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Abstract

Phylogenetic networks generalize evolutionary trees and are commonly used
to represent evolutionary relationships between species that undergo reticu-
late processes such as hybridization, recombination and lateral gene transfer.
Recently, there has been great interest in knowing which networks are deter-
mined or encoded by their trinets, that are rooted networks on three species.
Van Iersel and Moulton showed that recoverable rooted binary level-2 phy-
logenetic networks are encoded by their trinets. Based on their work for
level-2 networks, we show here that not all recoverable rooted binary level-3
networks are weakly encoded by their trinets, but most networks are. Fur-
ther, although not all level-3 networks are weakly encoded by their trinets,
we are able to prove that all recoverable rooted binary level-3 networks are
encoded by their quarnets, that are rooted networks on four species.
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Chapter 1

Introduction

Many biological studies use the evolutionary relationships between a given
set of species. Therefore, it is important that there is a clear way to represent
these relationships. Phylogenetic trees are often used for this. Formally, a
phylogenetic tree is a rooted (graph theoretical) tree that has no indegree-1
outdegree-1 vertices, and in which the leaves are bijectively labelled by the
elements of X. Note that X is a set of species. An example of a phylogenetic
tree is given in Figure 1.1.

Figure 1.1: Example of a phylogenetic tree

Although phylogenetic trees are routinely used, they can not represent
all evolutionary relationships between species. We need something else to
represent reticulate evolutionary processes such as hybridization, recombi-
nation and lateral gene transfer. Therefore, there has been some interest in
using networks instead of trees. Formally, a (rooted phylogenetic) network is
a directed acyclic graph that has a single root, has no indegree-1 outdegree-1
vertices, and has its leaves bijectively labelled by the elements of X. Again,
X is a set of species. We refer to Chapter 2 for a full definition with some
remarks. This also holds for other definitions in this chapter.

An example of a rooted phylogenetic network is given in Figure 1.2.
This network represents the evolutionary histories of seven different wheat
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species. We see that the relationships between these species can not be
represented by using phylogenetic trees since there are some reticulate pro-
cesses.

Figure 1.2: A phylogenetic network for wheat species [4]

We are often interested in the evolutionary relationships between a (large)
set of species, but it is computationally not easy to research the relation-
ships between many species at once. Therefore, it is easier to research the
relationships between three or four species at once and then combine the re-
sults in such a way that we get the network that represents the relationships
between the whole set of species.

A network for three different species is called a trinet and a network
for four different species is called a quarnet. However, it is not easy to
reconstruct the original network using trinets or quarnets. Further, we do
not always get the original network [3].

Van Iersel and Moulton have done research into a specific class of net-
works (named binary level-2 networks) for which it is possible to reconstruct
the original network by using trinets [5]. First, we explain what binary
level-2 networks are. A network is binary if all vertices have indegree and
outdegree at most two and all vertices with indegree two have outdegree
one. Further, a binary network is level-2 if each biconnected component has
at most two indegree-2 vertices. In general, a binary network is level-k if
each biconnected component has at most k indegree-2 vertices.

Binary level-2 networks are encoded by trinets. In other words, know-
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ing all possible trinets for a certain set of species is enough to reconstruct
the original network. This phylogenetic network represents all relationships
between the species. Then, if we have found a network that has the trinets,
we know that this is the network we were searching for.

We give a complete characterization of which binary level-3 networks
can be distinguished based on its trinets. There are 65 possible underlying
structures of a biconnected component. We show that in 64 of the 65 cases
the network can be distinguished from other level-3 networks based on its
trinets. In the 65 case, this is also true except for a heavily restricted type
of network. Finally, we consider quarnets (subnetworks on four leaves) and
show that every binary level-3 network can be distinguished from any other
network based on its quarnets. Note that we solve in this thesis an open
problem that is posed in [1].

We will now give an overview of the rest of this thesis. In Chapter 2
some preliminaries will be presented. Some assumptions for the phylogenetic
networks in this paper can also be found here. We will revisit the proof for
level-2 networks of Van Iersel and Moulton in Chapter 3. We will explain in
Chapter 4 why not all level-3 networks are weakly encoded by trinets and
we will prove in Chapter 5 that most level-3 networks are weakly encoded
by trinets. Then, we will prove in Chapter 6 that all level-3 networks are
encoded by quarnets. Finally, there are some conclusions and a discussion
in Chapter 7.
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Chapter 2

Preliminaries

In this chapter we will present some preliminaries. In the first section we will
discuss phylogenetic networks in general. We will give some definitions and
do some assumptions that holds for the whole thesis. In the next section
we will explain what a recoverable phylogenetic network is. In the third
section we will explain when a phylogenetic network is encoded by trinets or
quarnets. In the fourth section we will discuss two decomposition theorems
for phylogenetic networks. The last section is about the generator of a
phylogenetic network. In this section we will also give a useful lemma.

The whole chapter is based on [5]. Some definitions are slightly changed,
but they agree with the definitions as given in [5].

2.1 Phylogenetic network

vel
First, we will give the definition of a rooted phylogenetic network. Note

that in this thesis we will also use phylogenetic network or network for short.
We refer then to a rooted phylogenetic network as it is defined below.

Definition 2.1. A rooted phylogenetic network on a set X is a directed
acyclic graph that has a single root, has no indegree-1 outdegree-1 vertices,
and has its leaves bijectively labelled by the elements of X.

To understand this definition we need the following two definitions:

Definition 2.2. A root is a indegree-0 vertex.

Definition 2.3. A leaf is a outdegree-0 vertex.

Since the leaves are bijectively labelled by the elements of X, we can
identify each leaf with its label. Often X is a set of species. So, each
leaf represents then one of the species. We assume the set X to be finite
throughout this thesis.
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An example of a rooted phylogenetic network N is given in Figure 2.1a.
The leaves of this network N are a, b, c, d, e, f, g, h and i. We will also use
Figure 2.1 to explain other definitions in this chapter.

(a) Network N (b) Four trinets of N

Figure 2.1: Example of a rooted phylogenetic network N with four of its
trinets. Blue is used to illustrate how the trinet on {c, h, i} exhibited by N
[5]

Note that a rooted phylogenetic tree is different from a rooted phylo-
genetic network. A rooted phylogenetic tree is a rooted (graph theoretical)
tree that has no indegree-1 outdegree-1 vertices, and in which the leaves are
bijectively labelled by the elements of X. The most important difference
between a phylogenetic tree and a phylogenetic network is that a phyloge-
netic network can have vertices with indegree ≥ 2. We call these vertices
reticulations as can be seen in the definition below.

Definition 2.4. A vertex of a directed graph with a single root is a retic-
ulation (or: reticulation vertex ) if it has indegree ≥ 2.

The phylogenetic networks that will be discussed in this thesis are all
binary. The definition of a binary phylogenetic network can be found below.

Definition 2.5. A phylogenetic network is binary if all vertices have in-
degree and outdegree at most two and all vertices with indegree two have
outdegree one.

Now, we know that each reticulation of a binary phylogenetic network
has indegree two and outdegree one. Also, note that the network N that is
given in Figure 2.1a is binary and has four reticulations.

Finally, there are different types of binary phylogenetic networks. We
have, for example, level-k networks, simple networks and simple level-k net-
works. The definitions of these types of networks will be given later in this
chapter.
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2.2 Recoverable phylogenetic network

We will need some more definitions before we can define what a recoverable
phylogenetic network is. First, we will give the definitions of a cut-vertex
and a cut-arc:

Definition 2.6. Let D be a directed graph with a single root. A vertex v
of D is a cut-vertex if its removal disconnects the underlying undirected
graph of D. Similarly, an arc a of D is a cut-arc if its removal disconnects
the underlying undirected graph of D.

Now, we use this definition for the definition of a biconnected graph:

Definition 2.7. A directed graph is biconnected if it has no cut-vertices.

Note that the definition above uses cut-vertices and not cut-arcs, as
were defined in Definition 2.6. In the definition below we define what a
biconnected component is, which is a special case of biconnected graphs.

Definition 2.8. A biconnected component is a maximal biconnected
subgraph (i.e. a biconnected subgraph that is not contained in any other
biconnected subgraph).

By this definition, each cut-arc is a biconnected component. We call
such a cut-arc a trivial biconnected component. We will use the definition
of a biconnected component in the definition of a level-k network, which is
given below.

Definition 2.9. A phylogenetic network is level-k if each biconnected com-
ponent has at most k reticulations.

Note that the network N that is given in Figure 2.1a is a level-3 network.
Now, we give some more definitions we will need:

Definition 2.10. Let u and v be two vertices of a phylogenetic network
N . If (u, v) is an arc of N , then u is a parent of v and v is a child of u.
Furthermore, v is below u, if there is a directed path from u to v in N , or
u = v. For two leaves x and y, x is below y if the parent of x is below the
parent of y. For an arc a = (u, v) and a vertex w, w is below a if w is below
v.

Note that this definition is different while using it for two vertices, for
two leaves or for a arc and a vertex. We use this definition in the following
definition of redundant and strongly redundant biconnected components:

Definition 2.11. Let B be a nontrivial biconnected component. B is re-
dundant if it has only one outgoing arc. Furthermore, B is strongly re-
dundant if it has only one outgoing arc (u, v) and all leaves of the network
are below v.
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Finally, we can define what a recoverable phylogenetic network is:

Definition 2.12. A phylogenetic network N is recoverable if it has no
strongly redundant biconnected components.

Note that the network N that is given in Figure 2.1a is recoverable and
has three biconnected components. Further, note that the network in Figure
2.2a is not recoverable since it has a strongly redundant biconnected com-
ponent. Also, note that the network in Figure 2.2b is recoverable, because
its only nontrivial biconnected component is redundant but not strongly
redundant.

(a) Network is not recoverable (b) Network is recoverable

Figure 2.2: Two phylogenetic networks [5]

2.3 Encoded phylogenetic network

In this section we will explain when a phylogenetic network is encoded by its
trinets or quarnets. First, we give the definition of a lowest stable ancestor:

Definition 2.13. Given a network N on X and X ′ ⊆ X, a lowest stable
ancestor LSA(X ′) is a vertex w /∈ X ′ of N for which all paths from the
root to any x ∈ X ′ pass through w, and such that no vertex below w has
this property.

Note that the lowest stable ancestor of a certain set X ′ is unique. We
will use the definition of a lowest stable ancestor in Definition 2.15.

A phylogenetic tree with three leaves is called a triplet. A similar defi-
nition for phylogenetic networks can be found below.

Definition 2.14. A trinet is a rooted phylogenetic network with three
leaves.

Note that the phylogenetic networks that are given in Figure 2.2 are
two trinets. In the following definition trinets and phylogenetic networks in
general are connected:
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Definition 2.15. Given a phylogenetic network N on X and {x, y, z} ⊆ X,
the trinet on {x, y, z} exhibited (or: displayed) by N is the trinet obtained
from N by deleting all vertices that are not on any path from LSA({x, y, z})
to x, y or z and subsequently suppressing all indegree-1 outdegree-1 vertices
and parallel arcs.

Note, suppressing parallel arcs means replacing each set of parallel arcs
by a single arc. Further, we will use Tn(N) to denote the set of all trinets
exhibited by a phylogenetic network N .

An example of a phylogenetic network N with four of its trinets can be
found in Figure 2.1. Note that blue is used to illustrate how the trinet on
{c, h, i} exhibited by N .

The next definition shows us when two phylogenetic networks are equal:

Definition 2.16. Given two phylogenetic networks N and N ′ on X, we
write N = N ′ if there is a graph isomorphism between N and N ′ that
preserves leaf labels, i.e. if there exists a bijective function f : V (N) →
V (N ′) such that f(x) = x for each leaf x of N and such that for every
u, v ∈ V (N) holds that (u, v) is an arc of N if and only if (f(u), f(v)) is an
arc of N ′.

Now, we can define when a phylogenetic network is encoded by its set
of trinets:

Definition 2.17. A phylogenetic network N is encoded by its set of trinets
Tn(N) if there is no recoverable phylogenetic network N ′ 6= N with Tn(N) =
Tn(N ′).

Note that it is important that N ′ in the definition above is not recov-
erable since we can not know if there is a strongly redundant biconnected
component only using the trinets.

Finally, the definitions about quarnets, which are networks with four
leaves, are similar to the definitions about trinets and will be given explicitly
in Chapter 6.

2.4 Decomposed phylogenetic network

In this section we will discuss two decomposition theorems for phylogenetic
networks. First, we give the definition of a CA-set:

Definition 2.18. Let N be a phylogenetic network on X and A ⊆ X. A is
a CA-set (Cut-Arc set) of N if there exists a cut-arc (u, v) of N such that
A = {x ∈ X|x is below v}.

Note, a CA-set is not the same as the set of cut-arcs in a network.
For example, {g, h} is a CA-set of the network N that is given in Figure
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2.1a. The other CA-sets of this network are the singletons {a}, {b}, . . . , {i}.
Using the definition of CA-set, which is given above, we can give the first
decomposition theorem:

Theorem 2.19 (Theorem 1 in [5]). Let N be a recoverable binary phyloge-
netic network on X, and A ⊂ X. Then, A is a CA-set of N if and only if
|A| = 1 or, for all z ∈ X\A and x, y ∈ A with x 6= y, {x, y} is a CA-set of
the trinet on {x, y, z} exhibited by N .

We will use this theorem in the proofs of Lemmas 3.2 and 5.2. Be-
fore we will give the other decomposition theorem, we will again give some
definitions. First, we give the definition of a simple phylogenetic network:

Definition 2.20. A phylogenetic network is simple if the head of each
cut-arc is a leaf.

The idea of the decomposition theorems is to restrict the problem. In the
previous decomposition theorem we looked to the CA-sets of a phylogenetic
network. In the next decomposition theorem we will look to the bicon-
nected components of a phylogenetic network. First, we give the following
definition:

Definition 2.21. Let N be a phylogenetic network and B a nontrivial
biconnected component with b outgoing cut-arcs a1 = (u1, v1), . . . , ab =
(ub, vb). Consider the phylogenetic network NB obtained from N by deleting
all biconnected components except for B, a1, . . . , ab and labelling v1, . . . , vb
by new labels y1, . . . , yb that are not in X. Then, NB is a restriction of N
to B.

Note that NB, as given in the definition above, is unique up to the choice
of the new labels y1, . . . , yb. Further, note that NB is a simple network.

Finally, we give the second decomposition for phylogenetic networks,
which we will use in the proofs of Corollaries 3.3 and 5.3.

Theorem 2.22 (Theorem 2 in [5]). A recoverable binary phylogenetic net-
work N on X, with |X| ≥ 3, is encoded by its trinets Tn(N) if and only if,
for each nontrivial biconnected component B of N with at least four outgoing
cut-arcs, NB is encoded by Tn(NB).

2.5 Generator of phylogenetic network

In this section we will discuss a generator of a phylogenetic network. At the
end of this section we will give a useful lemma. First, we give the definition
of a simple level-k network:

Definition 2.23. A level-k phylogenetic network is a simple level-k net-
work if it contains one nontrivial biconnected component B containing ex-
actly k reticulations and no cut-arcs other than the ones leaving B.

9



Now, we give the definition of a level-k generator:

Definition 2.24. A level-k generator is a directed acyclic biconnected
multigraph with exactly k reticulations with indegree 2 and outdegree at
most 1, a single vertex with indegree 0 and outdegree 2, and apart from
that only vertices with indegree 1 and outdegree 2.

The following definition is about the sides of a generator:

Definition 2.25. The sides of a generator are the arcs and outdegree-0
vertices of the generator.

An example of a level-3 generator with labelled sides can be found in
Figure 2.3. All 65 level-3 generators are given in Appendix A.

