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From Latent to Blatant Space
Coupling Biological Systems to Neural Networks

for Improved Model Interpretability

M.A. Lieftinck July 7, 2025

Abstract

Deep Neural Networks (DNNs) are renowned for their high accuracy and versatility, which has led to their
application in many fields of research, including biology. However, this accuracy often comes at the expense
of interpretability, making it challenging to reason about the inner workings of most DNNs. Particularly in
biological research, understanding the mechanisms behind specific outcomes is highly valuable. To elucidate
the latent space of DNNs in the context of cancer biology, we introduce GONNECT: a Gene Ontology-derived
Neural Network for Explainable Cancer Typing. GONNECT incorporates biological prior knowledge from
the Gene Ontology (GO) directly into its network architecture, enabling interpretability through model
structure. Using an autoencoder framework, we evaluate GONNECT as both encoder and decoder module
and demonstrate its ability to learn which biological processes are distinctive for different cancer types.
Furthermore, we show how a variant including soft links (GONNECT-SL) can expand on current knowledge
by proposing new interactions between biological processes. GONNECT is flexible both in the amount of
prior knowledge it incorporates and the set of input genes, and can potentially be applied in modeling of gene
perturbation effects and drug target discovery.

Introduction
Deep learning has revolutionized machine learning re-
search and applications. This field of machine learning
has proven its versatility through the array of mod-
els that have emerged in recent years, from the first
multilayer perceptron (MLP) models to state-of-the-art
transformers [1]. Especially in the current AI era, deep
learning is ubiquitous in research, business, education,
and everyday life. Whereas deep neural networks
(DNNs) are famous for their accuracy and flexibility,
they are infamous for their lack of interpretability, as
is often illustrated by their reference as “black box"
models [2].

The inherent trade-off between accuracy and in-
terpretability plays an important role in choosing the
right model for a specific task [3], [4]. In biological
predictive modeling, understanding the mechanisms
underlying functional outcomes is as important as the
predictions themselves. [5], [6]. Gaining insight into
what the key components in a biological system are
and how they interact to cause a specific phenotype is
of great importance in advancing our understanding
of biology and mechanisms of disease.

Many studies have attempted to improve the inter-
pretability of deep learning models for biology by lever-
aging prior knowledge of biological systems. There
are many variations of these biologically-informed
neural networks (BINNs). Graph-based BINNs use

gene interaction networks to structure genetic data
and apply graph neural networks to exploit known
gene interactions [7], [8].

ODE-based BINNs aim to model system behavior
over time using known ordinary differential equations
(ODEs). ODEs describing binding dynamics can be
leveraged in knowledge-derived activation functions
[9], [10]. Other ODE-based BINNs use ODEs to apply
additional constraints in the loss function to ensure
that the model output does not violate the known
dynamics of the system [11]–[13].

Architecture-based BINNs use hierarchical ontolo-
gies directly as neural network architecture, coupling
each network node to an ontology term. Links between
nodes exist only if the associated ontology terms are
also linked. Due to the hierarchical nature of these
ontologies, they align relatively well with the layered
structure of a multilayer perceptron (MLP).

Architecture-based BINNs create interpretable em-
beddings of the input features, where node activations
reflect the contribution of the associated term to the
predicted outcome or embedding. Coupling the inner
workings of the model with known biological systems
results in more transparent models with a smaller
parameter space compared to their “black box" coun-
terparts, allowing reasoning about predictions while
reducing the amount of required training data.

Previous work has shown promising results for
architecture-based BINNs in both performance and
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Figure 1: Overview of GONNECT design. A) Gene Ontology (GO) [14]: A hierarchical ontology graph
containing experimentally verified prior knowledge on biological entities (GO-terms) and their relationships.
B) Dataset containing gene expression data of different cancer types. C) Processed GO graph where genes
from the dataset are linked to GO-terms based on associations between gene product and biological entity.
D) GONNECT module where the network architecture is based on the processed GO graph. GONNECT takes
gene expression as input and outputs values for the activity of GO-terms at the top of the hierarchy. Solid
lines represent “fixed links": edges based on experimental evidence of a biological relationship. Dashed lines
represent “soft links": unverified yet potential relationships between GO-terms.

interpretability [15]–[18]. These models are more effi-
cient than their biologically-agnostic counterparts (i.e.
standard MLPs), needing less parameters to obtain
similar accuracy. However, a drawback of these predic-
tion models is that they are trained to predict a specific
phenotypic property. As a result, interpretation at
the term level is only relevant in the context of that
phenotype, precluding broader insight into general
inter-term relationships.

To overcome the task-specificity of prediction-based
approaches, autoencoder models aim to create a more
generally interpretable embedding of the input fea-
tures. Hierarchical prior knowledge can be used to
embed quantitative gene expression data in terms of
abstract ontology terms. The low-dimensional and
interpretable embeddings can subsequently be used
for different tasks such as classification, drug response
prediction, and in silico modeling of gene perturbation

effects [19]–[21]. Interestingly, all BINN autoencoder
models use prior knowledge solely in the decoder
module, meaning the embeddings that form the basis
of interpretability are shaped by a “black box" encoder.

The concept of using experimentally verified prior
knowledge to construct BINNs ensures a certain base-
line understanding of the ground truth. However, it is
also a limitation. The fields of biology from which this
knowledge is obtained are still very active, meaning
that information we assume to be the ground truth
is incomplete and still subject to extension and re-
vision. Especially in architecture-based models, the
assumption of complete prior knowledge can lead to
the exclusion of possibly important biological relation-
ships, simply because they have not been verified yet.
So far, there has been one study that addressed this
problem: ExpiMap, a model that learns gene expres-
sion embeddings for single-cell reference mapping,
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uses a biologically-informed single-layer decoder to
reconstruct the embedded “gene programs" into the
individual genes that make up those programs [19].
Since there might be genes involved in a certain gene
program that are not included in the prior knowledge,
ExpiMap is allowed to add new links between gene
and gene program to improve performance.

Here we introduce GONNECT, a Gene Ontology-
derived Neural Network for Explainable Cancer Typ-
ing. We use hierarchical prior knowledge from Gene
Ontology (GO) [14], a literature-curated reference
database, to construct an architecture-based BINN
for use as encoder, decoder, or both in an autoen-
coder framework (Figure 1). Using self-supervised
learning, we aim to obtain a multipurpose, biologi-
cally interpretable latent space where every node is
associated with an ontology term (GO-term), thus
representing a biological pathway, process, or pro-
gram. Edges between nodes represent relationships
between GO-terms. GONNECT is evaluated based on
reconstruction performance of gene expression input,
embedding quality, and latent space interpretation. To
address the notion of incomplete prior knowledge, we
developed a “soft link" variant, GONNECT-SL, where
prior knowledge is augmented by allowing soft links:
new relationships which are not present in GO.

