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A B S T R A C T

Analysis of the mean (wave-averaged) momentum balance is a common approach used to explain the physical
forcing driving wave set-up and mean currents in the nearshore zone. Traditionally this approach has been
applied to phase-averaged models but has more recently been applied to phase-resolving models using post-
processing, whereby model output is used to calculate each of the momentum terms. While phase-resolving
models have the advantage of capturing the nonlinear properties of waves propagating in the nearshore
(making them advantageous to enhance understanding of nearshore processes), the post-processing calculation
of the momentum terms does not guarantee that the momentum balance closes. We show that this is largely
due to the difficulty (or impossibility) of being consistent with the numerical approach. If the residual is of a
similar magnitude as any of the relevant momentum terms (which is common with post-processing methods
as we show), the analysis is largely compromised. Here we present a new method to internally calculate
and extract the depth-integrated, mean momentum terms in the phase-resolving non-hydrostatic wave-flow
model SWASH in a manner that is consistent with the numerical implementation. Further, we demonstrate the
utility of the new method with two existing physical model studies. By being consistent with the numerical
framework, the internal method calculates the momentum terms with a much lower residual at computer
precision, combined with greatly reduced calculation time and output storage requirements compared to post-
processing techniques. The method developed here allows the accurate evaluation of the depth-integrated,
mean momentum terms of wave-driven flows while taking advantage of the more complete representation of
the wave dynamics offered by phase-resolving models. Furthermore, it provides an opportunity for advances
in the understanding of nearshore processes particularly at more complex sites where wave nonlinearity and
energy transfers are important.
. Introduction

Wave-induced flows play an important role in driving nearshore
rocesses along much of the world’s coastline. In the nearshore zone,
he transformation of waves results in forces that cause changes in
ean water level (set-up and set-down) and mean currents. The mean

urrents that result from waves are the primary mechanism by which
oastal sediments are transported, as well as other material such nutri-
nts and contaminants. While wave orbital motions play a direct role
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in mobilizing sediment from the seabed, in many cases mean (wave
or phase-averaged) currents advect suspended sediments and drive
seasonal and longer term coastal changes. As a result, understanding
the physical mechanisms driving mean currents is paramount to under-
standing a wide range of nearshore processes, which requires accurate
calculations of the forces responsible for driving the mean flows.

The mean momentum equations, which have been derived by sev-
eral authors (e.g., Mei et al., 2005; Svendsen, 2005), originate from
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time-averaging the Navier–Stokes equations over a time-scale much
greater than an individual wave. By formally separating the wave
forces (or radiation stress gradients) from the other terms, this provides
a method to understand how waves drive water level gradients and
nearshore currents. A number of studies have completed such analysis
using field measurements (e.g., Feddersen et al., 1998; Feddersen and
Guza, 2003; Apotsos et al., 2008; Hansen et al., 2014), laboratory
experiments (e.g., Buckley et al., 2015; Haller et al., 2002; Stive and
Wind, 1982) and numerical modelling (e.g., Long and Özkan Haller,
2005; Benedet and List, 2008; Hansen et al., 2013, 2015).

The momentum terms include spatial gradients in quantities derived
from velocity and pressure profiles (see Section 2). A major limitation
of field and laboratory measurements for doing this type of analysis
arises from the fact that the measurement of the fine-scale spatial
and temporal variability of velocities and pressure cannot be fully-
resolved within surf zones even using the most advanced experimental
techniques and extensive measurement arrays. In addition, velocity
measurements close to the wave crest are difficult to perform in any
setting. These challenges often result in the need to rely on linear wave
theory (LWT) for the calculation of the radiation stress, which limits the
accuracy of the calculation of their gradients. Alternatively, numerical
models by their own nature solve momentum balances and as such
allow for an accurate assessment of all momentum terms and a closure
of the balance, namely, the sum of all momentum terms is on the order
of computer precision as long as the calculation is consistent with the
numerical approaches used in the model.

Two classes of wave modelling systems have been used to predict
wave-driven flows, namely phase-averaged models (e.g., Delf3D-SWAN,
Lesser et al., 2004) and phase-resolving models (e.g., SWASH, Zi-
jlema et al., 2011). Phase-averaged models solve mean flow equations
through coupling with wave-action models (e.g., SWAN, Booij et al.,
1999), which calculate the time-averaged spatial and frequency propa-
gation of wave energy. LWT expressions (Longuet-Higgins and Stewart,
1964) are used to calculate radiation stress gradients based on gradients
in wave energy. These radiation stress gradients are then applied as an
additional force in the flow model. In addition, phase-averaged models
must rely on parameterization of physical processes that do not follow
LWT (e.g., wave breaking, roller models). Therefore, phase-averaged
models do not fully capture the radiation stress gradients but rely on
LWT simplifications and parameterization to account for its effect on
the mean flow. As phase-averaged models do not calculate the intra-
wave flow, grid resolutions can be coarser than phase-resolving models
allowing for larger time steps reducing the computational cost and
allowing for the modelling of larger spatial and temporal scales.

Conversely, phase-resolving models, such as Computational Fluid
Dynamics (CFD) type models (e.g., Chen et al., 1999; Dalrymple and
Rogers, 2006; Wang et al., 2009; Lowe et al., 2019), non-hydrostatic
(e.g., Zijlema et al., 2011; Ma et al., 2012), and Boussinesq type models
(e.g., Kennedy et al., 2000; Nwogu, 1993), intrinsically account for
the intra-wave motions (e.g., oscillatory velocities and pressures) that
are responsible for mean flows. A key advantage of phase-resolving
over phase-averaged models is their ability to resolve the nonlinear
properties of waves propagating in the nearshore (e.g., nonlinear wave
shape and energy transfers). Although phase-resolving models have
been successfully validated to predict velocities and water levels, the
focus of most studies has been on comparing wave parameters and
wave-driven flow patterns (e.g., Peregrine, 1967; Berkhoff, 1972; Hirt
and Nichols, 1981; Monaghan, 1994; Lin and Liu, 1998; Stelling and
Zijlema, 2003; Feddersen et al., 2011; Ma et al., 2012; Buckley et al.,
2014; Derakhti et al., 2016), with a lesser number of studies using the
mean forces to investigate the mechanisms driving mean water levels
and wave-driven flows (e.g., Rogers et al., 2013; Lowe et al., 2015,
2019; Sous et al., 2020).

To compute mean momentum balances, studies using phase-
resolving models have conventionally used model output of velocity,

pressure and water-level in a similar manner to how experimental n

2

observations would be analysed (albeit with higher spatial resolution).
However, the estimation of the mean forces using the available model
output does not necessarily guarantee that the momentum balance
closes. The sum of all momentum terms, which should be zero (or at
computer precision), is often the same order of magnitude as the net
of the radiation stress gradient and pressure gradient which essentially
drives the mean flow (e.g., Sous et al., 2020). Without a residual that is
much less than the sum of the pressure and radiation stresses, or other
likely important terms (e.g., bottom stress), the accurate assessment of
the drivers of the flow can be compromised.

With advances in computational power, the use of phase-resolving
models will expand and provide opportunities to understand nearshore
processes, particularly at sites where wave non-linearity and energy
transfers are important. To our knowledge, no phase-resolving model
has the ability to output the depth-integrated mean momentum terms
that ultimately drive nearshore mean water levels and currents. In
this manuscript we present a new method to internally calculate the
depth-integrated, mean momentum terms from the phase-resolving,
non-hydrostatic numerical model SWASH (Zijlema et al., 2011; Zijlema
and Stelling, 2008) consistent with a classical method to obtain the
mean momentum balance (Mei et al., 2005). SWASH is an open-source
code, and the methods developed here have been recently implemented
in version 6.01, which is publicly available. This model has been
extensively applied to calculate the transformation of surface waves
in nearshore areas (e.g., Smit et al., 2014; Nicolae Lerma et al., 2017;
Conde-Frias et al., 2017; Fiedler et al., 2018; Rooijen et al., 2020, to
cite a few recent studies). Further, we demonstrate the improvements of
this new method through its application to two existing physical model
studies where an analysis of the momentum balance was conducted
using the observed water levels and velocities (Haller et al., 2002;
Buckley et al., 2015). While the methodology we develop can be
applied at a wide range of sites we expect it to be particularly relevant
for understanding the physical drivers of wave driven flows at sites with
complex bathymetries. (e.g., with alongshore variable morphology) and
locations where nonlinear wave processes are important and it is thus
advantageous to use a phase-resolving wave-flow model.

2. Methodology

In this section, we outline the derivation of the depth-integrated,
mean momentum terms from the governing equations, which allows for
an interpretation of the forces that drive wave-driven mean water levels
and currents in the nearshore. Next, we demonstrate how the same
equations can be derived from the numerical framework of the SWASH
model, allowing for an internal calculation of the mean momentum
terms that is consistent with the classical method of Mei et al. (2005).

2.1. Governing equations

The Reynolds-Averaged Navier–Stokes (RANS) equations in the di-
vergence form (or flux form, namely, with the momentum flux written
with 𝜕𝑢𝑖𝑢𝑗∕𝜕𝑥𝑗 , rather than with 𝑢𝑖𝜕𝑢𝑗∕𝜕𝑥𝑗), for an incompressible flow
of constant density are (e.g., Anderson (1995),

𝜕𝑢𝑗
𝜕𝑥𝑗

+ 𝜕𝑤
𝜕𝑧

= 0, (1)

𝜕𝑢𝑖
𝜕𝑡

+
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

+
𝜕𝑢𝑖𝑤
𝜕𝑧

+
𝜕𝑝
𝜕𝑥𝑖

=
𝜕𝜏𝑖𝑗
𝜕𝑥𝑗

+
𝜕𝜏𝑖𝑧
𝜕𝑧

, (2)

𝜕𝑤
𝜕𝑡

+
𝜕𝑤𝑢𝑗
𝜕𝑥𝑗

+ 𝜕𝑤𝑤
𝜕𝑧

+
𝜕𝑝
𝜕𝑧

= −𝑔 +
𝜕𝜏𝑧𝑗
𝜕𝑥𝑗

+
𝜕𝜏𝑧𝑧
𝜕𝑧

, (3)

where 𝑥i and z denote horizontal (𝑖 = 1,2) and vertical directions, 𝑢𝑖 (𝑥i,
, t) and w (𝑥i, z, t) are the horizontal and vertical velocities, t is time,
(𝑥i, z, t) is the total pressure normalized by the reference density 𝜌,

nd 𝜏ij (𝑥j, z, t) are the Reynolds (turbulent) stresses (see summary of
otation in Table 1).
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Table 1
Notation.

Symbol Definition Unit

d Still water depth m
g Gravity acceleration m s−2

h Total water depth m
𝐻0 Deep water wave height m
H Wave height m
𝐻𝑟𝑚𝑠 Rms wave height m
𝐻𝑟𝑚𝑠,0 Deep water rms wave height m
𝑘𝑤 Wave number rad m−1

𝐿0 Deep water wavelength m
𝐿𝐵,𝑃 Peak wavelength at breaking position m
p Total pressure (normalized by density ) m2 s−2

q Non-hydrostatic pressure (normalized by density) m2 s−2

𝑆𝑖𝑗 Radiation stress (normalized by density) m3 s−2

t Time s
T Wave period s
𝑇𝑃 Peak wave period s
𝑢𝑖 Instantaneous horizontal velocity m s−1

𝑢𝑖 Oscillatory horizontal velocity—calculated by subtracting U
from u, see Eq. (8)

m s−1

𝑢𝑙𝑓 Oscillatory horizontal velocity—calculated by subtracting 𝑈𝑙𝑓
from u, see Eq. (19)

m s−1

U Mass-flux velocity m s−1

𝑈𝑑 Instantaneous depth-averaged velocity m s−1

𝑈𝐸 Eulerian (or depth-averaged, mean) velocity m s−1

𝑈𝑙𝑓 Low-frequency mass-flux velocity m s−1

w Instantaneous vertical velocity m s−1

𝑥𝑖 Horizontal position m
z Vertical position m
𝛽 Reef slope –
𝜁 Water level deviation from d m
𝜁𝑙𝑓 Low-frequency water level deviation from d m
𝜉0 Irribarren parameter –
𝜙 Mass flux m2 s−1

𝜏𝑖𝑗 Reynolds (turbulent) stress normalized by density m2 s−2

𝜔 Relative vertical velocity m s−1

The kinematic boundary conditions at the bottom and at the free-
urface are

𝑤𝜁 =
𝜕𝜁
𝜕𝑡

+ 𝑢𝑗,𝜁
𝜕𝜁
𝜕𝑥𝑗

, (4)

−𝑑 = −𝑢𝑗,−𝑑
𝜕𝑑
𝜕𝑥𝑗

, (5)

here 𝜁 (x𝑖,t) is the water level and d (x 𝑖) is the still water depth.
ith the depth-integration of the continuity equation, Eq. (1), and by

sing the kinematic boundary conditions, Eqs. (4) and (5), the global
ontinuity equation is obtained as follows,

𝜕𝜁
𝜕𝑡

+
𝜕 ∫ 𝜁

−𝑑 𝑢𝑗𝑑𝑧
𝜕𝑥𝑗

= 0. (6)

Consistent with the numerical implementation within SWASH, for
the application of the dynamic boundary conditions we assume that the
viscous stresses are zero, the atmospheric pressure is constant and null
at the free surface, and wind is absent and thus there is no tangential
stress on the surface. Furthermore, bottom friction is included through
imposing a tangential stress at the seabed.

