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Abstract

Fast development of tracking devices has made trajectory outlier detection
(TOD) possible and meaningful. Given a set of trajectories T , a TOD al-
gorithm outputs a subset of T , of which trajectories are different from most
of the other trajectories in some aspect(s). These trajectories, namely out-
liers, can indicate important or interesting information and are thus worth
noticing. TOD techniques can be used for surveillance security, accident
discovery, and many other purposes.

Many of the existing TOD algorithms consider only spatial trajectory
outliers. They can detect trajectories that follow an abnormal route or
direction. While some existing algorithms are capable of detecting outliers
in temporal aspects, like trajectories with abnormal time duration or speed,
they have their own weaknesses. For example, they can be computationally
expensive, or fail to detect important types of outliers. In this work, we aim
to overcome these shortcomings of previous TOD algorithms.

A novel grid-based TOD algorithm is proposed that is capable of detecting
temporal-spatial outliers including density, direction, duration, and speed
outliers with accuracy as well as fast calculation. The algorithm performs
the following three main steps: (i) it calculates density, direction, duration,
and speed features of all trajectories in the input set T ; (ii) it transforms
feature information of trajectories into grid information; (iii) it examines
each trajectory grid cell by grid cell. Following these three steps, outlying
trajectories are extracted. By conducting experiments on several data sets
including both simulated and real ones, the algorithm is shown to be efficient
in detecting density, direction, duration, and speed outliers. It outperforms
state-of-the-art TOD algorithms in various aspects.
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Chapter 1

Introduction

The increasing availability and development of localization and tracking
technologies such as GPS, Wi-Fi, and video cameras make it convenient
to generate a myriad of trajectories. Such trajectories can represent the
movement of various moving objects like people, vehicles, vessels and an-
imals. It offers researchers the opportunity to do trajectory mining and
understand behaviors of moving objects. One area of trajectory mining is
outlier detection [22], which is to detect trajectories that are different, rare,
or possess other unique properties. Outlier detection has been identified
as an important technique for detecting critical events in a wide range of
data-rich domains where a majority of the data is considered normal and
uninteresting [1, 6]. This problem in the trajectory-mining area has been
studied for years and can be used in various applications. Trajectory outlier
detection (TOD) algorithms and models that are applicable in vessel sur-
veillance [7, 12, 13], hurricane tracking [8, 15, 20], animal migratory study
[8, 15], taxi fraud detection [2, 14, 21], traffic violation [4, 17], and many
other areas have been proposed.

In this thesis, the automated detection of anomalous pedestrian traject-
ories is central. A study is made on how to develop an efficient method for
automated detection of anomalous pedestrian trajectories.

1.1 Problem Statement

In public places like shopping malls, train stations, and airport terminals,
large numbers of people move around. Some of these people may behave
abnormally due to various reasons: they might be in trouble and need help or
they intent to do harm in some way. Under such circumstances, it will benefit
both managers and visitors if these abnormal trajectories can be noticed.
Since some people with abnormal behaviors will have abnormal trajectories
as well, trajectory outlier detection is a way to detect abnormal behaviors
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and improve security. However, it is infeasible for a small number of security
officers to identify these abnormal trajectories by manually monitoring. This
brings the need for automated trajectory anomaly detection.

Different models and algorithms have previously been proposed for tra-
jectory outlier detection. Yet, we argue that these algorithms are not capable
of detecting all types of important outliers and suffer from some drawbacks.
Some of them take entire trajectories as detecting objects and fail to detect
outliers when only small parts of a trajectory are outlying. In fact, since
some abnormal behaviors only happen at small parts of an entire traject-
ory and disappear at the other parts, it is critical to do outlier detection
for parts of trajectories. Some algorithms fail to detect duration and speed
outliers because they focus much on the spatial domain, like density and
direction outliers. As a matter of fact, duration and speed outliers are of
great importance because a person who spends an uncommonly long time
at some place might be planning something harmful, and a person who runs
while the others are walking calmly might have done something bad and
is running away. Some algorithms require large memory storage. Yet it is
better to have an algorithm with small memory consumption. And lastly,
some algorithms are computationally expensive although they are capable of
detecting duration and speed outliers. However, it is important to have fast
running algorithms because security is time sensitive and requires a quick
response.

Hence, the problem of this project is stated as follows:

Develop a TOD algorithm that is capable of detecting density, direc-
tion, duration, and speed outliers with high accuracy as well as fast
calculation and small memory consumption. The algorithm should
be feasible when only small parts of a trajectory are outlying.

To fulfill this statement, the following sub-questions are defined:

• How well can previous algorithms detect each of these outlier types?

• How can we improve that?

Accordingly, the main goal of this project is to study existing TOD meth-
ods and propose new or updated algorithms that outperform existing al-
gorithms in certain aspects. The focus will be on detecting duration and
speed outliers, which previous algorithms do badly. While doing so, run-time
complexity and memory consumption are taken into account.

1.2 Contributions

During this research, the following contributions were made:
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• A novel algorithm is proposed that is able to detect four types of
temporal-spatial outliers: density, direction, duration, and speed out-
liers, with high accuracy as well as fast calculation and small memory
usage.

• A precise trajectory-segmentation approach is designed as a pre-process
of trajectory data. This can be used for further study on grid-based
TOD methods.

• The algorithm is gridbased, making it easy to detect all the four types
of outliers when only small parts of a trajectory are outlying.

• The algorithm is shown to be more efficient than state-of-the-art Dy-
namic Time Warping [18].

• The TOD algorithm has time complexity O(numtraj · Nmax), with
numtraj being the number of trajectories and Nmax being the max-
imum number of location points of a trajectory. This is a great advant-
age compared to the previous algorithms that are capable of detecting
all the four types of outliers, which typically have O(num2

traj ·Nmax)

or O(numtraj ·N2
max) complexity.

1.3 Thesis Organization

In Chapter 2 some definitions related to trajectory outlier detection are
given. In Chapter 3 some previously existing TOD algorithms are reviewed
and compared. Chapter 4 gives introductions of two TOD algorithm designs.
In Chapter 5 the experiments we did are introduced, together with the
results and analysis of those experiments. Lastly in Chapter 6 conclusions
of this work are made, as well as a proposal for future work.
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Chapter 2

Definitions

In this chapter, several definitions that are closely relevant to trajectory
outlier detection are made. In Section 2.1, the definitions of trajectory and
trajectory segment are given. In Section 2.2, a grid-based method and a
trajectory-interpolation approach are introduced. Section 2.3 gives some
definitions that are relevant to the relationship between trajectories and
grid cells. Section 2.4 introduces some important features of trajectories.
And lastly, in Section 2.5 different types of outliers are defined.

2.1 Trajectory

The definitions of trajectory and trajectory segment are given as follows.

Definition 1 (trajectory): A trajectory is defined as an ordered se-
quence of location points, i.e., traj : q1q2 . . . qM . Each location point qm
(m ∈ [1,M ]) is represented by a triple (xm, ym, tm), where xm, ym, and tm
are the x coordinate, the y coordinate and the time stamp, respectively, of
trajectory traj at location point qm. When a < b, the inequation ta < tb
should be satisfied.

Definition 2 (trajectory segment): We assume that there is a line
segment between every two consecutive trajectory location points. These
line segments are called trajectory segments and they indicate the path an
object moves along with. If a trajectory segment is connected by two location
points qm and qm+1, it can be referred to as trajSegm : qmqm+1 and qm is
its staring point.

The trajectory segment defined here has the following attributes.

• The length of a trajectory segment trajSegm is represented as lenm
and can be calculated as lenm =

√
(xm+1 − xm)2 + (ym+1 − ym)2.

• If a trajectory has M location points. The number of trajectory seg-
ments in it is M − 1.
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2.2 Grid and Interpolation

In this research, we aim to make trajectory data processing more convenient
by applying a grid-based method, which is introduced as follows.

The minimum bounding box of all trajectories is considered as a rectan-
gular area A of size widthA × heightA. The area overlaps with a grid of
sizeg × sizeg square grid cells. If the number of grid cells in a row and
that in a column is ngx and ngy , respectively, then ngx = ceiling(widthAsizeg

),

ngy = ceiling(heightAsizeg
). Figure 2.1 shows a visualization of the grid, where

a grid cell is represented as g(a,b) (a ∈ [0, ngx − 1], b ∈ [0, ngy − 1]). Its four
borders are represented by a set B(a,b) = {βn(a,b), β

e
(a,b), β

s
(a,b), β

w
(a,b)}, where

the superscripts n, e, s, and w represent the border on the east, west, south,
and north side, respectively. In Figure 2.1, amax = ngx − 1, bmax = ngy − 1.
In this way, the grid cells cover all trajectory location points and traject-
ory segments and each location point is located inside a grid cell or on the
border of a grid cell.

Figure 2.1: A visualization of the grid. g(a,b) (a ∈ [0, amax], b ∈ [0, bmax]) is
a grid cell and βe(a,b), β

w
(a,b), β

s
(a,b), β

n
(a,b) are its four borders.

When the grid-based method is applied, there exist situations where a
trajectory segment passes through some grid cell but has no location point
in it. An example is shown in Figure 2.2, in which the trajectory segment
trajSegm : qmqm+1 passes through the grid cell on the right side but neither
of its location points is located inside that grid cell. In order to make things

6



easier when this kind of situation happens, we interpolate our trajectory
data. A location point is inserted whenever a trajectory segment intersects
with a grid cell border, like the points pn−1, pn+1, pn+2, and pn+3 in Fig-
ure 2.2.

Figure 2.2: An example of interpolation on a trajectory. pn−1, pn+1, and
pn+3 are newly inserted location points.

After interpolation, trajectory traj : q1q2 . . . qM is transformed to a new
sequence of location points, i.e., traj : p1p2 . . . pN , where N ≥ M and pn
(n ∈ [1, N ]) is either an original location point or a newly inserted one. If
pn is a newly inserted location point between two location points qm and
qm+1, tn is calculated as follows.

tn = tm +
xn − xm
xm+1 − xm

· (tm+1 − tm)

After interpolation, the new location point sequence still conforms to
Definition 1. In other words, a trajectory is still a trajectory after inter-
polation. The only difference is that it might have more location points in
the sequence. Thus a new definition for an interpolated trajectory is not
necessary. Since the trajectory location point sequences to be used for out-
lier detection are the ones after interpolation, from here onwards, trajectory
refers to the location point sequence after interpolation. Besides, Defini-
tion 2 still holds for trajectory segments of an interpolated trajectory. The
difference is that no trajectory segment will span more than one grid cell.

2.3 Trajectories and Grid Cells

When the grid-based method and the interpolation approach are applied,
there exist some relationships between trajectories and grid cells.

Definition 3 (entering point): A trajectory location point that is loc-
ated on a grid cell border is a grid cell entering location point. In this
research, grid cell entering location point is also called entering point for
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short. Accordingly, for a trajectory traj : p1p2 . . . pN , pn (n ∈ [1, N ]) is an
entering point if xn or yn is divisible by sizeg. Besides, although p1 might
not be located on a grid cell border, we also consider it as an entering point.

Following this definition, observe that all the newly inserted location
points in an interpolated trajectory are entering points.

Definition 4 (belong to / in): After interpolation, each trajectory
segment of a trajectory belongs to a grid cell. If the grid cell trajectory
segment trajSegn belongs to is referred to as g(an,bn), g(an,bn) is calculated
as follows.

an = floor(
min(xn, xn+1)

sizeg
)

bn = floor(
min(yn, yn+1)

sizeg
)

In this case, trajSegn is also referred to as trajSeg
(an,bn)
n in order to indicate

the belonging relationship directly. When trajSegn belongs to grid cell
g(an,bn), its starting location point, i.e., pn, also belongs to g(an,bn). Moreover,
if pn is located on a border of g(an,bn), it is an entering point of g(an,bn) and
it is said that trajSegn enters g(an,bn) at pn. Specially, p1 is an entering
point of g(a1,b1) and it is said that trajSeg1 enters g(a1,b1) at p1 no matter
p1 is located on a border or not. For convenience, from here onwards, when
we say a trajectory segment or a location point is in a grid cell, it means
that the trajectory segment or location point belongs to that a grid cell.

To have a clearer perspective of the belonging relationship defined here,
the five situations of a trajectory segment trajSegn of a trajectory are listed
as follows.

1. Both pn and pn+1 are located inside a grid cell g(a,b);

2. pn (or pn+1) is located on a border of g(a,b) and pn+1 (or pn) is inside
g(a,b);

3. β1(a,b) and β2(a,b) are two borders of grid cell g(a,b), i.e., β1(a,b), β
2
(a,b) ∈

B(a,b), and pn is located on β1(a,b) and pn+1 on β2(a,b);

4. βe(a,b) is the border between grid cell g(a,b) and g(a+1,b), and both pn
and pn+1 are located on βe(a,b);

5. βn(a,b) is the border between grid cell g(a,b) and g(a,b+1), and both pn
and pn+1 are located on βn(a,b).

In Figure 2.3, trajSeg1, trajSeg2, trajSeg3, trajSeg4, and trajSeg5 are
examples of item 1 to 5, respectively. In this figure, trajSeg1 belongs
to g(a,b), trajSeg2 belongs to g(a,b+1), trajSeg3 belongs to g(a+1,b+1), and
trajSeg4 and trajSeg5 belong to g(a+1,b).

8



Figure 2.3: Some examples of trajectory segments in different situations.

In this research, a trajectory outliers detection algorithm is applied on a
set of trajectories, which is referred to as T = {traj1, traj2, . . . , trajnumtraj},
where numtraj is the number of trajectories in the set. Each trajectory
traji (i ∈ [1, numtraj ]) has Ni location points and |Si| = Ni − 1 trajectory
segments. The set of trajectory segments of traji is represented as Si =
{trajSegi1, trajSegi2, . . . , trajSegi|Si|}.

Following Definition 3, the ordered sequence of entering points of a tra-
jectory traji can be extracted. Such a sequence is represented as Ei and the
number of elements in Ei is represented as |Ei|, which indicates that there
are |Ei| entering points in traji. Also, following Definition 4, the ordered
sequence of grid cells traji passes through can be extracted. A sequence Gi
is used to represent all the grid cells traji passes through. In Gi there are
|Gi| elements, indicating that traji passes through a total number of |Gi|
grid cells. The elements in Gi might not be unique due to the fact that traji
can enter a grid cell multiple times.

