structure Learning or Structural Learning (SL) aims at
finding the BN structure from a data set through an algorithm.
Several algorithms or scoring functions have been developed
over time, among which the K2 scoring function. This al-
gorithm is also available in the Python package pgmpy which
is used for this research [32]. Many studies find that the K2
algorithm performs best for large data sets and for finding
the best model structure to represent the data [33]–[36]. As
this research makes use of a large data set, the K2 algorithm
will be used in combination with a Hill-Climbing algorithm
to perform SL.

The K2 algorithm is a Bayesian Scoring function that
computes the posterior probability distribution and is aimed
at maximizing this value, it maximizes the probability that
BN B represents dataset T, so P(B|T). The K2 score is defined
in eq. (3).

K2(B, T ) = log(P (B))+
n∑

i=1

qi∑

j=1

(
log

(
(ri − 1)!

(Nij + ri − 1)!

)
+

ri∑

k=1

log(Nijk!)

)
(3)

Instead of looking for linear or exponential relationships
between variables, the algorithm looks at occurrences between
possible parent configurations qi, with occurrences where
variable xi takes on state k. A parent configuration is a
possible combination of parents, where every parent takes on
a specific state. If the state of one parent changes it is a
different parent configuration. So for variable i there can be a
parent configuration j, the occurrences of parent configuration
j for variable i are denoted by Nij . This does not include the
state of variable i itself. If variable i were to take state k
every time for possible parent configuration j, Nijk is equal
to Nij . That would mean that Nijk for every other state
( 6= k) of variable i equals zero, because Nij =

∑ri
k=1Nijk.

Because of the factorial in the last factor of eq. (3), a parent
configuration for which variable i always takes state k, results
in a higher score compared to a scenario where for the same
parent configuration, variable i takes on each of its states
equally often. All states of variable i are denoted by ri, and
n denotes all variables in the data set. New edges are added
to the model if these increase the current model score. This
process continues until no more edges can be added, the score
can no longer be increased or until the maximum number of
parents per node, if specified, is reached. For Bayesian Scoring
functions, a uniform distribution is assumed resulting in a
constant value for log(P (B)), which is then removed [33],
[36].

SL is the purely data-driven way of finding the model
structure, this study will make use of a hybrid method, where
an initial DAG is created from expert knowledge which serves
as the foundation for the SL algorithm. Additionally, a so-
called blacklist is defined that included relations between
variables that may never be added.

C. Inference and Variable Elimination

In a BN, evidence can be entered for any variable which
will change the probability of the states other variables might
take in the model, also the parents of the variable. This
concept can be used to study how the probability distribution
of for example the total in-block delay changes, given the
evidence that it is a flight from a network carrier. Or one
could study the ATFM Aerodrome Capacity delay given the
evidence of certain operational conditions [23]. Such inference
or queries can take different forms and can be calculated using
Variable Elimination (VE). In the inference query, one can
specify evidence for certain variables and define the variables
of interest, which could mean variables are left that are neither
evidence or of interest and have to be eliminated. When
looking at fig. 4 it could be the case that x2 and x3 are the
variables that are neither evidence or of interest. Eliminating
variables can be done by summing over the variables one
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wants to eliminate. Using the rule for conditional probabilities
in eq. (4) an example can be found for the BN in fig. 4. Say
one is interested in finding the probability for x1, given x4 and
x5, P (x1|x4, x5). This can be rewritten using eq. (5), now
P (x1, x4, x5) can be found which is done by summing out
variables x2 and x3 as is presented in eq. (6) [37]. Summing
over the variables that are not of interest yields real numbers
hence at the end of eq. (6) only a function of the variables of
interest is left. By normalizing the values for P (x1, x4, x5),
P (x1|x4, x5) can be found. This is a simple example, but
when the number of variables in a BN increases, this method
becomes increasingly difficult and computationally intense.

P (A|B) =
P (A,B)

P (B)
(4)

P (x1|x4, x5) =
P (x1, x4, x5)

P (x4, x5)
(5)

P (x1, x4, x5) =
∑

x2,x3

P (x1, x2, x3, x4, x5) (6)

=
∑

x2,x3

P (x5|x4, x3)P (x4|x2)P (x3|x2, x1)P (x2)P (x1)

= P (x1)
∑

x3

P (x5|x4, x3)
∑

x2

P (x4|x2)P (x3|x2, x1)P (x2)

= P (x1)
∑

x3

P (x5|x4, x3)λx2
(x4, x3, x1)

= P (x1)λx3
(x5, x4, x1)

D. Conceptual framework

Getting to the final version of the BN is a step-wise and
iterative approach that is presented in fig. 5. The first step
of getting to the model is to acquire data. Data from AAS,
LVNL, KNMI and EUROCONTROL is combined from which
several interesting variables have been defined to use in the
model. Next, the baseline model is constructed based on expert
knowledge, this is validated by experts from the industry
as well. Before moving on to SL, first a blacklist has to
be defined, which is done through manually inspecting and
identifying relationships that are not allowed to be added in
the model. Using this, in combination with the baseline model,
SL can be applied to find new relationships and a model that
best represents the data. The edges in this model have to be
validated, if there are edges that are illogical these are added
to the blacklist and the SL process has to be executed again.
Once all edges are validated, based on expert knowledge, the
final model is found. The data has to be fitted on this model
to establish the conditional probabilities between the variables,
after which the model can be used for inference and variable
elimination, and to find the results.

V. MODEL

Section II and section IV provided insights in the meth-
odology behind BNs. This section discusses the construction
of the baseline model and the final model. First, information
regarding the data and the assumptions are presented. This is
followed by the baseline model, structure learning, verification
and validation of the model.

A. Data acquisition and variables

Before constructing the model, relevant data is gathered.
By combining arrival data of almost 500000 arrivals over
2018 and 2019 from AAS, LVNL and EUROCONTROL,
many interesting data points can be found. For the model
28 variables are identified. As some of these variables are
continuous variables, these are discretized either manually or
divided into equal-sized bins based on occurrence. From the
EUROCONTROL data only the ATFM Aerodrome Capacity
delay is taken as this is the only form of ATFM delay of
interest for this research. An overview of the variables and
their discretization can be seen in Appendix A. In Appendix A
the time resolution of the variables can be seen, for example
the arrival congestion index is calculated for every 10 minutes.
It is also stated if and how far in advance the variables are
known. There are a few variables that need further explanation.

Cloud density: This value is an indicator of how cloudy it is.
It does not address the cloud base or visibility, it simply grades
the skies from being completely clear (0) to fully cloudy (9).

Meteo conditions: This value represents the meteorological
conditions and includes horizontal and vertical visibility. The
last value in the discretization, BZO, indicates very limited
visibility.

Actual arrival congestion index: For every 10 minutes,
the percentage of capacity used is calculated. The capacity
changes accordingly with ATFM regulations. It is assumed
that if the declared capacity is exceeded, that ATC has a high
workload.

Scheduled arrival congestion index - 20 minute window:
This value is similar to the actual arrival congestion index,
but in this case it is the percentage of nominal capacity used
according to the arrival schedule, so the congestion index
according to planning. Instead of 10 minutes, this value is
calculated every 20 minutes as AAS issues strategic landing
slots based on 20-minute windows. These windows are fixed
and are in the form of [09:00h-09:20h, 09:20h-09:40h, 09:40h-
10:00h, etc.]. It is expected that if the 20-minute window is
decreased to for example a 10-minute window, that this could
possibly lead to a decrease in ATFM Aerodrome Capacity
delay [38] and a better predictability of arriving traffic. As the
official strategic planning data is unavailable, it is assumed
that this value is similar to the actual arrival schedule, which
was confirmed by experts from AAS.

Heavies in the mix: For every 10 minutes the percentage
of aircraft from the wake turbulence category heavy or super
heavy in the arrival sequence is calculated. More heavy aircraft
means that aircraft have to keep a larger distance to the leading
aircraft which could result in a decrease in arrival throughput.
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Figure 5: Conceptual framework

Daily number of arrivals: The daily number of arrivals
is the number of flights that actually arrived that day. It
is assumed that the total number of flights that will arrive
that day is known in the morning, also on days with many
cancellations.

Runway configuration type: Over 2018 and 2019, 122
unique runway configurations were used. For computational
reasons, the categorical variable runway configuration type is
introduced with only 9 states.

Estimated schedule buffer: Sometimes even though ATFM
Aerodrome Capacity delay, or some other form of ATFM
delay, is issued, a flight still arrives on time or even too early.
One explanation for this could be that airlines use schedule
buffers, where additional time is added to anticipate possible
delays and to make sure passengers can still arrive on time,
which is important for a hub airport like AAS [3]. The buffers
are unknown, but an estimation can be made. By assuming that
a schedule buffer is never smaller than 0 and never larger than
100 minutes, and by only looking at flights with less than 30
minutes of total in-block delay, the value can be estimated.
This is done by using eq. (7), where the initial time of arrival
can be found by subtracting the ATFM Aerodrome Capacity
delay and FIR delay from the Actual Time of Arrival (ATA),
this is the time the flight would have arrived were it not
delayed. By subtracting the initial time of arrival from the
Schedule Time of Arrival (STA), a schedule buffer can be
found. This value also includes any other reason why a flight
arrives early, such as flying faster, tailwind or directs.

Schedule buffer estimate = STA− (ATA−
ATFM Aerodrome Capacity delay− FIR delay) (7)

Total in-block delay: The value is defined as the difference
between actual arrival time at the gate and the scheduled
arrival time at the gate. This value includes ATFM Aerodrome
Capacity delay, FIR delay, taxi time and other delays possibly
encountered during the operation of a flight.

ATFM Aerodrome Capacity delay: The data used for the
model is data per flight. So, the operational conditions are
used at the ATA of a flight, as over small time windows
the conditions do not differ much. However, this assumption
can have an influence on the operational conditions that lead
to ATFM Aerodrome Capacity delay because, if a flight
is assigned for example 10 minutes of ATFM Aerodrome
Capacity delay, it would initially have arrived 10 minutes
before its current ATA. The conditions at this initial time of
arrival are the conditions that lead to the ATFM Aerodrome

Capacity delay, assuming that the ETA that EUROCONTROL
uses for ATFM delay matches the initial arrival time of a flight.
To see the effect of this assumption, the operational conditions
are compared between the ATA and the initial arrival time
of every flight that was issued ATFM Aerodrome Capacity
delay in Appendix C. There are two main implications of
this assumption. First, the heavies in the mix seem slightly
underestimated, 6% of the flights with ATFM Aerodrome
capacity delay would have encountered a higher number of
heavies in the mix. Secondly, 3.5% of all flights that have been
issued AFTM Aerodrome Capacity delay would otherwise
have arrived during a departure peak but are pushed back to
consecutive arrival peak.

B. Baseline model

The baseline model can be seen in fig. 6. This model is
constructed using expert knowledge. The nodes displayed in
blue are the nodes that represent the operational conditions at
AAS such as the runway configuration or arrival congestion
index. The nodes displayed in green are the flight-specific
variables, such as departure airport and total in-block delay.

The ATFM Aerodrome Capacity delay is believed to be
influenced by the scheduled arrival congestion index (as this
could give an estimation of how congested it will be), the
actual arrival congestion index (this value shows the capacity
used), the declared rate (under ATFM regulations the arrival
rate for AAS is often lowered) and lastly, by the departure
continent of a flight (as EUROCONTROL only has jurisdiction
over its member states).

The total in-block delay is believed to be influenced by the
parameters that make up part of the delay, so the ATFM Aero-
drome Capacity delay, FIR delay, taxi time and the estimated
schedule buffer. Additionally, it is believed that the total in-
block delay is influenced by the cumulative delay throughout
the day, so cumulative delayed flights and cumulative delay
minutes, as well as the total number of flights that will arrive
that day.

C. Structure learning

The baseline model provides a knowledge based foundation
for further exploration of causality between variables. Before
applying the SL algorithm, first a blacklist is defined. A
blacklist defines all edges that the SL algorithm is not allowed
to add, for example, the actual arrival congestion index does
not influence what month it is, as the month is a time variable.
But the other way around, the month of the year could
influence the actual arrival congestion index, as it is often
busier in the summer season. The complete blacklist can be
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Number Variable

1 Month number

2 Day of the week

3 Hour of the day

4 Moment of the day

5 Inbound peak number

6 Wind direction

7 Average wind speed

8 Cloud density

9 Meteo conditions

10 Runway configurations

11 Runway configurations type

12 Landing runway

13 Taxi time

14 Scheduled arrival congestion 

index - 20 minute window

15 Actual arrival congestion 

index

16 Heavies in the mix

17 Declared arrival rate

18 Cumulative delay minutes 

since start of the first inbound 

peak

19 Cumulative delayed flights 

(>15 minutes) since start of 

the first inbound peak

20 Daily number of arrivals

21 Departure airport

22 Airline type

23 Continent

24 Wake turbulence category

25 Estimated schedule buffer

26 FIR delay

27 ATFM Aerodrome Capacity 

delay

28 Total in-block delay

Figure 6: BN Baseline Model

found in Appendix A, it contains 441 edges. If every node
were to be connected to every other node, all 28 nodes would
have 27 outgoing edges because the edges are directional. This
results in 28 ∗ 27 = 756 possible edges. Subtracting the edges
in the blacklist and the edges of the baseline model twice,
because of the directional property of a DAG, it leaves the
algorithm with a search space of 229 edges that could be
added.

Ideally, one would apply SL for the entire data set. However
on a data set incorporating almost 500000 flights this becomes
vastly computationally heavy. Yet, a larger data set is preferred
as taking a small random sample from the data set could lead
to a one-off variable combination and hence, false findings for
causal relationships. Using an iterative approach, it was found
that defining a maximum number of parents is computationally
advantageous and hence provides the opportunity to use a large
data set. Defining a maximum number of parents allows for a
maximum data set size of roughly 150 days of arrivals. The
K2 scores per model specification are shown in table I. It can
be seen that compared to the baseline model, the SL model has
an increased score. Above a maximum number of 7 parents,
no additional edges are added to the model, so the score is
not increased. Hence, the best model is the one where the
maximum number of parents equals 7, resulting in a score
of −13140641. The maximum number of parents above 7
is interesting, as the actual arrival congestion index in the
baseline model already has 7 parent variables. So the value
of maximum parents above 7 shows whether or not the actual

arrival congestion index needs more parents to increase the
score, this is also the case for total in-block delay.

The final model can be seen in fig. 7. The final model is
further discussed in section VI.

Table I: Overview Structure Learning models and Scores

Model specifications K2 score

Baseline model −15.57 · 106

Structure Learning, maximum parents = 5 −13.32 · 106

Structure Learning, maximum parents = 6 −13.18 · 106

Structure Learning, maximum parents = 7 −13.14 · 106

Structure Learning, maximum parents = 8 −13.14 · 106

D. Verification

Verification of the model is performed throughout the re-
search. The main thing to look for in verifying the BN, is to
see whether the model responds as expected for certain input
variables. For example, a flight with a large estimated schedule
buffer, is expected to have a high chance of arriving too early.
The verification is done through a sensitivity analysis, which
is also part of the results, that can be found in section VI.

E. Validation

Validating the BN is performed in multiple steps. In Ap-
pendix A, it is shown that the number of blacklist edges is
high, so it is easy to miss one as these have to be defined
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Number Variable

1 Month number

2 Day of the week

3 Hour of the day

4 Moment of the day

5 Inbound peak number

6 Wind direction

7 Average wind speed

8 Cloud density

9 Meteo conditions

10 Runway configurations

11 Runway configurations type

12 Landing runway

13 Taxi time

14 Scheduled arrival congestion 

index - 20 minute window

15 Actual arrival congestion 

index

16 Heavies in the mix

17 Declared arrival rate

18 Cumulative delay minutes 

since start of the first inbound 

peak

19 Cumulative delayed flights 

(>15 minutes) since start of 

the first inbound peak

20 Daily number of arrivals

21 Departure airport

22 Airline type

23 Continent

24 Wake turbulence category

25 Estimated schedule buffer

26 FIR delay

27 ATFM Aerodrome Capacity 

delay

28 Total in-block delay

Figure 7: BN Structure Learning Model

manually. So after the SL algorithm finds the model structure,
it has to be visually inspected whether all relations added to
the model are logical. This is cross-validated with experts from
the industry, both from AAS and LVNL.

The BN is trained on real operational data. Validation
is often done using predictions. For this research, the data
set is split into 3 different parts. First, 3 days are chosen
with a different number of ATFM Aerodrome Capacity delay
and total in-block delay minutes. The reason for choosing 3
specific days is that for a stochastic system such as an airport,
it is possible to look at the predictions per flight but also at
the delay distribution throughout the day. A morning flight
that arrives for example from Asia, will not always have the
same amount of delay, as there are still many other variables
during the operation of a flight that influence the delay. The
data used to train the model is 95% of the remaining data and
the other 5% can be used for predictions.

Predicting delays is not the main goal of this research, so
both the predictions on a flight by flight basis as well as the
distributions over a day of operation are compared. Two types
of predictions are compared, first the stochastic predictions
based on the predicted probability distribution, and second the
Maximum a Posteriori (MAP) predictions, which will always
pick the variable state with the highest probability according to
the predicted probability distribution, also when the differences
are small. The predictive accuracy of these three days is
presented in table II. The predictive performance of the ATFM
Aerodrome Capacity delay is high, often around 90% except

for the predictions on the day with high ATFM Aerodrome
Capacity delay minutes. The predictive performance of the
total in-block delay is poor, sometimes slightly below 50%,
but the predictability seems to be higher on days with a
high number of total in-block delay minutes. Appendix D
presents the predicted and actual delay distributions over these
three days. MAP predictions show somewhat higher predictive
performance as a stochastic prediction chooses a value based
on the probability distribution hence, a value of 30% actually
has a 30% chance of being chosen, which is not the case
with MAP predictions if another value is higher. However,
when looking at a day of operations, the stochastic predictions
show a better delay distribution for both ATFM Aerodrome
Capacity delay and total in-block delay compared to the MAP
predictions as can be seen in Appendix D. So while the
predictive performance of the total in-block delay on a flight
by flight basis for both MAP and stochastic predictions is
low, a day of operations can be accurately modeled by using
stochastic predictions.

For 1000 randomly chosen flights, the MAP predictions
show an average predictive accuracy of 50% for the total in-
block delay and 90% for ATFM Aerodrome Capacity delay.
The stochastic predictions show a predictive accuracy of 37%
for the total in-block delay and 84% for ATFM Aerodrome
Capacity delay, but again a good delay distribution. In 75% of
the cases for total in-block delay and in more than 93% of the
cases for ATFM Aerodrome Capacity delay, the predictions
are only one bin off.

12



Table II: Predictive accuracy of the Bayesian Network

MAP predictions Stochastic predictions

Day
Total in-block

delay

ATFM Aerodrome

Capacity delay

Total in-block

delay

ATFM Aerodrome

Capacity delay

Total in-block

delay

ATFM Aerodrome

Capacity delay

21-12-2018 High Low 72% 94% 50% 87%

23-07-2019 Low Low 59% 96% 43% 89%

13-09-2019 Low High 48% 56% 40% 54%

VI. RESULTS

The results section discusses four aspects. First, it discusses
the final model and the parameters that influence the ATFM
Aerodrome Capacity delay and total in-block delay. Secondly,
the operational conditions that lead to an increased chance of
ATFM Aerodrome Capacity delay or an increased chance of
arriving too late are looked into. After this, the sensitivity of
some parameters is looked into to see which parameters have
the most influence on the ATFM Aerodrome Capacity delay or
total in-block delay. Finally, it is studied whether decreasing
the window size for strategic planning from 20 minutes to 10
minutes increases the predictability of the total in-block delay
for the BN.

A. Parameters of influence

The final BN is presented in fig. 7, the operational variables
of AAS are displayed in blue and the flight specific variables
in green. This model has 91 edges compared to the 43 edges
in the baseline model. SL finds variable relations which were
previously unknown or at least thought to have little effect,
such as the edge between wake turbulence category and taxi
time. It also shows that the ATFM Aerodrome Capacity delay
seems to influence the estimated schedule buffer, and the same
goes for the departure airport of a flight.

It is remarkable to see that the two main variables of interest,
ATFM Aerodrome Capacity delay and total in-block delay are
not influenced by any other variables than the ones defined in
the baseline model. For the ATFM Aerodrome Capacity delay
this could be explained by one of the earlier findings where
hardly any correlation between ATFM Aerodrome Capacity
delay and other variables could be found.

B. Operational conditions

To find the operational conditions that could potentially
lead to an increased chance of the two delay types, queries
are created with evidence for several operational variables.
The operational conditions consist of a combination of the
following variables:

• Month number
• Day of the week
• Hour of the day
• Day moment
• Inbound peak number
• Meteo conditions
• Runway configuration

• Runway configuration type
• Scheduled arrival congestion index
• Actual arrival congestion index
• Heavies in the mix
• Declared arrival rate
• Cumulative delay since the start of the first inbound peak
• Cumulative delayed flights since the start of the first

inbound peak
• Daily number of arrivals

Using this evidence, the queries are created where the
probability distributions for ATFM Aerodrome Capacity delay
and total in-block delay are inspected. As random sampling
for every variable could lead to impossible variable combin-
ations, for example for hour of the day and day moment,
random samples are drawn from all unique combinations of the
evidence variables. This results in a little over 73000 unique
operational conditions. Before diving into the details regarding
the operational conditions, first the overall probability distri-
butions of the ATFM Aerodrome Capacity delay and total in-
block delay must be inspected to find the values for which
the chance of any of the two delay types is considered high.
When looking at fig. 8, it can be seen that on average the
probability of 0 minutes ATFM Aerodrome Capacity delay is
high, namely 93%. This distribution can be explained as there
is never an operational scenario where all arriving flights will
have ATFM Aerodrome Capacity delay. For this reason, the
conditions where the probability of 0 to 10 minutes of ATFM
Aerodrome Capacity delay is equal to or higher than 10% is
looked into, as this is already considered much higher than
the average (3.3%). For the total in-block delay in fig. 9 it
can be seen that the probability distribution is more evenly
distributed on average. On average the probability of arriving
too late, more than 15 minutes, is 22%. Hence, the conditions
where the chance of arriving too late is considered high are the
conditions where the chance of arriving more than 15 minutes
late is at least 30%. A flight that is more than 15 minutes late
is officially considered as a late arrival.
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Figure 8: Average probability distribution of ATFM Aerodrome Capacity
delay over 4594 operational conditions

Figure 9: Average probability distribution of Total In-Block delay over 4594
operational conditions

For the results 4594 operational conditions are modeled. Out
of these conditions, 438 conditions have an increased chance
of ATFM Aerodrome Capacity delay and 987 conditions have
an increased chance of arriving more than 15 minutes late.
This part will focus on the parameters that stand out. Side by
side comparisons are made between the conditions that result
in a higher chance of ATFM Aerodrome Capacity delay and
the conditions that could result in a higher chance of arriving
too late.

Scheduled arrival congestion index: In fig. 10 the difference
in the scheduled arrival congestion index for the two condi-
tions can be seen. As the total number of operational condi-
tions differs, both the count and the percentages are presented
in all figures. What can be seen in more than 75% of the
observed conditions, is when the chance of ATFM Aerodrome
Capacity delay is high, the scheduled arrival congestion index
is often between 75% and 100%. For a high chance of arriving
too late, this is not the case, as a high chance of arriving too
late happens under all scheduled arrival congestion indices and
even slightly less for conditions where the scheduled arrival
congestion index exceeds 100%.

Actual arrival congestion index: When looking at the actual
arrival congestion index, a shift compared to the scheduled
arrival congestion index can be observed. Analyzing the condi-
tions where the chance of ATFM Aerodrome Capacity delay is
high, it can be seen that the scheduled arrival congestion index
is often between 75% and 100%. However, when looking at
the actual arrival congestion index in fig. 11, this value is
often higher than 100% indicating that the declared capacity
is exceeded. Again, aircraft that arrive too late occur under all
arrival congestion indices, although an increase for the value of
over 100% can be observed compared to the scheduled arrival
congestion index. It is important to note that the scheduled
arrival congestion index spans across a 20-minute window,
which is used during strategic planning at AAS, whereas
the actual arrival congestion index spans across a 10-minute
window to add more detail.