Adaptive ontology processing enables training on
any gene set with at least one GO-annotation. Fur-
thermore, GONNECT can incorporate a variable num-
ber of GO-terms, determined by user-defined term-
degree thresholds (i.e. limits on the number of par-
ents/children per term). The flexibility to use GON-
NECT and GONNECT-SL as both encoder and/or
decoder allows for a comparative analysis of the effects
on performance and interpretability of introducing
biological priors in the different autoencoder mod-
ules. Meanwhile, GONNECT-SL can learn new rela-
tionships through soft links not only between genes
and ontology terms, but also between ontology terms
themselves, providing suggestions for novel intra- and
inter-process relationships.

Results

Gene Ontology and dataset
We use Gene Ontology (GO) [14] to supply GON-
NECT with hierarchical biological prior knowledge
(general information on GO is available in Supplemen-
tary Information, Section S1). Before use in models,
the GO ontology graph is filtered and processed (see
Methods-Ontology processing).

The models in this study were trained and evalu-
ated using publicly available data from The Cancer
Genome Atlas (TCGA) [22]. TCGA contains gene
expression data on human tumor samples. After pre-

processing, the TCGA-derived dataset contained 9,797
samples, including 32 different cancer types, and their
1000 most highly variable genes with at least one GO-
annotation (see Methods-Data preprocessing). The
distribution of cancer types in the preprocessed dataset
is available in Table S1.

GONNECT architecture
The processed GO graph determines the number of
layers, nodes, and weights of GONNECT. GO process-
ing produces a condensed graph suitable as neural
network architecture (see Methods-Ontology process-
ing). The processed graph comprises 623 GO-terms,
2,369 proxy terms, and 1,000 genes. The resulting
GONNECT modules have an input dimension of 1,000,
five network layers, and an embedding dimension of
109.

To evaluate the effects of incorporating biology
into different autoencoder modules (encoder and/or
decoder), GONNECT was tested in three configura-
tions (Figure 2). One in which a GONNECT encoder
is coupled to a biologically-agnostic, fully connected
MLP decoder (Figure 2A), a second configuration con-
sisting of an MLP encoder and GONNECT decoder
(Figure 2B), and a third in which both the encoder and
decoder are GONNECT modules (Figure 2C). In all
three configurations, the embedding space is coupled
to a GONNECT module, meaning that the embedding
space is always associated with GO-terms.

We first developed GONNECT models where prior
knowledge is a hard requirement for edge existence,
meaning that there can only be an edge between nodes,
and therefore a learnable weight, if the associated GO-
terms are linked in the ontology graph (see Methods-
Model implementations). These “fixed link" models
are limited by the knowledge in GO. To address the fact
that GO is an incomplete knowledge base that might
not contain all relevant biological interactions, we also
developed GONNECT-SL: a variant containing soft
links (Figure 2A, dashed lines). GONNECT-SL models
allow non-zero weights between terms that do not
have a known, verified GO-relationship (see Methods-
Model implementations).

The possibility of using additional edges enables
augmentation of the prior knowledge graph with new,
data-driven relationships. Soft link weights are reg-
ularized to favor known GO-edges, yet can activate
new connections when they significantly reduce re-
construction loss (see Methods-Training).

GONNECT achieves better reconstruction per-
formance than biologically-agnostic models
We compared the performance of GONNECT models
to biologically-agnostic reference models. The first
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Figure 2: Schematic overview of different GONNECT
configurations. A) Autoencoder with a GONNECT
encoder such that network nodes represent GO-terms
and solid links represent known relationships between
terms. The decoder is a fully connected MLP with an
identical but mirrored node layout. B) Configuration
where the encoder is an MLP and the decoder is a
GONNECT module. C) Configuration where both
encoder and decoder are GONNECT modules, such
that every node in the network is coupled to a GO-
term.

reference model is an MLP with the same number of
layers and nodes per layer as GONNECT, but fully
connected. The result is a network with the same num-
ber of weight matrices as GONNECT, the same weight
matrix sizes, but the amount of learnable weights is
two orders of magnitude higher (3 · 106 opposed to
1 · 104).

The second reference model, GONNECT-R, is simi-
lar to regular GONNECT, except that the links between
nodes are randomized in a degree-preserving manner
(see Methods-Model implementations). The result-
ing model has the same number of parameters and
topological properties as GONNECT, but lacks the
biological foundation.

All models were trained to minimize the mean
square error (MSE) between input and reconstruction
(see Methods-Training). For each GONNECT variant,
we evaluated the average reconstruction loss over five
model instances (Figure 3A). GONNECT-SL achieved
the lowest MSE, outperforming the other GONNECT
variants as well as fully connected MLPs. Regular
GONNECT performed better compared to GONNECT-
R in all autoencoder configurations, indicating that
biological context contributes to performance.

The MSE per cancer type showed that some cancer
types consistently showed a higher MSE than others,
especially in fixed link models (Figure 4). However,
this pattern is probably not related to the use of bio-
logical prior knowledge, since it was equally present
in the biologically-agnostic GONNECT-R models.

Autoencoder configuration influences
reconstruction performance
For each GONNECT variant (GONNECT, GONNECT-
SL and GONNECT-R), we tested three different au-
toencoder configurations (Figure 2). The GONNECT
encoder in fixed link models performed significantly
better than the GONNECT decoder in fixed link mod-
els, indicating that strictly using GO-derived edges in
the decoder negatively impacts autoencoder perfor-
mance (Figure 3A). Remarkably, across all three vari-
ants, the GONNECT encoder consistently performed
on par with the fully connected MLP, despite using
fewer parameters. Both GONNECT-SL encoders and
decoders benefit from the addition of soft links, as
both outperform their fixed link counterparts. How-
ever, the performance improvement is significantly
larger for the decoder than for the encoder, closing the
performance gap between configurations when soft
links are allowed.
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Figure 3: Performance metrics for different GONNECT variants. Colors indicate model configuration, where
‘enc’ is short for encoder, ‘dec’ for decoder and ‘both’ for encoder and decoder. Bar height denotes the mean
over five independently trained model instances, error bars denote the standard deviation, and arrows indicate
whether the metric improves by ascending or descending in value. Variants are grouped by the type of
links between network nodes. The horizontal dashed line indicates the MLP reference A) Mean square error
(MSE) of gene expression reconstruction. B) Silhouette score (SS) of the embedding space. C) Adjusted rand
index (ARI) of the embedding space. D) Normalized mutual information (NMI) of the embedding space (see
Methods-Embedding Metrics).

GONNECT largely preserves cancer type
separability in the embedding space
With the aim of obtaining an interpretable model that
can be used in multiple biologically relevant prediction
tasks, we evaluated the quality of the learned embed-
ding space using three clustering metrics: Silhouette
score (Figure 3B), adjusted rand index (Figure 3C)
and normalized mutual information (Figure 3D) (see
Methods-Embedding Metrics).

The soft link models outperformed both fixed link
variants in all metrics, with the GONNECT-SL decoder
even surpassing the fully connected MLP. Although
GONNECT-R appears to perform slightly better than
GONNECT, its high variance suggests a less consistent
embedding space organization.