Figure 2.3: Level-3 generator with labelled sides

Note, deleting all leaves of a simple level-k network N gives a level-k
generator GN . Then, GN is the underlying generator of N . Conversely,
N can be reconstructed from GN by ‘hanging leaves’ on its sides as follows:

• for each arc a of GN , replace a by a directed path with l ≥ 0 internal
vertices v1, . . . , vl and, for each such interval vertex vi, add a leaf
xi ∈ X and an arc (vi, xi); and

• for each indegree-2 outdegree-0 vertex v, add a leaf x ∈ X and an arc
(v, x).

The following definition explains when a leaf of a simple level-k network
is on a certain side of the underlying generator.
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Definition 2.26. A leaf x is on side s if it is hung on side s in this
construction of N from GN . More precisely, for a leaf x ∈ X of a simple
level-k network N with underlying generator GN and a side s of GN , x is
on side s if one of the following holds:

• s is an indegree-2 outdegree-0 vertex of GN and (s, x) is an edge of N ;

• s is an edge (u, v) of GN and the parent of x in N lies on the directed
path from u to v in N .

Now, we give another definition about the sides of a generator:

Definition 2.27. Given a level-k generator G, a set of sides of G is a set
of crucial sides if it contains all indegree-2 outdegree-0 vertices together
with at least one arc of each pair of parallel arcs.

Note that the generator that is given in Figure 2.3 has its sides labelled
with A,B,C,D,E, F,G,H, I, J,K,L,M . This generator has two sets of
crucial sides, namely {H1, I, J} and {H2, I, J}. Further, we call a side non-
crucial if the side is in no crucial set.

Now, using the above definition we can give the definition of a crucial
trinet:

Definition 2.28. Consider any simple level-k network N on X with under-
lying generator G and a trinet P on X ′ ⊆ X. P is a crucial trinet of N if
X ′ contains at least one leaf on each side in some set of crucial sides of G.

Note that for a crucial trinet the number of elements of a set of crucial
sides matters. There exists level-k networks with k ≥ 4 that has no crucial
trinets since each set of crucial sides has at least four elements.

The next definition explains when a generator has symmetry:

Definition 2.29. A generator G has symmetry if it has parallel arcs or if
there exists a bijective function f : V (G)→ V (G) such that for all u, v ∈ V
the number of arcs from u to v is equal to the number of arcs from f(u)
to f(v) but f(w) 6= w for at least one w ∈ V . Intuitively, this means that
there exists a relabelling of the sides of the generator giving an isomorphic
generator.

Finally, we give the lemma, which will be very helpful in the proofs of
Lemmas 3.2 and 5.2.

Lemma 2.30 (Lemma 1 in [5]). Let N be a simple level-k network, G its
underlying generator and P ∈ Tn(N). Then, P is a crucial trinet of N if
and only if P is a simple level-k network. Moreover, if P is a crucial trinet
of N then G is its underlying generator.
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Chapter 3

Level-2 networks are
encoded by trinets

In this chapter the proof that binary recoverable level-2 networks are en-
coded by their trinets will be revisited. The proof will be given by using
the same reasoning as in [5]. Therefore, the same theorems, lemmas and
observation will be used. Also, many parts of the proofs are the same. But,
some parts are written in slightly different wording or are written in more
detail.

First, we will give an observation, then we will give a lemma with its
proof, and finally we are able to combine the results to prove that binary
recoverable level-2 networks are encoded by their set of trinets.

So, first we give the following observation:

Observation 3.1 (Observation 7 in [5]). If G is a level-2 generator, then
it has a set of crucial sides of size at most two. Hence, every simple level-2
network N has at least one crucial trinet. Moreover, for every leaf x of N ,
there exists a crucial trinet of N containing x.

Now, we know that for every leaf there exists a crucial trinet containing
that leaf. We will see in Chapter 5 that without this useful result the proof of
Lemma 3.2 will be more complicated. In the following lemma we will prove
that binary, simple level-2 networks are encoded by their trinets. This result
for less complex level-2 networks will be helpful to prove the main result of
this chapter.

Lemma 3.2 (Lemma 3 in [5]). Every binary, simple level-2 network on X,
with |X| ≥ 3, is encoded by its trinets.

Proof. Let N be any binary, simple level-2 network on X, with |X| ≥ 3.
Assume that this network is not encoded by its trinets Tn(N). Then, there
is a recoverable network N ′ 6= N with Tn(N) = Tn(N ′). We will show that
N ′ = N , which is a contradiction, so then the lemma follows.

We begin by showing that N ′ is a binary, simple, level-2 network.

12



• Since Tn(N ′) = Tn(N) holds, we have by Theorem 2.19 that the set
of CA-sets of N ′ equals the set of CA-sets of N . Note that all CA-sets
of N (and also of N ′) are singletons, since N is a simple network.
Furthermore, we claim that N ′ has no redundant biconnected compo-
nents. If it had one, then there would be only one leaf, say x, below
it. However, then all trinets containing x would have a redundant
biconnected component with x directly below it. This is not possible
because Tn(N ′) = Tn(N). For each leaf x there exists a trinet in
Tn(N) without redundant biconnected components. So, N ′ has no re-
dundant biconnected components. Since the sets of CA-sets of N ′ and
N are the same and N ′ has no redundant biconnected components, we
have that N ′ is a simple network.

• Suppose we have any simple level-k network with k > 2. Then, this
network has exactly k reticulations. If there are at least three leaves
whose parent is a reticulation, take three such leaves. Otherwise, take
all leaves whose parent is a reticulation and take the remaining leaves
on sides that form parallel arcs in the underlying generator of N ,
choosing at most one leaf per pair of parallel arcs. Then, the trinet on
the chosen three leaves has at least three reticulations. Note that if a
leaf is chosen on one of the parallel arcs in the underlying generator, the
pair of parallel arcs will not be suppressed, and so we get a reticulation.
So, a simple level-k network, with k > 2, has a level-k′ trinet with
k′ > 2. It follows that N ′ is a level-2 network since Tn(N ′) = Tn(N)
contains only level-2 trinets.

• Assume that N ′ has a vertex with outdegree greater than 2. Let c1, c2
and c3 be three of his children. Then, consider three (not necessarily
different) leaves x1, x2 and x3 below c1, c2 and c3 respectively. Then,
any trinet containing x1, x2 and x3 exhibited by N ′ is not binary. We
get a contradiction since all trinets in Tn(N ′) = Tn(N) are binary,
since N is binary. In much the same way, we can prove that each
vertex in N ′ has indegree at most 2 and that each indegree-2 vertex
has outdegree 1. Now, we can conclude that N ′ is binary.

So, N and N ′ are both binary, simple level-2 networks. Now, let G be
the underlying generator of N . First, we show that G is also the underlying
generator of N ′. By Observation 3.1, N has at least one crucial trinet Pc.
By Lemma 2.30, Pc is a simple level-2 network and its underlying generator
is G. Since Tn(N) = Tn(N ′), Pc is also a trinet of N ′. Since N ′ and Pc are
both simple level-2 networks, we have by Lemma 2.30 that Pc is a crucial
trinet of N ′. Then, again by Lemma 2.30, G is the underlying generator of
N ′.

The remainder of the proof is divided into four different cases, based on
the four level-2 generators 2a, 2b, 2c and 2d. These generators can be found
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in Figure 3.1 with the labels of their sides. For each generator G we show
that if the generators of N ′ and N are the same, the networks N ′ and N
are the same.

Figure 3.1: Generators 2a, 2b, 2c and 2d with labelled sides [5]

Case G = 2a

First, observe that there are no symmetries, i.e. no relabelling of the sides
of 2a gives an isomorphic generator. Note that each set of crucial sides of 2a
has only one element, namely F . Let x be the leaf on side F in N . Since x
is then the leaf on side F in every crucial trinet of N , and since these crucial
trinets are exhibited by N ′ (since Tn(N ′) = Tn(N)), and since there are no
symmetries, it follows that x is also the leaf on side F in N ′.

Now, consider any side S 6= F of N and any leaf y on that side. Consider
any crucial trinet Pc of N containing y. Then, y is on side S in Pc and, since
Pc is exhibited by N ′ and there are no symmetries, y is on side S in N ′.
Hence, each leaf is on the same side in N ′ as it is in N .

It remains to show that the leaves on each side are in the same order in
N and N ′. Consider a side S of N with at least two leaves and two leaves
y, z on that side such that z is below y. It follows that z is below y in the
crucial trinet on {x, y, z} and from that it follows that z is below y in N ′.

We conclude that N ′ = N since both networks have the same underlying
generator, the same leaves on each side, and the same order of the leaves on
each side.

Case G = 2b

Again, there are no symmetries. Note that in this case each set of crucial
sides of 2b has two elements, namely G and H. Let x be the leaf on side
G, y the leaf on side H and z a leaf on some other side S in N . Then, the
trinet Pc on {x, y, z} is crucial and, since there are no symmetries, it follows
that leaves x, y, z are, respectively, on sides G,H, S in Pc and hence in N ′.
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Consequently, all leaves are on the same side in N ′ as in N , since S can be
any side.

Now, we will show that leaves on each side are in the same order in N
and N ′. First, we look to the sides C,D and E, then to the sides A,B and
F . Note that for sides A and C it does not matter which trinet we use since
leaves x and y are both below sides A and C. So, first consider two leaves
z, z′ that are both on side C,D or E in N . Also, consider the (non-crucial)
trinet P1 on {x, z, z′}, which is a simple level-1 network. Now, we have that
the leaves z and z′ are on the same side of P1. Moreover, if z is below z′

in N , then z is below z′ in P1. Then, since Tn(N ′) = Tn(N), we also have
that z is below z′ in N ′. So, the order of the leaves on each of the sides C,D
and E are the same in N and N ′. Note that we indeed needed the leaf x to
distinguish the order of the leaves, because without the leaf x a part of the
generator would be left out and the leaves z and z′ would become ‘cherry’s’
without any order.

Now, consider two leaves q, q′ that are both on side A,B or F in N . Also,
consider the (non-crucial) trinet P2 on {y, q, q′}, which is a simple level-1
network. As before, if q is below q′ in N , then q is below q′ in P2 and hence
in N ′, as wanted. So, the order of the leaves on each of the sides A,B and
F are the same in N and N ′.

Now, it follows that N = N ′ since both networks have the same underly-
ing generator, the same leaves on each side, and the same order of the leaves
on each side.

Case G = 2c

In this case there is some symmetry since sides A,C and E can be in-
terchanged with sides B,D and F , respectively, to obtain an isomorphic
generator. Similarly, sides C,H and D can be interchanged with sides E,G
and F , respectively, again yielding an isomorphic generator.

Note that a set of crucial sides consists again of two elements. Let x be
on side G, y on side H and z on some other side S in N . Then, the crucial
trinet Pc on {x, y, z} implies that x and y are on side G and H in N ′, as
we saw for case 2b. Note that x and y can be interchanged because of the
symmetry.

Assume without loss of generality that x is on side G and y is on side H
in N ′. Note that x and y are now fixed. So, again using trinet Pc, it follows
that z is on side A or B in N ′ if it is on side A or B in N . Similarly, z is on
side C or D in N ′ if it is on side C or D in N . Also, z is on side E or F in
N ′ if it is on side E or F in N . So now we have fixed leaves x and y, there
are less symmetries, namely only the symmetries between the left and the
right of generator 2c (see Figure 3.1).

Now, we look to the sides of the leaves and the order of the leaves on
each side. Consider two leaves z, z′ that are both on A,B,C or D of N .
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In view of the trinet on {y, z, z′} where z and z′ are on the same side and
using Tn(N ′) = Tn(N), z and z′ are also on the same side of N ′ and in the
same order as in N . Note here is not proved yet that the sides in N and N ′

are the same. Similarly, for two leaves z, z′ that are both on side E or F .
Also, the trinet {x, z, z′} implies that z and z′ are on the same side of N ′

and in the same order as in N . Thus, leaves that are on the same side in N
are on the same side in N ′ and in the same order. Note that sides A and
B of N can also be discussed using the trinet {x, z, z′} instead of the trinet
{y, z, z′}.

First, assume that there is at least one leaf on side A in N and that the
leaves that are on side A in N are on side A in N ′. Let a be one such leaf
on side A in N .

Let c be a leaf on side C in N . Earlier we saw that then c is on side
C or D in N ′. Consider the trinet on {a, c, y}, which is a simple level-1
network. Then, a and c are on the same side of this trinet. Now, since
Tn(N ′) = Tn(N), c is on side C in N ′.

Let z be a leaf on side S ∈ {B,D} in N . Again, if z is on side B in
N , then z is on side A or B in N ′. Also, if z is on side D in N , then z is
on side C or D in N ′. Consider the trinet on {a, z, y}, which is a simple
level-1 network. Then, a and z are on different sides of this trinet. Now,
since Tn(N ′) = Tn(N), z is on side S in N ′.

Let z be a leaf on side E in N . Again, if z is on side E in N , then z
is on side E or F in N ′. Consider the trinet on {a, z, x}, which is a simple
level-1 network. Then, a and z are on the same side of this trinet. Now,
since Tn(N ′) = Tn(N), z is on side E in N ′.

Let z be a leaf on side F in N . Again, if z is on side F in N , then z
is on side E or F in N ′. Consider the trinet on {a, z, x}, which is a simple
level-1 network. Then, a and z are on different sides of this trinet. Now,
since Tn(N ′) = Tn(N), z is on side F in N ′.

So, all leaves are on the same side in N ′ as in N . It follows that N = N ′

because all leaves are on the same side, in the same order.
Now, assume that the leaves that are on side A in N are not on side A in

N ′. Earlier we saw that these leaves then are on side B in N ′. Then, we can
argue in exactly the same way that the leaves that are on sides B,C,D,E, F
in N are, respectively, on sides A,D,C, F,E in N ′. Hence, again N = N ′

by relabelling the sides appropriately (interchanging labels A and B, labels
C and D, labels E and F ).

Finally, if there is no leaf on side A in N , then there is a leaf on one of
the sides B,C,D,E, F in N (since sides G and H have both one leaf and
|X| ≥ 3) and we can apply similar arguments based on that leaf as we did
for the leaf on side A.

Now, we can conclude that N = N ′, since (after possibly relabelling
sides) both networks have the same underlying generator, the same leaves
on each side, and the same order of the leaves on each side.
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Case G = 2d

In this case the only symmetry is that sides B and C can be interchanged
with C and B, respectively. Note that a set of crucial sides consists of two
elements. Let x be the leaf on side F , y a leaf on side B or C and z a
leaf on some side S ∈ {A,B,C,D,E} in N . Note there exists at least one
such leaf z since |X| ≥ 3. Then, by the crucial trinet on {x, y, z} and since
Tn(N ′) = Tn(N), x is on side F and y is on side B or C. So, the sides of the
leaves are determined except of the symmetries. Assume y is on the same
side in N ′ as in N . We can assume this without loss of generality, because
if it is not the case, we can relabelling sides B and C. Now, it follows by
the crucial trinet on {x, y, z} that z is on side S in N ′. So, each leaf is on
the same side in N ′ as in N .

Now, we only have to check the order of the leaves on same sides. Con-
sider two leaves z, z′ that are on the same side in N . Then, the trinet on
{x, z, z′} implies that the order of z and z′ is the same in N ′ as in N , since
Tn(N ′) = Tn(N).

Also for this generator, we can conclude that N ′ = N , since (after pos-
sibly relabelling sides B and C) both networks have the same leaves on the
same sides in the same order.

Now, we have proved Lemma 3.2, we can prove the main result of this
chapter, which is stated below.

Corollary 3.3 (Corollary 1 in [5]). Every binary recoverable level-2 network
N on X, with |X| ≥ 3, is encoded by its set of trinets Tn(N).

Proof. Follows from Theorem 2.22, Lemma 3.2 and the fact that level-1
networks are encoded by their trinets [5].
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Chapter 4

Not all level-3 networks are
weakly encoded by trinets

In this chapter we will define when phylogenetic networks are weakly en-
coded and we will explain why not all level-3 networks are weakly encoded
by trinets.