Heavies in the mix: It is interesting to see what the traffic
mix looks like, as more heavy aircraft could reduce the arrival
throughput in arrival sequencing. What can be seen in fig. 12,
is when the chance of having either of the two delays, there are
often only 11% heavy aircraft in the mix or less for every 10
minutes. Nonetheless, it must be noted that when the chance
of ATFM Aerodrome Capacity delay is high, 51% of the
occurrences show less than 11% heavy aircraft in the traffic
mix. This indicates that in almost half of the occurrences with
a high chance of ATFM Aerodrome Capacity delay, there are
more than 11% heavy aircraft in the mix. When the chance
of arriving more than 15 minutes late is high, only 27% of
the occurrences show more than 11% heavy aircraft in the
mix. More heavy aircraft could decrease the arrival throughput
due to larger separation during landing. Most intercontinental
flights which are heavy aircraft arrive in the morning, but are
not subject to ATFM delays.
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure 10: Comparison of the scheduled arrival congestion index - 20 minute window

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure 11: Comparison of the actual arrival congestion index

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure 12: Comparison of the heavy aircraft in the traffic mix
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure 13: Comparison of the arrival or departure peaks

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure 14: Comparison of the cumulative delayed flights

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure 15: Comparison of the cumulative delay minutes
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Inbound peaks: When looking at the departure or arrival
peaks under conditions of an increased chance of ATFM
Aerodrome Capacity delay or an increased chance of arriving
too late, a large difference can be seen. From fig. 13 it can be
seen that a high chance of ATFM Aerodrome Capacity delay
often occurs in the first inbound peak of the day, whereas
a high chance of arriving too late is often either in the last
inbound or outbound peak, or in peak 0 which is an off-peak
or during the night. Interestingly enough, it seems that even
though the first inbound peak occurs most often when the
chance of ATFM Aerodrome Capacity delay is high, the first
inbound peak never occurs when the chance of arriving too
late is high. This seems counter-intuitive, as one would expect
the ATFM Aerodrome Capacity delay leads to total arrival
delay as well.

Cumulative delay: Finally, when looking at the cumulative
delayed flights throughout the day and the cumulative delay
minutes throughout the day, some large differences can be
observed as well. What can be seen in fig. 14, is that when
the chance of ATFM Aerodrome Capacity delay is high, often
only 9 flights or less arrived too late. When the chance of
arriving too late is high, this is often the other way around. It
seems that when many flights arrived too late, the chance of
arriving too late is high as well. Something similar can be seen
in fig. 15. However when the chance of ATFM Aerodrome
Capacity delay is high, there is often some positive cumulative
delay. When again looking at the conditions where the chance
of arriving too late is high, the cumulative delay minutes are
often in the highest bin, again indicating a disrupted operation.
The negative values for cumulative delay minutes indicate
flights arriving early.

A comparison of all variables listed in the beginning of this
section can be found in Appendix B.

C. Sensitivity analysis

With 28 variables in the Bayesian Network, it is interesting
to investigate the sensitivity of some of these with respect
to the ATFM Aerodrome Capacity Delay and total in-block
delay. Again, similar operational conditions as for the previous
results are used as evidence, but now some flight-related
variables are added to the evidence such as airline type and
estimated schedule buffers. Keeping the operational conditions
constant, all possible states of the variable of interest are used
to find the effect of changing only one variable. By doing
this for multiple operational conditions, the average effect
of changing the variable can be found. The same thing can
be done for the operational variables, however, no additional
variables have to be added to the operational conditions. This
section also serves as a verification of the model.

For every variable discussed in this section, 40 different
operational conditions are simulated after which the average
is taken over the probability of the different states for ATFM
Aerodrome Capacity delay and total in-block delay. In the
figures that follow, every color adds up to 100%, for example
in fig. 16 it can be seen that if the estimated schedule buffer is
between 0 and 10 minutes (blue), there is a 40% chance that

the flight will arrive more than 15 minutes late, a 20% chance
that the flight will arrive with +5 to +15 minutes of delay, a
25% chance that the flight will arrive with -5 to +5 minutes of
delay, almost a 10% chance that the flight will arrive with -15
to -5 minutes of delay and almost a 5% chance that the flight
will arrive with -15 minutes of delay or earlier, summing up
to 100%.

Estimated schedule buffer: The estimated schedule buffer as
defined in section V is expected to strongly influence the total
in-block delay, it could potentially nullify the ATFM Aero-
drome Capacity delay issued on departure. The results shown
in fig. 16, are as expected. For high values of the estimated
schedule buffer, the probability of arriving 15 minutes early
or more significantly increases. Even with a schedule buffer
of 10 to 20 minutes, the chances of arriving between -15 and
+5 minutes sum up to 83%. Only those flights with a schedule
buffer between 0 and 10 minutes, show a high chance of
arriving too late, 40% on average. This parameter seems very
sensitive towards total in-block delay. While the BN after using
SL showed a relationship between ATFM Aerodrome Capacity
delay and the estimated schedule buffer, no strong effects on
the Aerodrome Capacity delay can be seen by changing the
estimated schedule buffer (fig. 17). Nonetheless, it seems as if
a flight with an estimated schedule buffer above 10 minutes has
a slight increase in the probability of having ATFM Aerodrome
Capacity delay.

Figure 16: Sensitivity of estimated schedule buffer with respect to total
in-block delay
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Figure 17: Sensitivity of estimated schedule buffer with respect to ATFM
Aerodrome Capacity delay

Airline type: From the sensitivity analysis it was found
that a Low-Cost Carrier (LCC) or a Network carrier have a
slightly higher chance of ATFM Aerodrome capacity delay
when compared to the other airline types as can be seen in
fig. 18, but the differences are small, less than 5%. LCC and
Network carriers also have a slightly higher chance of arriving
between -15 and +5 minutes when compared to Charter and
Cargo airlines as can be seen in fig. 19. The differences for
every total in-block delay bin are small, it does not seem like
there is one airline type that often arrives earlier or later than
another.

Figure 18: Sensitivity of airline type with respect to ATFM Aerodrome
Capacity delay

Figure 19: Sensitivity of airline type with respect to total in-block delay

Taxi time and Landing runway: There are two variables that
are both flight specific and operational. Taxi time and landing
runway differ per flight, but strongly depend on the operational
conditions at AAS. It is expected that landing at runway 18R
for example, leads to a higher taxi time and hence a higher
in-block delay compared to other runways. Similarly, a high
taxi time is expected to result in a higher total in-block delay.
For the landing runways, only the top 4 most used landing
configurations are used to zoom in on the most used landing
runways. The most used landing configurations are: Landing:
18R/18C - Take-off: 18L, Landing: 18R/18C - Take-off: 24,
Landing: 06/36R - Take-off: 36L and Landing: 36R/36C -
Take-off: 36L. From fig. 20 it can be seen that the landing
runway of a flight does not strongly influence whether or not
a flight has ATFM Aerodrome Capacity delay. When looking
at the sensitivity towards the total in-block delay in fig. 21, it
can be observed that the runway with the highest probability
of arriving with -5 minutes of delay or more, compared to
the other runways, is when aircraft land on runway 18R. The
location of runway 18R is quite far from the terminal, hence
the taxi time is large. When comparing this to runway 06
or 36R it can be seen that the probability of arriving late is
much lower, a landing on runway 06 or 36R sums up to a
probability of 53% for both runways individually, of arriving
with -5 minutes of delay or less. Landing on these runways
allows a flight to exit the runway and almost immediately
be at the gate. In terms of taxi time, as expected, no strong
relationship was found with ATFM Aerodrome Capacity delay.
When looking at the sensitivity of taxi time with respect to
the total in-block delay, it can be seen that for a longer taxi
time, the chance of arriving too late is higher, and vice versa
(fig. 22). On average, a taxi time of over 12 minutes yields a
probability of 25% of arriving more than 15 minutes late, and
a taxi time of 5 minutes or less yields a probability of 29%
of arriving 15 minutes or more ahead of time.
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Figure 20: Sensitivity of landing runway with respect to ATFM Aerodrome
Capacity delay

Figure 21: Sensitivity of landing runway with respect to total in-block delay

Figure 22: Sensitivity of taxi time with respect to total in-block delay

Arrival congestion indices: In the previous section it was
found that the scheduled arrival congestion index and the
actual arrival congestion index are often high when the chance
of ATFM Aerodrome Capacity delay is high. Therefore, the
sensitivity of these two values is also studied. The two arrival
congestion indices are also modeled for the most used runway
configurations to test the effects under common operations.
Very little effect is observed in the total in-block delay when
changing either of the two arrival congestion indices. However,
a strong effect is observed when testing the sensitivity towards
the ATFM Aerodrome Capacity delay. First, when looking
at the scheduled arrival congestion index, it can be seen in
fig. 23 that as the scheduled arrival congestion index becomes
larger, so does the probability of ATFM Aerodrome Capacity
delay. A scheduled arrival congestion index of over 100%
yields a 9% probability of having 0 to 10 minutes of ATFM
Aerodrome Capacity delay on average. An even stronger effect
can be seen for the actual arrival congestion index in fig. 24,
where an actual arrival congestion index of over 100% yields
a probability of 13% of having 0 to 10 minutes of ATFM
Aerodrome Capacity delay. This shows that the percentage
of capacity used seems to relatively strongly influence the
probability of ATFM Aerodrome Capacity delay.

Figure 23: Sensitivity of scheduled arrival congestion index with respect to
ATFM Aerodrome Capacity delay
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Figure 24: Sensitivity of actual arrival congestion index with respect to
ATFM Aerodrome Capacity delay

ATFM Aerodrome Capacity delay: The relationship
between the ATFM Aerodrome Capacity delay and total in-
block delay has not been found yet. Hence, sensitivity analysis
is performed on how changing the ATFM Aerodrome Capacity
delay changes the probability distribution of the total in-block
delay. The results can be seen in fig. 25. What can be seen,
is that for high amounts of ATFM Aerodrome Capacity delay,
20 minutes or more, the probability of arriving more than 15
minutes late is highest. However, with an ATFM Aerodrome
Capacity delay between 20 and 30 minutes, there is still only
a 35% chance of arriving more than 15 minutes late. This
indicates that the chance is still 65% of arriving with less
than 15 minutes of delay. With 0 to 10 minutes of ATFM
Aerodrome Capacity delay, the probability of arriving between
-15 and +5 minutes of delay is the highest. Even with 10 to
20 minutes of ATFM Aerodrome Capacity delay, the bin with
the highest probability of 30% is -5 to +5 minutes of delay.
The chance of actually arriving late given an amount of ATFM
Aerodrome Capacity delay, is relatively small. With more than
30 minutes of ATFM Aerodrome Capacity delay, one would
expect that the probability of arriving more than 15 minutes
late is high, but it is still only 49%. Fig. 25 shows that ATFM
Aerodrome Capacity delay does not have to result in a late
arrival, it seems that it is often absorbed by applying schedule
buffers, or by pilot actions.

Figure 25: Sensitivity of ATFM Aerodrome Capacity delay with respect to
total in-block delay

D. Changing the scheduled arrival congestion index window

A relatively simple study was performed to see whether
providing the scheduled arrival congestion index in a smaller
window could increase the predictive performance of total in-
block delay in the model. It is believed that a better predictab-
ility of the traffic could lead to a decrease in ATFM Aerodrome
Capacity delay. This is done by modeling predictions using a
part of the validation data, and by modeling predictions on
that same data, where the scheduled arrival congestion index
is substituted with the value that is calculated for every 10
minutes, instead of every 20 minutes. The 20 minute values
and 10 minute values are only equal in 38% of the cases, the
values for the 10 minute window shows strong fluctuations
indicating that while the traffic might fit the 20 minute window,
it is concentrated in the first or second half of the window.

Only MAP predictions are used, as the stochastic predictions
are difficult to compare with each other due to the stochasti-
city. For 500 predictions, decreasing the resolution for the
scheduled arrival congestion index showed no improvements
in predicting the total in-block delay.
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VII. DISCUSSION

This section discusses the results presented in section VI as
well as the limitations of the study.

A. Operational conditions

Combining the operational conditions presented in sec-
tion VI, it can be seen that the circumstances with an in-
creased chance of ATFM Aerodrome Capacity delay and the
circumstances with an increased chance of arriving with a
high total in-block delay differ. It was found that ATFM
Aerodrome Capacity delay mainly concentrates in the first
inbound peak, when the arrival congestion index according
to schedule is high but does not exceed the nominal capacity.
However, during the operation, the actual arrival congestion
index often exceeds 100%, indicating that too many aircraft
arrive compared to the declared capacity. Additionally, there
often seem to be more heavy aircraft in the traffic mix as many
heavy aircraft arrive in the morning, but this intercontinental
traffic is not subject to ATFM Aerodrome Capacity delay.
During these operations, there are often not many delayed
flights as it is still the first inbound peak and hence, the number
of cumulative delay minutes is relatively low. Nonetheless, it
often takes on values above 300 minutes, the second highest
bin. This indicates that while not many flights were more than
15 minutes late, the official definition of arriving late, some
flights do arrive a few minutes late according to schedule.
These findings fit the description of the ATFM Aerodrome
Capacity delay according to EUROCONTROL, when the
demand exceeds the expected aerodrome capacity. However,
the expected aerodrome capacity, the actual arrival congestion
index, is often still exceeded despite the delays.

When combining the operational conditions that could result
in a high total in-block delay, it was observed that these mainly
occur late in the afternoon or evening, in all possible scheduled
arrival congestion indices and actual arrival congestion indices.
Thus, it seems this is influenced less by the percentage of
capacity used. Additionally, sometimes there are fewer heavy
aircraft when compared to the conditions for an increased
chance of ATFM Aerodrome Capacity delay, which could be
explained by the fact that most heavy aircraft arrive in the
morning. Most interestingly, the chance of arriving too late
is high when the cumulative delayed flights and cumulative
delay minutes are high. It seems that due to delay propagation,
there are days when the operation at AAS is so disrupted that
one delayed flight leads to more delayed flights, and by the
end of the day the cumulative delay has grown so high that
all arrivals are pushed back in time. This could also explain
why the high chance of arriving too late often occurs in the
final two departure peaks, the fifth and sixth outbound peak.
Due to delay propagation, traffic could be pushed out of the
arrival peak. During a departure peak, the arrival capacity is
significantly lowered, which could lead to issues when flights
suddenly arrive outside of the inbound peak.

B. Sensitivity analysis

By looking at the sensitivity of relevant parameters, it was
found that the parameters that influence ATFM Aerodrome
Capacity delay the most are the scheduled arrival congestion
index and the actual arrival congestion index. The latter can
be explained by the fact that ATFM regulations result in a
reduction in declared capacity which affects the actual arrival
congestion index. For the scheduled arrival congestion index,
it seems that ATFM aerodrome capacity delay is often issued
when the scheduled capacity is close to the 100% limit, which
could indicate that a slight disruption can result in the capacity
being exceeded.

The total in-block delay is influenced by some other para-
meters. The parameters that are sensitive towards total in-block
delay are the estimated schedule buffer, the taxi time and hence
the landing runway of a flight. The airline type does not show
significant changes with respect to the total in-block delay.
The reason for the estimated schedule buffer to influence the
total in-block delay in such a significant manner, could be
because the buffers are unknown to AAS, EUROCONTROL
and LVNL. As it is unknown, EUROCONTROL could issue
ATFM Aerodrome Capacity delay to a flight, but this might
have no effect on the total in-block delay if a flight has a
schedule buffer. The landing runway and hence the taxi time
of a flight are unknown to an airline beforehand, so if a flight is
assigned to land a runway 18R, this flight could have to taxi for
15 minutes. Airlines not knowing whether or not a flight will
land at runway 18R, which strongly depends on the weather
as well, could lead to airlines applying more schedule buffers
to mitigate this uncertainty. Because of the hub function of
AAS, arriving on time is important, especially for the network
carriers with transfer passengers. This focus on arriving on
time, could lead to a vicious cycle where larger buffers lead
to more ATFM delay, which in turn will lead to even larger
buffers.

One of the most interesting metrics is the sensitivity
between the ATFM Aerodrome Capacity delay and total in-
block delay. It shows what was expected, namely that having
ATFM Aerodrome Capacity delay does not have to result
in arriving too late. It could be the case that because of a
lack of information from all parties, ATFM Aerodrome Capa-
city delay does not work as intended. Something that could
possibly happen in the first inbound peak, is that according
to the scheduled arrival congestion index, 75% to 100% of
the capacity will be used. However, it could be expected
that the traffic situation will still become congested, hence
regulations are issued by EUROCONTROL, resulting in a
reduction of the declared capacity and an emergence of ATFM
Aerodrome Capacity delay for some flights. Because of a
reduction in declared capacity, the scheduled arrival congestion
index will suddenly exceed the 100% capacity limit. However,
due to the ATFM Aerodrome Capacity delay, the traffic is
spread out over time as some flights are delayed, causing
the actual arrival congestion index to be lowered below the
100% limit. Theoretically, this concept works. However, if
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flights have schedule buffers in place because delays from
EUROCONTROL are expected, traffic could still arrive at
the same time at AAS as was scheduled. This means that
in reality, the traffic is not spread out but still arrives more
or less according to schedule, due to which the actual arrival
congestion index still exceeds 100%, the thing that ATFM
delay was trying to prevent. This does not necessarily happen
to all flights that get ATFM Aerodrome Capacity delay, but
fig. 25 still shows that the chance of a high total in-block
delay remains small for high numbers of ATFM Aerodrome
Capacity delay.

C. Changing the scheduled arrival congestion index window

A possible solution to reduce the ATFM Aerodrome Capa-
city delay is through strategic planning. Predicting the total
in-block delay with a smaller resolution for the scheduled
arrival congestion index, showed no improvements in the
predictive performance of the model. This small case study
was performed to understand whether a smaller window during
strategic planning, could result in a better predictability of
the model. For the total in-block delay, it was found that the
scheduled arrival congestion index is not a sensitive parameter.
This could explain why the predictions showed no changes, as
it hardly changes the probability of arriving with a different
amount of total in-block delay. When comparing this to real
operations, changing the window during strategic planning
from 20 minutes to 10 minutes, would give a better idea of
the traffic distribution over the hour and possibly a different
arrival schedule. But, if there is one thing this study showed,
it is that it remains very hard to predict the total in-block
delay of a flight and hence, what time a flight actually arrives.
Changing the strategic planning window to 10 minutes would
give a better idea of the arriving traffic in theory, but in practice
this could also result in more flights arriving outside of their
strategic planning window, as the window is smaller and total
in-block delay predictions remain difficult.

D. Limitations

In this study, several assumptions are made that limit this
study and its results. First, the discretization of the variables
is done in quite large steps. This is mainly for computational
reasons, however, adding more bins could potentially provide
more detail in the model, especially for the ATFM Aerodrome
Capacity delay and total in-block delay.

The predictive performance of the total in-block delay
of this model is low. The predictions have not been the
main focus of this research, but if the model were to be
used for delay predictions, possibly additional information
such as en-route ATC delays is necessary. The predictions
make use of the conditional probability distributions found
from fitting the operational data to the model. As this data
comes directly from operational data, it is not necessarily the
model that performs poor predictions, it also shows that given
the information available, predicting the total in-block delay
is difficult. Nonetheless, the stochastic predictions showed

accurate representations of delay distribution over a day of
operation.

Operationally, this study is limited to the exact moments
in time that a flight arrives. Hence, it cannot model the
interactions that happen during the transition from an inbound
to an outbound peak. During such a situation, it could be the
case that the arrival throughput is still high, which could have
an effect on the departure throughput. This is also why AAS
sometimes operates with 4 runways, 2 for landings and 2 for
departures, which is unwanted because of noise regulations.

To study the true impact of the strategic planning window
size, additional research is necessary. This research briefly
tried to find the effect of decreasing the window size, but
this showed no changes. The scheduled arrival congestion
index was calculated for every 10 minutes instead of every
20 minutes, but the actual arrival schedule stayed the same.
Nonetheless a discrepancy was found that showed that most
of the traffic arrives in the first or second half of the 20 minute
window. The model does not mimic the airlines filing flight
plans and AAS issuing landing slots with the slot coordinator.
To find the effect of the strategic planning window size, and to
see whether a smaller window could lead to a different arrival
schedule, the interaction between airlines and airport needs
to be modeled, and how it is used over time to construct the
final arrival schedule. Human interaction is important in this
decision process.

The final limitation, is also regarding the human decision
process. This model showed the operational conditions at AAS
that increase the probability of issuing ATFM Aerodrome
Capacity delay. However, someone has to decide whether
regulations will be put in place or not. Choosing to apply reg-
ulations could even differ per Air Traffic Controller (ATCo).
Additionally, only one reason for ATFM delay can be filed,
but in reality it could be the case that there are Aerodrome
Capacity issues as well as weather issues for example. The
decision process of choosing to regulate or not and for what
reason would be interesting to study as well.

VIII. CONCLUSIONS & RECOMMENDATIONS

This research aims to find the operational conditions at Am-
sterdam Airport Schiphol that lead to an increased chance of
ATFM Aerodrome Capacity delay. Additionally, the conditions
that result in a high chance of arriving more than 15 minutes
late have been studied. This problem is assessed by using a
Bayesian Network.

A preliminary analysis found no correlations between
ATFM Aerodrome Capacity delay and other operational vari-
ables. Hence, the first part of this research aims at finding
causal relationships between operational variables. First, a
baseline model is constructed using expert knowledge from
the industry. After the baseline model is constructed, Structure
Learning is applied to find additional relationships between
variables. Many edges are added between seasonal variables
such as the month and weather conditions, but the operational
conditions at Schiphol also seem to strongly influence one an-
other. The Structure Learning algorithm showed no additional
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relations with respect to the ATFM Aerodrome Capacity delay
and total in-block delay, other than the ones defined in the
baseline model.

Using the Bayesian Network, the operational conditions that
result in an increased chance of ATFM Aerodrome Capacity
delay or total in-block delay are studied. The conditions that
lead to an increased chance of ATFM Aerodrome Capacity
delay most often occur under a scheduled arrival congestion
index of 75% - 100% and an actual arrival congestion index of
over 100%. Most often it occurs during the first inbound peak
under conditions where the cumulative delay is low and in
half of the occurrences where the chance of ATFM Aerodrome
Capacity delay is high, the percentage of heavy aircraft in the
mix is higher than the median of 11%.

The operational conditions that result in an increased chance
of arriving more than 15 minutes late, look somewhat different.
It occurs under all values of the scheduled and actual arrival
congestion indices. A high chance of arriving more than 15
minutes late often occurs at the end of the day, during the last
landing or departure peak, or during the night. The chance
of arriving more than 15 minutes late is strongly increased
when the cumulative delay is high, indicating strong delay
propagation. This time in only 27% of the occurrences, the
percentage of heavy aircraft in the mix is higher than 11%.

The operational conditions when the chance of ATFM
Aerodrome Capacity delay is high and when the chance of
arriving more than 15 minutes late is high, differ a lot from
one another. Both show seasonal effects where the delays
occur more often during the summer season, but other than
the months and weather conditions, there are few similarities
between these operational scenarios.

A sensitivity analysis has been performed that, among
others, looked into the relation between ATFM Aerodrome
Capacity delay and total in-block delay. It was found that
having an ATFM Aerodrome Capacity delay of 20 to 30
minutes, results in a 35% chance of arriving more than 15
minutes late, and that an ATFM Aerodrome Capacity delay
of more than 30 minutes, results in a 49% chance of arriving
more than 15 minutes late on average.

This research also aimed to investigate whether decreasing
the window size during strategic planning from 20 to 10
minutes could increase the arrival delay predictions. Changing
the scheduled arrival congestion index window in the Bayesian
Network showed no improvement in the predictive perform-
ance of the total arrival delay. Additional research into the
effects of changing this window from 20 to 10 minutes, or even
smaller, is recommended. It could potentially lead to an arrival
schedule that is a closer representation of the actual arrivals on
the day of operation and hence, reduces the ATFM Aerodrome
Capacity delay necessary. This could be combined with a
decision support tool, such as a Bayesian Network, for which
a high predictive performance would be beneficial. Increasing
the predictive performance of the Bayesian Network in this
research could be achieved by adding other variables that
influence a flight.