2.2. The depth-integrated, phase-averaged momentum balance—theory

Several versions of the depth-integrated, wave-flow equations ex-
ist in the literature, (e.g., Mei et al., 2005—Eq. 11.2.24; Svendsen,
2005—Eq. 11.5.11). Although they always start with the Navier–Stokes
equations, the methodology for decomposing the velocities and separat-
ing the radiation stress gradients (see below) may differ, resulting in
different interpretations of momentum terms. In this work, we opted
to use an interpretation similar to Mei et al. (2005) given its extensive
usage. The essential step to obtain Mei et al.’s (2005) depth-integrated,
mean flow equations is to decompose the velocity signal into a slowly
3

varying component (U(x 𝑖), associated with the mean flow and hereafter
referred to as the mass-flux velocity) and a fluctuating component
(�̃�(x 𝑖,z,t), primarily associated with the waves),

𝑈𝑖 =

⟨

∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧

⟩

𝑑 + ⟨𝜁⟩
, (7)

𝑢𝑖 = 𝑢𝑖 − 𝑈𝑖, (8)

where ⟨ ⟩ indicates averaging over many wave periods. Apart from the
waves, the fluctuating component contains contributions due to vertical
variations in the mean velocity profile. For coastal applications, in
which gravity waves are the main interest, the oscillatory velocity 𝑢𝑖
is predominantly due to waves.

Substituting the flow contributions, Eqs. (7) and (8) into the RANS
equations, Eqs. (1) and (2), and integrating over the total water depth
and averaging over many wave periods results in the depth-integrated,
mean momentum equation (see Appendix A for details),

𝑙𝑜𝑐𝑎𝑙
𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

⟩

+

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒
𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(𝑑 + ⟨𝜁⟩)𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

+

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒
𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥𝑖

+

𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛
𝑠𝑡𝑟𝑒𝑠𝑠

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
⏞⏞⏞
𝜕𝑆𝑖𝑗

𝜕𝑥𝑗
−

ℎ𝑦𝑑𝑟𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛
𝑎𝑡 𝑏𝑜𝑡𝑡𝑜𝑚
⏞⏞⏞⏞⏞⏞⏞

⟨𝑞−𝑑⟩
𝜕𝑑
𝜕𝑥𝑖

−

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑠𝑡𝑟𝑒𝑠𝑠
ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝜕
⟨

∫ 𝜁
−𝑑 𝜏𝑖𝑗𝑑𝑧

⟩

𝜕𝑥𝑗
+

𝑏𝑜𝑡𝑡𝑜𝑚
𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛
⏞⏞⏞⏞⏞
⟨

𝜏−𝑑,𝑖𝑧
⟩

= 0,

(9)

in which q (x𝑗 ,z,t) is the non-hydrostatic pressure (𝑞 = 𝑝 − 𝑔 (𝑧 + 𝜁 )),
hose mean value at the bottom equals the dynamic pressure. The
xcess momentum flux due to the presence of waves or radiation stress
Longuet-Higgins and Stewart, 1964), 𝑆𝑖𝑗 , is given as,

𝑖𝑗 = 𝑆𝑜𝑟𝑏,𝑖𝑗 + 𝑆𝑝𝑟𝑒𝑠 =

𝑆𝑜𝑟𝑏,𝑖𝑗
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨

∫

𝜁

−𝑑
𝑢𝑖𝑢𝑗𝑑𝑧

⟩

+

𝑆𝑝𝑟𝑒𝑠
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨

∫

𝜁

−𝑑
𝑝𝑑𝑧

⟩

− 0.5 𝑔 (𝑑 + ⟨𝜁⟩)2, (10)

here the subscripts orb and pres indicate the contributions for the
ave orbital flow and pressure, respectively. As our derivation begins
ith the RANS equations, the excess momentum flux 𝑆𝑖𝑗 (Eq. (10)),
oes not contain any contribution from turbulent velocities and can
e identified as the radiation stress. This is a slight deviation from
he definition used by Mei et al. (2005), where 𝑆𝑖𝑗 includes turbulent
elocities and is thus not strictly the radiation stress due to the waves.

Our derivation assumes a stationary mass flux velocity (i.e., 𝜕U𝑖∕𝜕t
0), as the time scale with which sea states change is large compared

o the short wave time scale. This is consistent with most field and lab-
ratory studies, and numerical phase-resolving modelling approaches,
hich consider a single sea-state during which the wave and water

evel boundary conditions are quasi-stationary. From this assumption,
e obtain a mean local acceleration that depends only on oscillatory
elocities (𝑢𝑖), whereas Mei et al.’s (2005) derivation also includes an
nsteady 𝑈𝑖, that results in a local acceleration as a function of its time
erivative

(

(𝑑 + ⟨𝜁⟩) 𝜕𝑈𝑖
𝜕𝑡

)

.
An advantage of using the depth-integrated, mean momentum equa-

tion in a format analogous to Mei et al. (2005) is the adoption of mass
flux velocities (𝑈𝑖), since unlike Eulerian velocities
(𝑈𝐸 =

⟨

∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧∕(𝑑 + 𝜁 )

⟩

), the mass flux velocities contain information
on the total mean mass transport by the waves. This method is anal-
ogous to the Generalized Lagrangian Mean (GLM) approach (Andrews
and Mcintyre, 1978) used in phase-averaged coupled wave-circulation
models (e.g., Lesser et al., 2004).
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Fig. 1. Staggered grid arrangement of unknowns and vertical grid definition with layer
nterfaces of SWASH multi-layer model.

.3. Numerical implementation within SWASH

Here we present the method to calculate the depth-integrated, mean
omentum terms within the phase-resolving non-hydrostatic model

WASH. SWASH is a numerical implementation of the governing equa-
ions, Eqs. (1)–(3). The model can be used in 1D, 2DH (cross and
longshore dimensions with one vertical layer), 2DV (cross-shore and
ertical dimensions) as well as fully 3D. We implemented the method to
xtract the depth-integrated, mean momentum balance for all available
odes. Here, we only show the implementation for SWASH 2DV to

eep the paper brief and concise as the methodology is the same for
ll other modes and the extension to 3D is straightforward and does
ot introduce any new concepts.

.3.1. SWASH governing equations
In SWASH multi-layer mode, a boundary-fitted grid is used in

he vertical direction, with the domain being divided into K layers
(see Fig. 1). Each layer is positioned between the interfaces given by
𝑧𝑘+1∕2(x,t) with k = 0,1,. . . ,K, in such a way that each layer has a thick-
ness ℎ𝑘 defined as 𝑧𝑘+1∕2 – z𝑘−1∕2 = f 𝑘h, where h(x,t) is the total depth
(h = z𝐾+1∕2 – z1∕2 = d + 𝜁) and with 0 ≤ 𝑓𝑘 ≤ 1 and ∑

𝑘 𝑓𝑘 = 1, with 𝑓𝑘
being the fraction of the instantaneous depth. Variables are arranged
in a staggered arrangement, and all equations are integrated over each
layer to obtain a set of layer-averaged equations that are solved in
SWASH (Zijlema and Stelling, 2008)—see Fig. 1 and Appendix B.3 for
more details.

The starting point of the derivation of the mean momentum terms is
consideration of the horizontal momentum equation in the form that is
implemented in SWASH. In the multi-layer framework of SWASH, the
layer-averaged momentum equation is implemented in its non-flux or
advective form,
𝜕𝑢𝑘
𝜕𝑡

+ 1
ℎ𝑘

(

𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

− 𝑢𝑘
𝜕𝜙𝑘
𝜕𝑥

)

+ 1
ℎ𝑘

(

𝑢𝑧𝑘+1∕2𝜔𝑘+1∕2 − 𝑢𝑧𝑘−1∕2𝜔𝑘−1∕2 − 𝑢𝑘𝜔𝑘+1∕2

+𝑢𝑘𝜔𝑘−1∕2

)

+ 𝑔
𝜕𝜁
𝜕𝑥

+ 1
ℎ𝑘

𝜕ℎ𝑘𝑞
𝑧
𝑘

𝜕𝑥
−

𝑞𝑘+1∕2
ℎ𝑘

𝜕𝑧𝑘+1∕2
𝜕𝑥

+
𝑞𝑘−1∕2
ℎ𝑘

𝜕𝑧𝑘−1∕2
𝜕𝑥

= 0, (11)

where the mass flux 𝜙𝑘 is defined as ℎ𝑘𝑢𝑘 and the relative vertical
velocity is given as 𝜔𝑘+1∕2 = 𝑤𝑘+1∕2 −

𝜕𝑧𝑘+1∕2
𝜕𝑡 −

𝑢𝑧𝑘+1∕2𝜕𝑧𝑘+1∕2
𝜕𝑥 . Note that

Eq. (11) can still be made momentum conservative at the discrete level
(for details, see Zijlema, 2019). With the staggered variable arrange-
ment, the vertical velocities w and the non-hydrostatic pressures q are
defined at the cell corners (𝑧𝑘+1∕2), whereas the horizontal velocities
u are defined at the cell centres (𝑧𝑘), see Fig. 1. The overbars with
superscripts z denote a linear interpolation of the variable from its
surrounding neighbours (see Zijlema and Stelling (2008) for more
details).
4

2.3.2. The depth-integrated, phase-averaged momentum balance—SWASH
In order to calculate the depth-integrated, mean momentum terms

from SWASH, we related each term in Eq. (11) to its equivalent term in
the depth-integrated, mean momentum equation, Eq. (9) (for details of
this derivation, see Appendices B.1 and B.2). To achieve this, we first
derived the layer-integrated momentum equation in the flux form that
is analogous to the depth-integrated momentum equation in divergence
form, Eq. (A.1), used for deriving Eq. (9). The integration by vertical
layers of the horizontal momentum equation, Eq. (2), in the flux form
– neglecting for simplicity the Reynolds stress gradients – is done as
follows,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢
𝜕𝑡

𝑑𝑧+∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢𝑢
𝜕𝑥

𝑑𝑧+∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑤𝑢
𝜕𝑧

𝑑𝑧+∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑝
𝜕𝑥

𝑑𝑧 = 0. (12)

After reworking each individual term, we obtain the layer-
integrated momentum equation in the flux form,

𝑢𝑘
𝜕ℎ𝑘
𝜕𝑡

+ ℎ𝑘
𝜕𝑢𝑘
𝜕𝑡

+
𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

+ 𝑢𝑧𝑘+1∕2𝜔𝑘+1∕2 − 𝑢𝑧𝑘−1∕2𝜔𝑘−1∕2 + 𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘

𝜕𝑥
− 𝑞𝑘+1∕2

𝜕𝑧𝑘+1∕2
𝜕𝑥

+ 𝑞𝑘−1∕2
𝜕𝑧𝑘−1∕2

𝜕𝑥
= 0.

(13)

Unlike the SWASH horizontal momentum equation, Eq. (11), the
depth integration of Eq. (13) allows the prompt identification of each
equivalent term in Eq. (A.1), thus it can be converted to Eq. (9)
following the steps described in Appendix A. Therefore, we need to
convert the SWASH horizontal momentum equation, Eq. (11), which is
written in the advective form, to the divergence form (i.e., to reach Eq.
(13)). To accomplish this, we derived the layer-integrated continuity
equation that is obtained through the integration of the local continuity
equation over the vertical,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢
𝜕𝑥

𝑑𝑧 +∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑤
𝜕𝑧

𝑑𝑧

=
𝜕 ∫

𝑧𝑘+1∕2
𝑧𝑘−1∕2 𝑢𝑑𝑧

𝜕𝑥
− 𝑢𝑧𝑘+1∕2

𝜕𝑧𝑘+1∕2
𝜕𝑥

+ 𝑢𝑧𝑘−1∕2
𝜕𝑧𝑘−1∕2

𝜕𝑥

+𝑤𝑘+1∕2 −𝑤𝑘−1∕2 = 0.

(14)

he layer-integrated continuity equation, Eq. (14), can be rewritten
sing the local mass flux 𝜙 and the relative vertical velocity 𝜔 as

follows,
𝜕ℎ𝑘
𝜕𝑡

+
𝜕𝜙𝑘
𝜕𝑥

+ 𝜔𝑘+1∕2 − 𝜔𝑘−1∕2 = 0. (15)

To reach Eq. (13) from Eq. (11), we first multiply Eq. (11) by the
ayer thickness ℎ𝑘, and then add the product of the local continuity

equation (Eq. (15)), and the layer-averaged velocity 𝑢𝑘. In our method,
the computation of the instantaneous momentum terms of Eq. (13)
takes into account the numerical discretization of all momentum terms
(see Appendix B.3), ensuring that the instantaneous residual is on the
order of machine precision (see Section 3.3.1).

To obtain the SWASH instantaneous depth-integrated momentum
equation (i.e., an equivalent form of Eq. (A.1)), we integrate Eq. (13) in
the vertical through the sum of the layer-integrated momentum terms
as follows,
𝑘=𝐾
∑

𝑘=1

[

𝑢𝑘
𝜕ℎ𝑘
𝜕𝑡

+ ℎ𝑘
𝜕𝑢𝑘
𝜕𝑡

]

+
𝑘=𝐾
∑

𝑘=1

𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

+
𝑘=𝐾
∑

𝑘=1

[

𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘+1∕2

𝜕𝑥

]

− 𝑞−𝑑
𝜕𝑑
𝜕𝑥

= 0, (16)

where this depth-integration results in the cancelling of some terms
(e.g., ∑𝑘=𝐾

𝑘=1

[

𝑢𝑧𝑘+1∕2𝜔𝑘+1∕2 − 𝑢𝑧𝑘−1∕2𝜔𝑘−1∕2

]

= 0). The term-by-term com-
parison of the SWASH depth-integrated momentum equation, Eq. (16),
with the depth-integrated momentum equation (Eq. (A.1)) is presented
in Table 2.