First, we define when phylogenetic networks are weakly encoded:

Definition 4.1. A class of phylogenetic networks C is weakly encoded by
trinets if there are no 2 recoverable phylogenetic networks N and N ′, with
N 6= N ′, in class C such that Tn(N) = Tn(N ′).

In Chapter 5 will be explained why we introduce this definition. For now
we will just use the definition.

Consider the binary, simple level-3 networks as in Figure 4.1.

Figure 4.1: A binary, simple level-3 network with underlying generator 3.8,
one leaf on each of the sides K,L and M , at least one leaf on side A or B
(p + q ≥ 1) and no leaves on sides C,D,E, F,G,H, I and J
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These networks have underlying generator 3.8, at least one leaf on side
A or B and no leaves on sides C,D,E, F,G,H, I and J . Note that generator
3.8 can be found in Appendix A.9.

Now, consider the network N that is given in the following figure:

Figure 4.2: A binary, simple level-3 network N as in Figure 4.1

This network N is a network as in Figure 4.1 since it has underlying
generator 3.8, one leaf on side A and no leaves on side C,D,E, F,G,H, I
and J . The network N has four leaves, namely k, l,m and x. So, N has
four different trinets which are given in Figures 4.3 and 4.4:

Figure 4.3: Three of the four trinets exhibited by N (and N ′)
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Figure 4.4: One of the four trinets exhibited by N (and N ′)

However, there is another network N ′, which is given in Figure 4.5, that
has the same trinets as N . In other words, Tn(N ′) = Tn(N) while N 6= N ′.
Intuitively, we can see that we can not distinguish leaves on sides A and B
using trinets.

Figure 4.5: A binary, simple level-3 network N ′ as in Figure 4.1

Note that N and N ′ are both in the class of binary, simple level-3 net-
works with at least three leaves. Now, the class of binary, simple level-3
networks can not be weakly encoded by trinets.

We can show in the same way for each network N that is as in Figure 4.1
that there is another binary, simple level-3 network N ′ for which holds that
Tn(N ′) = Tn(N). So, not all simple level-3 networks are weakly encoded
by trinets.

Now, consider the level-3 networks with a biconnected component as in
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Figure 4.6. These networks have a biconnected component with underlying
generator 3.8, at least one cut-arc on side A or B and no cut-arcs on sides
C,D,E, F,G,H, I and J . Therefore, the level-3 networks with a biconnected
component as in Figure 4.6 are also not weakly encoded by trinets.

Figure 4.6: A binary, simple level-3 network with underlying generator 3.8,
one cut-arc on each of the sides K,L and M , at least one cut-arc on side A
or B and no cut-arcs on sides C,D,E, F,G,H, I and J

Even though not all level-3 networks are weakly encoded by trinets, most
level-3 networks are weakly encoded by trinets, as we will see in the next
chapter.
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Chapter 5

Most level-3 networks are
weakly encoded by trinets

In this chapter we will prove the corollary that the class of binary recoverable
level-3 networks, except for networks with biconnected components as in
Figure 4.6, is weakly encoded by trinets. This is the main result of this
chapter. Before we will prove this corollary, Lemmas 5.1 and 5.2 will be
discussed. The proof of Lemma 5.2 is based on the proof of Lemma 3.2 for
level-2 networks, which is also given in [5]. So, some parts are the same or
similar as in the proof of Lemma 3.2.

First, we give the following lemma with its proof:

Lemma 5.1. If G is a level-3 generator, then it has a set of crucial sides
of size at most 3. Hence, every simple level-3 network N has at least one
crucial trinet.

Proof. Let G be a level-3 generator. Then, G has exactly 3 reticulations
with indegree 2 and outdegree at most 1. We know that a set of crucial
sides contains all vertices with indegree 2 and outdegree 0 together with at
least one arc of each pair of parallel arcs. Each vertex with indegree 2 and
outdegree 0 is a reticulation of G. Also, each pair of parallel arcs gives a
reticulation in G. Now, since G has exactly 3 reticulations, a set of crucial
sides is of size at most 3. A crucial trinet contains at least one leaf on each
side in some set of crucial sides. Since a set of crucial sides is of size at most
3, every simple level-3 network N has at least one crucial trinet.

In Observation 3.1 we saw that a level-2 generator has a set of crucial
sides of size at most 2. Now, we know that a level-3 generator has a set of
crucial sides of size at most 3. This is an important difference between level-
2 and level-3 generators. Now, there can be leaves that are not contained
in any crucial trinet. This difference makes the proof for level-3 networks
more complicated, as we will see in the proof of Lemma 5.2. But, we still
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know that every simple level-3 network has at least one crucial trinet. This
will be a very useful result during the proof of Lemma 5.2.

In the beginning of the proof of Lemma 3.2 we proved that N ′ is a binary,
simple level-2 network. For level-3 networks this is much more difficult, if
it is even possible. To prevent this problem we introduced the definition
of weakly encoded, which can be found in Chapter 4. If we look to weakly
encoded instead of encoded itself for level-3 networks, then we do not have
the problem that we have to prove that N ′ is a binary, simple level-3 network.

Therefore, we will prove the lemma that the class of binary, simple level-
3 networks, except for networks as in Figure 4.1, is weakly encoded. This
lemma is a weaker result for level-3 networks than Lemma 3.2 is for level-2
networks. Note that the exceptions to the lemma are explained in Chapter
4. Further, note that in the proof of the lemma below 65 different generators
has to be discussed. This makes the proof much longer than the proof of
Lemma 3.2 where just 4 different generators had to be discussed.

Lemma 5.2. The class of binary, simple level-3 networks with at least three
leaves, except for networks as in Figure 4.1 (i.e. with underlying generator
3.8, at least one leaf on side A or B and no leaves on sides C,D,E, F,G,
H, I and J), is weakly encoded by trinets.

Proof. Assume that the class of binary, simple level-3 networks with at
least three leaves, except for networks as in Figure 4.1 (i.e. with under-
lying generator 3.8, at least one leaf on side A or B and no leaves on sides
C,D,E, F,G,H, I and J), is not weakly encoded by trinets. Then, there
are 2 recoverable, binary, simple level-3 networks N and N ′, which are not
as in Figure 4.1, such that Tn(N) = Tn(N ′). We will show that N = N ′,
which is a contradiction, so then the lemma follows.

Now, let G be the underlying generator of N . First, we show that G
is also the underlying generator of N ′. By Lemma 5.1, N has at least one
crucial trinet Pc. By Lemma 2.30, Pc is a simple level-3 network and its
underlying generator is G. Since Tn(N) = Tn(N ′), Pc is also a trinet of
N ′. Since N ′ and Pc are both simple level-3 networks, we have by Lemma
2.30 that Pc is a crucial trinet of N ′. Then, again by Lemma 2.30, G is the
underlying generator of N ′.

The remainder of the proof is divided into 65 different cases, based on
the 65 level-3 generators (3.1, 3.2, . . . , 3.65) that can be found in Appendix
A. Note that these generators are divided in 11 groups. For each generator
G we show that if the generators of N ′ and N are the same, the networks
N ′ and N are the same. To do this we first prove that each generator has
the same leaves on the same sides in N ′ as in N . Note that we will follow
the cases for the generators in the way as they are ordered in Appendix B.
Also, note that for generator 3.8 some binary, simple level-3 networks are
excluded. Further, note that the four level-2 generators 2a, 2b, 2c and 2d
can be found in Figure 3.1. Finally, we will prove that the leaves on each
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side are in the same order in N and N ′ in order to conclude that N = N ′

(after possibly relabelling sides).

Group 1: 1 crucial side, no symmetry

Each of the generators 3.15, 3.19, 3.20, 3.23, 3.24, 3.25, 3.32 and 3.62 has 1
crucial side and no symmetry. Therefore, we define the set T = {15, 19, 20,
23, 24, 25, 32, 62}. Now, let t ∈ R, and consider generator 3.t. Note that this
generator with one labelled side can be found in Appendix A.1. Further,
note that generator 3.15 can also be found in Figure 5.1.

Figure 5.1: Generator 3.15 with one labelled side

Observe that there are no symmetries, i.e. no relabelling of the sides
of 3.t gives an isomorphic generator. Note that each set of crucial sides
of 3.t has only one element. We label this crucial side as side X. Let x
be the leaf on side X in N . Since x is then the leaf on side X in every
crucial trinet of N , and since these crucial trinets are exhibited by N ′ (since
Tn(N ′) = Tn(N)), and since there are no symmetries, it follows that x is
also the leaf on side X in N ′.

Now, consider any side S 6= X of N and any leaf y on that side. Consider
any crucial trinet Pc of N containing y. Then, y is on side S in Pc and, since
Pc is exhibited by N ′ and there are no symmetries, y is on side S in N ′.
Hence, each leaf is on the same side in N ′ as it is in N .
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Group 2: 2 crucial sides, no symmetry

Each of the generators 3.4, 3.5, 3.9, 3.12, 3.13, 3.17, 3.21, 3.27, 3.29, 3.30,
3.33, 3.34, 3.35, 3.41, 3.42, 3.43, 3.44, 3.48, 3.49, 3.54, 3.55 and 3.59 has 2
crucial sides and no symmetry. Therefore, we define the set T = {4, 5, 9, 12,
13, 17, 21, 27, 29, 30, 33, 34, 35, 41, 42, 43, 44, 48, 49, 54, 55, 59}. Now, let t ∈
T , and consider generator 3.t. Note that this generator with two labelled
sides can be found in Appendix A.2. Further, note that generator 3.4 can
also be found in Figure 5.2.

Figure 5.2: Generator 3.4 with two labelled sides

Again, observe that there are no symmetries, i.e. no relabelling of the
sides of 3.t gives an isomorphic generator. Note that in this case a set of
crucial sides has two elements. We label this crucial sides as sides X and Y .
Let x be the leaf on side X, y the leaf on side Y and z a leaf on some other
side S in N . Then, the trinet Pc on {x, y, z} is crucial and, since there are
no symmetries, it follows that leaves x, y, z are, respectively, on side X,Y, S
in Pc and hence, since Tn(N ′) = Tn(N), in N ′. Consequently, all leaves are
on the same side in N ′ as in N , since S can be any side.

Group 3: 3 crucial sides, no symmetry

Each of the generators 3.7, 3.10, 3.14, 3.39, 3.45, 3.46, 3.50, 3.51, 3.52, 3.57
and 3.60 has 3 crucial sides and no symmetry. First, generator 3.7 will be
discussed, then the other generators (which are similar to generator 3.7).
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Generator 3.7 (group 3a)

In Figure 5.3 generator 3.7 can be found with the labels of its sides. Note
that generator 3.7 can also be found in Appendix A.3.

Figure 5.3: Generator 3.7 with labelled sides

Again, observe that there are no symmetries, i.e. no relabelling of the
sides of 3.7 gives an isomorphic generator. Note that in this case a set of
crucial sides has three elements, namely sides K,L and M . Let k be the leaf
on side K, l the leaf on side L and m the leaf on side M in N . Then, the
trinet Pc on {k, l,m} is crucial and, since there are no symmetries, it follows
that leaves k, l,m are, respectively, on side K,L,M in Pc, and hence, since
Tn(N ′) = Tn(N), in N ′.

Now, we will prove that the other sides have also the same leaves in N and
N ′. For each side S of these sides we use some of the trinets TS,1, TS,2, TS,3

on, respectively, {k, l, pS}, {k,m, pS}, {l,m, pS}, where pS is a leaf on side S
in N . Note that for each side the used results can be found in Table 5.1.

Let pA be a leaf on side A in N . Consider the trinet TA,1 on {k, l, pA}.
Note that since there is no leaf on the crucial side M , a part of the underlying
generator is left out, namely sides D,J and M . Now, TA,1 is a simple
level-2 network with underlying generator 2c. Also, TA,1 ∈ Tn(N ′) since
Tn(N ′) = Tn(N). Since N and N ′ have the same underlying generator 3.7,
and since TA,1 has the underlying generator 2c, and since TA,1 ∈ Tn(N) and
TA,1 ∈ Tn(N ′), the same indegree-1 outdegree-1 vertices were suppressed to
get the underlying generator 2c of trinet TA,1 from the underlying generator
3.7 (after sides D,J and M being left out as mentioned before) for N and N ′.
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Note that the sides B and C are suppressed to one side. Also, the sides H
and I are suppressed to one side. So, we have two ‘combined’ sides. We label
these sides, respectively, as B/C and H/I. From the proof of Lemma 3.2 we
know there are the same leaves on each side of the underlying generator 2c,
after possibly relabelling sides A,E, F with, respectively, sides B/C,H/I,G.
Remember that pA is a leaf on side A in N . Now, pA is a leaf on side A or
B/C of generator 2c. This means that pA is a leaf on side A,B,C or D in
N ′. Note that we have to take into account side D here because of the part
of generator 3.7 that is left out, and since there can be a leaf on side D,
which is on side (B/C)′ in generator 2c. The ′ here denotes that a side in
generator 2c can be labelled differently for N and N ′. So, from trinet TA,1

we get that pA is a leaf on side A,B,C or D in N ′.
Now, consider the trinet TA,2 on {k,m, pA}. Note that since there is

no leaf on the crucial side L, a part of the underlying generator is left
out, namely sides E, I and L. Now, TA,2 is a simple level-2 network with
underlying generator 2b. Also, TA,2 ∈ Tn(N ′) since Tn(N ′) = Tn(N). Since
N and N ′ have the same underlying generator 3.7, and since TA,2 has the
underlying generator 2b, and since TA,2 ∈ Tn(N) and TA,2 ∈ Tn(N ′), the
same indegree-1 outdegree-1 vertices were suppressed to get the underlying
generator 2b of trinet TA,2 from the underlying generator 3.7 (after sides
E, I and L being left out as mentioned before) for N and N ′. Note that
the sides A and F are suppressed to one side. Also, the sides H and J are
suppressed to one side. So, we have two ‘combined’ sides. We label these
sides, respectively, as A/F and H/J . From the proof of Lemma 3.2 we know
there are the same leaves on each side of the underlying generator 2b. Note
that the underlying generator 2b has no symmetries. Remember that pA is
a leaf on side A in N . Now, pA is a leaf on side A/F of generator 2b. This
means that pA is a leaf on side A,E or F in N ′. Note that we have to take
into account side E here because of the part of generator 3.7 that is left out,
and since there can be a leaf on side E, which is on side A/F in generator
2b. So, from trinet TA,2 we get that pA is a leaf on side A,E or F in N ′.
Remember that using trinet TA,1 we got that pA is a leaf on side A,B,C or
D in N ′. Since side A is the only side that follows from both trinets TA,1

and TA,2, we can conclude that pA is a leaf on side A in N ′.
Let pB• be a leaf on side B• in N , with B• ∈ {B,C,D,G}. Consider the

trinet TB•,2 on {k,m, pB•}. Note that since there is no leaf on the crucial
side L, a part of the underlying generator is left out, namely sides E, I and
L. Now, TB•,2 is a simple level-2 network with underlying generator 2b.
Also, TB•,2 ∈ Tn(N ′) since Tn(N ′) = Tn(N). Since N and N ′ have the
same underlying generator 3.7, and since TB•,2 has the underlying generator
2b, and since TB•,2 ∈ Tn(N) and TB•,2 ∈ Tn(N ′), the same indegree-1
outdegree-1 vertices were suppressed to get the underlying generator 2b of
trinet TB•,2 from the underlying generator 3.7 (after sides E, I and L being
left out as mentioned before) for N and N ′. Note that sides A and F are
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suppressed to one side. Also, the sides H and J are suppressed to one side.
So, we have two ‘combined’ sides. We label these sides, respectively, as
A/F and H/J . From the proof of Lemma 3.2 we know there are the same
leaves on each side of the underlying generator 2b. Note that the underlying
generator 2b has no symmetries. Remember that pB• is a leaf on side B•

in N . Now, pB• is a leaf on side B• of generator 2b. This means that pB•

is a leaf on side B• in N ′. Note that we do not have to take into account
other sides since the sides that are left out do not encounter side B• of the
underlying generator 2b. So, from trinet TB•,2 we get that pB• is a leaf on
side B• in N ′.