The GONNECT decoders scored higher than GON-
NECT encoders, although the effect for soft link models
is smaller than for fixed link models. However, when
a GONNECT decoder is coupled to a GONNECT en-
coder, the embedding scores drop again. The effect
of the encoder module seems stronger than that of
the decoder module, since the performance of dual
GONNECT models is closer to that of GONNECT
encoders than of decoders.

We also qualitatively compared the embedding
spaces of different GONNECT configurations using
a two-dimensional t-SNE transform [23] of the em-
bedded dataset, as well as the original input space
(Figure 5). Additional visualizations using different
dimensionality reduction methods are available in
Figures S2 and S3.

Clusters in the high-dimensional input space are
mostly conserved in GONNECT embeddings, enabling
the separation of most cancer types. Overlapping clus-
ters are cancer types from similar tissues (ESCA, STAD,
COAD and READ all occur in the digestive system;
UCEC, UCS, CESC and OV all occur in the female
reproductive system), resulting in a relatively similar
gene expression profile for these cancer types, which
explains why they appear in the same neighborhood
of the embedding space. Cancer type information is
available in Table S1.

GONNECT encoder models (Figure 5B and 5D)
produce a more homogeneously scattered t-SNE com-
pared to MLP encoders (Figure 5A and 5C), indicating
reduced cluster separability. Meanwhile, the type of
decoder has a minimal effect on the organization of
the embedding space.

Combining results from the clustering metrics
and the t-SNEs shows that GONNECT decoders only
slightly lower embedding quality compared to MLPs,
whereas GONNECT encoders significantly impair em-
bedding quality. Combining GONNECT encoder and
decoder offers a small improvement over encoder-only
models.

Node activations identify associated cancer
types
In GONNECT, biological knowledge constrains net-
work connectivity, enforcing interpretable and bio-
logically relevant predictions. Through training, the
model learns the activity of these GO-derived edges,
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Figure 4: Reconstruction error per cancer type of
different GONNECT variants. Error is expressed as
mean square error (MSE). Cancer types are ordered by
descending number of samples in the dataset. GON-
NECT is abbreviated with ‘G.’, encoder with ‘enc’ and
decoder with ‘dec’.

reflecting the importance of each of the biological
relationships between ontology terms. In turn, the
importance of these relationships determines which
nodes become active for a given input. By analyzing
the activations of latent nodes during the forward
pass of trained models, we can get insight into which
GO-terms are most active for each cancer type.

Activation polarity does not model mode of action
GONNECT showed similar node activation magni-
tudes per cancer type for different model instances.
This indicates that GONNECT repeatedly learned to
consider the same GO-terms as active for a given can-
cer type. However, the polarity of the activations
differed per model instance, caused by random weight
initialization and no constraints on the sign of weights
during training. As a result, the signs of activations
cannot be used as an indication of the mode of action of
the associated interaction, which means that negative
activations indicate neither inhibitory nor activating
interactions. Activation data is available in Figures S4
and S5.

GONNECT encoder captures both tissue and cancer
biology
The interpretability of node activations was evaluated
using ROC-AUC scores of a selection of terms that
are expected to vary in activity over the different
cancer types in the dataset (see Methods-Latent node
activation analysis). Information on cancer types and
selected GO-terms is available in Tables S1 andS2
respectively.

The GONNECT encoder was able to discriminate
cancer types that are known to have aberrant activity of
a certain biological process using the activation of the
network node associated with that process (Figure 6A).
Most of these highly predictive terms were related
to general tissue biology: Cholesterol metabolism is
predominantly active in liver tissue and adrenal glands
for the production of bile acid and steroids [24], [25].
This is reflected in the ROC-AUC score of the GO-term
cholesterol metabolic process for LIHC and ACC, and bile
acid metabolic process for LIHC (Figure 6A, asterisks).
LIHC is also well distinguished from other types by the
GO-term negative regulation of blood coagulation, which
is known to be influenced by the liver [26]. Other
examples of congruence between the ROC-AUC score
and tissue biology are found for neuron-associated
terms: positive regulation of myelination and positive
regulation of neuron projection regeneration are especially
predictive of LGG samples.

In addition to tissue-specific biology, the GON-
NECT encoder also appeared to have captured cancer
biology information: BLCA is best predicted by C21-
steroid hormone metabolic process (Figure 6A, circles). We
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Figure 5: Two-dimensional t-SNE transform [23] of the embedding space learned by different GONNECT
configurations. Samples are labeled by cancer type. A) Embedding space of the fully connected model where
both encoder and decoder are MLPs. B) Embedding space of a GONNECT encoder with MLP decoder. C)
Embedding space of an MLP encoder with GONNECT decoder. D) Embedding space of a GONNECT encoder
with GONNECT decoder. E) The t-SNE transform of the original high-dimensional input space.
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could not find evidence in literature of aberrant steroid
metabolism in healthy bladder tissue. However, a
recent study indicates a depletion of steroids in male
bladder tumors [27]. Similarly, positive regulation of
MAP kinase activity is activated in UVM cancers [28].
We also looked at terms that separate different cancer
types from the same tissue. For lung samples, we
found DNA damage checkpoint signaling to be the term
with the largest score difference between LUAD and
LUSC, which is also one of the processes influenced
by the set of differentially expressed genes between
LUAD and LUSC [29].

Not all ROC-AUC scores could be supported by
current literature. Some terms are known to be up-
regulated in multiple cancer types, such as extracellular
matrix organization for PAAD and SARC [30], while only
one of them obtained a significant ROC-AUC score
for that GO-term (Figure 6A, triangles). ROC-AUC
scores of all 623 GO-terms per GONNECT module are
available in Figures S6 and S7.

GONNECT decoder struggles to reconstruct specific
processes
The GONNECT decoder shows a different distribution
of ROC-AUC scores compared to the GONNECT en-
coder. If we compare the same examples, we only see
agreements for LIHC and LGG (Figure 6B). Further-
more, many GO-terms show similar patterns in the
ROC-AUC scores per cancer type. On further inspec-
tion, similar score patterns belong to similar GO-terms
that are variants of the same type of biological pro-
cess. The GONNECT decoder appears to struggle to
differentiate in the activations of these related terms,
given that it must reconstruct them from one common
ancestor term.

Soft links propose novel biological
interactions
The ontology used in this study as a source of prior
knowledge is not complete. GO is constantly revised
and expanded with new information gathered from
experiments. It is therefore a rather bold assumption
to use GO as ground truth for the existence of relation-
ships between biological entities. Many relationships
might exist, but have yet to be experimentally verified,
and are therefore not present in GO.

GONNECT-SL balances performance and prior
knowledge dependence
The introduction of soft links allows for data-driven
augmentation of incorporated prior knowledge. The
process of learning soft links must be carefully con-
trolled to prevent too many new edges from being

incorporated, which would degrade the biological in-
terpretability in favor of reconstruction. The soft link
models were optimized to have similar performance
as fully connected models using a minimal amount of
active soft links (see Methods-Soft link tuning). The
results of soft link hyperparameter tuning are available
in Figures S8 and S9.

