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Abstract

This thesis aims to improve Coolblue’s direct demand estimation model for substitutable products.
Their current model consists of three sub-models which all provide their direct demand estimations. For
every product, the direct demand is taken from one of the sub-models based on their performance in
estimating the sales. The sub-models are the mean, linear and expectation-maximisation (EM) model.
The linear model gives the most accurate expectations, whereas the mean model scores the lowest.
Therefore, we have improved the mean model’s estimations by creating a new estimator. Furthermore,
we have investigated if an out-of-stock (OOS) period influences the sales and, therefore, the direct
demand estimations. From this investigation, we conclude that for a part of the products, the sales
are affected by OOS periods. However, these results are dependent on how they are investigated.
Moreover, the OOS periods’ influences are as likely to be positive as negative on the sales. Therefore
it is challenging to react to these influences.
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1
Introduction

In this thesis, we will investigate Coolblue’s direct demand estimation model for substitutable products
and improve this model in multiple aspects. First, we will briefly introduce the company Coolblue.
Then, we will explain the concept of direct demand and why this is essential for Coolblue. After that,
Coolblue’s direct demand estimation model is described shortly. Finally, the research questions are
presented, followed by an outline of the thesis.

1.1. Coolblue
Coolblue is a Dutch e-commerce company founded in 1999. They are one of the largest online retailers
in TheNetherlands and Belgium today. In 2020 they expanded their market to Germany and have grown
there since then. Their main office is in Rotterdam, and the central warehouse is in Tilburg. They also
have 23 physical stores distributed over the three countries.

Many consumer electronics are delivered by Coolblue’s delivery service consisting of vans and elec-
tric bikes. They are well-known for their excellent service. Additionally, they sell solar panels and
charging stations, and offer Home Office Stores for employees of other companies. In 2021 Coolblue
announced their own energy label called Coolblue Energy.

1.2. Direct demand
It is a big challenge for Coolblue to find a balance between having enough products available to serve
the customer demand and the costs of keeping all the products stored in warehouses. To get to this
optimum, we need to know howmuch of a product the customers want, this is called the direct demand.
Moreover, the direct demand is also used to forecast the sales and review the past performance of
Coolblue.

One of the challenges when measuring the direct demand is when the demand cannot be met, this
results in a lost sale which is not observed. An example of a situation with lost sales: Assume that at
the beginning of a period, there are 20 products available, and there will be no extra incoming deliveries
in this period. If there are still eight products left in stock at the end of the period, we know that the
demand was 12. However, if there are zero products left in stock at the end of the period, we only know
that the demand was at least 20, but we do not know if we lost sales.

Another challenge when measuring direct demand is the substitution of products. If a product is out
of stock, the customer could go for another product that is almost similar (another colour, version, brand
etc.). As a result, the sales of a product in a certain period are not a good representation of the direct
demand because it consists of the direct demand and the substitution demand.

To conclude, a product’s direct demand equals the sales when the product and all the product’s
substitutes are in stock.

1



2 1. Introduction

1.3. Coolblue’s direct demand estimation model
Coolblue’s direct demand estimation model estimates every day the direct demand for the last 90 days
for every product per country. The model consists of three sub-models: the mean model, the linear
model and the expectation-maximisation (EM) model. Every sub-model estimates the direct demand
and sales, if possible. Then, the estimated direct demand per product per country is taken from one
sub-model. This choice is based on the performance of the sub-models in estimating the sales since
this variable is observed. Finally, every product per country has its estimated direct demand for the last
90 days coming from one of the sub-models.

1.4. Research questions
To investigate and improve the direct demand estimation model, we begin by analysing the data used in
the model. After that, we compare the performance of the three sub-models (mean mode, linear mean
and EM model). From this comparison, we conclude that the mean model can be improved. Moreover,
experts on Coolblue’s direct demand estimation model advise investigating if an out-of-stock (OOS)
period influences the sales afterwards because they expect an influence. Using this information, we
try to answer the following research questions in this study:

• How do the three sub-models perform compared to each other?

• Can we improve the estimated demand provided by the mean model?

• Do out-of-stock periods influence the sales? And if so, how can we react to this influence such
that it does not affect the direct demand estimations.

1.5. Outline
In the following chapters, we will answer the research questions introduced above. First, a thorough
description and analysis of the data input of the direct demandmodel are given in Chapter 2 to introduce
the reader further to Coolblue. After that, the direct demand model is explained in detail in Chapter 3,
followed by a sub-model evaluation to answer the first research question. Additionally, we answer the
second research question at the end of this chapter. Finally, in Chapter 4 the last research question is
answered with an extensive out-of-stock investigation. In the final chapter, we conclude and discuss
our research and give recommendations for further research.
All the simulations, figures, and results are made in the programming language R. The codes are not

public because of confidence regulations, they can be requested by mailing to
josephineclercx@hotmail.com.



2
Data of the direct demand model

This chapter describes the data used in Coolblue’s direct demand estimation model. First, we introduce
all the variables of the dataset. After that, we share analysis of the sales variable since this is an
essential variable in the model. Finally, we analyse the other variables briefly.

2.1. Structure of the data
For every product 𝑖 = 1, ..., 𝑛 in country 𝑗 = {𝑁𝐿, 𝐵𝐸, 𝐺𝐸𝑅} on day 𝑡 = 𝑡1, ..., 𝑡𝑇𝑖𝑗 product information
is used for the direct demand model. This is bundled in vector 𝑥𝑥𝑥𝑖𝑗𝑡. If known, 365 days of historical
data is given as input, else the subset of recent historical data is given. Below are the variables of
the vector listed. We only provide the mathematical notation of the variables if we use them in the
thesis. Moreover, the data used for investigation and results in this thesis is the product information
from 12/21/2020 until 12/20/2021.

• Sales (𝑠𝑖𝑗𝑡 ≥ 0): Some sales are removed: the cancelled orders, non-standard products (like
insurances, services, etc.) and bundled products. The sales do include pre-ordered sales.

• Status (𝑠𝑡𝑖𝑗𝑡): To give products an availability status, the statuses of the products on Coolblue’s
website are used. Products can have status available, unavailable, permanently unavailable
or pre-order. See Definition 2.1.1 for the concrete definition of available and unavailable. The
definitions of permanently unavailable and pre-order are not concrete.

Definition 2.1.1: Available and unavailable status

– A product has status available on day 𝑡 if it is in stock on the website for the whole
day.

– A product has status unavailable on day 𝑡 if it is out of stock for at least one moment
on the whole day.

𝑠𝑡𝑖𝑗𝑡 ∈ 𝑆𝑇 = {available, unavailable, permanently unavailable, pre-order} = {𝐴, 𝑈, 𝑃𝑒𝑟𝑚.-𝑈, 𝑃-𝑂}.
• Status-2 (𝑠𝑡∗𝑖𝑗𝑡): This is another status that Coolblue uses, we name it status-2. The status-2 of
products can be partial available or partial unavailable. See Definition 2.1.2 for the concrete defi-
nition of these statuses-2. The reason that there is another status definition is because Definition
2.1.1 results in product being sold when the product has status unavailable, which is not logical.

Definition 2.1.2: Partial available and partial unavailable status-2

– A product has status-2 partial available on day 𝑡 if it has status available or if there
is at least one sale on day 𝑡.

– A product has status-2 partial unavailable on day 𝑡 if it has status unavailable and
no sales on day 𝑡, or when it has status permanently unavailable or pre-order.

3
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𝑠𝑡∗𝑖𝑗𝑡 ∈ 𝑆𝑇∗ = {partial available, partial unavailable} = {𝑃𝐴, 𝑃𝑈}.
• Segment composition: Describes the composition of each product type, sub-product type and
product segment. It specifies which product belongs in which segment, for an example, see
Figure 2.1.

• Market share (𝑚𝑖𝑗𝑡 ≥ 0): Via an external source, Gfk 1, the market share of a product segment
is known. The market share represents how much percentage Coolblue contributed to the total
market. It is calculated per week per product segment. However, there are certain caveats; it is
not available for all product segments. Also, it can be unreliable; the data Coolblue sends to Gfk
is not always the same as what Gfk reports back.

• Website visits (𝑣𝑖𝑗𝑡 ≥ 0): These are direct page landings on the website.

• Price (𝑝𝑖𝑗𝑡 > 0): The price of a product in euros.

• Discount price: If there is a discount or a price change on a product, the discount price is the
product’s price before the discount, or the price change happens.

• Competitor price: The prices of products of the competitors if they are known.

• Parent product sales (𝑝𝑡𝑖𝑗𝑡 ≥ 0): A product’s parent product is another product linked to the
product as a product likely to be bought with it. The parent product is the ”main” product, the
product itself is a smaller product that can be useful by the parent product. An example: The
parent product of a phone case is the phone.

• Dutch national holidays: This is an indicator variable which indicates if there is a Dutch national
holiday.

• Coolblue’s choice (𝑐𝑐𝑖𝑗𝑡): This is a label of Coolblue which indicates that a product is the best
product compared to similar products, according to experts of Coolblue. A product can be Cool-
blue’s choice all the time, for a limited time or never.
𝑐𝑐𝑖𝑗𝑡 ∈ {𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}

Figure 2.1: Example of the composition and levels of the product type Laptops. Note that there are more sub-product types
and product segments than visualised in the figure.

Not all the variables listed above are known for every product or date. Table 2.1 is an overview of
which variables are not always known per country 𝑗. The reason why competitors’ prices are unknown
sometimes is that not every product is being sold at a competitor, or Coolblue does not have the ca-
pability to know the prices of competitors for every product. Moreover, the discount price is sometimes
unknown because there is no discount price for a product. The product itself has only its price. Lastly,
the market share is unknown sometimes because Gfk does not provide the market share for every
1GfK is a provider of data and analytics to the consumer goods industry, www.gfk.com

www.gfk.com
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product. Comparing the percentage of known variables per country shows that Germany has the least
known variables. The reason for this at the competitor prices and market share variables is that Cool-
blue had entered the market of Germany recently. Therefore, Coolblue’s market in Germany is not as
developed as in the Netherlands and Belgium. As a result, this information is not known yet.

Percentage of how many variables are known
Variable NL BE GER
Competitor price 1 51.85 49.28 42.69
Competitor price 2 35.18 31.40 30.99
Discount price 15.05 14.22 12.25
Market share 32.57 32.00 9.63

Table 2.1: Percentages of how many variables are known in the dataset.

2.2. Sales analysis
Author’s note: This section is confidential.

2.3. Other numerical variables
Author’s note: This section is confidential.

2.4. Categorical variables
Author’s note: This section is confidential.





3
The direct demand estimation model

This chapter describes and improves Coolblue’s direct demand model. First, in Section 3.1 is the
existing direct demand model of Coolblue shared in detail. Then, in Section 3.2 we evaluate the three
sub-models of the direct demand model. Finally, in Section 3.3 we improve the estimations of the mean
model.

3.1. Existing model
The model of Coolblue to estimate the direct demand for products is described in this section. A brief
introduction of the model will be given first. Then, we describe how the sub-models estimate the direct
demand. After that, the processing stages of the model are explained.

3.1.1. Brief introduction
Coolblue currently has a model to daily estimate direct demand for every product in each country for
the past 90 days. The input data for every product 𝑖 in country 𝑗 is the product information vector 𝑥𝑥𝑥𝑖𝑗𝑡
of the recent 365 days. The model is a combination of three sub-models: the mean model, the linear
model and the expectation maximisation (EM) model. All of the sub-models estimate the direct demand
and the sales for the products. To choose the most accurate demand estimation, the sales estimations
are evaluated. This is done because the sales are observed while the direct demand is not. The model
with the most accurate estimated sales for a product is the one from which the estimated direct demand
is taken. After that, two post-processing are applied to scale the estimates if needed. As a result, every
product has its estimated direct demand from one of the three sub-models. Figure 3.1 is an overview
of the direct demand estimation model.

Figure 3.1: An overview of the direct demand estimation model with 𝑥𝑥𝑥𝑖𝑗 the one-year historical product information vector,

�̂�𝑠𝑠𝑀𝑒𝑎𝑛𝑖𝑗 , �̂�𝑠𝑠𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑗 , �̂�𝑠𝑠𝐸𝑀𝑖𝑗 the vector of 90 days estimated sales of every sub-model and �̂�𝑑𝑑𝑀𝑒𝑎𝑛𝑖𝑗 , �̂�𝑑𝑑𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑗 , �̂�𝑑𝑑𝐸𝑀𝑖𝑗 the vector of 90 days
estimated direct demand of every sub-model and �̂�𝑑𝑑∗𝑖𝑗 is the estimated demand selected from one sub-model.

7



8 3. The direct demand estimation model

Coolblue uses BigQuery as data warehouse to store the input and output data of their models, the
direct demand model is ran in Python.

3.1.2. The sub-models
Author’s note: This section is confidential.

3.1.3. Model selection
Author’s note: This section is confidential.

3.1.4. Post-processing steps
Author’s note: This section is confidential.

3.2. Sub-model evaluation
To improve Coolblue’s direct demand estimation model, we will look for weaknesses in the sub-models’
performance. This investigation is covered in the first research question that we will answer in this
section:

• How do the three sub-models perform compared to each other?

They are compared on three criteria: applicability, best-estimating and occurrences of large errors.
The sales estimations of the sub-models are evaluated for this. These estimations come together in
the model selection step. When we investigated the model selection step, we detected incorrectness
in splitting the train and test set. Therefore, we will first share the splitting process and advise on a
better process. After that, we will go through the three criteria points.

3.2.1. Correct splitting
Every sub-model’s sales estimations are made with a train set and evaluated on a test set in the model
selection step. The test set should only include days with status available since Coolblue wants to
evaluate the estimations only on these days. When analysing this splitting process, we detected that
the train set is not representable: It does not consist of the same data as the data set used to estimate
demand. Algorithm 1 explains the current incorrect splitting method for every product’s data.

Algorithm 1 The incorrect splitting of the train and test set in the model selection step
Initialisation
𝒯𝑖𝑗 = {𝑡1, ..., 𝑡𝑇𝑖𝑗} 𝑖 = 1, ..., 𝑛 𝑗 ∈ 𝐶 = {𝑁𝐿, 𝐵𝐸, 𝐺𝐸𝑅}
𝒯available
𝑖𝑗 = {𝑡|𝑠𝑡𝑖𝑗𝑡 = available} ⊂ 𝒯𝑖𝑗

Splitting
𝒯proposed test set
𝑖𝑗 = {sample 20% uniformly and random without replacement of 𝒯𝑖𝑗}
𝒯test set
𝑖𝑗 = 𝒯proposed test set

𝑖𝑗 ∩ 𝒯available
𝑖𝑗

𝒯𝑖𝑗train set = 𝒯available
𝑖𝑗 ⧵ 𝒯test set

𝑖𝑗

The train set consists only of days that have status available, this influences the estimations of the
mean and EM model: They both should use all the historical data, regardless of the status. As a result,
these sub-models’ estimation methods do not align with the demand estimation method. Moreover,
how the test set is constructed results in a higher chance of having an empty test set, this can be
improved. Therefore, we advise an improved splitting method, see Algorithm 2.

With this splitting method, the train set consists of random days regardless of the status. Also, the
test set has a smaller chance of being an empty set, however if there are no days with status available
or status-2 partially available, the test set will not consist of days with these statuses. This is not entirely
how Coolblue wants to evaluate the estimations, they can change this if wanted.

In the following sections, we will compare the sub-models with the criteria introduced. The output
data of the model selection step is used where the old splitting method (Algorithm 1) still is applied, with
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Algorithm 2 An advice to improve the splitting of the train and test set in the model selection step
Initialisation
𝒯𝑖𝑗 = {𝑡1, ..., 𝑡𝑇𝑖𝑗} 𝑖 = 1, ..., 𝑛 𝑗 ∈ 𝐶 = {𝑁𝐿, 𝐵𝐸, 𝐺𝐸𝑅}
𝒯available
𝑖𝑗 = {𝑡|𝑠𝑡𝑖𝑗𝑡 = available} ⊂ 𝒯𝑖𝑗
𝒯partial available
𝑖𝑗 = 𝒯available

𝑖𝑗 ∪ {𝑡|𝑠𝑖𝑗𝑡 > 0}

Splitting
if |𝒯𝑖𝑗| = 1 then

product 𝑖 for country 𝑗 is not being evaluated
end if

if 𝒯available
𝑖𝑗 ≠ ∅ then
𝒯test set
𝑖𝑗 = {sample 20% (minimal one element) of 𝒯available

𝑖𝑗 uniformly and at random without replacement}
else if 𝒯partial available

𝑖𝑗 ≠ ∅ then
𝒯test set
𝑖𝑗 = {sample 20% (minimal one element) of 𝒯partial available

𝑖𝑗 uniformly and at random without
replacement}

else
𝒯test set
𝑖𝑗 = {sample 20% (minimal one element) of 𝒯𝑖𝑗 uniformly and at random without replacement}

end if
𝒯train set
𝑖𝑗 = 𝒯𝑖𝑗 ⧵ 𝒯test set

𝑖𝑗

the same input data as in the previous chapter: Product information from 12/21/2020 until 12/20/2021.

3.2.2. Applicability
Not every sub-model can make an estimation for every product because of the lack of data, as told
before. Table 3.1 consists of the percentages of products for which the model is applicable per country.
All products can be estimated by the mean model, whereas the linear and EMmodel cannot. Especially
the EMmodel can estimate only a minority of the products. Moreover, German product data is the least
known compared to the Netherlands and Belgium because of Coolblue’s recent entry into the German
market.

Percentage of the products for which the sub-models are applicable

Country
Sub-model Mean model Linear model EM model

NL 100.00 68.90 36.41
BE 100.00 64.00 35.28
GER 100.00 28.92 16.95

Table 3.1: Percentage of products for which the sub-models are applicable, for each country 𝑗.

The results of the data analysis in Chapter 2 and Table 3.1 are nearly the same for the Netherlands
and Belgium. The German results are mostly slightly different because of the recent market entry.
Therefore, we choose to use only the data of products in the Netherlands for the following sections
and chapters to reduce the computation time of generating results. The Dutch products are a good
representation of all the products.

3.2.3. Best-performing sub-model
The second criteria which we use to investigate the sub-models is their performance in estimating the
sales, the root-mean-squared error (RMSE) is used as metric. Per set of sub-models that can estimate
the sales for a product, the percentage of products for which the sub-model is the most accurate in
estimating is given in Table 3.2. The linear model gives the most accurate estimations overall, whereas
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the mean and EM model perform the same approximately.

Percentage of products for which the model is selected as best-performing sub-model
Demand estimated by Mean model Linear model Mean model
All three sub-models 21.57 57.66 20.77
Mean & EM model 49.62 - 50.38
Mean & Linear model 39.99 60.01 -
Mean model 100.00 - -

Table 3.2: Percentage of the products for which the sub-model has the most accurate estimations, based on the RMSE of the
estimated sales. The four subsets contain 27.83%, 8.59%, 41.01% and 22.51% of the products, respectively.

3.2.4. Large errors in sales estimations
Finally, we investigate the occurrences of larger errors in the estimations to detect which sub-model
makes poor estimations. Only the estimations of the best-performing sub-model per products are used,
thus only one estimation per product. To detect larger errors, we use another metric than the RMSE,
we use the root-relative-squared error (RRSE) [21]. It is defined by:

𝑅𝑅𝑆𝐸 = √
∑𝑛𝑖=1(�̂�𝑖 − 𝑦𝑖)2

max (∑𝑛𝑖=1(𝑦𝑖 − �̄�)2, 𝜖)
, (3.1)

with �̂�𝑖 the prediction of observation 𝑦𝑖, �̄� =
1
𝑛 ∑

𝑛
𝑖=1 𝑦𝑖, the mean of the 𝑛 observations, and 𝜖 is a

small positive number to avoid division by zero, we choose 𝜖 = 1 ∗ 10−4. We have multiple reasons to
use this metric: This metric is relative, it does not depend on the size of the product’s sales; it weights
large errors more heavenly; and the chance that the value ∑𝑛𝑖=1(𝑦𝑖 − �̄�)2 in the denominator equals
zero is smaller than other metrics. This last reason is important since the sales equal zero frequently,
as seen before in Chapter 2.
Figure 3.2 plots the empirical cumulative distribution function (ECDF) of the RRSEs per sub-model. If

we look at the highest 25 % values of the RRSE per sub-model, the mean model has the largest values
of RRSE, followed by the EM and linear model. Moreover, the highest 25 % RRSEs of the mean model
are significantly higher than those of the EM and linear model, and the highest 25 % RRSEs of the EM
model are significantly higher than those of the linear model. See Chapter A for the details (tests 6-8).
We can conclude that the linear model also has the best results in this criteria.