By evaluating all the trajectories in T , the sequence of entering points of a
grid cell g(a,b) can be extracted. Such a sequence is referred to as E(a,b) and

the number of elements in E(a,b) is referred to as |E(a,b)|, which indicates the
number of entering points in g(a,b). Besides, the set of trajectory segments in

g(a,b) can also be obtained. This set is represented as S(a,b) and the number

of elements in it is represented as |S(a,b)|. Since a trajectory might enter a
grid cell and has more than one trajectory segments in that grid cell before
it enters another grid cell, like the situation shown in the grid cell g(a,b+1)

in Figure 2.3, the inequation |S(a,b)| ≥ |E(a,b)| holds.

Hence, the elements that are in both Ei and E(a,b) compose the set of the

entering points of traji that are in g(a,b). This set is E
(a,b)
i and the number

of elements in it is |E(a,b)
i |, which indicates the number of times traji enters
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g(a,b). Also, the elements that are in both set Si and S(a,b) form the set S
(a,b)
i ,

where there are |S(a,b)
i | elements and each element is a trajectory segment

that belongs to both traji and g(a,b).

2.4 Features of Trajectories

In this section the definitions of some important features of trajectories that
can further be used for outlier detection in a set of trajectories are given.

Definition 5 (distance): The distance between a trajectory (or tra-
jectory segment) pair is used to compare the two trajectories (or trajectory
segments). It is obtained by a distance function or a metric, for example
Euclidean distance. A smaller distance indicates a larger similarity, and vice
versa. Following the work of Lee et al. [8], we define a distance function for
trajectory data. The distance between two trajectory segments trajSegn
and trajSegm, i.e., dis(n,m), is calculated by three components: perpen-
dicular distance d⊥(n,m), parallel distance d‖(n,m) and angular distance
dθ(n,m), i.e., dis(n,m) = ω⊥d⊥(n,m)+ω‖d‖(n,m)+ωθdθ(n,m), where the
weights ω⊥, ω‖, and ωθ are determined depending on applications. d⊥(n,m),
d‖(n,m), and dθ(n,m) are calculated as follows and also shown in Figure 2.4.

d⊥(trajSegn, trajSegm) =
l2⊥1 + l2⊥2
l⊥1 + l⊥2

d‖(trajSegn, trajSegm) = Min(l‖1, l‖2)

dθ(trajSegn, trajSegm) =

{
‖ lenn ‖ ×sin(θ) if 0◦ ≤ θ ≤ 90◦

‖ lenm ‖ if 90◦ ≤ θ ≤ 180◦

In Figure 2.4 and the three formulas, p′n and p′n+1 are the projections of

Figure 2.4: The visualization and calculation of the three components of
distance [8].

pn and pn+1 on trajSegm, respectively, l⊥1, l⊥2, l‖1, and l‖2 are the lengths
of line segment pnp

′
n, pn+1p

′
n+1, pmp

′
n, and p′n+1pm+1, respectively, and θ is

the angle between trajSegn and trajSegm.
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Definition 6 (density): The trajectory density of a grid cell g(a,b), which

is referred to as Den(a,b), is defined as the number of trajectories that have
entering point(s) in g(a,b).

Den(a,b) =

numtraj∑
i=1

min(|E(a,b)
i |, 1)

Following this definition, observe that when a trajectory traji enters grid

cell g(a,b) |E
(a,b)
i | (|E(a,b)

i | > 1) times, Den(a,b) increases only once.

Note that if two trajectories traji and traji+1 enter the same grid cell
g(a,b), it implies that these two trajectories are close to each other in g(a,b),
and their trajectory segments in g(a,b) are neighboring trajectories. Hence,
for a trajectory segment trajSegn in grid cell g(an,bn), the number of neigh-

boring trajectory segments of trajSegn can be indicated by Den(a,b).

Definition 7 (direction): The direction of a trajectory segment can be
rounded to one of the direction elements in a direction vector dirV ector,
where dirV ector = (d1, d2, . . . , dnumdir

) = (θ1, θ2, . . . , θnumdir
). In the dir-

ection vector, each direction dk(k ∈ [1, numdir]) is represented by the angle
θk between itself and direction d0 = 0, as shown in Figure 2.5. If there are
numdir (numdir > 1) elements in the direction vector, then

θk = (k − 1) · 2π

numdir
, k ∈ [1, numdir]

Following this formula, it is easy to notice that θ2 = 2π
numdir

is the smallest

Figure 2.5: A visualization of the relationship between dk and θk.

angle in dirV ector that is larger than zero, and the difference between every
θk and θk+1 (k ∈ [1, numdir − 1]) is θ2.

Accordingly, the direction of dirV ector to which a trajectory segment
trajSegn belongs, which is referred to as dirn, can be calculated as follows.

dirn = [
θn
θ2

]
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Figure 2.6: A visualization of θn, which is the angle from d0 to trajSegn

where θn (θn ∈ [0, 2π)) is the angle from d0 to trajSegn, as shown in Fig-
ure 2.6.

Note that a trajectory traji might have more than one trajectory segments

in a grid cell g(a,b), i.e., |S(a,b)
i | > 1. In this case, the general direction of

traji in g(a,b) is considered.

Definition 8 (general direction): When a trajectory traji enters a grid
cell g(a,b) at pn and then leaves at pm, there exists a vector pnpm connected
by pn and pm, as shown in Figure 2.7. The general direction of trajectory

traji in g(a,b), which is referred to as Dir
(a,b)
i , is considered as the direction

of pnpm, which is calculated the same way as calculating the direction of a
trajectory segment, i.e.,

Dir
(a,b)
i = [

θnm
θ2

]

where θnm is the angle from d0 to pnpm, as shown in Figure 2.7.

Figure 2.7: A visualization of dnm and dn+1, dnm being the angle from d0
to pnpm and dn+1 being the angle from d0 to pn+1.

Following this definition, observe that when a trajectory traji enters grid

cell g(a,b) |E
(a,b)
i | (|E(a,b)

i | > 1) times, it has more than one general directions
in g(a,b).

Definition 9 (direction frequency): The direction frequency of a grid
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cell g(a,b) is defined as a vector of numdir elements, i.e., DirFreq(a,b) =

(f
(a,b)
1 , f

(a,b)
2 , . . . , f

(a,b)
numdir). If the number of the trajectories passing through

grid cell g(a,b) that has a general direction dk is referred to as R
(a,b)
dk

, fk

(k ∈ [1, numdir]) is the ratio of R
(a,b)
dk

to |E(a,b)|, i.e.,

fk =
R

(a,b)
dk

|E(a,b)|

The equation
∑numdir

k=1 fk = 1 holds.
Definition 10 (duration): The time a trajectory segment trajSegn :

pnpn+1 spends within the grid cell it is in is called its (time) duration in
that grid cell, which is represented as durn. If trajSegn belongs to g(a,b),

the duration of trajSegn in g(a,b), which is represented as dur
(a,b)
n , is defined

as the time difference between location point pn and pn+1, i.e.,

durn = dur(a,b)n = tn+1 − tn

If traji has n2−n1 trajectory segments trajSegn1 , · · · , trajSegn2−1 between
two consecutive entering points pn1 and pn1 (n2 > n1), the total duration of

these trajectory segments is sumDur
(an1 ,bn1 )
i =

∑n2
n=n1

durn, which is also
called the (total) duration of traji in g(an1 ,bn1 )

when it enters at pn1 .

Definition 11 (average duration): If grid cell g(a,b) has |E(a,b)| entering

points and |S(a,b)| trajectory segments, the average duration of g(a,b), which

is referred to as Dur(a,b), is calculated as follows.

Dur(a,b) =

∑|S(a,b)|
n=1 dur

(a,b)
n

|E(a,b)|
Following Definition 10 and 11, observe that when a trajectory traji enters

grid cell g(a,b) |E
(a,b)
i | (|E(a,b)

i | > 1) times, they are treated separately.
Definition 12 (speed): The speed of a trajectory segment trajSegn :

pnpn+1, which is referred to as spdn, is calculated by the distance and the
time difference between location point pn and pn+1, i.e.,

spdn =
lenn
durn

If trajectory segment trajSegn belongs to grid cell g(a,b), its speed in g(a,b)

can also be referred to as spd
(a,b)
n .

Definition 13 (average speed): If traji has n2 − n1 trajectory seg-
ments trajSegn1 , · · · , trajSegn2−1 between two consecutive entering points
pn1 and pn2 (n2 > n1), the average speed of traji in g(an1 ,bn1 )

when it enters
at pn1 is calculated as follow.

Spd
(an1 ,bn1 )
i =

∑n2
n=n1

lenn∑n2
n=n1

durn
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Note that when a trajectory traji enters a grid cell g(a,b) |E
(a,b)
i | (|E(a,b)

i | > 1)
times, they are treated separately, i.e., traji has more than one average speed
in g(a,b).

In addition to trajectories, the concept average duration is also applicable
for grid cells. If grid cell g(a,b) has |E(a,b)| entering points, the average speed

of g(a,b), which is referred to as Spd(a,b), is calculated as follows.

Spd(a,b) =

∑|E(a,b)|
i=1 Spd

(a,b)
i

|E(a,b)|

To sum up, following Definition 5 to 13 in this section, distances between
trajectory segments can be calculated. Besides, if traji is a trajectory that
passes through grid cell g(a,b), its general direction, duration, and average
speed in g(a,b) can be obtained. These features of traji are represented

as Dir
(a,b)
i , sumDur

(a,b)
i , and Spd

(an,bn)
i , respectively. In addition, for a

grid cell g(a,b), its density, direction frequency, average duration, and aver-
age speed can also be obtained. These features of g(a,b) are referred to as

Den(a,b), DirFreq(a,b), Dur(a,b), and Spd(a,b), respectively.

2.5 Trajectory Outliers

In this research, we aim to detect trajectory outliers in a trajectory set T in
terms of density, direction, duration, and speed. The level of outlier in these
four aspects will be measured by four outlying scores (OSs). In this section,
how the four OSs are calculated is explained. Besides, the definitions of
these types of trajectory outliers are given.

Definition 14 (density outlier): Outlying score is used to indicate the
level of outlier of a trajectory. A trajectory traji is a density outlier if its
density outlying score denOSi is larger than λden, where λden is an input
parameter. denOSi is calculated by evaluating all the grid cells traji passes
through, i.e.,

denOSi =

|Ei|∑
j=1

denos
(aj ,bj)
i

where denos
(aj ,bj)
i is the outlying score of traji in g(aj ,bj), g(aj ,bj) being a

grid cell traji passes through. If denOSi > λden, traji is an outlier. The

value of denos
(aj ,bj)
i is calculated as follows.

denos
(aj ,bj)
i =

{
sumDur

(aj ,bj)
i , if Den(aj ,bj) < τden

0, otherwise

where τden is called the density OS parameter. This formula shows that

denOSi increases by sumDur
(aj ,bj)
i whenever traji passes through a grid
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cell g(aj ,bj) of density Den(aj ,bj) < τden. This implies that a trajectory that

has larger duration in a grid cell g(aj ,bj) of density Den(aj ,bj) < τden is
considered to be more outlying than a trajectory that has smaller duration
in g(aj ,bj).

Definition 15 (direction outlier): A trajectory traji is a direction
outlier if its direction outlying score dirOSi is greater than the direction OS
threshold λdir, where λdir is an input parameter.

Firstly, for convenience, a function F (Dir
(aj ,bj)
i ) is defined as follows [4].

F (Dir
(aj ,bj)
i ) =

1−
∑numdir

k=1 f
(aj ,bj)
k · cos(Dir(aj ,bj)i − dk)

2

F (Dir
(aj ,bj)
i ) calculates the difference between the general direction of traji

in g(aj ,bj) and the direction information of g(aj ,bj). It has a range of [0, 1];
Then the direction outlying score of traji in g(aj ,bj), which is represented

as diros
(aj ,bj)
i , can be calculated as follows.

diros
(aj ,bj)
i =

{
sumDur

(aj ,bj)
i · F (Dir

(aj ,bj)
i ), if F (Dir

(aj ,bj)
i ) > τdir

0, otherwise

where τdir is the direction OS parameter. This formula implies that if a
trajectory traji has a different enough direction in g(aj ,bj) compared to the
direction information of g(aj ,bj), it is considered outlying. Besides, if traji
has larger duration in g(aj ,bj), it is considered more outlying than when it
has smaller duration in g(aj ,bj).

Then, the direction OS of traji can be calculated as follows. If dirOSi >
λdir, traji is considered as a direction outlier.

dirOSi =

|Ei|∑
j=1

diros
(aj ,bj)
i

Definition 16 (duration outlier): A trajectory traji is a duration
outlier if its duration outlying scores durOSi is greater than some input
parameter λdur. The value of durOSi is calculated as follows. If durOSi >
λdur, traji is a duration outlier.

durOSi =

|Ei|∑
j=1

duros(aj ,bj)

where duros(aj ,bj) is the duration outlying score of a grid cell g(aj ,bj) traji

passes through. The value of duros
(aj ,bj)
i is calculated as follows.

duros
(aj ,bj)
i =

{
sumDur

(aj ,bj)
i , if F (sumDur

(aj ,bj)
i ) > τdur

0, otherwise
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where

F (sumDur
(aj ,bj)
i ) =

|sumDur(aj ,bj)i −Dur(aj ,bj)|
Dur(aj ,bj)

and τdur is the duration OS parameter.
Definition 17 (speed outlier): A trajectory traji is a speed outlier if

its speed outlying scores spdOSi is greater than some input parameter λspd.
The value of spdOSi is calculated as follows. If spdOSi > λspd, traji is a
speed outlier.

spdOSi =

|Ei|∑
j=1

spdos
(aj ,bj)
i

where spdos
(aj ,bj)
i is the speed outlying score of trajectory traji in g(aj ,bj)

and is calculated as follows.

spdos
(aj ,bj)
i =

{
sumDur

(aj ,bj)
i , if F (Spd

(aj ,bj)
i ) > τspd

0, otherwise

where

F (Spd
(aj ,bj)
i ) =

|Spd(aj ,bj)i − Spd(aj ,bj)|
Spd(aj ,bj)

and τspd is the speed OS parameter.