The main conclusion of this study is that ATFM Aerodrome
Capacity delay issued on departure for an inbound flight to
Amsterdam Airport Schiphol, has a relatively small chance of
resulting in a late arrival. Many flights seem to absorb the
ATFM Aerodrome Capacity delay during the flight, either by
airlines applying schedule buffers in the flight plan or through
pilot actions. The goal of ATFM delay is to prevent ATC from
unexpected high workload, but if the ATFM delay is absorbed,
this could still result in situations where for example airborne
holding is necessary, which could have been prevented if the
traffic actually flew according to schedule. If Schiphol wants to
reduce its Airport ATFM delay minutes, it should mainly focus
on the first inbound peak, on the scheduled planning and on
the capacity declaration in the morning. However, the question
remains whether Schiphol can reduce the Airport ATFM delay
minutes by itself. If EUROCONTROL and Schiphol keep
operating with a lack of information, for example regarding
schedule buffers, ATFM delay is issued without knowing
whether it will have an effect or not. Over 2018 and 2019,
Schiphol shows the highest number of Airport ATFM delay
minutes in Europe, yet most of the traffic arrives on time or
slightly ahead of time. The biggest concern for the airlines
is arriving on time, especially for the network carriers. To
increase the predictability of the traffic, schedule buffers could
be reduced, which is only attractive for the airlines if it can
be guaranteed that a flight arrives on time. 4D planning could
pose a solution for such a centralized system, however, the
day of operation is always subject to change especially with
schedule buffers. This is why more research into the effects
of schedule buffers is necessary. Schiphol and LVNL could
possibly look into arrival sequencing for the first inbound
peak, to see whether the arrival throughput can be increased
when there are more heavy aircraft in the traffic mix. Overall,
more information should be shared between airlines, airports
and ATC regarding schedule buffers and required arrival times
to closer match the arrival schedule with the actual arrivals.
This way, the operation can be optimized and delays can be
minimized, which will ultimately improve the journey of the
passenger.
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28 A. Model Variables & Blacklist

Table A.1: Bayesian Network Variables and Discretization

Variable Time resolu-
tion

Known in
advance

Unit Discretization

1 Month number - Yes - -

2 Day of the week - Yes - -

3 Hour of the day - Yes UTC -

4 Moment of the day - Yes - [Morning (06:30h - 13:00h), Afternoon (13:00h - 18:00h),
Evening (18:00h - 22:30h), Night (22:30h - 06:30h)] (CET)

5 Inbound peak number - Yes - -

6 Wind direction Hour Few hours Degrees [0-110, 110-170, 170-270, 270-360]

7 Average wind speed Hour Few hours Knots [≤10, 10-20, 20-30, 30>]

8 Cloud density Hour Few hours - [≤2, 2-8, 8-9]

9 Meteo conditions Actual Few hours - [Good, Marginal, BZO]

10 Runway configurations Actual Few hours - -

11 Runway configuration type Actual Few hours - [South landing, North landing, South departure, North de-
parture, South 4 runways, North 4 runway, South off peak,
North off peak, other]

12 Landing runway - Few hours - -

13 Taxi time Actual No Minutes [≤5, 5-8, 8-12, 12>]

14 Scheduled arrival congestion in-
dex - 20 minute window

20 minutes Few days Percentage [≤50, 50-75, 75-100, 100>]

15 Actual arrival congestion index 10 minutes Few hours Percentage [≤50, 50-75, 75-100, 100>]

16 Heavies in the mix 10 minutes Few hours Percentage [≤11, 11-20, 20-33, 33>]

17 Declared arrival rate Actual Few hours Aircraft/hour [≤32, 32-36, 36-38, 38-60, 60-65, 65-68, 68>]

18 Cumulative delay minutes since
start of the first inbound peak

Actual No Minutes [≤(-264), (-264)-299, 299-2594, 2594>]

19 Cumulative delayed flights (>15
minutes) since start of the first
inbound peak

Actual No Flights [≤9, 9-38, 38-79, 79>]

20 Daily number of arrivals Daily Day of oper-
ation

Flights [≤648, 648-698, 698-738, 738>]

21 Departure airport - Yes - -

22 Airline type - Yes - [Charter, LCC, Network, Cargo]

23 Continent - Yes - -

24 Wake turbulence category - Yes - [Medium, Heavy, Super heavy]

25 Estimated schedule buffer - No Minutes [≤10, 10-20, 20>]

26 FIR delay - No Minutes [≤5, 5-10, 10-20, 20>]

27 ATFM Aerodrome Capacity de-
lay

- No Minutes [0, 0-10, 10-20, 20-30, 30>]

28 Total in-block delay - No Minutes [≤-15, (-15)-(-5), (-5)-5, 5-15, 15>]
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Table A.2: Blacklist

Airline type→ Scheduled arrival congestion
index - 20 minute window

Total in-block delay→ Cloud density

Airline type → Actual arrival congestion in-
dex

Total in-block delay → Runway configura-
tion

Airline type→ Average wind speed Total in-block delay → Runway configura-
tion type

Airline type→ Cloud density Total in-block delay→ Continent

Airline type→ Runway configuration Total in-block delay→Moment of the day

Airline type→ Runway configuration type Total in-block delay→ Day of the week

Airline type→Moment of the day Total in-block delay→ Declared arrival rate

Airline type→ Day of the week Total in-block delay→ Departure airport

Airline type→ Declared arrival rate Total in-block delay→ Heavies in the mix

Airline type→ Departure airport Total in-block delay→ Hour of the day

Airline type→ FIR delay Total in-block delay→ Inbound peak number

Airline type→ Heavies in the mix Total in-block delay→ Landing runway

Airline type→ Hour of the day Total in-block delay→Meteo conditions

Airline type→ Inbound peak number Total in-block delay→Month

Airline type→ Landing runway Total in-block delay→Wind direction

Airline type→Meteo conditions Total in-block delay → Wake turbulence cat-
egory

Airline type→Month Departure airport → Scheduled arrival con-
gestion index - 20 minute window

Airline type→ Daily number of arrivals Departure airport → Actual arrival conges-
tion index

Airline type→ Taxi time Departure airport→ Average wind speed

Airline type→Wind direction Departure airport→ Cloud density

Scheduled arrival congestion index - 20
minute window→ Airline type

Departure airport→ Runway configuration

Scheduled arrival congestion index - 20
minute window→ Average wind speed

Departure airport → Runway configuration
type

Scheduled arrival congestion index - 20
minute window→ Cloud density

Departure airport→Moment of the day

Scheduled arrival congestion index - 20
minute window→ Continent

Departure airport→ Day of the week

Scheduled arrival congestion index - 20
minute window→ Total in-block delay

Departure airport→ Declared arrival rate

Scheduled arrival congestion index - 20
minute window→ Departure airport

Departure airport→ FIR delay

Scheduled arrival congestion index - 20
minute window→ Heavies in the mix

Departure airport→ Hour of the day
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Table A.2 continued from previous page

Scheduled arrival congestion index - 20
minute window→ Hour of the day

Departure airport→ Inbound peak number

Scheduled arrival congestion index - 20
minute window→ Landing runway

Departure airport→ Landing runway

Scheduled arrival congestion index - 20
minute window→Meteo conditions

Departure airport→Meteo conditions

Scheduled arrival congestion index - 20
minute window → Estimated schedule
buffer

Departure airport→Month

Scheduled arrival congestion index - 20
minute window→ Taxi time

Departure airport→ Taxi time

Scheduled arrival congestion index - 20
minute window→Wind direction

Departure airport→Wind direction

Scheduled arrival congestion index - 20
minute window→Wake turbulence category

FIR delay→ Airline type

Actual arrival congestion index → Airline
type

FIR delay→ Scheduled arrival congestion in-
dex - 20 minute window

Actual arrival congestion index→ Scheduled
arrival congestion index - 20 minute window

FIR delay→ Average wind speed

Actual arrival congestion index → Average
wind speed

FIR delay→ Cloud density

Actual arrival congestion index → Cloud
density

FIR delay→ Runway configuration

Actual arrival congestion index → Runway
configuration

FIR delay→ Runway configuration type

Actual arrival congestion index→ Continent FIR delay→ Continent

Actual arrival congestion index→ Departure
airport

FIR delay→Moment of the day

Actual arrival congestion index→Heavies in
the mix

FIR delay→ Day of the week

Actual arrival congestion index → Hour of
the day

FIR delay→ Departure airport

Actual arrival congestion index → Meteo
conditions

FIR delay→ Heavies in the mix

Actual arrival congestion index→ Estimated
schedule buffer

FIR delay→ Hour of the day

Actual arrival congestion index → Wind di-
rection

FIR delay→ Inbound peak number

Actual arrival congestion index→Wake tur-
bulence category

FIR delay→ Landing runway

ATFM Aerodrome Capacity delay→ Airline
type

FIR delay→Meteo conditions

ATFM Aerodrome Capacity delay → Aver-
age wind speed

FIR delay→Month
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Table A.2 continued from previous page

ATFM Aerodrome Capacity delay → Cloud
density

FIR delay→ Daily number of arrivals

ATFM Aerodrome Capacity delay → Run-
way configuration

FIR delay→ Estimated schedule buffer

ATFM Aerodrome Capacity delay → Run-
way configuration type

FIR delay→ Taxi time

ATFM Aerodrome Capacity delay → Mo-
ment of the day

FIR delay→Wind direction

ATFM Aerodrome Capacity delay → Day of
the week

FIR delay→Wake turbulence category

ATFM Aerodrome Capacity delay → Depar-
ture airport

Heavies in the mix→ Airline type

ATFM Aerodrome Capacity delay→Heavies
in the mix

Heavies in the mix→ Scheduled arrival con-
gestion index - 20 minute window

ATFM Aerodrome Capacity delay→Hour of
the day

Heavies in the mix→ Average wind speed

ATFM Aerodrome Capacity delay → In-
bound peak number

Heavies in the mix→ Cloud density

ATFM Aerodrome Capacity delay → Land-
ing runway

Heavies in the mix→ Runway configuration

ATFM Aerodrome Capacity delay → Meteo
conditions

Heavies in the mix→ Runway configuration
type

ATFM Aerodrome Capacity delay→Month Heavies in the mix→ Continent

ATFM Aerodrome Capacity delay → Daily
number of arrivals

Heavies in the mix→Moment of the day

ATFM Aerodrome Capacity delay → Taxi
time

Heavies in the mix→ Day of the week

ATFM Aerodrome Capacity delay → Wind
direction

Heavies in the mix→ Departure airport

ATFM Aerodrome Capacity delay → Wake
turbulence category

Heavies in the mix→ Inbound peak number

Average wind speed→ Airline type Heavies in the mix→ Landing runway

Average wind speed → Scheduled arrival
congestion index - 20 minute window

Heavies in the mix→Meteo conditions

Average wind speed → Scheduled arrival
congestion index - 20 minute window

Heavies in the mix→Month

Average wind speed→ Continent Heavies in the mix → Estimated schedule
buffer

Average wind speed→Moment of the day Heavies in the mix→Wind direction

Average wind speed→ Day of the week Heavies in the mix→ Wake turbulence cate-
gory

Average wind speed→ Departure airport Hour of the day→ Airline type
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Table A.2 continued from previous page

Average wind speed→ Heavies in the mix Hour of the day→ Scheduled arrival conges-
tion index - 20 minute window

Average wind speed→ Hour of the day Hour of the day→ Actual arrival congestion
index

Average wind speed → Inbound peak num-
ber

Hour of the day→ ATFM Aerodrome Capac-
ity delay

Average wind speed→Month Hour of the day→ Average wind speed

Average wind speed → Estimated schedule
buffer

Hour of the day→ Cloud density

Average wind speed→Wind direction Hour of the day→ Runway configuration

Average wind speed→Wake turbulence cat-
egory

Hour of the day → Runway configuration
type

Cloud density→ Airline type Hour of the day→ Continent

Cloud density → Scheduled arrival conges-
tion index - 20 minute window

Hour of the day → Cumulative delay min-
utes since start of the first inbound peak

Cloud density → Scheduled arrival conges-
tion index - 20 minute window

Hour of the day → Cumulative delayed
flights since start of the first inbound peak

Cloud density→ Average wind speed Hour of the day→ Day of the week

Cloud density→ Runway configuration type Hour of the day→ Declared arrival rate

Cloud density→ Continent Hour of the day→ Total in-block delay

Cloud density→Moment of the day Hour of the day→ FIR delay

Cloud density→ Day of the week Hour of the day→ Heavies in the mix

Cloud density→ Departure airport Hour of the day→ Landing runway

Cloud density→ Heavies in the mix Hour of the day→Meteo conditions

Cloud density→ Hour of the day Hour of the day→Month

Cloud density→ Inbound peak number Hour of the day→ Daily number of arrivals

Cloud density→Month Hour of the day→ Estimated schedule buffer

Cloud density→ Estimated schedule buffer Hour of the day→ Taxi time

Cloud density→Wind direction Hour of the day→Wind direction

Cloud density→Wake turbulence category Hour of the day→Wake turbulence category

Runway configuration→ Airline type Inbound peak number→ Airline type

Runway configuration→ Scheduled arrival
congestion index - 20 minute window

Inbound peak number → Average wind
speed

Runway configuration→ Scheduled arrival
congestion index - 20 minute window

Inbound peak number→ Cloud density

Runway configuration→ Actual arrival con-
gestion index

Inbound peak number→ Continent

Runway configuration→ ATFM Aerodrome
Capacity delay

Inbound peak number→Moment of the day
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Runway configuration→ Average wind
speed

Inbound peak number→ Day of the week

Runway configuration→ Cloud density Inbound peak number→Meteo conditions

Runway configuration→ Continent Inbound peak number→Month

Runway configuration→ Cumulative delay
minutes since start of the first inbound peak

Inbound peak number→Wind direction

Runway configuration→ Cumulative de-
layed flights since start of the first inbound
peak

Inbound peak number → Wake turbulence
category

Runway configuration→Moment of the day Landing runway→ Airline type

Runway configuration→ Day of the week Landing runway → ATFM Aerodrome Ca-
pacity delay

Runway configuration→ Total in-block delay Landing runway→ Average wind speed

Runway configuration→ Departure airport Landing runway→ Cloud density

Runway configuration→ FIR delay Landing runway→ Runway configuration

Runway configuration→ Heavies in the mix Landing runway→ Continent

Runway configuration→ Hour of the day Landing runway→Moment of the day

Runway configuration→ Inbound peak num-
ber

Landing runway→ Day of the week

Runway configuration→Meteo conditions Landing runway→ Departure airport

Runway configuration→Month Landing runway→ Heavies in the mix

Runway configuration→ Daily number of ar-
rivals

Landing runway→ Hour of the day

Runway configuration→ Estimated schedule
buffer

Landing runway→Meteo conditions

Runway configuration→Wind direction Landing runway→Month

Runway configuration→ Wake turbulence
category

Landing runway → Estimated schedule
buffer

Runway configuration type→ Airline type Landing runway→Wind direction

Runway configuration type→ Scheduled ar-
rival congestion index - 20 minute window

Landing runway → Wake turbulence cate-
gory

Runway configuration type→ Average wind
speed

Meteo conditions→ Airline type

Runway configuration type→ Cloud density Meteo conditions → Scheduled arrival con-
gestion index - 20 minute window

Runway configuration type→ Continent Meteo conditions→ Average wind speed

Runway configuration type→Moment of the
day

Meteo conditions→ Cloud density

Runway configuration type → Day of the
week

Meteo conditions → Runway configuration
type
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Table A.2 continued from previous page

Runway configuration type→ Departure air-
port

Meteo conditions→ Continent

Runway configuration type→Heavies in the
mix

Meteo conditions→Moment of the day

Runway configuration type → Hour of the
day

Meteo conditions→ Day of the week

Runway configuration type→ Inbound peak
number

Meteo conditions→ Departure airport

Runway configuration type → Meteo condi-
tions

Meteo conditions→ Heavies in the mix

Runway configuration type→Month Meteo conditions→ Hour of the day

Runway configuration type → Estimated
schedule buffer

Meteo conditions→ Inbound peak number

Runway configuration type → Wind direc-
tion

Meteo conditions→ Landing runway

Runway configuration type → Wake turbu-
lence category

Meteo conditions→Month

Continent → Scheduled arrival congestion
index - 20 minute window

Meteo conditions→Wind direction

Continent→ Average wind speed Meteo conditions → Wake turbulence cate-
gory

Continent→ Cloud density Month→ Airline type

Continent→ Runway configuration Month→ Runway configuration

Continent→ Runway configuration type Month→ Runway configuration type

Continent→Moment of the day Month→ Continent

Continent→ Day of the week Month→Moment of the day

Continent→ Declared arrival rate Month→ Day of the week

Continent→ FIR delay Month→ Departure airport

Continent→ Heavies in the mix Month→ Hour of the day

Continent→ Hour of the day Month→ Inbound peak number

Continent→ Inbound peak number Month→ Landing runway

Continent→ Landing runway Month→Wake turbulence category

Continent→Meteo conditions Daily number of arrivals→ Airline type

Continent→Month Daily number of arrivals→ Scheduled arrival
congestion index - 20 minute window

Continent→ Taxi time Daily number of arrivals → Average wind
speed

Continent→Wind direction Daily number of arrivals→ Cloud density

Cumulative delay minutes since start of the
first inbound peak→ Airline type

Daily number of arrivals→ Continent
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Cumulative delay minutes since start of the
first inbound peak→ Scheduled arrival con-
gestion index - 20 minute window

Daily number of arrivals → Moment of the
day

Cumulative delay minutes since start of the
first inbound peak→ Average wind speed

Daily number of arrivals→ Day of the week

Cumulative delay minutes since start of the
first inbound peak→ Cloud density

Daily number of arrivals → Departure air-
port

Cumulative delay minutes since start of the
first inbound peak→ Continent

Daily number of arrivals→ Hour of the day

Cumulative delay minutes since start of the
first inbound peak → Cumulative delayed
flights since start of the first inbound peak

Daily number of arrivals → Inbound peak
number

Cumulative delay minutes since start of the
first inbound peak→Moment of the day

Daily number of arrivals→Meteo conditions

Cumulative delay minutes since start of the
first inbound peak→ Day of the week

Daily number of arrivals→Month

Cumulative delay minutes since start of the
first inbound peak→ Departure airport

Daily number of arrivals→Wind direction

Cumulative delay minutes since start of the
first inbound peak→ Heavies in the mix

Daily number of arrivals→Wake turbulence
category

Cumulative delay minutes since start of the
first inbound peak→ Hour of the day

Estimated schedule buffer → Scheduled ar-
rival congestion index - 20 minute window

Cumulative delay minutes since start of the
first inbound peak→ Inbound peak number

Estimated schedule buffer → Average wind
speed

Cumulative delay minutes since start of the
first inbound peak→Meteo conditions

Estimated schedule buffer→ Cloud density

Cumulative delay minutes since start of the
first inbound peak→Month

Estimated schedule buffer→ Runway config-
uration

Cumulative delay minutes since start of the
first inbound peak → Daily number of ar-
rivals

Estimated schedule buffer→ Runway config-
uration type

Cumulative delay minutes since start of the
first inbound peak → Estimated schedule
buffer

Estimated schedule buffer→ Continent

Cumulative delay minutes since start of the
first inbound peak→Wind direction

Estimated schedule buffer→ Moment of the
day

Cumulative delay minutes since start of the
first inbound peak → Wake turbulence cate-
gory

Estimated schedule buffer→Day of the week

Cumulative delayed flights since start of the
first inbound peak→ Airline type

Estimated schedule buffer → Departure air-
port

Cumulative delayed flights since start of the
first inbound peak→ Scheduled arrival con-
gestion index - 20 minute window

Estimated schedule buffer→Hour of the day
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Table A.2 continued from previous page

Cumulative delayed flights since start of the
first inbound peak→ Average wind speed

Estimated schedule buffer → Inbound peak
number

Cumulative delayed flights since start of the
first inbound peak→ Cloud density

Estimated schedule buffer → Landing run-
way

Cumulative delayed flights since start of the
first inbound peak→ Continent

Estimated schedule buffer → Meteo condi-
tions

Cumulative delayed flights since start of the
first inbound peak→Moment of the day

Estimated schedule buffer→Month

Cumulative delayed flights since start of the
first inbound peak→ Day of the week

Estimated schedule buffer→ Taxi time

Cumulative delayed flights since start of the
first inbound peak→ Departure airport

Estimated schedule buffer→Wind direction

Cumulative delayed flights since start of the
first inbound peak→ Heavies in the mix

Taxi time→ Airline type

Cumulative delayed flights since start of the
first inbound peak→ Hour of the day

Taxi time→ Scheduled arrival congestion in-
dex - 20 minute window

Cumulative delayed flights since start of the
first inbound peak→ Inbound peak number

Taxi time→ Average wind speed

Cumulative delayed flights since start of the
first inbound peak→Meteo conditions

Taxi time→ Cloud density

Cumulative delayed flights since start of the
first inbound peak→Month

Taxi time→ Runway configuration type

Cumulative delayed flights since start of the
first inbound peak → Estimated schedule
buffer

Taxi time→ Continent

Cumulative delayed flights since start of the
first inbound peak→Wind direction

Taxi time→ Day of the week

Cumulative delayed flights since start of the
first inbound peak → Wake turbulence cate-
gory

Taxi time→ Departure airport

Moment of the day→ Day of the week Taxi time→ Heavies in the mix

Moment of the day→ Inbound peak number Taxi time→ Hour of the day

Moment of the day→Month Taxi time→Meteo conditions

Day of the week→ Average wind speed Taxi time→Month

Day of the week→ Cloud density Taxi time→ Estimated schedule buffer

Day of the week→ Runway configuration Taxi time→Wind direction

Day of the week → Runway configuration
type

Taxi time→Wake turbulence category

Day of the week→Moment of the day Wind direction→ Airline type

Day of the week→ Hour of the day Wind direction → Scheduled arrival conges-
tion index - 20 minute window

Day of the week→ Inbound peak number Wind direction→ Continent
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Day of the week→ Landing runway Wind direction→ Day of the week

Day of the week→Meteo conditions Wind direction→ Departure airport

Day of the week→Month Wind direction→ Heavies in the mix

Day of the week→Wind direction Wind direction→ Hour of the day

Day of the week→Wake turbulence category Wind direction→ Inbound peak number

Declared arrival rate→ Airline type Wind direction→Month

Declared arrival rate→ Average wind speed Wind direction→ Estimated schedule buffer

Declared arrival rate→ Cloud density Wind direction→Wake turbulence category

Declared arrival rate → Runway configura-
tion

Wake turbulence category→ Airline type

Declared arrival rate→ Continent Wake turbulence category → ATFM Aero-
drome Capacity delay

Declared arrival rate→Moment of the day Wake turbulence category → Average wind
speed

Declared arrival rate→ Day of the week Wake turbulence category→ Cloud density

Declared arrival rate→ Departure airport Wake turbulence category→ Runway config-
uration

Declared arrival rate→ Heavies in the mix Wake turbulence category→ Runway config-
uration type

Declared arrival rate→ Hour of the day Wake turbulence category → Moment of the
day

Declared arrival rate→ Landing runway Wake turbulence category→Day of the week

Declared arrival rate→Meteo conditions Wake turbulence category → Departure air-
port

Declared arrival rate→Month Wake turbulence category→Hour of the day

Declared arrival rate → Estimated schedule
buffer

Wake turbulence category → Inbound peak
number

Declared arrival rate→Wind direction Wake turbulence category → Landing run-
way

Declared arrival rate→Wake turbulence cat-
egory

Wake turbulence category → Meteo condi-
tions

Total in-block delay→ Airline type Wake turbulence category→Month

Total in-block delay→ Scheduled arrival con-
gestion index - 20 minute window

Wake turbulence category → Estimated
schedule buffer

Total in-block delay→ Actual arrival conges-
tion index

Wake turbulence category→Wind direction

Total in-block delay→ Average wind speed





B
Operational Conditions Comparison

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.1: Comparison of the scheduled arrival congestion index - 20 minute window

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.2: Comparison of the actual arrival congestion index
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.3: Comparison of the runway configuration types

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.4: Comparison of the runway configurations

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.5: Comparison of the arrival or departure peaks [0=Off-peak/Night]
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.6: Comparison of the cumulative delayed flights

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.7: Comparison of the cumulative delay minutes

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.8: Comparison of the moment of the day [0=Night, 1=Morning, 2=Afternoon, 3=Evening]
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.9: Comparison of the day of the week

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.10: Comparison of the declared arrival rate

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.11: Comparison of the heavy aircraft in the traffic mix
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.12: Comparison of the hour of the day

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.13: Comparison of the meteorological conditions [0=Good, 1=Marginal, 2=BZO]

(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.14: Comparison of the month of the year
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(a) Conditions with a high chance of ATFM Aerodrome Capacity delay (b) Conditions with a high chance of high total in-block delay

Figure B.15: Comparison of the daily number of arrivals



C
Compare Actual Time of Arrival and

Initial Time of Arrival

Figure C.1: Scheduled arrival congestion index - 20 minute window

Figure C.2: Actual arrival congestion index
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46 C. Compare Actual Time of Arrival and Initial Time of Arrival

Figure C.3: Runway configuration type

Figure C.4: Depature or arrival peaks [0 = Off-peak/Night]

Figure C.5: Cumulative delay minutes
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Figure C.6: Cumulative delayed flights

Figure C.7: Moment of the day [0 = Night, 1 = Morning, 2 = Afternoon, 3 = Evening]

Figure C.8: Declared arrival capacity



48 C. Compare Actual Time of Arrival and Initial Time of Arrival

Figure C.9: Heavies in the mix

Figure C.10: Meteorological conditions [0 = Good, 1 = Marginal, 2 = BZO]



D
Prediction graphs

(a) MAP predictions (b) Stochastic predictions

Figure D.1: Total in-block delay prediction for 21-12-2018

(a) MAP predictions (b) Stochastic predictions

Figure D.2: ATFM Aerodrome Capacity delay prediction for 21-12-2018
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50 D. Prediction graphs

(a) MAP predictions (b) Stochastic predictions

Figure D.3: Total in-block delay prediction for 23-07-2019

(a) MAP predictions (b) Stochastic predictions

Figure D.4: ATFM Aerodrome Capacity delay prediction for 23-07-2019

(a) MAP predictions (b) Stochastic predictions

Figure D.5: Total in-block delay prediction for 13-09-2019
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(a) MAP predictions (b) Stochastic predictions

Figure D.6: ATFM Aerodrome Capacity delay prediction for 13-09-2019

(a) MAP predictions (b) Stochastic predictions

Figure D.7: Total in-block delay 1000 random predictions

(a) MAP predictions (b) Stochastic predictions

Figure D.8: ATFM Aerodrome Capacity delay 1000 random predictions
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Preliminary Report [already graded]
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1
Introduction

Air transportation networks are complex, there are many interactions between the aircraft, air traffic
control and airports and many uncertainties such as weather or other disruptions. Delays can propa-
gate throughout the network, which affects the operations of the airlines and airports, as well as the
passengers.