3.2.5. Summary
Table 3.3 gives an overview of the performance of the three sub-models on our criteria. The linear
model has the best score on average, it could only be improved on applicability. On the contrary, the
mean model can estimate all products, but it scores poorly on estimating the sales. The EM model
scores average: Its estimations are medium, but the sub-model cannot estimate many products.

Summary of the sub-model evaluation
Sub-model Mean model Linear model EM model
Applicibility +++ ++ +
Best-performing + +++ +
Large errors + +++ ++

Table 3.3: Overview of the sub-model performance on the three criteria. ”+++” indicates scoring the best on this criteria,
whereas ”+” indicates scoring the most minor.

The result that the linear model outperforms the other two sub-models while using the most data of
all sub-models is interesting. We can state that in these sub-models, the amount of data increases the
accuracy of the estimations. This is in line with other topics in statistics. For example, the law of large
numbers states that when the number of observations increases, the sample mean approaches the
theoretical mean [19].
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Figure 3.2: ECDF plot of the RRSEs per sub-model. These are the RRSEs of the estimated sales of the best performing
sub-models per product.

3.3. Improvements mean model
In the previous section, we concluded that the mean model scores poorly on estimating, while it is a
sub-model that is the backup sub-model if the other two sub-models fail to make estimations due to the
lack of external data. Therefore, we want to improve the estimations made by the mean model. We
will answer the second research question of this thesis in this section:

• Can we improve the estimated demand provided by the mean model?

Wewill improve the estimated demand by changing the estimator in Definition ??. There are two criteria
we want to meet when changing the estimator:

• Keep the same applicability as the current estimator: We want the mean model to be still appli-
cable for all the products. To do this, we should not increase the needed data since the likelihood
of failure increases when external data is included in the model. Therefore, only the sales and
status of the products should be used.

• Reduce the average RRSE of the sales estimates of all the products in the Netherlands. The
current model has an average RRSE of 14.00, we want to be below this number with the new
estimator.

We have created three estimators that meet the first criteria point. We will investigate which new
estimator has a lower average RRSE than 14.00. Note that in the current estimator, the formula for
estimating the demand and sales are the same, this will also be in the new estimators. We will compare
the performance of the estimators on their sales estimates, therefore we describe the new estimators
as sales estimators

3.3.1. New estimators
The current estimator takes the mean of the sales on all days, even when a product has status unavail-
able. As a result, the mean can be taken over many days when a product cannot be sold because it is
not in stock. This is our inspiration for the new estimators.

The first estimator equals the mean of the historical sales on the days when the product has status
available. If a product never has status available, the estimator equals zero. The vector of 90 sales
estimates for product 𝑖 in country 𝑗 can be written as Definition 3.3.1.
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Definition 3.3.1: New estimator 1 mean model

�̂�𝑠𝑠New estimator 1 mean model
𝑖𝑗 =max( 1𝑇𝑖𝑗

𝑡𝑇𝑖𝑗

∑
𝑡=𝑡1

𝑠𝑖𝑗𝑡1{𝑡 | 𝑠𝑡𝑖𝑗𝑡=available}, 0). (3.2)

The second estimator equals the mean of the historical sales, with a weight on the days a product
has status unavailable to compensate for the days when a product is not in stock. When a product has
status pre-order or permanently unavailable, these days are not used. The vector of 90 sales estimates
for product 𝑖 in country 𝑗 can be written as Definition 3.3.2.

Definition 3.3.2: New estimator 2 mean model

�̂�𝑠𝑠New estimator 2 mean model
𝑖𝑗 =max( 1𝑇𝑖𝑗

𝑡𝑇𝑖𝑗

∑
𝑡=𝑡1

(𝑠𝑖𝑗𝑡1{𝑡 | 𝑠𝑡𝑖𝑗𝑡=available} + 0.5 ∗ 𝑠𝑖𝑗𝑡1{𝑡 | 𝑠𝑡𝑖𝑗𝑡=unavailable}), 0).

(3.3)

The third estimator equals the mean of the historical sales when the product has status-2 partial
available. If a product is never partial available, the estimator equals zero. The vector or 90 sales
estimates for product 𝑖 in country 𝑗 can be written as Definition 3.3.3.

Definition 3.3.3: New estimator 3 mean model

�̂�𝑠𝑠New estimator 3 mean model
𝑖𝑗 =max( 1𝑇𝑖𝑗

𝑡𝑇𝑖𝑗

∑
𝑡=𝑡1

𝑠𝑖𝑗𝑡1{𝑡 | 𝑠𝑡∗𝑖𝑗𝑡=partial available}, 0). (3.4)

For the next section, we will name the current estimator as defined in Definition ?? as the ”Old
estimator” and the new estimators introduced above as ”Estimator 1”, ”Estimator 2”, and ”Estimator 3”,
in the same order as they are listed above. Moreover, the data used to compare the estimators is the
product information from 12/21/2020 until 12/20/2021 of products sold in the Netherlands.

3.3.2. Performance and comparison
First, we are interested in howmany times one of the estimators changed the estimation to zero because
there are no days a product has status available/partial available. In Table 3.4 are the percentage of all
products for which the estimation has been replaced by zero per estimator. The estimates of the Old
estimator and Estimator 2 are never replaced since those estimators also use days when the product
has status unavailable. On the contrary, 18.04 % and 15.63 % of the estimations of Estimators 1 and
3, respectively, are replaced by zero.

Percentage of the products where
the estimate has been imputed
Estimator Percentage
Estimator 1 18.04
Estimator 2 0.00
Estimator 3 15.63
Old estimator 0.00

Table 3.4: Percentages of products where the estimation is replaced by zero due to the lack of data.

Furthermore, we want to know if the performance of the estimators is influenced by the type of
products. We have clustered the products based on their sales and compared the estimations of the
estimators. Out of these results, the same estimator has the best estimations. Therefore, the type of
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products does not influence the performance of these estimators, and we will not distinguish between
the type of products in this investigation. The detailed investigation is in Chapter C.
Finally, we investigate the performance of estimators: We compare the RRSE of the estimated sales

of every estimator. In Figure 3.3 the ECDFs of the RRSEs of every estimator, including the means, are
plotted. The average RRSE of the Old estimator is the highest, thus we have accomplished our goal
to decrease the average RRSE of 14.00 with all the new estimators. Moreover, the new estimators’
outliers in RRSEs show that Estimator 2 has the least outliers. However, Estimator 2 does not have
the least average RRSE, Estimator 1 has. Our goal is to decrease the average RRSE, therefore we
advise replacing the Old estimator with Estimator 1, although it has more outliers than Estimator 2.

Figure 3.3: ECDF of the RRSEs of all the estimations per estimator. The dotted lines are the average RRSEs.





4
Out-of-stock period investigation

Coolblue’s direct demand model experts advise investigating if a product being out-of-stock (OOS) for
a period influences the sales after such a period since they expect an influence. An OOS period is a
period when a product has status-2 partial unavailable for consecutive days. We will investigate this
topic by answering the last research question of this thesis in this chapter:

• Do out-of-stock periods influence the sales? And if so, how can we react to this influence such
that it does not affect the direct demand estimations.

First, we will elaborate more on our motivation to investigate this subject. Then, we introduce addi-
tional notation that is needed for this chapter. After that, we share our assumptions and investigation
to answer this research question, and finally, we answer the question.

4.1. Motivation
Multiple scenarios occur when customers find out their product is not in stock. For example, they can
delay their purchase and come back when the product is back in stock. As a result, the sales suddenly
increase when the product is back in stock. However, it can also happen the other way around: they
find a substitute of the same brand or from another brand, or they buy the product at another store or
do not buy the product at all [6] [9] [10] [23]. These responses result in a decrease in sales after an
OOS period. Therefore, we are interested in increases or decreases in sales after an OOS period.

These increases or decreases in sales can affect the demand estimates. Because first of all, sales are
one of the variables on which these estimates are based on. If customers delay their purchase, the peak
of sales after an OOS period can equal the summed-up demand of the OOS period. The direct demand
model could interpret this wrong, resulting in inaccurately estimated demands. Furthermore, these
sales peaks or valleys could distort the model selection process. In this process, the best-performing
model is chosen for every product. The performing results could be distorted by unexpected peaks and
valleys in the actual sales. This results in incorrectly chosen sub-models by the evaluation process,
resulting in a less well-estimated demand.

4.2. Additional notation
In Chapter 2 we already introduced notation, we will elaborate on it for this chapter. Note that we will
not distinguish between the products in different countries, therefore we will omit the subscript for the
country in this chapter. For example, 𝑠𝑖𝑗 becomes 𝑠𝑖.

• Let 𝑛 ∈ N∗ be the number of products that we investigate.

• Let 𝑇𝑖 ∈ N∗ be the length of the dataset for product 𝑖 = 1, ..., 𝑛.
• Let 𝑘𝑖 ∈ N∗ be the number of OOS periods that we investigate for product 𝑖 = 1, ..., 𝑛.
• Let 𝒯𝑖 be the set of days for which we have data of product 𝑖 = 1, ..., 𝑛. Thus, 𝒯𝑖 = {𝑡1, ...., 𝑡𝑇𝑖}. This
set can be partitioned into multiple sets: 𝒯𝑖 = {𝒯1𝑖 , 𝒯∗1𝑖 , 𝒯2𝑖 , 𝒯∗2𝑖 , 𝒯3𝑖 , ..., 𝒯

∗𝑘𝑖
𝑖 , 𝒯𝑘𝑖+1𝑖 }, with 𝒯𝑗𝑖 the set

15
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of consecutive days a product has status-2 partial available for 𝑗 = 1, ..., 𝑘𝑖 + 1 and 𝒯∗𝑙𝑖 the set of
consecutive days a product has status-2 partial unavailable for 𝑙 = 1, ..., 𝑘𝑖.

• Let 𝒯partial available
𝑖 = {𝒯1𝑖 , 𝒯2𝑖 , ..., 𝒯

𝑘𝑖
𝑖 , 𝒯

𝑘1+1
𝑖 } and 𝒯partial unavailable

𝑖 = {𝒯∗1𝑖 , 𝒯∗2𝑖 , ..., 𝒯∗𝑘𝑖𝑖 } be the sets of
in-stock and out-stock days, respectively.

• Let 𝑇𝑗𝑖 = |𝒯
𝑗
𝑖 | and 𝑇

∗𝑗
𝑖 = |𝒯∗𝑗𝑖 | be the lengths of the datasets.

• Let 𝑡𝑗𝑖,𝑏 = max {𝒯𝑗𝑖 } and 𝑡
𝑗
𝑖,𝑎 = min {𝒯𝑗+1𝑖 } be the day before and after OOS period 𝑗 = 1, ..., 𝑘𝑖,

respectively. For example, the set of days for product 𝑖 with 𝑘𝑖 = 1 can be described as:

𝒯𝑖 = (𝒯1𝑖 , 𝒯∗1𝑖 , 𝒯2𝑖 ) = (𝑡1, ..., 𝑡1𝑖,𝑏 , 𝑡1𝑖,𝑏+1, ..., 𝑡1𝑖,𝑎−1, 𝑡1𝑖,𝑎 , ..., 𝑡𝑇𝑖).

Note that 𝑠𝑖𝑡 = 0 whenever 𝑡 ∈ 𝒯∗𝑗𝑖 for all 𝑗, since a product cannot be sold when it has status-2
partial unavailable. To make the notation more clear, we have created an example product with three
OOS periods, see Figure 4.1.

Figure 4.1: An example of a product with three OOS periods. The blue and grey dotted lines are 𝑡𝑗𝑏 and 𝑡𝑗𝑎, the last day
before and the first day after OOS period 𝑗, respectively.

We simulated 𝑠𝑡 = (𝑋1 , ..., 𝑋20 , 𝑈1 , ..., 𝑈20 , 𝑌1 , ..., 𝑌20 , 𝑈21 , ...., 𝑈46 , 𝑍1 , ..., 𝑍20 , 𝑈47 , ..., 𝑈59 ,𝑊1 , ...,𝑊20) with 𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠(3), 𝑈𝑖 = 0,
𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠(6), 𝑍𝑖 ∼ 𝑃𝑜𝑖𝑠(1) and𝑊𝑖 ∼ 𝑃𝑜𝑖𝑠(4).

4.3. Assumptions to investigate OOS periods
To investigate an OOS period, we have created assumptions about what an OOS period is. These
assumptions are about the length of an OOS period and the length of the data before and after an
OOS period. These assumptions are: We investigate OOS period 𝑗 of product 𝑖 if

• 𝑇∗𝑗𝑖 ≥ 14, else 𝒯∗𝑗𝑖 is removed from the dataset,

• and if 𝑇𝑗𝑖 ≥ 7 and 𝑇
𝑗+1
𝑖 ≥ 7, else OOS period 𝑗 is not investigated.

This choice of the minimal length of an OOS period has been based on experts’ advice. Coolblue’s
restock management team specialists expect an OOS effect in the sales when a product is at least two
weeks OOS. Furthermore, the second assumption ensures sufficient sales data to investigate.

Moreover, when we investigate OOS period 𝑗 for product 𝑖, we will compare the sales data on days
𝒯𝑗𝑖 and 𝒯𝑗+1𝑖 . When doing this, we will make the datasets of the same length by making the longest
dataset as long as the shortest one. If 𝒯𝑗𝑖 is the longest dataset, the first data points of 𝒯𝑗𝑖 are removed,
whereas if 𝒯𝑗+1𝑖 is the longest dataset, the last data points of 𝒯𝑗+1𝑖 are removed such that they become
the same length. Let 𝑇𝑗,𝑎𝑖 be the final length of the two datasets, this equals: 𝑇𝑗,𝑎𝑖 =min{𝑇𝑗𝑖 , 𝑇

𝑗+1
𝑖 }.

To clarify the assumptions, we will share some examples of products that meet and do not meet the
assumptions, see Example 4.3.1.
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Example 4.3.1: Products that meet and do not meet the assumptions of an OOS period

𝑠𝑡∗1 = (𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝐴, 𝑃𝐴,

𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴).
Product 1 meets all the assumptions: the OOS period has a length of 14 days and the data
before and after the OOS period have a length of seven days. Therefore this product will be
investigated.

𝑠𝑡∗2 = (𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝑈, 𝑃𝑈, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴).

Product 2 has two OOS periods, both are not long enough and will be removed. A set of days
with status-2 partial available is left, we will not investigate this product.

𝑠𝑡∗3 = (𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴,

𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴).
Product 3 has a long enough OOS period. However, there are only three days before the OOS
period. Therefore, this product cannot be investigated.

𝑠𝑡∗4 = (𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝑈, 𝑃𝑈, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈, 𝑃𝑈,

𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴, 𝑃𝐴).
Product 4 has two OOS periods, the first one has a length of two days which is too short, thus
it will be removed. Then, there is one long enough OOS period left with enough data before
and after the OOS period. Therefore, we will investigate product 4. Moreover, the data before
the OOS period has length seven, whereas the data after the OOS period has length eight. We
need to equalise them by removing the last day of the data after the OOS period.

To conclude, products 2 and 3 are not being investigated, whereas products 1 and 4 will
be investigated. However, the first OOS period and the last day in product 4 is being removed.

We have clarified our assumptions to investigate OOS periods, the next step is investigating them.
We do this by describing perspectives about the sales data before and after OOS periods, these are sets
of assumptions with hypotheses to be tested. There are two classes of perspectives: time-independent
and dependent perspectives. In Section 4.4 we share the time-independent perspectives and in Section
4.5 the time-dependent perspectives.

4.4. Time-independent perspectives
Time-independent perspectives describe tests that investigate the sales data from a time-independent
view: The data is assumed to be identical and independent distributed (iid). The perspectives are
described per product, thus we omit the subscript for a product. For example, 𝑠𝑖𝑡 becomes 𝑠𝑡. Moreover,
we will describe the perspectives for products with one OOS period first, then we give the generalised
version of these perspectives for products with multiple OOS periods.

4.4.1. Perspectives for products with one OOS period
We describe five perspectives for products with one OOS period: The first three Perspectives (4.4.1,
4.4.2, 4.4.3) are non-parametric while the last two Perspectives (4.4.4, 4.4.5) are parametric. All the
products have one OOS period, therefore we will denote 𝑡𝑗𝑏 and 𝑡𝑗𝑎 by 𝑡𝑏 and 𝑡𝑎, respectively, and 𝑇𝑗,𝑎
becomes 𝑇𝑎.
To begin, we start with a simple perspective: We test if the distributions of the data before and after

an OOS period are the same, see Perspective 4.4.1. The Kolmogorov-Smirnov (K-S) test [4] is used
for this.
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Perspective 4.4.1: Difference in distributions

Assume ∃ 𝐹1, 𝐹2 such that ∀ 𝑡 ≤ 𝑡𝑏 and ∀ 𝑡′ ≥ 𝑡𝑎 ∶ 𝑠𝑡
𝑖𝑖𝑑∼ 𝐹1, 𝑠𝑡′

𝑖𝑖𝑑∼ 𝐹2:
• 𝐻0 ∶ 𝐹1 = 𝐹2,
• 𝐻1 ∶ 𝐹1 ≠ 𝐹2.

We continue with a more concrete perspective by restricting the alternative hypothesis and testing
for differences in probability, see Perspective 4.4.2. From this perspective, we can investigate which
dataset is larger than the other in probability.

Perspective 4.4.2: Difference in probability

Assume ∃ 𝜂 ∈ [0.5, 1], such that ∀ 𝑡 ≤ 𝑡𝑏 and ∀ 𝑡′ ≥ 𝑡𝑎:
• 𝐻0 ∶ 𝑠𝑡

𝑑= 𝑠𝑡′ ,
• 𝐻1.𝑎 ∶ IP(𝑠𝑡 > 𝑠𝑡′) > 𝜂,
• 𝐻1.𝑏 ∶ IP(𝑠𝑡 < 𝑠𝑡′) > 𝜂.

To test this perceptive, we link it to another concept, the one of stochastic dominance, see Definition
4.4.1 [8].

Definition 4.4.1: Stochastic dominance

Let 𝑋 and 𝑌 be two random variables with continuous cumulative distribution functions 𝐹𝑋 and
𝐹𝑌, respectively. 𝑋 stochastically dominates 𝑌, denoted by 𝑋 ≥𝑠𝑡 𝑌, if

• 𝐹𝑋(𝑥) ≤ 𝐹𝑌(𝑥) ∀ 𝑥 ∈ R,
• 𝐹𝑋(𝑥0) < 𝐹𝑌(𝑥0) ∃ 𝑥0 ∈ R.

Perspective 4.4.2 and Definition 4.4.1 are related because stochastic ordering implies inequality in
probability as shown in Theorem 4.4.1.

Theorem 4.4.1: Stochastic dominance implies difference in probability

Let 𝑋 and 𝑌 be two independent random variables with continuous cumulative distribution
functions 𝐹𝑋 and 𝐹𝑌, respectively. If 𝑋 ≥𝑠𝑡 𝑌, then 𝑃(𝑋 > 𝑌) > 𝜂, for some 𝜂 ∈ [0.5, 1].