Duration and speed outlier

According to Definition 13, the following formula holds.

n2∑
n=n1

durn =

∑n2
n=n1

lenn

Spd
(an1 ,bn1 )
i

This formula shows that there is a correlationship between duration and
speed. It can be imagined that if a trajectory has an abnormal duration in
a grid cell, probably it also has an abnormal speed in that grid cell. It is hard
to determine whether such kind of abnormal behavior is caused by moving
speed or time duration since both OSs would increase following Definition
16 and 17. To clearly show the cause of such an abnormal temporal-spatial
behavior, in this project we separate duration and speed outliers by categor-
izing a trajectory/pedestrian’s status in a grid cell as standing, crossing, and
others (which includes moving around, walking up and down, etc), as shown
in Figure 2.8. In the first grid cell of Figure 2.8 there is a standing point
indicating that the trajectory remains stationary for a while. In the second
grid cell of Figure 2.8, the trajectory does nothing but simply passes across.
And in the third grid cell the trajectory moves around.
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Figure 2.8: A visualization of the the three statuses of a trajectory in a grid
cell.

Actually, the standing point in this figure shows an ideal case, where the
sampled data always indicate exactly the same location when a pedestrian is
stationary. However, in reality this might not be true due to the precision of
sensor systems and the implementation of localization algorithms. Sampled
data might indicate different locations when a person is actually staying
still, like the situation shown in Figure 2.9. In this figure, sampled data
indicates that the pedestrian moves up and down at the place he actually
stays still. This kind of situation can be solved by a stay point detection
algorithm [11], which is able to determine that a trajectory like the one
in Figure 2.9 is actually the one shown in the first grid cell of Figure 2.8.
A stay point detection algorithm detects stay points automatically from a

Figure 2.9: A visualization of the real-life situation where there is a pedes-
trian is stationary for a while.

trajectory by seeking the spatial region where the trajectory spends a period
exceeding a certain threshold. For instance, if a trajectory spends more than
10 minutes within a distance of 5 meters, the region is detected as a stay
point. Therefore, in this project, focus will not be on this issue and it is
assumed that this kind of problem has been solved beforehand. This work
only considers the three status shown in Figure 2.8.

These three status can be determined by examining the average speed

Spd
(a,b)
i and the total length

∑|S(a,b)
i |

n=1 lenn of a trajectory traji in a grid
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cell g(a,b). If traji is standing in g(a,b), it should have a small Spd
(a,b)
i ; if

it is simply crossing g(a,b), it should have a larger Spd
(a,b)
i but not a large∑|S(a,b)

i |
n=1 lenn. The following assumption is made before the definition of the

three statuses are given.
Assumption 1: A normal trajectory has a normal speed of spdnorm.
Based on this assumption, the following definitions are given.
Definition 18 (standing): If a trajectory traji has an average speed

Spd
(a,b)
i smaller than ρspd · spdnorm, its status in g(a,b) is determined as

standing. ρspd is a parameter that is used to differ between walking slowly
and standing still.

Definition 19 (crossing): If a trajectory has a total length
∑|S(a,b)

i |
n=1 lenn

smaller than ρlen ·
√

2 · sizeg, and an average speed Spd
(a,b)
i larger than

ρspd · spdnorm in grid cell g(a,b), its status in g(a,b) is determined as crossing.
ρlen is a parameter that is used differ between crossing and moving around
in a grid cell.

Definition 20 (others): If a trajectory has neither standing nor crossing
status in a grid cell g(a,b), its status is others.

Now that the three statuses are defined, if a trajectory has standing status
in a grid cell, only duration OS is considered when examine that grid cell. If
a trajectory has crossing status in a grid cell, only speed OS is considered.
And if a trajectory is not within the former two cases, both OSs should be

considered. Accordingly, the formulas of duros
(aj ,bj)
i and spdos

(aj ,bj)
i in 16

and 17 are updated as follows.

duros
(aj ,bj)
i =


0, if F (sumDur

(aj ,bj)
i ) < τdur

or traji has crossing status in g(aj ,bj)

sumDur
(aj ,bj)
i , otherwise

spdos
(aj ,bj)
i =


0, if F (Spd

(aj ,bj)
i ) < τspd

or traji has standing status in g(aj ,bj)

sumDur
(aj ,bj)
i , otherwise
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Chapter 3

Related Work

The improvements in tracking facilities have made it possible to collect huge
amounts of trajectory data of moving objects. Nowadays, there is much
work in literature regarding the issue of trajectory outlier detection. These
TOD techniques can be used for surveillance security, behavior analysis, and
many other purposes. Previously in Section 2.5 four types of outliers are
defined. Some of them can be detected by certain TOD algorithms. In this
chapter, we categorize relevant previous TOD algorithms into four groups:
(i) grid-based methods, (ii) distance-based methods, (iii) classification and
clustering-based methods, and (iv) the methods that are based on trajectory
similarity measurement. In the following sections, we review these TOD
approaches and analyze which types of outliers they can or cannot detect.

3.1 Grid-based

The first group contains grid-based methods. The basic idea of these meth-
ods is to find connections between trajectories and grid cells and thus be able
to detect outliers based on grid. These methods often have small computa-
tional complexity. In this section three grid-based techniques are introduced.
The first two are similar in the way of detecting outliers while the third one
has a different detecting technique compared to the former two.

3.1.1 Density-based

Density-based approaches have long been used in the outlier detection area.
Some ideas of the density-based outlier detection approaches that deal with
other data types instead of trajectory data can also be extended to the TOD
area. Traditional density-based TOD methods rely on the notion of LOF
(local outlier factor). This requires a distance function for trajectory com-
parison and k-nearest neighbor (k-NN) search. The calculation of distance
and the search for nearest neighbors can be computationally expensive.
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TOP-EYE [4] is an example of density-based TOD methods. In TOP-
EYE, the notion of density is integrated with grid cell, which is similar
as Definition 6. Following this definition, TOP-EYE detects density-based
outliers similarly as what Definition 14 does. In this way, TOP-EYE avoids
a large amount of distance computation and k-NN search for trajectories.
More specifically, in this method, after a single evaluation of all trajectories
in set T , the density of each grid cell can be obtained. Then the density
outlying score of a trajectory can be calculated by examining the densities
of all the grid cells it passes. After that, the larger the outlying score is,
the higher its level of outlier is. Using this grid-based method, when a new
trajectory is introduced, there is no need to evaluate all the trajectories an-
other time to decide whether this trajectory is outlying or not. However,
when a method is grid-based, the performance of outlier detection is related
to the size of a grid cell. Although having a relatively large cell size reduces
computation, it decreases accuracy. On the contrary, having a relatively
small cell size increases accuracy, but also increases computational complex-
ity. And in extreme cases, having a too large or too small cell size will not
be able to do outlier detection correctly. There is a certain tradeoff between
efficiency and accuracy so the cell size needs to be chosen carefully. Besides,
if these density-based approaches are not combined with other approaches
and no temporal information is taken into account, they can only detect
density-based outliers.

3.1.2 Direction-based

Some other TOD algorithms are designed to detect direction-based outliers.
Direction-based TOD approaches are able to detect trajectories that have
abnormal directions in one or more areas. To determine whether a trajectory
has an abnormal direction in some area, it is compared with its adjacent
trajectories. In addition to being a density-based algorithm, TOP-EYE [4]
is also direction-based. In this algorithm, direction is defined similarly as
in Definition 7, i.e., the direction of a trajectory segment is rounded to one
of the elements in the direction vector. Since it is a grid-based method, the
direction information, which is similar as the direction frequency defined
in Definition 9, of each grid cell should be obtained for outlier detection.
After that, the direction outlying score of each trajectory is calculated by
evaluating all the grid cells it passes. When a trajectory is found out to have
a very different direction compared to the direction information of a grid cell
it passes, its outlying score increases. After evaluating all the grid cells a
trajectory passes, the trajectory will be determined to have a higher outlier
level if it has a larger outlying score, and vise versa. As mentioned before
in Section 3.1.1, this grid-based method has some strengths and also some
weaknesses. Besides, in terms of being direction-based, TOP-EYE has some
problems when a trajectory passes some grid cell where no other trajectory
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passes because it has no adjacent trajectory to compare with. What TOP-
EYE does to solve this problem is to combine a direction-based method with
a density-base method, which also makes it possible to detect more types of
outliers.

3.1.3 Isolation-based

Outlying trajectories can be considered as trajectories that isolate from most
of the other trajectories in the data set in terms of some chosen attribute.
Zhang et al. [21] proposed an Isolation-Based Anomalous Trajectory (iBAT)
detection method, which exploits the property that anomalies are susceptible
to a mechanism called isolation. iBAT is grid-based. It exploits anomalous
trajectories’ intrinsic properties of being “few and different”, i.e., anomal-
ous trajectories are the minority in the data set and should be different in
some way compared to the others. Another similar method is called iBOAT
[2], which is also grid-based and is an improvement over iBAT. Instead of
labeling a whole trajectory as an outlier, iBOAT is able to determine which
parts of a trajectory are anomalous. The basic idea of iBAT and iBOAT is
to find out the trajectories that pass one or more grid cells where no other
trajectory passes. In this way, no distance and density calculation is needed.
They firstly need to get the sequence of grid cells each trajectory traji passes,
which is Ei, by evaluating all the trajectories in set T . Then, a sub-set of
T , which is T ′, is randomly chosen and these methods calculate the number
of iterations it needs to isolate a test trajectory trajt from the trajectories
in T ′. In each iteration, a grid cell g that trajt passes is randomly chosen.
Examination is made to see if there exist other trajectories in T ′ that also
pass g. The trajectories that do not pass g will be deleted from T ′. This is
the isolation process. After several iterations, a trajectory is isolated when
it finds out that it passes a grid cell where no other trajectories pass. In
this way, a smaller number of iterations indicates a more possible outlying
trajectory because it shows that the trajectory is easily isolated from the
others, and vice versa. These two methods are good because they are able to
detect some density outliers with efficiency. However, iBAT and iBOAT can-
not detect duration or speed outliers because they do not consider temporal
information. Besides, they are not able to detect direction-based outliers
because they only consider whether a trajectory passes some grid cell but
have no concern of the direction of that trajectory.

The core steps of iBAT are shown in Algorithm 1, which is based on the
basic idea introduced above.

3.2 Distance-based

Distance-based outlier detection is another popular approach in the outlier
detection area. Most existing metrics used for distance-based techniques
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Algorithm 1 iBAT

Inputs: T - a set of trajectories
trajt ∈ T - test trajectory
m - number of running trials
ψ - sub-sample size

1: procedure
2: let n be a vector of m zeros (ni’s are zeros)
3: for i=1 to m do
4: T ′ ← randomly sample ψ trajectories from T
5: repeat
6: ni ← ni + 1
7: randomly choose a grid cell g trajt passes
8: T ′ ← select the trajectories that also pass g from T ′

9: until T ′ is empty

10: compute trajt’s outlying score according to n and ψ.

are defined based upon the concepts of local neighborhood or kNN. The
first notion of distance-based outlier was originally proposed by Knorr et
al. [5]. In our case, that notion can be expresses as: a trajectory traji in
set T is a distance-based outlier if at least fraction λdis trajectories in T
lie greater than distance τdis from traji, where λdis and τdis are two user-
supplied parameters. The basic idea is to find out the trajectories that have
very large distance to most of the other trajectories in set T . In order to
obtain this information, a distance function should be defined.

Knorr et al. proposed a distance-based TOD method, in which each tra-
jectory is summarized by an attribute vector. The attribute vector is defined
as a vector of four elements: start location point that includes x and y co-
ordinates, end location point that includes x and y coordinates, direction
information that includes maximum, minimum, and average direction, and
speed information that includes maximum, minimum, and average speed.
Summarizing trajectories in this attribute vector fashion provides a multidi-
mensional space in which trajectories can be compared. In this method, two
distance functions are used to compare trajectories. The first one is used
to calculate the difference between each attribute of every two trajectories,
which is a euclidean distance function; the second one is used to sum up
the differences between trajectories when all the four attributes are taken
into account, which is a weighted sum function. With these tools, distance
between every trajectory pair can be obtained. After that, following the no-
tion of distance-based outlier mentioned before, outliers can be determined.
Some experimental results by Knorr et al. show that this method is able
to successfully detect some density, direction, duration, and speed outliers.
However, not all of these types of outliers can be detected because the at-
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tribute vector they choose stores limited information of an entire trajectory.

Another example of distance-based approaches is TRAOD [8]. The dis-
tance function TRAOD defines is similar as the one in Definition 5. With
this distance function, a trajectory segment trajSegn is determined to be
outlying if more than λdis trajectory segments in set S have a distance lar-
ger than τdis from trajSegn. And a trajectory traji is outlying if the total
length of its outlying trajectory segments is larger than a certain threshold.
TRAOD, however, suffers from high computational complexity because it
requires a large amount of distance computation and k-NN search for all
trajectory segments. Another weakness of TRAOD is that, when a new
trajectory is introduced, a large amount of computation should be made to
obtain the distances of its trajectory segments to all the trajectory segments
that were previously in set S. This is also computationally expensive. And
as the number of trajectory grows, the memory consumption will become
large as well. Besides, since TRAOD does not take temporal information
into consideration, it cannot detect important duration and speed-based
outliers.

3.3 Classification and Clustering-based

The third group includes classification and clustering-base TOD algorithms.
These methods are extended from traditional data-mining approaches. Same
as distance-based methods, they require distance functions. Besides, they
often need an attribute vector for distance measurement. By doing classi-
fication or clustering trajectories, similar trajectories will be grouped and
outliers can be detected.

3.3.1 Classification-based

Classification is very common in the data mining area. It relies on a training
data set, and with good-quality training data it often leads to high accuracy.
As mentioned before, classification-based approaches require an attribute
vector and a distance function. Classification of trajectories is done by a
classifier and based on the attribute vector and the distance function. In
simple outlier detection, there can just be two classes: Class normal and
Class abnormal.