The weights of the resulting GONNECT-SL model
can be divided into three groups: GO-derived links,
active soft links, and inactive soft links. GO-derived
links are not subject to regularization and have a simi-
lar distribution to fixed link weights (Figure 7). Of the
available soft links, 96% have a magnitude |w| < 0.001,
and only 174 (0.005%) soft links have a weight mag-
nitude |w| > 0.01 and are therefore considered active.
This relatively small amount of active soft links was
sufficient to perform on par with fully connected mod-
els.

Active soft links are supported by literature
To interpret GONNECT-SL, we gathered the most ac-
tive soft links in each hierarchical layer in the network
and looked for potential biological relevance. Inter-
estingly, the ten most active soft links between genes
and GO-terms (the lowest hierarchical layer) were all
linked to the endoplasmic-reticulum-associated pro-
tein degradation pathway (ERAD). According to GO,
ERAD links to only one gene in the dataset. However,
some of the genes linked through soft links are likely
to be related to ERAD as well: Q9BZQ8 encodes a
protein involved in the integrated stress response, a
pathway that is activated by accumulation of unfolded
proteins in the endoplasmic reticulum (ER) [31], [32].
Q6UXG2 is also involved in the unfolded protein re-
sponse in the ER [33]. Q9BPY8 encodes co-chaperone
proteins that assist in refolding and/or degradation
of proteins during cellular stress [34]. However, other
genes that obtained a high soft link weight were less
likely to be involved in ERAD, e.g., genes that play
a role in cholesterol transport, insulin sensitivity, or
fibril formation.

Soft links between GO terms in higher hierarchi-
cal layers also provided valuable insight into possibly
unknown interactions. In addition to linking genes
involved in integrated stress response to the ERAD
GO-term, GONNECT-SL also linked ERAD to the inte-
grated stress response GO-term in the consecutive layer.
There are multiple studies that point to the influence
of ER stress and unfolded protein response on the
ERAD pathway [31]–[33], [35]. Another interesting
soft link that became active during training is that
between positive regulation of epithelial to mesenchymal
transition (EMT) and tissue development. In literature,
it is well described how EMT plays a crucial role in
embryonic tissue development [36]. In fact, these two
GO-terms are known to be related, but with a relation-
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Figure 6: Heatmap of ROC-AUC scores of linear regression models trained on the activations of GONNECT
nodes to distinguish cancer types (see Methods-Latent node activation analysis). Red asterisks indicate
processes related to general tissue biology, red circles indicate processes related to cancer biology and red
triangles indicate where similar scores were expected based on cancer type. A) ROC-AUC scores from
GONNECT encoder nodes. B) ROC-AUC scores from GONNECT decoder nodes.
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Figure 7: Distribution of learned weights of
GONNECT-SL. For comparison, the weight distribu-
tion of a fully connected MLP (purple), and the distri-
bution of regular GONNECT (green) is shown. The
weights of GONNECT-SL are split up into the weights
of links that were already present in GO (orange) and
those that are not, meaning they can become active soft
links (blue). The spike at 1.0 represents unlearnable
weights, fixed a a value of 1.0 (see Methods-Model
implementations).

ship that was removed during ontology processing
(see Methods-Ontology processing). GONNECT-SL
thus learned a connection it had never seen before but
in reality has been proven to exist.

Interestingly, most active soft links contain terms
that are involved in cancer, such as those related to ER
stress [37], [38], EMT [39], and angiogenesis [40], as
well as more general terms such as DNA repair and
adaptive immune response.

Active soft links form hubs on low-degree nodes
In both the encoder and the decoder, one node partici-
pates in more than half of the ten most active soft links
between genes and GO-terms. This node thus forms a
hub for active soft links, having active outgoing soft
links as well. Interestingly, these hub nodes originally
had very few incoming edges (one for the encoder
hub, four for the decoder hub), which means that they
carried relatively little information about the input
before the addition of soft links.

GONNECT trains less efficient than MLPs
Despite having orders-of-magnitude fewer parame-
ters, GONNECT required more time to train relative
to standard MLPs. The GO-derived constraints give
GONNECT a sparse architecture with less learnable

weights. However, the average time per epoch in-
creased for both GONNECT and GONNECT-SL mod-
els from 1.1 s for MLPs, to an average of 7.2 s for
GONNECT variants.

The number of epochs until convergence remained
similar between MLPs and GONNECT encoder mod-
els, but increased four times for decoder models and
17 times for dual GONNECT configurations. Further-
more, additional memory was required to store the
GO-derived masks used during training, resulting in
an additional 200MB of memory used (see Methods-
Training). Training statistics for the different models
are available in Table S3.

Discussion
Deep neural networks would greatly benefit from
methods that can interpret their internal representa-
tions. In biology, the ability to trace back the mecha-
nisms involved in a particular prediction is crucial for
research on the mechanisms of disease and medicine.
Here we introduced GONNECT, a sparse, biologically-
informed neural network that leverages prior knowl-
edge from Gene Ontology to provide interpretability
of the latent space of gene expression autoencoders, in
terms of biological processes and their relationships.

Biological prior knowledge improves performance
and explainability
By mapping each neuron to a GO-term and wiring
edges to match GO relationships, GONNECT produces
a directly interpretable network. On gene expression
reconstruction, GONNECT outperforms similar mod-
els with an equal amount of parameters, but without a
biologically-informed architecture. Our results show
that GONNECT can recognize up- or down-regulated
pathways and processes based on gene expression
data and use these activities to distinguish cancer
types. Its soft link extension, GONNECT-SL, surpasses
the biologically-agnostic reference models, including
those with significantly more parameters, while the
learned soft links provide relevant suggestions for
novel biological relationships between genes and on-
tology terms.

GONNECT performs best when used as encoder
GONNECTs built-in flexibility to be used as both
encoder and decoder allowed us to compare different
autoencoder configurations in terms of performance
and explainability of the inner workings of the model.
So far, all existing biologically-informed autoencoders
use prior knowledge exclusively in the decoder. Our
results show that GONNECT performs best as encoder
module. The GONNECT encoder achieved better
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reconstruction and a more interpretable latent space
than decoders. Although GONNECT decoders had a
more organized embedding space, they were not able
to fully exploit the embeddings, resulting in a higher
reconstruction loss.

The fact that GONNECT encoders can achieve bet-
ter reconstruction from a lower-quality embedding
space shows that the MLP decoder in these models is
more powerful than a GONNECT decoder. Similarly,
the high-quality embeddings of GONNECT decoder
models show how MLP encoders produce better em-
beddings than GONNECT encoders. Interestingly, the
effect on reconstruction seems stronger for decoders
than for encoders. It could therefore be the case that
the high reconstruction performance of GONNECT
encoder models is explained by being coupled to a
more potent MLP decoder.