Proof. We know by continuity that ∃ 𝑥0, 𝑥1, 𝑥2 with 𝑥1 < 𝑥0 < 𝑥2 such that
𝐹𝑋(𝑥) < 𝐹𝑌(𝑥), ∀ 𝑥 ∈ (𝑥1, 𝑥2). Then,

𝑃(𝑋 > 𝑌) = 𝐸𝑋(𝐹𝑌(𝑋)) = ∫
∞

−∞
𝐹𝑌(𝑥)𝑑𝐹𝑋(𝑥)

= ∫
𝑥1

−∞
𝐹𝑌(𝑥)𝑑𝐹𝑋(𝑥) + ∫

𝑥2

𝑥1
𝐹𝑌(𝑥)𝑑𝐹𝑋(𝑥) + ∫

∞

𝑥2
𝐹𝑌(𝑥)𝑑𝐹𝑋(𝑥)

> ∫
𝑥1

−∞
𝐹𝑋(𝑥)𝑑𝐹𝑋(𝑥) + ∫

𝑥2

𝑥1
𝐹𝑋(𝑥)𝑑𝐹𝑋(𝑥) + ∫

∞

𝑥2
𝐹𝑋(𝑥)𝑑𝐹𝑋(𝑥)

= ∫
∞

−∞
𝐹𝑋(𝑥)𝑑𝐹𝑋(𝑥) = 𝐸𝑋(𝐹𝑋(𝑋)).

Using the continuity and the probability integral transform (𝑍 = 𝐹𝑋(𝑋) −→ 𝑍 ∼ 𝑈(0, 1)):

𝑃(𝑋 > 𝑌) = 𝐸𝑋(𝐹𝑌(𝑋)) > 𝐸𝑋(𝐹𝑋(𝑋)) = 𝐸𝑋(𝑍) = 0.5.
Thus, if 𝑋 ≥𝑠𝑡 𝑌, then 𝑃(𝑋 > 𝑌) > 𝜂, for some 𝜂 ∈ [0.5, 1].
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Theorem 4.4.1 also holds for discrete distributed random variables because these can be approx-
imated by continuous distributions [4]. Therefore, Theorem 4.4.1 allows us to test Perspective 4.4.2
if we show stochastic ordering . The Wilcoxon-Mann-Whitney (WMW) test [26] can show this. Thus,
Perspective 4.4.2 is tested by the WMW test.

The following perspective is less abstract than Perspective 4.4.2. In Perspective 4.4.3 the means
of the datasets will be compared. The independent two-sample t-test [5] is used to do this. Note that
one of the standard assumptions of the t-test is that the data is normally distributed. With our data, this
assumption cannot be met for every product. However, the t-test also holds if not all the assumptions
are met. See for example, Fay et al. (2010) [7], they show that the t-test is still asymptotically valid for
more general assumptions.

Perspective 4.4.3: Difference in means

Assume ∃ 𝛽1, 𝛽2 ∈ R such that ∀ 𝑡 ≤ 𝑡𝑏 , 𝑠𝑡 = 𝛽1 + 𝜖𝑡 with 𝜖𝑡
𝑖𝑖𝑑∼ IP1 and ∀ 𝑡′ ≥ 𝑡𝑎 , 𝑠𝑡′ = 𝛽2 + 𝜖𝑡′

with 𝜖𝑡′
𝑖𝑖𝑑∼ IP2, where IP1 and IP2 have a mean equal to zero and a finite fourth moment:

• 𝐻0 ∶ 𝛽1 = 𝛽2,
• 𝐻1 ∶ 𝛽1 ≠ 𝛽2.

Results of the example product
Persp. Alt. hyp. P-value Test
4.4.1 1 0.18 K-S test
4.4.2 1.a 1.67e-02 WMW test
4.4.2 1.b 0.98 WMW test
4.4.3 1 1.95e-02 T-test

Table 4.1: Results of the example product in Figure
4.2.

To show the differences between the three perspec-
tives that just got introduced, we detail a short ex-
ample. We have simulated an example product with
one OOS period, see Figure 4.2. We created 𝑠𝑡 =
(𝑋1, ..., 𝑋20, 𝑈1, ..., 𝑈15, 𝑌1, ..., 𝑌20) with 𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠(6), 𝑈𝑖 = 0
and 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠(4). Perspectives 4.4.1, 4.4.2 and 4.4.3 test
this data, with 𝑠𝑡 = (𝑋1, ..., 𝑋20) and 𝑠𝑡′ = (𝑌1, ..., 𝑌20). See
Table 4.1 for the results. The K-S test is not able to find sig-
nificant different distributions between the datasets, while
the t-test and the WMW test can find significant different
means and difference in probability, respectively.

Figure 4.2: Simulated time series to show the difference in Perspectives 4.4.1, 4.4.2 and 4.4.3. The blue and grey dotted lines
are 𝑡𝑗𝑏 and 𝑡𝑗𝑎, the last day before and the first day after OOS period 𝑗, respectively.

We simulated 𝑠𝑡 = (𝑋1 , ..., 𝑋20 , 𝑈1 , ..., 𝑈15 , 𝑌1 , ..., 𝑌20) with 𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠(6), 𝑈𝑖 = 0 and 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠(4).

However, this is not coherent since these conclusions cannot hold simultaneously. The distributions
should also be different if the means of the two datasets are different. One of the tests could give a
wrong result since the probability of committing a type I or type II error is always strictly larger than
zero. In this case, the K-S test used for Perspective 4.4.1 has made a type II error: It falsely does not
reject the null hypothesis.

Another way of viewing the type II error is by looking at the power of the test. The power of a statistical
test measures the frequency of not having a type II error. It is dependent on the type of test, the signifi-
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cance level, the sample size and the distribution of the data [22]. The types of tests are different in our
example. In general, parametric tests (t-test) are more powerful than their non-parametric (K-S test)
counterparts because non-parametric tests use less information in their calculation [15]. The assump-
tions of a parametric test help increase the test’s power. However, if the assumptions of parametric
tests are not met, the power can become smaller than the power of non-parametric tests. Wadgave
et al. (2019) [25] gives examples of non-parametric tests being more powerful when the parametric
assumption of normality is not satisfied.

Moreover, we have introduced the non-parametric perspectives, we only need to introduce the para-
metric perspectives. In the first non-parametric perspective, Perspective 4.4.4, we assume that the
data before and after an OOS period follows a Poisson distribution, and we compare the parameters.
The choice of a Poisson distribution is based on the fact that the sales data consists only of integers.
As a result, we can assume the data follows a discrete distribution.

To test the perspective, we use test statistic 𝑇𝑆1,𝑇𝑎 = √
𝑇𝑎
2�̂�𝑎
(�̂�2 − �̂�1) with �̂�1 and �̂�2 as the estimates

of 𝜆1 and 𝜆2 respectively, �̂�𝑎 =
�̂�1+�̂�2
2 and 𝑇𝑎 the sample size of 𝑠𝑡 and 𝑠𝑡′ . Together with the two-sided

Z-score table, we get a p-value for this test. See Section D.1 for the derivations of this test statistic.

Perspective 4.4.4: Different Poisson distributions

Assume ∃ 𝜆1, 𝜆2 > 0 such that ∀ 𝑡 ≤ 𝑡𝑏 , 𝑠𝑡
𝑖𝑖𝑑∼ 𝑃𝑜𝑖𝑠(𝜆1) and ∀ 𝑡′ ≥ 𝑡𝑎 , 𝑠𝑡′

𝑖𝑖𝑑∼ 𝑃𝑜𝑖𝑠(𝜆2):
• 𝐻0 ∶ 𝜆1 = 𝜆2,
• 𝐻1 ∶ 𝜆1 ≠ 𝜆2.

We continue to the last perspective of the time-independent perspectives, this perspective is appli-
cable for a subset of the products. Perspective 4.4.5 is described for slow-moving products: These are
products with a maximum of one sale per day. As a result, we assume that the sales data follows a
Bernoulli distribution. Thus, Perspective 4.4.5 is for products for which max {𝑠𝑡} = 1 and it is tested
with the Binomial test [1].

Perspective 4.4.5: Different Bernoulli distributions

Assume ∃ 𝑝1, 𝑝2 ∈ [0, 1] such that ∀ 𝑡 ≤ 𝑡𝑏 , 𝑠𝑡
𝑖𝑖𝑑∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝1) and ∀ 𝑡′ ≥ 𝑡𝑎 , 𝑠𝑡′

𝑖𝑖𝑑∼
𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2) ∶

• 𝐻0 ∶ 𝑝1 = 𝑝2,
• 𝐻1 ∶ 𝑝1 ≠ 𝑝2.

4.4.2. Perspectives for products with multiple OOS periods
We continue to the perspectives for products with multiple OOS periods. These perspectives are a
generalisation of the perspectives in Section 4.4.1. The perspectives investigate all the OOS periods
of one product in different ways by describing multiple alternative hypotheses, we will introduce these
alternative hypotheses by an example. In Figure 4.3 we have created multiple time series that show
the different hypotheses for Perspective 4.4.6 (different distributions). For the null hypothesis, all four
distributions of the in-stock sales data are the same. For hypothesis 1.𝑎, there is at least one data
frame with a different distribution. For hypothesis 1.𝑏, all the consecutive data frames have different
distributions; note that the distributions of data frames one and three, for example, still can be the same.
Lastly, for hypothesis 1.𝑐, all the data frames have different distributions.

We will describe the time-independent perspectives for products with multiple OOS periods. As
mentioned earlier, these are a generalisation of the perspectives in Section 4.4.1, therefore we will not
go too detailed into the perspectives.

Perspective 4.4.6 tests if the distributions of the data before/after/in between the OOS periods are
different. To test this, multiple K-S test are performed. For hypotheses 𝐻1.𝑎 and 𝐻1.𝑏 a Bonferroni
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Figure 4.3: Visualisation of the different alternative hypotheses for Perspective 4.4.6. The blue and grey dotted lines are 𝑡𝑗𝑏
and 𝑡𝑗𝑎, the last day before and the first day after OOS period 𝑗, respectively..

We simulated for 𝐻0 ∶ 𝑠𝑡 = (𝑋1 , ..., 𝑋20 , 𝑈1 , ..., 𝑈14 , 𝑋21 , ..., 𝑋40 , 𝑈15 , ..., 𝑈28 , 𝑋41 , ..., 𝑋60 , 𝑈29 , ..., 𝑈42 , 𝑋61 , ..., 𝑋80),
for 𝐻1.𝑎 ∶ 𝑠𝑡 = (𝑋1 , ..., 𝑋20 , 𝑈1 , ..., 𝑈14 , 𝑌1 , ..., 𝑌20 , 𝑈15 , ..., 𝑈28 , 𝑋21 , ..., 𝑋40 , 𝑈29 , ..., 𝑈42 , 𝑋41 , ..., 𝑋60),
for 𝐻1.𝑏 ∶ 𝑠𝑡 = (𝑋1 , ..., 𝑋20 , 𝑈1 , ..., 𝑈14 , 𝑌1 , ..., 𝑌20 , 𝑈15 , ..., 𝑈28 , 𝑋21 , ..., 𝑋40 , 𝑈29 , ..., 𝑈42 , 𝑌21 , ..., 𝑌40),
and for 𝐻1.𝑐 ∶ 𝑠𝑡 = (𝑋1 , ..., 𝑋20 , 𝑈1 , ..., 𝑈14 , 𝑌1 , ..., 𝑌20 , 𝑈15 , ..., 𝑈28 , 𝑍1 , ..., 𝑍20 , 𝑈29 , ..., 𝑈42 ,𝑊1 , ...,𝑊20) with 𝑋𝑖 ∼ 𝑃𝑜𝑖𝑠(3),
𝑈𝑖 = 0, 𝑌𝑖 ∼ 𝑃𝑜𝑖𝑠(10), 𝑍𝑖 ∼ 𝑃𝑜𝑖𝑠(1) and𝑊𝑖 ∼ 𝑃𝑜𝑖𝑠(5).

correction [2] is applied, for hypothesis 𝐻1.𝑐 this is not applied.

Perspective 4.4.6: Difference in distributions

For 𝑖 = 1, ..., 𝑘 + 1, assume ∃ 𝐹𝑖 such that (𝑠𝑡)𝑡∈𝒯𝑖
𝑖𝑖𝑑∼ 𝐹𝑖 ∶

• 𝐻0 ∶ ∀ 𝑖, 𝑗 𝐹𝑖 = 𝐹𝑗 ,
• 𝐻1.𝑎 ∶ ∃ 𝑖, 𝑗 𝐹𝑖 ≠ 𝐹𝑗 ,
• 𝐻1.𝑏 ∶ ∀ 𝑖 𝐹𝑖 ≠ 𝐹𝑖+1,
• 𝐻1.𝑐 ∶ ∀ 𝑖, 𝑗 𝐹𝑖 ≠ 𝐹𝑗 .

We will explain why we apply a Bonferroni correction. If multiple hypothesis tests are being carried
out simultaneously, the family-wise error rate (FWER) increases, this is the probability of making a type
I error. The FWER is defined as:

𝐹𝑊𝐸𝑅 = 1 − (1 − 𝛼)𝑚 , (4.1)
with 𝛼 the 𝛼-level of an individual test and 𝑚 the number of tests. For example, if we have a product
with three OOS periods and we want to test hypothesis𝐻1.𝑎 of Perspective 4.4.6, there are four different
distributions to compare, and therefore there are six different tests. If 𝛼 = 0.05, our FWER equals 0.27.
This means a 27% chance of having a type I error. To reduce this number, we can apply the Bonferroni
correction:

𝛼𝑛𝑒𝑤 =
𝛼
𝑚. (4.2)

Our 𝛼𝑛𝑒𝑤 becomes 0.008 if we apply the correction. With this new 𝛼-value our FWER equals 0.047,
this is a much better value. Therefore, if we carry out these six tests, we test them with the K-S test
with 𝛼 = 0.008.
Furthermore, if we want to test hypothesis 𝐻1.𝑏 of Perspective 4.4.6, we test three different tests

simultaneously. Thus, our 𝛼-value becomes 0.017. For hypothesis 𝐻1.𝑐 of Perspective 4.4.6, we also
test six different tests. However, for this hypothesis there is no need to control the FWER. Because we
want to know if all the datasets are different.
Nevertheless, the Bonferroni correction also has its disadvantages. The Bonferroni correction can

become too conservative, which means that the probability of type II errors increases if the number of
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tests gets large [14]. In our situation, the highest number of tests equals ∑𝑘𝑖𝑖=1 𝑖 for product 𝑖, we do not
expect that 𝑘𝑖 gets enormous, and therefore we do not expect that the Bonferroni correction gets too
conservative.

We continue with describing the perspectives, Perspective 4.4.7 tests if the datasets are larger/s-
maller in probability. Also here, Theorem 4.4.1 is applied to use the WMW test. The WMW test is used
with the Bonferroni correction for hypotheses 𝐻1.𝑎.𝑎 , 𝐻1.𝑎.𝑏 , 𝐻1.𝑏.𝑎 and 𝐻1.𝑏.𝑏, and without Bonferroni cor-
rect for hypotheses 𝐻1.𝑐.𝑎 and 𝐻1.𝑐.𝑏.

Perspective 4.4.7: Difference in probability

For 𝑖, 𝑗 = 1, ..., 𝑘 + 1 assume ∃ 𝜂 ∈ [0.5, 1] such that:

• 𝐻0 ∶ ∀ 𝑖, 𝑗 (𝑠𝑡)𝑡∈𝒯𝑖
𝑑= (𝑠𝑡′)𝑡′∈𝒯𝑗 ,

• 𝐻1.𝑎.𝑎 ∶ ∃ 𝑖, 𝑗 IP((𝑠𝑡)𝑡∈𝒯𝑖 > (𝑠𝑡′)𝑡′∈𝒯𝑗) > 𝜂,
• 𝐻1.𝑎.𝑏 ∶ ∃ 𝑖, 𝑗 IP((𝑠𝑡)𝑡∈𝒯𝑖 < (𝑠𝑡′)𝑡′∈𝒯𝑗) > 𝜂,
• 𝐻1.𝑏.𝑎 ∶ ∀ 𝑖 IP((𝑠𝑡)𝑡∈𝒯𝑖 > (𝑠𝑡′)𝑡′∈𝒯𝑖+1) > 𝜂,
• 𝐻1.𝑏.𝑏 ∶ ∀ 𝑖 IP((𝑠𝑡)𝑡∈𝒯𝑖 < (𝑠𝑡′)𝑡′∈𝒯𝑖+1) > 𝜂,
• 𝐻1.𝑐.𝑎 ∶ ∀ 𝑖, 𝑗 IP((𝑠𝑡)𝑡∈𝒯𝑖 > (𝑠𝑡′)𝑡′∈𝒯𝑗) > 𝜂,
• 𝐻1.𝑐.𝑏 ∶ ∀ 𝑖, 𝑗 IP((𝑠𝑡)𝑡∈𝒯𝑖 < (𝑠𝑡′)𝑡′∈𝒯𝑗) > 𝜂.

The third generalised perspective compares the means of the datasets, see Perspective 4.4.8. The t-
test with Bonferroni correction is used for hypotheses𝐻1.𝑎 and𝐻1.𝑏 and without correction for hypothesis
𝐻1.𝑐.

Perspective 4.4.8: Difference in means

For 𝑖 = 1, ..., 𝑘 + 1 assume ∃ 𝛽𝑖 ∈ R, such that ∀ 𝑡 ∈ 𝒯𝑖 ∶ 𝑠𝑡 = 𝛽𝑖 + 𝜖𝑖𝑡 with 𝜖𝑖𝑡 ∼ IP𝑖 where IP𝑖

has a mean equal to zero and a finite fourth moment:
• 𝐻0 ∶ ∀ 𝑖, 𝑗 𝛽𝑖 = 𝛽𝑗 ,
• 𝐻1.𝑎 ∶ ∃ 𝑖, 𝑗 𝛽𝑖 ≠ 𝛽𝑗 ,
• 𝐻1.𝑏 ∶ ∀ 𝑖 𝛽𝑖 ≠ 𝛽𝑖+1,
• 𝐻1.𝑐 ∶ ∀ 𝑖, 𝑗 𝛽𝑖 ≠ 𝛽𝑗 .

We have covered the non-parametric perspectives, we continue to the parametric perspectives. Per-
spective 4.4.9 tests if the data before/after/in between the OOS have the same Poisson parameters.
This is being tested with the same test statistic from Perspective 4.4.4, but rewritten for multiple OOS

periods: 𝑇𝑆1,𝑇𝑖,𝑗,𝑎 ,𝑖,𝑗 = √
𝑇𝑖,𝑗,𝑎
2�̂�𝑖,𝑗,𝑎

(�̂�𝑗−�̂�𝑖)with �̂�𝑖 and �̂�𝑗 the estimates of 𝜆𝑖 and 𝜆𝑗 respectively, �̂�𝑖,𝑗,𝑎 =
�̂�𝑖+�̂�𝑗
2

and 𝑇𝑖,𝑗,𝑎 the length of 𝒯𝑖 and 𝒯𝑗. For hypotheses 𝐻1.𝑎 and 𝐻1.𝑏 the Bonferroni correction is applied,
for hypothesis 𝐻1.𝑐 this is not done.

Perspective 4.4.9: Different Poisson distributions

For 𝑖 = 1, ..., 𝑘 + 1, assume ∃ 𝜆𝑖 > 0 such that (𝑠𝑡)𝑡∈𝒯𝑖
𝑖𝑖𝑑∼ 𝑃𝑜𝑖𝑠(𝜆𝑖):

• 𝐻0 ∶ ∀ 𝑖, 𝑗 𝜆𝑖 = 𝜆𝑗 ,
• 𝐻1.𝑎 ∶ ∃ 𝑖, 𝑗 𝜆𝑖 ≠ 𝜆𝑗 ,
• 𝐻1.𝑏 ∶ ∀ 𝑖 𝜆𝑖 ≠ 𝜆𝑖+1,
• 𝐻1.𝑐 ∶ ∀ 𝑖, 𝑗 𝜆𝑖 ≠ 𝜆𝑗 .