With the time averaging of Eq. (16) over many wave periods and
separating the wave and mean flow components (see Appendix A), we
can finally calculate each equivalent term of Eq. (9) within the SWASH
numerical framework (see Table 3).
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Table 2
Comparison between each term of the SWASH depth-integrated momentum equation,
Eq. (16), and the original depth-integrated momentum equation, Eq. (A.1).

Term from the
depth-integrated
momentum
Equation, Eq. (A.1)

Term from the SWASH
depth-integrated momentum
equation, Eq. (16)

Physical description

𝜕 ∫ 𝜁
−𝑑 𝑢 𝑑𝑧
𝜕𝑡

𝑘=𝐾
∑

𝑘=1

[

𝑢𝑘
𝜕ℎ𝑘

𝜕𝑡
+ ℎ𝑘

𝜕𝑢𝑘
𝜕𝑡

]

Local acceleration

𝜕 ∫ 𝜁
−𝑑 𝑢𝑢 𝑑𝑧
𝜕𝑥

𝑘=𝐾
∑

𝑘=1

𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

Advective acceleration

∫

𝜁

−𝑑

𝜕𝑝
𝜕𝑥

𝑑𝑧
𝑘=𝐾
∑

𝑘=1

[

𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘

𝜕𝑥

]

− 𝑞−𝑑
𝜕𝑑
𝜕𝑥

Total pressure gradient

2.3.3. Implementation of the method
To calculate the depth-integrated, mean momentum terms within

SWASH, the instantaneous depth-integrated momentum terms (see Ta-
ble 2), along with a few other instantaneous variables (e.g., the global
mass flux ∑𝑘=𝐾

𝑘=1 𝑢𝑘ℎ𝑘, the water level 𝜁 , the water depth h and the
variation in time of the water level 𝜕𝜁

𝜕𝑡 (or instantaneous water depth
𝜕ℎ
𝜕𝑡 )), are stored at every model time step after spin-up (see below). At
he end of the simulation, their time-average is computed. These time-
veraged (total) advective and pressure terms (i.e., the time-average
f the terms in Table 2) contain contributions from both the waves
nd mean flow. To separate their contributions, and to extract the
adiation stress gradient, we firstly compute the mean-flow terms of the
ean-momentum equation, Eq. (9) (e.g., the advective acceleration and
ressure gradient) using a simple finite difference scheme (with central
ifferences for the spatial derivatives). Subsequently, we compute the
emaining terms (e.g., local acceleration and radiation stress gradient)
y subtracting the mean flow contributions from the time-averaged
total) advective and pressure terms (Table 3). In this manner, we recast
he depth-integrated terms from SWASH into a form that is consistent
ith the notation of the mean momentum equation (Eq. (9)).

In SWASH 6.01, where this new method has been implemented,
he user can output all depth-integrated, mean momentum terms from
q. (9) in a similar way to how mean quantities (e.g., set-up and
5

significant wave height) are currently output, namely by defining the
averaging time (i.e., after spin-up time).

The primary evaluation of our method was to ensure that the
internal momentum balance closes, which was done by calculating the
residual of all momentum terms. We verified that this residual was
at the same level as the computational numerical precision [O (10−8

m2 s−2) for variables with 32 bits] (see Section 3.3.1). In addition, we
ensure that the implementation of the method has a negligible effect
on the overall speed of SWASH simulations (see Section 4) given the
low memory allocation needed.

3. Applications

The utility of the SWASH source code modifications described above
is demonstrated using two laboratory datasets in which corresponding
papers discuss mean momentum balances derived from instrument
measurements in 2D and 3D: irregular waves over a steeply sloping
fringing reef in a 2D wave flume (Buckley et al., 2015), and regular
waves over barred beaches with rip channels in a 3D wave basin
(Haller et al., 2002). For both cases, extensive water level and velocity
measurements were made, and we validate the modelled mean flow
properties using the observations. Next, we determine the physical
mechanisms that characterize the mean flow through the analysis of
the momentum terms using the method developed here. Further, we
demonstrate the accuracy of the new internal method by calculating
the momentum balance residuals and comparing these to the residuals
obtained through a post-processing approach.

3.1. Irregular waves over steeply sloping reef

3.1.1. Description of experiment and SWASH setup
The focus of the Buckley et al. (2015) study was to investigate the

mean momentum dynamics through the surf zone of a steep fringing
reef profile. The experiments were conducted in the 55-m-long wave
flume where a reef profile was constructed with a 1:5 fore reef slope,
followed by a horizontal 14 m reef flat and a 1:12 beach (Buckley et al.,
2015, and Fig. 2). Irregular waves were generated with a piston-type
wave maker with second-order wave generation and active reflection
Table 3
Method to calculate terms from the depth-integrated, mean momentum equation, Eq. (9), with the SWASH depth-integrated momentum equation, Eq. (16).

Term from the depth-integrated,
mean momentum equation,
Eq. (9)

Term from the SWASH depth-integrated momentum equation,
Eq. (16).

Physical description

𝑈

⟨

∑𝑘=𝐾
𝑘=1 𝑢𝑘ℎ𝑘

⟩

(𝑑 + ⟨𝜁⟩)
Mass flux velocity

⟨

𝜕 ∫ 𝜁
−𝑑 �̃�𝑑𝑧
𝜕𝑡

⟩ ⟨𝑘=𝐾
∑

𝑘=1

[

𝑢𝑘
𝜕ℎ𝑘

𝜕𝑡
+ ℎ𝑘

𝜕𝑢𝑘
𝜕𝑡

]

⟩

− 𝑈
⟨

𝜕 (𝑑 + 𝜁 )
𝜕𝑡

⟩

Local accelerationa

(𝑑 + ⟨𝜁⟩)𝑈 𝜕𝑈
𝜕𝑥

(𝑑 + ⟨𝜁⟩)𝑈 𝜕𝑈
𝜕𝑥

Advective acceleration

𝑔 (⟨𝜁⟩ + 𝑑)
𝜕 ⟨𝜁⟩
𝜕𝑥

𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥

Pressure gradient

𝜕𝑆𝑥𝑥𝑜𝑟𝑏

𝜕𝑥

⟨𝑘=𝐾
∑

𝑘=1

𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

⟩

− (𝑑 + ⟨𝜁⟩)𝑈 𝜕𝑈
𝜕𝑥

+𝑈
⟨

𝜕 (𝑑 + 𝜁 )
𝜕𝑡

⟩ Radiation stress gradient – orbital velocitiesb

𝜕𝑆𝑥𝑥𝑝𝑟𝑒𝑠

𝜕𝑥

⟨𝑘=𝐾
∑

𝑘=1

[

𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘+ 1

2

𝜕𝑥

⎤

⎥

⎥

⎦

⟩

−𝑔 (⟨𝜁⟩ + 𝑑)
𝜕 ⟨𝜁⟩
𝜕𝑥

Radiation stress gradient – pressurec

− ⟨𝑞−𝑑 ⟩
𝜕𝑑
𝜕𝑥

− ⟨𝑞−𝑑 ⟩
𝜕𝑑
𝜕𝑥

Hydrodynamic reaction at bottom

aSee Eq. (A.6) and Table 2.
bSee Eq. (A.7) and Table 2.
cSee Eq. (A.11) and Table 2.
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Fig. 2. Cross-shore variation (x) in waves propagating over sloping reef (Buckley et al., 2015): (a ) root mean square wave height 𝐻𝑟𝑚𝑠. (b ) Mean water level ⟨𝜁⟩ (c ) Radiation
tress gradient (RSG) and pressure gradient (PG). (d ) Reynolds stress horizontal gradients (HT), bottom friction (BF) and mismatch between radiation stress gradient and pressure
radient (RSG + PG), one order of magnitude lower than RSG and PG shown in subplot (c). The remaining terms – local and advective acceleration – are negligible. (e ) Residual
ith internal and post-processing method. (f ) Depth profile. Measurement (circles) and SWASH run (solid line). Note the change in vertical axis scales in panels (c), (d), and (e).
RMSE refers to the root mean square error normalized by the standard deviation, and MS is the Murphy Skill (Murphy, 1988).
ompensation. A set of 17 resistance wave gauges were used to measure
ater levels at 40 Hz, with a higher density of measurements in the

urf zone region (Fig. 2). Here we analyse data from ‘Run 2’, with the
ollowing experimental conditions: 𝐻𝑟𝑚𝑠,0 = 0.06 m and 𝑇𝑝 = 2.3 s (or

in field scale, 𝐻𝑟𝑚𝑠,0 = 2.2 m and 𝑇𝑝 = 13.6 s), where 𝐻𝑟𝑚𝑠,0 is the root-
mean square deep water wave height and 𝑇 is the peak wave period.
𝑝

6

This run lasted for 42 min, and waves were in the plunging regime, as
calculated by the Irribarren parameter (𝜉0 = 𝛽

√

𝐻𝑟𝑚𝑠,0
𝐿0

= 2.4, where 𝛽 is

the reef slope and 𝐿0 is the deep water wavelength).
SWASH was applied to reproduce ‘Run 2’ in Buckley et al. (2015)

with a uniform horizontal grid size of 0.05 m, an initial time step
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of 0.005 s and two vertical layers, which are sufficient for resolving
the wave dispersion (Zijlema et al., 2011) following the analysis of
the normalized water depth 𝑘𝑤d, in which 𝑘𝑤 is the wave number.
A Fourier-type boundary condition was prescribed at the wave maker,
with the Fourier components calculated with the incident wave signal
- separated with a linear frequency domain algorithm (e.g., Buckley
et al., 2015) - of measured water levels at the seaward most gauge.
In SWASH, these components are internally converted into a velocity
time series using LWT expressions. A spin-up period of 12 min was
applied corresponding to about 287 waves. All mean output variables
including the momentum terms were calculated at each grid cell over
the remaining 30 min of the simulation, or about 782 waves, consistent
with the analysis of the laboratory observations (Buckley et al., 2015).

3.1.2. Model performance
To quantify the overall model accuracy, we calculated three perfor-

mance indicators for the wave heights and mean water levels, the root
mean square error normalized by the standard deviation (NRMSE), the
Murphy Skill (MS, defined below), and the bias. Murphy Skill (Murphy,
1988) is defined by:

𝑀𝑆 = 1 −
𝑁
∑

𝑖

(

𝑦𝑖𝑚𝑜𝑑 − 𝑦𝑖𝑜𝑏𝑠
)2 ∕

𝑁
∑

𝑖

(

𝑦𝑖𝑜𝑏𝑠 − 𝑦𝑜𝑏𝑠
)2 , (17)

here 𝑦𝑖𝑚𝑜𝑑 and 𝑦𝑖𝑜𝑏𝑠 are the modelled and observed variables of interest
nd 𝑦𝑜𝑏𝑠 corresponds to the average of the observed variables over N

samples. MS was calculated to quantify the model performance, with
values MS < 0.5, 0.5 < MS < 0.75 and MS > 0.75 representing poor,

oderate and high prediction scores, respectively. Lower values of
RMSE and bias indicate better performance.

The analysis of the performance indicators shows that the model
esults accurately reproduce the observations for both wave height
Fig. 2a) and mean water level (Fig. 2b). The wave heights are slightly
verestimated by SWASH in the shoaling zone, except for the measured
aximum wave height near the breaking point, which is underes-

imated by the model, and in the surf zone the model agreement
s excellent. The modelled mean water levels are similar to mea-
urements in the shoaling zone, except for the measured minimum
et-down, which is underestimated, and in the surf zone they are
lightly underestimated. The good performance in the calculation of
he wave parameters gives us confidence that SWASH provides a robust
epresentation of the dominant surf zone hydrodynamic processes.

.1.3. Momentum balance analysis
In both the observations and SWASH predictions, the waves shoal on

he slope, with wave heights increasing up to 30% followed by breaking
n the reef crest and more gradual dissipation on the reef approaching
he beach (Fig. 2a). Wave shoaling results in set-down followed by set-
p as waves break near the reef crest (Fig. 2b). As expected for this
D (closed) flume case, the depth-averaged mass flux velocities are
egligible everywhere in the reef profile (not shown).

The momentum balance analysis indicates that the dominant forces
re the radiation stress gradient (RSG) and pressure gradient (PG,
ig. 2c). The wave shoaling and set-down correspond to a positive and
egative radiation stress gradient and pressure gradient, respectively.
his pattern is reversed in the surf zone, consistent with wave breaking
nd set-up generation. The maximum absolute forces occur at the break
oint, and the pressure gradient and radiation stress gradient are in
ear balance across the entire profile. Their net is balanced by the sum
f the bottom friction (BF) and Reynolds stress horizontal gradients
HT, Fig. 2d, note order of magnitude difference in scales from Fig. 2c).
he bottom friction term (BF) is always negative, consistent with a
ersistent undertow. The Reynolds stress horizontal gradient term is
ntroduced to prevent spurious motions when the hydrostatic front ap-
roximation is activated in the breaking zone (Smit et al., 2013). These
esults are conceptually in agreement with the findings from Buckley

t al. (2015), however, we do not try and make a direct comparison

7

with their momentum terms due to the inconsistencies between the
calculation methods (e.g., for the calculation of the radiation stresses,
Buckley et al. (2015) needed to use LWT and a parameterization of the
wave roller to reproduce the observed wave set-up).

3.2. Wave-driven flow on a barred beach with rip channels

3.2.1. Description of experiment and SWASH setup
The experimental investigation of Haller et al. (2002) consists of

a comprehensive laboratory study on rip currents over an alongshore
heterogeneous coast with non-zero cross-shore mass fluxes. The exper-
iments were carried out in a rectangular directional wave basin at the
University of Delaware (length 17.2 m, width 18.2 m) with a flap type
wavemaker with 34 paddles. The bottom profile was constructed to
have a 1:5 slope in the region 1.5 to 3 m from the wavemaker, followed
by a 1:30 slope in the remaining 15 m of the basin. A barred beach with
two rip channel was superimposed on an otherwise alongshore uniform
shoreface (Fig. 3 and Haller et al., 2002).