Node activations are partially explainable
One way to interpret GONNECTs inner workings is to
conceptualize it as simulating the internal processes
of a cell. The activation of each neuron then reflects
the activity of its corresponding process, and network
weights indicate the strength of influence between
processes. In GONNECT models, the signs of the
activations proved uninformative, as different model
instances showed consistent magnitudes of activation
but arbitrary signs. We showed how some processes
exhibited distinctive magnitudes of activation for sam-
ples in which we know that these processes have a
distinct activity compared to other cell types. However,
we also observed up- or down-regulated processes in
cancer types that are not known to be associated with
that process, as well as unobtrusive activations for
processes that were expected to distinguish a cancer
type.

One explanation for these observations is that GON-
NECT learned cancer type characteristics that have not
yet been discovered or described in literature. An un-
expectedly high ROC-AUC score for a process-cancer
type pair could reveal novel associations, while a lower
than expected score could indicate that other cancer
types share similar process activity, but the behavior
might only have been described for one cancer type.

Alternatively, during optimization, GONNECT
may focus on a subset of genes and processes to help
distinguish cancer types, while downplaying those em-
phasized in literature. Unrelated or less studied genes
and processes might show a similar expression pattern
between cancer types as known markers, resulting in
redundancy in the sets of genes and processes that can
be used to distinguish a certain cancer type.

An important limitation in dealing with this redun-
dancy is the lack of validation data. There is no ground
truth available on how active a certain process is, given
the expression of its associated genes. Therefore, we

cannot guide GONNECT to prefer biologically plausi-
ble processes when expression patterns correlate, nor
can we confirm that it has learned correct relations
between gene expression and process activity.

Soft links might be biased by topology and dataset
GONNECT-SL showed a consistent tendency to con-
centrate active soft links on a single GO-term. The
resulting hub node combines many different activa-
tions and passes the aggregate to many others. It
would be interesting to study whether this behavior
is biologically justifiable or if it is general network
behavior for this approach to soft link learning.

Moreover, the predominance of cancer-related terms
among active soft links suggests that training on can-
cer expression data introduced a bias in GONNECT
toward expanding cancer biology interactions. Al-
though GO is not cancer-oriented, the model may
have become biased to augment interactions related
to cancer biology, as a result of using TCGA data.
This would suggest that GONNECT learned what
biological processes play an important role in cancer.

Implementation of sparsity hindered learning efficiency
Despite its sparse connectivity, GONNECT required
more time and more memory than fully connected
models. Transforming GO to a structure that is suitable
as MLP required extensive processing and resulted
in artifacts that hindered training: in order to define
distinct network layers, proxy terms were added to
the ontology graph. As a result, 60% of the nodes in
the final graph were proxy terms. Since these proxy
terms do not have biological meaning, they cannot
participate in optimization. This was achieved by auto-
matically resetting the weight towards all proxy terms
to one and their bias to zero, after each optimization
step. This intervened with optimization, partially dis-
rupting gradient flow during backpropagation. As
a result, both time per epoch and number of epochs
were negatively affected.

Additionally, the implementation of GONNECT
required more memory compared to fully connected
models, since the GO-derived masks used during
training had to be stored as additional model attributes.
An implementation using sparse COO tensors for both
weight matrices and masks was considered but rejected
due to a doubling in runtime complexity.

Outlook and applications
We applied GONNECT and GONNECT-SL as autoen-
coder modules, aiming to train a task-invariant model
with biological knowledge and general interpretability.
We used cancer-oriented data to train and evaluate
our models and obtained results that were related
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to cancer as well. It would be interesting to study
how GONNECT behaves after training on a different
dataset with healthy samples: Do cancer-associated
terms lose their predictive power? Do the same soft
links become active? To what extent were the results
of this study biased by the dataset used?

In terms of implementation, improvements in weight
masking could lead to more efficient optimization,
potentially increasing accuracy. Furthermore, an ap-
proach in which the GONNECT decoder has more
freedom to distinguish child terms from a single parent
could improve decoder interpretability.

GONNECT could prove a valuable asset in the
fields of computational and experimental biology. A
model that can accurately simulate the activity of, and
interactions between the many complex and abstract
biological processes in a cell, solely from gene expres-
sion data, would greatly benefit the field of mutational
research and drug development. GONNECT lends
itself well to modeling multiple gene knockouts and
overexpression of genes. In turn, this could be used
to assess potential drug targets and predict drug side
effects. Furthermore, if the genes involved in a certain
process are not yet fully identified, disruption of that
process can still be simulated by manipulating the
corresponding node activation.

GONNECT can also be applied in combination
with a classification head, directly using the learned
embeddings, or by retraining in a more task-specific
setting. GONNECT-SL can help to find new relation-
ships, not only between genes and pathways, but also
between more abstract processes. Highly active soft
links could give direction for experimental research
into unknown biological dependencies.

The lack of need for labels means that GONNECT
can be easily retrained with different datasets, opening
up the possibility to train personalized models that
could be used in personalized medicine.

GONNECT and GONNECT-SL have shown promis-
ing results in generating biologically substantiated out-
comes, providing both performance and interpretabil-
ity, while giving suggestions for knowledge gaps. A
further optimized approach could improve perfor-
mance, interpretability, and efficiency. The opportu-
nities for improvement in combination with a wide
potential applicability foreshadow a lasting relevancy
of GONNECT and its successors in advancing the field
of biologically-informed neural networks.

Methods

Ontology processing
The biological prior knowledge used as model archi-
tecture was derived from Gene Ontology1 (GO) [14].
First, GO-terms were filtered by namespace to select
just the Biological Process terms. The relationships
between ontology terms were then filtered for is_a
relationships, to ensure that the resulting ontology
satisfied the properties of a directed acyclic graph
(DAG).

The ontology graph was extended with the genes
from the dataset using the gene annotation file2 (GAF)
for Homo sapiens. GO-terms without any genes linked
to their subtree were removed from the DAG (Fig-
ure 8A).

Increasing average connectivity
Terms with low connectivity were removed to reduce
the size of the ontology while maintaining its biological
interpretability. Based on user-defined thresholds,
any term with fewer parent terms than the parent
threshold and fewer children than the child threshold,
were merged into their parent(s). This merge operation
links all children of the merged term to all parents of
the merged term and subsequently removes the term
itself from the ontology (Figure 8B). Since the merge
operation alters parent-child relationships, multiple
rounds are needed to cover all cases where a term only
met the merge requirements as a consequence of a
previous merge operation (e.g. a child of a term was
merged in a previous round, resulting in the number
of remaining children of that term to fall below the
threshold, in turn resulting in the term in question
being merged as well). This process of iterating over
all terms and testing for the merge conditions was
repeated until convergence.

An unwanted byproduct of the merge operation is
the formation of skip connections, where a single edge
connects a member from a term its subtree to a member
of said term its supertree, allowing a bypass of the
term itself. These skip connections were removed, or
pruned, after each round of merges, where a round is
one loop over all terms. The merge-prune operations
condense the ontology graph, resulting in a more
compact, yet still interpretable form.