Finally, Perspective 4.4.10 tests if the data before/after/in between the OOS have the same Bernoulli
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parameter. To test this, multiple Binomial tests are used. For hypotheses 𝐻1.𝑎 and 𝐻1.𝑏 a Bonferroni
correction is applied, for hypothesis 𝐻1.𝑐 this is not applied. Also, this perspective can only be used for
products withmax {𝑠𝑡} = 1.

Perspective 4.4.10: Different Bernoulli distributions

For 𝑖 = 1, ..., 𝑘 + 1, ∃ 𝑝𝑖 ∈ [0, 1] ∶ (𝑠𝑡)𝑡∈𝒯𝑖
𝑖𝑖𝑑∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖):

• 𝐻0 ∶ ∀ 𝑖, 𝑗 𝑝𝑖 = 𝑝𝑗 ,
• 𝐻1.𝑎 ∶ ∃ 𝑖, 𝑗 𝑝𝑖 ≠ 𝑝𝑗 ,
• 𝐻1.𝑏 ∶ ∀ 𝑖 𝑝𝑖 ≠ 𝑝𝑖+1,
• 𝐻1.𝑐 ∶ ∀ 𝑖, 𝑗 𝑝𝑖 ≠ 𝑝𝑗 .

All the time-independent perspectives are described for products with one OOS period and multi-
ple products. Table E.2 in the Section E.2 summarises all the time-independent perspectives with a
short description and their tests. The perspectives will test all the OOS periods that meet the assump-
tions introduced in Section 4.3 and give a percentage of how many OOS periods reject the hypothesis
tests per perspective. These results will be shared in Section 4.7. We continue to the other class of
perspectives: time-dependent perspectives.

4.5. Time-dependent perspectives
Another way to investigate the sales data is by fitting a time series on them and investigating those. The
time-dependent perspectives do this; we use autoregressive moving average (ARMA) processes and
integer-generalised autoregressive conditional heteroskedasticity (INGARCH) processes. The ARMA
processes are used since these are one of the most well-known time series. However, ARMA pro-
cesses are described for time series with rational numbers, whereas our data consists only of integers.
Therefore, we also use INGARCH processes to fit our data since these are specially constructed for
integer data.
First, we show that our sales data is time-dependent in Section 4.5.1. Then, we determine the

optimal orders for our ARMA and INGARCH processes in Sections 4.5.2 and 4.5.3. With these orders,
we describe the time-dependent perspectives in Sections 4.5.4 and 4.5.5. Also, these perspectives
are described per product, therefore we omit the subscript for a product.

4.5.1. Dependence of the sales data
Before we describe time-dependent perspectives, we want to know if our data is time-dependent, oth-
erwise there is no reason to describe time-dependent perspectives. We do this by fitting an 𝐴𝑅(𝑝)
process on all the in-stock data of a product. See Definition 4.5.1 [3] for the definition of an 𝐴𝑅(𝑝)
process. Note that there are more methods to show time-dependence in data than by fitting an 𝐴𝑅(𝑝)
process.

Definition 4.5.1: 𝐴𝑅(𝑝, 𝑞) process

𝑋𝑡 is an 𝐴𝑅(𝑝, 𝑞) process, if ∃ 𝑝 > 0 and 𝜙𝑝 ≠ 0 :

𝑋𝑡 =
𝑝

∑
𝑘=1

𝜙𝑘𝑋𝑡−𝑘 + 𝑍𝑡 , 𝑍𝑡 ∼ 𝑊𝑁(0, 𝜎2). (4.3)

The model can be rewritten into:

𝜙(𝐵)𝑋𝑡 = 𝑍𝑡 , (4.4)

with 𝐵 the backward shift operator (𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘), 𝜙(⋅) the 𝑝-th degree polynomials:

𝜙(𝑧) = 1 − 𝜙1𝑧 − ... − 𝜙𝑝𝑧𝑝. (4.5)
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To fit an 𝐴𝑅(𝑝) process, we use the ar() function from the standard R library stats. It fits an 𝐴𝑅(𝑝)
process and estimates the order 𝑝 using the AIC. In the ar() function, we set the argument ”order.max”
equal to ∑𝑘+1𝑗=1 𝑇𝑗 − 1. The input data are the sales when the status-2 equals partial available, thus we
fit the function on (𝑠𝑡)𝑡∈𝒯partial available . Then, for every product, we investigate the value of the estimation
of 𝑝. There is no dependence in the time series if 𝑝 = 0, whereas there is dependence if 𝑝 > 0. Note
that for this investigation, we do not use the assumptions given in Section 4.3, which means that we
use all the in-stock sales data despite of the lengths of OOS periods.

Author’s note: This figure is confidential..

Figure 4.4: Results of the time-dependence
investigation.

The data used for this investigation is the product infor-
mation from 12/21/2019 until 12/20/2021 of products sold
in the Netherlands. This is the same data frame used in
the previous chapters but extended by one year, such that
we have more OOS periods to investigate. For the other
investigations and results in this chapter, this same 2-year
product information data set is used.

Author’s note: This paragraph is confidential..

4.5.2. Order of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes
To use 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes in perspectives, we should determine the optimal order, this are the
values of 𝑝 and 𝑞. First, we share the definition of an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process, see Definition 4.5.2 [3].

Definition 4.5.2: 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process

𝑋𝑡 is a stationary 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process, if ∃ 𝑝, 𝑞 > 0, 𝜎2 ≠ 0, 𝜙𝑝 ≠ 0 and 𝜃𝑞 ≠ 0:

𝑋𝑡 −
𝑝

∑
𝑘=1

𝜙𝑘𝑋𝑡−𝑘 = 𝑍𝑡 +
𝑞

∑
𝑙=1
𝜃𝑙𝑍𝑡−𝑙 , 𝑍𝑡 ∼ 𝑊𝑁(0, 𝜎2), (4.6)

where (1 − 𝜙1𝑧 − ... − 𝜙𝑝𝑧𝑝) and (1 + 𝜃1𝑧 + ... + 𝜃𝑞𝑧𝑞) have no common factors.
The model can we rewritten into:

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 , (4.7)

with 𝐵 the backward shift operator (𝐵𝑘𝑋𝑡 = 𝑋𝑡−𝑘), 𝜙(⋅) and 𝜃(⋅) the 𝑝-th and 𝑞-th degree poly-
nomials:

𝜙(𝑧) = 1 − 𝜙1𝑧 − ... − 𝜙𝑝𝑧𝑝, (4.8)

and,

𝜃(𝑧) = 1 + 𝜃1𝑧 + ... + 𝜃𝑞𝑧𝑞 . (4.9)

For stationary, the following should hold:

𝜙(𝑧) ≠ 0 for 𝑧 = ±1. (4.10)

To determine the value of 𝑝 and 𝑞, we will fit 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes on the product’s sales data when
it has status partial available ((𝑠𝑡)𝑡∈𝒯partial available ), for 𝑝 and 𝑞 ranging from zero till 15. We select 10,000
products that meet the following criteria:
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1. Have order 𝑝 > 0 from the time-dependence investigation in Section 4.5.1, else we are optimising
𝑝 and 𝑞 on time-independent data.

2. Have sufficient amount of data to fit all the processes on (|𝒯partial available| ≥ 16), else is fitting an
𝐴𝑅𝑀𝐴(𝑝, 𝑞) process with high orders impossible.

3. Have non-constant data (min(𝑠𝑡) ≠max(𝑠𝑡)), else we cannot fit an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process.
With these products, we calculate the AIC and BIC for every combination of 𝑝 and 𝑞 of the fitted

𝐴𝑅𝑀𝐴(𝑝, 𝑞) process for every product 𝑖:

𝐴𝐼𝐶𝑖,𝑝,𝑞 = −2 ln(𝐿𝑖,𝑝,𝑞) + 2(𝑝 + 𝑞 + 2), 𝑝, 𝑞 = 0, ..., 15, (4.11)

𝐵𝐼𝐶𝑖,𝑝,𝑞 = −2 ln(𝐿𝑖,𝑝,𝑞) + ln(𝑇partial available𝑖 )(𝑝 + 𝑞 + 2), 𝑝, 𝑞 = 0, ..., 15, (4.12)

with 𝑛 the number of products, 𝐿𝑖,𝑝,𝑞 the likelihood of the fitted 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process on product 𝑖
and 𝑇partial available𝑖 the length of the dataset of product 𝑖. The number of parameters equals 𝑝 + 𝑞 +
2 since we have 𝑝 + 𝑞 coefficients, the variance and the intercept. A lower AIC or BIC indicates a
better model. We use the arima() function from the stats library to fit 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes. In the
arima() function, we choose the method ”CSS”, which means that the conditional sum-of-squares are
minimised. Unfortunately, sometimes the arima() function fails to fit a model for a given 𝑝 and 𝑞 due to
different reasons. Table E.1 in Section E.1 gives an overview of the amount of time the function failed.

For all combinations of 𝑝 and 𝑞, 𝜐𝐴𝐼𝐶,𝑝,𝑞 and 𝜐𝐴𝐼𝐶,𝑝,𝑞 are calculated, see Equations 4.13 and 4.14.
These percentages tell us for how many products the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) is chosen as optimal fit based on the
AIC and BIC over all the successful 𝐴𝑅𝑀𝐴(𝑝, 𝑞) fits.

𝜐𝐴𝐼𝐶,𝑝,𝑞 =
∑10,000𝑖=1 1{𝐴𝐼𝐶𝑖,𝑝,𝑞= min∀ 𝑝, 𝑞(𝐴𝐼𝐶𝑖,𝑝,𝑞)}

# products for which the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) fit succeeded ∗ 100 (4.13)

𝜐𝐵𝐼𝐶,𝑝,𝑞 =
∑10,000𝑖=1 1{𝐵𝐼𝐶𝑖,𝑝,𝑞= min∀ 𝑝, 𝑞(𝐵𝐼𝐶𝑖,𝑝,𝑞)}

# products for which the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) fit succeeded ∗ 100 (4.14)

Figure 4.5 is a heat map of all values of 𝜐𝐴𝐼𝐶,𝑝,𝑞 and 𝜐𝐴𝐼𝐶,𝑝,𝑞 for 𝑝, 𝑞 = 0, ..., 15. The AIC has the highest
percentage at 𝑝 = 𝑞 = 15, whereas the BIC has the highest percentage at 𝑝 = 𝑞 = 1. The BIC metric’s
result is more convincing than the AIC metric’s result since the percentage is much higher. However,
these results are still contradicting, we will discuss the two metrics to decide which values of 𝑝 and 𝑞
are optimal.

Figure 4.5: Heatmaps of 𝜐𝐴𝐼𝐶,𝑝,𝑞 and 𝜐𝐵𝐼𝐶,𝑝,𝑞 for 𝑝, 𝑞 = 0, ..., 15, the percentages per 𝐴𝑅𝑀𝐴(𝑝, 𝑞) fit that is selected as the best
fit per product according to the AIC and BIC.
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The AIC and BIC formulas are nearly the same, the difference is the penalty of the number of param-
eters. For AIC, the penalty equals 2𝑘, whereas for BIC, the penalty equals 𝑙𝑛(𝑛)𝑘, with 𝑘 the number of
parameters and 𝑛 the sample size. In Figure 4.5 we see that the penalty 2𝑘 in the AIC does not severely
penalise complex models since the complex models have the best results. Whereas the 𝑙𝑛(𝑛)𝑘 penalty
in the BIC does penalise the complex models more heavily, the BIC has the worst results for higher
orders.

Furthermore, if a true model in the families of the 𝐴𝑅𝑀𝐴(𝑝, 𝑞)-models exists for the sales data of
a product, the BIC is consistent, and it will select the true model asymptotically. On the contrary, if
there is no true model for the data, the AIC is efficient, and it will select the best-approximating model
asymptotically [24]. We will have products’ sales data for which a true model exists, but we will also
have products’ sales data for which no true model exists. Thus our data is a mixture of existing and
non-existing true models; we cannot make a conclusion based on this characteristic of the metrics.

Another result we got earlier is the number of failures of fitting an 𝐴𝑅𝑀𝐴(𝑝, 𝑞)model with the arima()
function. In Table E.1 we see that for 𝑝 = 𝑞 = 1, 2.80% of the products the function failed whereas for
𝑝 = 𝑞 = 15, 71.30% of the products the function failed. This means that the likelihood of a failure is
larger when we set 𝑝 = 𝑞 = 15 than for 𝑝 = 𝑞 = 1.
Based on the last argument, the results of the BIC and the simplicity of computations that we have

to do later in the perspectives, we choose 𝑝 = 𝑞 = 1.

4.5.3. Order of the 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) processes
We also want to determine the optimal order for 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) processes in the same way we did for
𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes. First, we introduce 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) processes and our motivation to use them,
then we elaborate on our choice of 𝑝 and 𝑞.
When we use 𝐴𝑅𝑀𝐴(1, 1) processes to describe our data, time series with rational numbers will be

fitted. This does not match our data since we have count time series, these are time series that consist
of non-negative integers. Therefore, we can use this characteristic to fit another process. We will use
a Poisson distribution to describe the data as an integer-valued generalised autoregressive conditional
heteroskedasticity process (𝐼𝑁𝐺𝐴𝑅𝐶𝐻). See Definition 4.5.3 for the definition of an 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞)
process.

Definition 4.5.3: 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process

Let ℱ𝑡 = 𝜎(𝑠𝑖 , 𝑖 ≤ 𝑡) denote the history of the process 𝑠𝑡, 𝛼 > 0 a constant and ∑𝑝𝑗=1 𝜙𝑗 +
∑𝑞𝑗=1 𝜃𝑗 < 1 coefficients with 𝜙1, ..., 𝜙𝑝, 𝜃1, ..., 𝜃𝑞 ≥ 0. Then for 𝑝, 𝑞 > 0, 𝑋𝑡 is a stationary
𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process if

𝑠𝑡|ℱ𝑡−1 ∼ 𝑃𝑜𝑖𝑠(𝜆𝑡), 𝜆𝑡 = 𝛼 +
𝑝

∑
𝑘=1

𝜙𝑘𝑠𝑡−𝑘 +
𝑞

∑
𝑙=1
𝜃𝑙𝜆𝑡−𝑙 . (4.15)

For stationary, the following should hold:

𝑝

∑
𝑘=1

𝜙𝑘 +
𝑞

∑
𝑙=1
𝜃𝑙 < 1 (4.16)

We use the the tsglm() function of the tscount library [12] to fit an 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process. We wish
to optimise 𝑝 and 𝑞 in the same ways as we did in Section 4.5.2 for 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes. However,
this is impossible because the function tsglm() has a long computation time: Fitting the function for
𝑝, 𝑞 = 1, ..., 6 for one product takes approximately 3.5 minutes. If we want to do this for 𝑝, 𝑞 = 0, ..., 15 for
10,000 products, it will take approximately 173 days to run. This takes too much time. As a result, we
choose 𝑝 = 𝑞 = 1 because this saves complex computations when using the 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process
in the perspectives. Also, we expect that for higher orders, the function will frequently fail, the same as
with the arima() function. Therefore we choose a lower order.
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We have introduced 𝐴𝑅𝑀𝐴(𝑝, 𝑞) and 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) processes and concluded that the order 𝑝 = 1
and 𝑞 = 1 are optimal for both time series. Also, we saw that not every product’s sales data could be
fitted by one of these processes. Therefore, using these processes in perspectives does not mean that
every OOS period can be investigated and that every fit has a high quality.

4.5.4. Perspectives for products with one OOS period
We start with introducing two perspectives in which 𝐴𝑅𝑀𝐴(1, 1) processes are used, after that we in-
troduce three perspectives in which 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes are used. Note that for this section we
describe the perspectives for products with one OOS period, therefore we will rewrite 𝑡𝑗𝑏 and 𝑡𝑗𝑎 as 𝑡𝑏
and 𝑡𝑎, respectively.

In Perspective 4.5.1 we want to test if the sales at 𝑡𝑎 is an outlier since this is the first day after the
OOS period. If an OOS period influences the sales, we expect at 𝑡𝑎 an abnormal decrease or increase
in the sales. We do this with two different methods: In the first method we fit an 𝐴𝑅𝑀𝐴(1, 1) process
to (𝑠𝑡)𝑡∈(𝒯1 ,𝒯2) and investigate the residual on time 𝑡𝑎, in the second method we fit an 𝐴𝑅𝑀𝐴(1, 1) pro-
cess to (𝑠𝑡)𝑡∈𝒯1 and predict the sales on 𝑡𝑎, then we investigate this prediction. We test Perspectives

4.5.1.1 and 4.5.1.2 using the test statistics 𝑇𝑆2 =
𝜖𝑡𝑎
�̂� and 𝑇𝑆3 =

𝜖∗𝑡𝑎
�̂�∗ , respectively, with �̂� = 𝑠𝑑(𝜖𝑡) and

�̂�∗ = 𝑠𝑑(𝜖∗𝑡). Together with the two-sided Z-score table we get a p-value for these tests.

Perspective 4.5.1: The value 𝑠𝑡𝑎 is an outlier

- Perspective 4.5.1.1: Difference between �̄�𝑡𝑎 and 𝑠𝑡𝑎
Let (𝑠𝑡)𝑡∈(𝒯1 ,𝒯2) ∼ 𝐴𝑅𝑀𝐴(1, 1) with fitted values �̄�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡 and 𝜎 = 𝑠𝑑(𝜖𝑡). Let 𝑐
be a positive constant.

• 𝐻0 ∶
𝜖𝑡𝑎
𝜎 ∼ 𝑁(0, 1),

• 𝐻1 ∶ |
𝜖𝑡𝑎
𝜎 | > 𝑐.

- Perspective 4.5.1.2: Difference in �̂�𝑡𝑎 and 𝑠𝑡𝑎
Let (𝑠𝑡)𝑡∈𝒯1 ∼ 𝐴𝑅𝑀𝐴(1, 1) with fitted values �̄�𝑡, predicted values �̂�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡 and
𝜖∗𝑡 = �̂�𝑡 − 𝑠𝑡, and 𝜎∗ = 𝑠𝑑(𝜖∗𝑡). Let 𝑐 be a positive constant.

• 𝐻0 ∶
𝜖∗𝑡𝑎
𝜎∗ ∼ 𝑁(0, 1),

• 𝐻1 ∶ |
𝜖∗𝑡𝑎
𝜎∗ | > 𝑐.

We only investigate the residual at time 𝑡𝑎 because the influence of an outlier in the residuals of the
fitted time series is only perceptible at that time point 𝑡𝑎. We will demonstrate this with an example. Fig-
ure 4.6 shows an example time series with the fitted values of an 𝐴𝑅𝑀𝐴(1, 1) process and its residuals.
There is an outlier on the 20th of February, this is also visible in the residuals, but only on that date.
The 𝐴𝑅𝑀𝐴(1, 1) process needs one time point to adjust to the outlier, therefore we only investigate the
sales at 𝑡𝑎 in Perspective 4.5.1.

We continue to the second perspective with an 𝐴𝑅𝑀𝐴(1, 1) process. In this perspective, we do not
investigate one time point, but we compare the data before and after the OOS period by fitting two
separate 𝐴𝑅𝑀𝐴(1, 1) processes. One is fitted to (𝑠𝑡)𝑡∈𝒯1 and one to (𝑠𝑡)𝑡∈𝒯2 , see Perspective 4.5.2.
We compare the coefficients of the two processes with a special distance function, see Definition 4.5.4
[17].
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Figure 4.6: An example of time series with a fitted 𝐴𝑅𝑀𝐴(1, 1) process and its residuals. On the 20th of February there is an
outlier, the residual on this date is marked with a square.

We simulated 𝑠𝑡 = 0.4 + 0.7𝑠𝑡−1 + 𝑍𝑡 + 0.3𝑍𝑡−1, for 𝑡 = 1, ..., 100 with 𝑠1 = 2, 𝑠50 = 20 and 𝑍𝑡
𝑖𝑖𝑑∼ 𝑁(0, 1).