Here we study the data from ‘Test B’, which encompasses the most
extensive measurements by Haller et al. (2002). This test consisted of
monochromatic shore-normal waves with deep water wave height 𝐻0
of 0.05 m and wave period T of 1 s (or in field scale 𝐻0 of 2.5 m and
T of 7 s assuming a length scale ratio of 1:50) propagating over an
alongshore heterogeneous shoreface that resulted in bar/rip channel
circulation cells. Ten capacitance wave gauges (Fig. 3a,b) and three
side-looking acoustic Doppler velocimeter (ADVs, Fig. 3c) were used
to measure time series of water levels and velocities, respectively, both
with a frequency of 10 Hz. Forty repetitions of ‘Test B’ were conducted
with different spatial configurations thus allowing over 100 observation
points throughout the laboratory basin. Each test lasted for 27 min and
18.4 s (or 1638 waves).

We reproduced ‘Test B’ in SWASH 3D with a uniform horizontal grid
size of 0.05 m, an initial time step of 0.01 s and with two vertical layers,
found to be sufficient after analysis of the normalized water depth kd, as
discussed in Section 3.1.1. We imposed monochromatic shore-normal
waves on the offshore boundary, and lateral sidewalls were modelled
as fully reflective boundaries. The Reynolds stresses are calculated with
the eddy viscosity closure model following Smagorinsky (1963) for the
horizontal direction.

We analyse the results after a spin-up period of 102.4 s, or 102
wave periods, in a similar way as Haller et al. (2002). All mean output
variables including the momentum terms were calculated at each grid
cell for the remaining 1536 s of the simulation, or 1536 wave periods.

3.2.2. Model performance
We conducted a statistical analysis similar to the previous exam-

ple (Section 3.1.2) to examine the model’s performance. The model
performance indicators demonstrate the model is reproducing both the
wave heights (Fig. 3d) and mean water levels (Fig. 3e). In addition, the
comparison between calculated and observed normalized wave heights
and mean water levels (Fig. 3a,b, respectively, where the coloured cir-
cles represent the measurements) show similar patterns and an overall
satisfactory model performance.

The experimental velocity measurements were conducted with
ADVs (Haller et al., 2002), thus only a single point in the vertical
was available. As we applied SWASH with two vertical layers (Sec-
tion 3.2.1), the model does not compute the velocities at the same
vertical position. For simplicity, we qualitatively compared the depth-
averaged Eulerian velocities (𝑈𝐸 =

⟨

∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧∕(𝑑 + 𝜁 )

⟩

) from SWASH
with the Eulerian ADV velocities (𝑢𝐸 = ⟨𝑢⟩) (Fig. 3c). The comparison
between the velocities from model and observations (Fig. 3c) shows
overall similar flow patterns and magnitude.

The agreement between model and observations indicates the model
does an overall good job in reproducing the wave heights (Fig. 3a,d),
mean water level (Fig. 3b,e) and mean currents (Fig. 3c), allowing us
to assess the contributions of the mean momentum terms to the mean
water levels and currents.
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Fig. 3. Map view (a–c) and validation (d–e) of wave parameters and flow pattern of barred beach with rip channels (Haller et al., 2002); only showing a portion of the wave basin
focusing on one of the rip channels for visual clarity): (a ) normalized wave height H/H0 (colours), with coloured circles representing the measurements (or lab) and mass-flux
elocity U i (streamlines represented by the arrows.) (b ) Normalized mean water level ⟨𝜁⟩ ∕𝐻0 (colours), with coloured scatters giving the measurements and mass-flux velocity
i (arrows). (c ) Eulerian velocities 𝑈𝐸 . (d ) Wave height H prediction versus observation. (e ) Mean water level ⟨𝜁⟩ prediction versus observation. Solid grey lines represent the
epth contours, and the solid black lines give the position of the bars. NRMSE refers to the root mean square error normalized by the standard deviation, and MS is the Murphy

kill (Murphy, 1988).
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.2.3. Mechanics of the wave-driven flow
The shore-normal waves gradually shoal as they propagate up the

lope. Once the waves reach the bar they break while the waves in
he rip channel further increase in height due to the opposing current
Fig. 3a,c). A moderate set-down (Fig. 3b) is observed at the lower
horeface, which persists near the bar-system. Over the bars, the wave
reaking results in a sharp increase in the mean water level (e.g., set-
p) that remains constant up to the second breaking location near the
hore where the set-up increases again. Through the rip channels, the
ean water levels progressively increase towards the shoreline.

The mass flux velocities (Fig. 3a) are dominated by a 4-cell cir-
ulation pattern. The first cell (11 < 𝑥 < 13 m; 10 < 𝑦 < 12.5 m)
8

s defined by the moderate onshore flow over the bars, which stems
rom the wave-breaking. Shoreward of the bar, this flow diverges and
eeds alongshore currents towards the rip channels. The second cell
11 < 𝑥 < 13 m; 12.5 < 𝑥 < 14.5 m) is characterized by the convergence

of the flow coming from the bars and by the strong offshore flow over
the rips. The mean discharge over the rips and the bars is about the
same (±0.03 m3s−1), consistent with a closed circulation cell. The third
cell (13 < 𝑥 < 15 m; 12.5 < 𝑦 < 14.5 m) occurs in the lee of the
rip channels, where waters flow shoreward, due to the wave breaking,
and diverges away from the coastline. The fourth cell (13 < 𝑥 < 15
m; 10 < 𝑦 < 12.5 m) arises onshore of the bars, where the flow coming
from onshore of the rip channels converges to flow offshore. The third
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Fig. 4. Map view of depth-integrated, mean momentum terms of barred beach with rip channels (Haller et al., 2002) in the x (a–c) and y (d–f) directions: ( a, d ) Net of the
radiation stress gradient (RSG) and pressure gradient (PG). ( b, e ) Total acceleration (DUi/DT). ( c, f ) Bottom friction. Arrows represent the mass-flux velocity and solid grey
lines give the depth contours. The solid black lines give the position of the bars. Note that colorbars exceeding the range of ± 5e–04 m2 s−2 are capped at these limiting values.
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nd fourth cells can be thought of as similar to the first and second cells;
owever, they are much weaker in strength and in reverse direction
e.g., divergence behind the rips and convergence onshore of the bars).

To understand the mechanisms for this 4-cell circulation, we con-
ucted the momentum balance analysis in both the cross-shore (x,
ig. 4a–c) and alongshore (y, Fig. 4d–e) directions. Similar to the
uckley et al. (2015) case, the magnitude of the pressure gradient (PG)
nd radiation stress gradient (RSG) in both the cross- and alongshore
irections is large. The two terms are in near balance, but their net
alue provides the main driver of the mean flow (Fig. 4a, d).

The force balances in both the cross- and alongshore directions are
onsistent with the net of the pressure gradient and radiation stress
radient (RSG+PG, Fig. 4a,d) being balanced by the sum of the local
nd advective acceleration (DU/DT, Fig. 4b,e) and bottom friction (BF,
ig. 4c,f). This overall pattern is in qualitative agreement with the
indings from Haller et al. (2002). The largest magnitude of momentum
erms is found in the rip channel, where the strongest velocities are also
bserved.

The cross-shore bottom friction over the bar is a response to the
nshore flow over the bar (Fig. 4c), associated with the wave breaking
first cell). The divergence of the flow over the bar towards the rip
hannels can be understood with the rising acceleration terms both
n the x- and 𝑦-directions (Fig. 4b,e) associated with the alongshore
ressure gradient. The confinement of the currents in the rip channels
equires the rotation of the otherwise alongshore currents (second
ell), coherent with very strong acceleration terms (Fig. 4b,e). Inside
he rip channel, the rip currents result in a large cross-shore bottom
riction (Fig. 4c) that dissipates the flow as it moves offshore. As the
echanisms of the third and fourth cell are conceptually the same as

he first and second cells, they are not described here.
 r

9

.3. Comparison between internal and post-processing methods

.3.1. Analysis of momentum balance residuals
To illustrate the differences that result from the internal and post-

rocessing methods we calculated the momentum terms from the Buck-
ey et al. (2015) and Haller et al. (2002) experiments with the two
echniques and compared their result to the internal method.

The calculation of the momentum terms with the post-processing
ethod consists of outputting the instantaneous water levels, pressures

nd depth-averaged velocities and subsequently using these to calcu-
ate each term in Eq. (9)—see Appendix B.4 for the details of the
iscretization method. The model setup is the same as described in
ection 3.1.1, except for the output. To investigate the influence of the
utput time and spatial resolution, we saved the results for a range of
odel settings. For the Buckley et al. (2015) experiment, we adopted

he finest time and spatial output resolutions corresponding to 1/40
f the peak wave period 𝑇𝑃 and 1/40 of the peak wavelength at the
uter edge of the surf zone 𝐿𝐵,𝑃 (e.g., 17 Hz and 0.05 m, respectively;
ote that the computational grid size is 0.05 m, thus this is the finest
chievable spatial resolution). As for Haller et al. (2002) experiment,
e adopted the finest time and spatial output resolutions corresponding

o 1/10 of the peak wave period 𝑇𝑃 and 1/10 of the peak wavelength
t the outer edge of the surf zone 𝐿𝐵,𝑃 (e.g., 10 Hz and 0.10 m,
espectively; note that we could not output finer resolutions due to
perational storage restrictions). We also analysed the post-processing
erms at half, one-quarter, one-eight and one-sixteenth of the maximum
emporal and spatial resolutions (note that for the Haller et al., 2002
xperiment we only analysed the half and one-quarter of the maximum
esolutions due to storage constraints).
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Fig. 5. Map (a, b) and cross-shore views (c–f) of depth-integrated, mean momentum terms of barred beach with rip channels using the internal and post-processing methods: (a
) Residual (Res) in 𝑥-direction using the post-processing method. (b ) Residual (Res) in 𝑦-direction using the post-processing method. (c–f) Net of radiation stress and pressure
radients (RSG + PG, black for internal method and blue for post-processing method) and residual (Res, red for post-processing method) in x- (c, e) and 𝑦-directions (d, f).
rrows represent the mass-flux velocity and solid grey lines give the depth contours. The solid black lines give the position of the bars whereas the dashed black lines provide

he cross-sections used in subplots (c–f ) (rip channel – (c, d ) –, and bar—( e, f )). The internal residual is at computer precision and thus is not shown. Note that colorbars
xceeding the range of ± 5e–04 m2 s−2 are capped at these limiting values.
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With the internal method described here, we are able to close the
alance with a residual that is the same order as computer precision
oth for Buckley et al. (2015) (Fig. 2e). and Haller et al. (2002) (not
hown). The residuals with the internal method are about four orders
f magnitude less than those achieved with the post processing method
ith the finest resolution (Figs. 2e and 5).

As expected, finer time and spatial output resolutions with the post-
rocessing method result in the decrease of the residuals (Fig. 6). For
he one-dimensional case, the residuals show exponential decay with an
symptote at ∼10−4 m2 s−2. For the two-dimensional case, the residuals
re mostly flat for the spatial output and decrease for the temporal
utput (Fig. 6)—note that temporal and spatial resolutions higher than
0 parts per wavelength/period were not possible due to size of the
utput files.

Regardless of the time and spatial resolution, the residuals with
he post-processing method always remained of the same order of
agnitude (or larger) than the net of the pressure gradient and radi-

tion stress gradient and its balancing terms (e.g., bottom stress; see
igs. 2c,e, 5 and 6), and four orders of magnitude larger than the
nternal method. For the Haller et al. (2002) experiment the funda-
ental mechanism driving the observed and modelled circulation was
 a

10
he net of radiation stress gradient and pressure gradient, thus having
esiduals as large as this net and its balancing terms compromises
he analysis and limits the ability to understand the mean flow dy-
amics. In addition, the interpretation of the momentum balance with
he post-processing may differ from what is calculated by the model
e.g., Fig. 5). Over the bar (11.5 < x < 12.5 m, Fig. 5e,f), the net of
adiation stress and pressure gradients (RSG + PG) as predicted by both
ethods significantly differs, particularly in the 𝑦-direction (Fig. 5 f),

ccompanied by residuals as large as this forcing term, which impedes
he analysis of the wave-flow drivers.

For the Buckley et al. (2015) experiment, as negligible mass-flux
elocities were observed, the momentum balance is mainly useful
o understand the wave-induced changes in the mean water level
e.g., set-down and set-up, Fig. 2b). As a result of the much simpler
alance and no mean flows, applying the post-processing techniques
oes not change the interpretation of the momentum terms, although
ubstantially lower precision in their calculation is achieved.

.3.2. Analysis of the post-processing errors
To investigate the cause of the discrepancies between the internal
nd the post-processing methods, we calculated the contributions of
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Fig. 6. Sensitivity of the mean absolute residual |𝑅𝑒𝑠𝑥| 𝑚𝑒𝑎𝑛 obtained with the post-processing method of Buckley et al. (2015) and Haller et al. (2002) runs to the (a) spatial and
b) temporal resolution. The spatial resolution (a) is given by the fraction of the peak wavelength at the outer edge of the surf zone 𝐿𝑃 ,𝐵 and the output grid size 𝛥x𝑜𝑢𝑡, whereas
he temporal resolution (b) is provided by the fraction of the peak wave period 𝑇𝑃 and the output time step 𝛥t𝑜𝑢𝑡. Fixed temporal and spatial resolutions corresponding to the
aximum values of 𝑇𝑃 /𝛥t𝑜𝑢𝑡 and 𝐿𝑃 ,𝐵/𝛥x𝑜𝑢𝑡 (e.g., equal to 40 for Buckley runs and 10 for Haller runs) are used in (a) and (b), respectively. Note that for Haller runs a fixed

𝑃 ,𝐵/𝛥y𝑜𝑢𝑡 of 10 is used for all calculations.

