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Abstract
Raman spectroscopy is a valuable analytical tool for real-time analyte quantification in fermentation processes. Quantifi-
cation is performed with chemometric models that translate Raman spectra into concentration values, which are typically 
calibrated with process data from multiple comparable fermentations. However, process-specific models underperform for 
minor process variation(s) or different operation modes due to the integration of cross-correlations, resulting in low target 
analyte specificity. Thus, model transferability is poor and labor-intensive (re-)calibration of models is required for related 
processes. In this work, partial least-squares models for glucose, ethanol, and biomass were calibrated with Saccharomyces 
cerevisiae batch fermentation data and subsequently transferred to a fed-batch operation. To enhance model transferability 
without additional process runs, single compound data supplementation was performed. The supplemented models increased 
overall target analyte specificity and demonstrated sufficient prediction accuracy for the fed-batch process (root-mean-square 
errors of prediction (RMSEP) of 3.06 mM, 8.65 mM, and 0.99 g/L for glucose, ethanol, and biomass), while maintaining high 
prediction accuracy for the batch process (RMSEP of 1.71 mM, 4.20 mM, and 0.17 g/L for glucose, ethanol, and biomass). 
This work showcases that process data in combination with single compound spectra is a fast and efficient strategy to apply 
Raman spectroscopy for real-time process monitoring across related processes.

Keywords Raman spectroscopy · Chemometrics · Partial least squares (PLS) · Saccharomyces cerevisiae · Real-time 
monitoring

Introduction

Bioprocess development, optimization, and control are 
dependent on various information sources during fermenta-
tion, ranging from pH and temperature to cell viability and 
product concentration. State-of-the-art bioreactor processes 
already include automated measurements and coupled con-
trol loops for decades, but these are often limited to param-
eters such as temperature, pH, dissolved oxygen (DO), and 
off-gas analysis [1]. For information on metabolite concen-
tration, product quality, or the biomass, labor-intensive man-
ual sampling and analysis is performed by trained process 
technicians. Accurate monitoring of all process parameters 
during fermentation is considered essential to ensure fast 

bioprocess development and stable manufacturing. Although 
off-line analytics are the golden standard for investigating 
complex parameters, manual sampling required for these 
measurements causes a limited and delayed perspective of 
the process. This leads to retrospective decision-making and 
the inability to pro-actively make process adjustments to 
ensure a successful run.

The bioprocessing industry is actively investigating pro-
cess analytical technologies (PAT) that provide detailed 
information on a wide(r) range of critical process and 
product parameters, allowing the transition to data-driven 
bioprocess development and automated decision-making 
[2]. Robust real-time quantification of metabolite, product, 
and biomass concentrations can lead to more efficient bio-
process development and serve as response values required 
for automated bioprocess control. There are many different 
analytical techniques available for abovementioned param-
eters, such as enzyme-based biosensors, impedance-based 
probes, capacitance probes, and optical spectroscopy tools 
[3–5]. Among the available technologies, in-line optical 
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spectroscopy tools that capture molecular vibrations have 
the advantage of being non-invasive, non-destructive and 
provide continuous measurements [6]. Raman spectros-
copy is a suitable choice for aqueous systems as seen in 
bioreactors, due to the low signal interference from water. 
Moreover, Raman spectroscopy captures spectral contribu-
tions of multiple analytes present in a bioreactor in a single 
spectrum, thereby facilitating efficient multiplexed quantifi-
cation. The obtained Raman spectra are correlated to refer-
ence measurements from off-line analytics to translate the 
complex information into quantitative metrics required for 
bioprocess development and control. This is achieved using 
chemometric methods, which focus on studying the rela-
tionship between chemical measurements and the proper-
ties of interest during a process [7]. Chemometric methods 
in combination with Raman spectroscopic data have been 
employed for in-line monitoring and quantification of sub-
strates, products, waste-products, and cell density in a wide 
range of processes, such as ethanol production by yeast and 
antibody production with CHO cell lines [8–10].

Although different chemometric methods are reported 
on, partial least square (PLS) regression is the most used 
technique for calibrating Raman spectroscopy quantification 
models in bioreactor applications [10–12]. Raman spectra 
contain many spectral variables (wavenumbers), while there 
is often only a single response parameter (reference meas-
urement) per analyte [12, 13]. PLS models are considered 
appropriate for such datasets, described as systems contain-
ing high numbers of collinear predictor variables and lim-
ited response values [14]. The method is widely available 
in statistical software packages and allows the development 
of quantification models without needing extensive pro-
cess knowledge. By using Raman spectra obtained during 
fermentation and orthogonal off-line measurements on an 
analyte of interest as input data, the PLS model is calibrated 
by assigning weights to the relevant spectral variables for 
its quantification. The calibrated model can be interpreted 
through the regression coefficients and loadings of the gen-
erated latent variables. However, an appropriate calibration 
dataset should capture data over the full process range, con-
tain process and biological variability, and preferably con-
tain an even sample distribution to prevent possible accuracy 
biases. As the biological processes which we want to moni-
tor are subject to inherent cross-correlations between the 
changes of substrate, product, and biomass concentrations, 
cross-correlations are directly incorporated into the calibra-
tion datasets [15]. This is a challenge for calibrating robust 
PLS models, as it is an implicit modeling technique that 
maximizes covariance between the X (Raman spectra) and Y 
(reference method) data and has no knowledge of the system. 
The strong cross-correlations between the response values 
can cause a PLS model to become non-specific, meaning 
that information from one compound (e.g., substrate) is used 