Next to the merge conditions for minimal number
of parents and children, we also included a third
condition to control the number of depth levels in the
graph and, therefore, the number of network layers in
the resulting GONNECT module. This depth population

1https://purl.obolibrary.org/obo/go/go-basic.obo Date
of access: 27 Oct 2024

2https://current.geneontology.org/annotations/goa_
human.gaf.gz Date of access: 10 Sep 2024
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Figure 8: Example of the different GO processing steps. Nodes and edges that are colored red in a panel
are removed from the graph during that processing step, those colored blue are added to the graph. Dotted
lines represent edges towards proxy terms. A) An graph with similar properties as GO. Nodes E, I , J and K
represent genes that have been linked to their annotated GO-terms. B) Effect of the merge-prune operation for
a parent threshold of 1 and a child threshold of 2. Node G gets merged into node D and the skip connection
AC gets removed. C) The balancing operation introduces a proxy term P1 to balance node I . D) Gene nodes E
and K are pulled down by introducing proxy terms P2 and P3, such that all genes are at maximum depth.

threshold determines the minimum number of GO-
terms at any depth level. If the number of terms is
below the threshold, all terms at that depth level are
merged into their parents. The graph used in this study
was processed with the following merge conditions:

parent threshold = 1

child threshold = 30

depth population threshold = 50

Neural network compatibility
For a graph to be used as the architecture of an MLP,
we identified the following graph properties as re-
quirements:

• Acyclic: All possible paths through the graph
should start at a root node and end in a leaf node,
or vice versa, and have no loops (i.e. a network
pass passes each layer once)

• Balanced: All possible paths from one node to
another should have an equal amount of edges
(i.e. a term occurs in only one single network
layer)

• Equal path lengths from root to leaves: All leaf
nodes should have an equal path length towards
the root layer (i.e., all input nodes are present in
the first network layer)

Acyclicity is ensured by using only is_a relationships
of GO and, therefore, does not need to be considered
explicitly.

To balance the ontology graph, the graph was
traversed depth-first and a proxy term (a new term
inserted between the original term and a subset of
its children) was inserted wherever the current term
had imbalanced children, of which the current term
was on the shortest branch (Figure 8C). This process
was repeated for multiple traversals until the graph
converged.

Equal path lengths from root to leaf were achieved
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by inserting proxy terms above genes until the depth
level of the gene was equal to the maximum depth
of the graph (Figure 8D). The resulting graph has a
layout that can be used directly as an MLP, without
the need for residual connections.

Data preprocessing
The dataset used for training and evaluation was con-
structed and downloaded from the Genomic Data
Commons (GDC) portal [41]. Samples were included
if they were open access, part of the TCGA program,
and had available gene expression quantification data.
The retrieved dataset contained 10,498 samples from
9,648 patients, including transcripts per million (TPM)
data on 59,427 genes. Next, each TPM value vi of
gene i was log-transformed as follows:

vi → log (vi + 1)

UniProt IDs were retrieved for each gene name using
UniProts online ID mapping tool3 [42]. Genes without
a match were dropped, after which the gene names of
the remaining genes were replaced with their Uniprot
ID. The resulting IDs were intersected with the set
of Uniprot IDs that have at least one GO-annotation
in the Biological Process namespace according to the
gene association file (GAF). Samples from healthy
tissue and genes with zero variance were dropped,
leaving 9797 samples containing 17,491 genes. In light
of computational costs, data availability, and model
complexity, we trained our models on the 1,000 most
highly variable genes in the dataset, selected using the
Seurat procedure [43].

Model implementations
Each term in the ontology is represented by a node
in the neural network, and each relationship between
two terms is modeled with a learnable weight between
the two corresponding nodes. All models are imple-
mented in Python using pytorch (v 2.5.1). Parsing of
the OBO file4 containing the ontology was performed
using the goatools package (v 1.4.12) [44].

GONNECT module
The biologically-informed architecture is implemented
through sparse weight matrices, where a nonzero
element represents an edge between nodes, and thus a
relationship between their associated GO-terms. These
weight matrices are obtained by applying GO-derived
masks to the weights of each network layer.

3https://www.uniprot.org/id-mapping
4https://current.geneontology.org/ontology/go-basic.

obo

The terms in the processed ontology graph were
grouped by depth, after which adjacency matrices
between consecutive depth levels were constructed
based on parent-child relationships. These adjacency
matrices were in turn used to mask the corresponding
weight matrices of GONNECT. In addition to these
edge masks Me, we also store a 1D proxy mask Mb

per GONNECT layer. The proxy mask is used to fixate
weights towards proxy terms to 1, and the bias of proxy
terms to 0. This ensures unaffected signal transduction
through proxy terms and preserves interpretability.
The resulting forward pass is defined as

x(i+1) = ReLU
(
WM

(i) x(i) + bM
(i)
)

where i denotes the network layer, x the input and
WM and bM are the masked versions of the weight
matrix W and bias vector b, for which the following
holds

Wij =

{
1 if Mbi = 1

Wij else
(1)

WM = W ⊙Me (2)
bM = b⊙Mb (3)

where ⊙ denotes the Hadamard product. At model
initialization, the weight matrices of GONNECT are
filled by drawing from a Kaiming uniform distribution
[45]. After initialization and after each optimization
step during training, weight masking is repeated to
ensure that the masked values remain fixed.

GONNECT-SL module
Like regular GONNECT, GONNECT-SL stores similar
edge masks and proxy masks. After model initializa-
tion using a Kaiming normal distribution, these masks
are used to fix the weights toward proxy terms to 1
(Eq. 2), and proxy biases to 0 (Eq. 3). However, instead
of setting non-GO weights to 0, they are initialized as
soft link from a normal distribution with mean µ = 0
and standard deviation σ = 0.001. Weights and biases
of proxy terms are kept constant by reapplying masks
after each optimization step during training.

GONNECT-R module
One of the baseline models used to evaluate perfor-
mance is GONNECT-R: a variant of GONNECT that
preserves the number of nodes, layers, and nodes
per layer, as well as node connectivity. GONNECT-R
shuffles the GO-derived edges between nodes while
preserving in- and out-degree. The resulting model
loses its biological interpretability but largely retains
the architectural properties of the GONNECT module
from which it originates.
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Edge shuffling was performed using a Monte Carlo
algorithm that picks two directed edges and swaps
their sink nodes, similar to XSwap [46]. Between
each pair of network layers, a total of QE swaps were
performed, where E is the number of GO-derived
edges between the two layers, and Q = 100, a heuristic
to assume randomness [47].

Training
The autoencoder models are trained using the mean
squared error (MSE) of input reconstruction, given by

LMSE =
1

n

n∑
i=1

∥xi − x̂i∥22

Where xi is the original input sample, x̂i is the recon-
structed output of the autoencoder, n is the number of
samples, and ∥ · ∥22 denotes the squared ℓ2-norm.