Perspective 4.5.2: Difference in coefficients between two 𝐴𝑅𝑀𝐴(1, 1) processes

Let (𝑠𝑡)𝑡∈𝒯1 ∼ 𝐴𝑅𝑀𝐴(1, 1) and let (𝑠𝑡′)𝑡′∈𝒯2 ∼ 𝐴𝑅𝑀𝐴(1, 1).
• 𝐻0 ∶ 𝑑((𝑠𝑡)𝑡∈𝒯1 , (𝑠𝑡′)𝑡′∈𝒯2) = 0,
• 𝐻1 ∶ 𝑑((𝑠𝑡)𝑡∈𝒯1 , (𝑠𝑡′)𝑡′∈𝒯2) ≠ 0,

with 𝑑(⋅, ⋅) the distance metric from Definition 4.5.4.

Definition 4.5.4: Distance between two 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes

The distance between 𝐴𝑅𝑀𝐴(𝑝, 𝑞) processes 𝑋𝑡 and 𝑌𝑡 is defined as,

𝑑(𝑋𝑡 , 𝑌𝑡) = √
∞

∑
𝑗=1
(𝜋𝑗,𝑥 − 𝜋𝑗,𝑦)2 = √(𝜋𝜋𝜋𝑥 −𝜋𝜋𝜋𝑦)𝑇(𝜋𝜋𝜋𝑥 −𝜋𝜋𝜋𝑦).

For this definition, we introduced a new variable, variable 𝜋. The 𝜋-values come from the 𝐴𝑅𝑀𝐴(𝑝, 𝑞)
coefficients:

𝜋(𝑧) = 𝜙(𝑧)
𝜃(𝑧) , (4.17)

with 𝜋(𝑧) = 1+∑∞𝑗=1 𝜋𝑗𝑧𝑗, the coefficients can be written as a vector 𝜋𝜋𝜋 = (𝜋1, ..., 𝜋𝑗 , ...)𝑇. They are also
known as the coefficients of the 𝐴𝑅(∞) operator. For an 𝐴𝑅𝑀𝐴(1, 1) process the distance becomes:

𝑑2(𝑋𝑡 , 𝑌𝑡) =
(𝜙𝑥 + 𝜃𝑥)

2

1 − 𝜃2𝑥
+
(𝜙𝑦 + 𝜃𝑦)

2

1 − 𝜃2𝑦
− 2

(𝜙𝑥 + 𝜃𝑥) (𝜙𝑦 + 𝜃𝑦)
1 − 𝜃𝑥𝜃𝑦

. (4.18)

In Section D.2 are the calculations for Equation 4.18. Moreover, we test Perspective 4.5.2 using the
test statistic created by Maharaj (1996) [13], see Theorem 4.5.1. For this test statistic, the infinite order
of the AR coefficients is truncated into 𝑘 = 𝑝+𝑞 = 2, thus we have 𝜋𝜋𝜋 = (𝜋1, 𝜋2)𝑇. Equation 4.19 follows
a chi-square distribution with 𝑘 degrees of freedom. Thus, using test statistic 𝑇𝑆4,𝑇𝑎 together with the
chi-square distribution table we can test Perspective 4.5.2. We have written out some elements of the
test statistic 𝑇𝑆4,𝑇𝑎 for an 𝐴𝑅𝑀𝐴(1, 1) process in Section D.3 in the Appendix.
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Theorem 4.5.1: Test statistic for the 𝐴𝑅𝑀𝐴(𝑝, 𝑞) distance metric

𝑇𝑆4,𝑇𝑎 = 𝑇𝑎(�̂�𝜋𝜋𝑥 − �̂�𝜋𝜋𝑦)𝑇�̂�−1(�̂�𝜋𝜋𝑥 − �̂�𝜋𝜋𝑦)
𝐴∼ 𝜒2(𝑘), (4.19)

with,
• 𝑇𝑎 = 𝑇1 = 𝑇2,
• �̂�𝜋𝜋𝑥 and �̂�𝜋𝜋𝑦 are the estimates of 𝜋𝑥𝜋𝑥𝜋𝑥 and 𝜋𝑦𝜋𝑦𝜋𝑦, respectively,
• �̂� = (�̂�2𝑥 �̂�−1𝑥 (𝑘) + �̂�2𝑦𝑅−1𝑦 (𝑘)) with 𝑘 = 𝑝 + 𝑞,
• �̂�2𝑥 and �̂�2𝑦 are the estimated variances of the white noise ,
• �̂�𝑥(𝑘) and �̂�𝑦(𝑘) are the upper 𝑘×𝑘 sub-matrices of the estimated infinite auto-correlation
matrices.

We proceed with the perspectives that use 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes. In Perspective 4.5.3 we do
the same test as in Perspective 4.5.1, we test if 𝑠𝑡𝑎 is an outlier with two different methods. Also here

we use the test statistics 𝑇𝑆2 =
𝜖𝑡𝑎
�̂� and 𝑇𝑆3 =

𝜖∗𝑡𝑎
�̂�∗ and the two-tailed Z-score table.

Perspective 4.5.3: The value 𝑠𝑡𝑎 is an outlier

- Perspective 4.5.3.1: Difference between �̄�𝑡𝑎 and 𝑠𝑡𝑎
Let (𝑠𝑡)𝑡∈(𝒯1 ,𝒯2) ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with fitted values �̄�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡 and 𝜎 = 𝑠𝑑(𝜖𝑡).
Let 𝑐 be a positive constant.

• 𝐻0 ∶
𝜖𝑡𝑎
𝜎 ∼ 𝑁(0, 1),

• 𝐻1 ∶ |
𝜖𝑡𝑎
𝜎 | > 𝑐.

- Perspective 4.5.3.2: Difference in �̂�𝑡𝑎 and 𝑠𝑡𝑎
Let (𝑠𝑡)𝑡∈𝒯1 ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with fitted values �̄�𝑡, predicted values �̂�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡
and 𝜖∗𝑡 = �̂�𝑡 − 𝑠𝑡, and 𝜎∗ = 𝑠𝑑(𝜖∗𝑡). Let 𝑐 be a positive constant.

• 𝐻0 ∶
𝜖∗𝑡𝑎
𝜎∗ ∼ 𝑁(0, 1),

• 𝐻1 ∶ |
𝜖∗𝑡𝑎
𝜎∗ | > 𝑐.

Furthermore, we also compare the data before and after the OOS period by fitting two separate
𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes, see Perspective 4.5.4.

To test this perspective, we have created another test statistic. We use test statistic 𝑇𝑆5,𝑇𝑎 =

||√𝑇𝐺𝑇𝑎(�̂�
𝜔𝜔𝑎)
2 (�̂�𝜔𝜔1 − �̂�𝜔𝜔2)||

2

2

with the chi-square distribution table. In Section D.4 in the Appendix are

the derivations and definitions of 𝑇𝑆5,𝑇𝑎 .

Perspective 4.5.4: Difference in coefficients between two 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes

Let (𝑠𝑡)𝑡∈𝒯1 ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) and let (𝑠𝑡)𝑡∈𝒯2 ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1), and let 𝜔𝜔𝜔1 and 𝜔𝜔𝜔2 be the
parameter vectors of the two 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes.

• 𝐻0 ∶ 𝜔𝜔𝜔1 = 𝜔𝜔𝜔2,
• 𝐻1 ∶ 𝜔𝜔𝜔1 ≠ 𝜔𝜔𝜔2.

For the last perspective we use a function from the tscount library, it has a function that allows to
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include intervention effects in the 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) process, as a result an 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process with
intervention effect at 𝑡𝑎 becomes:

𝑠𝑡|ℱ𝑡−1 ∼ 𝑃𝑜𝑖𝑠(𝜆𝑡), 𝜆𝑡 = 𝛼 + 𝜙1𝑠𝑡−1 + 𝜃1𝜆𝑡−1 + 𝜂𝑡𝑎1{𝑡=𝑡𝑎}, (4.20)

with 𝜂𝑡𝑎 ≥ 0 the effect on 𝑡𝑎. In Perspective 4.5.5 we test if the intervention effect at 𝑡𝑎 has an
significant effect. For this we use the interv_test() function of the tscount library with argument delta
equal to zero. The function tests if the fitted model by function tsglm() has any significant intervention
effects at time 𝑡𝑎.

Perspective 4.5.5: Intervention effect of 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process

Let (𝑠𝑡)𝑡∈(𝒯1 ,𝒯2) ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with an intervention effect at time 𝑡𝑎.
• 𝐻0 ∶ 𝜂𝑡𝑎 = 0,
• 𝐻1 ∶ 𝜂𝑡𝑎 ≠ 0.

4.5.5. Perspectives for products with multiple OOS periods
The time-dependent perspectives for products with multiple OOS periods are a generalisation of the
perspectives introduced in the previous section. Therefore, we will not describe them in this section,
but share them in Chapter F. Moreover, also for the time-dependent perspectives we have a summary,
see Table E.3 in Section E.2.
We have shared all the time-independent and time-dependent perspectives that we will use. These

perspectives test the products’ OOS period(s) individually and show how many percentage of the prod-
ucts for which the perspective is tested accept or reject the hypothesis test. However, we can do more
with these perspectives. We will introduce this in the next section.

4.6. Perspectives for multiple products
Another way to investigate the OOS periods is by analysing certain parameters that give information
about all the OOS periods. For example, take the residual 𝜖𝑡𝑎 from Perspective 4.5.1.1 for every OOS
period. We can investigate the distribution of this parameter: Is it skewed, and does it has a positive or
negative mean? Investigating these parameters’ distribution gives us results from another viewpoint.
We will investigate parameters that are already introduced in perspectives before. First, we will share
which parameters we are going to investigate. After that, the perspective used to investigate them is
shared. From now on, we will call these parameters the measures of interest.
In Table 4.2 is given which measures of interest we want to investigate and from which perspective

they come. Every measure of interest describes something from an OOS period 𝑗 for product 𝑖. If OOS
periods do not influence the sales, we expected that these measures equal zero.

Overview of the measures of interest
Measure of interest Perspective
𝛽𝑗+1𝑖 − 𝛽𝑗𝑖 4.4.3 & 4.4.8
𝜖𝑖,𝑡𝑗𝑎 4.5.1.1 & F.0.1.2
𝜖∗𝑖,𝑡𝑗𝑎 4.5.1.2 & F.0.1.2
𝑑((𝑠𝑡)𝑡∈𝒯𝑗𝑖 , (𝑠𝑡)𝑡∈𝒯𝑗+1𝑖

)2 4.5.2 & F.0.2
𝜖𝑖,𝑡𝑗𝑎 4.5.3.1 & F.0.3.1
𝜖∗𝑖,𝑡𝑗𝑎 4.5.3.2 & F.0.3.2
𝜂𝑖,𝑡𝑗𝑎 4.5.5 & F.0.5

Table 4.2: An overview of the measures of interest that will be investigated, with 𝑖 = 1, ..., 𝑛 the product and 𝑗 = 1, ..., 𝑘𝑖 + 1 the
OOS period. Together with the perspective from which the measure comes.

We continue by describing the perspective such that we can investigate the measures of interest.
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We describe one generalised perspective for a parameter 𝜃𝑗𝑖 , this perspective can be applied to every
measure of interest. Let 𝜃𝑗𝑖 describe (𝑠𝑖𝑡)𝑡∈{𝒯𝑗𝑖 ,𝒯𝑗+1𝑖 } for product 𝑖 = 1, ..., 𝑛 and 𝑗 = 1, ..., 𝑘𝑖 + 1, we will

investigate 𝜃𝑗𝑖 for all 𝑖 and 𝑗, see Perspective 4.6.1.

Perspective 4.6.1: Distribution of 𝜃𝑗𝑖

For 𝑖 = 1, ..., 𝑛 and 𝑗 = 1, ..., 𝑘𝑖 we have random variables 𝜃𝑗𝑖 ∈ R that describe every the time
frame 𝒯𝑗𝑖 . Let 𝜎 = 𝑠𝑑(𝜃

𝑗
𝑖 ) ∀ 𝑖, 𝑗. Then, we assume ∃ IP𝜃𝑗𝑖

such that 𝑠𝑖𝑡|𝜃𝑗𝑖
⊥∼ IP𝜃𝑗𝑖

. Furthermore,

we assume
𝜃𝑗𝑖
𝜎

𝑖𝑖𝑑∼ 𝐹 for some distribution 𝐹 with standard deviation 1.

- Perspective 4.6.1.1: Mean of 𝜃𝑗𝑖
• 𝐻0 ∶ 𝜇(𝐹) = 0,
• 𝐻1 ∶ 𝜇(𝐹) ≠ 0.

- Perspective 4.6.1.2: Median of 𝜃𝑗𝑖
• 𝐻0 ∶ med(𝐹) = 0,
• 𝐻1 ∶ med(𝐹) ≠ 0.

Perspective 4.6.1.1 will be tested with the t-test and Perspective 4.6.1.2 with the WMW test. Note
that we normalise every measure of interest before assuming that it follows some distribution 𝐹 in the
perspective. We do this such that the measures have a standard scale. We have chosen a specific
method to normalise the measures, in Section 4.7.1 we will detail more about this choice.

We have introduced multiple new variables in Perspective 4.6.1. For clarity, we have made an
overview of the type of variables, see Figure 4.7.

Figure 4.7: Overview of the variables of Perspective 4.6.1. 𝑎 −→ 𝑏 means that 𝑎 is dependent on 𝑏.

4.7. Results
We have introduced all the perspectives we use to investigate if an OOS period influences sales. In this
section, we will share the results of all the perspectives. First, we will share our motivation for choosing
the normalisation method in Perspective 4.6.1. After that, we will share the results of the perspectives
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in the same order as we introduced them.

For the results, we use the two-year product information data set from 2019/12/21 until 2021/12/20
for products sold in the Netherlands. This data set is one year longer than the data sets used in the
previous chapters. This is because we can investigate more OOS periods with a larger data set. The
data set consists out of 70,646 different products.

4.7.1. Normalisation of the measures of interest
In Perspective 4.6.1 we normalise the measure we are describing such that all the measures have a
common scale. There are multiple ways to normalise a variable. We have compared two choices of
normalisation, we will introduce them by an example, see Example 4.7.1. The choice of these meth-
ods is based on the likelihood of having a small standard deviation because the normalised measure
will explode then. Using these two methods, we expect to have the lowest chance of an enormous
normalised measure.

Example 4.7.1: Two methods to normalise our measures of interest

Assume we have three products with time frames:

𝒯1 = {𝒯11 , 𝒯∗11 , 𝒯21 }

𝒯2 = {𝒯12 , 𝒯∗12 , 𝒯22 , 𝒯∗22 , 𝒯32 }
𝒯3 = {𝒯13 , 𝒯∗13 , 𝒯23 }

Products 1 and 3 have one OOS period, whereas product 2 has two OOS periods. We want to
investigate residual 𝜖𝑖,𝑡𝑗𝑎 from Perspective 4.5.1.1. This means that we will have four different
residuals and thus we will investigate the distribution of (𝜖1,𝑡1𝑎 , 𝜖2,𝑡1𝑎 , 𝜖2,𝑡2𝑎 , 𝜖3,𝑡1𝑎). However, we
still need to normalise these residuals. We have two choices:

1. Divide all the residuals by �̂� = ̂𝑠𝑑(𝜖1,𝑡1𝑎 , 𝜖2,𝑡1𝑎 , 𝜖2,𝑡1𝑎 , 𝜖3,𝑡1𝑎)
2. Divide the residuals individually by �̂�𝑖 = ̂𝑠𝑑((𝑠𝑡)𝑡∈{𝒯𝑗𝑖 ,...,𝒯𝑘𝑖+1𝑖 }). Thus, �̂�1 = ̂𝑠𝑑((𝑠𝑡)𝑡∈{𝒯11 ,𝒯21 }),
�̂�2 = ̂𝑠𝑑((𝑠𝑡)𝑡∈{𝒯12 ,𝒯22 ,𝒯32 }), �̂�3 = ̂𝑠𝑑((𝑠𝑡)𝑡∈{𝒯13 ,𝒯23 })

To summarise, for every measure we investigate, we normalise every measure by the standard
deviation of all the values for that measure, or we normalise each measure by the standard deviation
of the product’s in-stock sales data. To decide on these two choices, we have investigated them for all
the measures.

In Figure 4.8 are densities of the two choices of normalisation for every measure. We have plotted
the absolute values such that we can scale the x-axis into a log scale, note that as a result, the zero
values are left out from the plot. The distance measure seems to explode, this is because certain
distance values are high due to fitted 𝐴𝑅𝑀𝐴(1, 1) processes that are almost non-stationary. Moreover,
if we look at the densities, taking the standard deviation of a product’s sales results in high outliers
compared to the other method, except for measure 𝛽𝑗+1𝑖 − 𝛽𝑗𝑖 . These high values are unrealistic:
a normalised residual of > 700 is not expected. Therefore we conclude that the normalisation by the
standard deviation of the values of the measures is the best method to normalise. Even for the measure
𝛽𝑗+1 − 𝛽𝑗, since these values stay in an acceptable range.

4.7.2. Results of the perspectives
First, we share an overview of how many products and OOS periods meet the assumptions given in
Section 4.3 together with information about the post-processing steps we did to get the correct results.
After that, we share the results of the perspectives for one OOS period (perspectives from Sections
4.4.1 and 4.5.4) followed by the results of the perspectives for multiple OOS periods (perspectives from
Sections 4.4.2 and 4.5.5). Eventually, the results of the measures of interest are shared.

To investigate OOS periods, we have introduced assumptions in Section 4.3 that describe an OOS
period. In summary, these assumptions are: an OOS period should have a length of two weeks min-
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Figure 4.8: Densities of the absolute normalised measures by the two normalisation methods introduced in Example 4.7.1.
Note that because of the log scales the zero values of the measures are left out of the plot.

imum and the consecutive in-stock days before and after the OOS period should have a length of
one-week minimum. We have applied these assumptions to our data. Table 4.3 is the frequency

Overview OOS periods
Percentage of
the products

Number of
OOS periods

65.40 0
19.40 1
8.55 2
3.88 3
1.74 4
0.69 5
0.24 6
0.09 7
0.01 8
2.83e-03 9

Table 4.3: Percentage of the products
with the number of OOS periods that
meet the assumptions introduced in

Section 4.3.

table of the number of OOS periods that meet the assumptions.
Approximately two-thirds of the product do not meet the assump-
tions, whereas one-third did (24,442 products). Most of these prod-
ucts have one OOS period that we can investigate. Thus, 19.40%
of the products are being tested by the perspectives written for one
OOS period, and 15.20% of the products are being tested by the
perspectives written for multiple OOS periods. These are 13,705
and 10,737 products, respectively.

We continue sharing the post-processing steps we do to interpret
the results correctly. There are two post-processing steps that we
do. The first step is for products that have constant sales before
and after an OOS period, these are 17.84% of the 24,442 products.
When we test the perspectives, a constant data input creates an
error or false result for some of the perspectives. For example,
the t.test() function that executes the t-test cannot handle constant
input data. As a result, the p-value of the test does not exist. To
solve this problem, we adjust the results manually because we can
conclude that the OOS period does not influence sales for these products. As a result, we set all the
p-values of the perspectives for these products equal to one.

The second post-processing step is for products with data for which 𝐴𝑅𝑀𝐴(1, 1) or 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1)
processes cannot fit a stationary process. The fitted 𝐴𝑅𝑀𝐴(1, 1) or 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process should
be stationary, else the distance metric in Definition 4.5.4 does not hold for example. As a result,
the distance metric gets enormous. To avoid this problem, we analysed the fitted 𝐴𝑅𝑀𝐴(1, 1) and
𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes to detect non-stationary processes. For the non-stationary processes, we
changed the results into NA (not available) values such that we will not use those results.