to quantify a cross-correlated compound (e.g., product or 
biomass). This subsequently leads to non-specificity of mod-
els towards the analyte of interest. This lack of analyte speci-
ficity may be less important in cases where the relationship 
between the cross-correlated parameters does not change 
(e.g., monitoring identical processes) or when the goal is to 
monitor solely process evolution. However, as these models 
are tailored to a specific process, the predictive capability is 
compromised when these models are applied to processes 
where the relation between the parameters changes [16]. 
This can limit the potential of continuous monitoring and 
control in a dynamic research and development environment, 
where aspects such as feeding strategies, mode of operation, 
or inoculation density can still be subject to change. As a 
consequence, upon the need of monitoring related processes, 
the extensive data collection and model calibration proce-
dure has to be repeated. Whereas the collection of in-line 
Raman spectra has been automated with recent technologi-
cal advancements, the collection of high-quality measure-
ments required as orthogonal reference data is material- and 
labor-intensive. Furthermore, high-quality process data is 
not directly available when changing process parameters, 
meaning that Raman spectroscopy monitoring is not avail-
able until the data of several new process runs is collected. 
Next to that, the effects of a changed process parameter on 
the concentration ranges of compounds of interest are not 
always known beforehand. This limits the implementation 
speed and impact of real-time monitoring with Raman spec-
troscopy in dynamic environments, where live process data 
could be essential to early process understanding. Therefore, 
it is desired to efficiently develop robust models, to ensure 
model predictive performance remains unaffected by (minor) 
variations in manufacturing and environmental conditions.

To prevent the adverse effects of highly cross-correlated 
process data on the performance of PLS models across 
related processes, calibration datasets should be adjusted 
accordingly. Alternative approaches for data collection to 
supplement regular process data include target compound 
spiking (i.e., analyte spiking), generating synthetic spec-
tra, and combining these approaches with design of experi-
ments (DoE). For the first approach, spiking, the level of  
cross-correlation in a calibration dataset is evaluated and  
subsequently disrupted by supplementing additional sam-
ples. For example, a cross-correlation between substrate 
consumption and product formation can be disrupted by 
spiking the substrate in the bioreactor to generate condi-
tions that break the cross-correlation observed in the origi- 
nal process. However, spiking compounds during an ongo-
ing at-scale bioprocess is not efficient, as it may impair the 
continuation of the process. Therefore, measurements of 
spiked samples are often acquired in smaller scale reactors 
or shake flasks [15, 17]. The second approach involves the 
generation of synthetic samples outside of the bioreactor 
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process to mimic process conditions. Samples can either be  
completely synthetic by externally preparing single com-
pound mixtures of target compounds in cultivation media, 
or bioreactor samples can be utilized by altering the com-
pound concentrations and performing measurements in 
miniaturized acquisition setups [18]. DoE techniques are  
often employed to design samples with uncorrelated com-
pounds [19]. The combination of bioreactor and synthetic 
spectral data has proven to increase calibration model per- 
formance for several processes [15, 19]. However, depend-
ing on the complexity of the process and the number of 
compounds to be considered, these approaches can still 
lead to material- and labor-intensive calibration dataset 
preparation. As PLS models are typically calibrated to 
quantify only one process compound, it is essential that the 
model identifies and correlates spectral features specific 
to that single compound. Considering this concept, it may 
not be necessary to add data containing variation on other 
compounds, as these are already accounted for by process 
data in the base dataset. By supplementing the dataset with 
spectra of the target compound at varying concentrations, 
spectral features associated with the compound of interest 
are emphasized, which reduces cross-correlations within  
the dataset. Through this supplementation approach, mod-
els may be improved and extended beyond the calibration 
ranges of the original dataset based on process data.

This work investigates the applicability of single com-
pound spectra supplementation as an efficient and simple 
alternative for calibration dataset adjustment to improve 
PLS model performance across related processes. The 
yeast Saccharomyces cerevisiae was used as a model sys-
tem to generate batch process data for the calibration of 
base models for the quantification of glucose, ethanol, 
and biomass. These base models are subsequently trans-
ferred to a fed-batch cultivation where the models have 
to extrapolate and deal with new process conditions. We 
demonstrate how standard quantitative model validation 
is not always sufficient to assess model quality and could 
lead to poor performance when process parameters change. 
After a qualitative assessment of the models, the calibra-
tion datasets were supplemented with single compound 
spectra to improve model transferability by increasing the 
calibration range and target specificity. This work shows 
the impact of qualitative model assessment and how to 
efficiently adjust calibration datasets to improve model 
transferability. This concept of a base model in combina-
tion with data supplementation can be used to extend the 
applicability of Raman spectroscopy models across related 
processes, without the need for collecting new process 
data. Methods like these could allow more efficient and 
flexible model transfer within dynamic process develop-
ment environments.