For soft link models, an additional term is added
to the MSE that penalizes the absolute value of all
soft links (i.e. weights representing edges that are
not present in the ontology graph). The resulting loss
function LSL is used to train these models.

LSL = LMSE + α

 1

m

k∑
j=1

∥∥∥W(j) ⊙ (1−Me
(j))

∥∥∥
1


Where α is the regularization factor (see Methods-Soft
link tuning), W(j) the weight matrix corresponding
to the j-th network layer, Me

(j) the edge mask for the
j-th network layer, ⊙ denotes the Hadamard product,
k the number of network layers, m the total number
of soft links in the network and ∥ · ∥1 denotes the ℓ1-
norm. The motivation for weight regularization using
the ℓ1-norm is to allow some soft links to receive a
relatively high weight while keeping the majority of
soft link weights close to zero.

All models were trained to minimize their respec-
tive loss functions through stochastic gradient descent
(SGD). Using random train-validation-test splits of
70%-15%-15%, each model was trained multiple times
with different split initializations, using early stopping
with patience parameter p = 10.

Soft link tuning
Control over the number of participating soft links is
achieved with hyperparameter α. This α weights the
ℓ1-norm of the soft link weights against the reconstruc-
tion loss, which means that the higher α, the larger
the contribution of soft link magnitudes to the overall
training loss, and thus the stronger the regularization
effect. In extremes, a soft link model where α = 0
is equivalent to a fully connected MLP, while α = ∞

is equivalent to a fixed link model. The α hyperpa-
rameter was optimized to maximize reconstruction
performance while minimizing the number of non-
zero soft link weights. A value of α = 1 · 103 resulted
in a model in which 174 non-GO links were active as
soft links, meaning that they obtained a weight w for
which |w| > 0.01 after training for 1000 epochs.

Embedding Metrics
The quality of the embeddings is evaluated based on
three metrics. The silhouette score (SS) uses intra- and
inter-cluster distances to indicate how tight and well-
defined a certain clustering is [48]. The ground truth
cancer type labels were used to define the clusters.
The SS can take values between -1 and 1, where SS ≈ 1
indicates tightly and well separated clusters, SS ≈ 0
indicates cluster overlap, and SS ≈ −1 indicates wrong
cluster assignments.

The adjusted rand index (ARI) measures the pair-
wise agreement between two clusterings [49]. The
clusterings used for comparison are the ground truth
labels for cancer type and an unsupervised k-means
clustering of the embedding space, where k is equal
to the number of cancer types in the dataset. If the
two clusterings are identical, ARI = 1. For a random
clustering, ARI ≈ 0.

Normalized mutual information (NMI) gives the
shared information between different clusterings [50].
Again, the ground truth cancer type labels were com-
pared with a k-means clustering where k was equal to
the number of cancer types. A score of NMI = 0 indi-
cates no mutual information, and NMI = 1 indicates
perfect correlation between the two clusterings.

Latent node activation analysis
The interpretability of node activations is evaluated by
their ability to distinguish different cancer types. For
each node in GONNECT that is coupled to a GO-term,
we trained a linear regression model on the mean
activation of that node per cancer type in a one-vs-
rest setup. Each node received a score equal to the
area under the ROC curve (ROC-AUC) obtained by
evaluating the linear regression models on the same
test set as used in model training. This ROC-AUC score
was used to express the ability of a node to distinguish
a certain cancer type from other cancer types.

Resource Availability
All code used in data processing, model construc-
tion and training, and analysis is available at https:
//github.com/mlieftinck/Thesis_BINN/. The data
used in this study is open access and available at
https://portal.gdc.cancer.gov/.
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Supplementary Information

S1 Gene Ontology
The Gene Ontology (GO) knowledgebase is a comprehensive resource for computational analysis of molecular
biology and genetics [1]. The hierarchical ontology is structured as a directed graph comprising terms that
may have multiple parent and child terms. These GO-terms denote well-defined biological concepts and have
a unique alphanumerical identifier, as well as a textual definition, making GO both human-readable and
machine-readable. The many different GO-terms are connected through relationships such as is_a and part_of.

GO-terms are divided into three non-overlapping namespaces, each describing a different aspect of gene
product biology:

• Molecular Function (MF): includes terms related to the activity of gene product at the molecular level,
e.g. catalysis and DNA binding

• Cellular Component (CC): includes terms that denote where in the cell the gene product is active, e.g.
ribosome and cytoskeleton

• Biological Process (BP): includes terms that describe larger processes that are the result of many molecular
activities, e.g. cell cycle and signal transduction

GO makes use of annotation files to link gene products to GO-terms based on experimental evidence,
sequence similarity, or phylogenetic relations. Annotations include one of the different types of relationship, a
reference to the source of the annotation, and an evidence code, and they are manually curated by experts.
Figure S11 depicts part of the BP namespace graph.

Figure S1: Section of the Gene Ontology graph. Depicted is the supertree of GO:0019319 (hexose biosynthetic
process), which includes all parent terms based on is_a relationships up to the root term of the BP namespace:
biological process.

1Figure from https://geneontology.org/docs/ontology-documentation/
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Cancer type Full name Samples in dataset Occurs in