In recent years, the aviation industry has been growing at a fast rate [11]. Due to this, the possibility of
having some form of delay due to other traffic has increased. This issue is largely visible at airports, the
bottlenecks of the air transportation system. To cope with the issue of growing air traffic and growing
congestion, Air Traffic Flow Management (ATFM) was introduced in different places, among which in
Europe. In Europe, EUROCONTROL is responsible for issuing ATFM delay such that flights can be
operated in a safe manner and with as little delay as possible and to prevent air traffic controllers from
unexpected high workloads. When it is expected that at the current take-off time a flight can encounter
congestion, either en-route or at the arrival airport, ATFM delay is issued.

With growing air traffic, more airports are operating close to the operational capacity. Amsterdam
Airport Schiphol, with 496826 aircraft movements in 2019, is one of these airports [17]. Operating
close to the operational capacity can lead to congestion, which again can lead to ATFM delay. Every
month, EUROCONTROL releases a network operations report, containing several statistics for the
European aviation system. Over the past 3 years, Amsterdam Airport Schiphol has been the airport
in Europe with the highest Airport ATFM delay. The statistics for 2019 can be seen in figure 1.1. A
little less than half of the airport ATFM delay is classified as Airport Capacity. It is unclear where this
delay exactly originates from. This preliminary study is performed to find the reasons for this delay
and propose a way to minimize this delay, by creating more insights into the operational conditions
for Amsterdam Airport Schiphol and more understanding of the interactions between operational
variables. The focus of this study will be on the arrival operation of Amsterdam Airport Schiphol.
Currently, during the COVID-19 pandemic, little ATFM delay is issued. However, it is expected that
the traffic will grow back to pre-pandemic levels in a couple of years [1]. If nothing changes, similar
issues will arise.
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Figure 1.1: Airport ATFM delay 2019 [32]

In this report, a literature review is presented on ATFM, ATFM delay and possible ways to mini-
mize ATFM delay in chapter 2. For a better understanding of the operations at AAS, data analysis
is performed and results are presented in chapter 3. By combining the findings from chapter 2 and
chapter 3, a research proposal is presented in chapter 4. The conclusion of this report can be found in
chapter 5.



2
Literature Review

In recent years, ATFM has become a more important subject in Air Traffic Control. ATFM has been
in place for quite some time in Europe and the United States, but with increasing air traffic this topic
becomes relevant for Asia and South America as well. ATFM and ATFM delay are complex subjects, as
these depend on many operational aspects of aviation. In this chapter, a literature study is presented
regarding ATFM and ATFM delay, the history and operational challenges, and several topics are pre-
sented that pose interesting solutions to minimize ATFM delay. In this chapter, the focus will be on
the European ATFM system, as this system impacts Amsterdam Airport Schiphol.

2.1. Air Traffic Flow Management
ATFM is meant to support the Air Traffic Controllers in successfully and safely executing their task.
In Europe in the late sixties (Leal de Matos and Ormerod [42]), and in the United States of America in
the early eighties (Weigang et al. [60]), air traffic networks were starting to show congestion. In order
to relieve the Air Traffic Controllers from unpredictable high workloads, a solution had to be found.
The concept of flow management was introduced. Flow management is the effort to match demand
with the available capacity by controlling the flow of traffic. This is done through of the Central Flow
Management Unit (CFMU), which is a directorate of EUROCONTROL. ATFM has a long history in Eu-
rope with several local flow management units, which did not work out. An European Central Data
Bank was constructed where all flight data of European flights would be stored. A centralized way of
ATFM was put in place in Europe, as congestion problems were increasing. In 1988, the International
Civil Aviation Organisation (ICAO), proposed a concept to EUROCONTROL for a centralized ATFM
system. The CFMU was eventually based on the concept proposed by ICAO, which consists of a West-
ern and Eastern Central Executive Unit. The CFMU was approved in 1989 and was fully functional
by 1996, when all pre-tactical and tactical functions were transferred from the interim systems to the
CFMU (Leal de Matos and Ormerod [42]).

The CFMU’s main systems are the Initial Flight Plan Processing System, the system that receives the
flight plans from the airlines, the Tactical (TACT) system, the Environment Database and the Archives
System. The TACT System gets all the necessary data for a flight, to provide information for pre-tactical
and tactical planning. It takes demand and capacity into account, ATFM regulations and it allocates
departure slots. There is the Environment Database, which contains permanent data such as routes,
geographical data, airports and ATC centers. Lastly, there is the Archives System, where all operational
data of the past is stored and this data is used to improve the ATFM operations, for strategic planning
and pre-tactical planning. Strategic planning starts six months in advance and takes until 2 days before
operation, pre-tactical planning is 2 days in advance and tactical planning is on the day of operation
(Leal de Matos and Ormerod [42]).

In all parts of the planning aspect, the focus is on identifying the bottlenecks of the network and to
try and avoid or solve these, if possible. When the day of operations starts, there are already regula-
tions in place in the TACT system, mainly in the form of slot allocations. TACT allocates these slots
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automatically based on the flight plans that were filed. When during the day congestion occurs that
was not anticipated in the earlier planning phases, the flow manager at the CFMU will have to issue
regulations, which can lead to ATFM Delay.

From the CFMU, the Network Manager Operations Centre (NMOC) was evolved. The NMOC is in
place since 2020 when it replaced the CFMU [3].

2.2. ATFM Delay
In ATFM, there are several moments during a flight when ATFM delay can be applied. These delays
can have different reasons and different magnitudes as well. ATFM delay is defined as the difference
between the scheduled departure time of the flight and the actual departure time [59]. This section
will provide more detail on the different parts of ATFM delay.

2.2.1. Departure
One of the most common form of ATFM delay happens at departure. All aircraft that take off in
Europe, try to do so according to the flight plan. However, it could be the case that the flight will
encounter congestion if it departs according to the flight plan. In this case, the flight gets a departure
delay in the form of a Calculated Take-Off Time (CTOT), which is a time window in which the aircraft
has to be at the runway ready for departure. The window starts 5 minutes before the CTOT and ends
10 minutes after the CTOT, this margin is there for potential taxiway delays or safety issues [59].

During ATFM regulation, it is often the case that the departing aircraft is issued with a later CTOT.
The reason for the later CTOT can be due to a crowded en-route sector, or when it is predicted that at
the current time of arrival at the destination airport, the airspace at the destination airport will be too
crowded leading to additional delay over there. So instead of putting the aircraft in a holding pattern
during the flight or having it deviate from the flight trajectory, the aircraft is kept on the ground at
the departure airport, which is both safer and better for the environment as the aircraft will not burn
any additional fuel. So the delay is issued at the departure airport, while the departure airport is not
always the cause of the regulation [59].

Such a slot regulation, or Ground Delay Programs as is used by the FAA in the US (Campanelli et al.
[24]), is one of the safest methods of controlling the flow of traffic. The slot delays are assigned by the
Network Manager in Brussels.

2.2.2. En-route
Once airborne, there is still the possibility of running into certain delays. Often it is the case that bad
weather expected along the flight trajectory. Therefore, flights can be rerouted to avoid these areas. By
rerouting a flight, it is important that the rerouting is kept to a minimum such that the cost of the delay
remains as low as possible (Bertsimas et al. [21]).

Rerouting strategies are difficult for solving congestion problems, this will most probably affect the
other flights in the congested airspace as well. Therefore rerouting is seldom used to solve congestion
problems (Lulli and Odoni [45]).

2.2.3. Arrival
ATFM delay is either issued before take-off or in some cases en-route, a flight will not get ATFM delay
in the final phase of a flight as the purpose of ATFM is to prevent this. However, the departure delays
issued are often because of the arrival airport of that flight. In addition to that, ATFM delay, both at
the departure airport and en-route, does affect the arrival time of the flight. Interestingly enough, the
number of delayed departures is higher than the amount of delayed arrivals, a gap that is growing
larger every year. In 2018, 25% of the ATFM regulation minutes did not affect the arrival punctuality
of the flight. More than one-third of the flights with an ATFM delay of 20 minutes, still arrived on time
on their destination [59]. Often it is even the case that due to ATFM delay, the flight will actually arrive
closer to the scheduled arrival time than without the delay.

This has to do with the airlines. For an airline, it is important that its passengers arrive on time, espe-
cially when they have a transfer flight. Hence, airlines are applying schedule buffers to the expected
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flight time. These schedule buffers make up for the expected delay, such that if delay occurs, the pas-
sengers can still arrive on time. The last years the difference in departure delays and arrival delays
has been increasing, which could indicate that ever larger schedule buffers are used. The downside
of this is that if no ATFM delay is issued, there is the possibility of flights arriving early [59]. Early
arrivals can lead to traffic bunching, bunching happens when aircraft arrive at an unexpected time in
a congested area. Traffic bunching could lead to the delay of other flights as well, due to which the
total delay of the system could increase (Stoltz and Ky [57]).

EUROCONTROL forecasts that in 2040, 16 airports in Europe will be as congested as London Heathrow
is today. That will push the network delays up to 20 minutes per flight compared to the 14.7 minutes
per flight in 2018. That suggests that airlines might make more use of schedule buffers, which could
in turn result in more traffic bunching and other delays as well [59].

2.2.4. ATFM Delay Reasons
Once ATFM delay is issued, a reason is assigned to this delay such that one can track where the delay
originates from. The location due to which the regulation is applied is either the arrival airport or en-
route. En-route, the most common reasons for ATFM delay in 2019 are weather, ATC staffing and ATC
capacity. For arrival ATFM delay, the most common reasons in 2019 are airport capacity and weather
[32]. All ATFM Delay Codes can be seen in table 2.1, these codes are used for both en-route delay as
well as arrival delay.

Table 2.1: ATFM Delay Codes [5]

Regulation Code Regulation Name Regulation Code Regulation Name

C ATC Capacity A Accident/Incident
S ATC Staffing E Aerodrome Services
I Industrial Action (ATC) N Industrial Action (non-ATC)
T Equipment (ATC) NA Not regulated/Not specified
G Aerodrome Capacity O Other
M Military Activity P Special Event
R ATC Routeing D De-icing
V Environmental Issues W Weather

2.3. Applied Rates
As was explained in section 2.1, the CFMU issues ATFM delay, but how is this translated to the actual
operation? Once ATFM delay is issued, this is communicated to the Air Navigation Service Providers
(ANSP) at the airport in case of airport delay and to the ANSP en-route in case of en-route delay.

For the airport ATFM delay, inbound traffic is regulated to prevent the workload from becoming too
high for the air traffic controllers. These regulations are translated to applied rates at the airport,
the number of aircraft that can land per hour. Such regulations have a start and end time and can
span over multiple inbound and outbound peaks. Essentially, the nominal capacity of the aerodrome
is reduced. Often weather will reduce the nominal capacity by a large amount, whereas aerodrome
capacity regulations only decrease the nominal capacity by a few flights [2].

During a day at AAS, there are usually 6 outbound peaks, with mainly departing traffic, and 5 inbound
peaks, with mainly arriving traffic. In normal conditions during an outbound peak, 74 departures
can be handled and 36 arrivals. With normal conditions during an inbound peak, 68 arrivals can be
handled and 38 departures [9].

2.4. Airport ATFM delay
As can be seen from figure 1.1, Amsterdam Airport Schiphol is subject to a lot of airport ATFM delay,
much more than any other airport in Europe. As was explained in 2.1, ATFM was first introduced
to handle congested airspace. AAS is one of the airports operating close to the operational capacity
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and with this comes an issue that ATFM could handle as well, which is demand and capacity imbal-
ance.

Demand and capacity imbalance is a recurring topic in many ATFM delay studies. As the system is
operating close to its capacity, and capacity is not the same throughout the day, a small disturbance in
one flight could already lead to a demand and capacity imbalance at an airport. Coordinated airports,
try to balance their traffic by using airport slots, which are time slots in which an aircraft is allowed to
land or depart, which are planned during strategic planning up to 6 months in advance (Ivanov et al.
[38]). While much effort is put into balancing the demand and capacity of the airport, this remains a
difficult task to do months ahead of time. At AAS, flights are issued with a landing slot of 20 minutes
during strategic planning. While this should be sufficient months in advance, it remains only an es-
timate of the traffic that will arrive or depart. This is why strategic planning takes place up to a few
days before the flight departs to try and plan the traffic as best as possible.

On the day of operation, despite all the efforts put into planning the flight, there remain many things
that can go wrong. The weather can change, crew could be late, the aircraft can have a technical issue
or sectors might get congested. Congestion, especially at airports but also en-route, can be a result of
traffic bunching. In Stoltz and Ky [57] it is stated that one of the reasons for this is when a CTOT is
issued, as an aircraft is allowed to depart 5 minutes before up to 10 minutes after the CTOT, which
gives uncertainty in when the flight takes off, hence even more uncertainty when the flight will arrive.
These unexpected arrivals could also be due to intercontinental flights, as these are not subject to ATFM
regulations. But many things can happen en-route, a pilot could ask for a re-direction to a waypoint,
to reduce the flight distance or the pilot could ask to fly faster to make up for the delay issued during
departure. Bad weather could occur en-route or a sudden deviation from the intended trajectory.
Traffic bunching, especially at an airport, will increase the workload of the air traffic controllers and if
the congestion remains airport ATFM delay can be issued. While ATFM regulations are used to create
better traffic scenarios with less congestion, the actual operations provide many uncertainties. Stoltz
and Ky [57] found that 30% of the ATFM regulations are not strictly followed, which is a high number.
Stoltz and Ky [57] propose that better integration of airports into the European air traffic system is
necessary, just as was proposed in [59], but at the same time, prevention of traffic bunching should be
accessed locally as well.

Demand and capacity imbalance and traffic bunching can be a result of a very congested airport which
is subject to disruptions throughout the day due to low predictability of traffic. Many studies focus
on improving the predictability of the traffic at an airport as this will most likely decrease the delay
at the airport. There are many ways how this problem is approached, for example through changed
strategic planning [22, 42, 46], 4D Planning and Trajectory Based Operations (TBO) [28, 39, 63], Arrival
Sequencing [23, 36, 40] and machine learning approaches such as Agent-Based Modeling [24, 51] and
Bayesian Networks [25, 52, 53, 61].

2.5. Strategic Planning
The definitions do differ slightly, in the United States of America strategic planning is everything up
until take-off, but in Europe strategic planning starts six months before the flight up to a few days,
after which pre-tactical planning takes over two days before the flight and tactical planning on the day
of the flight itself, the European definition is used in this report.

At the start of strategic planning, an ATFM co-ordination meeting takes place. In this meeting, the
major bottlenecks of the European airspace are identified, as well as other ATFM issues of the past six
months. After this meeting is over, aircraft operators can file flight plans for the upcoming months
to the CFMU. As the traffic demand becomes more clear over time, the Standard Routing Scheme is
prepared, in which routes are planned and congestion could already be seen and mitigated. According
to the flight plans, airport departure and landing slots are issued.

In pre-tactical planning, the congestion problems are identified mainly by looking at historical data
and ATFM regulations on the same day of the previous week as well as by inspecting the flight plans.
If necessary and possible, capacity is increased by using re-routing of flows and slot allocation regula-
tions.
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During tactical planning, CTOT and ground delays are allocated and flights that are predicted to have
a high ATFM delay, are prioritized to minimize the delay. The TACT system plays an important role
during tactical planning. In this phase, just before the operation of the flight, it is important that the
systems provides quick and easy solutions.

As strategic planning takes place up to months in advance of the operation, it is difficult to accomplish
a detailed flight plan. Nonetheless, it would be beneficial if the daily operation can be predicted
as accurately as possible far in advance. Through strategic planning, this can be done by means of
demand forecasts, simulations and optimization techniques (Leal de Matos and Ormerod [42]).

In Stamatopoulos et al. [56] a decision support system is proposed to improve the strategic planning
of an airport. By using MACAD a macroscopic airside model was created, in which all parameters are
implemented such as capacity, airport geometry and local ATC capacity. Using this model, a few sce-
narios were simulated with a different number of runways and a different runway configuration. As
MACAD showed good approximations of different scenarios at different airports, it could be used dur-
ing the strategic planning of airport capacity. During 2002 and 2003, an enhanced version of MACAD
was applied for several European airports, among which Amsterdam, which showed satisfactory re-
sults.

During strategic planning, there are many decision variables that make it difficult to predict ATFM
from a strategic level, therefore, studies provide decision support tools, such as in Zhang et al. [64]. In
this study, a decision support tool is developed with a focus on the speed at which solutions can be
proposed. It does so by doing offline computations on historical data, however the scope of this study
is only limited to weather induced delay.

In most strategic planning studies, but other aviation related studies as well, one has to take into
account that multiple stochastic processes are happening during a flight. Marceau et al. [46] present
a probabilistic model is presented to decrease uncertainty along waypoints of a flight plan. It is a
multi-objective evolutionary optimization algorithm that tries to minimize both congestion and delay.
For the interaction between variables, a Bayesian Network is created. Now, this study did mainly
focus on strategic planning for trajectories and sectors, and not for airport slots, in order to create
better flight schedules. It does however show, that from a strategic level, better predictability can be
achieved.

Bolić et al. [22] present, a similar study is performed however this study also included airport capacity
constraints. It is stated that capacity is usually managed from a tactical perspective, as strategically
flight plans are known but not the exact time of operation. Additionally, the information regarding
flight routes is also distributed during the tactical phase, leaving ATC almost no time to prepare for
possible overcapacity or regulations. By taking the nominal capacities of airports and sectors into
account, this paper tries to minimize demand-capacity imbalances from a strategic point of view. A
better redistribution of traffic from a strategic level could decrease the number of ATFM regulations
during operation. By means of an integer programming model flights are redistributed. The hard
constraints of this model are the sector and airport capacities. With only a small percentage of flights
that are redistributed, Bolić et al. [22] show promising results for strategic planning as a measure to
lower ATFM delay. However, strategic planning will always have uncertainty due to the fact that it
does take place months in advance, which is also the main reason why often decision support tools are
created and no permanent solutions.

2.6. 4D Planning and Trajectory Based Operations
The general idea behind 4D trajectories is that one knows the exact location of an aircraft at the exact
time. This would make it easier to predict when a flight arrives at which waypoint. 4D trajectories can
prove a solution for ATFM delay.

In the early days of 4D planning, Jonge [39] presented an approach called Refined Flow Management
for 4D gate to gate planning. The idea is that an airline plans a required time of arrival, such that the
CFMU can provide the capacity with a high accuracy over time and the airline will focus on the arrival
punctuality. For the system to work, the information exchange of all different stakeholders in ATM
has to be very good.
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Recently, 4D trajectories are often combined with Mixed Integer Programming (MIP) or machine learn-
ing techniques to optimize the trajectories and make the models more robust to external disturbances
such as weather. Dal Sasso et al. [28] combine a multi-objective binary program with 4D trajectories
to minimize ATFM delay. Xu et al. [63] present an interesting approach that includes the interacting
between network manager and airlines, incorporating the human in the loop. By filing flight plans,
possible congestion is observed which is then sent back to the airlines to ask for adjustments after
which trajectories are planned. The main focus is on minimizing the costs induced for the airlines by
delay. It makes use of a Mixed Integer Linear Programming (MILP) model and results showed to be
much better than compared to the current system in French airspace. 4D planning and TBO seem to
hold the potential to reduce ATFM delay, however the current method of trajectory prediction is not
accurate enough to apply such models in real operation (Dek [29]).

2.7. Arrival Sequencing
In the final phase of the flight, the arrival, aircraft are lined up for the runway on which these aircraft
are supposed to land. This sequencing for most airports comes down to a First-Come First-Served
(FCFS) policy. In FCFS the main parameter to space the flight is the weight class in which an aircraft
falls (light, medium, heavy, super heavy). This could be planned more efficiently, with the main goal to
maximize the runway throughput. One of the problems that arise when altering the arrival sequence,
is that some flights could be delayed, which has to be minimized as well. In Brentnall and Cheng
[23] a comparison between several sequencing algorithms is made and several combinations of the
sequencing algorithms and delay-share strategies were used and tested. While some performed better
than others, it remains very dependent on the type of traffic that arrives, especially weight classes, but
on the airport geometry and air traffic controllers as well.

A data-driven approach combined with a learning algorithm is proposed by Jung et al. [40] and Hu
and Chen [35] present a learning algorithm combined with an optimization algorithm to improve
arrival sequencing throughout the day. Both studies showed that a learning algorithm can improve
the arrival sequencing or even mimic the process of an air traffic controller, although it has to be
noted that it is very difficult to incorporate all human aspects into an algorithm. Jung et al. [40] does
include probabilistic preferences between aircraft pairs, how likely an air traffic controller will put one
type of aircraft after another. Probability theory is often used for sequencing in the form of queuing
models.