ROAM [13], proposed by Li et al., is an example of classification-based
TOD methods. In ROAM, each trajectory is represented by a sequence of
motif expressions, associated with the values related to time and location.
Typical examples of motifs are straight line, right turn, left turn, u-turn,
and loop. After evaluating a trajectory motif sequence, information like the
average speed of a motif, the maximum speed of the trajectory, or the start
location of a motif can be extracted. If each of these higher-level information
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is considered as a motif attribute, a trajectory can be represented by a se-
quence of motif-oriented attribute vectors, where the first element indicates
the motif and the following elements are the values of each motif attribute.
In this way, each trajectory is put into a multi-attribute space and can be
compared using a distance function. In ROAM, a motif expression contains
the starting time, ending time, start location, end location, and distance
traveled. From this information, attributes such as density, direction, dur-
ation, and speed can be obtained. ROAM is able to determine whether a
trajectory motif has a different direction or speed, or occurs at a different
time or location compared to the other trajectories in the data set, and thus
is able to determine various types of outliers, including density, direction,
duration, and speed outliers.

Although classification-based methods are able to detect many types of
outliers when all related information is considered in the attribute vector,
they also have some weaknesses. An essential task for effective classification
is generating discriminative attributes [9]. When attributes are extracted
from entire trajectories, these methods have limited classification capability
when discriminative attributes appear at parts of trajectories. On the other
hand, when attributes are extracted from trajectory segments, computation
becomes more complex. Another weakness is the necessity of choosing a
classifier. Classifier performance depends greatly on the characteristics of
the data to be classified. There is no single classifier that works best on all
given problems. When choosing a classifier, one needs to consider at least
the following three problems. How many training examples are needed?
What should the dimension of the attribute space be? How many categories
should there be? Thus good training and test data sets are necessary. The
more possible situations the training data sets include, the better the per-
formance would be. However, more training examples increases complexity.
Another weakness is the need of a proper attribute vector. The more useful
information the attribute vector includes, the more types of outliers these
methods are able to detect. However, notice that the more elements there
are in the attribute vector, the higher dimension the attribute space is, and
thus increases the higher the computational complexity.

3.3.2 Clustering-based

Unlike classification-based methods, clustering performs automated group-
ing without the aid of training data sets. A clustering-based TOD approach
is not a direct way to detect outliers. The main purpose of a clustering
algorithm is to find similarity rather than to find differences. Outliers can
be found as a by-product of clustering algorithms. Also, clustering is a
well-established research area and there have been abundant clustering al-
gorithms that users can choose from for performing clustering and then
detecting outliers.
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Lee et al. [10] also proposed a trajectory clustering framework called
TRACLUS, which shares many characteristics with the popular clustering
algorithm DBSCAN [3]. DBSCAN is a density-based clustering algorithm:
given a set of data, it groups together objects that are close to each other
and marks as outliers those whose nearest neighbors are too far away. It
is one of the most common clustering algorithms. In both DBSCAN and
TRACLUS, distance calculation between objects, in our case trajectories or
trajectory segments, should be made in order to find nearest neighbors. As
to TRACLUS, a distance function is defined, which is similar to the one
in TRAOD and our Definition 5. Using this function, distances between
trajectory segments can be calculated and the number of nearest neighbors
of each trajectory segment can be obtained. If a trajectory segment has
more than a certain number of neighboring trajectory segments, all of its
neighboring trajectory segments and itself will be grouped into the same
cluster. Thus, by evaluating all trajectory segments and calculating dis-
tances between each trajectory segment pair, TRACLUS is able to cluster
trajectory segments of small distances. And those who are left out can be
considered as outliers. According to its behavior, TRACLUS is able to de-
tect density-based outliers. However, in TRACLUS, the distance function
proposed is not a metric since it does not obey the triangle inequality rule.
This makes direct application of traditional spatial indexes difficult and is
a problem that needs to be solved. In a clustering-based method, if attrib-
utes like speed are taken into account, it is able to detect more types of
outliers. In TRACLUS and some other clustering algorithms, when clusters
are formed already and a new trajectory is introduced, only the distances
between the new trajectory and the core of each cluster are calculated. This
saves much computation and is obviously an advantage. In addition, com-
pared to classification-based approaches, one does not need to know the
number of categories when doing clustering, and there is no need for train-
ing or test data sets. But clustering-based methods also have some same
weaknesses as in classification-based methods. They, as well, need to define
a method to calculate distances between trajectories or trajectory segments,
which includes choosing the attributes that matter and choosing a proper
distance function. Besides, these clustering-based methods have high com-
putational cost because they need to firstly build clusters. Building clusters,
as introduced above, is not easy work and requires a larger number of dis-
tance measurements and also the process of finding nearest neighbors.

3.4 Trajectory Similarity

Since an outlying trajectory can be considered as a trajectory that is differ-
ent from the rest, it can also be detected by measuring similarity between
trajectories. One common measure of trajectory similarity is dynamic time
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warping (DTW) [18]. The basic idea behind DTW is to find out the warp-
ing path W between two trajectories that has minimum warping cost. The
DTW similarity value is that corresponding warping cost. For two traject-
ories traji and trajj , with Ni and Nj location points, an Ni × Nj matrix
Mij can be created where each element Mij(m,n) (m ∈ [1, Ni], n ∈ [1, Nj ])

represents the distance between location points pim and pjn. The calculation
of distance between location points requires a chosen distance function, for
example, Euclidean distance. Then a warping path W can be created by
starting at a matrix element Mij(m,n) with m = 1 and n ∈ [1, Nj ], and
increasing either m or n or both by 1 each step until reaching a matrix
element Mij(m,m) with m = Ni and n ∈ [1, Nj ]. For example, a path be-
ginning at Mij(1, 1) can move to one of Mij(1, 2), Mij(2, 1) and Mij(2, 2).
If wl represents a matrix element Mij(m,n)l, then a warping path W can
be represented as the sequence of matrix elements, i.e., W = w1w2 . . . wz.
Obviously there exist many possible warping paths. Dynamic programming
is one way to find the optimal one. After that, the warping cost can be
calculated. This cost value is the DTW similarity between the two traject-
ories. A common warping cost function is the sum of all of the distances
calculated along the warping path. Hence, if a trajectory has small values
of similarity with most of the trajectories in the data set, it is probably an
outlier.

Using DTW, if the x coordinate, y coordinate, and time stamp of each
location point are all taken into account when calculating distances between
location points, various types of outliers can be detected, including density,
direction, duration, and speed-based outliers. However, not all of those four
types of outliers can be detected. Besides, it is easy to notice that the sim-
ilarity measurement of every trajectory pair is computationally expensive,
not to mention the computational complexity when there is a large number
of trajectories as input data set. Another weakness of DTW is that noise
can greatly affect the performance because every location point of both tra-
jectories must have at least one match when searching for warping paths.

3.5 Summary

From the eight types of TOD methods introduced in the previous sections of
this chapter, we get seven representative algorithms, which are TOP-EYE,
TRAOD, the one by Knorr et al.,iBAT, ROAM, TRACLUS, and DTW. A
summary of these algorithms is given in Table 3.1. This table lists the four
types of outliers defined in Section 2.5. It shows what types of outliers each
of these TOD methods is able to detect.

TOP-EYE is a combination of density and direction-based method. It
is able to detect both direction and density-based outliers. TRAOD and
TRACLUS can detect density and direction-based outliers because the dis-
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tance function they use includes also the direction information (angular
distance) of trajectories. As to some other distance-based methods, like the
one proposed by Knorr et al., they are capable of detecting all the four types
of outliers if all necessary information is included in the attribute vector of
trajectories. This is also true for classification-based methods like ROAM
and clustering-based methods like TRACLUS. The sixth method, iBAT,
isolates trajectories by examining whether they pass some grid cells that no
other trajectories pass. It is able to detect density-based outliers. Lastly,
DTW is used to measure similarity between trajectories and thus be able
to detect trajectories that are quite different from the rest. If time is taken
into account, it is able to detect all the four types of outliers.

Table 3.1: TOD algorithms and different types of outliers

Approaches
Outliers

density-
based

direction-
based

speed-
based

duration-
based

Dir & Den TOP-EYE
√ √

Distance
TRAOD

√ √

Knorr
√ √ √ √

Isolation iBAT
√

Classification ROAM
√ √ √ √

Clustering TRACLUS
√ √ √ √

Similarity DTW
√ √ √ √
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Chapter 4

Algorithm Design

In this chapter two TOD algorithms are introduced. Section 4.1 introduces
the grid-based TOD algorithm we propose, namely the OS (Outlying Score)
algorithm. Section 4.2 introduces another TOD algorithm design that is
based on dynamic time warping (DTW). Some of the notations used in this
chapter were previously defined in Chapter 2.

4.1 The OS Algorithm

In this section, the OS algorithm is introduced. Algorithm 2 shows a full
version of the algorithm. It is composed of four major steps. During the first
step, trajectories are interpolated. In the second step, grid feature inform-
ation is obtained. Afterwards, the outlying scores (OSs) of all trajectories
are calculated. Lastly, trajectories are evaluated by their OSs and determ-
ined whether each of them is an outlier. In Section 4.1.1 to 4.1.4, the four
major steps are introduced in detail. In Section 4.1.5 the parameters that
are necessary for the OS algorithm are summarized.

Algorithm 2 The OS algorithm

Inputs: T - a set of trajectories
sizeg - the size of a grid cell
numdir - the number of elements in the direction vector
τ - threshold parameters
ω - weights of features
λos - outlier threshold

Outputs: OT - a set of outlying trajectories

1: interpT ← interpolate(T, sizeg);
2: [E,G,Den, dirFreq,Dur, Spd]← calcFeatures(interpT, sizeg, numdir);
3: OS ← calculateOS(E,G,Den, dirFreq,Dur, Spd, τ, ρ);
4: OT ← determineOutliers(OS, λos, ω);
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Algorithm 3 interpolate

Inputs: T - a set of trajectories
sizeg - the size of a grid cell

Outputs: (ngx , ngy) - the number of grid cells in a row and a column
interpT - a set of interpolated trajectories

1: A = [0, wA, 0, hA]← the minimum bounding box of all trajectories;
2: ngx ← ceiling( wA

sizeg
); ngy ← ceiling( hA

sizeg
);

3: for traji ∈ T do
4: initialize traj′ as an empty set;
5: for pin ∈ traji do
6: (xin, y

i
n, t

i
n)← pin, (xin+1, y

i
n+1, t

i
n+1)← pin+1;

7: add ( xin
sizeg

, yin
sizeg

, tin) to traj′;

8: if b xin
sizeg
c 6= bx

i
n+1

sizeg
c or b yin

sizeg
c 6= b y

i
n+1

sizeg
c then

9: p1 ← ( xin
sizeg

, yin
sizeg

), p2 ← (
xin+1

sizeg
,
yin+1

sizeg
);

10: pi1
′
, · · · , pim

′ ← intersection points of p1p2 and cell borders;
11: for j ∈ [1,m] do

12: add pij
′
= (

xij
′

sizeg
,
yij

′

sizeg
, tin +

tin+1−tin
m+1 · j) to traj′;

13: end
14: end
15: end
16: add traj′ to interpT ;

17: end

4.1.1 Interpolation

Algorithm 3 shows the first major step of the OS algorithm, which is the
trajectory-interpolation process. In this process, with input sizeg, which is
the size of a grid cell, each trajectory in the input set T is examined and the
minimum bounding box of all trajectories is extracted. Then the number of
grid cells in a row and a column is calculated. Therefore, it is possible and
also convenient to refer to each grid cell with an integer tuple (a, b). The grid
coordinate system was previously introduced in Section 2.2. Also, previously
in Section 2.2 the interpolation approach was introduced in detail. During
this process, each trajectory in the input set T is examined and location
points are inserted whenever the trajectory reaches a cell border. These
location points are referred to as entering points. During this process, the x
and y coordinates of a trajectory are amplified sizeg times compared to the
original ones because they are mapped to the grid coordinate system.
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4.1.2 Calculate Grid Features

After interpolation, the feature information of grid cells is calculated. Al-
gorithm 4 shows how this process works. In this design the following features
are taken into account for outlier detection. These were previously defined
in Section 2.4.

• density ; indicates the number of trajectories passing through a grid
cell;

• direction; indicates the common direction trajectories take when they
pass a grid cell;

• duration; indicates the general length of time trajectories spent within
a grid cell;

• speed ; indicates the common speed trajectories have when passing
through a grid cell;

If only density and direction are taken into consideration, our design will
be similar as TOP-EYE [4]. However, all these four features are important
for trajectory outlier detection since many outlying behaviors are related to
duration and speed.

This feature-calculation process is an important part of the OS algorithm.
It consists of three steps. During the first step, for each trajectory traji, its
sequence of entering points Ei and the grid cells it passes through, i.e., Gi,
are extracted. It is easy to obtain Ei and Gi for traji following Definition 4.
Algorithm 5 shows this process in detail. It has a run time of O(numtraj ·
Nmax), where numtraj is the number of trajectories in the input set and
Nmax equals to the largest number of location points Ni (i ∈ [1 : numtraj ])
of trajectories. The second step is shown in Algorithm 6. During this
step, for each trajectory, which grid cells it passes through, and its general
direction, total duration, and average speed in these grid cells are calculated.
These information will update grid feature matrices Den, dir, dur, and spd.
This process is straightforward following Definition 6 to 12. It has a run
time of O(numtraj · |E|max), where |E|max equals to the largest number
of entering points |E|i (i ∈ [1 : numtraj ]) of trajectories. The last step
is shown in Algorithm 7. In this step feature matrices dir, dur, and spd
are normalized. The direction frequency dirFreq (Definition 9), average
duration Dur (Definition 11), and average speed Spd (Definition 13) of
each grid cell are calculated. During this feature-calculation process, all
historical trajectory data are transformed to four matrices that store grid
features, i.e., Den, dirFreq, Dur, and Spd. These matrices will be further
used for outlier detection. In other words, the algorithm does not need to
store all historical trajectory data for further comparison, greatly reducing
memory consumption.
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Algorithm 4 calcFeatures

Inputs: interpT - a set of interpolated trajectories
numdir - the number of elements in the direction vector
(ngx , ngy) - the number of grid cells in a row and a column

Outputs: E - entering points of trajectories
G - grid cells trajectories pass through
Den - grid density matrix
dirFreq - grid direction matrix
Dur - grid duration matrix
Spd - grid speed matrix

1: initialize Den, dur, and spd as ngx × ngy zero matrices;
2: initialize dir as ngx × ngy × numdir zero matrices;
3: /* Step 1. get sequence Ei and Gi for each traji */
4: for traji ∈ interpT do
5: [Ei, Gi]← calcEG(traji);

6: end for
7: /* Step 2. calculate feature information for grid cells */
8: for i ∈ [1, numtraj ] do
9: [Den, dir, dur, spd] ← calcFeatureMatrices(Ei, Gi, Den, dir, dur, spd, numdir);

10: end for
11: /* Step 3. get dirFreq, Dur, and Spd */
12: for a ∈ [1, ngx ] do
13: for b ∈ [1, ngy ] do

14: [Den, dirFreq,Dur, Spd]← normFeatureMatrices(a, b,Den, dir, dur, spd, numdir);

15: end for
16: end for

4.1.3 Calculate Outlying Scores

During the previous steps, grid features are obtained as four matrices. Be-
sides, the sequence Ei and Gi for each trajectory traji are extracted. These
variables are the inputs in this calculation step. During this process, the
outlying scores of trajectories are calculated. Algorithm 8 shows this pro-
cess. It has a run time of O(numtraj · |E|max).