Materials and methods

Fermentation

The yeast strain Saccharomyces cerevisiae CEN.PK113-
7D was used for all experiments [20]. All cultures were 
grown on synthetic medium containing 5 g/L (NH4)2SO4, 
3 g/L KH2PO4, and 0.5 g/L MgSO4.7H2O adjusted to pH 
6.0 with 2 M KOH [21]. The pH was measured with an 
offline pH probe (Consort, Turnhout, Belgium). Glucose 
was used as carbon source, and an initial concentration 
of 20 g/L was reached by the addition of sterilized 50% 
glucose (J.T. Baker, Philipsburg, NJ) solution (in-house). 
Vitamin solution was sterilized through 0.2-μm syringe fil-
ters (Whatman, Maidstone, UK) and added after steriliza-
tion of the medium. Bioreactor medium was supplemented 
with 0.2 g/L sterile Antifoam-C (BASF, Ludwigshafen, 
Germany) after autoclaving.

Pre-cultures were grown aerobically in 500-mL shake 
flasks with a 100-mL working volume and were incubated 
at 30 °C and 150 rpm in an orbital shaker (Sartorius, Göt-
tingen, Germany). Batch cultures were grown in 2-L 
stirred tank reactors (Applikon, Delft, the Netherlands) 
using a working volume of 1 L. The cultures were aerated 
with 0.5 L/min air while stirred at 800 rpm and maintained 
at a temperature of 30 °C. A pH of 6.0 was maintained 
by the automatic addition of 2 M KOH. Batch cultures 
were inoculated at an initial OD660 of 0.3. The fed-batch 
culture started out as a batch process described above, but 
was spiked with sterile 50% glucose solution when sub-
strate depletion was detected through a decrease in  CO2 
production.  CO2 production was measured with off-gas 
analysis with a ServoPRO 4900 (Servomex, Crowborough, 
UK). The fed-batch culture was fed with 50% glucose solu-
tion three times, thereby extending the process duration 
and increasing the final concentrations of ethanol and 
biomass. An overview of glucose, ethanol, and biomass 
concentrations during the performed batch and fed-batch 
fermentations is provided in Supplementary Figure S5.1.1.

Single compound solutions

Single compound spectra were acquired in the same 2-L 
bioreactor as described in the “Fermentation” section to 
maintain similar acquisition conditions, such as aeration, 
stirring, and temperature. For each analyte, the bioreactor 
was filled with 1 L of synthetic media (as described in 
the “Fermentation” section) with a constant temperature 
of 30 °C, stirring rate of 800 rpm, and aeration with 0.5 
L/min of air. Glucose and ethanol concentration ranges 
were generated by the stepwise addition of 10 mL prepared 
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glucose or ethanol solution. After acquiring Raman spectra 
at a concentration, a 10 mL sample was taken for reference 
measurements by HPLC, and the subsequent concentration 
was achieved by adding the next 10 mL prepared solution. 
The 10 mL additions were prepared beforehand according 
to predefined concentration distributions. The glucose con-
centrations were increased in an exponentially increasing 
manner to generate more low concentration conditions. 
The ethanol concentration was increased with steps of 
20 mM. To generate biomass single compound spectra, 
a batch process was operated until glucose depletion 
occurred, after which the full bioreactor volume was har-
vested. The cell suspension was centrifuged and washed 
twice in fresh synthetic media to remove any remaining 
glucose, ethanol, and other compounds. Cells were resus-
pended in synthetic media to a concentration of 14.3 g/L 
and used to increase cell density in a clean bioreactor by 
adding the suspension in a stepwise manner. Concentra-
tions were measured in the ranges: 0––247 mM for glu-
cose, 0–500 mM for ethanol, and 0–4.9 g/L for biomass 
with HPLC and dry-weight determination (Supplementary 
Table S5.2.1).

Reference data

Biomass

The batch fermentations were sampled every hour, and cell 
growth was determined by optical density at a wavelength 
of 660 nm (OD660) using a Libra S11 spectrophotometer 
(Biochrom, Cambridge, UK). Dry-weight determination 
was performed by loading 10 mL of culture broth on nitro-
cellulose membrane filters (pore size, 0.45 μm; Gelman 
Laboratory, Ann Arbor, MI), drying the filters in a micro-
wave and subsequently weighing the dry biomass (Mettler 
Toledo, Columbus, USA).

HPLC

Sample supernatants of the batch, fed-batch, and single 
compound samples were analyzed for the corresponding 
ethanol and glucose concentrations using an Agilent 1260 
infinity HPLC (Agilent Technologies, Santa Clara, CA). 
A BIO-RAD Aminex HPX-87H (300 × 7.8 mm) cation-
exchange column (Bio-Rad, Hercules, CA) operated at a  
temperature of 60 °C and 0.5 g/L H2SO4 was used as 
eluent with a 0.6 mL/min flow rate. The injection volume  
was 5 μm, and an Agilent 1260 refractive-index and VWD  
detector at 214 nm was used for characterization.