Let pE be a leaf on side E in N . Consider the trinet TE,1 on {k, l, pE}.
Note that since there is no leaf on the crucial side M , a part of the underlying
generator is left out, namely sides D,J and M . Now, TE,1 is a simple
level-2 network with underlying generator 2c. Also, TE,1 ∈ Tn(N ′) since
Tn(N ′) = Tn(N). Since N and N ′ have the same underlying generator 3.7,
and since TE,1 has the underlying generator 2c, and since TE,1 ∈ Tn(N) and
TE,1 ∈ Tn(N ′), the same indegree-1 outdegree-1 vertices were suppressed to
get the underlying generator 2c of trinet TE,1 from the underlying generator
3.7 (after sides D,J and M being left out as mentioned before) for N and N ′.
Note that the sides B and C are suppressed to one side. Also, the sides H
and I are suppressed to one side. So, we have two ‘combined’ sides. We label
these sides, respectively, as B/C and H/I. From the proof of Lemma 3.2 we
know there are the same leaves on each side of the underlying generator 2c,
after possibly relabelling sides A,E, F with, respectively, sides B/C,H/I,G.
Remember that pE is a leaf on side E in N . Now, pE is a leaf on side E
or H/I of generator 2c. This means that pE is a leaf on side E,H, I or J
in N ′. Note that we have to take into account side J here because of the
part of generator 3.7 that is left out, and since there can be a leaf on side
J , which is on side (H/I)′ in generator 2c. The ′ here denotes that a side in
generator 2c can be labelled differently for N and N ′. So, from trinet TE,1

we get that pE is a leaf on side E,H, I or J in N ′.
Now, consider the trinet TE,2 on {k,m, pE}. Note that since there is

no leaf on the crucial side L, a part of the underlying generator is left out,
namely sides E, I and L. Note that the leaf pE is not left out since it is
on side A/F which will be defined later in the proof. Now, TE,2 is a simple
level-2 network with underlying generator 2b. Also, TE,2 ∈ Tn(N ′) since
Tn(N ′) = Tn(N). Since N and N ′ have the same underlying generator 3.7,
and since TE,2 has the underlying generator 2b, and since TE,2 ∈ Tn(N) and
TnE, 2inTn(N ′), the same indegree-1 outdegree-1 vertices were suppressed
to get the underlying generator 2b of trinet TE,2 from the underlying gen-
erator 3.7 (after sides E, I and L being left out as mentioned before) for
N and N ′. Note that the sides A and F are suppressed to one side. Also,
the sides H and J are suppressed to one side. So, we have two ‘combined’
sides. We label these sides, respectively, as A/F and H/J . From the proof
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of Lemma 3.2 we know there are the same leaves on each side of the underly-
ing generator 2b. Note that the underlying generator 2b has no symmetries.
Remember that pE is a leaf on side E in N . Now, pE is a leaf on side A/F
of generator 2b. This means that pE is a leaf on side A,E or F in N ′. Note
that we indeed have to take into account side E here because of the part of
generator 3.7 that is left out, and since there is a leaf on side E, which is on
side A/F in generator 2b. So, from trinet TE,2 we get that pE is a leaf on
side A,E or F in N ′. Remember that using trinet TE,1 we got that pE is
a leaf on side E,H, I or J in N ′. Since side E is the only side that follows
from both trinets TE,1 and TE,2, we can conclude that pE is a leaf on side
E in N ′.

Let pF be a leaf on side F in N . Consider the trinet TF,1 on {k, l, pF }.
Note that since there is no leaf on the crucial side M , a part of the underlying
generator is left out, namely sides D,J and M . Now, TF,1 is a simple
level-2 network with underlying generator 2c. Also, TF,1 ∈ Tn(N ′) since
Tn(N ′) = Tn(N). Since N and N ′ have the same underlying generator 3.7,
and since TF,1 has the underlying generator 2c, and since TF,1 ∈ Tn(N) and
TF,1 ∈ Tn(N ′), the same indegree-1 outdegree-1 vertices were suppressed to
get the underlying generator 2c of trinet TF,1 from the underlying generator
3.7 (after sides D,J and M being left out as mentioned before) for N and N ′.
Note that the sides B and C are suppressed to one side. Also, the sides H
and I are suppressed to one side. So, we have two ‘combined’ sides. We label
these sides, respectively, as B/C and H/I. From the proof of Lemma 3.2 we
know there are the same leaves on each side of the underlying generator 2c,
after possibly relabelling sides A,E, F with, respectively, sides B/C,H/I,G.
Remember that pF is a leaf on side F in N . Now, pF is a leaf on side F of
generator 2c. This means that pF is a leaf on side F or G in N ′. Note that
we do not have to take into account other sides here since the sides that are
left out do not encounter side F of the underlying generator 2c. So, from
trinet TF,1 we get that pF is a leaf on side F or G in N ′.

Now, consider the trinet TF,2 on {k,m, pF }. Note that since there is
no leaf on the crucial side L, a part of the underlying generator is left
out, namely sides E, I and L. Now, TF,2 is a simple level-2 network with
underlying generator 2b. Also, TF,2 ∈ Tn(N ′) since Tn(N ′) = Tn(N). Since
N and N ′ have the same underlying generator 3.7, and since TF,2 has the
underlying generator 2b, and since TF,2 ∈ Tn(N) and TF,2 ∈ Tn(N ′), the
same indegree-1 outdegree-1 vertices were suppressed to get the underlying
generator 2b of trinet TF,2 from the underlying generator 3.7 (after sides
E, I and L being left out as mentioned before) for N and N ′. Note that
the sides A and F are suppressed to one side. Also, the sides H and J are
suppressed to one side. So, we have two ‘combined’ sides. We label these
sides, respectively, as A/F and H/J . From the proof of Lemma 3.2 we know
there are the same leaves on each side of the underlying generator 2b. Note
that the underlying generator 2b has no symmetries. Remember that pF is
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a leaf on side F in N . Now, pF is a leaf on side A/F of generator 2b. This
means that pF is a leaf on side A,E or F in N ′. Note that we have to take
into account side E here because of the part of generator 3.7 that is left out,
and since there can be a leaf on side E, which is on side A/F in generator
2b. So, from trinet TF,2 we get that pF is a leaf on side A,E or F in N ′.
Remember that using trinet TF,1 we got that pF is a leaf on side F or G
in N ′. Since side F is the only side that follows from both trinets TF,1 and
TF,2, we can conclude that pF is a leaf on side F in N ′.

Let pH be a leaf on side H in N . Consider the trinet TH,1 on {k, l, pH}.
Note that since there is no leaf on the crucial side M , a part of the underlying
generator is left out, namely sides D,J and M . Now, TH,1 is a simple
level-2 network with underlying generator 2c. Also, TH,1 ∈ Tn(N ′) since
Tn(N ′) = Tn(N). Since N and N ′ have the same underlying generator 3.7,
and since TH,1 has the underlying generator 2c, and since TH,1 ∈ Tn(N) and
TH,1 ∈ Tn(N ′), the same indegree-1 outdegree-1 vertices were suppressed to
get the underlying generator 2c of trinet TH,1 from the underlying generator
3.7 (after sides D,J and M being left out as mentioned before) for N and N ′.
Note that the sides B and C are suppressed to one side. Also, the sides H
and I are suppressed to one side. So, we have two ‘combined’ sides. We label
these sides, respectively, as B/C and H/I. From the proof of Lemma 3.2 we
know there are the same leaves on each side of the underlying generator 2c,
after possibly relabelling sides A,E, F with, respectively, sides B/C,H/I,G.
Remember that pH is a leaf on side H in N . Now, pH is a leaf on side E
or H/I of generator 2c. This means that pH is a leaf on side E,H, I or J
in N ′. Note that we have to take into account side J here because of the
part of generator 3.7 that is left out, and since there can be a leaf on side
J , which is on side (H/I)′ in generator 2c. The ′ here denotes that a side in
generator 2c can be labelled differently for N and N ′. So, from trinet TH,1

we get that pH is a leaf on side E,H, I or J in N ′.
Now, consider the trinet TH,3 on {l,m, pH}. Note that since there is

no leaf on the crucial side K, a part of the underlying generator is left
out, namely sides F,G and K. Now, TH,3 is a simple level-2 network with
underlying generator 2b. Also, TH,3 ∈ Tn(N ′) since Tn(N ′) = Tn(N). Since
N and N ′ have the same underlying generator 3.7, and since TH,3 has the
underlying generator 2b, and since TH,3 ∈ Tn(N) and TH,3 ∈ Tn(N ′), the
same indegree-1 outdegree-1 vertices were suppressed to get the underlying
generator 2b of trinet TH,3 from the underlying generator 3.7 (after sides
F,G and K being left out as mentioned before) for N and N ′. Not that
the sides A and E are suppressed to one side. Also, the sides C and H are
suppressed to one side. So, we have two ‘combined’ sides. We label these
sides, respectively, as A/E and C/H. From the proof of Lemma 3.2 we know
there are the same leaves on each side of the underlying generator 2b. Note
that the underlying generator 2b has no symmetries. Remember that pH is
a leaf on side H in N . Now, pH is a leaf on side C/H of generator 2b. This
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means that pH is a leaf on side C,G or H in N ′. Note that we have take
into account side G here because of the part of generator 3.7 that is left out,
and since there can be a leaf on side G, which is on side C/H in generator
2b. So, from trinet TH,3 we get that pH is a leaf on side C,G or H in N ′.
Remember that using trinet TH,1 we got that pH is a leaf on side E,H, I or
J in N ′. Since side H is the only side that follows from both trinets TH,1

and TH,3, we can conclude that pH is a leaf on side H in N ′.
Let pI• be a leaf on side I• in N , with I• ∈ {I, J}. Consider the trinet

TI•,3 on {l,m, pI•}. Note that since there is no leaf on the crucial side K,
a part of the underlying generator is left out, namely sides F,G and K.
Now, TI•,3 is a simple level-2 network with underlying generator 2b. Also,
TI•,3 ∈ Tn(N ′) since Tn(N ′) = Tn(N). Since N and N ′ have the same
underlying generator 3.7, and since TI•,3 has the underlying generator 2b,
and since TI•,3 ∈ Tn(N) and TI•,3 ∈ Tn(N ′), the same indegree-1 outdegree-
1 vertices were suppressed to get the underlying generator 2b of trinet TI•,3

from the underlying generator 3.7 (after sides F,G and K being left out as
mentioned before) for N and N ′. Note that sides A and E are suppressed to
one side. Also, the sides C and H are suppressed to one side. So, we have
two ‘combined’ sides. We label these sides, respectively, as A/E and C/H.
From the proof of Lemma 3.2 we know there are the same leaves on each
side of the underlying generator 2b. Note that the underlying generator 2b
has no symmetries. Remember that pI• is a leaf on side I• in N . Now, pI•

is a leaf on side I• of generator 2b. This means that pI• is a leaf on side I•

in N ′. Note that we do not have to take into account other sides since the
sides that are left out do not encounter side I• of the underlying generator
2b. So, from trinet TI•,3 we get that pI• is a leaf on side I• in N ′.

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2c) (gen. 2b) (gen. 2b) for N ′

A A ∨B ∨ C ∨D A ∨ E ∨ F A
B B B
C C C
D D D
E E ∨H ∨ I ∨ J A ∨ E ∨ F E
F F ∨G A ∨ E ∨ F F
G G G
H E ∨H ∨ I ∨ J C ∨G ∨H H
I I I
J J J

Table 5.1: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.7)

So, generator 3.7 has the same leaves on each side for N and N ′. Note
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that for each non-crucial side the used results can be found in Table 5.1.

The other generators (group 3b)

In Appendix A.3 generators 3.10, 3.14, 3.39, 3.45, 3.46, 3.50, 3.51, 3.52, 3.57
and 3.60 can be found with the labels of their sides. These generators will
also be given later in the proof for this group of generators.

Observe that these generators have no symmetries. Also, note that for
all these generators a set of crucial sides has three elements. These crucial
sides are labelled with K,L and M . Therefore, these generators are similar
to generator 3.7 that is discussed before.

First, we look to leaves on sides K,L and M for each of these generators.
Let k be the leaf on side K, l the leaf on side L and m the leaf on side M
in N . Then, the trinet Pc on {k, l,m} is crucial and, since there are no
symmetries, it follows that leaves k, l,m are, respectively, on side K,L,M
in Pc, and hence, since Tn(N ′) = Tn(N), in N ′.

Now, we will prove that the other sides have also the same leaves in N
and N ′. Since the generators have no symmetries, and since they have three
crucial sides, this can be proved in similar way as we did for generator 3.7.
In Tables 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 the results for the
different generators can be found. We can see that for each of the generators
that if there is a leaf on a side S in N , then this leaf is on side S in N ′.
Note that in Figures 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12 and 5.13 the
generators with the labels of their sides can be found. So, for each generator
the table with results is just below the generator itself.

First, some remarks about the used trinets in the tables. Note that each
of the trinets that is marked with (∆) consists of two level-1 generators.
Since these trinets are not needed to get the wanted result, we will not
discuss them.