For each trajectory traji, all the grid cells it passes are examined. Four
OSs are used to measure the outlier level of traji. As defined in Definitions
14 to 17, if a grid cell g(a,b) has a low density, which indicates that it is not
common to be in that grid, the density OS of traji increases. If traji has a
different direction compared to that of g(a,b), its direction OS increases. If
traji has a standing or others status in g(a,b), and has a different duration
compared to g(a,b), its duration OS increases. And similarly, if traji has a
crossing or others status in g(a,b), and has a different speed compared to
g(a,b), its speed OS increases. The definitions of the three statuses standing,
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Algorithm 5 calcEG

Inputs: traji - a trajectory
Outputs: Ei - the sequence of entering points of traji

Gi - the grid cells traji passes through

1: for pin ∈ traji do
2: (xin, y

i
n, t

i
n)← pin, (xin+1, y

i
n+1, t

i
n+1)← pin+1;

3: cnt← 0;
4: if pin is an entering point then
5: cnt← cnt+ 1;
6: add (xin, y

i
n, t

i
n) to Ei(cnt);

7: if cnt > 1 then
8: add trajLen to Ei(cnt− 1);

9: end if
10: trajLen← length(pinp

i
n+1);

11: ain ← min(xin, x
i
n+1), bn ← min(yin, y

i
n+1);

12: add (ain, b
i
n) to Gi(cnt);

13: else
14: trajLen← trajLen+ length(pinp

i
n+1);

15: end if
16: end for

others, and others were given in Section 2.5. Following Definitions 14 to
17, there are four necessary parameters τden, τdir, τdur, and τspd. These
threshold parameters are the elements of input τ . Imagine if a grid cell of
size sizeg is small enough, most probably only the standing and crossing
statuses exist. On the other hand, if sizeg is large enough, all three status
are possible. Ideally, with a proper choice of sizeg, only the former two
cases are expected, i.e., a trajectory should either have standing or crossing
status in a grid cell. In this case, only one of duration OS and speed OS will
increase when evaluating a grid cell of a trajectory.

It is easily noticed that the increase of each OS is related to the time
a trajectory spends within a grid cell. This is based on the assumption
that the outlier level of a trajectory is related to the time it spends being
outlying. Since a duration outlier usually spends more time in a grid cell, a
normalization factor (1 + τdur) is used when increasing its OS. On the other
hand, due to the fact that a speed outlier usually spends less time in a grid
cell, the increase of speed OS is normalized by a factor 1

1+τspd
.

4.1.4 Determine Outliers

Since there exist four OSs based on different features, a question that needs
to be answered is how to combine these OSs and make the final decision
of outliers. One way is to determine outliers type by type and choose
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Algorithm 6 calcFeatureMatrices

Inputs: Ei - the sequence of entering points of traji
Gi - the sequence of grid cells traji passes through
numdir - the number of elements in the direction vector
Den - grid density matrix
dir - grid direction matrix
dur - grid duration matrix
spd - grid speed matrix

Outputs: Den - grid density matrix
dir - grid direction matrix
dur - grid duration matrix
spd - grid speed matrix

1: for j ∈ [1, |Ei| − 1] do
2: (xij , y

i
j , t

i
j , trajLen

i
j)← Ei(j);

3: (xij+1, y
i
j+1, t

i
j+1, trajLen

i
j+1)← Ei(j + 1);

4: p1 ← (xij , y
i
j), p2 ← (xij+1, y

i
j+1);

5: angle← the angle from (0, 0) to vector −−→p1p2;
6: dirij ← round(numdir · angle2π );

7: durij ← tij+1 − tij ;

8: spdij ←
trajLeni

j

durij
;

9: Den(Gi(j))← Den(Gi(j)) + 1;
10: dir(Gi(j), dir

i
j)← dir(Gi(j), dir

i
j) + 1;

11: dur(Gi(j))← dur(Gi(j)) + durij ;

12: spd(Gi(j))← spd(Gi(j)) + spdij ;

13: end for

the union of all those outliers as the output set OT . In this way, following
Definition 14 to 17, four outlier thresholds, i.e., λden, λdir, λdur, and λspd, are
necessary. Another solution would be a weighted sum function as follows.

sumOSi = ω ·OSi

where OSi = (OSDeni, OSDiri, OSDuri, OSSpdi), and the weight vector
ω = (ωden, ωdir, ωdur, ωspd) is set by users. The sum of all elements in ω
should be 1, i.e., ωden + ωdir + ωdur + ωspd = 1. With this solution only one
threshold λos is needed. This solution is shown in Algorithm 9. Since this
solution can be easily transformed to the type-by-type method by setting the
corresponding weight to 1 and the other three to 0, the type-by-type method
will not be shown in detail. With a weighted sum function, different types of
outliers can be treated differently. Users can set different weights for these
OSs according to applications and their own needs. This is an advantage of
this algorithm as, for instance, in some applications density outliers are big
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Algorithm 7 normFeatureMatrices

Inputs: numdir - the number of elements in the direction vector
(a, b) - the coordinates of a grid cell
Den - grid density matrix
dir - grid direction matrix
dur - grid duration matrix
spd - grid speed matrix

Outputs: Den - grid density matrix
dirFreq - normalized grid direction matrix
Dur - normalized grid duration matrix
Spd - normalized grid speed matrix

1: num← Den(a, b);
2: for d ∈ [1, numdir] do

3: dirFreq(a, b, d)← dir(a,b,d)
num ;

4: end for
5: Dur(a, b)← dur(a,b)

num ;

6: Spd(a, b)← spd(a,b)
num ;

concerns while in other places duration outliers are a more serious problem.
Also, this design can be easily transformed to an algorithm that is similar
to TOP-EYE when ωden and ωdir are set to 0.5 and ωdur and ωspd are set
to 0.

After summing up all the four OSs by a weighted sum function, the al-
gorithm sorts all trajectories by sumOS in descending order. As shown in
Algorithm 9, this design provides three methods to determine outliers by
sumOS. With the first method, λos is set to an actual sumOS value and
is used to differentiate between abnormal and normal trajectories directly.
This method is shown in Figure 4.1(a). In this figure, the trajectories with
sumOS larger than λos are classified as outliers. For the second method,
λos is set to a slope value. When all sumOS values are sorted in descend-
ing order, it is expected that there is an obvious distinction between the
sumOS values of abnormal trajectories and those of normal ones, like the
case shown in Figure 4.1(b). In such a case, the threshold can be set to
the point where the slopes of two consecutive lines change greatly. In Fig-
ure 4.1(b), the threshold is set to point A since there is a great difference
between the two slopes at that point. In Chapter 5 some experiments that
apply this method are explained in detail. However, in real situations, this
method might not work for larger data sets. For a larger data set, it is
easy to have two (abnormal) trajectories with very similar sumOS values.
In such situations, it is hard to determine the correct threshold. As shown
in Figure 4.1(c), although the slope changes the most at point A, it is not
proper to set the threshold at that point because the trajectories that have
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Algorithm 8 calculateOS

Inputs: numtraj - the number of input trajectories
numdir - the number of elements in the direction vector
E - entering points of trajectories
G - grid cells trajectories pass through
Den - grid density matrix
dirFreq - grid direction matrix
Dur - grid duration matrix
Spd - grid speed matrix
τ - threshold parameter

Outputs: OS - outlying scores of trajectories

1: for i ∈ [1, numtraj ] do
2: initialize denOSi, dirOSi, durOSi, and spdOSi as zeros;
3: for j ∈ [1, |Ei| − 1] do
4: (xij , y

i
j , t

i
j , trajLen

i
j)← Ei(j);

5: (xij+1, y
i
j+1, t

i
j+1, trajLen

i
j+1)← Ei(j + 1);

6: trajDur = tij+1 − tij ;
7: if Den(Gi(j)) < τden then
8: denOSi ← denOSi + trajDur;

9: end
10: p1 ← (xij , y

i
j), p2 ← (xij+1, y

i
j+1);

11: angle← the angle from (0, 0) to vector −−→p1p2;
12: dirij ← round(numdir · angle2π );

13: dirDiff ← 1−
∑numdir

k=1 fk(Gi(j)) · cos(dirij − dk);
14: if dirDiff > τdir then
15: dirOSi ← dirOSi+ dirDiff ·trajDur;
16: end
17: if traji has standing or others status in Gi(j) then

18: if |trajDur−Dur(Gi(j))|
Dur(Gi(j))

> τdur then

19: durOSi ← durOSi + trajDur
1+τdur

;

20: end
21: else if traji has crossing or others status in Gi(j) then

22: if
|(

trajLeni
j

trajDur
)−Spd(Gi(j))|

Spd(Gi(j))
> τspd then

23: spdOSi ← spdOSi + trajDur · (1 + τspd);

24: end
25: end
26: end
27: OSi ← (denOSi, dirOSi, durOSi, spdOSi);

28: end
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Table 4.1: Parameters of the OS algorithm
Parameter Remark

sizeg the size of a grid cell
numdir the number of directions in the direction vector
τ = (τden, τdir, τdur, τspd) determine when an OS should increase
ω = (ωden, ωdir, ωdur, ωspd) weights of OSs
λos differentiate abnormal trajectories from normal ones

slightly smaller sumOS values than trajA are also possible outliers. To avoid
such kind of problems, this design provides a third method that uses a
cumulative distribution function (CDF) to determine outliers automatically.
Firstly it obtains the probability density function (PDF) fsumOS(x) of the
sumOS values of all trajectories. Some example PDF graphs are shown in
Chapter 5. A PDF graph of sumOS values is used to specify the probab-
ility of a random sumOS value falling within a particular range of values.
With a PDF graph, it is easy to obtain the corresponding CDF FsumOS(x).
Therefore, users can set the outlier threshold λos to a percentage number.
If the user would like to pay more attention to the top η% trajectories that
have the largest sumOS values, λos can be set to η%. Then, by solving the
equation FsumOS(x) = 1−λos, the trajectories with sumOS values that are
larger than or equal to x are determined as outliers. The advantage of the
second and third method is that users do not need to know the exact val-
ues of sumOS or what these values mean in essence. These three methods
of determining outliers can be easily applied to the type-by-type method.
Users only needs to change sumOS to a certain type of OS and λos to one
of λden, λdir, λdur, and λspd.

4.1.5 Parameters

The parameters that need to be set for the OS algorithm are summarized
in Table 4.1.

The first important parameter is the size of a grid cell sizeg. As mentioned
in Subsection 4.1.3, having a relatively small cell size can solve the co-relation
problem of duration and speed OSs. However, one should also notice that
having a small cell size not only increases computational complexity but also
makes the outlier detection susceptible to noisy data. Generally, the size of
the minimum bounding box of all trajectories, the precision of localization
devices, and how precise the user want the detection to be should be taken
into account when choosing a value for sizeg. In Chapter 5 some examples
of this parameter setting are shown.

Next, users need to set the number of elements in the direction vector,
i.e., numdir. If numdir is too small, for example, numdir = 4, a trajectory
that follows a direction that is less than π

4 different from the normal ones
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Algorithm 9 determineOutliers

Inputs: numtraj - the number of input trajectories
OS - outlying scores of trajectories
ω - weight parameter
λos - outlier threshold

Outputs: OT - a set of outlying trajectories

1: for i ∈ [1, numtraj ] do
2: sumOSi ← ωden ·denOSi+ωdir ·dirOSi+ωdur ·durOSi+ωspd ·spdOSi;
3: end for
4: sort trajectories by sumOS in descending order;
5: choose a method from Method #1, #2, and #3;
6: /* Method #1 */
7: for i ∈ [1, numtraj ] do
8: if sumOSi > λos then
9: add traji to OT ;

10: end if
11: end for
12: /* Method #2 */
13: for i ∈ [1, numtraj − 1] do
14: add traji to OT ;
15: slopei ← sumOSi − sumOSi+1;
16: if i > 1 then
17: slopei−1 ← sumOSi−1 − sumOSi;
18: if |slopei−1 − slopei| > λos then
19: return;

20: end if
21: end if
22: end for
23: /* Method #3 */
24: obtain the probability density function fsumOS(x) of sumOS;
25: obtain the corresponding cumulative distribution function FsumOS(x);
26: solve equation FsumOS(x) = 1− λos;
27: for 1 ∈ [1, numtraj ] do
28: if sumOSi ≥ x then
29: add traji to OT ;

30: end if
31: end for

will not be detected as its direction will be rounded to the normal direction.
In this design, following TOP-EYE [4], numdir is set to 8 by default.

The third parameter is a vector of four elements. These elements are used
to separate abnormal trajectories from normal ones in different aspects. The
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(a) Method 1. determine outliers by a
threshold of an actual sumOS value.

(b) Method 2. determine outliers by the
difference between two consecutive slopes
of the sumOS graph.

(c) An example where the slope threshold
cannot be set correctly.

Figure 4.1: Methods and problems of determining outliers.

increase of each OS is related to parameter τden, τdir, τdur, or τspd. These
parameters indicate the level where a trajectory is considered outlying in
each of the four aspects. The settings of these parameters should depend on
applications. For example, when the algorithm is applied in a library during
exam weeks, where the flowrate of people is large, τden should be larger than
when the algorithm is applied during holiday time. Also it should be noticed
that τdir has a range of [0,1] since the function F (Dir(a,b)) in Definition 15
has a range of [0,1].