BRCA Breast invasive carcinoma 1060 10.8% Breast

LUAD Lung adenocarcinoma 516 5.3% Lung

UCEC Uterine corpus endometrial carcinoma 513 5.2% Endometrium

LGG Brain lower grade glioma 511 5.2% Central nervous system

KIRC Kidney renal clear cell carcinoma 508 5.2% Kidney

HNSC Head and neck squamous cell carcinoma 498 5.1% Head and neck

THCA Thyroid carcinoma 497 5.1% Thyroid

PRAD Prostate adenocarcinoma 477 4.9% Prostate

LUSC Lung squamous cell carcinoma 460 4.7% Lung

SKCM Skin cutaneous melanoma 440 4.5% Skin

COAD Colon adenocarcinoma 433 4.4% Colon

OV Ovarian serous cystadenocarcinoma 403 4.1% Ovary

STAD Stomach adenocarcinoma 397 4.1% Stomach

BLCA Bladder urothelial carcinoma 387 4.0% Bladder

LIHC Liver hepatocellular carcinoma 362 3.7% Liver

CESC Cervical squamous cell carcinoma and
endocervical adenocarcinoma

293 3.0% Cervix

KIRP Kidney renal papillary cell carcinoma 282 2.9% Kidney

SARC Sarcoma 250 2.6% Soft Tissue

ESCA Esophageal carcinoma 180 1.8% Esophagus

PCPG Pheochromocytoma and paraganglioma 177 1.8% Head and neck

PAAD Pancreatic adenocarcinoma 173 1.8% Pancreas

READ Rectum adenocarcinoma 148 1.5% Rectum

TGCT Testicular germ cell tumors 138 1.4% Testes

LAML Acute myeloid leukemia 137 1.4% Bone marrow

THYM Thymoma 119 1.2% Thymus

MESO Mesothelioma 87 0.9% Mesothelium

UVM Uveal melanoma 77 0.8% Eye

ACC Adrenocortical carcinoma 76 0.8% Adrenal glands

KICH Kidney chromophobe 65 0.7% Kidney

UCS Uterine carcinosarcoma 53 0.5% Uterus

DLBC Lymphoid neoplasm diffuse large B-cell
lymphoma

45 0.5% Lymphatic System

CHOL Cholangiocarcinoma 35 0.4% Bile Duct

Table S1: The different cancer types in the preprocessed TCGA [2] dataset. The table includes full name,
distribution of samples in the dataset, and the location where each cancer type occurs in the human body.
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Figure S2: Principle component analysis (PCA) [3] of the embedding space learned by different GONNECT
configurations. Samples are labeled by cancer type. A) Embedding space of the fully connected model where
both encoder and decoder are MLPs. B) Embedding space of a GONNECT encoder with MLP decoder. C)
Embedding space of an MLP encoder with GONNECT decoder. D) Embedding space of a GONNECT encoder
with GONNECT decoder. E) PCA plot of the original high-dimensional input space.
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Figure S3: Two-dimensional UMAP transform [4] of the embedding space learned by different GONNECT
configurations. Samples are labeled by cancer type. A) Embedding space of the fully connected model where
both encoder and decoder are MLPs. B) Embedding space of a GONNECT encoder with MLP decoder. C)
Embedding space of an MLP encoder with GONNECT decoder. D) Embedding space of a GONNECT encoder
with GONNECT decoder. E) The UMAP of the original high-dimensional input space.

21



GO ID Term name Raised activity expected

GO:0006631 Fatty acid metabolic process BRCA, LIHC, CHOL, OV,
PCPG

GO:0008203 Cholesterol metabolic process LIHC, CHOL, ACC

GO:0008206 Bile acid metabolic process LIHC, CHOL

GO:0008207 C21-steroid hormone
metabolic process

ACC, PCPG

GO:0008209 Androgen metabolic process ACC, PRAD

GO:0008210 Estrogen metabolic process BRCA, UCEC, OV

GO:0071870 Cellular response to cate-
cholamine stimulus

PCPG, ACC

GO:0061621 Canonical glycolysis LGG, HNSC, LUSC, ESCA,
CESC, SKCM, LUAD

GO:0090141 Positive regulation of mito-
chondrial fission

LGG, SARC, SKCM,
LUAD

GO:0000077 DNA damage checkpoint sig-
naling

OV, SARC, BRCA, STAD,
UCEC

GO:0043406 Positive regulation of MAP ki-
nase activity

SKCM, LUAD, COAD,
PAAD, LUSC, HNSC

GO:0042102 Positive regulation of T-cell
proliferation

DLBC, THYM, HNSC,
LUSC, SKCM

GO:0050671 Positive regulation of lympho-
cyte proliferation

DLBC, THYM, HNSC,
BRCA

GO:0030198 Extracellular matrix organiza-
tion

SARC, PAAD, BRCA,
COAD, STAD

GO:0030199 Collagen fibril organization SARC, PAAD, BRCA,
COAD, STAD

GO:0010718 Positive regulation of
epithelial-to-mesenchymal
transition (EMT)

HNSC, SARC, BRCA,
ESCA, CESC, SKCM

GO:0031643 Positive regulation of myelina-
tion

LGG

GO:0070572 Positive regulation of neuron
projection regeneration

LGG

GO:0046951 Ketone-body biosynthetic pro-
cess

LIHC, CHOL, KIRC, KIRP

GO:0030195 Negative regulation of blood
coagulation

LIHC, CHOL

Table S2: Selection of 20 GO-terms of processes that are expected to vary in activity across cancer types. These
terms are used to evaluate the interpretability of individual GONNECT node activations.
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Figure S4: Mean activations per cancer type of the terms in Table S2. The three heatmaps per panel show three
instances of a GONNECT encoder model. A) Raw activations per term, per cancer type. B) Absolute values of
the mean activations in panel A. Panel A shows how the sign of the mean activations appears random across
model instances. Panel B shows how the magnitude of some term-cancer type pairs are consistently high
across different encoder instances.
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Figure S5: Mean activations per cancer type of the terms in Table S2. The three heatmaps per panel show three
instances of a GONNECT decoder model. A) Raw activations per term, per cancer type. B) Absolute values of
the mean activations in panel A. Panel A shows how the sign of the mean activations appears random across
model instances. Panel B shows how the magnitude of some term-cancer type pairs are consistently high
across different decoder instances.
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Figure S6: ROC-AUC scores per cancer type of all 623 GO-term associated nodes in the GONNECT
encoder. The associated terms are denoted by GO ID and cancer types by their TCGA abbreviation.
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Figure S7: ROC-AUC scores per cancer type of all 623 GO-term associated nodes in the GONNECT
decoder. The associated terms are denoted by GO ID and cancer types by their TCGA abbreviation.
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Figure S8: Loss curves of GONNECT-SL training with different values for hyperparameter α. The models are
being trained with a specialized loss function, however, the figure shows regular mean square error (MSE) of
input reconstruction. A) Loss curve of a GONNECT-SL encoder module. B) Loss curve of a GONNECT-SL
decoder module. The larger α, the larger the weight regularization on soft links. A larger α results in less
active soft links, which is favorable for interpretability, but harms reconstruction performance. The effect on
reconstruction performance is more evident in the GONNECT-SL decoder compared to the encoder.

Figure S9: Weight distributions for different values of soft link hyperparameter α. For comparison, the weight
distribution of a fully connected MLP (purple), and the distribution of regular GONNECT (green) is shown.
The weights of GONNECT-SL are split up into the weights of links that were already present in GO (orange)
and those that are not, meaning they can become active soft links (blue). A) Weight distribution for α = 1 ∗ ·102.
The relatively low value means that a lot of soft links are active, and most active soft links have relatively small
magnitudes. Original GO links become less valuable, and therefore lose their high magnitude as well. B)
Weight distribution for α = 1 · 104. The high value means that just one soft link becomes active, and the model
essentially becomes equivalent to a fixed link GONNECT model.
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Model Time per epoch Epochs required Memory required Total training time

MLP 1.1s 468 0.9 GB 0h 9m

GONNECT-SL enc 6.4s 501 1.1 GB 0h 53m

GONNECT-SL dec 6.1s 417 1.1 GB 0h 42m

GONNECT-SL both 10.0s 1166 1.1 GB 3h 14m

GONNECT enc 6.0s 462 1.1 GB 0h 46m

GONNECT dec 7.8s 2251 1.1 GB 4h 52m

GONNECT both 9.7s 8303 1.1 GB 22h 25m

GONNECT-R enc 4.6s 776 1.1 GB 0h 59m

GONNECT-R dec 6.4s 2163 1.1 GB 3h 51m

GONNECT-R both 8.1s 8700 1.1 GB 19h 39m

Table S3: Training statistics of the different model variants. Values in the table denote the means over five
independent training runs on different data splits.
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