In the following sections, we will share the results of the perspectives. Note that when we say a
perspective is being accepted/rejected, we mean that the null hypothesis of the hypothesis test in the
perspective is being accepted/rejected.
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Results of the perspectives for one OOS period Table 4.4 shows the results of the perspectives
for one OOS period, in total 13,705 products with one OOS period are investigated. First, we remark
that not every perspective could test all products. This problem only happens for time-dependent
perspectives whenever the fitted 𝐴𝑅𝑀𝐴(1, 1) or 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process is not stationary. It becomes
worse for Perspectives 4.5.2 and 4.5.4 because they depend on two separate process fits, increasing
the chance of having a non-stationary fit.

Next, we see that the perspectives give surprisingly different results for the 5.01% subset of the prod-
ucts: The smallest rejection percentage is 7.14 %, whereas the highest is 94.02 %. This wide range
of rejection percentages indicates a lack of agreement between the perspectives. Thus, opposite con-
clusions can be drawn, which raises doubts about the meaning of these results. The different rejection
percentages can be due to the different levels of complexity in the perspectives and the contradictions
between some of them, for instance, the sales data for a given product cannot be both time-independent
and dependent. Therefore, most perspectives are invalid, but we do not know which. Moreover, the
perspectives’ tests have different power, influencing rejection percentages. This is coherent with our
discussion earlier in Section 4.4.1. Also, an insufficient sample size of the product’s data can affect the
performance of the tests.

Another remarkable result is that the rejection percentages between the 5.01 % subset of the prod-
ucts and all applicable products are not aligned. The difference is the largest at time-independent
perspectives, we have a reason for this: These perspectives are applicable for all products, thus also
for the products with constant sales. These products do not reject the perspectives, and therefore
the rejection percentages will be lower. Moreover, these nonaligned percentages indicate instability
in the perspectives: For Perspective 4.5.2 the subset size is approximately one-third of the applicable
products set, which should indicate that the subset is a good representation. However, the rejection
percentages differ almost by a factor of two.

Results of the perspectives for products with one OOS period

Perspective Applicability
perc.

Rejection perc.
of applicable
products

Rejection perc.
of 5.01 % of
the products

4.4.1 Difference in distribution 100.00 12.88 37.17
4.4.2 Larger in probability* 100.00 15.83 22.30
4.4.2 Smaller in probability** 100.00 15.61 27.70
4.4.3 Difference in means 100.00 25.14 43.59
4.4.4 Difference in Poisson param. 100.00 30.20 56.71
4.5.1.1 𝐴𝑅𝑀𝐴(1, 1) residual 46.90 10.72 8.61
4.5.1.2 𝐴𝑅𝑀𝐴(1, 1) prediction 32.32 12.46 11.37
4.5.2 𝐴𝑅𝑀𝐴(1, 1) distance metric 17.75 20.19 9.18
4.5.3.1 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) residual 27.04 7.93 7.14
4.5.3.2 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) prediction 25.62 9.77 9.62
4.5.4 Difference between 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes 12.13 92.06 94.02
4.5.5 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) intervention effect 27.04 14.30 19.68
* This are the results of alternative hypothesis 𝐻1.𝑎.
** This are the results of alternative hypothesis 𝐻1.𝑏.

Table 4.4: The results of the perspectives for products with one OOS period. Only Perspective 4.4.5 is omitted since these
results are investigated separately. The ”Applicability percentage” is the percentage of products which the perspective could

investigate. The ”Rejection percentage of applicable products” is the percentage of applicable products that reject the
hypothesis in the perspective. The ”Rejection percentage of 5.01 % of the products” is another rejection percentage, but of the

subset of products that all perspectives could investigate (except Perspective 4.4.5). These are 5.01 % of all products.

To further examine the difference in perspectives, we divide the products into subsets which reject the
same time-independent or dependent perspectives. Figure 4.9 is the Venn diagram with the products
that reject certain time-independent perspectives. The largest subset of products accepts all perspec-
tives, and the second-largest subset rejects them all, this indicates that the perspectives are aligned.
However, the second-largest subset rejects all perspectives except the difference in distribution per-
spective. This is remarkable since a difference in means should imply a difference in distributions, we
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already saw this remarkable result in our discussion about Perspectives 4.4.1, 4.4.2, 4.4.3 in Section
4.4.1. Apparently, Perspective 4.4.1 is unable to show this difference or less sensible to these dif-
ferences. Moreover, the largest subset of products does not reject any perspective, a majority of the
products’ sales are not influenced by an OOS period according to the time-independent perspectives.

Figure 4.9: A Venn diagram of how many products reject time-independent perspectives. The products used in this Venn
diagram are the products that could be tested for Perspectives 4.4.1, 4.4.2, 4.4.3 and 4.4.4. Note that we have combined the

results of the perspective about larger or smaller in probability, since a product would not reject both these hypotheses.

Figure 4.10 is the Venn diagram for the time-dependent perspectives. The wide range of rejection
percentages we saw in Table 4.4 is visible: one large subset of products only rejects Perspective 4.5.4.
This influences the size of the subset of products that accept all perspectives. Also, there is a subset
of products which rejects all the perspectives, however it is not the largest subset. The larger subsets
only reject a few perspectives, again indicating the lack of agreement between the perspectives.

Figure 4.10: A Venn diagram of how many products reject time-dependent perspectives. The products used in this Venn
diagram are the products that could be tested for Perspectives 4.5.1.1, 4.5.1.2, 4.5.2, 4.5.3.1, 4.5.3.2, 4.5.4 and 4.5.5.

Weare left with analysing the results of Perspective 4.4.5, the perspective especially created for slow-
moving products: Products with a maximum of one sale a day. In Table 4.5 we see a wide range of
rejection percentages again. It seems like the more general perspectives cannot detect the differences
in the datasets, whereas Perspective 4.4.5 does detect them. Thus the results of slow-moving products
are dependent on the type of perspective.
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Results of the time-independent perspectives of the
slow-moving products
Perspective Rejection perc.
4.4.1 Difference in distribution 0.06
4.4.2 Larger in probability* 6.37
4.4.2 Smaller in probability** 3.27
4.4.3 Difference in means 4.95
4.4.4 Difference in Poisson param. 4.34
4.4.5 Difference in Bernoulli param. 22.34
* This are the results of alternative hypothesis 𝐻1.𝑎.
** This are the results of alternative hypothesis 𝐻1.𝑏.

Table 4.5: The results of the time-independent perspectives on the slow-moving products. These are 39.53 % of the products.
The time-dependent perspectives are not considered since the used time series are not created especially for binary data.

Results of the perspectives for multiple OOS periods The perspectives for products with multiple
OOS periods investigate 10,737 products with 29,194 OOS periods in total. Table 4.6 shows similar
results as we saw in Table 4.4: Time-dependent perspectives are less applicable, and there is a wide
range of rejection percentages. Thus, the perspectives for multiple OOS periods also lack agreement
and have different powers. It is not unexpected that there is no difference in results between the
perspectives for products with one OOS period and multiple OOS periods. Moreover, there are no
results for a subset of the products for which all perspectives could test all OOS periods because this
subset is too small to give representable results.

Furthermore, multiple alternative hypotheses are tested. Hypothesis 𝐻1.𝑎 is being rejected the most,
followed by 𝐻1.𝑏 and 𝐻1.𝑐. This is expected given that the other two hypotheses are harder to reject.
Remarkable are the high rejection percentages at the more complex perspectives for hypotheses 𝐻1.𝑏
and 𝐻1.𝑐 compared to other perspectives. This indicates that complex perspectives have more power.

Results of the perspectives for products with multiple OOS periods

Perspective Applicability
perc.

Rejection perc. of
applicable products

𝐻1.𝑎 𝐻1.𝑏 𝐻1.𝑐
4.4.6 Difference in distribution 100.00 22.68 1.77 0.94
4.4.7 Larger in probability 100.00 25.26 0.68 0.82
4.4.7 Smaller in probability 100.00 30.08 0.84 1.14
4.4.8 Difference in means 100.00 38.10 4.55 3.13
4.4.9 Difference in Poisson param. 100.00 45.69 7.58 5.37
F.0.1.1 𝐴𝑅𝑀𝐴(1, 1) residual 72.45 14.97 3.53
F.0.1.2 𝐴𝑅𝑀𝐴(1, 1) prediction 58.98 19.86 5.59
F.0.2.1 𝐴𝑅𝑀𝐴(1, 1) distance metric 38.83 24.44 16.57 14.25
F.0.3.1 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) residual 56.64 10.74 3.55
F.0.3.2 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) prediction 52.81 15.82 3.92
F.0.4 Difference between 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes 31.69 92.39 84.40 80.66
F.0.5 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) intervention effect 56.64 19.27 4.67
* This are the results of alternative hypothesis 𝐻1.𝑎.
** This are the results of alternative hypothesis 𝐻1.𝑏.

Table 4.6: The results of the perspectives for products with multiple OOS period. Only Perspective 4.4.10 is omitted. The
”Applicability percentage” is the percentage of products which the perspective could investigate. The ”Rejection percentage of

applicable products” is the percentage of applicable products that reject the alternative hypothesis in the perspective, per
alternative hypothesis. The ”Rejection percentage of 3.39 % of the products” is another rejection percentage, but of the subset
of products that all perspectives could investigate (except Perspective 4.4.10). These are 3.39 % of all products. Some of the

results of hypothesis 𝐻1.𝑏 miss because this hypothesis is not tested.
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Results of the perspectives for multiple products We continue to the results of the perspective
from Section 4.6, this perspective investigates the distribution of our measures of interest. First, we will
share these perspectives’ results. After that, we further investigate measure 𝛽𝑗𝑖 .
All the products with an OOS period, one or multiple, are used for the results of this section, these are

42,889 OOS periods in total. Table 4.7 shows that almost all measures reject the tests if the mean or
median equals zero. This indicates that OOS periods influence the sales. We investigate the measures
further by analysing the box plots, see Figure 4.11. All the interquartile ranges are around zero, there
are some outliers. The prediction measures have higher outliers than the residual ones, this indicates
that the fitted processes are better at fitting than predicting. Moreover, the outliers of the difference in
𝛽𝑗𝑖 measure are almost symmetrical.

Results of the measures of interest

Measure of interest 𝜃𝑗 Applicability
perc.

Reject
𝐻0 ∶ 𝜇(𝐹) = 0

Reject
𝐻0 ∶ med(𝐹) = 0

𝛽𝑗 100.00 No Yes
𝜖𝑡𝑗𝑎 (residual 𝐴𝑅𝑀𝐴(1, 1)) 55.83 Yes No
𝜖∗𝑡𝑗𝑎 (prediction 𝐴𝑅𝑀𝐴(1, 1)) 41.47 Yes Yes
𝑑((𝑠𝑡)𝑡∈𝒯𝑗 , (𝑠𝑡)𝑡∈𝒯𝑗+1)2 22.54 Yes Yes
𝜖𝑡𝑗𝑎 (residual 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1)) 37.25 Yes Yes
𝜖∗𝑡𝑗𝑎 (prediction 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1)) 35.83 Yes Yes
𝜂𝑡𝑗𝑎 37.25 Yes Yes

Table 4.7: The results of Perspective 4.6.1 for every measure of interest. The ”Applicability percentage” is the percentage of all
the values of the measure which were available to use.

Figure 4.11: Box plots of the normalised measures of interest. The 𝐴𝑅𝑀𝐴(1, 1) distance metric measure and 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1)
intervention effect measure only consist of positive values since the distance metric is squared and the intervention effect only

can be positive by definition.

Further investigation of 𝛽𝑗𝑖 We analyse the measure 𝛽𝑗𝑖 to get more information about the influence
of OOS periods on sales. Only 𝛽𝑗𝑖 is being analysed because this measure is not dependent on a fitted
process. First, we will look at the values of 𝛽𝑗𝑖 and 𝛽

𝑗+1
𝑖 . After that, we will look at specific characteristics

of products and their values of 𝛽𝑗𝑖 and 𝛽
𝑗+1
𝑖 . We will name 𝛽𝑗𝑖 and 𝛽

𝑗+1
𝑖 the mean of the dataset before

and after an OOS period.
The normalised means of the datasets before versus after an OOS period are plotted in Figure 4.12.

Except for a few outliers, the scatter plot is symmetrical. Also, for small values of 𝛽
𝑗
𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 diagonal
lines appear, these are combinations of the means that differ a constant value. Moreover, we stated
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earlier that many sales data equal zero, this is also true for this investigation, see Table 4.8 for an
overview of zero values in the means. We further investigate these zero means.

Author’s note: This figure is confidential.

Figure 4.12: Scatter plot of the normalised means of the data before versus after an OOS period with identity line.

Author’s note: This table is confidential.
Table 4.8: Overview of how many percentage of the normalised means equal zero or are larger than zero.

We have visualised the zero and non-zero normlaised means combinations of Table 4.8, see Figures
4.13a and 4.13b. Both density plots tell us that if one of the means is higher than five, the other mean
is more likely to be non-zero, whereas if one of the means is close to zero, the other mean is less likely
to be non-zero.

Author’s note: This figure is confidential.
(a) Density of the normalised non-zero means of before an OOS
period, divided over the zero and non-zero means after an OOS

period.

Author’s note: This figure is confidential.
(b) Density of the normalised non-zero means of after an OOS
period, divided over the zero and non-zero means before an

OOS period.

Figure 4.13: Density plots of the normalised non-zero means of the data before or after an OOS period .

We continue with the non-zero values of the normalised means, these are 73.81 % of all the means.
To investigate the non-zero means better, we have estimated the two-dimensional kernel density, see
Figure 4.14. Many data points are located around the identity line and symmetrically distributed. Thus,
having a higher mean before an OOS period is almost as likely as having it after an OOS period.
Moreover, 41.24 % of the points are under the identity line, 36.49 % are above, and 22.27 % are on
the identity line: a slight majority of the average sales before an OOS period is higher than afterwards.
This means that overall an OOS period slightly decreases the sales. Remark that these results are nil.

Author’s note: This figure is confidential.

Figure 4.14: Two dimensional kernel density estimations of the non-zero values of 𝛽
𝑗
𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 with the actuals plotted.

We further investigate OOS periods by looking at their specific characteristics. First, we look at which
values of 𝛽𝑗𝑖 and 𝛽𝑗+1𝑖 reject Perspective 4.4.3, then we investigate if 𝛽𝑗𝑖 and 𝛽𝑗+1𝑖 behave differently
per product types. Finally, we analyse if the means are related to the date the OOS period occurred.
Perspective 4.4.3 tests if the means of the sales before and after an OOS period are different. In

Figure 4.15 we see that there are no points around the identity line that reject the perspective, this is
logical. It is remarkable that some points that are not on the identity line accept the perspective, this
means that the perspective fails to detect the different means. However, the points that are the most
far away from the identity line do reject the perspective. These are the OOS periods with the highest
disparity in average sales.

Author’s note: This figure is confidential.

Figure 4.15: Two scatter plots of the non-zero values of 𝛽
𝑗
𝑖
𝜎 versus 𝛽𝑗+1𝑖

𝜎 , the first plot are the values from OOS periods that
accept Perspective 4.4.3, the second plot are values that reject this perspective.

Moreover, we analyse if the behaviour of the average sales is different for different types of products.
To divide the products, we use a higher segment level than introduced in Section 2.4, namely product
teams. There are 17 different product teams. Figure E.1 in Section E.3 shows the two-dimensional

kernel density estimations of 𝛽
𝑗
𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 per product team. Overall, they all have similarities around
the identity lines. The dissimilarities are mainly at the lower levels of density. Furthermore, small shifts
in the height of the means are seen. For example, the values of team Travel & Fitness and Cameras are
lower than those of team Kitchen appliances big and Personal care. This means there is a difference
in the level of sales between those teams.
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We also calculate the correlation between 𝛽𝑗𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 for every product team, see Table 4.9. All
the correlations are positive but not very strong. Moreover, we investigate if the correlations differ
significantly. To do this, we used the function r.test() of the psych [18] library. Figure E.2 in Section
E.3 is a heat map of the test’s p-values. Product teams Televisions & beamers and Garden & climate
tools reject every test since their correlations are relatively low. Moreover, the majority of the tests

are being rejected. We can conclude that the correlation between 𝛽𝑗𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 of product teams differ
significantly overall.

Correlation between 𝛽𝑗𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 per product teams

Product team Correlation Product team Correlation
Audio 0.73 Personal care 0.66
Cameras 0.68 Travel & fitness 0.59
Gaming, printing & office 0.75 Smart home 0.73
Household 0.62 Phones, tablets & accessories 0.64
Kitchen appliances big 0.73 Televisions & beamers 0.53
Kitchen appliances small 0.66 Garden, tools & climate management 0.40
Coffee appliances 0.69 Washing machines & dryers 0.66
Laptops, desktops & accessoires 0.75 Wearables 0.74
Monitors, storage & components 0.70

Table 4.9: Correlation between 𝛽𝑗𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 for every product team.

Finally, we examine if the normalised means are related to the OOS periods’ dates. In Figure 4.16 is

the two dimensional kernel density estimation plotted of 𝛽
𝑗
𝑖
𝜎 −

𝛽𝑗+1𝑖
𝜎 and the middle day of the OOS period

(med(𝒯∗𝑗𝑖 )). There are three periods for which a lot of OOS periods are located: Apr-Jun 2020, Dec-Feb
2020/21 and Aug-Oct 2021. Reasons for this could be Covid-19 lockdowns which result in increased
sales of working-at-home supplies, Black-Friday shopping and Christmas shopping. Furthermore, the
difference in normalised means has positive peaks during those same periods. Also, one negative
peak is located around the beginning of 2021. We do not have a clarification for positive or negative

peaks of 𝛽
𝑗
𝑖
𝜎 −

𝛽𝑗+1𝑖
𝜎 at these time periods.

Author’s note: This figure is confidential.

Figure 4.16: Two dimensional kernel density estimation of 𝛽
𝑗
𝑖
𝜎 − 𝛽𝑗+1𝑖

𝜎 and the middle day of the OOS period (= med(𝒯∗𝑗𝑖 )).

4.8. Conclusion
Multiple perspectives have investigated the influence of OOS periods by testing it differently. From
the perspectives for individual products, we got results that are not aligned: the perspectives lack
agreement or have different powers due to the perspectives’ complexity and assumptions. As a result,
the level of influence of an OOS period is dependent on the way it is tested. Thus we can conclude
that there is some influence, but not how much.
Moreover, measures of interest were investigated. Their means and medians are not equal to zero,

indicating that the OOS period influences the sales. However, their interquartile ranges show no ex-
treme results that imply huge influences of OOS periods. Also, the means of the dataset before and
after an OOS period were investigated deeper. The change in means after an OOS period is almost
as likely to be positive as negative. Also, specific characteristics of the OOS periods or products do
not influence the results. To conclude, the average sales after an OOS period differ but are as likely to
increase as decrease.





5
Conclusion & Discussion

This thesis aims to improve Coolblue’s direct demand estimation model for substitutable products. This
is done by answering three research questions. With the first research question, we compare the three
sub-models of the direct demand model to detect any weaknesses in them:

• How do the three sub-models perform compared to each other?

The sub-models have been evaluated on three criteria: applicability, best-performing and occurrence
of large errors in the estimations. The linear model outperforms the other two models in its accuracy
of the estimations, whereas the mean model is the most applicable to the products, but its estimations
are poor. The EM model’s estimations are also not outstanding, and the applicability of the sub-model
is low.

Based on this conclusion, we want to improve the estimations of the mean model by answering the
second research question:

• Can we improve the estimated demand provided by the mean model?

We introduced three new estimators that could replace the current estimator of the mean model
under two criteria: The estimator should still be applicable to all products, and the average RRSE of
the sales estimates should be lower. The new estimators use the product status or status-2 in their
estimates. All three estimators meet the criteria, so the estimator with the lowest average RRSE is
chosen as the new estimator. These estimates equal the average sales of a product on the days it has
status available.