Raman spectroscopy

Signal acquisition

A Raman RXN2 analyzer (Kaiser Optical Systems Inc., 
Ann Arbor, MI) equipped with a 785-nm laser was con-
nected to the bioreactor with a fiber optic cable and bIO-
Optic immersion probe to collect spectra over the range of 
100–3400  cm−1. The immersion probe was mounted through 
the head plate and sterilized with the bioreactor. Several 
acquisition settings were assessed to find the optimal acqui-
sition settings which provided a good signal-to-noise ratio 
while maintaining a high monitoring resolution. An expo-
sure time of 60-s resulted in a detector saturation between 30 
and 58% over the full process range. The Raman spectrom-
eter was set to continuously acquire individual 60-s spectra 
that could be combined into longer measurements after data 
collection. Datasets of 1, 2, 4, 6, 8, and 10 min matching the 
timepoint of reference sampling were generated according 
to a protocol similar to Andre et al. [22]. Initial PLS models 
were calibrated using all different acquisition lengths, and 
their prediction performance was evaluated according to the 
methods described in the “Signal pre-processing and model 
building” section. Prediction performance remained similar 
for acquisitions times above 1 min of acquisition time (Sup-
plementary Figure S5.3.1). Therefore, all subsequent models 
were calibrated with 1-min Raman spectra to maintain a 
high data resolution during process monitoring. The single 
compound Raman spectra were acquired by measuring ten 
individual spectra of 1 min per concentration, and the ten 
spectra were averaged to obtain noise-free spectra.

Signal pre‑processing and model building

Spectral pre-processing and model building was performed  
in MATLAB R2020b (MathWorks, WA), using PLS_Tool-
box (v 9.2, Eigenvector Research, WA). The first step of  
pre-processing was the selecting of the fingerprint region 
ranging from 450 to 1800  cm−1. It was observed that back-
ground fluorescence and scattering effects in the spectral 
dataset increased exponentially towards the lower wave-
number region. Therefore, a basic extended multiplicative 
scatter correction (EMSC) was chosen using a quadratic 
term and the average spectra as the regression reference  
to properly fit and eliminate scattering effects [23]. All 
datasets were mean-centered before the modeling steps. 
The PLS models were calibrated by loading the spectra  
as X-data and the reference measurements per target ana-
lyte as the Y-data (HPLC and biomass). Venetian Blinds 
cross-validation with sevenfold was applied, and the num-
ber of latent variables was selected based on the elbow 
point of the root mean square error of calibration (RMSEC) 
and cross-validation (RMSECV) scores (Supplementary 
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Figures S5.4.1, S5.4.2). The quantitative validation of the 
base and supplemented models was performed by applying 
the models to a validation dataset consisting of an unseen 
batch fermentation and evaluating the performance based on  
the RMSEC, RMSECV, and root mean square error of pre-
diction (RMSEP). To compare the performance of the base 
and supplemented models, relative root mean square errors 
(rRMSE) were used. An rRMSE based on the interquartile 
range (IQR) of the calibration dataset (for rRMSEC and 
rRMSECV) or application dataset (rRMSEP) was chosen  
(Eq. 1) to reduce the influence of skewed data distributions 
when assessing model performance:

where Q1 is the 25th percentile and Q3 is the 75th percen-
tile of the dataset. This approach ensures the relative error 
measure is robust to outliers and focuses on the variability 
within the central portion of the data. The regression coef-
ficient vectors were investigated for qualitative validation of 
the models and compared to single compound spectra of the 
target analyte for each model.

Results and discussion

The impact of combining Raman spectra obtained for 
batch fermentation processes and single compounds on  
model specificity and transferability to a related pro-
cess is determined using a qualitative and quantitative 
assessment approach. Firstly, the standard modelling 
approach is performed to obtain a base model. Here,  
batch fermentation data is used for calibration, and the 
model is validated using an unseen but similar batch 
fermentation dataset. This is included to highlight the 
importance of applying quantitative and qualitative model 
assessment, as well as for understanding the connection 
between model specificity and transferability to the fed- 
batch process. Subsequently, single compound data sup-
plementation is showcased, and the supplemented model  
performance on both unseen batch and fed-batch data is 
presented and discussed.

(1)rRMSE =
RMSE

Q3 − Q1
× 100

Quantitative analysis of base model performance 
for batch data

Partial least square (PLS) models were calibrated using fer-
mentation process data to monitor glucose, ethanol, and bio-
mass concentrations during yeast fermentation with Raman 
spectroscopy. Three individual base models were built 
(glucose, ethanol, and biomass) using Raman spectra and 
reference measurements from three batch cultivations (38 
samples, Supplementary Figure S5.1.1). These base models 
were subsequently validated on data of one unseen batch 
cultivation (13 samples). The resulting model statistics and 
performances are shown in Table 1.

The quantitative analysis for all three models displays 
relative root mean square error of prediction (rRMSEP) val-
ues below 5% for the glucose and ethanol model and 5.38% 
for the biomass model. The RMSEP and RMSECV values 
of each model are close together, suggesting over- or under-
fitting of the calibration data does not occur, and that the 
models perform well on unseen data. This was expected as 
the unseen batch was operated under identical conditions as 
the batches used for calibration. This means that quantitative 
assessment of base model performance according to com-
mon practice in literature indicates that the models are well 
calibrated for quantification during batch fermentation [10].

Base model performance on fed‑batch data

In this section, we simulate a model transfer case by transfer-
ring the validated base models to a yeast fed-batch fermenta-
tion. Through this transfer, we evaluate the effectiveness of 
the base models on a related process containing the same 
process analytes, but with altered inter-compound ratios 
(all three analytes) extended concentration ranges (ethanol, 
biomass). The model performance in shown in the form of 
measured versus predicted concentration plots in Fig. 1A–C, 
along with the statics for quantitative assessment of the base 
model performance on unseen fed-batch process data in 
Fig. 1D.