4

4

m
n
t
f
e
t
o
a
t
b
t
n
t
i

t
t
b
l
a
a
w
p

a
e
b
t
t
s
c
p

h
a
n

ach momentum term in the cross-shore direction to the total error of
he post-processing method (with the finest time and spatial resolution
s described above) for Buckley et al. (2015) and Haller et al. (2002)
uns. To achieve this, we calculated the spatial grid average absolute
rror of each moment term, representing the absolute value of the
ifference between each momentum term calculated with the post-
rocessing and internal (i.e., the correct value) methods, and, after
dding them up, we obtained the ratio of each moment term (Fig. 7).

The largest contributions to the post-processing errors stem from
he radiation stress (both orbital and pressure parts, see Eq. (10))
nd pressure gradients, which are the largest momentum terms and
hose mean errors are on the same order of magnitude as the resid-
al (i.e., ∼10−4 m2 s−2). As the errors introduced by the remaining
omentum terms (i.e., total acceleration, hydrodynamic reaction at

he bottom and Reynolds stress gradients) are less than 10% (i.e., one
rder of magnitude or lower than the residuals—10−5 m2 s−2), they do
ot significantly contribute to the overall error of the post-processing
ethod.

.3.3. Evaluation of the post-processing errors
The depth-integrated mean momentum terms associated wave-

nduced flows are generally very small (∼10−4–10−3 m2 s−2), therefore
uch smaller than their instantaneous values (∼10−1–100 m2 s−2). The

nalysis of momentum balance shows that radiation stress and pressure
radients are the largest momentum terms (10−3 m2 s−2), with their
et (i.e., the driver of depth-integrated currents) and the secondary
erms having smaller contributions (10−4 m2 s−2). The interpolation
rrors of the post-processing method, which are mainly caused by the
oor representation of the radiation stress and pressure gradients, are
n the same order of magnitude as the secondary momentum terms
∼10−4 m2 s−2), which significantly limits the accuracy of the post
rocessing method.

For alongshore uniform bathymetries (i.e., one-dimensional, flume
ases), the set-down and set-up balance occur (i.e., pressure gradi-
nt equals radiation stress gradients, with a null net). With neg-
igible depth-integrated velocities, the errors of the post-processing
ethod affect the precision but not the overall interpretation of the
rivers of wave-induced flow. For alongshore non-uniform bathyme-
ries (i.e., two-dimensional, basin cases), the net of pressure and radi-
tion stress gradients drives depth-integrated circulation, therefore the
rrors of the post-processing method may impact both the precision and
he overall interpretation of the drivers of wave-induced flow.
 a

11
. Discussion

.1. Depth-integrated, phase-averaged momentum balance

The internal method for calculating the depth and wave averaged
omentum terms in SWASH allows for the analysis of mean flow dy-
amics while taking advantage of the more complete representation of
he wave dynamics offered by phase-resolving models. Our motivation
or developing this new approach resulted from the inaccuracy and in-
fficiency of post-processed methods. In Section 3.3.1, we demonstrated
hat the accuracy of the new method is equivalent to the precision
f the numerical model, whereas with the post-processing method we
re not able to close a momentum balance with sufficient precision
o explain wave-induced depth-averaged currents at sites with variable
athymetry. To overcome this limitation (and the resulting impact on
he interpretation of the mean flow dynamics), and to ensure that
o residual remains, the calculation of the momentum terms needs
o be done within the numerical model consistent with the numerical
mplementation of the model.

To our knowledge, this is the first effort to calculate all momentum
erms at every grid and computational time step without simplifica-
ion within a phase-resolving model. Previous analyses of momentum
alance relied on simplifying assumptions (e.g., linear theory to calcu-
ate radiation stresses), which intrinsically limited their accuracy and
pplication. Future investigation with our method will allow detailed
nalysis of the mechanisms of nearshore currents at a range of sites
hile taking advantage of the more realistic treatment of nonlinear
rocesses by non-hydrostatic models.

This new methodology also results in shorter computational time
nd lower output storage requirements and removes the need for
xtensive post-processing calculations with large output files that can
e prohibitive. To illustrate these added benefits of the internal over
he post-processing method, we evaluated the computational time and
he storage requirements of the Haller et al. (2002) simulations pre-
ented in Section 3.2. We adopted the time and spatial resolutions
orresponding to 1/10 of the peak wave period 𝑇𝑃 and 1/10 of the
eak wavelength at the outer edge of the surf zone 𝐿𝐵,𝑃 .

The comparison (Table 4) demonstrates that the internal method
as several advantages over the post-process calculations including
llowing an unrestrictive spatial output resolution (i.e., similar to the
umerical model), without the need for an excessive output storage,

nd a significantly faster total computational time.
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Fig. 7. Relative contribution of each momentum term in the cross-shore direction (see Eq. (9)) to the total error of the post-processing method of Buckley et al. (2015) (a) and
Haller et al. (2002) (b) runs. The contributions of the total acceleration, hydrodynamic reaction at the bottom and Reynolds stress gradients were grouped as ‘‘others’’, as their
individual contribution was each less than 10%.
Table 4
Comparison between momentum balance of barred beach with rip channels (Haller et al., 2002) calculated using post-processing and the novel method within SWASH.

Type Variable Symbol Internal method Post-processing method

Computational aspects Number of meshes in computational grid 𝑚𝑥𝑐|𝑚𝑦𝑐 260 | 364
Mesh size 𝛥𝑥, 𝛥𝑦 (m) 0.05
Number of vertical layers nV 2
Computational time step 𝛥𝑡 (s) 0.01

Output aspects Number of meshes in output grid 𝑚𝑥𝑐𝑜𝑢𝑡 |𝑚𝑦𝑐 𝑜𝑢𝑡 260 | 364 130 | 82
Output mesh size 𝛥x𝑜𝑢𝑡, 𝛥y𝑜𝑢𝑡 (m) 0.05 0.10
Output time step 𝛥t𝑜𝑢𝑡 (s) 0.01 0.10

Calculation time CPU time (with 36 cores) 𝑡𝐶𝑃𝑈 (min) 417.4 1826.4a

Output processing time 𝑡𝑜𝑢𝑡𝑝𝑢𝑡 (min) 0 3.8

Storage requirement Output size size (GB) 0.01 10.32

aCPU time includes the time to combine the binary output files once the flow computation finishes.
a

w

𝑆

4.2. Depth-integrated low-frequency momentum balance

Previously we discussed the analysis of the depth-integrated wave-
averaged momentum balance, which is a powerful tool for interrogating
the drivers of mean flows. By averaging over many wave periods, the
wave-averaged variables (e.g., mass-flux velocity and set-up) contain
information about both the high- and low-frequency components of
the water level and velocities. This implies that the radiation stress
term as defined in Eq. (10) is constant on the time-scale of wave
groups, and thus includes both sea-swell and infragravity wave com-
ponents. While useful for understanding the mean flow dynamics, this
approach prevents the analysis of a range of processes, for example
low frequency modulation of surf zone current. Thus, another ap-
proach is to consider the wave forcing at the wave group (‘surf beat’)
timescale (e.g., Bertin et al., 2018; Longuet-Higgins and Stewart, 1962),
which requires separating the variables into low- and high-frequency
components.

To allow such an analysis we have also extended our implementa-
tion in SWASH to output the instantaneous depth-integrated momen-
tum terms and the other instantaneous variables required for calculat-
ing mean momentum balances (as described in Section 2.3.3). Through
post-processing of the instantaneous variables, it is possible to calculate
the momentum balance at any time scale of interest. For the calculation
of low-frequency momentum balance, we first decompose the water

level and velocity signals into low-frequency (‖𝜁‖𝑙𝑓 , and 𝑈𝑙𝑓 ,𝑖(x 𝑖),

12
ssociated with the slowly-varying flow) and high-frequency (𝜁ℎ𝑓,𝑖, and
𝑢ℎ𝑓,𝑖(x 𝑖,z,t), primarily associated with the short waves) components
(with the cut-off frequency being based on the particular conditions
or processes of interest) as follows,

𝜁 = ‖𝜁‖𝑙𝑓 + 𝜁ℎ𝑓 = 𝜁𝑙𝑓 + 𝜁ℎ𝑓 , (18)

𝑢𝑖 =

‖

‖

‖

∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧

‖

‖

‖𝑙𝑓

𝑑 + 𝜁𝑙𝑓
+ 𝑢ℎ𝑓,𝑖 = 𝑈𝑙𝑓 ,𝑖 + 𝑢ℎ𝑓,𝑖, (19)

where ‖‖𝑙𝑓 indicates filtering with a suitable low-pass filter (e.g., a
Butterworth filter). We can then compute the mean-momentum balance
at the wave-group timescale,
(

𝑑 + 𝜁𝑙𝑓
)
𝜕𝑈𝑙𝑓 ,𝑖

𝜕𝑡
+
‖

‖

‖

‖

‖

𝑈𝑙𝑓 ,𝑗
(

𝑑 + 𝜁𝑙𝑓
)
𝜕𝑈𝑙𝑓 ,𝑖

𝜕𝑥𝑗

‖

‖

‖

‖

‖𝑙𝑓
+ 𝑔

(

𝑑 + 𝜁𝑙𝑓
)
𝜕𝜁𝑙𝑓
𝜕𝑥𝑖

+
𝜕𝑆𝑖𝑗,𝑙𝑓

𝜕𝑥𝑗

+ ‖

‖

𝑞−𝑑‖‖𝑙𝑓
𝜕 (−𝑑)
𝜕𝑥𝑖

=
‖

‖

‖

‖

‖

‖

𝜕 ∫ 𝜁
−𝑑 𝜏𝑖𝑗𝑑𝑧
𝜕𝑥𝑗

‖

‖

‖

‖

‖

‖𝑙𝑓

− ‖

‖

𝜏−𝑑,𝑖𝑧‖‖𝑙𝑓 ,

(20)

here the radiation stress 𝑆𝑖𝑗,𝑙𝑓 , is given as (e.g., Ruju et al. (2012)),

𝑖𝑗,𝑙𝑓 =
‖

‖

‖

‖

‖

∫

𝜁

−𝑑
𝑢ℎ𝑓,𝑖𝑢ℎ𝑓,𝑗𝑑𝑧

‖

‖

‖

‖

‖𝑙𝑓
+
‖

‖

‖

‖

‖

∫

𝜁

−𝑑
𝑝𝑑𝑧

‖

‖

‖

‖

‖𝑙𝑓
− 0.5 𝑔

(

𝑑 + 𝜁𝑙𝑓
)2 . (21)

Similar to the mean flow case (see Section 3.3.1), the key advantage

of this method over a post-processing approach with the instantaneous
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velocity and pressure output is that in our implementation the instan-
taneous momentum terms are calculated consistent with SWASH nu-
merics, which ensures closure of the momentum balance (at computer
precision). In SWASH 6.01, the user can output all depth-integrated,
instantaneous momentum terms from Eq. (A.1) (see Table 2 for their
correspondence with SWASH depth-integrated momentum equation,
Eq. (16)), in order to compute the depth-integrated low-frequency
momentum according to Eq (20).

The analysis of the low-frequency momentum balance allows for
detailed investigations of the drivers of surf zone flow variations at the
wave group time-scale. We expect the extension of our method for low-
frequency motions to be useful not only for analysis of the momentum
balance, but also for analysis of the energy balance of low-frequency
waves in the nearshore (e.g., Rijnsdorp et al., 2015; Ruju et al., 2012).

5. Conclusions

In the present paper, we have presented a new method to internally
calculate and extract the depth-integrated, mean momentum terms in
the non-hydrostatic, phase-resolving model SWASH. The main moti-
vation for this work was that previous attempts to close the momen-
tum balance of phase-resolving models with post-processing techniques
failed, compromising the understanding of the physical mechanisms
of wave-induced currents. The core feature of the new method is its
consistency with the numerical framework, which allows us to close
the momentum balance with a residual that is at machine precision. By
accurately calculating and extracting the momentum terms, the method
provides an opportunity for advances in understanding the physics of
the wave-driven, depth-averaged flows while taking advantage of the
enhanced physics within phase-resolving models. We expect it to be
particularly useful for sites with 2D bathymetry and flow features.

To demonstrate the utility of the new method, we applied it to
two laboratory datasets, a flume case without cross-shore mass flux
and a basin case with a complex 2D flow pattern. The analysis of the
momentum balance terms with the internal method provided insights
into the mechanisms of wave set-up and wave-driven currents. In
addition, we conducted a residual analysis for the two cases both with
the new method and with a post-processing approach with a range
of time and spatial output resolutions. With the internal method the
residuals is at computer precision, whereas with the post-processing
method the residuals are on the order of the net of radiation stress
gradient and pressure gradient and its balancing terms, which under-
mines the accuracy of the momentum balance analysis. The added
advantage of the internal method over a post-processing approach is
its efficiency (e.g., faster simulations and smaller output files). We have
also extended the methodology to output the momentum terms at each
time step, that with additional processing allows for analysis of a range
of low-frequency surf zone dynamics.

The conceptualization of the method provides the general foun-
dation for the calculation of the depth-integrated, mean momentum
balances in non-hydrostatic, phase-resolving models. Although differ-
ent non-hydrostatic numerical models (e.g., SWASH Zijlema et al.,
2011, and NHWAVE, Ma et al., 2012) may have different numerical
frameworks, the approach developed in this research could be closely
replicated to accurately calculate momentum terms of wave-induced
depth-averaged currents.
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Appendix A. Derivation of the depth-integrated, phase-averaged
momentum equation

The derivation of the depth-integrated, mean momentum equation
consists of: the depth- and time-integrations of the RANS equations,
Eqs. (1) and (2); next, we decompose the velocity signal into the mean
flow and wave velocities, Eqs. (7) and (8); subsequently, we rewrite
the depth and time-integrated momentum equation using the depth and
time-integrated continuity equation and decomposed velocities.