Even in the final part of the flight, the arrivals, there is still quite some uncertainty. This is why stud-
ies that apply the stochastic behaviour of the traffic provide interesting insights. In queuing theory,
agents arrive in a queue according to a certain probabilistic distribution and are handled by means
of another, or the same, probabilistic distribution. In Itoh and Mitici [36] a data-driven approach in
combination with a G/G/c queuing model is proposed and compared to actual operations for Tokyo
Airport. Many other queuing models are available, such as M/G/c/K queuing models (Itoh and Mitici
[37]) or M/G/1 queuing models (Bäuerle et al. [19]). These different queuing models all represent dif-
ferent distributions by which traffic arrives and is handled, or it can be a different or more accurate
way of approaching arrival sequencing. The queuing models presented in the studies mentioned, but
also other studies, have shown to provide a solution for minimizing arrival delay during the arrival
sequencing process. The weight classes of the aircraft remain one of the most important factors in
sequencing, but there are many other challenges. To apply a model that represents the actual oper-
ation, thorough data analysis is necessary to find the underlying distributions. It is unclear whether
such models can be implemented in real operations, as most air traffic controllers work by the FCFS
method. Lastly, as is mentioned in the arrival queuing study by Teoh [58] and becomes apparent
from the different approaches to minimize the delay in air transportation, is that the air transportation
system is very complex, with many different operators and choices to be made.

2.8. Complex Systems
Complexity science, or Complex Network Theory (CNT), is mainly applied to network systems to find
connections and interactions in such a system. Transportation systems are often studied using complex
network theory. It can be used to study the effectiveness of a system, but also underlying aspects such
as sociology and welfare. Lin and Ban [44] provide a detailed overview of the application of complexity
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science to transportation systems. Before continuing, it is important to note that transportation systems
in complex network theory are often modeled using graph theory. Graph theory is a representation of
a (mathematical) model using nodes and links to show inter-dependencies in a system.

2.8.1. Complex Network Theory
In the representation of complex network theory, two types of graphs can be used, planar and non-
planar. In simple terms, planar graphs are systems where links never intersect without for example
a bridge as in road transport, and non-planar graphs are systems where links do intersect, such as in
aviation.

There are a few interesting parameters in CNT for aviation networks. The first of which is Degree,
which is a measure of the number of links connected to a node. In air transportation hub-airports will
have a higher degree than regional airports. The strength of a node can be found by adding the weights
of the links, which could for example be the number of flights between a city pair. Betweenness shows
the importance of a node in the network, which can be defined by the number of shortest paths in
a network that pass through a node. And thirdly the Clustering coefficient, which is the number
neighbours of a node that are directly connected as well, forming triangles (Cook et al. [26]).

The air transportation network is often characterized as a small-world network, a network with a high
clustering coefficient and short average path length. The air transportation network can be visualized
fairly simply because of the non-planar properties, but it is quite different from other transportation
networks. For example, there are airports with a high degree, so the number of destinations, but that
are not very important in the overall network.

The evolution of air transportation systems remains interesting in CNT, with the growth of air trans-
portation around the world, at least before the COVID-19 pandemic, CNT can show potential to opti-
mize the overall system.

2.8.2. Resilience
CNT is often used to study the resilience of a network, or in other words, how does the network
respond to sudden disruptions? As defined by Beaumont and Casti [20], resilience is the measure
of a system to persist, to absorb a disruption without drastically decreasing the nominal operation
of the system. There are many kinds of disruptions imaginable in the air transportation network.
As explained in Cook et al. [26], there can be interactions between disruptions. Some questions can
be raised such as, what disruptions have the biggest influence on ATFM delay? And once ATFM
delay is issued, is the system able to recover and how quickly? What are the conditions for the air
transportation system to best absorb the disruption? Sanaei et al. [54] apply several machine learning
algorithms to estimate ATFM delay and improve the restorative performance of the system and Lillo
et al. [43] apply Network Theory to ATM, both showing that CNT can provide more insights into the
system as a whole. Resilience can be applied in a very broad context and can be difficult to quantify,
but it can also identify critical elements of a system.

2.8.3. Modeling
The ATM system can be modeled in many ways and CNT can be applied to different models as well.
What makes complex networks difficult, is that often the focus on one variable or parameter cannot
provide many insights, but that it is the combination and interaction of different variables that change
the system. Some commonly used techniques are Agent-Based Modeling ([24, 51, 55]) and Bayesian
Networks ([25, 52, 53, 61]).

Agent-Based Modeling
Agent-Based Modeling (ABM) is a method where agents, for example aircraft, are modeled in a sys-
tem with each agent having its own set of parameters. Agents can interact with one another and the
environment, make decisions and represent real-life behaviour. When multiple agents are operating
in such an environment, emergent behaviour can be observed. Emergent behaviour can be observed
by looking at the system as a whole and observing the interaction between agents in the system. ABM
holds the potential to model real-life situations without the need for historical data, but rather by
providing behavioural rules. From the emergent behaviour parameters can be set to measure the per-
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formance of a model (Klügl and Bazzan [41]).

Campanelli et al. [24] use ABM to compare the differences in delay propagation between the US air
transportation network and the European air transportation network. The European model actually
works with ATFM slots, that get reassigned if one is missed. Cruciol et al. [27] and Hall et al. [34]
present an ABM for decision making in ATFM. By incorporating Reinforcement Learning (RL), the
human factors in planning are incorporated. The reward function in Cruciol et al. [27] is based on
safety and fairness which can be compared to historical data. Runway capacities are analyzed through
ABM in Peng et al. [51] and in Shah et al. [55] an arrival model is compared to actual data, showing the
model was able to mimic the system to a large extend. It should however be noted that ABM always
includes simplifications and that the human aspects remain difficult to model.

Bayesian Networks
As was mentioned in Cook et al. [26], the emergent behaviour and the interaction between variables
usually provides the best insight into the system as a whole, as one variable often does not alter the
performance of a complex system by a large extend. Bayesian Networks (BN) can be represented
by graph theory as well and are probabilistic models that can show the interactions and conditional
probabilities between variables. The foundation for BN was laid in Pearl [49] and Pearl [50]. In air
transportation, many variables influence one another, for example departure delay and arrival delay.
BN shows which variables influence other variables, which is always in one direction, a so-called
Directed Acyclic Graph (DAG). In a DAG, there are only directed edges and no node is visited more
than once (Barber [18]). Every variable is dependent on its parent variables, hence creating conditional
probabilities. To create a BN, it is important to know which variable influences other variables and to
find out which probability distribution each variable has. In figure 2.1 a simple representation of a BN
can be seen. The joint probability distribution can be found by using equation (2.1). For the example
in figure 2.1, the joint probability can be found in equation (2.2). BN take the stochastic behaviour of a
transportation system into account. The structure of the BN can be created based on knowledge or by
applying a data-driven method. By means of backward propagation, it can be found which conditions
in a system lead to a certain outcome.

P(x1, x2, ..., xn) = P(xn|xn−1, ..., x1) · · ·P(x3|x2, x1)P(x2|x1)P(x1) [49] (2.1)

P(x1, x2, x3, x4, x5) = P(x5|x4, x3)P(x4|x2)P(x3|x2, x1)P(x2)P(x1) (2.2)

Figure 2.1: Example Bayesian Network

Some studies applied BN to airline networks (Wu and Law [61], Wu and Wu [62]). Airline networks
are by itself also complicated operations, where aircraft, crew, passengers and luggage need to be
moved as seamlessly as possible. These studies showed that it remains difficult to model such complex
systems, but that a BN provides more insights. In Wu and Wu [62], it was even found that flight time
distributions are non-IID, indicating that it does depend on historical data, which in this case led to an
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under-estimation of the schedule buffers necessary in airline operations, which can be related to the
EUROCONTROL study [59]. Wu and Law [61] used the BN to identify the bottlenecks in the airline’s
operation.

Rodríguez-Sanz et al. [52] present a model using a BN to get more insights in the departure delay,
by modeling the process from arrival to departure at Madrid airport. 51 variables have been used
in this BN of which most airside parameters. The BN was created using operational data. Using
forward propagation, the departure delay could be predicted with high accuracy. Using backward
propagation, the main contributors to the delay could be identified. Cao and Fang [25] presented a BN
structure learning model, using a genetic algorithm, also for departure delay analysis. For a departure
process at a hub airport, the study found that higher accuracy is achieved by first creating the BN
based on operational data, after which the learning algorithm can optimize the structure of the BN
with a fast convergence rate, resulting in a more accurate departure delay prediction.

A later study by Rodríguez-Sanz et al. [53] again created a BN to model delay for Madrid airport. The
main difference with Rodríguez-Sanz et al. [52] is that in this case the study is only focused on the
arrival process. As stated in this study, applying a BN to a single node of a complex network instead
of the entire system allows one to better understand the dynamics within that node. This study focuses
on two aspects, the arrival delay and the airport congestion, which is the percentage of the capacity
used. Again a data-driven BN is created, trained to find the right distributions and validated. This
time, 22 variables are used to eventually predict the two outputs. The BN shows to perform well
when compared to the real data, but still showing around 10% errors for the output variables. As a
second part of Rodríguez-Sanz et al. [53] Markov chains are used to assess the reliability of the system.
This remains a one airport study and it would be interesting to see whether other airports perform
in a similar or different way. While a BN has shown the possibility to represent real operations, it
remains a probabilistic model just like queuing models, therefore there will always be differences
when compared to real operations. Additionally, as nodes are only conditionally dependent on the
parent nodes, the inter-dependencies must be modeled accurately.

2.9. Conclusion Literature Review
In this chapter, many approaches have been presented that hold the potential to decrease the ATFM
delay for Amsterdam Airport Schiphol. However, these different approaches are somewhat subject
to traffic scenarios and geometry at the airport. For AAS, it is not yet clear where the ATFM delay
originates from, or what causes it. So before a method is chosen that will be applied to reduce ATFM
delay for AAS, further analysis has to be performed. Chapter 3 will analyze the operational conditions
at AAS to see whether this can support the decision to pick one of the methods presented in this
chapter.





3
Case Study Amsterdam Airport

Schiphol

As was explained in the chapter 1, in 2019 Amsterdam Airport Schiphol (AAS) was more subject to
Airport Capacity delay than any other airport in Europe. What are the differences between AAS and
other airports in Europe? Are there any correlations between operational variables that influence delay
at AAS? This chapter takes a deep-dive into operational data to get to the bottom of the ATFM airport
capacity delay at Schiphol Airport.

3.1. Airport Comparison
To start this analysis, a comparison between airports in Europe is made based on Air Navigation
Service Performance data from EUROCONTROL. Initially, the traffic is compared at 4 major hubs
of the European network and the three most common delay reasons are compared, weather, ATC
capacity and Aerodrome capacity. A similar analysis was made for airports with a high aerodrome
capacity delay.

3.1.1. Hub comparison
When comparing London Heathrow, Frankfurt Airport, Paris-Charles de Gaulle and Amsterdam Air-
port Schiphol, it is important to start from a traffic point of view. In figure 3.1b, one can see the number
of arrivals for these hub airports. What can be seen is that in the last two years, Frankfurt and Paris
have increased in the number of arrivals and that London Heathrow structurally has less traffic in the
summer season, which is most likely due to the number of runways at London Heathrow (2), which
is lower than at Frankfurt (4), Paris-Charles de Gaulle (4) and Amsterdam (6). Nonetheless, this fig-
ure shows that these airports are almost similar in terms of traffic and all have a hub-function in the
European airport network.

When comparing the total ATFM delay at these airports (figure 3.1a), it can be seen that AAS has had
the highest ATFM delay in total over the past years and it has been increasing throughout the years.
When this is normalized to the number of arrivals (figure 3.1f), it can be seen that the average delay per
arrival at AAS is around 3 minutes, while this is 1 minute lower at London Heathrow, even 1 minute
lower at Frankfurt airport and Paris-Charles de Gaulle has the lowest average delay per arrival of
these 4 hubs, at only 0.37 minutes delay per arrival.

When breaking the ATFM delay down into the three major causes, it can be seen that London Heathrow
and AAS perform similarly in terms of weather delay (figure 3.1e), given that both are in close vicinity
to the North Sea providing somewhat similar weather, where Amsterdam has a higher overall rainfall
and slightly higher wind speeds [15]. In terms of ATC capacity in figure 3.1d, only London Heathrow
seems to have a high number of ATC Capacity delay per flight, especially in 2019. Finally, when com-
paring the aerodrome capacity delay (figure 3.1c), it can be seen that this is where AAS deviates a lot
from the other hub airports in Europe, which is interesting as one might expect that airports with sim-
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ilar traffic numbers and function within the network would have similar aerodrome capacity delay.
The aerodrome capacity delay is the type of ATFM delay that differentiates AAS from these other hub
airports.
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(a) ATFM delay per month (b) Arrivals per month

(c) Aerodrome capacity delay per month (d) ATC capacity delay per month

(e) Weather delay per month (f) Average ATFM delay per month

Figure 3.1: Comparison of hub-airports in Europe
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3.1.2. Comparison Aerodrome Capacity Delay
When looking at figure 1.1, there were 2 other airports in 2019 with a relatively high airport capacity
delay, which are London Gatwick and Lisbon. So for these airports, a similar analysis was performed
as for the hub-airports. From figure 3.2b it can be seen that the traffic numbers of these three airports
differ a lot, which is to be expected given the different functions these airports have in the network,
as well as difference in infrastructure. London Gatwick has 2 runways, as well as Lisbon [10, 12]. The
total average ATFM delay per arrival is roughly similar, as well as the ATFM delay due to weather and
ATC capacity. When looking at figure 3.2c, it can be seen that the aerodrome capacity delay for these
airports is almost the same per arrival. This raises the question, do these three airports have something
in common? Besides the aerodrome capacity delay, there seem to be very little similarities in terms of
infrastructure and traffic numbers. To continue, it is important to understand what aerodrome capacity
delay is.
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(a) ATFM delay per month (b) Arrivals per month

(c) Aerodrome capacity delay per month (d) ATC capacity delay per month

(e) Weather delay per month (f) Average ATFM delay per month

Figure 3.2: Comparison of high aerodrome capacity delay airports in Europe
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3.2. Aerodrome Capacity Delay
The aerodrome capacity delay is the type of ATFM delay that distinguishes AAS from other airports
in Europe. The definition of aerodrome capacity delay is as follows:

"Reduction in declared or expected capacity due to the degradation or non-availability of infrastruc-
ture at an airport. e.g. Work in Progress, shortage of aircraft stands, etc. Or when demand exceeds
expected aerodrome capacity" [30]

This definition as provided by EUROCONTROL, is a rather broad one. It could range anywhere from
runway maintenance, to the availability of gates or simply traffic demand. In short, many kinds of
delays can be attributed to aerodrome capacity delay. Therefore, operational data from AAS, LVNL
and EUROCONTROL is analyzed to see if some parameters can be identified that contribute the most
to aerodrome capacity delay.

In this section and later sections, some correlation tests are performed. The correlation test performed
is usually Spearman correlation test, as the data is not normally distributed. If the data were to be nor-
mally distributed, one can use the Pearson correlation test. These tests return a value between -1 and
+1, where -1 indicates a strong negative relationship and +1 indicates a strong positive relationship.
0 indicates no relationship [7, 8]. How to interpret a correlation coefficient can be found in table 3.1.
Whether the data is normally distributed or not, is determined by using the Shapiro Wilk normality
test [14]. It has to be noted that a correlation does not necessarily indicate a causal relationship.

Table 3.1: Correlation coefficient interpretation [47]

Correlation coefficient (±) Interpretation

.90 – 1.00 Very high correlation

.70 - .90 High correlation

.50 - .70 Moderate correlation

.30 - .50 Low correlation

.00 - .30 Negligible

3.2.1. Regulations
EUROCONTROL releases data regarding the applied regulations in the Network Manager Interactive
Reporting Dashboard (NMIR). The regulations data provides more detail regarding the regulation
applied, why this was applied and it even allows the air traffic controller to enter a detailed description
regarding the regulations.

In 2018 and 2019, 37.4% of the ATFM delay minutes are due to aerodrome capacity delay and 60.4% of
the regulations issued were due to aerodrome capacity in 2018 and 2019. Of this 60.4% of aerodrome
capacity delay regulations, 20.6% has a detailed description. Unfortunately, most of these descriptions
are Regulation Extended, but are difficult to trace back to the root of the delay. So filtering these out, this
leaves four reasons for aerodrome capacity delay, which can be seen in figure 3.3.

It can be seen that 6% of all aerodrome capacity delay, has as reason high demand, while there are also
some moments when the weather was filed as a reason for aerodrome capacity delay. This is odd since
there is an ATFM delay code for weather available. Nonetheless, this can happen. When for example
regulations are in place regarding aerodrome capacity delay, but suddenly bad weather comes up,
there is simply a combination of both and an air traffic controller can only file one reason. This system
is therefore prone to errors like these, because of the operational complexity at times.

This, unfortunately, did not give a precise reason for the aerodrome capacity delay, as these percent-
ages are so small that no conclusions can be made. According to professionals from air traffic control,
aerodrome capacity delay is most of the time issued in case of high demand.
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Figure 3.3: Detailed description of aerodrome capacity delay

3.2.2. Arrivals
The NMIR dashboard publishes many types of data regarding post-operations. This allows for sev-
eral analyses to be made, such as daily or monthly information regarding ATFM delay. Looking at
figure 3.4, the aerodrome capacity delay in minutes can be seen versus the number of arrivals per
day or month. It can be seen that, for some moments in time, the aerodrome capacity delay increases
drastically above a certain number of arrivals, however this is not always the case. When applying
a Spearman relationship test to these two data sets, the daily data showed a correlation coefficient of
0.446 and the monthly data showed a correlation of 0.624, a low and moderate correlation, respec-
tively.

Figure 3.4: Aerodrome capacity delay and the number of arrivals
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3.2.3. Runway Configurations
A more detailed analysis regarding the arrivals was performed, for the runway configurations. AAS
has 6 runways, of which 5 are used for international aviation and 1 is used for general aviation, but
if necessary it can be used for international aviation as well [4]. The layout of Schiphol can be seen in
figure 3.5. Depending on the weather, there are many possible runway configurations for AAS, over
2018 and 2019 there have been a total of 122 unique runway configurations.

Figure 3.5: Runway configurations Amsterdam Airport Schiphol [6]

The runway configurations come from LVNL data, which was combined with EUROCONTROL data.
When looking at all the runway configurations over 2018 and 2019 that handled at least 3% of the total
traffic, 13 runway configurations can be found which can be seen in figure 3.6. What can be seen from
figure 3.6, is that there is one dominant departure configuration L:18R - TO:24-18L, or to put that in
words, landings take place on runway 18R and departures take place on runway 24 or 18L. This is
a departure configuration since there is 1 arrival runway and 2 departure runways in use. Usually,
AAS makes use of a 2+1 or 1+2 configuration, however, when demand is high for example when
switching between an inbound and an outbound peak, a 4 runway configuration can be used. This is
not preferred as the residents living near Schiphol will experience more nuisance.
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Figure 3.6: Most used runway configurations in 2018 and 2019

However, these are the runway configurations that handled all the traffic, so arrivals and departures.
When only looking at arrivals, the top 10 configurations can be seen in figure 3.7. Interestingly enough,
the configuration that handled most arrivals was a departure configuration, but this is closely followed
by arrival configurations. From figure 3.6 it could be seen that there is one dominant departure con-
figuration, whereas there are multiple arrival configurations with similar amounts of traffic. There
are two 4-runway configurations present in figure 3.6, indicating that these configurations are used
relatively often.
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Figure 3.7: Top 10 arrival configurations in 2018 and 2019

Lastly, the top 10 runway configurations that have the most aerodrome capacity delay are shown in
figure 3.8. There is a bit of a difference between the arrival configurations that handled the most ar-
rivals and the aerodrome capacity delay. The top 4 are all arrival configurations, which makes sense as
aerodrome capacity delay is issued for arriving aircraft. A detailed comparison can be seen in table 3.2.
It can be seen that the highest aerodrome capacity delay per arrival is for departure configurations, as
there is only one arrival runway available. From table 3.2, there is not one configuration that performs
significantly worse than another. These 10 configurations cover 66% of the total aerodrome capacity
delay over 2018 and 2019 and 53% of the total arrivals.
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Figure 3.8: Top 10 arrival configurations with the most aerodrome capacity delay minutes over 2018 and 2019

Table 3.2: Runway configurations for aerodrome capacity delay and number of arrivals 2018-2019

Configuration Aerodrome
capacity
delay [min]

Percentage
of aero-
drome
capacity
delay [%]

Number of
arrivals [-]

Percentage
of arrivals
[%]

Average
aero-
drome
capacity
delay per
arrival
[min]

L:18R18C—TO:18L— 83171.39 13.17% 49310 9.90% 1.69
L:18R18C—TO:24—- 65731.78 10.41% 38507 7.73% 1.71
L:06-36R—TO:36L— 52959.62 8.39% 42875 8.61% 1.24
L:36R36C—TO:36L— 41500.06 6.57% 21695 4.36% 1.91
L:18R——TO:18L18C 35742.64 5.66% 11105 2.23% 3.22
L:18R——TO:24-18L 29994.36 4.75% 50717 10.19% 0.59
L:27——-TO:36L24- 29318.48 4.64% 11140 2.24% 2.63
L:27-36C—TO:36L— 26437.59 4.19% 11703 2.35% 2.26
L:27-18R—TO:24—- 26120.37 4.14% 18038 3.62% 1.45
L:36R——TO:36L36C 25586.30 4.05% 11039 2.22% 2.32

3.3. Early Arrivals
As was mentioned in [59], the difference in departure delays and arrival delays has been increasing
over the past years. This is mainly due to airlines applying schedule buffers to the flights, in order to
anticipate expected ATFM delay. As a result, more flights are arriving ahead of schedule, especially
when no ATFM delay is issued. Since there has been very little ATFM delay in 2020, more flights are
arriving early which can be seen in figure 3.9. In figure 3.9, the data for 2020 up to September is in-
cluded. It is uncertain if these early arrivals influence the ATFM delay when these arrive at unexpected
times. This is especially the case for intercontinental flights, as these are not subject to ATFM delay
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so arrive unexpectedly when early. This section takes a detailed look into early arrivals, the effect on
ATFM delay, total delay and on time performance. In this section arrival delay is the total arrival delay,
defined as the difference between the Scheduled In-Block Time (SIBT) and the Actual In-Block Time
(AIBT).
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Figure 3.9: Histogram arrival delay

3.3.1. Early Arrivals and Aerodrome Capacity Delay
Looking at figure 3.9, it can be seen that 2020, a year with little ATFM delay, has many early arrivals.
This could have to do with airlines not altering the flight schedules even though the schedule buffers
could be decreased. Looking at Arrival Sequencing and Metering (ASMA) additional time figure 3.10,
the delay issued in a circular area with a radius of 40NM around an airport, AAS has less ASMA delay
than London Heathrow. The reason for this comes down to the airport operations, the main difference
between AAS and London Heathrow is that for Heathrow almost all arrivals have to wait in holding
stacks, in turn London Heathrow has less ATFM delay, which was also presented in [31].

Hence, it seems like the early arrivals most of the time do not have to wait in a holding stack and
are simply allowed to land at AAS. These early arrivals, more than 15 minutes early, do disrupt the
operations in some way, but it is unclear how and what the impact is.

First, when taking a look at the percentage of early arrivals throughout the years, it can be seen that
this has stayed more or less equal between 2017 and 2019 (figure 3.11), fluctuating between 10% and
20% of the daily arrivals. When looking at the early arrivals in comparison to the aerodrome capacity
delay in figure 3.12, not a clear relationship can be seen. When applying a Spearman correlation on
these datasets, since both are not normally distributed, a correlation coefficient of -0.135 was found, a
negligible correlation. By looking at figure 3.12, in combination with the Spearman correlation coef-
ficient, it can be fair to say that there is no correlation between early arrivals and aerodrome capacity
delay.
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Figure 3.10: ASMA delay
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Figure 3.11: Percentage of early arrivals
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Figure 3.12: Aerodrome capacity delay and early arrivals

3.3.2. Early arrivals daily distribution
It was found that there is no correlation between early arrivals and the aerodrome capacity delay,
nonetheless, it would be interesting to see if the early arrivals have some other impact on the operation
at AAS.