Bolus feeding of glucose during the fed-batch process 
disrupted the ability of all three base models to accurately 
quantify their target analytes. This is represented by the 
increased RMSEP and rRMSEP values shown in Fig. 1. 
Figure 1A shows that the glucose sample at 120 mM is 

Table 1  Overview of statistics 
for the quantitative assessment 
of the base models for glucose, 
ethanol, and biomass

Parameter Calibration range RMSEC RMSECV RMSEP rRMSEP Latent 
vari-
ables

Glucose 0–120.78 mM 1.67 mM 1.83 mM 1.46 mM 2.07% 2
Ethanol 0–172.86 mM 3.67 mM 4.34 mM 4.36 mM 3.57% 2
Biomass 0.10–3.23 g/L 0.07 g/L 0.08 g/L 0.11 g/L 5.38% 2
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predicted well by the base model, which was taken directly 
after inoculation and therefore considered highly similar to 
the batch data. However, new spectral variations in subse-
quent fed-batch samples caused an underestimation of the 
glucose concentrations. The RMSEP of the glucose model 
is 12 times higher when applied to the fed-batch when com-
pared to the batch fermentation, despite the concentrations 
being in the same range. This highlights the lack of model 
specificity of glucose and the model not being able to deal 
with the new ratios between the compounds. A comparable 
underestimation is seen for ethanol and biomass (Fig. 1B 
and C, respectively), where the base models were forced to 
extrapolate due to the extended concentration ranges. For 
the ethanol and biomass models, the three feeding moments 
are visible as individual groups of samples, where the pre-
dictions move further from the measured values with each 
glucose addition. Next to extrapolation, the decrease in 
prediction performance could result from the exponential 
process and hourly sampling interval of the batch calibra-
tion dataset. This led to an uneven sample distribution and a 
possible accuracy bias towards early-stage batch conditions, 
which contains high glucose, low ethanol, and low biomass 
concentrations, and therefore underestimating ethanol and 
biomass concentrations.

Qualitative assessment of base model

Extrapolation and skewed sample distributions may not be 
the sole reasons for the decreased performance. PLS models 
assume a linear relation between the signal response and 
analyte concentration, and a robust model can sometimes 
extrapolate predictions outside of its calibration range with 
moderate accuracy, assuming that the relationships between 

the variables remain consistent [24]. As no new analytes 
were introduced in the fed-batch, the new spectral varia-
tions and high RMSEPs are most likely related to the differ-
ent proportions between the parameters as a result of bolus 
feeding. Furthermore, the lack of extrapolation capabilities 
indicates that the obtained base models are not specific to 
their target analyte. Calibration with batch data led to cross-
correlations in the base models, supported by the Pearson 
coefficients above 0.980 between all analytes (Supplemen-
tary Figure S5.5.1). A standard quantitative assessment sta-
tistic such as RMSEP does not indicate the specificity of 
each model to its target. The specificity of each base model 
can be visually inspected by comparing the regression coeffi-
cient values for each wavenumber with the single compound 
spectra of the targets [25]. The regression coefficient vector 
(RCV) of each base model is compared to single compound 
spectra of the target analyte in Fig. 2.

The regression coefficient vector of the glucose base 
model (Fig. 2A) displays a positive correlation to known 
spectral markers for glucose, such as the  C2-C1-O1 bending 
at 517  cm−1 and the C-O–H bending at 1125 cm−1 [26]. 
However, negative correlations to ethanol peaks are also 
observed, such as the C–C stretching peak at 879  cm−1 
[27]. It should be noted that negative regression coeffi-
cients do not necessarily represent negative correlations, 
as negative regression coefficients could result from the 
mathematical constraints of PLS when peaks overlap [25].  
Based on single compound spectra of the three main ana-
lytes, the 879  cm−1 peak is mostly free from glucose and 
biomass peaks. Thus, it can be concluded that glucose quan- 
tification is coupled to the 879  cm−1 ethanol peak, causing 
underprediction of glucose concentrations for the higher 
ethanol concentrations during the fed-batch fermentation. 

Fig. 1  Measured (x-axis) versus predicted (y-axis) concentration plots 
of A glucose in mM, B ethanol in mM, and C biomass in g/L of base 
models applied to spectra obtained during fed-batch cultivation. The 
fed-batch data is shown as red diamonds, the base calibration data as 

gray circles, the 1:1 fit as the grey dotted line, and the data fit as the 
red line. The RMSEP and rRMSEP of each model applied to the fed-
batch are shown in the boxes
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The regression coefficient of the ethanol model (Fig. 2B) 
is positively correlated to ethanol characteristic spectral 
markers, such as C–C stretching, C-O stretching, and  CH3 
rocking at 879  cm−1, 1046  cm−1, and 1084  cm−1, respec-
tively [27]. However, it also includes negative correlations 
to known glucose peaks  (C2-C1-O1 bending at 517  cm−1, 
C-O–H bending at 1125  cm−1). Similarly to the glucose base  

model, the correlations to glucose-specific peaks cause the 
ethanol base model to underpredict ethanol concentrations. 
Each time the glucose concentration was increased through 
bolus feeding, the underprediction of ethanol concentration 
increased (Fig. 1B). The regression coefficient of the bio-
mass base model (Fig. 2C) is highly similar in structure to 
the ethanol base model (Fig. 2B), indicating that biomass 