The depth-integration of the continuity equation results in the
global continuity equation, Eq. (6). The depth-integration of the hori-
zontal momentum balance equation in divergence form, Eq. (2), results
in the following,
𝜕 ∫ 𝜁

−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

+
𝜕 ∫ 𝜁

−𝑑 𝑢𝑖𝑢𝑗𝑑𝑧
𝜕𝑥𝑗

+
𝜕 ∫ 𝜁

−𝑑 𝑝 𝑑𝑧
𝜕𝑥𝑖

+ 𝑝−𝑑
𝜕 (−𝑑)
𝜕𝑥𝑖

=
𝜕 ∫ 𝜁

−𝑑 𝜏𝑖𝑗𝑑𝑧
𝜕𝑥𝑗

− 𝜏−𝑑,𝑖𝑧.
(A.1)

The time-integration over many wave periods of the global conti-
uity and horizontal momentum balance equations, Eqs. (6) and (A.1),
esults in the following,

⟨

𝜕𝜁
𝜕𝑡

⟩

+

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑗𝑑𝑧
𝜕𝑥𝑗

⟩

= 0, (A.2)

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

⟩

+

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑢𝑗𝑑𝑧
𝜕𝑥𝑗

⟩

+

⟨

𝜕 ∫ 𝜁
−𝑑 𝑝 𝑑𝑧
𝜕𝑥𝑖

⟩

+ ⟨𝑝−𝑑⟩
𝜕 (−𝑑)
𝜕𝑥𝑖

=

⟨

𝜕 ∫ 𝜁
−𝑑 𝜏𝑖𝑗𝑑𝑧
𝜕𝑥𝑗

⟩

−
⟨

𝜏−𝑑,𝑖𝑧
⟩

. (A.3)

Next, the previously defined mass flux velocity 𝑈𝑖, Eq. (7), and the
scillatory velocity 𝑢𝑖, Eq. (8) are used to rewrite Eqs. (A.2) and (A.3).
q. (A.2) thus becomes,
⟨

𝜕𝜁
𝜕𝑡

⟩

+
𝜕
[

𝑈𝑗 (𝑑 + ⟨𝜁⟩)
]

𝜕𝑥𝑗
= 0. (A.4)

As for Eq. (A.3), we first present the time-integration for each term
separately, and then combine them in a single equation. By assuming
a stationary flow (𝜕U𝑖∕𝜕t = 0) the local acceleration is written as,

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧

⟩

= 𝑈𝑖

⟨

𝜕 (𝑑 + 𝜁 )
⟩

+

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧

⟩

. (A.5)
𝜕𝑡 𝜕𝑡 𝜕𝑡
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⟨

a

E
⟨

E

A

B

E
o
w
w
f

i

∫

E
v

By combining Eqs. (A.4) and (A.5), the local acceleration is rewritten
as,

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

⟩

= −𝑈𝑖

[

𝜕
[

𝑈𝑗 (𝑑 + ⟨𝜁⟩)
]

𝜕𝑥𝑗

]

+

⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

⟩

. (A.6)

Next, the advective acceleration is rewritten as follows,
𝜕 ∫ 𝜁

−𝑑 𝑢𝑖𝑢𝑗𝑑𝑧
𝜕𝑥𝑗

⟩

= 𝑈𝑖

[

𝜕
[

𝑈𝑗 (𝑑 + ⟨𝜁⟩)
]

𝜕𝑥𝑗

]

+ (𝑑 + ⟨𝜁⟩)𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

+
𝜕
⟨

∫ 𝜁
−𝑑 𝑢𝑖𝑢𝑗𝑑𝑧

⟩

𝜕𝑥𝑖
.

(A.7)

As for the pressure term, firstly we separate the mean pressure
t the bottom into a hydrostatic and non-hydrostatic part (q), which

equals the dynamic pressure at the bottom used by Mei et al. (2005),
as follows,

⟨𝑝−𝑑⟩ = 𝑔 (𝑑 + ⟨𝜁⟩) + ⟨𝑞−𝑑⟩ . (A.8)

Accordingly, the slope term can be rewritten as,

⟨𝑝−𝑑⟩
𝜕 (−𝑑)
𝜕𝑥𝑖

= 𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 (−𝑑)
𝜕𝑥𝑖

+ ⟨𝑞−𝑑⟩
𝜕 (−𝑑)
𝜕𝑥𝑖

+ 𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥𝑖

−𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥𝑖

.

(A.9)

Consequently, it follows that,

⟨𝑝−𝑑⟩
𝜕 (−𝑑)
𝜕𝑥𝑖

= 𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥𝑖

−
𝑔
2
𝜕 (𝑑 + ⟨𝜁⟩)2

𝜕𝑥𝑖
+ ⟨𝑞−𝑑⟩

𝜕 (−𝑑)
𝜕𝑥𝑖

.

(A.10)

The total pressure term is finally calculated as,

𝜕
⟨

∫ 𝜁
−𝑑 𝑝 𝑑𝑧

⟩

𝜕𝑥𝑖
+ ⟨𝑝−𝑑⟩

𝜕 (−𝑑)
𝜕𝑥𝑖

= 𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥𝑖

+
𝜕
[⟨

∫ 𝜁
−𝑑 𝑝 𝑑𝑧

⟩

− 0.5 𝑔 (𝑑 + ⟨𝜁⟩)2
]

𝜕𝑥𝑖
+ ⟨𝑞−𝑑⟩

𝜕 (−𝑑)
𝜕𝑥𝑖

.

(A.11)

By adding the above derived terms in Eqs. (A.6), (A.7) and (A.11),
q. (A.3) becomes,

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

⟩

+ (𝑑 + ⟨𝜁⟩)𝑈𝑗
𝜕𝑈𝑖
𝜕𝑥𝑗

+ 𝑔 (𝑑 + ⟨𝜁⟩)
𝜕 ⟨𝜁⟩
𝜕𝑥𝑖

+
𝜕
⟨

∫ 𝜁
−𝑑 𝑢𝑖𝑢𝑗𝑑𝑧

⟩

𝜕𝑥𝑖

+
𝜕
[⟨

∫ 𝜁
−𝑑 𝑝 𝑑𝑧

⟩

− 0.5 𝑔 (⟨𝜁⟩ + 𝑑)2
]

𝜕𝑥𝑖
+ ⟨𝑞−𝑑⟩

𝜕 (−𝑑)
𝜕𝑥𝑖

=
𝜕
⟨

∫ 𝜁
−𝑑 𝜏𝑖𝑗𝑑𝑧

⟩

𝜕𝑥𝑗
−
⟨

𝜏−𝑑,𝑖𝑧
⟩

.

(A.12)

The final step of the derivation consists of rewriting Eq. (A.12) with
q. (10) and results in Eq. (9).

ppendix B. SWASH framework

.1. Derivation of SWASH layer-averaged momentum equation

The steps to derive SWASH layer-averaged momentum equation,
q. (11), from the primitive RANS equations, Eqs. (1) and (2), consist
f: layer integration of the horizontal momentum equation, Eq. (2),
hich is in divergence form; next, to convert it to an advective form,
e rewrite the layer-integrated horizontal momentum equation in flux

orm using the layer-integrated continuity equation.
14
The integration by vertical layers of Eq. (2) - neglecting for simplic-
ty the Reynolds stress gradients – starts as follows,

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢
𝜕𝑡

𝑑𝑧 + ∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢𝑢
𝜕𝑥

𝑑𝑧 + ∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑤𝑢
𝜕𝑧

𝑑𝑧

+∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑝
𝜕𝑥

𝑑𝑧 = 0.
(B.1)

We first derive each term of Eq. (B.1) separately, and further
combine them in a single equation. The local acceleration term is given
by,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢
𝜕𝑡

𝑑𝑧 = 𝑢𝑘
𝜕ℎ𝑘
𝜕𝑡

+ ℎ𝑘
𝜕𝑢𝑘
𝜕𝑡

− 𝑢𝑧𝑘+1∕2
𝜕𝑧𝑘+1∕2

𝜕𝑡
+ 𝑢𝑧𝑘−1∕2

𝜕𝑧𝑘−1∕2
𝜕𝑡

.

(B.2)

The horizontal advective acceleration term is expanded as follows,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢𝑢
𝜕𝑥

𝑑𝑧 =
𝜕ℎ𝑘𝑢2𝑘
𝜕𝑥

− 𝑢𝑧𝑘+1∕2𝑢
𝑧
𝑘+1∕2

𝜕𝑧𝑘+1∕2
𝜕𝑥

+𝑢𝑧𝑘−1∕2𝑢
𝑧
𝑘−1∕2

𝜕𝑧𝑘−1∕2
𝜕𝑥

.
(B.3)

The vertical advective acceleration is given by,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑤𝑢
𝜕𝑧

𝑑𝑧 = 𝑤𝑘+1∕2𝑢
𝑧
𝑘+1∕2 −𝑤𝑘−1∕2𝑢

𝑧
𝑘−1∕2. (B.4)

As for the pressure term (p), firstly we separate it into the hydro-
static [𝑔 (𝜁 − 𝑧)] and non-hydrostatic part (q) as follows,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑝
𝜕𝑥

𝑑𝑧 = 𝑔 ∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕 (𝜁 − 𝑧)
𝜕𝑥

𝑑𝑧 + ∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑞
𝜕𝑥

𝑑𝑧. (B.5)

Thus, the pressure terms can be written as,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑝
𝜕𝑥

𝑑𝑧 = 𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘

𝜕𝑥
− 𝑞𝑘+1∕2

𝜕𝑧𝑘+1∕2
𝜕𝑥

+ 𝑞𝑘−1∕2
𝜕𝑧𝑘−1∕2

𝜕𝑥
.

(B.6)

By adding all previous terms in Eqs. (B.2), (B.3), (B.4) and (B.6),
(B.1) becomes,

𝑢𝑘
𝜕ℎ𝑘
𝜕𝑡

+ ℎ𝑘
𝜕𝑢𝑘
𝜕𝑡

+
𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

+ 𝑢𝑧𝑘+1∕2𝜔𝑘+1∕2 − 𝑢𝑧𝑘−1∕2𝜔𝑘−1∕2 + 𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘

𝜕𝑥
− 𝑞𝑘+1∕2

𝜕𝑧𝑘+1∕2
𝜕𝑥

+ 𝑞𝑘−1∕2
𝜕𝑧𝑘−1∕2

𝜕𝑥
= 0.

(B.7)

To convert the layer-integrated momentum equation in divergence
form, Eq. (B.7), to the advective form, we first need to define the layer-
integrated continuity equation that is obtained through the integration
of the local continuity equation over a vertical layer,

∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑢
𝜕𝑥

𝑑𝑧 +∫

𝑧𝑘+1∕2

𝑧𝑘−1∕2

𝜕𝑤
𝜕𝑧

𝑑𝑧

=
𝜕 ∫

𝑧𝑘+1∕2
𝑧𝑘−1∕2 𝑢 𝑑𝑧

𝜕𝑥
− 𝑢𝑧𝑘+1∕2

𝜕𝑧𝑘+1∕2
𝜕𝑥

+ 𝑢𝑧𝑘−1∕2
𝜕𝑧𝑘−1∕2

𝜕𝑥

+𝑤𝑘+1∕2 −𝑤𝑘−1∕2 = 0.

(B.8)

q. (B.8) can be rewritten using the mass flux 𝜙 and the relative vertical
elocity 𝜔 as follows,
𝜕ℎ𝑘
𝜕𝑡

+
𝜕𝜙𝑘
𝜕𝑥

+ 𝜔𝑘+1∕2 − 𝜔𝑘−1∕2 = 0. (B.9)

Next, we subtract the product of the local continuity equation,
Eq. (B.9), and the horizontal velocity 𝑢𝑘 from the layer-integrated
momentum equation, Eq. (B.7), and divide it by the layer thickness ℎ ,
𝑘
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𝑢

which results in,
=0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑢𝑘
ℎ𝑘

𝜕ℎ𝑘
𝜕𝑡

−
𝑢𝑘
ℎ𝑘

𝜕ℎ𝑘
𝜕𝑡

+
𝜕𝑢𝑘
𝜕𝑡

+ 1
ℎ𝑘

(

𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

− 𝑢𝑘
𝜕𝜙𝑘
𝜕𝑥

)

+ 1
ℎ𝑘

(

𝑢𝑧𝑘+1∕2𝜔𝑘+1∕2 − 𝑢𝑧𝑘−1∕2𝜔𝑘−1∕2 − 𝑢𝑘𝜔𝑘+1∕2

+𝑢𝑘𝜔𝑘−1∕2

)

+ 𝑔
𝜕𝜁
𝜕𝑥

+ 1
ℎ𝑘

𝜕ℎ𝑘𝑞
𝑧
𝑘+1∕2

𝜕𝑥
−

𝑞𝑘+1∕2
ℎ𝑘

𝜕𝑧𝑘+1∕2
𝜕𝑥

+
𝑞𝑘−1∕2
ℎ𝑘

𝜕𝑧𝑘−1∕2
𝜕𝑥

= 0.

(B.10)

B.2. Derivation of SWASH depth-integrated momentum equation

Eq. (B.10) provides the layer-averaged momentum equation in the
advective form as efficiently solved by SWASH. However, to be able
to extract the momentum terms from SWASH in a manner consistent
with depth-integrated, mean momentum equation in advective form,
Eq. (9), we need to use the layer-integrated equation in the flux form,
Eq. (B.7). This occurs due to the need of holding the term 𝑢𝑘

𝜕ℎ𝑘
𝜕𝑡

hat partially contributes to the depth-integrated local acceleration and
o the advective acceleration momentum terms and thus cannot be
ancelled.