When looking at the early arrivals throughout the day in figure 3.13 and figure 3.14, it can be seen that
between 2017 and 2019, most early arrivals take place in the morning, especially for intercontinental
traffic. At the same time, the on time performance (OTP) of the departures is high in the morning but
decreases drastically around 9:00h in the morning. Given the fact that most early arrivals take place in
the morning, and that the OTP of the departures decreases throughout the day, one could say that the
early arrivals influence the process in such a way that departures can no longer depart on time since
these early flights have to be handled too. When applying a Spearman correlation test to this data
presented in figure 3.13, a correlation of 0.503 was found. This is a moderate correlation.
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Figure 3.13: On time performance and the percentage of early arrivals per hour
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Figure 3.14: Total late departures and total early arrivals per hour

However, in aviation and at airports, many processes are happening at the same time. This makes
it difficult to analyze one or two parameters at a time. For these two parameters, it is important
to understand the dynamics of the individual parameters as well. When looking at the OTP of the
departures, one has to realize that this is not just influenced by early arrivals. In the morning, aircraft
can usually depart on time because these are already at AAS. Throughout the day, aircraft arrive which
have to depart later that same day. If one of these aircraft arrives late, there is a big chance that these
will depart late as well. This is the so-called Reactionary Delay, which is delay caused by the delay
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of the arriving flight. In reactionary delay there are many reasons for the next flight to depart late,
besides the actual aircraft, this can also be crew, luggage and passengers [13]. Given the arrival delay
present at AAS, it is very likely that a flight can arrive late and therefore delays the next flight. At
the same time, most flights arrive early in the morning because throughout the day the airspace gets
more congested which can result in arrival delay as well. Also, many intercontinental flights arrive in
the morning as these are usually overnight flights from North-America and Asia to Europe. Taking
these operational aspects into account, the high OTP of the departures in the morning and the high
percentage of early arrivals in the morning could also be coincidental, since there is simply less traffic,
less reactionary delay and less congestion in the morning.

While this analysis on early arrivals remains interesting, it also remains unclear what the impact of
early arrivals is on the operational delay at AAS. When looking at a daily level in figure 3.12, there
seems to be no correlation between aerodrome capacity delay, from ATFM, and early arrivals. There-
fore it was concluded that early arrivals do not influence the aerodrome capacity delay and will not be
the main focus.

3.4. On Time Performance
On time performance is a measure of the punctuality of the operation. OTP can be determined for both
outbound and inbound traffic. OTP is expressed as the percentage of traffic that departed or arrived
within a certain delay window. Usually, OTP is defined as the percentage of traffic that arrived or
departed with less than 15 minutes of delay according to the schedule [16]. Again, the delay in this
section is the difference between scheduled in-block or off-block times, and actual in-block or off-block
times.

Applying this definition of OTP to the operational data from AAS, the result for 2017 to 2019 can be
seen in figure 3.15. It can be seen that the OTP is high, especially for the arrivals. It starts high in the
morning and decreases throughout the day, mainly due to reactionary delay. Now, this seems like a
good performance, but this also included flights that depart or arrive very early. So when taking an-
other look at OTP, an analysis was performed for all traffic with a delay between -5 and +15 minutes,
creating a 20 minute window around the scheduled arrival time at the gate in figure 3.16. The depar-
ture performance is more or less the same, however the arrival performance has dropped significantly.
The traffic that arrives close to the scheduled arrival time, is only 40% at best, with lower percentages
as well. This indicates that a large percentage of the traffic falls outside this window.
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Figure 3.15: On time performance 2017-2019 with less than 15 minutes delay
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Figure 3.16: On time performance 2017-2019 with delay between -5 and +15 minutes

An analysis was performed to analyze the arrival delay in blocks of 5 minutes for 2017 to 2019 in
table 3.3. This is the arrival delay measured as the difference between the scheduled on-block time
and the actual on-block time. The blocks between -30 minutes of delay and +30 minutes of delay,
cover 85% of all the arrivals in the time. Interestingly enough, 50% of the arrivals is too early whereas
only 35% of the arrivals is too late. This is in line with what can be seen in figure 3.16.

Table 3.3: Arrival delay in 5 minute blocks

Arrival delay

Minutes early Arrivals Percentage of arrivals Minutes late Arrivals Percentage of arrivals

0-5 99788 13.4% 0-5 81583 10.9%
5-10 98755 13.2% 5-10 61373 8.2%
10-15 79347 10.6% 10-15 45079 6.0%
15-20 51305 6.9% 15-20 32963 4.4%
20-25 28468 3.8% 20-25 23969 3.2%
25-30 14521 1.9% 25-30 18356 2.5%

This can even be broken down per runway configuration. When looking at the 4 most used runway
configurations for 2018 and 2019, an overview can be seen in table 3.4. What is interesting to see, is that
the highest inbound OTP corresponds with the lowest delay per arrival. This happens when landings
take place at runway 06 or 36R. Looking back at figure 3.6, it has to be noted that the terminal building
at AAS is right in the center of the Kaagbaan, Aalsmeerbaan, Buitenveldertbaan and Zwanenburg-
baan. Hence, landings at runway 06 or 36R have hardly any taxi distance to cover, when compared to
landings at runway 18R. As a pilot does not always know beforehand on which runway the aircraft
will land, additional time could be planned for taxiing, which could be the reason for many flights
arriving early when landing on runway 06 or runway 36R.
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Table 3.4: Runway configurations OTP

Configuration Arrivals Departures % of
total
traffic

OTP
inbound

OTP
out-
bound

Median
delay
per
arrival
[min]

Median
delay per
departure
[min]

L:18R—TO:24-18L 50717 95225 14.7% 75.9% 72.6% 0 7
L:18R18C—TO:18L 49310 26445 7.6% 83.9% 67.5% -2 8
L:06-36R—TO:36L 42875 24496 6.8% 85.9% 69.4% -6 7
L:18R18C—TO:24 38507 21356 6.0% 84.3% 69.2% -2 7

This section looks at the OTP at AAS, by looking at the delay which is in this case not ATFM delay,
but the total delay. The total delay, AIBT minus the SIBT, includes many aspects. Besides ATFM delay,
this also includes taxi delay or other operational delays that fall outside the spectrum of ATFM. It is
interesting to see that while many aircraft arrive too early, even if it is only a few minutes, that at the
same time AAS has the highest ATFM delay and aerodrome capacity delay. While this does not look
into ATFM delay, it does give an insight into the departures and arrivals at AAS. From figure 3.16 and
table 3.3, it can be seen that only a small percentage of arrivals are at the gate close to the scheduled
time. The arrival punctuality seems low, and chances are that ATFM delay does play a role in this,
similarly how it plays a role in the schedule buffers, which decreases the predictability of arrivals as
well.

3.5. Applied Rates and inbound traffic
Thus far, this chapter has looked into other airports, aerodrome capacity delay, early arrivals and on
time performance. It was found that the aerodrome capacity delay is the biggest issue in terms of
ATFM delay and it is still uncertain where it originates from. This section takes a more detailed look
into the daily operations, with a focus on the applied rates and the inbound traffic.

3.5.1. ATFM regulations
When ATFM regulations take place, an applied rate is issued by the ANSP and in the case of AAS, this
is LVNL. The applied rate is the amount of aircraft, either departures or arrivals, that can be handled
per hour. The nominal capacity during an outbound peak is 36 arrivals per hour and 74 departures
per hour. The nominal capacity during an inbound peak is 68 arrivals per hour and 38 departures per
hour [9]. Now, when regulations are issued, these rates are often decreased.

When bad weather occurs, the rates are usually decreased drastically, which has a large effect on the
ATFM delay. As was analyzed in section 3.2, 56.6% of the time regulations were applied for aerodrome
capacity delay. Aerodrome capacity regulations are issued more often than weather regulations but
have a lower impact in terms of delay minutes. This can be seen from the applied rate during these
regulations. What can be seen from table 3.5, is that during aerodrome capacity regulations 45% of the
time the inbound rate is decreased from 68 to 65 aircraft per hour, which is in the inbound peak. 16%
of the time during aerodrome capacity regulations the rate is decreased from 36 to 35 arrivals per hour.
It can be seen that very often, the inbound rate is only decreased by 1 to 3 aircraft per hour from the
nominal rate. This is also why the ATFM delay minutes per aerodrome capacity regulation are not as
large as during bad weather, since the rate is only decreased by a small amount and the operation is
still close to the nominal operation.
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Table 3.5: Applied rates aerodrome capacity delay

Applied rates during Aerodrome Capacity Regulations 2018-2019

Rate 32 as percentage of total aerodrome capacity delay 6.07%
Rate 35 as percentage of total aerodrome capacity delay 15.79%
Rate 65 as percentage of total aerodrome capacity delay 45.10%
Rate 68 as percentage of total aerodrome capacity delay 18.55%

From an operational perspective, these rates can be decreased by a small amount to make the inbound
traffic a little bit more manageable. Often, this inbound traffic exceeds the nominal rate, so therefore
regulations are put in place to make sure that if it exceeds the nominal rate, it does not do so by a large
amount.

3.5.2. Inbound traffic
It would be interesting to compare the actual inbound traffic to the applied rates and inbound peaks, to
get an idea of the actual traffic arriving at AAS. To do this, the applied rate for every 10 minutes is used,
which is nominal when no regulations are in place and is decreased when regulations are applied. This
is compared to the actual inbound traffic in 10 minutes windows, which is then extrapolated to aircraft
per hour by multiplying with 6. This way, everything is compared in aircraft per hour. Everything is
converted to UTC time, and the applied rate is shifted by 20 minutes as the applied rates are issued
when traffic is at the FIR boundary, from which it takes about 20 minutes to arrive at AAS.

An example can be seen in figure 3.17. This was 8 July 2019 and two things can be seen from this day.
First, it can be observed that the incoming traffic is not evenly distributed throughout the inbound
peaks. Sometimes the demand is much lower than the capacity, while at other times it is exceeded by
a large number. Secondly, it can be seen that sometimes the inbound traffic demand starts increasing
before the inbound peak starts, this could be early arrivals. However, this 10 minute distribution of
traffic can give a bad representation, as it is somewhat subject to coincidence. If one aircraft arrives
just before the next 10 minute window, this window seems like there is a very high traffic demand as
it is again multiplied by 6. Hence, another method is introduced as well.
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Figure 3.17: Applied rate and inbound traffic per 10 minutes for 8-7-2019

This method makes use of a rolling average and can be seen in figure 3.18. For every hour, for example
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from 8:00 to 9:00, the average inbound traffic rate is calculated and plotted at 8:30. This is again done
for 8:10 to 9:10, which is plotted at 8:40, etc. The result for 8 July 2019 can be seen in figure 3.18.
There are no longer peaks that exceed the capacity by a high amount, however it can still be seen
that capacity is exceeded for a few moments in time and it can also be observed that the demand still
increases before the inbound peak starts. In figure 3.19, the rolling average of the departures is shown
as well, as the departure operations also influence the arrival operations, and vice versa. In the middle
of the day, at 11:00 UTC time, it can be seen that a departure peak and arrival peak almost coincide.
This complicates the operations at AAS and puts more stress on the air traffic controllers and ground
operations. It is likely that this adds delay to both departures and arrivals.
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Figure 3.18: Applied rate and inbound traffic rolling average for 8-7-2019
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Figure 3.19: Applied rate, inbound traffic rolling average and outbound rolling average for 8-7-2019
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Looking at the inbound traffic for 8 July 2019, it can be seen that it is not evenly distributed. The
question arises, how much does this distribution add to the aerodrome capacity delay? On 8 July
2019 there was a total of 1286 minutes of aerodrome capacity delay. This is a day with not a very
high aerodrome capacity delay, therefore a comparison is made with a day with a higher aerodrome
capacity delay, 4 October 2019. On 4 October 2019 there was an aerodrome capacity delay of 7207
minutes.

When looking at figure 3.20, the biggest difference between October 4th and July 8th is that there is
some regulation at the end of the day. Besides this, both days have unevenly distributed traffic in
the inbound peak and traffic that arrives before the inbound peak starts. The same can be seen in
figure 3.21 and figure 3.22. By comparing the inbound traffic in these two days, no large differences
can be seen.
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Figure 3.20: Applied rate and inbound traffic per 10 minutes for 4-10-2019
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Figure 3.21: Applied rate and inbound traffic rolling average for 4-10-2019
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Figure 3.22: Applied rate, inbound traffic rolling average and outbound rolling average for 4-10-2019

3.5.3. Airline schedules and demand
In section 3.5.2 the inbound traffic was presented, both per 10 minutes as well as an hourly average.
Some mismatch could be observed between the declared capacity and the actual inbound traffic. One
might wonder, if the actual inbound traffic cannot fully meet the declared capacity, what does the
airline schedule and the demand look like?

In figure 3.23 and figure 3.24 three graphs can be seen, the upper graph represents the inbound rate
according to the airline schedule, the arrival time according to the passenger tickets, which is the latest
planning before operation takes place. In the middle graph, the demand for that day can be found.
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The demand is defined as the actual arrival time, minus the aerodrome capacity delay, so the time the
flight would have arrived if it was not delayed. Lastly, the actual inbound traffic is again presented
in the lower graph for comparison. These graphs use a rolling average of 40 minutes, the reason why
this is lower than in the previous rolling average graphs is because the larger the time window is, the
less expressive it becomes. However, a smaller window is very subject to large changes, hence it was
decided to use a 40 minute average to still have some expressiveness in terms of deviations but large
enough to not be too affected by large changes.

For July 8th only small differences can be found between the airline schedule, the demand and the
actual inbound traffic. The largest difference can be seen in the first arrival peak in the morning, where
demand is higher than the capacity, but this peak is decreased by applying ATFM delay. For July 8th
the morning shows some early arrivals, and the third inbound peak is much wider than the inbound
peak according to schedule, this can both be observed in the schedule, demand and actual inbound
traffic.
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Figure 3.23: Airline schedule, daily demand and actual arrival throughput per 10 minute on 8-7-2019 - rolling average

For October 4th, larger differences can be seen between the airline schedule, demand and actual in-
bound traffic. The traffic distribution in the airline schedules seems well distributed, despite the last
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inbound peak which had a drop in declared capacity, but this was most likely not known during the
scheduling phase. When looking at the demand for October 4th, the first and fourth inbound capacity
are exceeded, and the fifth inbound demand peak is even higher. After ATFM delay was issued, it can
be observed that for the actual inbound traffic it fits reasonably within the inbound peaks, showing
the effectiveness of ATFM delay on this day. What can be observed for both days, is the difference
between the airline schedules and the declared capacity. One would expect that these should perfectly
fit, however, it can also be observed that the demand on the day of operation already differs from the
schedule. So there are some differences on these days in terms of airline schedule, demand and how
the demand is fitted to the inbound peaks. To get a better understanding of the differences between
these two days, some additional comparisons are made.
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Figure 3.24: Airline schedule, daily demand and actual arrival throughput per 10 minute on 4-10-2019 - rolling average

3.5.4. Comparison
By combining data from EUROCONTROL, LVNL, AAS and the KNMI, a lot of information can be
put together. In table 3.6, the main parameters available are compared between the two days. From
looking at the values in table 3.6, a few parameters differ, which are:
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• Cloud base (both arrivals and departures)

• Wind direction

• Rainfall

• ATA-ETA

• Early arrivals

• Late departures

• Total arrival delay

• Total departure delay

These variables are compared with more detail to see whether a clear reason can be found for the
significantly higher aerodrome capacity delay on 4 October 2019.

In table 3.6 the value for Aircraft too many indicates the sum of aircraft that caused the inbound flow
to exceed the capacity available. Aircraft before inbound peak indicates the sum of aircraft that caused
the inbound flow to exceed the capacity available, only in the 30 minutes before an inbound peak
starts.

Table 3.6: Comparison of 8 July 2019 and 4 October 2019

Date 08/07/2019 04/10/2019

Day of the week Monday Friday
Cloud base arrivals median (many data gaps) [ft] 4500 1700
Cloud base departures median [ft] 10000 3000
FIR delay total [min] 584.45 613.4667
FIR delay median [min] 0.25 0.4
ATA-ETA median [min] 0.533 1.083
ATA-planned median [min] 0.35 0.617
ATOT-TTOT median [min] 0.20 0.60
AOBT-TOBT median [min] 5.91 7.03
Landing interval median [s] 104 103
Start interval median [s] 95.5 100
Visibility median [ft] 10000 10000
Wind speed median [m/s] 5.0 4.0
Wind direction median [°] 320 140
Hourly average rainfall [mm] 0.017 0.47

Early arrivals total [-] 56 118
Late arrivals total [-] 186 99
Arrivals total [-] 739 709
Departures total [-] 742 695
Late departures total [-] 272 174
European arrivals [-] 598 567
Total arrival delay [min] 6874 950
Median arrival delay [min] 3 -4
Total departure delay [min] 13336 9247
Median departure delay [min] 9 6
Aircraft too many [-] 51 45
Aircraft before inbound peak [-] 22 21
ATFM Aerodrome capacity delay [min] 1286 7207
Total ATFM delay [min] 1286 7207
Arrival congestion index [%] 78.9 85.7
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First, a comparison is made regarding the weather conditions that day. From figure 3.25a it can be seen
that the cloud base information from arrival data for 8 July 2019 is scarce, but the data that is available,
shows a higher cloud base compared to 4 October 2019. The departure data showed more information,
in figure 3.25b it can be seen that the cloud base on 8 July 2019 was higher than on 4 October 2019. The
cloud base is the lowest point of visible clouds. Regarding the visibility, from figure 3.26a it can be seen
that the visibility is worse on 4 October 2019, especially in the morning between 05:00 and 11:00. This
can also be seen in figure 3.26b, during the same hours, the value for the meteorological conditions
often equals 1, which indicates marginal conditions. 0 indicates good meteorological conditions and 2
indicates very poor conditions.

(a) Cloud base arrival data (b) Cloud base departure data

Figure 3.25: Cloud base data

(a) Visibility (b) Meteorological conditions

Figure 3.26: Visual conditions

In addition to the weather data available from LVNL, data from the KNMI is analysed as well. When
looking at the wind conditions in figure 3.27, it can be seen in figure 3.27a that on 4 October 2019 there
was a large change in wind direction around 11:00, which goes together with at strong increase in wind
speed which can be seen in figure 3.27b. Such a change in wind conditions can lead to a sudden change
in runway configurations which could lower the operational capacity. Please note that in figure 3.27a
a large change can be seen at 17:00 on October 4th, however, this is a change in wind direction from
350°to 0°, which is only a 10°change of wind direction. Additionally, the morning of 4 October also
had quite some rain, which can be seen in figure 3.28.



3.5. Applied Rates and inbound traffic 93

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Hour of the day

0

50

100

150

200

250

300

350

W
in
d 
di
re
ct
io
n 
[d
eg

re
es

]

Wind direction
2019-07-08
2019-10-04

(a) Wind direction

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Hour of the day

2

3

4

5

6

7

8

9

Sp
ee

d 
[m

/s
]

Wind speed
2019-07-08
2019-10-04

(b) Wind speed

Figure 3.27: Wind conditions
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Figure 3.28: Rain conditions

Now that it is known that the clouds were lower on 4 October 2019, that the morning had marginal
visual conditions which was paired with rain, and there were some deviations in wind direction and
speed after the rain in the morning, some other comparisons are made. First, the difference between
the ATA and ETA is analyzed, as this is twice as high on average for 4 October 2019. In figure 3.29a the
FIR delay can be seen and in figure 3.29b the ATA minus the ETA. In the early morning, 8 July 2019 had
a short moment of high delay on the arrivals in the final sector. The FIR delay is the planned landing
slot minus the ETA. The ETA is determined at the first moment LVNL can see the aircraft on the radar.
Later throughout these days, the delay decreases on 8 July 2019 but increases on 4 October 2019. This
is a bit odd as one might expect that the delay is highest in the morning, when visual conditions are
worse for October 4th. When looking at all the incoming traffic instead of the hourly average, no large
differences can be seen in figure 3.30.
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(a) FIR delay (b) ATA - ETA

Figure 3.29: Delay during the last phase of the flight
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Figure 3.30: FIR delay, ATA-ETA and ATA-planned delay

When looking at table 3.6 and figure 3.31, it can be seen that 4 October 2019 has more early arriving
traffic than 8 July 2019. This could explain the low delay during the morning of 4 October, as these
flights have negative delays. Throughout the day, the early arrivals remain quite high for October 4
although FIR delay is higher. Regarding the departures in figure 3.31b, the end of the day on July
8th showed a much higher number of delayed departures compared to October 4th. Where October
4th showed twice as many early arrivals, July 8th had almost 100 additional delayed departures. This
could be because an early arrival probably departs on time, whereas a late arrival has a higher chance
of departing late as well which is in line with what can be seen by the total late arrivals in table 3.6,
which was also higher for July 8th.
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(a) Early arrivals (b) Late departures

Figure 3.31: Early arrivals and late departures

Now, when looking at the total arrival delay and aerodrome capacity delay, something strange can
be seen. July 8th has 1286 minutes of aerodrome capacity delay, but a total of 6874 minutes of arrival
delay. October 4th has 7207 minutes of aerodrome capacity delay, but only 950 minutes of total arrival
delay. This can be explained by looking at figure 3.32, mainly by looking at figure 3.32b it can be
seen that on 4 October 2019 a large part of the arrivals has a negative delay, so by summing all the
arrival delay minutes, the value of 950 minutes is a result of many negative delays. It can be seen
that the median for October 4th is at -4 minutes and for July 8th at 3 minutes. It seems as if a higher
aerodrome capacity delay results in less total arrival delay, and the other way around. To test this, the
daily aerodrome capacity delay was compared to the daily total arrival delay. The comparison can be
seen in figure 3.33. By using a Spearman correlation test, a correlation coefficient of 0.109 was found,
which is negligible.

When looking at the aerodrome capacity delay over the days, the afternoon of 4 October is most reg-
ulated, which can be seen in figure 3.34, this could also be seen in earlier figures such as figure 3.20.
In figure 3.34 two figures can be seen, the upper figure indicates the aerodrome capacity delay on the
ATA of the flight, however, the aerodrome capacity delay is issued for the time that the flight would
have arrived, because at that time the aerodrome capacity was expected be under high demand. This
can be seen in the lower figure, which is similar to the upper figure but with at time shift. Between
17:00 and 18:00 most of the aerodrome capacity delay was issued, which could also be seen by the
drop in declared capacity in figure 3.20. It is odd that this drop in declared capacity happens late in the
afternoon, while the morning had poor visibility and bad weather, combined with a change in wind
direction and speed.