Also, note that some trinets are marked with (∗). Such a trinet is not
biconnected for each side S. Therefore, we can not use the reasoning for the
underlying generator as we did before. By Corollary 3.3 and since the trinet
is a level-2 network, we only have to look to the symmetry of the trinet.
Further, note that leaves on sides A and B can not be distinguished using
the trinet.
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Figure 5.4: Generator 3.10 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2c) (gen. 2b) for N ′

A A ∨B A ∨ C ∨D A
B A ∨B B ∨ E ∨ F B
C C ∨ F ∨G ∨H ∨ I ∨ J A ∨ C ∨D C
D D ∨ E A ∨ C ∨D D
E D ∨ E B ∨ E ∨ F E
F C ∨ F ∨G ∨H ∨ I ∨ J B ∨ E ∨ F F
G C ∨ F ∨G ∨H ∨ I ∨ J G G
H C ∨ F ∨G ∨H ∨ I ∨ J H H
I C ∨ F ∨G ∨H ∨ I ∨ J I I
J C ∨ F ∨G ∨H ∨ I ∨ J J J

Table 5.2: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.10)
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Figure 5.5: Generator 3.14 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2c) (gen. 2b) (gen. 2b) for N ′

A A ∨B A ∨ E ∨ F A ∨ E ∨ F A
B A ∨B B B B
C C ∨ E ∨G ∨H C C ∨G ∨H C
D D ∨ F ∨ I ∨ J D ∨ I ∨ J D D
E C ∨ E ∨G ∨H A ∨ E ∨ F A ∨ E ∨ F E
F D ∨ F ∨ I ∨ J A ∨ E ∨ F A ∨ E ∨ F F
G C ∨ E ∨G ∨H G C ∨G ∨H G
H C ∨ E ∨G ∨H H C ∨G ∨H H
I D ∨ F ∨ I ∨ J D ∨ I ∨ J I I
J D ∨ F ∨ I ∨ J D ∨ I ∨ J J J

Table 5.3: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.14)
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Figure 5.6: Generator 3.39 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (∆) (gen. 2b) for N ′

A A A A
B B B ∨ C ∨D ∨ E ∨ F B
C C B ∨ C ∨D ∨ E ∨ F C
D D B ∨ C ∨D ∨ E ∨ F D
E E ∨G ∨H ∨ I ∨ J B ∨ C ∨D ∨ E ∨ F E
F F B ∨ C ∨D ∨ E ∨ F F
G E ∨G ∨H ∨ I ∨ J G G
H E ∨G ∨H ∨ I ∨ J H H
I E ∨G ∨H ∨ I ∨ J I I
J E ∨G ∨H ∨ I ∨ J J J

Table 5.4: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.39)
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Figure 5.7: Generator 3.45 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (∗) (gen. 2b) for N ′

A A A ∨B A A
B B A ∨B B ∨ C ∨D B
C C C B ∨ C ∨D C
D D ∨ E ∨ F D B ∨ C ∨D D
E D ∨ E ∨ F E E ∨G ∨H E
F D ∨ E ∨ F F F F
G G G E ∨G ∨H G
H H ∨ I ∨ J H ∨ I ∨ J E ∨G ∨H H
I H ∨ I ∨ J H ∨ I ∨ J I I
J H ∨ I ∨ J H ∨ I ∨ J J J

Table 5.5: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.45)
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Figure 5.8: Generator 3.46 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (∗) (gen. 2b) for N ′

A A A ∨B A A
B B ∨ C ∨D A ∨B B B
C B ∨ C ∨D C C ∨ E ∨ F ∨G ∨H C
D B ∨ C ∨D D D D
E E E C ∨ E ∨ F ∨G ∨H E
F F F C ∨ E ∨ F ∨G ∨H F
G G G C ∨ E ∨ F ∨G ∨H G
H H ∨ I ∨ J H ∨ I ∨ J C ∨ E ∨ F ∨G ∨H H
I H ∨ I ∨ J H ∨ I ∨ J I I
J H ∨ I ∨ J H ∨ I ∨ J J J

Table 5.6: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.46)
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Figure 5.9: Generator 3.50 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (gen. 2b) (∗) for N ′

A A A A ∨B A
B B ∨ C ∨D B A ∨B B
C B ∨ C ∨D C C C
D B ∨ C ∨D D D D
E E E ∨G ∨H E ∨G ∨H E
F F ∨ I ∨ J F ∨ I ∨ J F F
G G E ∨G ∨H E ∨G ∨H G
H H E ∨G ∨H E ∨G ∨H H
I F ∨ I ∨ J F ∨ I ∨ J I I
J F ∨ I ∨ J F ∨ I ∨ J J J

Table 5.7: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.50)
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Figure 5.10: Generator 3.51 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (∗) (gen. 2b) for N ′

A A A ∨B A A
B B A ∨B B B
C C C ∨D C ∨ E ∨ F C
D D ∨G ∨H C ∨D D ∨G ∨H D
E E ∨ I ∨ J E ∨H ∨ I ∨ J C ∨ E ∨ F E
F F F ∨G C ∨ E ∨ F F
G D ∨G ∨H F ∨G D ∨G ∨H G
H D ∨G ∨H E ∨H ∨ I ∨ J D ∨G ∨H H
I E ∨ I ∨ J E ∨H ∨ I ∨ J I I
J E ∨ I ∨ J E ∨H ∨ I ∨ J J J

Table 5.8: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.51)
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Figure 5.11: Generator 3.52 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (∆) (∗) for N ′

A A A ∨B A
B B A ∨B B
C C C ∨ E ∨ F C
D D ∨G ∨H ∨ I ∨ J D D
E E C ∨ E ∨ F E
F F C ∨ E ∨ F F
G D ∨G ∨H ∨ I ∨ J G G
H D ∨G ∨H ∨ I ∨ J H H
I D ∨G ∨H ∨ I ∨ J I I
J D ∨G ∨H ∨ I ∨ J J J

Table 5.9: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.52)
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Figure 5.12: Generator 3.57 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (gen. 2b) (∗) for N ′

A A A A ∨B A
B B ∨ C ∨D B A ∨B B
C B ∨ C ∨D C ∨ E ∨ F C C
D B ∨ C ∨D D D D
E E C ∨ E ∨ F E E
F F C ∨ E ∨ F F ∨G ∨H F
G G ∨ I ∨ J G ∨ I ∨ J F ∨G ∨H G
H H H F ∨G ∨H H
I G ∨ I ∨ J G ∨ I ∨ J I I
J G ∨ I ∨ J G ∨ I ∨ J J J

Table 5.10: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.57)
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Figure 5.13: Generator 3.60 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2b) (∗) for N ′

A A A ∨B A
B B A ∨B B
C C C ∨ E ∨ F C
D D D D
E E C ∨ E ∨ F E
F F ∨G ∨H ∨ I ∨ J C ∨ E ∨ F F
G F ∨G ∨H ∨ I ∨ J G G
H F ∨G ∨H ∨ I ∨ J H H
I F ∨G ∨H ∨ I ∨ J I I
J F ∨G ∨H ∨ I ∨ J J J

Table 5.11: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.60)

So, each of the generators has the same leaves on each side for N and
N ′.

Group 4: 2 crucial sides, 1 set of parallel arcs, no other sym-
metry

Each of the generators 3.18, 3.22, 3.28, 3.31, 3.36 and 3.65 has 2 crucial
sides, 1 set of parallel arcs and no other symmetry. Note that there is
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only symmetry caused by the parallel arcs. First, we define the set T =
{18, 22, 28, 31, 36, 65}. Now, let t ∈ T , and consider generator 3.t. Note
that this generator with three labelled sides can be found in Appendix A.4.
Further, note that generator 3.18 can also be found in Figure 5.14.

Figure 5.14: Generator 3.18 with three labelled sides

Observe that the only symmetry of generator 3.t is that sides B and C
can be interchanged with sides C and B, respectively, to obtain an isomor-
phic generator. Note that sides B and C is a set of parallel arcs in generator
3.t. Further, note that a set of crucial sides consists of two elements, namely
side A and one of the sides B and C.

Let x be the leaf on side A, y a leaf on side B or C and z a leaf on some
side S in N . Note there exists at least one such leaf z since N has at least 3
leaves. Then, by the crucial trinet on {x, y, z} and since Tn(N ′) = Tn(N),
x is on side A and y is on side B or C in N ′. So, the sides of the leaves are
determined except of the symmetries. Assume y is on the same side in N ′

as in N . We can assume this without loss of generality, because if it is not
the case, we can relabelling sides B and C. Now, it follows by the crucial
trinet on {x, y, z} that z is on side S in N ′. So, each leaf is on the same side
in N ′ as in N (after possibly relabelling sides B and C).

Group 5: 3 crucial sides, 1 set of parallel arcs, no other sym-
metry

Each of the generators 3.11, 3.38, 3.40, 3.47, 3.53, 3.56 and 3.61 has 3 crucial
sides, 1 set of parallel arcs and no other symmetry. Note that there is only
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symmetry caused by the parallel arcs. In Appendix A.5 the generators can
be found with the labels of their sides. These generators will also be given
later in the proof for this group of generators.

Observe that the only symmetry of these generators is that sides H1 and
H2 can be interchanged with sides H2 and H1, respectively, to obtain an
isomorphic generator. Note that sides H1 and H2 is a set of parallel arcs
in each of the generators. Further, note that for all these generators a set
of crucial sides has three elements, namely sides I, J and one of the sides
H1, H2.

First, we look to leaves on sides H1, H2, I and J for each of these gener-
ators. Let h be the leaf on side H1 or H2, i the leaf on side I and j the leaf
on side J in N . Then, the trinet Pc on {h, i, j} is crucial and, since the only
symmetry is caused by the parallel arcs H1 and H2, it follows that leaves
i, j are, respectively, on side I, J in Pc, and hence, since Tn(N ′) = Tn(N),
in N ′. Also, we get that leaf h is on side H1 or H2 in Pc, and hence, since
Tn(N ′) = Tn(N), in N ′. Assume h is on the same side in N ′ as in N . We
can assume this without loss of generality, because if it is not the case, we
can relabelling sides H1 and H2.

Now, we will prove that the other sides have also the same leaves in
N and N ′. We will do this in similar way as we did for the generators
of group 3. For each side S we use some of the trinets TS,1, TS,2, TS,3 on,
respectively, {h, i, pS}, {h, j, pS}, {i, j, pS}, where pS is a leaf on side S in
N . In Tables 5.12, 5.13, 5.14, 5.15, 5.16, 5.17 and 5.18 the results for the
different generators can be found. We can see that for each of the generators
that if there is a leaf on a side S in N , then this leaf is on side S in N ′. Note
that in Figures 5.15, 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21 the generators with
the labels of their sides can be found. So, for each generator the table with
results is just below the generator itself. Also, note that the meaning of (∆)
and (∗) is explained in the proof for the generators of group 3b. Further,
note that generator 2d now is also used, which has symmetry caused by the
parallel sides.
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Figure 5.15: Generator 3.11 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2d) (gen. 2c) for N ′

A A ∨ C ∨D A ∨B A
B B ∨ E ∨ F A ∨B B
C A ∨ C ∨D C ∨ F ∨G ∨H1 ∨H2 C
D A ∨ C ∨D D ∨ E D
E B ∨ E ∨ F D ∨ E E
F B ∨ E ∨ F C ∨ F ∨G ∨H1 ∨H2 F
G G C ∨ F ∨G ∨H1 ∨H2 G

Table 5.12: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.11)
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Figure 5.16: Generator 3.38 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2d) (gen. 2b) for N ′

A A ∨ C ∨D ∨ E ∨ F A A
B B B ∨G ∨H1 ∨H2 B
C A ∨ C ∨D ∨ E ∨ F C C
D A ∨ C ∨D ∨ E ∨ F D D
E A ∨ C ∨D ∨ E ∨ F E E
F A ∨ C ∨D ∨ E ∨ F F F
G G B ∨G ∨H1 ∨H2 G

Table 5.13: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.38)
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Figure 5.17: Generator 3.40 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2d) (∆) (gen. 2b) for N ′

A A A A
B B B ∨ C ∨H1 ∨H2 B
C C ∨D ∨ E ∨ F ∨G B ∨ C ∨H1 ∨H2 C
D C ∨D ∨ E ∨ F ∨G D D
E C ∨D ∨ E ∨ F ∨G E E
F C ∨D ∨ E ∨ F ∨G F F
G C ∨D ∨ E ∨ F ∨G G G

Table 5.14: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.40)
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Figure 5.18: Generator 3.47 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2d) (∗) (gen. 2b) for N ′

A A A ∨B A A
B B ∨ C ∨D A ∨B B B
C B ∨ C ∨D C C ∨ E ∨H1 ∨H2 C
D B ∨ C ∨D D D D
E E ∨ F ∨G E ∨ F ∨G C ∨ E ∨H1 ∨H2 E
F E ∨ F ∨G E ∨ F ∨G F F
G E ∨ F ∨G E ∨ F ∨G G G

Table 5.15: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.47)
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Figure 5.19: Generator 3.53 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (∗) (gen. 2b) for N ′

A A ∨B A A
B A ∨B B B
C C ∨ E ∨ F C C
D D D ∨G ∨H1 ∨H2 D
E C ∨ E ∨ F E E
F C ∨ E ∨ F F F
G G D ∨G ∨H1 ∨H2 G

Table 5.16: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.53)
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Figure 5.20: Generator 3.56 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2d) (gen. 2b) for N ′

A A A A
B B ∨ C ∨D ∨ E ∨ F B B
C B ∨ C ∨D ∨ E ∨ F C C
D B ∨ C ∨D ∨ E ∨ F D D
E B ∨ C ∨D ∨ E ∨ F E E
F B ∨ C ∨D ∨ E ∨ F F ∨G ∨H1 ∨H2 F
G G F ∨G ∨H1 ∨H2 G

Table 5.17: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.56)
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Figure 5.21: Generator 3.61 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (∗) (gen. 2b) for N ′

A A ∨B A A
B A ∨B B B
C C ∨ E ∨ F C C
D D D D
E C ∨ E ∨ F E E
F C ∨ E ∨ F F ∨G ∨H1 ∨H2 F
G G F ∨G ∨H1 ∨H2 G

Table 5.18: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.61)

So, each of the generators has the same leaves on each side for N and
N ′ (after possibly relabelling sides H1 and H2).

Group 6: 3 crucial sides, 2 sets of parallel arcs, no other
symmetry

Generator 3.64 has 3 crucial sides, 2 sets of parallel arcs and no other sym-
metry. Note that there is only symmetry caused by the parallel arcs. In
Appendix A.6 the generator can be found with the labels of its sides. The
generator will also be given later in the proof for this generator.

Observe that that the only symmetry of this generator is that sides E1
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and E2 can be interchanged with sides E2 and E1, respectively, or that sides
F1 and F2 can be interchanged with sides F2 and F1, respectively, to obtain
an isomorphic generator. Note that sides E1 and E2 and sides F1 and F2

are both a set of parallel arcs. Further, note that a set of crucial sides has
three elements, namely side G, one of the sides E1, E2 and one of the sides
F1, F2.

First, we look to the leaves on sides E1, E2, F1, F2 and G. Let e be the
leaf on side E1 or E2, f the leaf on side F1 or F2, and g the leaf on side
G, in N . Then, the trinet Pc on {e, f, g} is crucial and, since the only
symmetry is caused by the parallel arcs E1 and E2 and the parallel arcs F1

and F2, it follows that leaf g is, respectively, on side G in Pc, and hence,
since Tn(N ′) = Tn(N), in N ′. Also, we get that leaf e is on side E1 or E2

in Pc, and hence, since Tn(N ′) = Tn(N), in N ′. Further, we get that leaf f
is on side F1 or F2 in Pc, and hence, since Tn(N ′) = Tn(N), in N ′. Assume
e is on the same side in N ′ as in N . Also, assume f is on the same side in
N ′ as in N . We can assume this without loss of generality, because if it is
not the case, we can relabelling sides E1 and E2 or relabelling sides F1 and
F2.

Now, we will prove that the other sides have also the same leaves in N
and N ′. We will do this in similar way as we did for the generators of group
3. For each side S we use some of the trinets TS,1, TS,2, TS,3 on, respectively,
{e, f, pS}, {e, g, pS}, {f, g, pS}, where pS is a leaf on side S in N . In Table
5.19 the results can be found. We can see that if there is a leaf on a side S in
N , then this leaf is on side S in N ′. Note that in Figure 5.22 the generator
with the labels of its sides can be found. So, the table with results is just
below the generator itself. Also, note that the meaning of (∆) is explained
in the proof for the generators of group 3b.
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Figure 5.22: Generator 3.64 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2d) (gen. 2d) for N ′

A A A A
B B B ∨ C ∨ E1 ∨ E2 B
C C ∨D ∨ F1 ∨ F2 B ∨ C ∨ E1 ∨ E2 C
D C ∨D ∨ F1 ∨ F2 D D

Table 5.19: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.64)

So, the generator has the same leaves on each side for N and N ′ (after
possibly relabelling sides E1 and E2 or sides F1 and F2).

Group 7: 1 crucial side, symmetry, no parallel arcs

Generator 3.16 has 1 crucial side, symmetry and no parallel arcs. In Ap-
pendix A.7 the generator can be found with the labels of its sides. The
generator can also be found in Figure 5.23.
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Figure 5.23: Generator 3.16 with labelled sides

Observe that there is some symmetry. Sides A,C,D can be interchanged
with sides B,E, F , respectively, to obtain an isomorphic generator. Also,
sides C,E,G can be interchanged with sides D,F,H, respectively, again
yielding an isomorphic generator. Further, sides A,C,D,G can be inter-
changed with sides B,F,E,H, respectively, again yielding an isomorphic
generator. Note, a set of crucial sides has one element, namely side I.

Let i be the leaf on side I, x and y two other leafs in N . Then, the trinet
Pc on {i, x, y} implies that i is on side I in N ′. Now, again using trinet Pc,
it follows that if there is on side A or B in N , then this leaf is on side A or
B in N ′. Also, if a leaf is on side C,D,E or F in N , then this leaf is on side
C,D,E or F in N ′. Further, if a leaf is on side G or H in N , then this leaf
is on side G or H in N ′. Note, we use the symmetry of the generator.