To reach Eq. (B.7) from Eq. (B.10), we need to follow the opposite
ay, namely, we first multiply Eq. (B.10) by the layer thickness ℎ𝑘,
nd then add the product of the local continuity equation, Eq. (B.9),
nd the layer-averaged velocity 𝑢𝑘. To obtain the SWASH instantaneous
epth-integrated momentum equation in a manner consistent with
q. (A.1), we integrate Eq. (B.7) in the vertical through the sum of the
ayer-integrated momentum terms as follows,
=𝐾
∑

𝑘=1

[

𝑢𝑘
𝜕ℎ𝑘
𝜕𝑡

+ ℎ𝑘
𝜕𝑢𝑘
𝜕𝑡

]

+
𝑘=𝐾
∑

𝑘=1

𝜕𝜙𝑘𝑢𝑘
𝜕𝑥

+
𝑘=𝐾
∑

𝑘=1

[

𝑔ℎ𝑘
𝜕𝜁
𝜕𝑥

+
𝜕ℎ𝑘𝑞

𝑧
𝑘+1∕2

𝜕𝑥

]

−𝑞−𝑑
𝜕𝑑
𝜕𝑥

= 0,
(B.11)

here we notice that the depth-integration of Eq. (B.7) results in the
ancelling of some terms (e.g., (∑𝑘=𝐾

𝑘=1

[

𝑢𝑧𝑘+1∕2𝜔𝑘+1∕2 − 𝑢𝑧𝑘−1∕2𝜔𝑘−1∕2

]

=
).

The comparison term-by-term of the SWASH depth-integrated mo-
entum equation, Eq. (B.11), with the depth-integrated momentum

quation, Eq. (A.1), is presented in Table 2.

.3. Numerical framework of SWASH

In this section, we only present the discretization of the equations
elevant for the extraction of the depth-integrated momentum terms,
amely, the layer-averaged momentum equation, Eq. (11) and the
ocal continuity equation, Eq. (B.9). Further details of the SWASH
mplementation can be found in e.g., Zijlema and Stelling (2008).

An explicit, second order finite difference method for staggered
rids is used in SWASH. The horizontal velocities are positioned at the
orizontal grid corners and vertical centres (𝑢𝑖+1∕2,𝑘), whereas the ver-
ical velocities are positioned at the vertical grid corners and horizontal
entres (𝑤𝑖,𝑘+1∕2, see Fig. 1). The water levels are prescribed at the
orizontal grid centre (𝜁𝑖). For the non-hydrostatic pressure, the user
an choose between two discretization methods, that is, the standard
ethod, for which the non-hydrostatic pressures are at the horizontal

nd vertical centres (𝑞𝑖,𝑘), and Keller-box method (Lam and Simpson,
976), for which they are at the horizontal grid centre but at the ver-
ical corners (𝑞𝑖,𝑘+1∕2). Here for the purpose of wave computations we
resent the discretization with the Keller-box method. The continuity
15
nd horizontal momentum equations are solved at the horizontal grid
entres (𝑥𝑖+1∕2,𝑘) and corners (𝑥𝑖,𝑘), respectively, with a 𝛥x/2 difference

in the horizontal.
As for the time integration, the user needs to choose between

the second-order leapfrog scheme and the 𝜃-method. For the leapfrog
scheme, the time stamp of the velocities and water level and pressures
differ by 𝛥t/2, with 𝛥t being the time step (e.g., u,w𝑛+1∕2 and 𝜁𝑛),

hereas they are at the same for the 𝜃-method (e.g., u,w𝑛 and 𝜁𝑛). The
iscretization of the water-level gradient term in the layer-averaged
omentum equation, Eq. (11), depends on the chosen method, namely,

he leapfrog scheme calculates it explicitly and the 𝜃-method solves it
mplicitly. For both methods, the horizontal advective and Reynolds
tress horizontal gradients terms are solved explicitly, whereas the
ertical terms (e.g., vertical advective and Reynolds stress vertical
radients) and non-hydrostatic pressure terms are calculated
mplicitly.

We only present the implementation of the leapfrog scheme because
f its relevance for the simulation of gravity waves. The discretization
f the layer-averaged momentum equation, Eq. (11), for the leapfrog
cheme is shown below,

𝑢𝑛+1∕2𝑖+1∕2,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

𝛥𝑡

+ 1
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎜

⎝

𝜙
𝑛
𝑖+1,𝑘

(

�̂�𝑛−1∕2𝑖+1,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

)

− 𝜙
𝑛
𝑖,𝑘

(

�̂�𝑛−1∕2𝑖,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

)

𝛥𝑥

⎞

⎟

⎟

⎟

⎠

(

𝜔𝑥
𝑖+1∕2,𝑘+1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

(

(

𝑢𝑧𝑖+1∕2,𝑘+1∕2
)𝑛−1∕2+𝜃𝑢

− 𝑢𝑛−1∕2+𝜃𝑢𝑖+1∕2,𝑘

)

−

(

𝜔𝑥
𝑖+1∕2,𝑘−1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

(

(

𝑢𝑧𝑖+1∕2,𝑘−1∕2
)𝑛−1∕2+𝜃𝑢

− 𝑢𝑛−1∕2+𝜃𝑢𝑖+1∕2,𝑘

)

+𝑔
𝜁𝑛𝑖+1 − 𝜁𝑛𝑖

𝛥𝑥
+ 1

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎜

⎝

ℎ𝑛𝑖+1,𝑘
(

𝑞𝑧𝑖+1,𝑘
)𝑛+1

− ℎ𝑛𝑖,𝑘
(

𝑞𝑧𝑖,𝑘
)𝑛+1

𝛥𝑥

⎞

⎟

⎟

⎟

⎠

−

(

𝑞𝑥𝑖+1∕2,𝑘+1∕2
)𝑛+1

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘+1∕2 − 𝑧𝑛𝑖,𝑘+1∕2
𝛥𝑥

+

(

𝑞𝑥𝑖+1∕2,𝑘−1∕2
)𝑛+1

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘−1∕2 − 𝑧𝑛𝑖,𝑘−1∕2
𝛥𝑥

= 0,

(B.12)

where 𝜃𝑢 is the parameter for the 𝜃-method (between 0 and 1, with
.5 and 1 corresponding to the second order Crank–Nicolson and
irst order implicit Euler scheme, respectively; for brevity, we write
𝑛+𝜃 = 𝜃𝜑𝑛+1 + (1 − 𝜃)𝜑𝑛). The upwind horizontal velocity �̂�𝑛−1∕2𝑖+1,𝑘 is
pproximated second order accurately as

̂𝑛−1∕2𝑖,𝑘 =

⎧

⎪

⎨

⎪

⎩

3
2
𝑢𝑖−1∕2,𝑘 −

1
2
𝑢𝑖−3∕2,𝑘, 𝑖𝑓

(

𝜙
𝑥
𝑖,𝑘

)𝑛−1∕2
≥ 0

3
2
𝑢𝑖+1∕2,𝑘 −

1
2
𝑢𝑖+3∕2,𝑘, 𝑖𝑓

(

𝜙
𝑥
𝑖,𝑘

)𝑛−1∕2
< 0.

(B.13)

It should be noted that the obtained numerical approximations, Eqs.
(B.12) and (B.13), essentially inherit the physical properties of the
momentum balance because of the staggered framework employing
the momentum-conservative scheme of Stelling and Duinmeijer (2003).
See also Zijlema and Stelling (2008) and Zijlema (2019) for details.
This implies that the effect of discretization error is limited, in that
the overall balance between various momentum contribution terms is
merely influenced by the mesh resolution.
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𝜔

=

−

+

+

−

+

+

𝑞
e

f
m
E

The relative vertical velocity 𝜔𝑛−1∕2
𝑖,𝑘+1∕2 is defined by,

𝑛−1∕2
𝑖,𝑘+1∕2

𝑤𝑛−1∕2
𝑖,𝑘+1∕2 −

𝑧𝑛𝑖,𝑘+1∕2 − 𝑧𝑛−1𝑖,𝑘+1∕2

𝛥𝑡
⎛

⎜

⎜

⎜

⎝

(

𝑢𝑥𝑖,𝑘
)𝑛−1∕2

ℎ𝑛−1𝑖,𝑘+1 +
(

𝑢𝑥𝑖,𝑘+1
)𝑛−1∕2

ℎ𝑛−1𝑖,𝑘

ℎ𝑛−1𝑖,𝑘 + ℎ𝑛−1𝑖,𝑘+1

⎞

⎟

⎟

⎟

⎠

×

(

𝑧𝑥𝑖+1∕2,𝑘+1∕2
)𝑛−1

−
(

𝑧𝑥𝑖−1∕2,𝑘+1∕2
)𝑛−1

𝛥𝑥
.

(B.14)

The local mass flux 𝜙𝑛−1∕2
𝑖+1∕2,𝑘 is the speed with which both mass and

momentum are transported and is provided by,

𝜙𝑛−1∕2
𝑖+1∕2,𝑘 = ℎ̂𝑛−1𝑖+1∕2,𝑘𝑢

𝑛−1∕2
𝑖+1∕2,𝑘, (B.15)

with the upwind layer thickness being defined by ℎ̂𝑛𝑖+1∕2,𝑘 = 𝑓𝑘�̂�𝑛
𝑖+1∕2,

where the upwind depth is given by,

�̂�𝑛
𝑖+1∕2 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜁𝑛𝑖 + 𝑑𝑖, 𝑖𝑓
𝑘=𝐾
∑

𝑘=1
𝑢𝑛−1∕2𝑖+1∕2,𝑘ℎ̂

𝑛−1
𝑖+1∕2,𝑘 > 0

𝜁𝑛𝑖+1 + di+1, 𝑖𝑓
𝑘=𝐾
∑

𝑘=1
𝑢𝑛−1∕2𝑖+1∕2,𝑘ℎ̂

𝑛−1
𝑖+1∕2,𝑘 < 0

max
(

𝜁𝑖, 𝜁𝑖+1
)

+ min
(

𝑑𝑖, 𝑑𝑖+1
)

, 𝑖𝑓
𝑘=𝐾
∑

𝑘=1
𝑢𝑛−1∕2𝑖+1∕2,𝑘ℎ̂

𝑛−1
𝑖+1∕2,𝑘 = 0.

(B.16)

The solution procedure of SWASH gives rise to two new terms in the
layer-averaged momentum equation, Eq. (B.12). The first term adds to
the horizontal advective terms and originates from the MacCormack
predictor–corrector technique (see Zijlema et al., 2011 for details).
The second term adds to the non-hydrostatic pressure gradient terms,
and comes from the pressure correction technique to solve the non-
hydrostatic pressure. The non-hydrostatic pressure gradient term is first
assumed to be at the previous time stamp, and it is corrected after
solving the non-hydrostatic pressure gradient variation through the
Poisson equation (see Zijlema and Stelling, 2005 for details). The two
new terms are calculated in steps, where for each new step an inter-
mediate velocity is obtained, and as such they include the contribution
from the implicit (i.e., with 𝜃𝑢) vertical terms (see below). The final
layer-averaged momentum including these contributions reads,
𝑢𝑛+1∕2𝑖+1∕2,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

𝛥𝑡

1
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎜

⎝

𝜙
𝑛
𝑖+1,𝑘

(

�̂�𝑛−1∕2𝑖+1,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

)

− 𝜙
𝑛
𝑖,𝑘

(

�̂�𝑛−1∕2𝑖,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

)

𝛥𝑥

⎞

⎟

⎟

⎟

⎠

+ 𝛥𝑡
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎝

𝜙
𝑛−1∕2
𝑖+1,𝑘 𝛥𝑢

𝑥
𝑖+1,𝑘 − 𝜙

𝑛−1∕2
𝑖,𝑘 𝛥𝑢

𝑥
𝑖,𝑘

𝛥𝑥

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
𝛥t

−𝜃𝑢

(

𝜔𝑥
𝑖+1∕2,𝑘+1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛 + 𝜃𝑢

(

𝜔𝑥
𝑖+1∕2,𝑘−1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎞

⎟

⎟

⎟

⎠

(

𝜔𝑥
𝑖+1∕2,𝑘+1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

(

(

𝑢𝑧𝑖+1∕2,𝑘+1∕2
)𝑛−1∕2+𝜃𝑢

− 𝑢𝑛−1∕2+𝜃𝑢𝑖+1∕2,𝑘

)

(

𝜔𝑥
𝑖+1∕2,𝑘−1∕2

)𝑛−1∕2

(

ℎ
𝑥 )𝑛

(

(

𝑢𝑧𝑖+1∕2,𝑘−1∕2
)𝑛−1∕2+𝜃𝑢

− 𝑢𝑛−1∕2+𝜃𝑢𝑖+1∕2,𝑘

)

𝑖+1∕2,𝑘 t

16
𝑔
𝜁𝑛𝑖+1 − 𝜁𝑛𝑖

𝛥𝑥
+ 1

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎜

⎝

ℎ𝑛𝑖+1,𝑘
(

𝑞𝑧𝑖+1,𝑘
)𝑛

− ℎ𝑛𝑖,𝑘
(

𝑞𝑧𝑖,𝑘
)𝑛

𝛥𝑥

⎞

⎟

⎟

⎟

⎠

−

(

𝑞𝑥𝑖+1∕2,𝑘+1∕2
)𝑛

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘+1∕2 − 𝑧𝑛𝑖,𝑘+1∕2
𝛥𝑥

+

(

𝑞𝑥𝑖+1∕2,𝑘−1∕2
)𝑛

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘−1∕2 − 𝑧𝑛𝑖,𝑘−1∕2
𝛥𝑥

+

⎛

⎜

⎜

⎜

⎝

1
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎝

ℎ𝑛𝑖+1,𝑘𝛥𝑞
𝑧
𝑖+1,𝑘 − ℎ𝑛𝑖,𝑘𝛥𝑞

𝑧
𝑖,𝑘

𝛥𝑥

⎞

⎟

⎟

⎠

−
𝛥𝑞

𝑥
𝑖+1∕2,𝑘+1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘+1∕2 − 𝑧𝑛𝑖,𝑘+1∕2
𝛥𝑥