The fourth parameter, weight ω, is also a vector of four elements. As
mentioned in Section 4.1.4, the elements in ω are tuned by users according
to applications and their own needs. There might be situations where, for
example, the values of duration OS are still much larger than the other three
after normalization. In such kind of situations, ωdur can be set as a smaller
value to degrade the influence of duration OS on sumOS.

Lastly, the fifth parameter λos is used as the threshold of sumOS that
separates abnormal trajectories from normal ones. λos can be set to dif-
ferent types of values according to user preference. If users would like to
detect outliers type by type, four thresholds λden, λdir, λdur, and λspd are
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necessary. In this case λos is a vector of four elements. If users would like to
apply a weighted sum function, when applying the first method introduced
in Subsection 4.1.4, λos is set to an actual sumOS value. Since the sumOSi
value of a trajectory traji is closely related to the time of traji spends being
outlying, if the user wants all trajectories that spend more than toutlying
time duration being outlying to be detected as outliers, λos can be roughly
set to toutlying. For the second method, λos is set to a slope value. For
this method, it is easy to tune a proper λos automatically when there is an
obvious distinction between abnormal and normal trajectories. However, in
real-life situations, due to the great diversity of trajectory data, this might
not happen. In such situations, users can choose the third method where
λos is set to a percentage number.

In Definition 18 and 19, another two parameters ρspd and ρlen were men-
tioned. In this design these two parameters have their default setting.
ρspd = 0.5 since it is assumed that a normal pedestrian will not have a
walking speed that is smaller than a half of spdnorm. If a trajectory simply
passes across a grid cell, it should have a length that is smaller than

√
2·sizeg

if it moves straight. ρlen is set as 1.2 since it is assumed that a trajectory
that simply passes across a grid cell should not have a length that is larger
than 1.2

√
2 · sizeg in that grid cell.

4.2 Dynamic Time Warping

Another TOD algorithm that is based on Dynamic Time Warping (DTW)
is designed as a comparison of the OS algorithm.

4.2.1 The Algorithm

As introduced in Section 3.4, DTW relies on matching location points of
trajectories. The DTW similarity value is the total of all of the distances
calculated along the optimal warping path. The method introduced by
Toohey et al. [18] matches location points by calculating Euclidean distances
in the spatial domain, i.e., only the x and y coordinates of location points are
considered. This method performs well with trajectories of different lengths
and even widely varying sampling rates. However, with this method, some
expected direction, duration and speed outliers will not be detected if they
have the same shape as the other normal ones. Therefore, in our version,
location points are matched by calculating the Euclidean distance in both
the temporal and the spatial domains, i.e., the time stamps of location points
are also taken into account. When doing so, it should be noticed that now
the sampling rate has an influence on trajectory similarity. The sum of all
Euclidean distances for each trajectory is used to determine outliers. The
run time of this algorithm is O(numtraj · N2

max). This indicates that the
DTW algorithm is more computationally expensive than the OS algorithm.
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Algorithm 10 The DTW algorithm

Inputs: T - a set of trajectories
λdtw - threshold parameter

Outputs: OT - a set of outlying trajectories

1: for i ∈ [1, numtraj ] do
2: for j ∈ [i, numtraj ] do
3: /* Step 1. generate distance matrix */
4: for m ∈ [1, Ni] do
5: for n ∈ [1, Nj ] do
6: Mij(m,n)← distance(pm, pn);

7: end for
8: end for
9: /* Step 2. calculate warping cost */

10: m← 1;
11: n← index of min(Mij(1, :));
12: costij ← 0;
13: while m ≤ Ni do
14: [costij ,m, n]← calcCost(costij ,m, n,Mij);

15: end while
16: sumDTWi ← sumDTWi + costij ;
17: sumDTWj ← sumDTWj + costij ;

18: end for
19: end for
20: /* Step 3. determine outliers */
21: OT ← determineOutliers(sumDTW,λdtw);

Algorithm 10 shows the DTW algorithm. The algorithm has three major
steps. During the first step, for each trajectory pair, a distance matrix is
generated. In this matrix, each element is the distance of a location-point
pair. In the second step, for each distance matrix, the warping path that
has the smallest sum of distances is found. This warping path should pass
every location point at least one time. The sum of distances is the DTW
similarity value of that trajectory pair. In this design, the optimal warping
path is found by greedy programming, as shown in Algorithm 11. The third
step is the same as Algorithm 9. In this function, all the DTW similarity
values of each trajectory traji are summed up as sumDTWi. Afterwards,
outliers are determined by sumDTW values and a threshold λdtw.
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Algorithm 11 calcCost

Inputs: costij - the warping cost of trajectory pair traji and trajj
m - a point index of traji
n - a point index of trajj
Mij - the distance matrix of traji and trajj

Outputs: costij - the warping cost of trajectory pair traji and trajj
m - a point index of traji
n - a point index of trajj

1: minDis = min(Mij(m+ 1, n),Mij(m,n+ 1),Mij(m+ 1, n+ 1))
2: costij ← costij +minDis;
3: if minDis == Mij(m+ 1, n) then
4: m← m+ 1;
5: else if minDis == Mij(m,n+ 1) then
6: n← n+ 1;
7: else
8: m← m+ 1;
9: n← n+ 1;

10: end if

Table 4.2: Parameters of the DTW algorithm
Parameter Remark

λdtw differentiate abnormal trajectories from normal ones

4.2.2 Parameters

In this algorithm, only an outlier threshold parameter is needed, as shown
in Table 4.2. Similarly as how λos is set, a threshold λdtw is set to determine
outliers and can be an actual sumDTW value, a slope value, or a percentage
number.
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Chapter 5

Experiments

This chapter describes the experiments we have done to test and compare
different TOD algorithms. Section 5.1 introduces the first experiment, in
which there are six small data sets of simulated trajectories. Section 5.2 in-
troduces the second experiment, which is conducted on a real-life trajectory
data set gathered by an omni-directional camera in a lab [16]. In Section 5.3
an experiment on another real-life trajectory data set gathered by smart
phones is introduced. This is a trajectory data set of people moving around
in a relatively large outdoor area in The Netherlands [19].

5.1 Simulated Trajectories

In this experiment, the OS and DTW algorithms are applied on a couple of
simulated trajectory data sets. The setup, experimental result, and analysis
of this experiment will be introduced in this section.

5.1.1 Setup

Four small sets of simulated trajectories are generated as benchmarks of the
TOD algorithms. Each of these data sets involves one of the four types
of outliers defined in Section 2.5. The goal of this experiment is to test
whether the algorithms are capable of detecting these four types of outliers
correctly in simple cases. In each of the small data sets eight trajector-
ies are generated, one of which is a certain type of outlier. It is assumed
that these trajectories are within an area of 60 meters by 60 meters and
spdnorm = 1.4 meters/seconds. In the first set, there is one density outlier.
Similarly, the second, third, and fourth data set have a direction, duration,
and speed outlier, respectively. These sets of trajectories are shown in Fig-
ure 5.1. In Figure 5.1(a) a density outlier is shown, which follows a different
route compared to the other seven normal ones. Figure 5.1(b) shows a dir-
ection outlier that follows an opposite direction compared to the other seven
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(a) One density outlier traja. (b) One direction outlier trajb.

(c) One duration outlier trajc. (d) One speed outlier trajd.

Figure 5.1: A visualization of simulated trajectory data set I, II, III, and
IV.

trajectories. In Figure 5.1(c) there is a duration outlier that follows the same
path but spends more time at the lower right corner. And In Figure 5.1(d)
there exists a speed outlier that has an average speed of 2 times faster than
the others. For convenience, these four sets are referred to as set I-Den,
II-Dir, III-Dur, and IV-Spd, respectively, and the corresponding outlying
trajectories in each of them are referred to as traja, trajb, trajc, and trajd.

Furthermore, to test whether the algorithms work when there exist more
than one type of outliers in a single data set, the four small data sets are
combined to generate the fifth data set named set V. This set accordingly
has 32 trajectories, as shown in Figure 5.2(a). In this figure, 23 trajectories
move diagonally and 9 move across a corner. It is obvious that traja, trajb,
trajc, and trajd in this combined data set are still outlying. Lastly, another
data set, set VI, is generated similarly as set V. The only difference is that
traja in the fifth data set is rotated for 180 degrees around the center of the
60m×60m area. This rotated trajectory traj′a follows the same direction as
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(a) Trajectory set V. (b) Trajectory set VI.

Figure 5.2: A visualization of simulated trajectory data set V and VI. In
each of them there are 32 trajectories and four of them are outliers.

trajc. This data set is shown in Figure 5.2(b). In this figure the rotation of
trajectory traja is still an outlier. While the other 8 trajectories that follow
the same path as traj′a all stop for a while at the lower-right corner, traj′a
simply goes across that place. Thus, traj′a is an expected speed outlier.

The parameter setting of the experiments on the simulated trajectories
is shown in Table 5.1. The size of a grid cell is set to 5 meters, which is a
reasonable value considering that the size of the whole area is 60m × 60m.
The cell size can also be set to other values. An experiment on the cell size
will be introduced in Subsection 5.1.3. When generating data sets I to VI, it
was assumed that a person is 0.5 meter in width and the distance between
two people is at least 0.5 meter. Therefore, if there exists a group of people
who pass through a grid cell (sizeg = 5m) together, the number of people
in that group is at most 5. In these data sets, normal people always move
in groups while the density outliers always move alone. Therefore, for these
experiments, if τden is set to a value that is larger than 5, normal trajectories
will also have large density OSs. And since the value of τden should be at
least 2 as no trajectory will pass through a grid cell with density less than 1,
we choose 3 as the value of τden. According to Definition 15, the difference
between the general direction of a trajectory and the direction of a grid cell
is within a range of [0, 1]. Thus, τdir is set to the average of 0 and 1, which
is 0.5. τdur is set to 0.5 since we would like to detect the trajectories that
spend more than 1.5 times the normal duration at some area. And τspd is
also set to 0.5 because we would like to detect the trajectories that move
with speeds that are more than 1.5 times the normal speed. The weights of
the four features are set to be equal since in these experiments all four types
of outliers are treated equally. Lastly, if the first method of determining
outliers by sumOS is chosen and it is assumed that a trajectory that spends
more than 1 minute being outlying is an outlier, λos is roughly set to 1. If
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the second method is chosen, λos should be set to a slope value. With this
method, we are capable of determining a proper λos value λos = 3 that works
for data sets I to V, but this does not work for data set VI. The detailed
explanation will be shown in Subsection 5.1.2. If it is chosen to apply the
third method and set λos to a percentage number, λos is set to 12.5% since
we would like to detect the one outlier from every eight trajectories. As
to the setting of λdtw, since an individual sumDTW value does not reflect
the outlier level of a trajectory, it is hard to determine a proper value for
sumDTW if the first method is chosen. It makes more sense to apply the
second and third method to determine outliers for the DTW algorithm. For
the second method, when λdtw is set to 40, it works for data sets I to IV.
However, it is impossible to determine the correct outliers in sets V and
VI by the second method for this algorithm. The reasons for that will be
explained in Subsection 5.1.2. For the third method, λdtw is also set to
12.5%. This works for data sets I to V.

Table 5.1: Parameter setting of the experiments on data set I to VI
Parameter Value

sizeg 5 meters
dirnum 8

(τden, τdir, τdur, τspd) (3,0.5,0.5,0.5)
(wden, wdir, wdur, wspd) (0.25,0.25,0.25,0.25)

λos 1 for Method 1; 12.5% for Method 3
λdtw 12.5% for Method 3

5.1.2 Results and Discussion

In this subsection, firstly an analysis of the experiments on sets I-Den, II-
Dir, III-Dur, and IV-Spd will be presented, followed by an analysis of the
experiments on sets V and VI. The three methods that are used to de-
termine outliers by sumOS or sumDTW will also be analyzed for each
sub-experiment.

Sets I, II, III, and IV

Table 5.2 and 5.3 show the sumOS and sumDTW values of all the traject-
ories in data sets I-Den, II-Dir, III-Dur, and IV-Spd. It can be seen that
the expected outlying trajectory in each of these sets, which are trajectory
traja, trajb, trajc, and trajd, have much larger sumOS and sumDTW val-
ues than the other trajectories in the same set. Thus, both the OS and
DTW algorithm are capable of detecting them as outliers. Since the normal
trajectories in each of these sets have similar sumOS and sumDTW values
while the outliers have larger sumOS and sumDTW values, all the three
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Table 5.2: The sumOS values of all trajectories in data sets I to IV.

Trajectory
sumOS

Set I-Den Set II-Dir Set III-Dur Set IV-Spd

traj1 0 0 0 0
traj2 0 0 0 0
traj3 0 0 0 0
traj4 0 0 0 0
traj5 0 0 0 0
traj6 0 0 0 0
traj7 0 0 0 0

trajo (o is a, b, c, or d) 13.05 10.31 5.63 10.86

Table 5.3: The sumDTW values of all trajectories in data sets I to IV.

Trajectory
sumDTW

Set I-Den Set II-Dir Set III-Dur Set IV-Spd

traj1 159.29 260.76 70.24 127.68
traj2 151.86 249.09 58.17 119.29
traj3 147.82 248.56 51.67 111.30
traj4 152.47 245.77 48.78 110.70
traj5 159.14 249.20 52.56 109.42
traj6 163.70 251.73 59.64 113.97
traj7 174.12 265.47 71.03 123.19

trajo (o is a, b, c, or d) 620.02 1517.58 161.79 593.38

methods that are used to determine outliers by sumOS or sumDTW are
applicable on these data sets.