First, assume that there is at least one leaf on side C in N and that the
leaves that are on side C in N are on side C in N ′. Let c be one such leaf
on side C in N .

Let a be a leaf on side A in N . Earlier we saw that this leaf then is on
side A or B in N ′. Consider the crucial trinet on {a, c, i}, which has the
same underlying generator as N and N ′. Then, leaves a and c are on sides
that are arcs of the generator and for which holds that the end point of one
of the two sides is the same as the begin point of the other side. So, since c
is on side C in N ′ and since Tn(N ′) = Tn(N), a is on side A in N ′.

Let b be a leaf on side B in N . Earlier we saw that this leaf then is on
side A or B in N ′. Consider the crucial trinet on {b, c, i}, which has the
same underlying generator as N and N ′. Then, leaves b and c are on sides
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that are arcs of the generator and for which does not hold that the end point
of one of the two sides is the same as the begin point of the other side. So,
since c is on side C in N ′ and since Tn(N ′) = Tn(N), b is on side B in N ′.

Let d be a leaf on side D in N . Earlier we saw that this leaf then is
on side C,D,E or F in N ′. Consider the crucial trinet on {c, d, i}, which
has the same underlying generator as N and N ′. Then, leaves c and d
are on sides that are arcs of the generator and that have the same begin
point but different end points. So, since c is on side C in N ′ and since
Tn(N ′) = Tn(N), d is on side D in N ′.

Let e be a leaf on side E in N . Earlier we saw that this leaf then is on side
C,D,E or F in N ′. Consider the crucial trinet on {c, e, i}, which has the
same underlying generator as N and N ′. Then, leaves c and e are on sides
that are arcs of the generator and that have the same end point but different
begin points. So, since c is on side C in N ′ and since Tn(N ′) = Tn(N), e is
on side E in N ′.

Let f be a leaf on side F in N . Earlier we saw that this leaf then is
on side C,D,E or F in N ′. Consider the crucial trinet on {c, f, i}, which
has the same underlying generator as N and N ′. Then, leaves c and f
are on sides that are arcs of the generator and that have different begin
points and different end points. So, since c is on side C in N ′ and since
Tn(N ′) = Tn(N), f is on side f in N ′.

Let g be a leaf on side G in N . Earlier we saw that this leaf then is on
side G or H in N ′. Consider the crucial trinet on {c, g, i}, which has the
same underlying generator as N and N ′. Then, leaves c and g are on sides
that are arcs of the generator and for which holds that the end point of one
of the two sides is the same as the begin point of the other side. So, since c
is on side C in N ′ and since Tn(N ′) = Tn(N), g is on side G in N ′.

Let h be a leaf on side H in N . Earlier we saw that this leaf then is on
side G or H in N ′. Consider the crucial trinet on {c, h, i}, which has the
same underlying generator as N and N ′. Then, leaves c and h are on sides
that are arcs of the generator and for which does not hold that the end point
of one of the two sides is the same as the begin point of the other side. So,
since c is on side C in N ′ and since Tn(N ′) = Tn(N), h is on side H in N ′.
So, all leaves are on the same side in N ′ as in N .

Now, assume that the leaves that are on side C in N are not on side C in
N ′. Earlier we saw that these leaves then are on side D,E or F in N ′. First,
if the leaves that are on side C in N are on side D in N ′, then we can argue
in exactly the same way that the leaves that are on sides A,B,D,E, F,G,H
in N are, respectively, on sides A,B,C, F,E,H,G in N ′. Now, relabelling
sides C,E,G with sides D,F,H, respectively, gives that all leaves are on the
same side in N ′ as in N . Secondly, if the leaves that are on side C in N
are on side E in N ′, then we can argue in exactly the same way that the
leaves that are on sides A,B,D,E, F,G,H in N are, respectively, on sides
B,A, F,C,D,G,H in N ′. Now, relabelling sides A,C,D with sides B,E, F ,
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respectively, gives that all leaves are on the same side in N ′ as in N . Thirdly,
if the leaves that are on side C in N are on side F in N ′, then we can argue
in exactly the same way that the leaves that are on sides A,B,D,E, F,G,H
in N are, respectively, on sides B,A,E,D,C,H,G in N ′. Now, relabelling
sides A,C,D,G with sides B,F,E,H, respectively, gives that all leaves are
on the same side in N ′ as in N . So, all leaves are on the same side in N ′ as
in N .

Finally, if there is no leaf on side C in N , then there is a leaf on one of
the sides A,B,D,E, F,G,H in N (since N has at least three leaves). First,
assume that there is a leaf on one of the sides D,E or F . Then, we can
apply similar arguments based on that leaf as we did for the leaf on side C
in order to get that all leaves are on the same side in N ′ as in N .

Now, if there is no leaf on sides C,D,E and F in N , then there is a leaf on
one of the sides A,B,G or H in N (since N has at least three leaves).Earlier
we saw that if a leaf is on side A or B in N , this leaf is on side A or B in N ′.
Assume that the leaves that are on side A in N are on side A in N ′ and that
the leaves that are on side B in N are on side B in N ′. We can assume this
without loss of generality, because if it is not the case, we can relabelling
sides A,C,D with sides B,E, F , respectively. Earlier we also saw that if
a leaf is on side G or H in N , this leaf is on side G or H in N ′. Assume
that the leaves that are on side G in N are on side G in N ′ and that the
leaves that are on side H in N are on side H in N ′. We can assume this
without loss of generality, because if it is not the case, we can relabelling
sides C,E,G with sides D,F,H, respectively. So, all leaves are on the same
side in N ′ as in N (after possibly relabelling sides).

Group 8: 2 crucial sides, symmetry, no parallel arcs

Each of the generators 3.3 and 3.26 has 2 crucial sides, symmetry and no
parallel arcs. In Appendix A.8 the generators can be found with the labels
of their sides. These generators can also be found in Figure 5.24.
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(a) Generator 3.3 (b) Generator 3.26

Figure 5.24: Generators of group 8 with labelled sides

Observe that the symmetry of generator 3.3 is that sides F,H, J can
be interchanged with sides G, I,K, respectively, to obtain an isomorphic
generator. Also, observe that the symmetry of generator 3.26 is that sides
A,C,D,H, J can be interchanged with sides B,F,E, I,K, respectively, to
obtain an isomorphic generator. Further, note that for each of the generators
a set of crucial sides has two elements, namely sides J and K.

Now, we will prove that each leaf in on the same side in N ′ as in N for
each of the generators. Let j be the leaf on side J , k the leaf on side K and
s a leaf on some other side S in N . Then, the trinet Pc on {j, k, s} implies
that j and k are on sides J and K in N ′. Assume that j is on side J and k
is on side K in N ′. We can assume this without loss of generality, because if
it is not the case, we can relabelling sides using the symmetry we discussed
before. Now, again using trinet Pc, it follows that s is on side S in N ′. So,
each leaf is on the same side in N ′ as in N (after possibly relabelling sides).

Group 9: 3 crucial sides, symmetry

Each of the generators 3.1, 3.6, 3.8, 3.37 and 3.58 has 3 crucial sides and
symmetry. First generator 3.6 will be discussed, then the other generators.

Generator 3.6 (group 9a)

In Appendix A.9 generator 3.6 can be found with the labels of its sides. The
generator will also be given later in the proof for this generator.
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Observe that the symmetry is that sides A,C,D,G,H,L can be inter-
changed with sides B,F,E, J, I,M , respectively, to obtain an isomorphic
generator. Further, note that a set of crucial sides has three elements,
namely sides K,L and M .

First, we look to the leaves on sides K,L and M . Let k be the leaf on
side K, l the leaf on side L and m the leaf on side M in N . Then, the
trinet Pc on {k, l,m} implies that leaf k is on side K in N ′ and that leafs
l and m are on sides L and M in N ′. Assume that leaf l is on side L and
leaf m is on side M in N ′. We can assume this without loss of generality,
because if it is not the case, we can relabelling sides A,C,D,G,H,L with
sides B,F,E, J, I,M , respectively.

Now, we will prove that the other sides have also the same leaves in N
and N ′. The first part we will do in similar way as we did for the generators
of group 3. For each side S we use some of the trinets TS,1, TS,2, TS,3 on,
respectively, {k, l, pS}, {k,m, pS}, {l,m, pS}, where pS is a leaf on side S in
N . In Table 5.20 the results can be found. We can see that if there is a leaf
on a side S in N , then this leaf is on side S or S′ in N ′, with S′ the side that
S can be interchanged with according the symmetry of the generator. Note
that in Figure 5.25 the generator with the labels of its sides can be found.
So, the table with results is just below the generator itself.

Figure 5.25: Generator 3.6 with labelled sides

58



Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2c) (gen. 2c) (gen. 2c) for N ′

A ∨B A ∨B A ∨B A ∨B ∨ C ∨D A ∨B
∨E ∨ F

C ∨ F C ∨ F ∨G ∨H C ∨ F ∨G ∨H A ∨B ∨ C ∨D C ∨ F
∨I ∨ J ∨I ∨ J ∨E ∨ F

D ∨ E D ∨ E D ∨ E A ∨B ∨ C ∨D D ∨ E
∨E ∨ F

G ∨ I C ∨ F ∨G ∨H C ∨ F ∨G ∨H G ∨ I G ∨ I
∨I ∨ J ∨I ∨ J

H ∨ J C ∨ F ∨G ∨H C ∨ F ∨G ∨H H ∨ J H ∨ J
∨I ∨ J ∨I ∨ J

Table 5.20: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.6)

First, assume that there is at least one leaf on side A in N and that the
leaves that are on side A in N are on side A in N ′. Let a be one such leaf
on side A in N .

Let d be a leaf on side D in N . Earlier we saw that then d is on side
D or E in N ′. Consider the trinet on {a, d, k}, which is a simple level-1
network. Then, a and d are on the same side of this trinet. Now, since
Tn(N ′) = Tn(N) holds, d is on side D in N ′.

Let x be a leaf on side S ∈ {B,E} in N . Again, if x is on side B in
N , then x is on side A or B in N ′. Also, if x is on side E in N , then x is
on side D or E in N ′. Consider the trinet on {a, x, k}, which is a simple
level-1 network. Then, a and x are on different sides of this trinet. Now,
since Tn(N ′) = Tn(N) holds, x is on side S in N ′.

Let y be a leaf on side S ∈ {C,G,H} in N . Again, if y is on side C in
N , then y is on side C or F in N ′. Also, if y is on side G in N , then y is on
side G or I in N ′. Further, if y is on side H in N , then y is on side H or J in
N ′. Consider the trinet on {a, y, l}, which is a simple level-1 network. Then,
a and y are on the same side of this trinet. Now, since Tn(N ′) = Tn(N)
holds, y on side S in N ′.

Let z be a leaf on side S ∈ {F, I, J} in N . Again, if z is on side F in N ,
then z is on side C or F in N ′. Also, if z is on side I in N , then z is on side
G or I in N ′. Further, if z is on side J in N , then z is on side H or J in
N ′. Consider the trinet on {a, z, l}, which is a simple level-1 network. Then,
a and z are on different sides of this trinet. Now, since Tn(N ′) = Tn(N)
holds, z is on side S in N ′. So, all leaves are on the same side in N ′ as in
N .

Now, assume that the leaves that are on side A in N are not on side A
in N ′. Earlier we saw that these leaves then are on side B in N ′. Then,
we can argue in exactly the same way that the leaves that are on sides
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B,C,D,E, F,G,H, I, J in N are, respectively, on sides A,F,E,D,C, I, J,G,
H in N ′. Now, relabelling sides A,B,C,D,E, F,G,H, I, J with sides B,A,
F,E,D,C, I, J,G,H, respectively, gives that all leaves are on the same side
in N ′ as in N .

Finally, assume that there is no leaf on side A in N . If there is a leaf
on one of the sides B,C,D,E, F,G,H, I, J in N , then we can apply similar
arguments based on that leaf as we did for the leaf on side A in order to
get that all leaves are on the same side in N ′ as in N . If there is no leaf on
one of the sides B,C,D,E, F,G,H, I, J in N , then leaves k, l and m are the
only leaves in N and for leaves k, l and m we already showed that they are
on the same side in N ′ as in N .

So, each leaf is on the same side in N ′ as in N (after possibly relabelling
sides).

The other generators (group 9b)

In Appendix A.9 generators 3.1, 3.8, 3.37 and 3.58 can be found with the
labels of their sides. These generators will also be given later in the proof
for this group of generators. Note that for generator 3.8 some binary, simple
level-3 networks are excluded.

Observe that the symmetry of generators 3.1 and 3.58 is that sides
G, I, L can be interchanged with sides H,J,M , respectively, to obtain an
isomorphic generator. The symmetry of generators 3.8 and 3.37 is that
sides A,C,D,G,H,K can be interchanged with sides B,F,E, J, I,M , re-
spectively, to obtain an isomorphic generator. Further, note that for each of
the generators a set of crucial sides has three elements, namely sides K,L
and M .

First, we look to the leaves on sides K,L and M for each of the gener-
ators. Let k be the leaf on side K, l the leaf on side L and m the leaf on
side M in N . Then, for generators 3.1 and 3.58, the trinet Pc on {k, l,m}
implies that leaf k is on side K in N ′ and that leafs l and m are on sides L
and M in N ′. Assume that leaf l is on side L and leaf m is on side M in
N ′. We can assume this without loss of generality, because if it is not the
case, we can relabelling sides using the symmetry we discussed before.

Further, for generators 3.8 and 3.37, the trinet Pc on {k, l,m, } implies
that leaf l is on side L in N ′ and that leafs k and m are on sides K and M
in N ′. Assume that leaf k is on side K and leaf m is on side M in N ′. We
can assume this without loss of generality, because if it is not the case, we
can relabelling sides using the symmetry we discussed before.

Now, we will prove that the other sides have also the same leaves in N
and N ′. A large part we will do in similar way as we did for the generators
of group 3. For each side S we use some of the trinets TS,1, TS,2, TS,3 on,
respectively, {k, l, pS}, {k,m, pS}, {l,m, pS}, where pS is a leaf on side S in
N . In Tables 5.21, 5.22, 5.23 and 5.24 the results for the different generators
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can be found. We can see that for three of the generators that if there is a
leaf on a side S in N , then this leaf is on side S in N ′. For generator 3.8
we get the same result, except for the sides A and B. Note that in Figures
5.26, 5.27, 5.28 and 5.29 the generators with the labels of their sides can
be found. So, for each generator the table with results is just below the
generator itself. Also, note that the meaning of (∆) and (∗) is explained in
the proof for the generators of group 3b.