Fig. 2  The regression coefficient vectors (top) of the A glucose in 
mM, B ethanol in mM, and C biomass in g/L base models. Each 
regression vector coefficient is juxtaposed with a concentration range 

of unprocessed single compound spectra of the models target param-
eter (bottom). The heatmap of the concentration range shows a low 
analyte concentration in blue and a high analyte concentration in red
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prediction is based on the decrease of glucose and increase 
of ethanol concentration. This is a result of the high cross- 
correlation between biomass and both ethanol and glucose in  
the calibration dataset, reflected by a R2 of 0.992 and 0.988, 
respectively (Supplementary Figure S5.5.1).

The base models were quantitatively validated by getting 
low RMSEP values when applied to the unseen batch data 
(Table 1). However, qualitative assessment showed that the 
base models are heavily dependent on variations not related 
to the target analyte, but rather reflect batch process evolu-
tion, which is a result of maximizing the covariance between 
X and Y with an implicit modelling technique. Every biologi-
cal process has inherent cross-correlations, and if calibra-
tion datasets are not constructed appropriately, these cross-
correlations are integrated into the analyte quantification 
model. To extend the applicability of process data beyond 
the original process, target specificity needs to be assessed 
before model transfer. The lack of qualitative assessment 
may not only pose a risk when moving to different modes 
of operation, and model performance may also be compro-
mised when there is a deviation in one of the correlated 
analytes while running a similar process. Events such as a 
deviation in inoculation cell density or ethanol carryover 
from the preculture to a bioreactor can all introduce errors, 
as a change in one analyte concentration directly affects the 
prediction of the other two compounds. Although the chal-
lenges shown with the models in this work are of a specific 
case where only exponential growth phase data was used for 
calibration, the issues related to non-specificity in Raman 
model development for upstream bioprocesses have been 
reported on before [15, 18].

Impact of single compound spectra data 
supplementation

The decrease in base model performance when transferred 
from batch data to fed-batch data was due to (1) redistribu-
tion of ratios between the target compounds and (2) extrapo-
lation from calibration ranges. This indicated a lack of target 
analyte specificity in the base model and prediction perfor-
mance on the fed-batch process should increase when this 
limitation is overcome. The standard approach is to run one 
or more fed-batch fermentations and collect new in-line and 
reference data, which can be either used to train a specific 
fed-batch fermentation model or combined with the existing 
batch fermentation data. However, additional fermentation 
runs would require significant time and effort, thus leading 
to a delayed ability to monitor a new but related process. 
As a faster and less labor-intensive alternative, we propose 
model transfer from a batch fermentation to a fed-batch fer-
mentation by including solely single compound spectra to 
the batch fermentation calibration dataset. This means that 
the resulting calibration dataset is a combination of process 
data and single compound spectra. The single compound 
data supplementation aims to extend the calibration ranges 
for the ethanol and biomass models and to improve the spec-
ificity of all three models towards its analytical target. An 
overview of sample distributions of the different datasets is 
shown in Fig. 3.

The supplementary spectra were collected using the same 
60-s acquisition time as during the fermentations. However, 
constant concentration conditions enabled the acquisition  
of multiple spectra per concentration point. For each point,  
ten 60-s measurements were averaged into one spectrum, 
resulting in high-quality smooth spectra with detector sat- 
urations identical to those observed during the fermenta- 
tions. The new glucose calibration range was extended from 
0–120.78 mM to 0–247.08 mM, with an increased sample  

Fig. 3  Sample distributions for A glucose in mM, B ethanol in mM, and C biomass in g/L for each of the datasets: base dataset, validation batch, 
fed-batch, single compounds, and the supplemented dataset



Single compound data supplementation to enhance transferability of fermentation specific…

density in the low concentration range (Fig. 3A). The cali-
bration range of ethanol was extended from 0–172.86 mM  
to 0–500.68 mM to remove the need of extrapolation out- 
side of the calibration data (Fig. 3B). Acquisition of single 
biomass spectra resulted in an extended calibration range  
from 3.23 to 4.81 g/L (Fig. 3C). Due to technical difficul- 
ties, not all fed-batch biomass concentrations were reached. 
Figure 3 shows an increase in sample density in the low 
glucose and high ethanol concentration ranges, but the data 
supplementation did not shift the mean concentrations to 
center of the calibration range. This is important as a mean 
near the sample distribution center indicates that the samples 
are properly distributed to prevent accuracy biases to specific 
concentration regions. The three base models were re-cal- 
ibrated with the supplemented datasets, referred to as sup-
plemented models. The performance of the supplemented 
models was evaluated with the fed-batch dataset, shown in 
Table 2, as well as the unseen batch data (Supplementary  
Table 5.6.1) to show maintained prediction accuracy for the 
original process.