+
𝛥𝑞

𝑥
𝑖+1∕2,𝑘−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘−1∕2 − 𝑧𝑛𝑖,𝑘−1∕2
𝛥𝑥

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
𝛥t

− 𝜃𝑢

(

𝜔𝑥
𝑖+1∕2,𝑘+1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

+𝜃𝑢

(

𝜔𝑥
𝑖+1∕2,𝑘−1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎞

⎟

⎟

⎟

⎠

= 0,

(B.17)

where the velocity correction reads as follows,

𝛥𝑢𝑖+1,𝑘 =

⎧

⎪

⎨

⎪

⎩

1
2

(

𝑢∗𝑖−1∕2,𝑘 − 𝑢𝑛−1∕2𝑖−3∕2,𝑘

)

, 𝑖𝑓
(

𝜙
𝑥
𝑖+1,𝑘

)𝑛−1∕2
≥ 0

1
2

(

𝑢𝑛−1∕2𝑖+1∕2,𝑘 − 𝑢∗𝑖+3∕2,𝑘
)

, 𝑖𝑓
(

𝜙
𝑥
𝑖+1,𝑘

)𝑛−1∕2
< 0,

(B.18)

where u* is an intermediate value calculated with,

𝑢∗𝑖+1∕2,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

𝛥𝑡

+ 1
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎜

⎝

𝜙
𝑛
𝑖+1,𝑘

(

�̂�𝑛−1∕2𝑖+1,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

)

− 𝜙
𝑛
𝑖,𝑘

(

�̂�𝑛−1∕2𝑖,𝑘 − 𝑢𝑛−1∕2𝑖+1∕2,𝑘

)

𝛥𝑥

⎞

⎟

⎟

⎟

⎠

(

𝜔𝑥
𝑖+1∕2,𝑘+1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

(

(

𝑢𝑧𝑖+1∕2,𝑘+1∕2
)𝑛−1∕2+𝜃𝑢

− 𝑢𝑛−1∕2+𝜃𝑢𝑖+1∕2,𝑘

)

−

(

𝜔𝑥
𝑖+1∕2,𝑘−1∕2

)𝑛−1∕2

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

(

(

𝑢𝑧𝑖+1∕,𝑘−1∕2
)𝑛−1∕2+𝜃𝑢

− 𝑢𝑛−1∕2+𝜃𝑢𝑖+1∕2,𝑘

)

+𝑔
𝜁𝑛𝑖+1 − 𝜁𝑛𝑖

𝛥𝑥
+ 1

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

⎛

⎜

⎜

⎜

⎝

ℎ𝑛𝑖+1,𝑘
(

𝑞𝑧𝑖+1,𝑘
)𝑛

− ℎ𝑛𝑖,𝑘
(

𝑞𝑧𝑖,𝑘
)𝑛

𝛥𝑥

⎞

⎟

⎟

⎟

⎠

−

(

𝑞𝑥𝑖+1∕2,𝑘+1∕2
)𝑛

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘+1∕2 − 𝑧𝑛𝑖,𝑘+1∕2
𝛥𝑥

+

(

𝑞𝑥𝑖+1∕2,𝑘−1∕2
)𝑛

(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝑧𝑛𝑖+1,𝑘−1∕2 − 𝑧𝑛𝑖,𝑘−1∕2
𝛥𝑥

= 0.

(B.19)

The non-hydrostatic pressure at the new time level 𝑞𝑛+1𝑖,𝑘+1∕2 is given by
𝑛
𝑖,𝑘+1∕2 + 𝛥𝑞𝑖,𝑘+1∕2, with the last term calculated through the Poisson
quation (not shown).

Although the local continuity is not directly solved in SWASH
or non-hydrostatic simulations, the conversion of the layer-averaged
omentum equation in the advective form, Eq. (11), to the flux form,
q. (B.7), requires its definition (see Appendix B.1). Here we assume
he following discretization for the local continuity equation (Zijlema
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and Stelling, 2008),
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛+1
−
(

ℎ
𝑥
𝑖+1∕2,𝑘

)𝑛

𝛥𝑡
+

ℎ̂𝑛𝑖+1∕2,𝑘𝑢
𝑛+1∕2
𝑖+1∕2,𝑘 − ℎ̂𝑛𝑖−1∕2,𝑘𝑢

𝑛+1∕2
𝑖−1∕2,𝑘

𝛥𝑥

+
(

𝜔𝑥
𝑖+1∕2,𝑘+1∕2

)𝑛+1∕2
−
(

𝜔𝑥
𝑖+1∕2,𝑘−1∕2

)𝑛+1∕2
= 0.

(B.20)

.4. Post-processing method

In this section, we present the post-processing method for calculat-
ng the depth-integrated phase-averaged momentum terms. For simplic-
ty, we only show the implementation for SWASH 2DV (i.e., similar to
ur modelling of Buckley et al. (2015)’s experiment).

We output all variables at the velocity points (e.g., 𝑢𝑖+1∕2,𝑘, see
ig. 1). The variables defined in the water level points (e.g., 𝑞𝑖,𝑘+1∕2,
𝑖,𝑘+1∕2, and 𝜁𝑖) are spatially interpolated by SWASH before output.
lthough with the second-order leapfrog scheme the time stamp of the
elocities and water level and pressures differ by 𝛥t/2 (e.g., 𝑢𝑛+1∕2𝑖+1∕2,𝑘 and
𝑛
𝑖 ), SWASH does not temporally interpolate variables before output. As
he output time step 𝛥𝑡𝑜𝑢𝑡 is usually much larger than the computational
ime step, this time difference is generally very small. As we adopted
minimum output time step of about 10 times the computational time

tep (see Section 3.3.1), we opted to truncate the results (i.e., assume
hat all output variables are at the same time stamp), rather than
nterpolating the output variables that differ by 10𝛥t to a time stamp
f ±𝛥t/2.

As we used equidistant vertical layers, we calculated the instanta-
eous depth-averaged velocities 𝑈𝑑 as,

𝑈𝑛+1∕2
𝑑,𝑖+1∕2 =

∑𝑘=𝐾
𝑘=1 𝑢𝑛+1∕2𝑖+1∕2,𝑘

𝐾
. (B.21)

The discretization of the mass-flux and oscillatory velocities then
reads,

𝑈𝑖+1∕2 =

⟨

𝑈𝑛+1∕2
𝑑,𝑖+1∕2

(

𝑑𝚤+1∕2
𝑥
+
(

𝜁𝚤+1∕2
𝑥)𝑛+1

)⟩

𝑑𝚤+1∕2
𝑥
+
⟨

(

𝜁𝚤+1∕2
𝑥)𝑛+1

⟩ , (B.22)

𝑢𝑛+1∕2𝚤+1∕2,𝑘 = 𝑢𝑛+1∕2𝑖+1∕2,𝑘 − 𝑈𝑖+1∕2, (B.23)

The local acceleration term
⟨

𝜕 ∫ 𝜁
−𝑑 𝑢𝑖𝑑𝑧
𝜕𝑡

⟩

is calculated with a back-
ward difference scheme,

1
𝑘

⟨

∑𝑘=𝐾
𝑘=1 𝑢𝑛+1∕2𝑖+1∕2

(

𝑑𝚤+1∕2
𝑥
+
(

𝜁𝚤+1∕2
𝑥)𝑛+1

)

−
∑𝑘=𝐾

𝑘=1
̃𝑢𝑛+1∕2−n

∗

𝑖+1∕2

(

𝑑𝚤+1∕2
𝑥
+
(

𝜁𝚤+1∕2
𝑥)𝑛+1−𝑛∗

)⟩

𝛥𝑡𝑜𝑢𝑡
,

(B.24)

ith n* representing the time stamp difference of 𝛥𝑡𝑜𝑢𝑡.
The advective acceleration (𝑑 + ⟨𝜁⟩)𝑈𝑗

𝜕𝑈𝑖
𝜕𝑥𝑗

is calculated with a cen-
tral difference scheme,

(

𝑑𝚤+1∕2
𝑥
+
⟨

(

𝜁𝚤+1∕2
𝑥)𝑛+1

⟩)

𝑈𝑖+1∕2
𝑈𝑖+3∕2 − 𝑈𝑖−1∕2

2𝛥𝑥
. (B.25)

Note that as we adopted constant grid sizes and as we output the
variables at every grid, the spatial derivatives are calculated with 𝛥𝑥.

The pressure gradient 𝑔 (𝑑 + ⟨𝜁⟩) 𝜕⟨𝜁⟩
𝜕𝑥𝑖

is calculated with a central
ifference scheme,

𝑔
(

𝑑𝚤+1∕2
𝑥
+
⟨

(

𝜁𝚤+1∕2
𝑥)𝑛+1

⟩)

⟨

(

𝜁𝚤+3∕2
𝑥)𝑛+1

⟩

−
⟨

(

𝜁𝚤−1∕2
𝑥)𝑛+1

⟩

2𝛥𝑥
.

(B.26)

The hydrodynamic reaction at the bottom ⟨𝑞−𝑑⟩
𝜕𝑑
𝜕𝑥𝑖

is calculated
with a central difference scheme,

⟨

(

𝑞 𝑥)𝑛+1
⟩ 𝑑𝚤+3∕2

𝑥
− 𝑑𝚤−1∕2

𝑥

. (B.27)
−𝑑,𝚤+1∕2 2𝛥𝑥
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The radiation stress 𝑆𝑥𝑥 is calculated by,

𝑆𝑥𝑥,𝑖+1∕2 =
1
𝐾

⟨𝑘=𝐾
∑

𝑘=1

(

𝑢𝑛+1∕2𝚤+1∕2

)2 (

𝑑𝚤+1∕2
𝑥
+
(

𝜁𝚤+1∕2
𝑥)𝑛+1

)

⟩

+ 1
𝐾

⟨(

𝑑𝚤+1∕2
𝑥

+
(

𝜁𝚤+1∕2
𝑥)𝑛+1

) 𝑘=𝐾
∑

𝑘=0
𝑔
(

𝜁𝚤+1∕2
𝑥

−𝑧𝚤+1∕2,𝑘
𝑥,𝑧 + 𝑞𝚤+1∕2,𝑘

𝑥,𝑧
)𝑛+1

⟩

− 0.5 𝑔
(

𝑑𝚤+1∕2
𝑥
+
⟨

(

𝜁𝚤+1∕2
𝑥)𝑛+1

⟩)2
.

(B.28)

As the vertical layers and non-hydrostatic pressure output are provided
at the cell vertical edges, the vertical interpolation is done in the
post-processing. The radiation stress gradient 𝜕𝑆𝑖𝑗

𝜕𝑥𝑗
is calculated with a

central difference scheme,
𝑆𝑥𝑥,𝑖+3∕2 − 𝑆𝑥𝑥,𝑖−1∕2

2𝛥𝑥
. (B.29)

The bottom friction is calculated with the Manning formula, given
by,

𝑔𝑐2𝑓

⟨

𝑈𝑛+1∕2
𝑑,𝑖+1∕2

|

|

|

𝑈𝑛+1∕2
𝑑,𝑖+1∕2

|

|

|

1
(

𝑑𝚤+1∕2
𝑥
+
(

𝜁𝚤+1∕2
𝑥)𝑛+1

)1∕3

⟩

(B.30)

with a Manning roughness coefficient 𝑐𝑓 of 0.019 m−1∕3s.
The turbulent eddy viscosity 𝜈𝑡,𝑖+1∕2 - a water depth based mixing

length model - is calculated with a central difference scheme,

𝜈𝑡,𝑖+1∕2 =
(

𝑑𝚤+1∕2
𝑥
+
(

𝜁𝚤+1∕2
𝑥)𝑛+1

)2 |
|

|

|

|

|

|

𝑈𝑛+1∕2
𝑑,𝑖+3∕2 − 𝑈𝑛+1∕2

𝑑,𝑖−1∕2

2𝛥𝑥

|

|

|

|

|

|

|

. (B.31)

Note that the turbulent eddy viscosity is included when the hydro-
static front approximation is activated in the breaking zone (i.e., for
cases with a null non-hydrostatic pressure, see Smit et al., 2013).

The Reynolds stress gradient
𝜕
⟨

∫ 𝜁
−𝑑 𝜏𝑖𝑗𝑑𝑧

⟩

𝜕𝑥𝑗
is calculated with a central-

difference scheme,

⟨

(

𝑑𝚤+3∕2
𝑥
+
(

𝜁𝚤+3∕2
𝑥)𝑛+1

)

(

𝑈𝑛+1∕2
𝑑,𝑖+5∕2−𝑈

𝑛+1∕2
𝑑,𝑖+1∕2

2𝛥𝑥

)

𝜈𝑡,𝑖+3∕2

2𝛥𝑥

−

(

𝑑𝚤−1∕2
𝑥
+
(

𝜁𝚤−1∕2
𝑥)𝑛+1

)

(

𝑈𝑛+1∕2
𝑑,𝑖+1∕2−𝑈

𝑛+1∕2
𝑑,𝑖−3∕2

2𝛥𝑥

)

𝜈𝑡,𝑖−1∕2

2𝛥𝑥

⟩

.

(B.32)
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