Figure 5.26: Generator 3.1 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (gen. 2b) (gen. 2c) for N ′

A A ∨G ∨H A ∨G ∨H A ∨B ∨ C ∨D ∨ E ∨ F A
B B B A ∨B ∨ C ∨D ∨ E ∨ F B
C C C A ∨B ∨ C ∨D ∨ E ∨ F C
D D D A ∨B ∨ C ∨D ∨ E ∨ F D
E E E A ∨B ∨ C ∨D ∨ E ∨ F E
F F ∨ I ∨ J F ∨ I ∨ J A ∨B ∨ C ∨D ∨ E ∨ F F
G A ∨G ∨H A ∨G ∨H G ∨ I G
H A ∨G ∨H A ∨G ∨H H ∨ J H
I F ∨ I ∨ J F ∨ I ∨ J G ∨ I I
J F ∨ I ∨ J F ∨ I ∨ J H ∨ J J

Table 5.21: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.1)
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Figure 5.27: Generator 3.8 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2c) (gen. 2c) (gen. 2c) for N ′

A ∨B A ∨B ∨ E ∨ F A ∨B A ∨B ∨ C ∨D A ∨B
C C ∨G C ∨ E ∨G ∨H A ∨B ∨ C ∨D C
D D ∨H ∨ I ∨ J D ∨ F ∨ I ∨ J A ∨B ∨ C ∨D D
E A ∨B ∨ E ∨ F C ∨ E ∨G ∨H E ∨G ∨H ∨ I E
F A ∨B ∨ E ∨ F D ∨ F ∨ I ∨ J F ∨ J F
G C ∨G C ∨ E ∨G ∨H E ∨G ∨H ∨ I G
H D ∨H ∨ I ∨ J C ∨ E ∨G ∨H E ∨G ∨H ∨ I H
I D ∨H ∨ I ∨ J D ∨ F ∨ I ∨ J E ∨G ∨H ∨ I I
J D ∨H ∨ I ∨ J D ∨ F ∨ I ∨ J F ∨ J J

Table 5.22: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.8)
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Figure 5.28: Generator 3.37 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (∆) (gen. 2b) for N ′

A A A ∨ C ∨D ∨G ∨H A
B B ∨ E ∨ F ∨ I ∨ J B B
C C A ∨ C ∨D ∨G ∨H C
D D A ∨ C ∨D ∨G ∨H D
E B ∨ E ∨ F ∨ I ∨ J E E
F B ∨ E ∨ F ∨ I ∨ J F F
G G A ∨ C ∨D ∨G ∨H G
H H A ∨ C ∨D ∨G ∨H H
I B ∨ E ∨ F ∨ I ∨ J I I
J B ∨ E ∨ F ∨ I ∨ J J J

Table 5.23: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.37)
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Figure 5.29: Generator 3.58 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2b) (gen. 2b) (∗) for N ′

A A A A ∨B A
B B B A ∨B B
C C C C ∨D ∨ E ∨ F C
D D ∨ I ∨ J D ∨ I ∨ J C ∨D ∨ E ∨ F D
E E E C ∨D ∨ E ∨ F E
F F ∨G ∨H F ∨G ∨H C ∨D ∨ E ∨ F F
G F ∨G ∨H F ∨G ∨H G ∨ I G
H F ∨G ∨H F ∨G ∨H H ∨ J H
I D ∨ I ∨ J D ∨ I ∨ J G ∨ I I
J D ∨ I ∨ J D ∨ I ∨ J H ∨ J J

Table 5.24: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.58)

So, for generator 3.8 leaves on sides A and B can not be distinguished
in this way. Therefore, we need another trinet to distinguish leaves on
these two sides. First, we look to the case that there is a leaf x on side
C,D,E, F,G,H, I or J in N for sides A and B. Let a be a leaf on side A
in N . Earlier we saw that then a is on side A or B in N ′. Consider the
trinet on {a, x, k}, which is a simple level-1 network. If x is on side C,D, I
or J in N , then a and x are on the same side of this trinet. If x is on side
E,F,G or H in N , then a and x are on different sides of the trinet. Now,
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since Tn(N ′) = Tn(N) holds, a is on side A in N ′.
Let b be a leaf on side B in N . Earlier we saw that then b is on side A or

B in N ′. Consider the trinet on {b, x, k}, which is a simple level-1 network.
If x is on side C,D, I or J in N , then a and x are on different sides of this
trinet. If x is on side E,F,G or H in N , then a and x are on the same side
of the trinet. Now, since Tn(N ′) = Tn(N) holds, b is on side B in N ′.

Note, we do not have to look to the case that there are no leaves on sides
C,D,E, F, G,H, I and J in N since then N is a network as in Figure 4.1
(i.e. with underlying generator 3.8, at least one leaf on side A or B and no
leaves on sides C,D,E, F,G,H, I and J) and therefore excluded.

So, each of the generators has the same leaves on each side for N and
N ′ (after possibly relabelling sides).

Group 10: 3 crucial sides, 1 set of parallel arcs, other symme-
try

Generator 3.2 has 3 crucial sides, 1 set of parallel arcs and other symmetry.
Note that this generator has also symmetry that is not caused by the sets
of parallel arcs. In Appendix A.10 the generator can be found with the
labels of its sides. The generator will also be given later in the proof for this
generator.

Observe that there is some symmetry. Sides H1 and H2 can be inter-
changed with sides H2 and H1, respectively, to obtain an isomorphic genera-
tor. Also, sides D,F, I can be interchanged with sides E,G, J , respectively,
again yielding an isomorphic generator. Note that side H1 and H2 is a set
of parallel arcs. Further, note that a set of crucial sides has three elements,
namely sides I, J and one of the sides H1, H2.

First, we look to the leaves on sides H1, H2, I and J . Let h be the leaf
on side H1 or H2, i the leaf on side I and j the leaf on side J in N . Then,
the trinet Pc on {h, i, j} implies that leaf h is on side H1 or H2 in N ′. Also,
we get that leafs i and j are on sides I and J in N ′. Assume leaf h is on
the same side in N ′ as in N . Also, assume this for leafs i and j. We can
assume this without loss of generality, because if it is not the case, we can
relabelling sides using the symmetry we discussed before.

Now, we will prove that the other sides have also the same leaves in N
and N ′. We will do this in similar way as we did for the generators of group
3. For each side S we use some of the trinets TS,1, TS,2, TS,3 on, respectively,
{h, i, pS}, {h, j, pS}, {i, j, pS}, where pS is a leaf on side S in N . In Table
5.25 the results can be found. We can see that if there is a leaf on a side S in
N , then this leaf is on side S in N ′. Note that in Figure 5.30 the generator
with the labels of its sides can be found. So, the table with results is just
below the generator itself.
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Figure 5.30: Generator 3.2 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (gen. 2d) (gen. 2d) (gen. 2c) for N ′

A A ∨D ∨ E A ∨D ∨ E A ∨B ∨ C ∨H1 ∨H2 A
B B B A ∨B ∨ C ∨H1 ∨H2 B
C C ∨ F ∨G C ∨ F ∨G A ∨B ∨ C ∨H1 ∨H2 C
D A ∨D ∨ E A ∨D ∨ E D ∨ F D
E A ∨D ∨ E A ∨D ∨ E E ∨G E
F C ∨ F ∨G C ∨ F ∨G D ∨ F F
G C ∨ F ∨G C ∨ F ∨G E ∨G G

Table 5.25: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.2)

So, the generator has the same leaves on each side for N and N ′ (after
possibly relabelling sides).

Group 11: 3 crucial sides, 2 sets of parallel arcs, other sym-
metry

Generator 3.63 has 3 crucial sides, 2 sets of parallel arcs and other symmetry.
Note that this generator has also symmetry that is not caused by the sets
of parallel arcs. In Appendix A.11 the generator can be found with the
labels of its sides. The generator will also given later in the proof for this
generator.
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Observe that there is some symmetry. Sides E1 and E2 can be inter-
changed with sides E2 and E1, respectively, to obtain an isomorphic genera-
tor. Also, sides F1 and F2 can be interchanged with F2 and F1, respectively,
again yielding an isomorphic generator. Further, sides A,C,E1, E2 can be
interchanged with B,D,F1, F2, respectively, again yielding an isomorphic
generator. Note that sides E1 and E2 and sides F1 and F2 are both a set
of parallel arcs. Further, note that a set of crucial sides has three elements,
namely side G, one of the sides E1, E2 and one of the sides F1, F2.

First, we look to the leaves on sides E1, E2, F1, F2 and G. Let e be the
leaf on side E1 or E2, f the leaf on side F1 or F2, and g the leaf on side
G, in N . Then, the trinet Pc on {e, f, g} implies that leave g is on side G
in N ′. Also, we get that leaf e is on side E1, E2, F1 or F2 in N ′. Assume
leaf e is on the same side in N ′ as in N . We can assume this without loss
of generality, because if it is not the case, we can relabelling sides using the
symmetry we discussed before. Now, again using trinet Pc, it follows that
leaf f is on side F1 or F2 in N ′. Assume leaf f is on the same side in N ′ as
in N . We can assume this without loss of generality, because if it is not the
case, we can relabelling sides F1 and F2.

Now, we will prove that the other sides have also the same leaves in N
and N ′. We will do this in similar way as we did for the generators of group
3. For each side S we use some of the trinets TS,1, TS,2, TS,3 on, respectively,
{e, f, pS}, {e, g, pS}, {f, g, pS}, where pS is a leaf on side S in N . In Table
5.26 the results can be found. We can see that if there is a leaf on a side S in
N , then this leaf is on side S in N ′. Note that in Figure 5.31 the generator
with the labels of its sides can be found. So, the table with results is just
below the generator itself. Also, note that the meaning of (∆) is explained
in the proof for the generators of group 3b.
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Figure 5.31: Generator 3.63 with labelled sides

Leaf on Trinet TS,1 Trinet TS,2 Trinet TS,3 Result
side S in N (∆) (gen. 2d) (gen. 2d) for N ′

A A A ∨ C ∨ E1 ∨ E2 A
B B ∨D ∨ F1 ∨ F2 B B
C C A ∨ C ∨ E1 ∨ E2 C
D B ∨D ∨ F1 ∨ F2 D D

Table 5.26: The resulting side(s) in N ′ for each leaf on a non-crucial side S
in N using trinets TS,1, TS,2 and TS,3 (G = 3.63)

So, the generator has the same leaves on each side for N and N ′ (after
possibly relabelling sides).

The order of the leaves

It remains to show that the leaves on each side are in the same order in N
and N ′. The proof for this holds for all 65 different level-3 generators G.

Consider a side V of N with at least two leaves and two leaves v, v′ on
that side such that v′ is below v. Then, there exists a side W which is a
outdegree-0 vertex that is below side V . Let w be the leaf on side W in N .
Now, consider the trinet P on {v, v′, w}. Then, we have that the leaves v
and v′ are on the same side of trinet P . Moreover, since v′ is below v in N ,
v′ is below v in P . Then, since Tn(N ′) = Tn(N), v′ is below v in N ′. So,
the order of the leaves on each of the sides are the same in N and N ′.
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Note that we indeed need the leaf w to distinguish the order of the leaves,
because without the leaf w a part of the generator would be left out and the
leaves u and u′ would become ‘cherry’s’ without any order.

Now, we can conclude that N = N ′, since (after possibly relabelling
sides) both networks have the same underlying generator, the same leaves
on each side, and the same order of the leaves on each side.

Finally, we are able to combine the results to prove the following corol-
lary, which is the main result of this chapter.

Corollary 5.3. The class of binary recoverable level-3 networks with at least
three leaves, except for networks with a biconnected component as in Figure
4.6 (i.e. with a biconnected component with underlying generator 3.8, at
least one cut-arc on side A or B and no cut-arcs on sides C,D,E, F,G,H, I
and J) is weakly encoded by trinets.

Proof. Follows from Theorem 2.22, Lemma 5.2, Corollary 3.3 and the fact
that level-1 networks are encoded by their trinets [5].
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Chapter 6

All level-3 networks are
encoded by quarnets

In this chapter we will prove the corollary that level-3 networks are encoded
by quarnets. This is the main result of this thesis. Before we will prove this
corollary, some definitions for quarnets and Lemma 6.4 will be discussed. A
large part of the proof of Lemma 6.4 is based on the proof of Lemma 3.2 for
level-2 networks, which is also given in [5]. So, some parts are the same or
similar as in the proof of Lemma 3.2.

First, we define what a quarnet is:

Definition 6.1. A quarnet is a rooted phylogenetic network with four
leaves.

We also define how a quarnet can be exhibited by a phylogenetic network:

Definition 6.2. Given a phylogenetic network N on X and {w, x, y, z} ⊆ X,
the quarnet on {w, x, y, z} exhibited (or: displayed) by N is the quarnet
obtained from N by deleting all vertices that are not on any path from
LSA({w, x, y, z}) to w, x, y or z and subsequently suppressing all indegree-
1 outdegree-1 vertices and parallel arcs.

We will use Qn(N) to denote the set of all quarnets exhibited by a
phylogenetic network N . Now, we can define when a phylogenetic network
is encoded by its set of quarnets:

Definition 6.3. A phylogenetic network N is encoded by its set of quar-
nets Qn(N) if there is no recoverable phylogenetic network N ′ 6= N with
Qn(N) = Qn(N ′).

Note that there are also other definitions for quarnets, but we will use
these definitions since they hold for rooted binary phylogenetic networks
and are similar to the definitions for trinets.
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In the previous chapter we proved that most level-3 networks are weakly
encoded by trinets. In Lemma 6.4 we will prove that binary, simple level-3
networks are encoded by quarnets. Now, we have quarnets in the statement
of the lemma instead of trinets as we had in Lemma 5.2. Therefore, we are
able to prove a much stronger result. The simple level-3 networks are not
only weakly encoded but also encoded by quarnets. Further, we do not have
the exceptions for the simple level-3 networks as in Figure 4.1. Also, note
that for a network N the trinets Tn(N) can be obtained from the quarnets
Qn(N).

Lemma 6.4. Every binary, simple level-3 network on X, with |X| ≥ 4, is
encoded by its quarnets.

Proof. Let N be any binary, simple level-3 network on X, with |X| ≥ 4.
Assume that this network is not encoded by its quarnets Qn(N). Then,
there is a recoverable network N ′ 6= N with Qn(N) = Qn(N ′). We will
show that N ′ = N , which is a contradiction, so then the lemma follows.

We begin by showing that Tn(N) = Tn(N ′). Let x, y and z be three
leaves of N . Since |X| ≥ 4, there exists a quarnet Q in Qn(N) containing
leaves x, y and z. Then, the trinet on {x, y, z} exhibited by Q is in Tn(N)
and Tn(N ′) since Qn(N) = Qn(N ′). We can conclude that Tn(N) =
Tn(N ′).

Now, we show that N ′ is a binary, simple, level-3 network.

• Since Tn(N ′) = Tn(N) holds, we have by Theorem 2.19 that the set
of CA-sets of N ′ equals the set of CA-sets of N . Note that all CA-sets
of N (and also of N ′) are singletons, since N is a simple network.
Furthermore, we claim that N ′ has no redundant biconnected compo-
nents. If it had one, then there would be only one leaf, say x, below
it. However, then all trinets containing x would have a redundant
biconnected component with x directly below it. This is not possible
because Tn(N ′) = Tn(N). For each leaf x there exists a trinet in
Tn(N) without redundant biconnected components. So, N ′ has no re-
dundant biconnected components. Since the sets of CA-sets of N ′ and
N are the same and N ′ has no redundant biconnected components, we
have that N ′ is a simple network.

• Suppose we have any simple level-k network with k > 3. Then, this
network has exactly k reticulations. If there are at least four leaves
whose parent is a reticulation, take four such leaves. Otherwise, take
all leaves whose parent is a reticulation and take the remaining leaves
on sides that form parallel arcs in the underlying generator of N ,
choosing at most one leaf per pair of parallel arcs. Then, the quarnet
on the chosen three leaves has at least four reticulations. Note that if a
leaf is chosen on one of the parallel arcs in the underlying generator, the
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pair of parallel arcs will not be suppressed, and so we get a reticulation.
So, a simple level-k network, with k > 3, has a level-k′ quarnet with
k′ > 3. It follows that N ′ is a level-3 network since Qn(N ′) = Qn(N)
contains only level-3 quarnets.

• Assume that N ′ has a vertex with outdegree greater than 2. Let c1, c2
and c3 be three of his children. Then, consider three (not necessarily
different) leaves x1, x2 and x3 below c1, c2 and c3 respectively. Then,
any trinet containing x1, x2 and x3 exhibited by N ′ is not binary. We
get a contradiction since all trinets in Tn(N ′) = Tn(N) are binary,
since N is binary. In much the same way, we can prove that each
vertex in N ′ has indegree at most 2 and that each indegree-2 vertex
has outdegree 1. Now, we can conclude that N ′ is binary.