The number of latent variables for the biomass sup-
plemented model increased to 3, based on the RMSEC vs 
RMSECV graphs (Supplementary Figure S5.4.2). The pre-
dictive performance of all supplemented models on the fed-
batch data increased compared to the base models, reflected 
by an 82.72%, 90.05%, and 69.26% rRMSEP decrease for 
glucose, ethanol, and biomass, respectively. The perfor-
mance of the glucose and ethanol supplemented models is 
sufficient for accurate monitoring, as the rRMSEP values 
were close to 5%. The rRMSEP of the biomass supple- 
mented model was 26.98% and only gives an approximation 
of the biomass concentration. The biomass supplemented 
model showed increased values for rRMSEC (from 4.45 to 
7.85%), rRMSECV (from 6.99 to 10.47%), and rRMSEP 
(from 5.38 to 8.32%) when applied to the batch validation 
dataset, meaning that supplementation and improved fed-
batch performance came at the cost of batch prediction accu-
racy and led to a more complex model (from 2 to 3 latent 
variables) (Supplementary Table S5.6.2).

For glucose and ethanol, data supplementation resulted 
in improved performance on the fed-batch cultivation while 
maintaining similar rRMSEC and rRMSECV values and 
performance on the validation batch. The decreased RMSEP, 

improved sample distribution for glucose, and the broader 
calibration range for ethanol successfully extended the appli-
cability of the models, without compromising on the pre-
diction performance on the original batch validation set. In 
addition to quantitative validation of the supplemented mod-
els, a qualitative assessment using regression vectors was 
performed to assess the impact on model specificity toward 
the target analytes (Fig. 4A, C, and E). The corresponding 
measured versus predicted plots of the supplemented models 
applied to the fed-batch data are shown in Fig. 4B, D, and F.

The noise in all regression coefficients was reduced by 
data supplementation with single compound spectra. The 
coefficients of the glucose supplemented model (Fig. 4A) 
show decreased dependency on the major ethanol peak at 
879  cm−1, but the correlation was not completely removed. 
In addition, the glucose supplemented model showed a 
decrease in the magnitude of the negative regression coef-
ficients around 1452  cm−1. Ethanol has a strong peak at 
1455  cm−1 belonging to the asymmetric deformation of  CH3, 
which overlaps with glucose peaks in the same region. The 
glucose supplemented model corrects for this overlap by 
assigning negative regression coefficients to the ethanol peak 
to prevent an additive effect of these peaks and overestima-
tion of the concentration [25]. For the glucose base model, 
these negative regression coefficients were stronger due to 
the cross-correlation to the ethanol peak at 1455  cm−1. Fig-
ure 4C shows that single compound samples had high lev-
erage on the ethanol supplemented model as the regression 
coefficient vector closely represents the ethanol single com-
pound spectra (Fig. 2B). Although specificity of the model 
has increased, the current regression coefficient vector does 
not extensively compensate for overlapping glucose peaks. 
This could lead to possible overestimation of ethanol con-
centrations in situations where the concentrations of both 
ethanol and glucose are high, due to overlapping peaks in the 
1000–1150  cm−1 and 1400–1500  cm−1 regions.

The biomass supplemented model underpredicts the 
actual biomass concentrations, suggesting there still is a 
dependency on non-target related peaks. The single com-
pound spectra for biomass leveraged the model to assign 
more weights to the 1300–1500  cm−1 range where the sin-
gle compound spectra for biomass displayed a baseline 
increase in the fingerprint region located between 1200 and 

Table 2  Overview of statistics for the supplemented models for glucose, ethanol, and biomass when applied to the fed-batch data. The last column 
shows the improvement in rRMSEP of the supplemented model over the base model for the fed-batch data

Model target Calibration range RMSEC RMSECV RMSEP rRMSEP Latent  
variables

rRMSEP 
base model

rRMSEP 
improvement

Glucose 0–247.08 mM 3.05 mM 3.39 mM 3.06 mM 5.25% 2 30.38% 82.72%
Ethanol 0–00.68 mM 8.02 mM 8.14 mM 8.65 mM 6.17% 2 62.06% 90.05%
Biomass 0.10–4.81 g/L 0.18 g/L 0.24 g/L 0.99 g/L 26.98% 3 87.76% 69.26%
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1600  cm−1 for higher biomass concentrations (Fig. 2C). 
However, the regression coefficients are not specific enough 
for predictions independent of glucose and ethanol peaks. 
During the batch fermentations, a non-linear signal extinc-
tion over the fingerprint region was observed, contradictory 
to the ascending baseline for single compound biomass spec-
tra (Fig. 2C). Iversen observed a similar non-uniform signal 
extinction with increasing yeast biomass during fermenta-
tion and explained the effect to be caused by Lorenz-Mie 

scattering from the cell as particles [28]. It is unknown what 
caused the baseline increase in the single compound biomass 
spectra. At this point in time, we cannot fully exclude the 
impact of increased background fluorescence by media com-
pounds which was used as measurement matrix, (decreased) 
cell culture viability, or possible leakage of cell contents. 
The yeast biomass used for these measurements was har-
vested after glucose depletion during batch fermentation 
and then washed and resuspended in clean synthetic media 

Fig. 4  Regression coefficient vectors of the base model (cyan), sup-
plemented model (orange), and the measured versus predicted plots 
of the supplemented models on the fed-batch dataset with the calibra-

tion data (grey) and fed-batch data (red) for glucose (A, B), ethanol 
(C, D), and biomass (E, F)
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devoid of substrates and metabolites. Supernatant analysis 
with HPLC of samples taken during the biomass measure-
ments showed no presence of glucose, ethanol, or other 
metabolites. While the consistent use of synthetic media 
maintained osmotic consistency, the extended depletion of 
substrates over the ~ 2-h harvest and measurement procedure 
may have induced stress in the cells. More measurements of 
single yeast suspensions are required to gain knowledge on 
the spectral contribution of cells.