The arrival congestion index is a measure of the percentage of arrival capacity used, as defined by
Rodríguez-Sanz et al. [53]. When looking at figure 3.35 and table 3.6, it can be observed that October
4th had a slightly higher congestion index, but this is also the case because of the drop in declared ca-
pacity in the final inbound peak. Especially the morning of both days shows a high arrival congestion
index.
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(a) Arrival delay all (b) Arrival delay zoomed in

Figure 3.32: Arrival delay minutes
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Figure 3.33: Arrival delay and aerodrome capacity delay



3.5. Applied Rates and inbound traffic 97

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time of the day [UTC]

0

100

200

300

400

500
Ae

ro
dr

om
e 
ca

pa
cit

y 
de

la
y 
[m

in
] Aerodrome capacity delay for ATA per 10 minutes

2019-07-08
2019-10-04

11-06 00 11-06 03 11-06 06 11-06 09 11-06 12 11-06 15 11-06 18 11-06 21 11-07 00
Time of the day [UTC]

0

100

200

300

400

500

Ae
ro
dr

om
e 
ca

pa
cit

y 
de

la
y 
[m

in
] Aerodrome capacity delay for initial arrival times per 10 minutes

2019-07-08
2019-10-04

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time of the day [UTC]

0

100

200

300

400

500

Ae
ro
dr

om
e 
ca

pa
cit

y 
de

la
y 
[m

in
] Aerodrome capacity delay for ATA per 10 minutes

2019-07-08
2019-10-04

11-06 00 11-06 03 11-06 06 11-06 09 11-06 12 11-06 15 11-06 18 11-06 21 11-07 00
Time of the day [UTC]

0

100

200

300

400

500

Ae
ro
dr

om
e 
ca

pa
cit

y 
de

la
y 
[m

in
] Aerodrome capacity delay for initial arrival times per 10 minutes

2019-07-08
2019-10-04Figure 3.34: ATFM aerodrome capacity delay

000102030405060708091011121314151617181920212223
Hour of the day

40

60

80

100

Ar
riv

al
 c
ap
ac
ity
 u
se
d 
[%

]

Arrival congestion index
2019-07-08
2019-10-04

Figure 3.35: Congestion index

As a last comparison, the used runway configurations are compared. Both days used a high number of
different runway configurations, however 4 October 2019 shows that the arrivals are distributed over
multiple configurations, whereas 8 July 2019 has one configuration that was used the most. 4 October
2019 shows that even opposite landing configurations were used, indicating that the wind direction
might have changed throughout the day. This is in line with what was found in figure 3.27, and in
figure 3.36 one can see the changes in runway configurations throughout the day around the same
time as the change in wind direction and strength from figure 3.27. One thing that can be noticed from
looking at 8 July 2019, is that a 4-runway configuration was used for a high percentage of arriving
traffic. 4-runway configurations are only used when necessary, meaning that July 8th could have had
difficult traffic situations or unexpected congestion, which could explain the higher total arrival delay
seen from figure 3.32.
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Table 3.7: Runway configurations used

08-07-2019 04-10-2019

Runway configuration Percentage of arrivals Runway configuration Percentage of arrivals

L:06-36R—TO:36L— 30.7% L:18R18C—TO:09— 17.9%
L:06-36R—TO:36L36C 17.6% L:18R——TO:24-09 13.8%
L:27-36C—TO:36L— 13.5% L:27——-TO:36L24 10.4%
L:27——-TO:36L24- 10.4% L:06-18R—TO:09— 10.4%
L:06——-TO:36L— 8.5% L:06——-TO:36L– 9.7%
L:36R——TO:36L36C 6.9% L:27-18R—TO:24— 9.2%
L:06——-TO:36L36C 4.5% L:36C——TO:36L09 7.1%
L:27——-TO:24—- 3.1% L:18R——TO:24— 6.8%
L:36R——TO:36C— 1.6% L:18R18C—TO:24-09 5.8%
L:06——-TO:36C— 1.5% L:18R18C—TO:24— 5.2%

L:36C——TO:09— 2.1%
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Figure 3.36: Runway configurations

3.6. Correlation matrix
In section 3.5, a comparison was made between two days were one showed an uneven distribution
in the inbound traffic, but had only 1286 minutes of aerodrome capacity delay, with a day that had a
similar inbound distribution throughout the day, but had 7207 minutes of aerodrome capacity delay.
From this comparison, a few difference showed but there was not one clear parameter found that
caused the delay.

In this section, a correlation matrix is presented. For every 10 minutes of 2018 and 2019, the mean of
a parameter is taken, or in some cases the sum which is then mentioned. The correlation matrix of
this data can be seen in table 3.8. The correlation coefficients are calculated by using the Spearman
correlation method, as there are hardly any normally distributed variables.

There are a few parameters that one can use to verify the data used, such as relatively high positive
correlation coefficients between departures and departure runways and negative correlation coeffi-
cients between visibility and meteorological conditions. Most interesting are the rows for the median
or total arrival delay, and the ATFM aerodrome capacity delay. Unfortunately, there seem to be only
weak relationships between the median and total arrival delay, and other parameters. This is also the
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case for ATFM aerodrome capacity delay. In appendix A a correlation matrix of all variables can be
found, as in table 3.8 only the most interesting parameters are included for sake of readability.
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3.7. Conclusion case study
A detailed data analysis has been performed to find correlations between variables that could poten-
tially cause arrival delay or aerodrome capacity delay.

The main area of interest from ATFM delay is the aerodrome capacity delay. This is the type of ATFM
delay that is issued often for AAS. This type of delay can have several reasons and it seems that it is
more likely to increase above a certain number of daily arrivals. This is in line with what was found
regarding the reasons for aerodrome capacity delay, which is often due to high demand. Runway con-
figurations have been compared, but there was not one configuration performing significantly worse
than others.

With increasing ATFM delay over the years, airlines are responding to this by applying schedule
buffers to try and predict the delay that will be imposed. It can be the case, that these schedule buffers
are so large that traffic will arrive early, which is something that 2020 has shown as there was little
ATFM delay. The percentage of early arrivals has stayed more or less the same over 2017 to 2019, and
no correlation was found between early arrivals and aerodrome capacity delay. It remains unclear
what the effect of early arrivals is on the operation of AAS.

When looking more into arrival delay and less into aerodrome capacity delay, it was found that the
OTP of arriving traffic is not very high in terms of flights that arrive with a delay between -5 and +15
minutes. Many flights arrive early and only a small percentage actually arrives on time indicating low
arrival punctuality. This affects the predictability of traffic.

Looking at the ATFM regulations issued for AAS, a large amount is due to aerodrome capacity. When
looking at the applied regulations and the applied rates from LVNL, compared to the actual incoming
traffic, a slight mismatch can be seen. Often demand exceeds capacity, aircraft arrive outside of the
arrival peak and traffic is not evenly distributed throughout the inbound peaks, which is in line with
the findings from a study performed by LVNL earlier in 2020, Obbens and Dijkgraaf [48]. Here it is
stated that the ATFM delay for AAS is caused by the uneven distribution of SIBT.

Two days have been compared with the data available from EUROCONTROL, LVNL, KNMI and AAS.
A few things were different, such as cloud base, wind and visibility, but in terms of operations, the only
differences found were the early arrivals, arrival delay and aerodrome capacity delay.

Lastly, a correlation matrix is presented showing the Spearman correlation coefficients between all
variables available for every 10 minutes of 2018 and 2019. No clear relationships emerged from this,
at least not for arrival delay and aerodrome capacity delay. Nonetheless, this data analysis showed
that what was said in chapter 2 about Complex Networks could very well apply to the arrival delay
and aerodrome capacity delay for AAS. A very thorough analysis was performed, yet not one variable
showed a strong relationship with either one of the delays, apart from the arrivals. The aerodrome
capacity delay and arrival delay for AAS is caused by something. In chapter 4 it will be presented how
more insights will be created into the operational aspects of AAS.





4
Research Proposal

In this chapter, the future planning and outline of the thesis are presented. It will recap the literature
study and data analysis performed and present research questions. The proposed methodologies and
experiments are presented, the expected outcome of this thesis, and the contribution to the scientific
community.

4.1. Research performed
From the literature review in chapter 2, many possible topics were presented that could provide more
insights into ATFM delay and possible solutions as well. As this is a research study for Amsterdam
Airport Schiphol, the focus will be on the airport itself, as the airport is the main contributor to the
ATFM delay in the European airspace network. Most of the methodologies presented in chapter 2
show the potential to decrease the arrival delay or ATFM delay at an airport, however many studies
are simplified for only one or two runways, some do not take the stochastic behaviour of air trans-
portation into account and others are very sophisticated methods for the whole network such as 4D
planning.

One thing that became apparent during the literature review, is that not every method can simply
be applied to every airport or air transportation network. CNT showed that there are for example
differences between the EU network and the US network and that the importance of an airport, or
a node, in the network makes a difference as well. Additionally, airport geometry and operational
characteristics seem to play an important role in how delays can be assessed and minimized. It also
became apparent that the different methodologies can be applied during different phases of a flight,
for example en-route or in the final sequencing before landing.

All in all, ATFM is a complex measure for a complex network. As said in Rodríguez-Sanz et al. [53],
the nodes in a complex network can be complex systems as well with their own characteristics. To
figure out which method could be applied best to the airport ATFM delay at AAS, it is important to
figure out what the actual cause of the delay is. As was mentioned in Cook et al. [26], in a CNT it is
usually multiple variables and the interaction between them that causes the delay. This could also be
seen in chapter 3, where not one variable was found that had a strong relationship with the aerodrome
capacity delay, yet the aerodrome capacity delay remains high. Therefore, it seems that a Bayesian
Network can be used to find the interaction between variables and try to estimate the arrival delay.
Then, by applying backward propagation, the main variables causing the delay can be found.

In chapter 3 many variables were used to find correlations between arrival delay or aerodrome capacity
delay, yet there was not one variable found that had a strong relationship with one or the other. This
is in line with what was presented by Cook et al. [26], so a BN could provide more insights into the
operation of AAS. In the comparison between the two days, the differences found were mainly weather
related, and a few small differences in operational data could be found.
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4.2. Research objective
The research objective of this study is the following:

In the European airspace, Air Traffic Flow Management is used to optimize the flow of traffic and
prevent traffic from airborne holding as a form of delay. Airports are often the bottlenecks of the
air transportation network and for Europe, Amsterdam Airport Schiphol is the biggest contributor
to airport ATFM delay, also classified as aerodrome capacity delay. The main causes for aerodrome
capacity delay and arrival delay for Schiphol are difficult to distinguish, as there are many interac-
tions between the different operators in air transportation. This research aims to get more insights
into aerodrome capacity delay and arrival delay for Amsterdam Airport Schiphol by identifying the
conditions that lead to aerodrome capacity delay or arrival delay, understanding the interactions
between operational parameters and identifying the parameters that influence aerodrome capacity
delay and arrival delay the most, through a Bayesian Network.

There is a fairly clear objective to this research, to get more insights into the causes for aerodrome
capacity delay and arrival delay for Amsterdam Airport Schiphol. This is translated to the following
research question:

What operational conditions have the highest chance of resulting in a high aerodrome capacity delay
or arrival delay for Amsterdam Airport Schiphol?

It was found that there can be many causes for delay, all with their own respective impact on the
operational conditions. The air transportation network, and airports by themselves, can be viewed
as complex networks. In complex networks, it is often a combination of and the interaction between
variables that lead to delay, not one variable by itself.

One of the interesting findings was the resolution at which landing slots are planned during strate-
gic planning. In essence, the predictability of the arrival delay is low. Strategic planning could be
improved to increase the predictability of traffic.

A Bayesian Network approach is proposed to find more insights in the operational conditions for
AAS. A BN can show the inter-dependencies between variables and possibly highlight new inter-
dependencies as well. Recent studies ([52, 53]) have shown that BN were successful in predicting
arrival or departure delay at airports.

To answer the research question, some sub-questions are proposed to provide a more detailed overview
of the research. These questions are:

1. What parameters have a direct effect on aerodrome capacity delay and arrival delay?

2. What combination of parameters has the highest impact on aerodrome capacity delay and arrival delay?

(a) What parameters have the strongest conditional probabilities?

(b) What parameters are most sensitive in the Bayesian Network?

3. Can a more detailed strategic planning result in better predictability of arrival delay?

(a) Will a more detailed strategic planning result in a more even distribution of inbound traffic in the
arrival peak?

(b) Will a more detailed strategic planning result in less aerodrome capacity delay?

4. What parameters can be changed in the operation of Amsterdam Airport Schiphol to decrease the aerodrome
capacity delay and arrival delay?

5. What future methods would be best suitable to decrease the aerodrome capacity delay and arrival delay at
Amsterdam Airport Schiphol?

4.3. Experimental setup
This section will explain how the Bayesian Network will be created and trained, and how it will be
used in experiments. Therefore, this experimental set-up is two-fold, as first the Bayesian Network has
to be created and trained after which it will be combined with an objective function.
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4.3.1. Bayesian Network
There are several ways to create a Bayesian Network. It is important to understand which parameters
influence which, that can be done either by using knowledge from experience, but there are also data-
driven ways to create a BN as explained in Rodríguez-Sanz et al. [52]. Additionally, every parameter
has its own probability distribution as well, which needs to be established.

Using knowledge obtained from the literature study a first BN will be constructed. However, it would
be interesting to see whether an algorithm could find possible inter-dependencies that are not found
by using knowledge from the operations. So additionally, a data-driven BN will be created to see the
differences and compare performance.

The BN will be created in Python by using one of the libraries for BN, such as pomegranate, bayespy
or BayesFusion. BayesFusion showed the possibility to create a BN by using Bayesian Search on the
data provided, a technique that showed potential in identifying correlations and causal relationships.
However, there are several other methods to create a BN such as Naive Bayes, which makes assump-
tions regarding the independence of the data points (Friedman et al. [33]). The performance of a
Bayesian network can be found by means of the Bayesian score, which is a measure that shows how
well the BN can represent the data it was built upon. Which exact library will be used is yet to be
determined.

Before the BN can be created, all data has to be in place. As the main problem is aerodrome capacity
delay and arrival delay, it is proposed to focus mainly on these aspects of the operation. The following
parameters are proposed to be using in the BN:

• Month

• Day of the week

• Hour of the day

• Cloud base

• Visibility

• Wind direction

• Wind speed

• Meteorological conditions

• Aircraft weight class

• Departure airport

• Airline type

• Departure delay

• Inbound or outbound peak

• Nominal capacity

• Regulated capacity

• Arrival throughput

• Runway configuration

• Arrival runway

• Scheduled on-block time

• Scheduled landing slot

• Strategic planning landing slot

• ETA at FIR entry

• FIR delay
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• ATA

• Landing interval

• Arrival delay

• Aerodrome capacity delay

• Congestion index

This is a high number of variables, but most of these are already available and some can be found in
chapter 3. Nonetheless, some variables still need to be found but these should be available in time.
One interesting parameter is the congestion index, this idea was proposed by Rodríguez-Sanz et al.
[53] to measure the congestion as a percentage of the operational capacity used.

This first part of the research will include an extensive data analysis, to construct the BN and to answer
sub-question 1. Once that is constructed and optimized, backward propagation will be applied and a
thorough sensitivity analysis will be executed, to find the main parameters causing aerodrome capacity
delay and arrival delay, and to answer sub-questions 2 and 3.

4.3.2. Data
The BN will be trained on a part of the operational data available, and its performance can be tested
on the part of the operational data that is not used for training and building the BN.

Thus far, data was made available by AAS, EUROCONTROL and LVNL. This data contains almost
all the information necessary for the proposed BN. Some additional data will be used as well, such
as weather data from the KNMI, departure delay data and additional data is necessary regarding
the strategic landing slots. All in order to perform experiments that represent reality as detailed as
possible. The performance of the BN can be assessed by looking at the Bayesian score.

4.3.3. Experiments
The Bayesian Network will be created and trained based on operational data from 2018 and 2019. As
an airport, AAS is able to influence certain operational parameters. Some can be found in the list of
parameters from the proposed BN model, such as: strategic planning landing slot, scheduled landing slot,
regulated capacity, landing runway and runway configuration.

The Bayesian Network will be a model that represents the interactions in the airports system, also the
days with high delays. In the experiments, the BN will be combined with an objective function. The
goal of this function will be to minimize the aerodrome capacity delay and arrival delay. An objective
function together with some well defined constraints for parameters such as the inter-arrival times,
can represent real-life scenarios without exceeding operational safety minima. The exact form of the
objective function is yet to be determined.

When the BN and the objective function are finished, experiments can take place. As the BN will be
based on operational data, a real-life traffic scenario can be used from the operational data. By using
a certain traffic scenario as input for the BN with the objective function, the BN can find the best way
to handle this traffic with the least delay. As output, the BN with objective function will provide a
complete traffic scenario with a lower delay when compared to the actual day of operations. Then, by
comparing the outcome of the BN with objective function to the actual day of operations, choices that
could have led to less aerodrome capacity delay or arrival delay can be observed.

Such experiments will be performed for different traffic scenarios. The main reason for this is that
AAS or LVNL cannot influence the wind direction, but the wind direction is the dominant driver for
the chosen runway configuration. Hence, several wind conditions will be taken into account. Addi-
tionally, the most interesting days to look at are the days which had a high aerodrome capacity delay
or arrival delay. The data analysis, creating the BN and the experiments will all be performed using
the programming language Python. The second part of the research proposal can answer sub-question
4. The complete model will be able to answer sub-question 5.



4.4. Limitations 107

4.3.4. Verification and validation
Verification of the proposed BN can be done by inspecting the parameters and to see how the model
responds to certain inputs. For example, a large departure delay will most likely result in a significant
arrival delay. By applying several sanity checks to the model, one can check whether a certain input
results in an expected output.

Validation can be done by checking whether the BN provides results similar to the operational data,
which is from real operations. It is always important to validate the data inputs to the model, by for
example looking at the number of arrivals over a certain time.

4.4. Limitations
While the literature shows promising results for a BN, there are some limitations. First, it remains a
probabilistic model. While probabilistic models can represent reality to some extent, there are always
differences compared to real-life examples. It would be interesting to see how the BN would react to a
large disturbance in the network for example. In addition to this, no human in the loop is considered.
The performance of an air traffic controller or the decisions made, for example to regulate on 65 instead
of 68, are not included. This model will not take human reasoning into account.

Another limitation of this study is that the BN that will be created is tailored to AAS. While it would
be possible to apply it to another airport, it probably will not work as all operational aspects in the BN
are based on AAS data.

A last limitation would be the variables included in the BN. While there are many variables available
from the operational data, still not every interaction is included, for example when pilots requests
directs to other waypoints or change the flight speed. But, as the focus of this study is on the airport
and ATC, it is important that at least all airport related parameters are in place.

4.5. Outcome & Contribution
It is expected that this study will provide more insights into the causes for arrival delay and aerodrome
capacity delay for Amsterdam Airport Schiphol. It also holds the potential to show inter-dependencies
between variables that were not noticed before. Using this, AAS or LVNL could take appropriate
measures to minimize the arrival delay and the need for regulations. The outcome of this research
could also support the start of new research, to optimize a certain aspect of the arrival process at
Schiphol that was identified by the BN and has an impact on arrival delay.

Bayesian Networks have been applied in multiple studies and showed the potential to predict delays.
Yet, there has only been one study performed where the arrival delay is investigated using a BN, as
most studies focus on the departure delay or en-route delay. In addition to that, there has been no
study found that combined a BN with an objective function in air transportation, or one that applied
a BN to an airport with an aerodrome capacity delay comparable to Schiphol. It will be investigated
by using the BN and an objective function, how operational decisions could lead to less aerodrome
capacity delay and arrival delay.





5
Conclusion

This report presents a literature research for possible solutions to assess airport ATFM delay, a thor-
ough data analysis for AAS and a proposed method with the goal to get more insights into the causes
for aerodrome capacity delay and arrival delay for AAS. In the literature review, several methods were
presented that showed an interesting approach to minimize ATFM delay. However, it was also found
that every airport has a different infrastructure and traffic scenarios, so not every method can be ap-
plied to every airport. It is important to understand the dynamics in a complex network such as an
airport, as this can provide more insights into the reasons for delay.

The data analysis performed found that it is not easy to find the reasons for the arrival delay. Not
one variable was found that caused a lot of delay, yet aerodrome capacity delay and arrival delay
are present in high numbers. Therefore it is proposed to create a Bayesian Network based on the
operational data available. The Bayesian Network is a probabilistic model that can be trained based
on operational data. First, the Bayesian Network will be created and tested on its accuracy, after which
it will be used to perform experiments. From these experiments, choices can be observed that could
lead to less aerodrome capacity delay and arrival delay for AAS. The focus of these choices will be
changes AAS or LVNL are able to make.

It will be an exploratory study to create more insights into the airport ATFM delay and arrival delay
for AAS. It will contribute to the usability of Bayesian Networks in air transportation. And it will
contribute to knowledge about the factors that cause arrival delay for AAS, such that appropriate
measures can be taken to improve the operation.
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Table A.1: Correlation matrix for every 10 minutes of 2018 and 2019 - part 1/4

Landing
inter-
val

Cloud
base
ar-
rival
data

FIR
delay

ATA-
ETA

ATA-
planned

Number
of
land-
ing
run-
ways

Number
of
take-
off
run-
ways

Total
run-
ways

AOBT-
TOBT

ATOT-
TTOT

Cloud
base
de-
par-
ture
data

Meteorological
condi-
tions

Landing interval 1.000 0.012 -0.315 -0.454 -0.323 -0.188 -0.194 -0.334 -0.063 -0.065 -0.298 -0.015
Cloud base arrival data 0.012 1.000 0.044 0.049 0.034 -0.004 -0.023 -0.020 -0.012 0.034 -0.624 0.252
FIR delay -0.315 0.044 1.000 0.746 0.090 -0.039 0.110 0.071 0.026 0.039 0.019 0.041
ATA-ETA -0.454 0.049 0.746 1.000 0.670 0.128 0.176 0.259 0.044 0.086 0.145 0.078
ATA-planned -0.323 0.034 0.090 0.670 1.000 0.229 0.134 0.298 0.042 0.087 0.171 0.079
Number of landing run-
ways

-0.188 -0.004 -0.039 0.128 0.229 1.000 -0.219 0.607 0.061 0.099 0.208 0.033

Number of take-off run-
ways

-0.194 -0.023 0.110 0.176 0.134 -0.219 1.000 0.631 -0.009 0.060 0.231 0.002

Total runways -0.334 -0.020 0.071 0.259 0.298 0.607 0.631 1.000 0.044 0.123 0.360 0.032
AOBT-TOBT -0.063 -0.012 0.026 0.044 0.042 0.061 -0.009 0.044 1.000 0.082 0.071 0.016
ATOT-TTOT -0.065 0.034 0.039 0.086 0.087 0.099 0.060 0.123 0.082 1.000 0.077 0.059
Cloud base departure
data

-0.298 -0.624 0.019 0.145 0.171 0.208 0.231 0.360 0.071 0.077 1.000 -0.248

Meteorological condi-
tions

-0.015 0.252 0.041 0.078 0.079 0.033 0.002 0.032 0.016 0.059 -0.248 1.000

Start interval -0.108 0.008 -0.021 0.056 0.095 0.056 0.159 0.163 0.022 0.002 0.407 0.066
Visibility LVNL data -0.282 -0.092 0.094 0.189 0.170 0.160 0.183 0.289 0.251 0.103 0.540 -0.169
Early arrivals -0.114 0.007 -0.046 0.007 0.049 0.272 0.010 0.222 -0.032 0.005 0.124 -0.005
Late arrivals -0.238 -0.006 0.151 0.227 0.169 0.149 0.079 0.190 0.066 0.076 0.141 0.040
LVNL arrivals -0.593 -0.004 0.188 0.391 0.371 0.744 0.043 0.636 0.086 0.123 0.353 0.037
Demand / Initial arrivals
without ATFM delay

-0.540 0.007 0.153 0.349 0.345 0.693 0.051 0.601 0.074 0.119 0.337 0.049

Arrivals airline schedule -0.438 0.001 0.110 0.298 0.314 0.561 0.046 0.494 0.080 0.116 0.329 0.043
Arrivals AAS -0.535 0.004 0.145 0.349 0.352 0.705 0.039 0.602 0.077 0.120 0.344 0.047
Departure -0.356 -0.005 0.136 0.281 0.253 0.051 0.685 0.609 0.036 0.137 0.400 0.038
Late departures -0.285 -0.025 0.103 0.211 0.188 0.117 0.381 0.409 0.109 0.181 0.316 0.031
Median arrival delay -0.052 -0.012 0.120 0.129 0.068 -0.103 0.040 -0.044 0.056 0.041 -0.018 0.030
Median departure delay -0.244 -0.021 0.080 0.179 0.167 0.163 0.206 0.299 0.140 0.180 0.307 0.043
Total arrival delay -0.063 -0.010 0.122 0.132 0.067 -0.099 0.059 -0.026 0.052 0.045 0.008 0.024
Total departure delay -0.303 -0.024 0.108 0.225 0.201 0.118 0.411 0.434 0.106 0.182 0.344 0.035
Declared arrival capacity -0.399 -0.025 -0.064 0.145 0.265 0.652 0.021 0.546 0.048 0.078 0.380 0.004
High demand -0.258 0.007 0.169 0.244 0.183 0.299 0.028 0.260 0.044 0.061 0.118 0.046
AC too many -0.245 0.008 0.164 0.239 0.181 0.305 0.025 0.261 0.043 0.063 0.117 0.044
AC before inbound peak 0.022 -0.004 0.040 0.072 0.066 0.119 0.176 0.219 0.015 0.062 0.062 0.010
Aerodrome capacity de-
lay