In set I-Den, traja has a nonzero sumOSa because most of the grid cells
it passes through have a small density. sumOSa is actually the density OS.
In set II-Dir, the value of sumOSb comes from the fact that trajb follows an
uncommon direction in all the grid cells it passes through. It is actually the
direction OS. In set III-Dur, trajc has a larger sumOS value because it has a
different time duration in one of the grid cells it passes through. This value
is in fact the duration OS. And lastly in set IV-Spd, trajd has a nonzero
value of sumOS because it has an uncommon speed in all the grid cells it
passes through. sumOSd is actually the speed OS of trajd. Since the four
outlying trajectories traja, trajb, trajc, and trajd are outlying in different
aspects and they spend different time duration being outlying, they have
different sumOS values. If traja, trajb, and trajc move with normal speeds
and trajd has a speed that is twice the normal speed, it can be inferred
from Figure 5.1 that: (i) traja spends the most time being outlying, (ii)
trajb and trajc spends less outlying time duration, and (iii) trajd spends
the least time duration being outlying. Since sumOS is related to the time
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duration a trajectory spends being outlying, traja has the largest sumOS
value, trajb and trajd have smaller sumOS values, and trajc has the smallest
sumOS. The three methods

As to the sumDTW values of these trajectories, since all the normal
trajectories in each set have similar movements, they have similar warping
costs when matching location points, and thus similar sumDTW values.
With regards to the outlying trajectories, it is easy to infer that the warping
cost of traja should be larger than the others since it takes a completely
different route. For trajb, since it follows an opposite direction compared
to the others, the Euclidean distances between its location points and their
matching location points is large. In addition, when a location point of
trajb finds its optimal matching point in the spatial domain, the difference
between their time stamps will be large. On the contrary, when it finds
its optimal matching point in the temporal domain, the spatial distance
between it and its matching point will become large. Thus, the distances
between the trajectories in set II are the largest among all the four data sets.
For trajc, it has a larger sumDTW because it has more location points at
the lower-right corner. More location points results in a larger sumDTW
value since all location points should have at least one matching point of the
other trajectories. Furthermore, since all the 8 trajectories in set III take the
same route and direction, except that trajc spends more time at the lower-
right corner, the trajectories in this set have smaller distances between each
other compared to the other sets. Lastly, since trajd has a faster speed
than the others, it has fewer location points as all trajectories are generated
by the same sampling rate. However, the Euclidean distances between its
location points and their matching location points is large. Therefore, trajd
has a large sumDTW value as well.

Sets V and VI

Figure 5.3 shows the result of the OS algorithm applied on data set V. In
Figure 5.3(a) traja, trajb, trajc, and trajd have much larger sumOS values
than the other trajectories in set V. Same as in sets I, II, III, and IV, the
nonzero sumOS values of these four outlying trajectories in this set come
from density OS, direction OS, duration OS, and speed OS, respectively.
It can be seen from this figure that there is a fifth trajectory that has a
nonzero sumOS value. It was determined that this trajectory takes the
route that is the same as trajc. Its nonzero sumOS value is due to the fact
that it spends a little more time than the others at the lower-right corner.
Since this different is small enough, the value of sumOS is also small. This
trajectory is not detected as an outlier. For this figure, it can be noticed
that if the first method is applied and λos = 1, all outliers can be correctly
detected. Since the slope changes greatly at the point after trajc, when
the second method is chosen, the algorithm is also capable of detecting the
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(a) The sumOS values of the trajectories
in set V sorted in descending order.

(b) PDF graph of sumOS.

Figure 5.3: Experimental results of the OS algorithm applied on set V.

correct outliers. In Figure 5.3(b) the PDF of sumOS is shown. In this
figure there are 14 classes, each class with a width of 0.93. When the third
method is chosen and λos is set to 12.5%, the separation between abnormal
and normal trajectories is made at sumOS = 5.59. The trajectories that
have sumOS values larger than 5.59, i.e., traja, trajb, trajc, and trajd, are
thus detected as outliers.

In terms of the DTW algorithm, Figure 5.4(a) shows the sumDTW values
of all trajectories. It can be seen from this figure that if the first method is
applied, with a proper threshold, for example λdtw = 3000, traja to trajd
can all be correctly detected as outliers. In this figure the 7 trajectories after
trajc have very similar sumDTW values and the last 21 trajectories also
have very similar sumDTW values. It was determined that the 7 trajectories
are the ones that follow the same path as trajc. Although these trajectories
have small warping costs with the trajectories that take the same route, since
more trajectories move diagonally, they have larger warping costs with more
trajectories. Thus, they have larger sumDTW values. On the other hand,
since the last 21 trajectories move diagonally, they have smaller warping
costs to more trajectories. Therefore, they have smaller sumDTW values.
It is easily noticed that the slope changes greatly at point trajd and also the
point after traja. By manual checking, the difference between the two slopes
at point trajd is the largest. Therefore, the DTW algorithm is not capable
of detecting all correct outliers with the second method. Figure 5.4(b) show
the PDF graph of sumDTW . In this PDF graph there are 100 classes,
each with a width of 74.98. When setting λdtw to 12.5%, the separation
between abnormal and normal trajectories is made at sumDTW = 3339.
Thus, traja to trajd can all be correctly detected by the third method.

However, when it comes to data set VI, the DTW algorithm has bad
performance in terms of detecting traj′a while the OS algorithm still works
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(a) The sumDTW values of the traject-
ories in set V sorted in descending order.

(b) PDF graph of sumDTW .

Figure 5.4: Experimental results of the DTW algorithm applied on set V.

(a) The sumOS values of the trajectories
in set VI sorted in descending order.

(b) PDF graph of sumOS.

Figure 5.5: Experimental results of the OS algorithm applied on set VI.

well. As shown in Figure 5.5(a), traj′a, trajb, trajc, and trajd have much
larger sumOS values than the other trajectories in set VI. They can all be
detected by the OS algorithm with λos = 1 by the first method. However,
it can be noticed that the slope changes greatly at both point trajc and
traj′a. These two changes are larger than the change at the point after traj′a.
Therefore, if the second method is chosen, the determine-outlier process of
the OS algorithm does not work for this data set. Figure 5.5(b) shows the
PDF graph of sumOS. In this figure there are 12 classes, each class with a
width of 0.96. With the third method of determining outliers, if λos is set to
12.5%, the separation between abnormal and normal trajectories is made at
sumOS = 4.78. The trajectories that have sumOS values larger than this
value, i.e., traj′a, trajb, trajc, and trajd, are all detected as outliers.

Figure 5.6(a) shows the sumDTW values of all trajectories. In this figure,
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(a) The sumDTW values of the traject-
ories in set VI ranked in descending order.

(b) PDF graph of sumDTW .

Figure 5.6: Experimental results of the DTW algorithm applied on set VI.

Table 5.4: Comparison of the three methods of determining outliers
Method #1

(actual sum value)
Method #2

(slope)
Method #3

(PDF)
OS DTW OS DTW OS DTW

set I to IV
√ √ √ √ √ √

set V
√ √ √ √ √

set VI
√ √

although trajb, trajc, and trajd have the top three sumDTW values, traj′a
ranked 11th in this set. Therefore, the DTW algorithm is not capable of
detecting traj′a as an outlier. The reason for that is many trajectories follow
the same path as traj′a, making it easy to match the location points of traj′a
to those of the other trajectories. It may seem strange that trajc can be
detected while traj′a cannot. The reason is that trajc has more location
points at the lower-right corner because it spends more time at that place.
Since all location points should have at least one matching point of the other
trajectories, more location points results in a larger warping cost and thus
a larger sumDTW value. The PDF graph is also shown in Figure 5.6(b).
With λdtw = 12.5%, the algorithm only detects trajb, trajc, and trajd as
outliers.

Table 3.1 shows a summary of the performance of the three methods
applied on data sets I to VI. A tick (

√
) indicates that a method is applicable

on the a certain data set. From this table, it is easily noticed that Method
1 and 3 works for all data sets. Since a percentage number is easier to
understand and setting Method 3 is a more automatic way of determining
outliers, users can choose to tune thresholds with this method.

51



Table 5.5: Run time (seconds) of the OS and DTW algorithm on the simu-
lated data

Data set OS DTW

I 0.34 36.49

V 1.25 674.54

Run Time

The computation time of the OS and DTW algorithms over 100 runs are
recorded in Table 5.5. The algorithms are run by MATLAB on a MacBook
Pro with 2.7 GHz Intel Core i5 and 8GB main memory. Since data sets I, II,
III, and IV have the same number of trajectories and these trajectories have
similar numbers of location points, only the run times of the experiments
on data set I are shown. For the same reason, only the run times of the
experiments on data set V are shown as a representative of data sets V and
VI. It can be seen from this table that the OS algorithm has much smaller
computation times on these data sets than the DTW algorithm does.

To sum up, from these experimental results, the conclusion can be drawn
that both the OS and DTW algorithms are capable of detecting density,
direction, duration, and speed outliers in some situations. However, due to
the fact that the DTW algorithm does a comparison of all the trajectories in
the input set, it fails to detect some temporal-spatial outliers if the outliers
behave abnormally at only small areas. On the other hand, since the OS al-
gorithm does comparison of neighboring trajectories, it has a high efficiency
in such cases.

5.1.3 The Size of Grid Cells

To study the influence of the size of a grid cell on the outlier detection by
the OS algorithm, a small experiment is conducted on data set V. In this
experiment, parameter sizeg is changed. Since the setting of τ should be
consistent with sizeg, some elements in τ are also changed as sizeg changes.
The values of sizeg and τ as well as the detection results are shown in
Table 5.6. In this table Fail indicates that with the corresponding paramet-
ers the algorithm is not capable of detecting the correct outliers, and Succeed
indicates that the algorithm is capable of detecting the correct outliers.

As mentioned in Subsection 5.1.1, τden is at least 2, and if τden is larger
than 5, normal trajectories in set V will have non-zero density OSs. There-
fore, the choice of τden is from 2 to 5. Following the experiments introduced
in this section, τden = 3 works for all six data sets with sizeg = 5m. Ac-
tually, experimental results show that τden ∈ [2, 5] give the same results for
sets I to VI with sizeg = 5m. Therefore, we arbitrarily set τden to 3 when
sizeg = 5m. When the cell size is smaller, τden is also set to a smaller value
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Table 5.6: The influence of the size of grid cell on the outlier detection by
the OS algorithm on set V.

sizeg τ Performance

3m (2,0.5,0.5,0.5) Fail

4m (2,0.5,0.5,0.5) Succeed

5m (3,0.5,0.5,0.5) Succeed

10m (3,0.5,0.5,0.5) Succeed

30m (3,0.5,0.5,0.5) Succeed

35m (3,0.5,0.5,0.5) Fail

since it is assumed that a smaller area will have a smaller number of tra-
jectories passing through it. Experimental results also show the algorithm
does not work when sizeg is set to 3m or 4m and τden = 3. Thus, when
sizeg is set to 3m or 4m, τden is set to a smaller value. In fact, the detection
of density outliers is influenced the most when the cell size is decreasing.
When the cell size is too small, more normal trajectories will be detected as
density outliers. On the other hand, the detection of all four types of out-
liers is affected when the cell size is increasing. When the cell size is large
enough, hardly any outlier can be detected. When the cell size becomes
larger, the trajectories within a same grid cell probably have large distances
with each other. In such a case, the algorithm not only compares a traject-
ory with the ones that are adjacent to it, but also the ones that actually lie
far away from it. Therefore the algorithm will not perform well. For this
data set, when cell size is too small, the algorithm fails to detect the density
outlier even though τden is also set to a smaller value. Thus the algorithm
performs badly. On the other hand, when the cell size is too large, it fails
to detect the duration outlier. Since the duration outlier trajc only has an
outlying behavior in a very small area, its duration in a grid cell will not be
considered abnormal if the cell size is large enough.

Therefore, a proper choice of cell size is necessary. The choice of a cell
size usually depends on applications. Users should take the minimum bound-
ing box of all trajectories, computation time, and detection precision into
account when setting this parameter. Among the four types of outliers,
density outliers are the most obvious ones and can probably be determined
by a manual checking on historical data. Usually when there exist dens-
ity outliers in the input trajectory set, users can tune sizeg by doing trail
experiments to detect the density outliers. sizeg should be set to a value
where the expected density outliers can be correctly detected and no normal
trajectories are falsely detected as outliers. This gives the lower and upper
bounds for sizeg. Afterwards, users can choose a value from the certain
range by additionally taking computation time and detection precision into
account. If there is no density outlier in the input trajectory set, the cell size
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Figure 5.7: Trajectories in a lab captured by an omni-directional camera
[16].

should be set to a value where normal trajectories are not falsely detected
as outliers. This gives the lower bound for sizeg. Afterwards, users can
take both computation time and detection precision into account and set a
proper sizeg.

5.2 Trajectories in a Lab

The second experiment is conducted on a real-life trajectory data set [16], as
shown in Figure 5.7. In this set there are 209 trajectories. It is a data set of
humans walking through a lab captured using an omni-directional camera.
For convenience, we refer to this data set as LabOmni. In the following
parts of this section, the setup, the experimental results, and analysis of
this experiment will be introduced.

5.2.1 Setup

The parameters set for this experiment are shown in Table 5.7. In this
experiment, the size of a grid cell is set to 10 pixels. Since we do not know
how large this lab is, considering that the image captured by the camera
is approximately 150pixel × 150pixel, a cell size of 10 pixel is considered
reasonable. In this data set the number of trajectories is larger than the
former experiment, and we also want to detect the trajectories that exist in
some low-density areas, thus τden is set to 8. It is also found out that in
this lab visitors usually spend more time at different places, thus duration
OS is easy to increase with a small τdur. In this experiment, τdur is set
to a value that is larger than in Subsection 5.1.1: τdur = 1.5. Also, in
this lab visitors have various speeds. τspd in this experiment is set a little
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Table 5.7: Parameter setting of the experiments on the LabOmni data.
Parameter Value

sizeg 10 pixels
dirnum 8

(τden, τdir, τdur, τspd) (8,0.5,1.5,0.7)
(wden, wdir, wdur, wspd) (0.25,0.25,0.25,0.25)

λos 18% for Method 3
λdtw 18% for Method 3

higher than Subsection 5.1.1. If the first method is chosen and it is assumed
that a trajectory that spends 10 time stamps being outlying is an outlier,
λos can be set to 10. If the second method is chosen, it is not possible to
make a correct distinction between abnormal and normal trajectories. The
reasoning will be explained in Subsection 5.2.2. When applying the third
method, at first λos was set to be the same as in Subsection 5.1.1, which is
12.5%. However, it was determined that some obvious density outliers are
not detected. Thus, λos was tuned to a larger value 18%.