Finally, we did an extensive investigation about OOS periods to answer the last research question:

• Do out-of-stock periods influence the sales? And if so, how can we react to this influence such
that it does not affect the direct demand estimations.

We created perspectives that investigate the influence of an OOS period in different ways. The per-
spectives indicate that the OOS periods influence sales, but these results are debatable: the rejection
percentages were not aligned, indicating a lack of agreement between the perspectives, or different
power of the tests or unstable perspectives. Thus, for some OOS periods, there is an influence on the
sales. However, these results are dependent on the way it is tested. Furthermore, we further analysed
the average sales before and after an OOS period. The OOS periods for which the means differ is the
difference as likely to be positive as negative.

To answer the research question, a part of the products’ OOS periods influence the sales, but it is
hard to detect which products precisely have an influence since these results depend on how they are
investigated. Therefore, no specific threshold or criteria can be set to mark an OOS period affecting
sales. As a result, reacting to this influence is challenging.
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42 5. Conclusion & Discussion

5.1. Discussion and further research
The thesis advises Coolblue to improve its direct demand model, but also it gives the direction of
thoughts and ideas for research. We share some of our thoughts and ideas for further research.
We improved the mean model by advising a new estimator with the lowest average RRSE over the

estimated sales. However, the goal was to improve the direct demand estimations made by the mean
model. Thus, we assume that the demand estimates are accurate if the sales are estimated accurately.
This assumption can influence the mean model to become a sub-model that accurately estimates sales
instead of demand. A solution could be only to evaluate the new estimators on a set of products that
are a substitute for each other and are all in stock. As a result, there is no substitution, and there are no
lost sales, thus the sales equal the direct demand. However, we do see the limitations of this solution:
it is hard to find such a subset of products since 43.29 % of the time, products are not in stock, as we
saw in Section 2.4.
Moreover, the OOS investigation can also be influenced by its assumptions. We consider multiple

topics. First, we examine the sales to detect an influence of an OOS period. However, we do not
consider any external influences, such as marketing campaigns, seasonality, competitors’ product sta-
tus, etc. All these factors can impact sales, and we do not observe this. Thus, a sudden increase or
decrease can result from an external factor instead of an OOS period. For example, Kucuk (2004) [11]
shows that in-store pricing influences a customer’s decision. Thus, price differences in a product type
can influence the sales. A topic for further research could be to create a model that also considers
external factors when measuring the influence of an OOS period on sales.
Furthermore, we already mentioned it in our results of the OOS investigation. It is debatable that we

investigate the products’ sales data from different viewpoints: We assume that a product’s sales data
follows Poisson distribution and that it fits an 𝐴𝑅𝑀𝐴(1, 1) and 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process. However, these
datasets cannot fit all these distributions/time series, thus a part of the fits has a low quality which results
in invalid results. This problem is also visible in Table 4.5: Slow-moving products have different results
per perspective. The perspective created for slow-moving products has a higher rejection percentage
than the more generalised perspectives. To improve this, per product could be investigated which
perspective best fits, such that the OOS periods are only investigated in optimal circumstances.
Continuing on this topic, we optimised the order of 𝐴𝑅𝑀𝐴(𝑝, 𝑞) and 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(𝑝, 𝑞) processes for

all the products’ sales data. However, these orders can also be chosen per product’s sales data to
optimise the fitted processes. This does take a lot of computation time.
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A
Unpaired two-samples Wilcoxon test

results

The unpaired two-samples Wilcoxon test is used to compare to independent groups of samples [4]. It is
an alternative to the unpaired two-samples t-test. For the t-test the data should be normally distributed.
This is not the case with out data sets, therefore we use the Wilcoxon test.

A.1. Tests for Chapter 2
In tests 1 till 4, we want to know if 𝜇𝑠𝑗𝑡 is significantly higher during Black Friday and Christmas for
every country 𝑗. To test this, the week of Black Friday and the week before Christmas are labelled
as set 𝐶. On the current dataset this set equals: 𝐶 = {2020/12/21 − 2020/12/25, 2021/11/20 −
2021/11/26, 2021/12/20, 2021/12/21}. The set 𝐶′ are all the dates from 2020/12/21 until 2021/12/20
that are not in 𝐶.

Test 1
• 𝐻0 ∶ 𝜇𝑠𝑗,𝑡∈𝐶 = 𝜇𝑠𝑗,𝑡∈𝐶 , ∀ 𝑗
• 𝐻1 ∶ 𝜇𝑠𝑗,𝑡∈𝐶 > 𝜇𝑠𝑗,𝑡∈𝐶 , ∀ 𝑗

Test 2
• 𝐻0 ∶ 𝜇𝑠𝑁𝐿,𝑡∈𝐶 = 𝜇𝑠𝑁𝐿,𝑡∈𝐶′
• 𝐻1 ∶ 𝜇𝑠𝑁𝐿,𝑡∈𝐶 > 𝜇𝑠𝑁𝐿,𝑡∈𝐶′

Test 3
• 𝐻0 ∶ 𝜇𝑠𝐵𝐸,𝑡∈𝐶 = 𝜇𝑠𝐵𝐸,𝑡∈𝐶′
• 𝐻1 ∶ 𝜇𝑠𝐵𝐸,𝑡∈𝐶 > 𝜇𝑠𝐵𝐸,𝑡∈𝐶′

Test 4
• 𝐻0 ∶ 𝜇𝑠𝐺𝐸𝑅,𝑡∈𝐶 = 𝜇𝑠𝐺𝐸𝑅,𝑡∈𝐶′
• 𝐻1 ∶ 𝜇𝑠𝐺𝐸𝑅,𝑡∈𝐶 > 𝜇𝑠𝐺𝐸𝑅,𝑡∈𝐶′

From Table A.1 we see that all tests reject the null hypothesis, except the test for Germany. Thus
the sales are higher during the Black Friday and Christmas days in all countries except Germany.

In tests 5 we want to test if the sales of products for which 𝜇𝑐𝑐𝑖𝑗 ≥ 50% are higher than for products
for which 𝜇𝑐𝑐𝑖𝑗 < 50%.
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46 A. Unpaired two-samples Wilcoxon test results

Results tests
Test P-value
1 5.41e-06
2 1.04e-05
3 <1.44e-06
4 <0.24

Table A.1: Results of the significance tests 1 till 4.

Test 5
• 𝐻0 ∶ {𝑠𝑖𝑗| ∀𝑖, 𝑗, 𝜇𝑐𝑐𝑖𝑗 ≥ 50%} = {𝑠𝑖𝑗| ∀𝑖, 𝑗 ∶ 𝜇𝑐𝑐𝑖𝑗 < 50%}
• 𝐻1 ∶ {𝑠𝑖𝑗| ∀𝑖, 𝑗, 𝜇𝑐𝑐𝑖𝑗 ≥ 50%} > {𝑠𝑖𝑗| ∀𝑖, 𝑗 ∶ 𝜇𝑐𝑐𝑖𝑗 < 50%}

Results tests
Test P-value
5 <2.2e-16

Table A.2: Results of the significance test 5.

The test rejects the null hypothesis. Thus the sales of products for which 𝜇𝑐𝑐𝑖𝑗 ≥ 50% are significantly
higher than products for which 𝜇𝑐𝑐𝑖𝑗 < 50%

A.2. Tests for Chapter 3
In tests 6,7 and 8 we test if the highest 25 % of the RRSEs of every sub-model are significantly different.
Let 𝜖𝑚𝑠 be the RRSEs of all the sales estimations made by sub-model 𝑚𝑠 ∈ {𝑀𝑒𝑎𝑛, 𝐿𝑖𝑛𝑒𝑎𝑟, 𝐸𝑀} and
let 𝑄3(𝜖𝑚𝑠) be all the values above third quartile of all the RRSE values for one model 𝑚𝑠 (highest 25
% of the values).

Test 6
• 𝐻0 ∶ 𝑄3(𝜖𝐸𝑀) = 𝑄3(𝜖𝐿𝑖𝑛𝑒𝑎𝑟)
• 𝐻1 ∶ 𝑄3(𝜖𝐸𝑀) > 𝑄3(𝜖𝐿𝑖𝑛𝑒𝑎𝑟)

Test 7
• 𝐻0 ∶ 𝑄3(𝜖𝑀𝑒𝑎𝑛) = 𝑄3(𝜖𝐿𝑖𝑛𝑒𝑎𝑟)
• 𝐻1 ∶ 𝑄3(𝜖𝑀𝑒𝑎𝑛) > 𝑄3(𝜖𝐿𝑖𝑛𝑒𝑎𝑟)

Test 8
• 𝐻0 ∶ 𝑄3(𝜖𝑀𝑒𝑎𝑛) = 𝑄3(𝜖𝐸𝑀)
• 𝐻1 ∶ 𝑄3(𝜖𝑀𝑒𝑎𝑛) > 𝑄3(𝜖𝐸𝑀)

Results test
Test P-value
6 <2.2e-16
7 <2.2e-16
8 <2.23e-09

Table A.3: Results of the significance tests 6 till 8.

All tests reject the null hypothesises. Thus the highest 25 % RRSEs of every sub-model are signifi-
cantly different.



B
Detailed explanation of the EM model

Author’s note: This chapter is confidential.
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C
Performance of the new estimators for

the mean model per cluster

We want to investigate if the estimators introduced in Section 3.3.1 performed differently on different
types of products. Therefore we cluster the products based on their sales.
The tsclust() function from the dtwclust [20] library is used, it is a library specialised in time series

clustering using Dynamic TimeWarping (DTW) [16]. DTW is a technique to measure similarity between
two time series that do not align exactly in time. As distance input in the function we chose ”dtw_basic”
and as centroid input we chose ”mean”.
The number of clusters, 𝑘, is optimised by evaluating the quality of the cluster. For 5500 randomly

picked products, we compare the results for 𝑘 = 2, ..., 10 using the Silhouette index. It measures the
distance between clusters, ranging between -1 and 1, a high value indicates a good cluster size. Note
that before the clustering, we standardise the data. In Figure C.1 are the Silhouette indexes plotted
against 𝑘. For 𝑘 = 4 the index has an optimum, therefore we will make four clusters.

Figure C.1: The silhouette index for every cluster size.

Let 𝜇𝑁𝐿𝑡 =
1
𝑛𝑁𝐿

∑𝑛𝑁𝐿𝑖=1 𝜇𝑖𝑁𝐿𝑡 with 𝑛𝑁𝐿 = # products in NL, be the average daily sales of the products that

we are investigating. Moreover, let 𝜇𝑗𝑁𝐿𝑡 be the average daily sales of the products in cluster 𝑗 = 1, ..., 4.
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In Figure C.2 is 𝜇𝑗𝑁𝐿𝑡 plotted of every cluster 𝑗. We can see the difference in sales of the clusters. We
are especially interested in the difference in performance between clusters 1 & 2 and clusters 3 & 4,
because the difference are large between those groups of clusters.

Author’s note: This figure is confidential.

Figure C.2: The average daily sales of the four clusters plotted as time series.

After investigating the results of the estimators per cluster, we concluded that dividing the data into
clusters does not influence the performance of the estimators. In every cluster, the same estimator
came out as the best estimator.



D
Derivations of equations

D.1. Test statistic 𝑇𝑆1,𝑇𝑎 for comparing two Poisson distributions
To test Perspective 4.4.4 we create a test statistic using the asymptotic distribution of the MLE: For the
MLE estimator �̂� with real value 𝜆 the following holds [19]:

√𝑇𝐼(�̂�)(�̂� − 𝜆) 𝑑−→ 𝑁(0, 1), (D.1)

with 𝐼(⋅) the Fisher information and 𝑇 the sample size. If we assume the null hypothesis of Perspective
4.4.4: 𝜆1 = 𝜆2, we can write Equation D.1 for 𝜆1 and 𝜆2 and combine them:

�̂�1
𝑑−→ 𝑁(𝜆1, (𝑇𝑎𝐼(�̂�1))−1), �̂�2

𝑑−→ 𝑁(𝜆2, (𝑇𝑎𝐼(�̂�2))−1), (D.2)

(�̂�2 − �̂�1)
𝑑−→ 𝑁(𝜆2 − 𝜆1, (𝑇𝑎𝐼(�̂�1))−1 + (𝑇𝑎𝐼(�̂�2))−1) = 𝑁(0, 2(𝑇𝑎𝐼(�̂�𝑎))−1), (D.3)

√𝑇
𝑎

2 𝐼(�̂�𝑎)(�̂�2 − �̂�1)
𝑑−→ 𝑁(0, 1), (D.4)

with �̂�𝑎 =
�̂�1+�̂�2
2 , since we are trying to approach the values of �̂�1 and �̂�2. The Fisher information for

the Poisson distribution equals 1
𝜆 . Therefore, we test if 𝜆1 = 𝜆2 with test statistic 𝑇𝑆1,𝑇𝑎 = √

𝑇𝑎
2�̂�𝑎
(�̂�2−�̂�1)

and the two-sided Z-score table.

D.2. Distance measure for 𝐴𝑅𝑀𝐴(1, 1)
Let 𝑋𝑡 be an 𝐴𝑅𝑀𝐴(1, 1) process:

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝑍𝑡 + 𝜃𝑍𝑡−1, 𝑍𝑡 ∼ 𝑊𝑁(0, 𝜎2). (D.5)

We can rewrite this into:

𝜙(𝐵)𝑋𝑡 = 𝜃(𝐵)𝑍𝑡 , (D.6)

with,

𝜙(𝑧) = 1 − 𝜙𝑧 𝜃(𝑧) = 1 + 𝜃𝑧. (D.7)
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Then,

𝜋(𝑧) = 𝜙(𝑧)
𝜃(𝑧) =

1 − 𝜙𝑧
1 + 𝜃𝑧 , (D.8)

(1 + 𝜃𝑧)(1 + 𝜋1𝑧 + 𝜋2𝑧2 + ...) = 1 − 𝜙𝑧. (D.9)

This results in:

𝜋𝑖 = −(𝜙 + 𝜃)(−𝜃)𝑖−1, 𝑖 > 0. (D.10)

Using Equation D.10 for the distance metric in Definition 4.5.4 for 𝐴𝑅𝑀𝐴(1, 1) processes 𝑋𝑡 and 𝑌𝑡
gives:

𝑑(𝑋𝑡 , 𝑌𝑡) = √
∞

∑
𝑗=1
(−(𝜙𝑥 + 𝜃𝑥)(−𝜃𝑥)𝑗−1 + (𝜙𝑦 + 𝜃𝑦)(−𝜃𝑦)𝑗−1)2. (D.11)

Then using the geometric series ∑∞𝑗=1 𝑎𝑗 =
𝑎
1−𝑎 for |𝑎| < 1, the distance metric becomes:

𝑑(𝑋𝑡 , 𝑌𝑡) = √
∞

∑
𝑗=1
((𝜙𝑥 + 𝜃𝑥)2(−𝜃𝑥)2𝑗−2 + (𝜙𝑦 + 𝜃𝑦)2(−𝜃𝑦)2𝑗−2 − 2(𝜙𝑥 + 𝜃𝑥)(𝜙𝑦 + 𝜃𝑦)(−𝜃𝑥)𝑗−1(−𝜃𝑦)𝑗−1)

= √(𝜙𝑥 + 𝜃𝑥)
2

𝜃2𝑥
𝜃2𝑥

1 − 𝜃2𝑥
+
(𝜙𝑦 + 𝜃𝑦)2

𝜃2𝑦
𝜃2𝑦

1 − 𝜃2𝑦
− 2

(𝜙𝑥 + 𝜃𝑥)(𝜙𝑦 + 𝜃𝑦)
𝜃𝑥𝜃𝑦

𝜃𝑥𝜃𝑦
1 − 𝜃𝑥𝜃𝑦

= √(𝜙𝑥 + 𝜃𝑥)
2

1 − 𝜃2𝑥
+
(𝜙𝑦 + 𝜃𝑦)2
1 − 𝜃2𝑦

− 2
(𝜙𝑥 + 𝜃𝑥)(𝜙𝑦 + 𝜃𝑦)

1 − 𝜃𝑥𝜃𝑦
.

(D.12)

D.3. Test statistic 𝑇𝑆4,𝑇𝑎 for comparing two 𝐴𝑅𝑀𝐴(1, 1) processes
We will write out some of the elements in Equation 4.19, the test statistic to compare two 𝐴𝑅𝑀𝐴(1, 1)
processes.. Let 𝑋𝑡 and 𝑌𝑡 be two stationary 𝐴𝑅𝑀𝐴(1, 1) processes:

𝑋𝑡 = 𝜙𝑥𝑋𝑡−1 + 𝑍𝑡 + 𝜃𝑥𝑍𝑡−1 𝑍𝑡 ∼ 𝑊𝑁(0, 𝜎2𝑥 ), (D.13)

𝑌𝑡 = 𝜙𝑦𝑌𝑡−1 + 𝑉𝑡 + 𝜃𝑦𝑉𝑡−1 𝑉𝑡 ∼ 𝑊𝑁(0, 𝜎2𝑦). (D.14)

First of all, in Section D.2 we already saw the computation of the 𝜋-values, see Equation D.10. Thus
vectors �̂�𝜋𝜋𝑥 and �̂�𝜋𝜋𝑦 become:

�̂�𝜋𝜋𝑥 = (−�̂�𝑥 − �̂�𝑥 , −�̂�𝑥(−�̂�𝑥 − �̂�𝑥))𝑇 , �̂�𝜋𝜋𝑦 = (−�̂�𝑦 − �̂�𝑦 , −�̂�𝑦(−�̂�𝑦 − �̂�𝑦))𝑇 . (D.15)

Matrices �̂�𝑥(𝑘) and �̂�𝑦(𝑘) are the upper 𝑘 × 𝑘 sub-matrices of the estimated infinite auto-correlation
matrices. For an 𝐴𝑅𝑀𝐴(1, 1) process 𝑘 equals two, thus the matrices become:

�̂�𝑥(2) = (
1 �̂�𝑥(1)
0 1 ) , �̂�𝑦(2) = (

1 �̂�𝑦(1)
0 1 ) . (D.16)
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For an 𝐴𝑅𝑀𝐴(1, 1) process the auto-correlation equals:

𝜌(1) = 𝛾(1)
𝛾(0) =

𝜎2 ∑∞𝑗=0 𝜓𝑗𝜓𝑗+1
𝜎2 ∑∞𝑗=0 𝜓2𝑗

, (D.17)

where 𝜓𝑗-values come from the coefficients of the process:

𝜓(𝑧) = 𝜃(𝑧)
𝜙(𝑧) , (D.18)

for an 𝐴𝑅𝑀𝐴(1, 1) these values equal:

𝜓𝑖 = (𝜙 + 𝜃)𝜓𝑖−1, 𝑖 > 0. (D.19)

Thus, 𝜌(1) becomes:

𝜌(1) = 𝛾(1)
𝛾(0) =

𝜎2 ∑∞𝑗=0 𝜓𝑗𝜓𝑗+1
𝜎2 ∑∞𝑗=0 𝜓2𝑗

=
𝜃 + 𝜙 + (𝜃+𝜙)2𝜙

1−𝜙2

1 + (𝜃+𝜙)2
1−𝜙2

. (D.20)

Finally, the matrix �̂� becomes:

�̂� = (�̂�2𝑥 �̂�−1𝑥 (2) + �̂�2𝑦𝑅−1𝑦 (2)) = �̂�2𝑥 (
1 −�̂�𝑥(1)
0 1 ) + �̂�2𝑦 (

1 −�̂�𝑦(1)
0 1 )

= (�̂�
2
𝑥 + �̂�2𝑦 −�̂�2𝑥 �̂�𝑥(1) − �̂�2𝑦 �̂�𝑦(1)
0 �̂�2𝑥 + �̂�2𝑦 ) ,

(D.21)

and the test statistic equals:

𝑇𝑆4,𝑇𝑎 = 𝑇𝑎(�̂�𝜋𝜋𝑥 − �̂�𝜋𝜋𝑦)𝑇 (
�̂�2𝑥 + �̂�2𝑦 −�̂�2𝑥 �̂�𝑥(1) − �̂�2𝑦 �̂�𝑦(1)
0 �̂�2𝑥 + �̂�2𝑦 )

−1
(�̂�𝜋𝜋𝑥 − �̂�𝜋𝜋𝑦). (D.22)

D.4. Test statistic 𝑇𝑆5,𝑇𝑎 for comparing two 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes
To compute a test statistic for comparing the coefficients of two 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes we use the
asymptotical normality of the coefficients given by Liboschik et al. (2017) [12]. Let 𝑌𝑡 be a stationary
𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process:

𝑋𝑡|ℱ𝑡−1 ∼ 𝑃𝑜𝑖𝑠(𝜆𝑡) 𝜆𝑡 = 𝛼 + 𝜙𝑋𝑡−1 + 𝜃𝜆𝑡−1, (D.23)

with ℱ𝑡 = 𝜎(𝑋𝑖 , 𝑖 ≤ 𝑡) the history of the process 𝑋𝑡 and 𝛼, 𝜙, 𝜃 > 0 constants. For stationarity 𝜙+𝜃 < 1
must hold. Define 𝜔𝜔𝜔 = (𝛼, 𝜙, 𝜃)𝑇 the vector of the parameters. Then, for vector 𝜔𝜔𝜔 the following holds:

√𝑇(�̂�𝜔𝜔 −𝜔𝜔𝜔) 𝑑−→ 𝑁3(0, 𝐺−1𝑇 (�̂�𝜔𝜔)), (D.24)

as 𝑇𝑎 −→ ∞, with 𝑇 the sample size, �̂�𝜔𝜔 the estimator of 𝜔𝜔𝜔 and 𝐺𝑇(⋅) the conditional information matrix.
The conditional information matrix equals:

𝐺𝑇(𝜔𝜔𝜔) =
𝑇

∑
𝑡=1
( 1
𝜆𝑡(𝜔𝜔𝜔)

)(𝜕𝜆𝑡(𝜔
𝜔𝜔)

𝜕𝜔𝜔𝜔 )(𝜕𝜆𝑡(𝜔
𝜔𝜔)

𝜕𝜔𝜔𝜔 )
𝑇
. (D.25)

First we will work out the test statistic, then we will work out matrix 𝐺. Assume we have two stationary
𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes, 𝑋𝑡 and 𝑌𝑡:
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𝑋𝑡|ℱ1,𝑡−1 ∼ 𝑃𝑜𝑖𝑠(𝜆1,𝑡) 𝜆1,𝑡 = 𝛼𝑥 + 𝜙𝑥𝑋𝑡−1 + 𝜃𝑥𝜆1,𝑡−1, 𝜔𝜔𝜔𝑥 = (𝛼𝑥 , 𝜙𝑥 , 𝜃𝑥)𝑇 , (D.26)

𝑌𝑡|ℱ2,𝑡−1 ∼ 𝑃𝑜𝑖𝑠(𝜆2,𝑡) 𝜆2,𝑡 = 𝛼𝑦 + 𝜙𝑦𝑌𝑡−1 + 𝜃𝑦𝜆2,𝑡−1, 𝜔𝜔𝜔𝑦 = (𝛼𝑦 , 𝜙𝑦 , 𝜃𝑦)𝑇 . (D.27)
Then,

√𝑇𝑥(�̂�𝜔𝜔𝑥 −𝜔𝜔𝜔𝑥)
𝑑−→ 𝑁3(0, 𝐺−1𝑇𝑥 (�̂�𝜔𝜔𝑥)), √𝑇𝑦(�̂�𝜔𝜔𝑦 −𝜔𝜔𝜔𝑦)

𝑑−→ 𝑁3(0, 𝐺−1𝑇𝑦 (�̂�𝜔𝜔𝑦)). (D.28)
We assume 𝜔𝜔𝜔𝑥 = 𝜔𝜔𝜔𝑦, using this we can rewrite the asymptotic normalities into:

(�̂�𝜔𝜔𝑥 − �̂�𝜔𝜔𝑦)
𝑑−→ 𝑁3(𝜔𝜔𝜔𝑥 −𝜔𝜔𝜔𝑦 , (𝑇𝑥)−1𝐺−1𝑇𝑥 (�̂�𝜔𝜔𝑥) + (𝑇𝑦)−1𝐺−1𝑇𝑦 (�̂�𝜔𝜔𝑦)) = 𝑁3(0, 2(𝑇𝑎)−1𝐺−1𝑇𝑎 (�̂�𝜔𝜔𝑎)), (D.29)

√𝑇
𝑎𝐺𝑇𝑎(�̂�𝜔𝜔𝑎)

2 (�̂�𝜔𝜔𝑥 − �̂�𝜔𝜔𝑦)
𝑑−→ 𝑁3(0, 𝐼3), (D.30)

with 𝑇𝑎 = 𝑇𝑥 = 𝑇𝑦 and �̂�𝜔𝜔𝑎 = 1/2�̂�𝜔𝜔𝑥 + 1/2�̂�𝜔𝜔𝑦. Let 𝑋 = √
𝑇𝑎𝐺𝑇𝑎 (�̂�𝜔𝜔𝑎)

2 (�̂�𝜔𝜔𝑥 − �̂�𝜔𝜔𝑦), then 𝑋 ∼ 𝑁3(0, 𝐼3) with
𝐼3 a positive definite matrix. We can rewrite this into:

(𝑋 − 0)𝑇𝐼−13 (𝑋 − 0) ∼ 𝜒23 , (D.31)

𝑋𝑇𝑋 = ||𝑋||22 = ||√
𝑇𝑎𝐺𝑇𝑎(�̂�𝜔𝜔𝑎)

2 (�̂�𝜔𝜔𝑥 − �̂�𝜔𝜔𝑦)||

2

2

∼ 𝜒23 . (D.32)

Therefore, we can test if the coefficients of two 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process are the same with test statistic
𝑇𝑆5,𝑇𝑎 and the chi-square distribution table.

𝑇𝑆5,𝑇𝑎 = ||√
𝑇𝑎𝐺𝑇𝑎(�̂�𝜔𝜔𝑎)

2 (�̂�𝜔𝜔𝑥 − �̂�𝜔𝜔𝑦)||

2

2

. (D.33)

Now we are only left to write out matrix 𝐺𝑇(𝜔𝜔𝜔), see Equation D.25. We will start by writing out

(𝜕𝜆𝑡(𝜔
𝜔𝜔)

𝜕𝜔𝜔𝜔 )
𝑇
for 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) process described in Equation D.23 :

(𝜕𝜆𝑡(𝜔
𝜔𝜔)

𝜕𝜔𝜔𝜔 )
𝑇
= (𝜕𝜆𝑡(𝜔

𝜔𝜔)
𝜕𝛼 , 𝜕𝜆𝑡(𝜔

𝜔𝜔)
𝜕𝜙 , 𝜕𝜆𝑡(𝜔

𝜔𝜔)
𝜕𝜃 ) , (D.34)

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼 = 1 + 𝜃𝜕𝜆𝑡−1(𝜔

𝜔𝜔)
𝜕𝛼 , (D.35)

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜙 = 𝑌𝑡−1 + 𝜃

𝜕𝜆𝑡−1(𝜔𝜔𝜔)
𝜕𝜙 , (D.36)

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜃 = 𝜆𝑡−1 + 𝜃

𝜕𝜆𝑡−1(𝜔𝜔𝜔)
𝜕𝜃 . (D.37)

In Equations D.35, D.36 and D.37, there is a recursion of the derivative of 𝜆𝑡(𝜔𝜔𝜔). To solve this
recursion, we use a method provided by Liboschik et al. (2017) [12], which is to initialise 𝜆𝑡 by the
respective marginal expectations. This means:
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𝜆0 = 𝐸(𝑌𝑡) = 𝐸(𝜆𝑡) =
𝛼

1 − 𝜙 − 𝜃 . (D.38)

This results in:

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼 =

𝑡−1

∑
𝑗=0
𝜃𝑗 + 𝜃𝑡

1 − 𝜙 − 𝜃 , (D.39)

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜙 =

𝑡

∑
𝑗=1
𝑌𝑡−𝑗𝜃𝑗−1 +

𝛼𝜃𝑡
(1 − 𝜙 − 𝜃)2 , (D.40)

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜃 =

𝑡

∑
𝑗=1
𝜆𝑡−𝑗𝜃𝑗−1 +

𝛼𝜃𝑡
(1 − 𝜙 − 𝜃)2 , (D.41)

Thus, matrix 𝐺𝑇(𝜔𝜔𝜔) becomes:

𝐺𝑇(𝜔𝜔𝜔) =
𝑇

∑
𝑡=1
( 1
𝜆𝑡(𝜔𝜔𝜔)

)⎛⎜

⎝

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜙

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜃

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜙

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝛼

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜙

𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜙

𝜕𝜆𝑡(𝜔𝜔𝜔)
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⎞
⎟

⎠

, (D.42)

with Equations D.39, D.40 and D.41 for 𝜕𝜆𝑡(𝜔𝜔𝜔)𝜕𝛼 , 𝜕𝜆𝑡(𝜔𝜔𝜔)𝜕𝜙 and 𝜕𝜆𝑡(𝜔𝜔𝜔)
𝜕𝜃 , respectively.





E
Additional figures and tables

A part of the figures and tables are in this chapter to reduce space in the main matter of the thesis.

E.1. Overview of failures of the arima() function
In Table E.1 are the percentages of the products given for which the arima() function failed to fit an
𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑞) model. There are multiple reasons for the failure, we have decided to ignore those. In
Table E.1 we see that the percentage of failures increases with the values of 𝑝 and 𝑞. The higher the
order of the model becomes, the more failures occur.

Percentage of the products for which function arima() failed per p and q

p
q 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0.00 0.13 0.43 0.77 1.20 1.47 1.76 2.23 2.69 3.23 3.31 3.94 4.49 5.04 5.47 6.33
1 0.04 2.80 4.06 3.79 4.07 4.60 4.54 5.21 5.61 6.00 6.97 7.79 8.23 8.94 9.36 9.90
2 0.06 4.69 8.11 8.83 9.23 9.27 9.34 9.50 10.79 11.83 12.77 13.60 14.67 15.19 16.09 16.87
3 0.14 3.33 9.27 14.99 15.13 16.29 16.64 17.64 17.86 19.06 20.86 21.46 23.24 24.69 25.31 24.90
4 0.24 3.57 9.54 17.14 23.17 23.83 24.34 25.40 25.97 27.54 27.81 29.51 30.41 31.86 31.69 33.26
5 0.31 3.61 10.20 18.03 24.47 31.11 31.97 32.79 32.61 33.39 35.51 36.43 37.40 38.41 38.44 38.83
6 0.37 3.59 10.27 18.53 26.07 32.34 37.13 37.66 37.90 39.73 41.26 42.44 41.16 43.73 43.31 44.16
7 0.46 3.76 10.54 18.10 25.96 33.64 38.51 42.46 43.31 44.61 45.47 45.40 46.96 47.43 47.19 47.41
8 0.63 3.73 11.50 18.96 27.46 34.19 39.19 44.19 47.26 48.84 48.60 49.37 50.07 49.67 50.94 51.31
9 0.80 4.27 11.23 20.01 27.60 34.30 40.81 44.93 49.33 51.36 51.91 51.80 52.29 52.46 54.23 54.91
10 0.94 4.10 12.54 20.89 27.69 36.20 41.04 45.90 49.30 52.73 54.94 55.13 56.06 55.54 56.84 57.87
11 1.06 4.46 12.73 21.10 30.13 37.30 42.10 46.44 49.54 53.30 56.14 58.60 58.44 59.54 59.86 60.47
12 1.34 5.13 13.36 22.21 30.34 38.36 43.19 47.10 50.11 53.59 57.49 59.53 61.46 61.99 61.39 62.76
13 1.46 5.09 13.71 23.00 31.50 37.76 42.76 47.89 50.16 54.54 58.00 60.21 62.37 65.16 64.93 66.34
14 1.76 5.26 13.77 23.43 32.10 37.59 43.60 47.73 50.41 54.06 56.94 60.17 62.43 65.30 68.57 67.34
15 1.93 5.76 13.94 23.14 32.54 39.81 43.71 47.43 50.91 54.49 57.74 61.33 63.44 66.51 68.66 71.30

Table E.1: Percentage of the products per 𝑝 and 𝑞 value for which the function arima() failed to fit an 𝐴𝑅𝑀𝐴(𝑝, 𝑞) process due
to different reasons.

E.2. Summaries of all the perspectives
Tables E.2 and E.3 are an overview of all the perspectives with the tests that are used to test them.
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Table E.2: A summary of all the time-independent perspectives: A short description of the perspective with the tests per
alternative hypothesis.
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Table E.3: A summary of all the time-dependent perspectives: A short description of the perspective with the tests per
alternative hypothesis.
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Author’s note: This figure is confidential.

Figure E.1: Two dimensional kernel density estimations of the non-zero values of 𝛽
𝑗
𝑖
𝜎 and 𝛽𝑗+1𝑖

𝜎 for every product team.

Figure E.2: P-values as an heat map of the test if the correlations differ significantly. Some on the product team names are
abbreviated.



F
Time-dependent perspectives for

products with multiple OOS periods

Perspective F.0.1: The value 𝑠𝑡𝑖𝑎 is an outlier

- Perspective E.0.1.1: Difference between �̄�𝑡𝑖𝑎 and 𝑠𝑡𝑖𝑎
For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈(𝒯𝑖 ,𝒯𝑖+1) ∼ 𝐴𝑅𝑀𝐴(1, 1) with fitted values �̄�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡 and
𝜎𝑖 = 𝑠𝑑(𝜖𝑡∈(𝒯𝑖 ,𝒯𝑖+1)). Let 𝑐 be a positive constant.

• 𝐻0 ∶ ∀ 𝑖
𝜖𝑡𝑖𝑎
𝜎𝑖 ∼ 𝑁(0, 1),

• 𝐻1.𝑎 ∶ ∃ 𝑖 |
𝜖𝑡𝑖𝑎
𝜎𝑖 | > 𝑐,

• 𝐻1.𝑏 ∶ ∀ 𝑖 |
𝜖𝑡𝑖𝑎
𝜎𝑖 | > 𝑐.

- Perspective E.0.1.2: Difference between �̂�𝑖𝑡𝑎 and 𝑠𝑖𝑡𝑎
For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈𝒯𝑖 ∼ 𝐴𝑅𝑀𝐴(1, 1) with fitted values �̄�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡 and
𝜖∗𝑡 = �̂�𝑡 − 𝑠𝑡, and 𝜎∗𝑖 = 𝑠𝑑(𝜖𝑡∈(𝒯𝑖 ,𝒯𝑖+1)). Let 𝑐 be a positive constant.

• 𝐻0 ∶ ∀ 𝑖
𝜖∗𝑡𝑖𝑎
𝜎∗𝑖 ∼ 𝑁(0, 1),

• 𝐻1.𝑎 ∶ ∃ 𝑖 |
𝜖∗𝑡𝑖𝑎
𝜎∗𝑖 | > 𝑐,

• 𝐻1.𝑐 ∶ ∀ 𝑖 |
𝜖∗𝑡𝑖𝑎
𝜎∗𝑖 | > 𝑐.

Perspective F.0.2: Difference in coefficients between multiple 𝐴𝑅𝑀𝐴(1, 1) processes

For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈𝒯𝑖 ∼ 𝐴𝑅𝑀𝐴(1, 1).
• 𝐻0 ∶ ∀ 𝑖 ∈ 𝐾, 𝑑((𝑠𝑡)𝑡∈𝒯𝑖 , (𝑠𝑡)𝑡∈𝒯𝑖+1) = 0,
• 𝐻1.𝑎 ∶ ∃ 𝑖, 𝑗 ∈ 𝐾, 𝑑((𝑠𝑡)𝑡∈𝒯𝑖 , (𝑠𝑡)𝑡∈𝒯𝑗) ≠ 0,
• 𝐻1.𝑏 ∶ ∀ 𝑖 ∈ 𝐾, 𝑑((𝑠𝑡)𝑡∈𝒯𝑖 , (𝑠𝑡)𝑡∈𝒯𝑖+1) ≠ 0,
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• 𝐻1.𝑐 ∶ ∀ 𝑖, 𝑗 ∈ 𝐾, 𝑑((𝑠𝑡)𝑡∈𝒯𝑖 , (𝑠𝑡)𝑡∈𝒯𝑗) ≠ 0.
with 𝑑(⋅, ⋅) the distance metric from Definition 4.5.4.

Perspective F.0.3: The value 𝑠𝑡𝑖𝑎 is an outlier

- Perspective E.0.3.1: Difference between �̄�𝑡𝑖𝑎 and 𝑠𝑡𝑖𝑎
For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈(𝒯𝑖 ,𝒯𝑖+1) ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with fitted values �̄�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡
and 𝜎𝑖 = 𝑠𝑑(𝜖𝑡∈(𝒯𝑖 ,𝒯𝑖+1)). Let 𝑐 be a positive constant.

• 𝐻0 ∶ ∀ 𝑖
𝜖𝑡𝑖𝑎
𝜎𝑖 ∼ 𝑁(0, 1),

• 𝐻1.𝑎 ∶ ∃ 𝑖 |
𝜖𝑡𝑖𝑎
𝜎𝑖 | > 𝑐,

• 𝐻1.𝑏 ∶ ∀ 𝑖 |
𝜖𝑡𝑖𝑎
𝜎𝑖 | > 𝑐.

- Perspective E.0.3.2: Difference between �̂�𝑖𝑡𝑎 and 𝑠𝑖𝑡𝑎
For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈𝒯𝑖 ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with fitted values �̄�𝑡, residuals 𝜖𝑡 = �̄�𝑡 − 𝑠𝑡 and
𝜖∗𝑡 = �̂�𝑡 − 𝑠𝑡, and 𝜎∗𝑖 = 𝑠𝑑(𝜖𝑡∈(𝒯𝑖 ,𝒯𝑖+1)). Let 𝑐 be a positive constant.

• 𝐻0 ∶ ∀ 𝑖
𝜖∗𝑡𝑖𝑎
𝜎∗𝑖 ∼ 𝑁(0, 1),

• 𝐻1.𝑎 ∶ ∃ 𝑖 |
𝜖∗𝑡𝑖𝑎
𝜎∗𝑖 | > 𝑐,

• 𝐻1.𝑐 ∶ ∀ 𝑖 |
𝜖∗𝑡𝑖𝑎
𝜎∗𝑖 | > 𝑐.

Perspective F.0.4: Difference in coefficients between multiple 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) processes

For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈𝒯𝑖 ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with 𝜔𝑖 the parameter vector.
• 𝐻0 ∶ ∀ 𝑖 𝜔𝑖 = 𝜔𝑖+1,
• 𝐻1.𝑎 ∶ ∃ 𝑖, 𝑗 𝜔𝑖 ≠ 𝜔𝑗 ,
• 𝐻1.𝑏 ∶ ∀ 𝑖 𝜔𝑖 ≠ 𝜔𝑖+1,
• 𝐻1.𝑐 ∶ ∀ 𝑖, 𝑗 𝜔𝑖 ≠ 𝜔𝑗 .

Perspective F.0.5: Intervention effect

For 𝑖 = 1, ..., 𝑘 + 1 let (𝑠𝑡)𝑡∈{𝒯𝑖 ,𝒯𝑖+1} ∼ 𝐼𝑁𝐺𝐴𝑅𝐶𝐻(1, 1) with an intervention at time 𝑡𝑖𝑎.
• 𝐻0 ∶ ∀ 𝑖 𝜂𝑡𝑖𝑎 = 0,
• 𝐻1.𝑎 ∶ ∃ 𝑖 𝜂𝑡𝑖𝑎 ≠ 0,
• 𝐻1.𝑏 ∶ ∀ 𝑖 𝜂𝑡𝑖𝑎 ≠ 0.
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