-0.264 -0.023 0.110 0.199 0.180 0.306 -0.069 0.203 0.085 0.034 0.129 -0.017

ATFM-G Delay for the
time the flight would
have arrived

-0.257 -0.023 0.102 0.187 0.172 0.303 -0.062 0.207 0.082 0.027 0.129 -0.014

Arrival congestion index -0.556 0.012 0.323 0.449 0.315 0.418 0.164 0.471 0.070 0.110 0.258 0.052
Wind direction -0.028 0.103 0.005 0.011 0.002 0.010 0.025 0.030 0.038 0.013 -0.024 -0.006
Wind speed -0.068 0.151 0.121 0.173 0.121 0.072 0.094 0.136 0.024 0.062 0.004 0.002
Temperature -0.146 -0.198 0.002 0.023 0.022 0.089 0.156 0.196 0.092 -0.015 0.255 -0.141
Rain duration 0.009 0.233 0.061 0.071 0.046 -0.005 -0.023 -0.020 0.062 0.057 -0.152 0.134
Rain hourly sum -0.005 0.073 0.030 0.032 0.018 -0.002 -0.015 -0.013 0.044 0.028 -0.051 0.069
Horizontal visibility
KNMI

-0.143 -0.317 -0.010 0.019 0.027 0.091 0.146 0.193 0.026 -0.022 0.375 -0.328

Cloud density 0.013 0.360 0.047 0.062 0.053 -0.012 -0.021 -0.024 0.012 0.043 -0.249 0.169
Fog 0.061 0.039 0.028 0.039 0.037 0.004 -0.039 -0.029 -0.001 0.019 -0.092 0.227
Rain 0.018 0.261 0.061 0.074 0.050 -0.004 -0.016 -0.014 0.050 0.054 -0.163 0.115
Snow 0.009 0.045 -0.008 -0.001 0.009 -0.009 0.003 -0.004 -0.009 0.016 -0.041 0.057
Thunderstorms -0.001 -0.011 0.028 0.049 0.042 0.008 0.010 0.014 0.029 0.025 0.027 -0.017
Ice formation 0.029 0.023 0.002 0.007 0.013 -0.007 -0.013 -0.016 0.003 -0.003 -0.055 0.096
Hour of the day -0.046 -0.030 -0.062 -0.075 -0.078 -0.131 -0.020 -0.116 0.034 0.059 0.043 -0.046
Month -0.021 -0.007 0.003 -0.009 -0.011 0.009 -0.002 0.002 0.220 0.003 0.010 -0.034
Day of the week 0.033 0.007 -0.018 -0.026 -0.016 -0.019 -0.006 -0.021 0.001 -0.003 -0.007 0.022
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Table A.2: Correlation matrix for every 10 minutes of 2018 and 2019 - part 2/4

Start
inter-
val

Visibility
LVNL
data

Early
ar-
rivals

Late
ar-
rivals

LVNL
ar-
rivals

Demand
/ Ini-
tial
ar-
rivals
with-
out
ATFM
delay

Arrivals
airline
sched-
ule

Arrivals
AAS

DepartureLate
de-
par-
tures

Median
ar-
rival
delay

Median
de-
par-
ture
delay

Landing interval -0.108 -0.282 -0.114 -0.238 -0.593 -0.540 -0.438 -0.535 -0.356 -0.285 -0.052 -0.244
Cloud base arrival data 0.008 -0.092 0.007 -0.006 -0.004 0.007 0.001 0.004 -0.005 -0.025 -0.012 -0.021
FIR delay -0.021 0.094 -0.046 0.151 0.188 0.153 0.110 0.145 0.136 0.103 0.120 0.080
ATA-ETA 0.056 0.189 0.007 0.227 0.391 0.349 0.298 0.349 0.281 0.211 0.129 0.179
ATA-planned 0.095 0.170 0.049 0.169 0.371 0.345 0.314 0.352 0.253 0.188 0.068 0.167
Number of landing run-
ways

0.056 0.160 0.272 0.149 0.744 0.693 0.561 0.705 0.051 0.117 -0.103 0.163

Number of take-off run-
ways

0.159 0.183 0.010 0.079 0.043 0.051 0.046 0.039 0.685 0.381 0.040 0.206

Total runways 0.163 0.289 0.222 0.190 0.636 0.601 0.494 0.602 0.609 0.409 -0.044 0.299
AOBT-TOBT 0.022 0.251 -0.032 0.066 0.086 0.074 0.080 0.077 0.036 0.109 0.056 0.140
ATOT-TTOT 0.002 0.103 0.005 0.076 0.123 0.119 0.116 0.120 0.137 0.181 0.041 0.180
Cloud base departure
data

0.407 0.540 0.124 0.141 0.353 0.337 0.329 0.344 0.400 0.316 -0.018 0.307

Meteorological condi-
tions

0.066 -0.169 -0.005 0.040 0.037 0.049 0.043 0.047 0.038 0.031 0.030 0.043

Start interval 1.000 0.351 0.059 0.066 0.120 0.127 0.127 0.129 0.054 0.055 -0.020 0.150
Visibility LVNL data 0.351 1.000 0.034 0.176 0.321 0.310 0.301 0.315 0.374 0.306 0.061 0.299
Early arrivals 0.059 0.034 1.000 -0.233 0.298 0.315 0.181 0.324 0.097 -0.051 -0.603 -0.073
Late arrivals 0.066 0.176 -0.233 1.000 0.271 0.300 0.228 0.349 0.173 0.351 0.631 0.362
LVNL arrivals 0.120 0.321 0.298 0.271 1.000 0.902 0.655 0.887 0.322 0.290 -0.053 0.280
Demand / Initial arrivals
without ATFM delay

0.127 0.310 0.315 0.300 0.902 1.000 0.650 0.912 0.335 0.305 -0.045 0.293

Arrivals airline schedule 0.127 0.301 0.181 0.228 0.655 0.650 1.000 0.675 0.318 0.309 0.023 0.301
Arrivals AAS 0.129 0.315 0.324 0.349 0.887 0.912 0.675 1.000 0.329 0.311 -0.025 0.303
Departure 0.054 0.374 0.097 0.173 0.322 0.335 0.318 0.329 1.000 0.628 0.030 0.389
Late departures 0.055 0.306 -0.051 0.351 0.290 0.305 0.309 0.311 0.628 1.000 0.227 0.776
Median arrival delay -0.020 0.061 -0.603 0.631 -0.053 -0.045 0.023 -0.025 0.030 0.227 1.000 0.254
Median departure delay 0.150 0.299 -0.073 0.362 0.280 0.293 0.301 0.303 0.389 0.776 0.254 1.000
Total arrival delay 0.002 0.076 -0.586 0.769 -0.038 -0.026 0.022 -0.002 0.054 0.257 0.813 0.278
Total departure delay 0.081 0.323 -0.042 0.351 0.303 0.318 0.321 0.324 0.666 0.898 0.226 0.821
Declared arrival capacity 0.137 0.293 0.265 0.160 0.702 0.666 0.610 0.688 0.309 0.278 -0.108 0.254
High demand 0.052 0.128 0.128 0.217 0.417 0.446 0.274 0.525 0.133 0.131 0.039 0.141
AC too many 0.054 0.124 0.133 0.216 0.415 0.447 0.271 0.528 0.129 0.128 0.035 0.140
AC before inbound peak 0.011 0.056 0.105 0.024 0.145 0.164 0.048 0.184 0.168 0.074 -0.052 0.052
Aerodrome capacity de-
lay

0.002 0.189 0.019 0.146 0.372 0.289 0.298 0.344 0.076 0.086 0.063 0.097

ATFM-G Delay for the
time the flight would
have arrived

-0.001 0.188 0.043 0.125 0.374 0.341 0.297 0.349 0.083 0.077 0.037 0.085

Arrival congestion index 0.116 0.262 0.202 0.267 0.798 0.701 0.424 0.661 0.316 0.249 0.020 0.234
Wind direction 0.007 0.101 -0.053 0.067 0.038 0.034 0.032 0.034 0.044 0.071 0.073 0.064
Wind speed 0.039 0.105 -0.037 0.121 0.101 0.116 0.112 0.116 0.144 0.155 0.087 0.138
Temperature 0.040 0.152 -0.028 0.128 0.164 0.123 0.126 0.128 0.155 0.195 0.097 0.170
Rain duration 0.002 -0.057 -0.026 0.024 -0.002 0.003 0.002 0.002 -0.007 0.016 0.029 0.023
Rain hourly sum -0.001 -0.040 -0.010 0.009 0.007 0.005 0.003 0.006 -0.007 0.005 0.011 0.013
Horizontal visibility
KNMI

0.037 0.273 -0.004 0.114 0.154 0.129 0.132 0.134 0.171 0.193 0.063 0.160

Cloud density 0.002 -0.040 -0.022 0.008 -0.009 0.004 0.002 0.001 0.000 -0.011 0.022 -0.012
Fog 0.000 -0.093 -0.022 0.010 -0.040 -0.032 -0.026 -0.033 -0.050 -0.022 0.022 -0.007
Rain 0.004 -0.031 -0.029 0.027 -0.009 0.001 0.001 -0.002 0.001 0.020 0.033 0.021
Snow 0.010 -0.044 -0.001 0.004 -0.013 -0.008 -0.008 -0.010 -0.012 0.008 0.002 0.015
Thunderstorms 0.006 0.010 -0.018 0.032 0.006 0.004 0.008 0.005 0.018 0.046 0.033 0.047
Ice formation -0.008 -0.058 -0.010 -0.005 -0.025 -0.020 -0.018 -0.019 -0.024 -0.015 0.002 -0.012
Hour of the day 0.008 0.045 -0.204 0.190 -0.082 -0.081 -0.040 -0.080 0.002 0.171 0.268 0.199
Month -0.013 0.024 -0.001 -0.019 0.023 0.005 0.006 0.007 0.006 -0.010 -0.010 -0.013
Day of the week 0.025 -0.022 -0.006 0.012 -0.038 -0.026 -0.023 -0.027 -0.024 0.007 0.017 0.018
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Table A.3: Correlation matrix for every 10 minutes of 2018 and 2019 - part 3/4

Total
ar-
rival
delay

Total
de-
par-
ture
delay

Declared
ar-
rival
capac-
ity

High
de-
mand

AC
too
many

AC
before
in-
bound
peak

Aerodrome
capac-
ity
delay

ATFM-
G
Delay
for
the
time
the
flight
would
have
ar-
rived

Arrival
con-
ges-
tion
index

Wind
direc-
tion

Wind
speed

Temperature

Landing interval -0.063 -0.303 -0.399 -0.258 -0.245 0.022 -0.264 -0.257 -0.556 -0.028 -0.068 -0.146
Cloud base arrival data -0.010 -0.024 -0.025 0.007 0.008 -0.004 -0.023 -0.023 0.012 0.103 0.151 -0.198
FIR delay 0.122 0.108 -0.064 0.169 0.164 0.040 0.110 0.102 0.323 0.005 0.121 0.002
ATA-ETA 0.132 0.225 0.145 0.244 0.239 0.072 0.199 0.187 0.449 0.011 0.173 0.023
ATA-planned 0.067 0.201 0.265 0.183 0.181 0.066 0.180 0.172 0.315 0.002 0.121 0.022
Number of landing run-
ways

-0.099 0.118 0.652 0.299 0.305 0.119 0.306 0.303 0.418 0.010 0.072 0.089

Number of take-off run-
ways

0.059 0.411 0.021 0.028 0.025 0.176 -0.069 -0.062 0.164 0.025 0.094 0.156

Total runways -0.026 0.434 0.546 0.260 0.261 0.219 0.203 0.207 0.471 0.030 0.136 0.196
AOBT-TOBT 0.052 0.106 0.048 0.044 0.043 0.015 0.085 0.082 0.070 0.038 0.024 0.092
ATOT-TTOT 0.045 0.182 0.078 0.061 0.063 0.062 0.034 0.027 0.110 0.013 0.062 -0.015
Cloud base departure
data

0.008 0.344 0.380 0.118 0.117 0.062 0.129 0.129 0.258 -0.024 0.004 0.255

Meteorological condi-
tions

0.024 0.035 0.004 0.046 0.044 0.010 -0.017 -0.014 0.052 -0.006 0.002 -0.141

Start interval 0.002 0.081 0.137 0.052 0.054 0.011 0.002 -0.001 0.116 0.007 0.039 0.040
Visibility LVNL data 0.076 0.323 0.293 0.128 0.124 0.056 0.189 0.188 0.262 0.101 0.105 0.152
Early arrivals -0.586 -0.042 0.265 0.128 0.133 0.105 0.019 0.043 0.202 -0.053 -0.037 -0.028
Late arrivals 0.769 0.351 0.160 0.217 0.216 0.024 0.146 0.125 0.267 0.067 0.121 0.128
LVNL arrivals -0.038 0.303 0.702 0.417 0.415 0.145 0.372 0.374 0.798 0.038 0.101 0.164
Demand / Initial arrivals
without ATFM delay

-0.026 0.318 0.666 0.446 0.447 0.164 0.289 0.341 0.701 0.034 0.116 0.123

Arrivals airline schedule 0.022 0.321 0.610 0.274 0.271 0.048 0.298 0.297 0.424 0.032 0.112 0.126
Arrivals AAS -0.002 0.324 0.688 0.525 0.528 0.184 0.344 0.349 0.661 0.034 0.116 0.128
Departure 0.054 0.666 0.309 0.133 0.129 0.168 0.076 0.083 0.316 0.044 0.144 0.155
Late departures 0.257 0.898 0.278 0.131 0.128 0.074 0.086 0.077 0.249 0.071 0.155 0.195
Median arrival delay 0.813 0.226 -0.108 0.039 0.035 -0.052 0.063 0.037 0.020 0.073 0.087 0.097
Median departure delay 0.278 0.821 0.254 0.141 0.140 0.052 0.097 0.085 0.234 0.064 0.138 0.170
Total arrival delay 1.000 0.253 -0.082 0.044 0.041 -0.049 0.064 0.035 0.028 0.069 0.096 0.101
Total departure delay 0.253 1.000 0.290 0.139 0.136 0.082 0.084 0.078 0.266 0.069 0.158 0.195
Declared arrival capacity -0.082 0.290 1.000 0.066 0.058 -0.061 0.210 0.202 0.207 0.032 0.106 0.157
High demand 0.044 0.139 0.066 1.000 0.992 0.430 0.236 0.248 0.546 0.022 0.040 0.040
AC too many 0.041 0.136 0.058 0.992 1.000 0.446 0.218 0.229 0.549 0.023 0.041 0.036
AC before inbound peak -0.049 0.082 -0.061 0.430 0.446 1.000 0.051 0.063 0.272 -0.002 0.006 0.025
Aerodrome capacity de-
lay

0.064 0.084 0.210 0.236 0.218 0.051 1.000 0.865 0.283 0.019 0.008 0.133

ATFM-G Delay for the
time the flight would
have arrived

0.035 0.078 0.202 0.248 0.229 0.063 0.865 1.000 0.292 0.016 0.008 0.130

Arrival congestion index 0.028 0.266 0.207 0.546 0.549 0.272 0.283 0.292 1.000 0.037 0.073 0.120
Wind direction 0.069 0.069 0.032 0.022 0.023 -0.002 0.019 0.016 0.037 1.000 0.149 0.094
Wind speed 0.096 0.158 0.106 0.040 0.041 0.006 0.008 0.008 0.073 0.149 1.000 -0.016
Temperature 0.101 0.195 0.157 0.040 0.036 0.025 0.133 0.130 0.120 0.094 -0.016 1.000
Rain duration 0.029 0.014 -0.031 0.015 0.016 -0.006 -0.008 -0.008 0.014 0.090 0.183 -0.103
Rain hourly sum 0.009 0.006 -0.005 0.006 0.006 -0.003 -0.001 -0.001 0.007 0.002 0.048 -0.023
Horizontal visibility
KNMI

0.078 0.196 0.212 0.011 0.008 0.009 0.082 0.079 0.075 0.003 0.135 0.447

Cloud density 0.015 -0.013 -0.033 0.009 0.010 -0.001 -0.016 -0.014 0.009 0.100 0.117 -0.143
Fog 0.020 -0.025 -0.076 0.023 0.025 -0.015 -0.039 -0.038 0.004 -0.027 -0.097 -0.115
Rain 0.034 0.016 -0.041 0.017 0.019 -0.004 -0.006 -0.006 0.016 0.148 0.225 -0.117
Snow 0.001 0.007 -0.009 -0.004 -0.004 -0.008 -0.025 -0.026 -0.009 -0.030 0.034 -0.105
Thunderstorms 0.032 0.045 -0.008 0.016 0.017 -0.006 0.000 -0.003 0.016 0.022 0.022 0.053
Ice formation 0.001 -0.019 -0.038 0.003 0.004 -0.007 -0.016 -0.014 -0.007 -0.017 -0.033 -0.079
Hour of the day 0.255 0.173 0.009 -0.083 -0.082 -0.124 -0.091 -0.104 -0.069 0.021 0.046 0.011
Month -0.017 -0.011 -0.050 0.001 0.002 0.009 0.057 0.058 0.039 -0.020 -0.058 0.184
Day of the week 0.015 0.007 0.000 -0.028 -0.026 -0.016 -0.082 -0.083 -0.042 -0.039 -0.007 -0.006
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Table A.4: Correlation matrix for every 10 minutes of 2018 and 2019 - part 4/4

Rain
dura-
tion

Rain
hourly
sum

Horizontal
visi-
bility
KNMI

Cloud
den-
sity

Fog Rain Snow ThunderstormsIce
for-
ma-
tion

Hour
of the
day

Month Day
of the
week

Landing interval 0.009 -0.005 -0.143 0.013 0.061 0.018 0.009 -0.001 0.029 -0.046 -0.021 0.033
Cloud base arrival data 0.233 0.073 -0.317 0.360 0.039 0.261 0.045 -0.011 0.023 -0.030 -0.007 0.007
FIR delay 0.061 0.030 -0.010 0.047 0.028 0.061 -0.008 0.028 0.002 -0.062 0.003 -0.018
ATA-ETA 0.071 0.032 0.019 0.062 0.039 0.074 -0.001 0.049 0.007 -0.075 -0.009 -0.026
ATA-planned 0.046 0.018 0.027 0.053 0.037 0.050 0.009 0.042 0.013 -0.078 -0.011 -0.016
Number of landing run-
ways

-0.005 -0.002 0.091 -0.012 0.004 -0.004 -0.009 0.008 -0.007 -0.131 0.009 -0.019

Number of take-off run-
ways

-0.023 -0.015 0.146 -0.021 -0.039 -0.016 0.003 0.010 -0.013 -0.020 -0.002 -0.006

Total runways -0.020 -0.013 0.193 -0.024 -0.029 -0.014 -0.004 0.014 -0.016 -0.116 0.002 -0.021
AOBT-TOBT 0.062 0.044 0.026 0.012 -0.001 0.050 -0.009 0.029 0.003 0.034 0.220 0.001
ATOT-TTOT 0.057 0.028 -0.022 0.043 0.019 0.054 0.016 0.025 -0.003 0.059 0.003 -0.003
Cloud base departure
data

-0.152 -0.051 0.375 -0.249 -0.092 -0.163 -0.041 0.027 -0.055 0.043 0.010 -0.007

Meteorological condi-
tions

0.134 0.069 -0.328 0.169 0.227 0.115 0.057 -0.017 0.096 -0.046 -0.034 0.022

Start interval 0.002 -0.001 0.037 0.002 0.000 0.004 0.010 0.006 -0.008 0.008 -0.013 0.025
Visibility LVNL data -0.057 -0.040 0.273 -0.040 -0.093 -0.031 -0.044 0.010 -0.058 0.045 0.024 -0.022
Early arrivals -0.026 -0.010 -0.004 -0.022 -0.022 -0.029 -0.001 -0.018 -0.010 -0.204 -0.001 -0.006
Late arrivals 0.024 0.009 0.114 0.008 0.010 0.027 0.004 0.032 -0.005 0.190 -0.019 0.012
LVNL arrivals -0.002 0.007 0.154 -0.009 -0.040 -0.009 -0.013 0.006 -0.025 -0.082 0.023 -0.038
Demand / Initial arrivals
without ATFM delay

0.003 0.005 0.129 0.004 -0.032 0.001 -0.008 0.004 -0.020 -0.081 0.005 -0.026

Arrivals airline schedule 0.002 0.003 0.132 0.002 -0.026 0.001 -0.008 0.008 -0.018 -0.040 0.006 -0.023
Arrivals AAS 0.002 0.006 0.134 0.001 -0.033 -0.002 -0.010 0.005 -0.019 -0.080 0.007 -0.027
Departure -0.007 -0.007 0.171 0.000 -0.050 0.001 -0.012 0.018 -0.024 0.002 0.006 -0.024
Late departures 0.016 0.005 0.193 -0.011 -0.022 0.020 0.008 0.046 -0.015 0.171 -0.010 0.007
Median arrival delay 0.029 0.011 0.063 0.022 0.022 0.033 0.002 0.033 0.002 0.268 -0.010 0.017
Median departure delay 0.023 0.013 0.160 -0.012 -0.007 0.021 0.015 0.047 -0.012 0.199 -0.013 0.018
Total arrival delay 0.029 0.009 0.078 0.015 0.020 0.034 0.001 0.032 0.001 0.255 -0.017 0.015
Total departure delay 0.014 0.006 0.196 -0.013 -0.025 0.016 0.007 0.045 -0.019 0.173 -0.011 0.007
Declared arrival capacity -0.031 -0.005 0.212 -0.033 -0.076 -0.041 -0.009 -0.008 -0.038 0.009 -0.050 0.000
High demand 0.015 0.006 0.011 0.009 0.023 0.017 -0.004 0.016 0.003 -0.083 0.001 -0.028
AC too many 0.016 0.006 0.008 0.010 0.025 0.019 -0.004 0.017 0.004 -0.082 0.002 -0.026
AC before inbound peak -0.006 -0.003 0.009 -0.001 -0.015 -0.004 -0.008 -0.006 -0.007 -0.124 0.009 -0.016
Aerodrome capacity de-
lay

-0.008 -0.001 0.082 -0.016 -0.039 -0.006 -0.025 0.000 -0.016 -0.091 0.057 -0.082

ATFM-G Delay for the
time the flight would
have arrived

-0.008 -0.001 0.079 -0.014 -0.038 -0.006 -0.026 -0.003 -0.014 -0.104 0.058 -0.083

Arrival congestion index 0.014 0.007 0.075 0.009 0.004 0.016 -0.009 0.016 -0.007 -0.069 0.039 -0.042
Wind direction 0.090 0.002 0.003 0.100 -0.027 0.148 -0.030 0.022 -0.017 0.021 -0.020 -0.039
Wind speed 0.183 0.048 0.135 0.117 -0.097 0.225 0.034 0.022 -0.033 0.046 -0.058 -0.007
Temperature -0.103 -0.023 0.447 -0.143 -0.115 -0.117 -0.105 0.053 -0.079 0.011 0.184 -0.006
Rain duration 1.000 0.756 -0.276 0.197 -0.033 0.674 0.079 0.174 -0.013 -0.005 0.041 0.013
Rain hourly sum 0.756 1.000 -0.122 0.036 -0.008 0.037 -0.011 0.096 -0.011 0.001 0.034 0.011
Horizontal visibility
KNMI

-0.276 -0.122 1.000 -0.275 -0.176 -0.273 -0.069 -0.025 -0.078 0.120 -0.001 -0.023

Cloud density 0.197 0.036 -0.275 1.000 0.104 0.255 0.033 0.045 0.045 -0.032 0.023 0.006
Fog -0.033 -0.008 -0.176 0.104 1.000 -0.041 -0.007 -0.010 0.397 -0.066 -0.005 0.022
Rain 0.674 0.037 -0.273 0.255 -0.041 1.000 0.030 0.170 -0.007 -0.008 0.037 0.005
Snow 0.079 -0.011 -0.069 0.033 -0.007 0.030 1.000 0.005 0.001 0.000 -0.084 -0.004
Thunderstorms 0.174 0.096 -0.025 0.045 -0.010 0.170 0.005 1.000 -0.005 0.026 0.015 -0.023
Ice formation -0.013 -0.011 -0.078 0.045 0.397 -0.007 0.001 -0.005 1.000 -0.044 -0.017 0.011
Hour of the day -0.005 0.001 0.120 -0.032 -0.066 -0.008 0.000 0.026 -0.044 1.000 -0.002 -0.001
Month 0.041 0.034 -0.001 0.023 -0.005 0.037 -0.084 0.015 -0.017 -0.002 1.000 0.011
Day of the week 0.013 0.011 -0.023 0.006 0.022 0.005 -0.004 -0.023 0.011 -0.001 0.011 1.000
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