So, N and N ′ are both binary, simple level-3 networks. Now, let G be
the underlying generator of N . First, we show that G is also the underlying
generator of N ′. By Lemma 5.1, N has at least one crucial trinet Pc. By
Lemma 2.30, Pc is a simple level-3 network and its underlying generator is
G. Since Tn(N) = Tn(N ′), Pc is also a trinet of N ′. Since N ′ and Pc are
both simple level-3 networks, we have by Lemma 2.30 that Pc is a crucial
trinet of N ′. Then, again by Lemma 2.30, G is the underlying generator of
N ′. Note that the 65 different level-3 generators (3.1, 3.2, . . . , 3.65) can be
found in Appendix A.

First, assume that N is not a network as in Figure 4.1. Since Tn(N) =
Tn(N ′), we know from the proof of Lemma 5.2 that N = N ′ (after possibly
relabelling sides).

Now, assume that N is a network as in Figure 4.1. Then, N has under-
lying generator 3.8, at least one leaf on side A or B and no leaves on sides
C,D,E, F,G,H, I and J . Earlier we saw that N and N ′ have the same un-
derlying generator. So, N and N ′ have both underlying generator 3.8. Note
that generator 3.8 can be found in Figure 6.1 with the labels of its sides.

Figure 6.1: Generator 3.8 with labelled sides
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A set of crucial sides has three elements, namely sides K,L and M . Let
k be the leaf on side K, l the leaf on side L, m the leaf on side M and
x the leaf on side A or B in N . From the proof of Lemma 5.2 we know
that leaves k, l,m are, respectively, on sides K,L,M in N ′ (after possibly
relabelling sides). Consider the quarnet on {k, l,m, x}. Then, since there
are no symmetries, leaf x is on the same side in N ′ as it is in N . Now,
generator 3.8 has the same leaves on each side for N and N ′.

It remains to show that the leaves on each side are in the same order in
N and N ′.

Consider a side V of N with at least two leaves and two leaves v, v′ on
that side such that v′ is below v. Then, there exists a side W which is a
outdegree-0 vertex that is below side V . Let w be the leaf on side W in N .
Now, consider the trinet P on {v, v′, w}. Then, we have that the leaves v
and v′ are on the same side of trinet P . Moreover, since v′ is below v in N ,
v′ is below v in P . Then, since Tn(N ′) = Tn(N), v′ is below v in N ′. So,
the order of the leaves on each of the sides are the same in N and N ′.

Note that we indeed need the leaf w to distinguish the order of the leaves,
because without the leaf w a part of the generator would be left out and the
leaves u and u′ would become ‘cherry’s’ without any order.

Now, we can conclude that N = N ′, since (after possibly relabelling
sides) both networks have the same underlying generator, the same leaves
on each side, and the same order of the leaves on each side.

Finally, we are able to combine the results to prove that level-3 networks
are encoded by quarnets, which is the main result of this thesis.

Corollary 6.5. Every binary recoverable level-3 network N on X, with
|X| ≥ 4, is encoded by its set of quarnets.

Proof. Follows from Theorem 2.22, Lemma 6.4, Corollary 3.3 and the fact
that level-1 networks are encoded by their trinets [5].
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Chapter 7

Conclusion and discussion

In this chapter there are some conclusions and a discussion.

7.1 Conclusion

First, we give some conclusions. We have proved that not all recoverable
rooted binary level-3 networks with at least three leaves are weakly encoded
by their trinets, but most networks are. More precisely, the class of binary
recoverable level-3 networks, except for networks with a biconnected com-
ponent as in Figure 4.6 (i.e. with a biconnected component with underlying
generator 3.8, at least one cut-arc on side A or B and no cut-arcs on sides
C,D,E, F,G,H, I and J) is weakly encoded by trinets. Further, although
not all level-3 networks are weakly encoded by their trinets, we were able to
prove that all recoverable rooted binary level-3 networks with at least four
leaves are encoded by their quarnets.

7.2 Discussion

Now, we will give a discussion. The results we proved for recoverable rooted
binary level-3 networks can be extended to higher level networks in various
ways. First, it would be of great interest to investigate which level-k net-
works (k ≥ 4) are encoded by trinets or quarnets. Further, we can look
for the largest class of level-k networks (k ≥ 4) that is weakly encoded by
trinets or quarnets. For level-k networks for which it does not hold and
therefore has to be excluded, we can find a counter-example. For the other
level-k networks, we can prove that they are (weakly) encoded.

Some methods that are used in the proofs for level-2 and level-3 net-
works can also be used for level-k networks (k ≥ 4). This concerns level-k
generators with one or two crucial side(s) and without symmetry. The proof
for these generators does not depend on k. Therefore, the proofs for level-k
(k ≥ 4) generators with one or two crucial side(s) and without symmetry
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can be given in the same way as the proofs for level-2 and level-3 generators
of this type that are given in this thesis.

In this thesis we have looked to networks that are encoded by trinets
or quarnets (networks on three or four leaves). It might also be interesting
to investigate which level-k networks are encoded by networks with five or
more leaves. For example, we can investigate for a certain k if all level-k
networks are encoded by networks on l leaves for a certain l. Note that in
order to get the most strong result, we need l to be as small as possible.
Further, note that if a network is encoded by networks on p leaves, then the
network is also encoded by networks on q leaves if p > q.

Now, we have mentioned many ideas for further research about level-k
networks with k ≥ 4, but there are some large difficulties for these level-k
networks. The first difficulty is that the number of level-k grows very rapidly
as k increases. Therefore, it is no longer possible to write the proofs in the
way we did for level-2 and level-3 networks. We have to find a shorter and
more efficient way to investigate the level-k networks with k ≥ 4. Possibly,
there is another way to decompose the level-k networks in order to investi-
gate these networks in a more efficient way. The other difficulty for level-k
networks with k ≥ 4 is that there are networks that has no crucial trinet. A
solution has to be found for this.

Furthermore, this thesis about level-3 networks can give some ideas for
an algorithm to reconstruct level-3 networks (that are encoded by quarnets)
from their sets of quarnets.

Finally, it could be of some interest to compare the results of this thesis
which holds for rooted binary level-3 networks with the current results for
networks that are not rooted or not binary.
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Appendix A

Labelled level-3 generators

From [2] the 65 level-3 generators can be obtained. These level-3 genera-
tors are based on the work of Steven Kelk. Note that these generators are
numbered (3.1, 3.2, . . . , 3.65) in the order as they are given in [2]. In the
following sections the 65 level-3 generators can be found in the order as
they are discussed in the proof of Lemma 5.2. This order of the generators
is based on their properties, as can be found in Appendix B. Note that the
labels of the sides that are explicitly used during the proof of Lemma 5.2
can be found on each of the generators. Further, note that the numbers of
the vertices are not used in this thesis.

A.1 1 crucial side, no symmetry

In this section the 8 level-3 generators with 1 crucial side and without sym-
metry can be found with some labels.
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(a) Generator 3.15 (b) Generator 3.19 (c) Generator 3.20

(d) Generator 3.23 (e) Generator 3.24 (f) Generator 3.25

Figure A.1: Partly labelled level-3 generators 3.15, 3.19, 3.20, 3.23, 3.24 and
3.25
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(a) Generator 3.32 (b) Generator 3.62

Figure A.2: Partly labelled level-3 generators 3.32 and 3.62

A.2 2 crucial sides, no symmetry

In this section the 22 level-3 generators with 2 crucial sides and without
symmetry can be found with some labels.

(a) Generator 3.4 (b) Generator 3.5 (c) Generator 3.9

Figure A.3: Partly labelled level-3 generators 3.4, 3.5 and 3.9
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(a) Generator 3.12 (b) Generator 3.13 (c) Generator 3.17

(d) Generator 3.21 (e) Generator 3.27 (f) Generator 3.29

Figure A.4: Partly labelled level-3 generators 3.12, 3.13, 3.17, 3.21, 3.27 and
3.29
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(a) Generator 3.30 (b) Generator 3.33 (c) Generator 3.34

(d) Generator 3.35 (e) Generator 3.41 (f) Generator 3.42

Figure A.5: Partly labelled level-3 generators 3.30, 3.33, 3.34, 3.35, 3.41 and
3.42
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(a) Generator 3.43 (b) Generator 3.44 (c) Generator 3.48

(d) Generator 3.49 (e) Generator 3.54 (f) Generator 3.55

Figure A.6: Partly labelled level-3 generators 3.43, 3.44, 3.48, 3.49, 3.54 and
3.55
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(a) Generator 3.59

Figure A.7: Partly labelled level-3 generator 3.59

A.3 3 crucial sides, no symmetry

In this section the 11 level-3 generators with 3 crucial sides and without
symmetry can be found with their labels.

(a) Generator 3.7 (b) Generator 3.10 (c) Generator 3.14

Figure A.8: Labelled level-3 generators 3.7, 3.10 and 3.14
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(a) Generator 3.39 (b) Generator 3.45 (c) Generator 3.46

(d) Generator 3.50 (e) Generator 3.51 (f) Generator 3.52

Figure A.9: Labelled level-3 generators 3.39, 3.45, 3.46, 3.50, 3.51 and 3.52
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(a) Generator 3.57 (b) Generator 3.60

Figure A.10: Labelled level-3 generators 3.57 and 3.60

A.4 2 crucial sides, 1 set of parallel arcs, no other
symmetry

In this section the 6 level-3 generators with 2 crucial sides, 1 set of parallel
arcs and without other symmetry can be found with some labels. Note that
there is only symmetry caused by the parallel arcs.

(a) Generator 3.18 (b) Generator 3.22 (c) Generator 3.28

Figure A.11: Partly labelled level-3 generators 3.18, 3.22 and 3.28
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(a) Generator 3.31 (b) Generator 3.36 (c) Generator 3.65

Figure A.12: Partly labelled level-3 generators 3.31, 3.36 and 3.65

A.5 3 crucial sides, 1 set of parallel arcs, no other
symmetry

In this section the 7 level-3 generators with 3 crucial sides, 1 set of parallel
arcs and without other symmetry can be found with their labels. Note that
there is only symmetry caused by the parallel arcs.

(a) Generator 3.11 (b) Generator 3.38 (c) Generator 3.40

Figure A.13: Labelled level-3 generators 3.11, 3.3 and 3.40
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(a) Generator 3.47 (b) Generator 3.53 (c) Generator 3.56

(d) Generator 3.61

Figure A.14: Labelled level-3 generators 3.47, 3.53, 3.56 and 3.61

A.6 3 crucial sides, 2 sets of parallel arcs, no other
symmetry

In this section the level-3 generator with 3 crucial sides, 2 sets of parallel
arcs and without other symmetry can be found with its labels. Note that
there is only symmetry caused by the parallel arcs.
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(a) Generator 3.64

Figure A.15: Labelled level-3 generator 3.64

A.7 1 crucial side, symmetry, no parallel arcs

In this section the level-3 generator with 1 crucial side, symmetry and with-
out parallel arcs can be found with its labels.

(a) Generator 3.16

Figure A.16: Labelled level-3 generator 3.16
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A.8 2 crucial sides, symmetry, no parallel arcs

In this section the 2 level-3 generators with 2 crucial sides, symmetry and
without parallel arcs can be found with their labels.

(a) Generator 3.3 (b) Generator 3.26

Figure A.17: Labelled level-3 generators 3.3 and 3.26

A.9 3 crucial sides, symmetry, no parallel arcs

In this section the 5 level-3 generators with 3 crucial sides, symmetry and
without parallel arcs can be found with their labels.
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(a) Generator 3.1 (b) Generator 3.6 (c) Generator 3.8

(d) Generator 3.37 (e) Generator 3.58

Figure A.18: Labelled level-3 generators 3.1, 3.6, 3.8, 3.37 and 3.58

A.10 3 crucial sides, 1 set of parallel arcs, other
symmetry

In this section the level-3 generator with 3 crucial sides, 1 set of parallel
arcs and other symmetry can be found with their labels. Note that this
generator has also symmetry that is not caused by the set of parallel arcs.
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(a) Generator 3.2

Figure A.19: Labelled level-3 generator 3.2

A.11 3 crucial sides, 2 sets of parallel arcs, other
symmetry

In this section the level-3 generator with 3 crucial sides, 2 sets of parallel
arcs and other symmetry can be found with their labels. Note that this
generator has also symmetry that is not caused by the sets of parallel arcs.

(a) Generator 3.63

Figure A.20: Labelled level-3 generator 3.63
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Appendix B

Properties of level-3
generators

The level-3 generators, that can be found in Appendix A, are ordered in
a way that is used in the proof of Lemma 5.2. To understand this way of
ordering we will look to four different properties of a generator.

The first property, property A, is the number of pairs of parallel arcs
in a generator. So, if the number for property A is 0, then the generator
has no parallel arcs. Property B is the number of indegree-2 outdegree-0
vertices in a generator. Note that there is always at least one of such a
vertex in a level-3 generator. Now, property C is the number of crucial
sides, which can be found by adding the quantities for properties A and
B. Property D and E are about symmetry. A generator has property D if
the generator has any symmetry, i.e. relabelling the sides of the generator
gives an isomorphic generator. If a generator has property D, it is denoted
with ‘yes’, and otherwise it is denoted with ‘no’. A generator has property
E if the generator has symmetry that is not caused by parallel arcs. If a
generator has property E, it is denoted with ‘yes’, otherwise it is denoted
with ‘no’.

For each of the 65 level-3 generators the properties A,B,C,D and E
can be found in Tables B.1 and B.2. Note that Table B.1 contains the
generators without symmetry and Table B.2 the generators with symmetry.
Furthermore, note that the generators are sorted on the properties in such
a way that it is useful for the proof of Lemma 5.2. In other words, in the
proof of Lemma 5.2 the same order is used for the generators as in Tables
B.1 and B.2.

92



Number Prop. A Prop. B Prop. C Prop. D Prop. E

15 0 1 1 no no
19 0 1 1 no no
20 0 1 1 no no
23 0 1 1 no no
24 0 1 1 no no
25 0 1 1 no no
32 0 1 1 no no
62 0 1 1 no no
4 0 2 2 no no
5 0 2 2 no no
9 0 2 2 no no
12 0 2 2 no no
13 0 2 2 no no
17 0 2 2 no no
21 0 2 2 no no
27 0 2 2 no no
29 0 2 2 no no
30 0 2 2 no no
33 0 2 2 no no
34 0 2 2 no no
35 0 2 2 no no
41 0 2 2 no no
42 0 2 2 no no
43 0 2 2 no no
44 0 2 2 no no
48 0 2 2 no no
49 0 2 2 no no
54 0 2 2 no no
55 0 2 2 no no
59 0 2 2 no no
7 0 3 3 no no
10 0 3 3 no no
14 0 3 3 no no
39 0 3 3 no no
45 0 3 3 no no
46 0 3 3 no no
50 0 3 3 no no
51 0 3 3 no no
52 0 3 3 no no
57 0 3 3 no no
60 0 3 3 no no

Table B.1: Properties of level-3 generators without symmetry
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Number Prop. A Prop. B Prop. C Prop. D Prop. E

18 1 1 2 yes no
22 1 1 2 yes no
28 1 1 2 yes no
31 1 1 2 yes no
36 1 1 2 yes no
65 1 1 2 yes no
11 1 2 3 yes no
38 1 2 3 yes no
40 1 2 3 yes no
47 1 2 3 yes no
53 1 2 3 yes no
56 1 2 3 yes no
61 1 2 3 yes no
64 2 1 3 yes no
16 0 1 1 yes yes
3 0 2 2 yes yes
26 0 2 2 yes yes
6 0 3 3 yes yes
1 0 3 3 yes yes
8 0 3 3 yes yes
37 0 3 3 yes yes
58 0 3 3 yes yes
2 1 2 3 yes yes
63 2 1 3 yes yes

Table B.2: Properties of level-3 generators with symmetry
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