5.2.2 Results and Discussion

Figure 5.8 shows the results of the sumOS values of the trajectories in set
LabOmni. The trajectories are sorted by their sumOS values in descending
order. In Figure 5.8(a), the point where slope changes greatly is not a proper
threshold since many of the trajectories after this point are also possible
outliers. For this data set, it is more proper to apply the third method for
determining outliers, where λos is set to a percentage number. Figure 5.8(b)
shows the PDF graph of sumOS. In this figure there are 140 classes, each
with a width of 0.99. When λos is set to 18%, the distinction between
abnormal and normal trajectories is formed at sumOS = 12.92. The top
39 trajectories that have larger sumOS values than 12.92 are detected as
outliers. It can be seen from this figure that the division is made in an
area where trajectories have similar sumOS values, i.e., there is no obvious
distinction between abnormal and normal trajectories. For such kinds of
data set, users should try different values for λos to make sure that a proper
separation between abnormal and normal trajectories is made.

Figure 5.9 shows the sumDTW values by the DTW algorithm. For
comparison, λdtw is also set to 18% and the third method for determin-
ing outliers is applied. Figure 5.9(b) shows the PDF graph of sumDTW .
In this graph there are 250 classes, each with a width of 942. When
λdtw = 18%, the separation between abnormal and normal trajectories is
made at sumDTW = 44, 406. Thus 41 trajectories are detected as outliers.

The 39 trajectories detected by the OS and the 41 detected by the DTW
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(a) The sumOS values of the trajectories
in data set LabOmni.

(b) PDF graph of sumOS.

Figure 5.8: Experimental results of the OS algorithm applied on set
LabOmni.

(a) The sumDTW values of the traject-
ories in data set LabOmni.

(b) PDF graph of sumDTW .

Figure 5.9: Experimental results of the DTW algorithm applied on set
LabOmni.

algorithm are shown in Figure 5.10(a) and 5.10(b), respectively. The in-
tersection of these two sets of trajectories is shown in Figure 5.10(c). By
checking the 39 trajectories in Figure 5.10(a) in detail, it was determined
that they truly have outlying movements in one or more aspects from dens-
ity, direction, duration, and speed. From these figures, it can be noticed
that the DTW algorithm fails to detect some obvious density and duration
outliers while the OS algorithm does well. By manual checking, the number
of these outliers is 15. In this larger data set, each trajectory needs to be
matched to all the other 208 trajectories. In other words, they are compared
with not only the trajectories that are adjacent to them, but also those that
have completely different routes. Because of the great diversity of move-
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(a) The outliers that are detected by the
OS algorithm.

(b) The outliers that are detected by the
DTW algorithm.

(c) The outliers that can be detected by
both the OS and DTW algorithm.

Figure 5.10: A comparison of the outliers that are detected by the OS
algorithm and those that are detected by the DTW algorithm.

ments in this data set, it is hard to find out which trajectories are different
or abnormal by matching location points and accumulating warping costs.
By looking into the top 41 trajectories with larger sumDTW values, it was
determined that 19 of them are normal in all density, direction, duration
and speed aspects. Figure 5.11 shows some representative trajectories that
are detected by the DTW algorithm. The trajectories in Figure 5.11(a)
and 5.11(b) are short and located at relatively sparse areas. This leads to
larger warping costs when matching their location points to those of the
others. Thus, they are classified as false positive (FP) outliers. The traject-
ory in Figure 5.11(c) is correctly detected as an outlier because it is truly
an outlier that appears at a low-density area. Regarding the trajectory in
Figure 5.11(d), it can be detected by the DTW algorithm because it spends
more time around its right endpoint. This brings a larger warping cost when
matching location points.
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(a) A representative FP outlier detected
by the DTW algorithm.

(b) Another representative FP outlier de-
tected by the DTW algorithm.

(c) A representative true density outlier
detected by the DTW algorithm.

(d) A representative true duration outlier
detected by the DTW algorithm.

Figure 5.11: Some representative outliers detected by the DTW algorithm.

Above all, since the OS algorithm does comparison of neighboring traject-
ories while the DTW algorithm does that of the entire trajectory set, the OS
algorithm is not affected by the distribution of trajectories. In other words,
as long as a trajectory is not a density outlier, it is only compared with
its adjacent trajectories. Besides, the detection of the OS algorithm is not
affected by the length of trajectories. As to the DTW algorithm, although
it is able to detect some density and duration outliers that are similar as
the ones in Figure 5.11(c) and 5.11(d), it fails to detect some other density,
duration, and speed outliers.

The computation times of the OS and DTW algorithms shown in Table 5.8
also indicates that the OS algorithm has a much smaller computation time
than the DTW algorithm. The run-time values in this table are obtained
over 10 runs.
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Table 5.8: Run time (second) of the OS and DTW algorithm on LabOmni
Data set OS DTW

LabOmni 0.61 29,373.36

Figure 5.12: Trajectories of the Mysteryland event.

5.3 Trajectories at an Outdoor Event

In this section, the last experiment is introduced. It is an experiment on
another real-life trajectory data set. The trajectories in this data set are
from a large-scale two-day dance event called Mysteryland [19]. During this
event, there were various performances in different zones. The whole event
was within an area of approximately 1km by 1km.

A subset of this data set is extracted as our experimental data, as shown
in Figure 5.12. The reason why we decide not to use the entire data set as
the input trajectory data set lies in the following aspect. It was of great
chance that people would move according to their preferences on different
performances. And since the performances took place at different time peri-
ods of a whole day, the movements of these trajectories are time-dependent.
Therefore, it makes no sense to do comparison of the trajectories that ap-
pear at different time periods. The subset consists of 34 trajectories that
appear between 14pm and 18pm of the first day. For convenience, this data
set is referred to as the ML data set.
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Table 5.9: Parameter setting of the experiments on the ML data set.
Parameter Value

sizeg 10 meters
dirnum 8

(τden, τdir, τdur, τspd) (2,0.5,3,0.5)
(wden, wdir, wdur, wspd) (0.25,0.25,0.25,0.25)

λos 10% for Method 3
λdtw 10% for Method 3

5.3.1 Setup

The parameter set for this experiment is shown in Table 5.9. Since the
trajectories in this data set are within a large area, the size of a grid cell is
set to be larger than in Section 5.1: sizeg is set to 10m. However, there are
only 34 trajectories within the target time period, which is a small number
of historical data considering that the whole area is large, τden is set to a
small number. It is also assumed that in the Mysteryland area visitors would
spend much time staying still when they were enjoying a performance. Thus,
τdur is set to a larger value than in Section 5.1. Lastly, the third method for
determining outliers is chosen and λos and λdtw are both set to 10%.

5.3.2 Results and Discussion

Figure 5.13 shows the results of the OS algorithm applied on the ML data
set. In Figure 5.13(b) the PDF graph has 180 classes, each with a width of
0.004. The separation between abnormal and normal trajectories is made at
sumOS = 0.53 with λos = 10%. In this way 4 trajectories are detected as
outliers. Similarly, Figure 5.13 shows the results of the DTW algorithm. In
the PDF graph there are 300 classes, each with a width of 0.1. When λdtw
is set to 10%, the separation between abnormal and normal trajectories is
made at sumDTW = 9.9. Also, 4 trajectories are detected as outliers.

The two algorithms show quite different results on this data set. Only one
trajectory is detected by both the algorithms. The trajectories that have the
largest and third largest sumOS are shown in Figure 5.15(a) and 5.15(b),
respectively. By analyzing these trajectories manually, it was determined
that these trajectories pass many areas with very low density. They should
be detected as density outliers. However, the DTW algorithm fails to do so.
The trajectory that has the second largest sumOS is shown in 5.15(c). This
trajectory has a large direction OS. Thus it might be a direction outlier. The
trajectory shown in Figure 5.16(a) is the only trajectory that is detected by
both the algorithms. By manual checking, it is truly a duration outlier. The
trajectory that has the highest sumDTW value is shown in Figure 5.16(b).
This trajectory is thought of as a false positive (FP) outlier by manual
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(a) The sumOS values of the trajectories
in data set ML.

(b) PDF graph of sumOS.

Figure 5.13: Experimental results of the OS algorithm applied on set ML.

(a) The sumDTW values of the traject-
ories in data set ML.

(b) PDF graph of sumDTW .

Figure 5.14: Experimental results of the DTW algorithm applied on set ML.

checking. The reason why the DTW algorithm determines this trajectory
as an outlier is that it appears only at the upper area. This brings larger
warping costs when matching its location points to the others. For the
same reason, the trajectory shown in Figure 5.16(c) is another FP outlier
detected by the DTW algorithm. The three trajectories in Figure 5.16 have
the same property: they appear only in the upper or lower area. And since
the DTW algorithm does comparison of all trajectories in the input set, they
are easily detected as outliers. The trajectory in Figure 5.16(a) is not FP as
it is a duration outlier. Therefore, for this data set, the OS algorithm shows
great advantages since it does comparison of neighboring trajectories when
examining each trajectory.
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(a) A density outlier that is detected by
both algorithms.

(b) A density outlier that is only detected
by the OS algorithm.

(c) Another direction outlier that is only
detected by the OS algorithm.

Figure 5.15: A comparison of the trajectories that are detected by the OS
algorithm and those that are detected by the DTW algorithm.

Table 5.10: Run time (seconds) of the OS and DTW algorithm on ML data
Data set OS DTW

ML 0.10 27,510.91

The run time of this experiment is shown in Table 5.10. The values in
this table are obtained over 10 runs. Same as in the first two experiment,
the run time of the DTW algorithm is much larger than that of the OS
algorithm.
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(a) A duration outlier that is detected by
both algorithms.

(b) A FP outlier that is detected by the
DTW algorithm.

(c) A FP outlier that is detected by the
DTW algorithm.

Figure 5.16: Some representative trajectories detected by the DTW al-
gorithm.

5.4 Discussion

In this section several experiments on both generated and real-life traject-
ory data are reported. Generally, both the OS and DTW algorithms are
capable of detecting (some) density, direction, duration, and speed outliers.
When the trajectory input set is more comprehensive, the OS algorithm
performs better. According to the above experiments and analysis, the ma-
jor advantages of the OS algorithm over the DTW algorithm are: (i) it
has locality advantage, in other words, it is capable of detecting outlying
behaviors in small areas, (ii) and it has a low run-time complexity. One
drawback of the OS algorithm is the necessity of setting several parameters.
Without proper values of those parameters the algorithm will not work well.
Thus, users need to understand the meaning of each parameter. Another
important aspect of the OS algorithm is the need for valid and meaningful
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historical trajectory data. It can be assumed that more useful historical
data means more accurate grid feature information, and thus more accurate
outlier detection.

Although no experiment is conducted on the other existing TOD al-
gorithms introduced in Chapter 3, some theoretical analysis is made here.
It is easy to infer that iBAT can only detect the density outliers in these
data sets, and TOP-EYE, TRAOD, and TRACLUS will fail to detect the
duration and speed outliers. The algorithm by Knorr may fail to detect the
outliers that only have outlying behaviors in small areas since it considers
each trajectory as a whole. With the framework provided by ROAM, if the
attribute vector includes all the four feature information, it is possible to
detect many of the four types of outliers with a proper classifier. However,
it may have a large computational complexity.
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Chapter 6

Conclusions and Future
Work

6.1 Conclusions

In this work, a novel trajectory outlier detection (TOD) algorithm is pro-
posed, which is motivated by the fact that outlying trajectories are possibly
caused by harmful behaviors and may bring security threats. The algorithm
is gridbased and has a similar detecting strategy as TOP-EYE [4]. How-
ever, TOP-EYE is not capable of detecting any duration or speed outliers. A
trajectory interpolation approach that provides much convenience for grid-
based outlier detection is designed. After interpolation, every location point
of a trajectory can be mapped to a grid cell. Then, density, direction, dur-
ation, and speed features of trajectories can be extracted. With such a
method, it is easy to compare a trajectory with its neighboring trajectories
in all the four aspects with efficiency. Four corresponding outlying scores
(OSs) are used to measure the outlier level of trajectories. For each of the
four aspects, when a trajectory was determined to be different from most of
its neighbors in a grid cell, its OS increases. Lastly, a weighted sum func-
tion is used to combine the four OSs into a single value sumOS. The weight
of each OS can be adjusted according to application and user preference.
Afterwards, the trajectories with larger sumOS values will be detected as
outliers. The design also provides an automated strategy for determining
outliers by sumOS. During this automatic process, firstly, all sumOS val-
ues are smoothed by a smoothing function and sorted in descending order.
Then, the tangent values at each point of the smoothed sumOS curve are
calculated. Since the tangent values are also expected to be in descending
order, the outlier threshold can be set as a tangent value. When a tangent
value on the sumOS curve reaches the threshold, the outlier-determining
process is finished. The trajectories that have larger or the same smoothed
sumOS values than/as the threshold will be determined as outliers.

65



For reference, another TOD algorithm based on DTW (Dynanmic Time
Warping) was designed. Some experiments on both simulated and real data
sets were conducted with the two algorithms. Based on the experimental res-
ults, we conclude that the OS algorithm performs better in many situations,
especially in terms of detecting duration and speed outliers and the outliers
that exist within small areas. Since the OS algorithm compares of the tra-
jectories that are adjacent to each other while the DTW algorithm compares
all input trajectories, the DTW algorithm fails to detect some density and
duration outliers because some other trajectories with small length or loc-
ated at relatively sparse areas will have larger DTW values. As such these
trajectories will be falsely classified as outliers (false positives). However, as
the feature information of grid cells is extracted from historical data, more
meaningful historical data means more accurate feature information. There-
fore, when applying the OS algorithm, enough historical trajectory data is
a necessity. Besides, more parameters are needed, including a proper choice
of cell size, parameters for increasing OSs, and an outlier threshold.

Theoretical analysis is also made on other relevant TOD algorithms.
Based on either the theoretical or the experimental analysis of these TOD
algorithms, we conclude that the OS algorithm we propose has advantages
over the other TOD algorithm. Compared to previous TOD algorithms, the
algorithm has a low computational complexity, a small memory consump-
tion, and is capable of detecting the four types of temporal-spatial outliers
and the outliers that appear within small areas.

6.2 Future Work

In the future, this work can be broaden in several aspects. Firstly of all,
one could think of conducting experiments on other state-of-the-art TOD
algorithms and compare the experimental results with the ones of the OS al-
gorithm. Secondly, one could exploit other information such as the structure
of public places for anomalous trajectories detection. Furthermore, the pro-
posed algorithm can be extended to a practical trajectory outlier detection
system. Lastly, since detecting anomalous trajectories when the trajectory
is ongoing is also important for security, it would be interesting to develop
a TOD algorithm that is able to deal with ongoing trajectories.
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