After evaluating the performance of the base models on 
the fed-batch data, it was observed that the decrease in per-
formance was due to the redistribution of ratios between 
target compounds and the extrapolation beyond the original 
calibration ranges. Since PLS models assume a linear rela-
tionship between compound concentration and signal inten-
sity, moderate prediction accuracy can be expected when the 
model extrapolates. It is therefore crucial that the models 
are first made robust against cross-correlations between pro-
cess compounds before considering any calibration range 
extensions. Had the original base models been calibrated 
using batch process data with higher concentration ranges 
for all compounds, the fed-batch concentrations would have 
fallen within those ranges. However, the batch data would 
still contain strong cross-correlations between compounds, 
and application to the fed-batch where the ratios between 
these compounds change would still be problematic. Thus, 
addressing cross-correlation issues is key to developing 
more robust models, which provide a stronger foundation 
for extending the calibration range.

Qualitative assessment show that PLS models calibrated 
with process specific Raman spectra can be improved in  
terms of target specificity and quantification range by sup-
plementing calibration datasets with single compound spec-
tra. Supplementation with single compound spectra obtained 
in bioreactors offers a simple method for calibration dataset 
improvement without the need for extensive experimental 
designs and sample preparation, while maintaining pro-
cess conditions such as temperature, stirring, and sparging. 
Moreover, increased model specificity results in the ability 
to transfer a base model beyond the original process it was 
trained for. Although the single compound supplementa- 
tion successfully reduced cross-correlations in the calibra-
tion datasets, a next step could be to investigate solutions to  
efficiently generate mixture spectra which could disrupt the  
cross-correlations more efficiently. The observed discrep-
ancy between single biomass spectra and process data and 
the lack of knowledge on clear spectral markers for yeast 
biomass in literature indicate that extensive studies on the 
individual effect of biomass on Raman spectra should be 
performed. More research on the spectral signals of cell den-
sity and viability will aid in developing specific biomass 
quantification models independent of substrate and product 
peaks.

Conclusion

Partial least square (PLS) quantification models for Raman 
spectroscopy-based real-time fermentation monitoring are 
commonly calibrated with process data. However, fermenta- 
tion processes have inherent cross-correlations leading to pro- 
cess specific models which do not transfer to related processes. 
Model calibration with highly cross-correlated data leads to  
prediction co-dependencies, and standardly reported quantita-
tive model validation, using metrics such as (r)RMSEP, does 
not guarantee model quality. Model specificity and spectral 
selectivity is essential for model robustness and should be 
evaluated during model calibration by investigating model 
statistics, such as the regression coefficients. Our approach 
of data supplementation with single compound spectra of  
the quantification target can expand calibration ranges, re- 
distribute a model’s weights, and improve specificity to the 
relevant spectral markers. This extends the applicability of 
existing models to related processes, without the need of col-
lecting new process data. We demonstrated this by adjusting 
base models calibrated on batch fermentation data, allowing 
transfer to a fed-batch mode of operation. This is represented 
by an rRMSEP improvement of 82.72%, 90.05%, and 69.26% 
for glucose, ethanol, and biomass, respectively, leading to the 
absolute RMSEPs of 3.06 mM, 8.65 mM, and 0.99 g/L. Using 
single compound data spectra supplementation offers a fast  
and simple alternative to full model re-calibration, spiked sam-
ples integration, or extensive DoE approaches. Approaches  
like these can speed up the implementation and applica- 
tion of real-time monitoring with Raman spectroscopy and 
thereby aid to early process monitoring and efficient process 
development.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00216- 025- 05768-5.

Acknowledgements We would like to thank Christiaan Mooiman for 
the technical support.

Author contribution Maarten Klaverdijk: Conceptualization; meth-
odology; validation; formal analysis; investigation; writing, original 
draft; writing, review and editing; visualization. Marcel Ottens: Writ-
ing, review and editing; supervision. Marieke Klijn: Conceptualization; 
resources; writing, original draft; writing, review and editing; supervi-
sion; administration; funding acquisition.

Funding This project is funded by the Department of Biotechnology 
at Delft University of Technology.

Declarations 

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 

https://doi.org/10.1007/s00216-025-05768-5


 M. Klaverdijk et al.

provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. O’Mara P, Farrell A, Bones J, Twomey K. Staying alive! Sensors used 
for monitoring cell health in bioreactors. Talanta. 2018;176:130–9. 
https:// doi. org/ 10. 1016/j. talan ta. 2017. 07. 088.

 2. FDA. Guidance for industry: PAT—A framework for innovative 
pharmaceutical development, manufacturing, and quality assurance. 
Rockville, MD: Food and Drug Administration; 2004.

 3. Vasilescu A, Fanjul-Bolado P, Titoiu AM, Porumb R, Epure P. Pro-
gress in electrochemical (bio) sensors for monitoring wine produc-
tion. Chemosensors. 2019;7(4):66. https:// doi. org/ 10. 3390/ chemo 
senso rs704 0066.

 4. Bergin A, Carvell J, Butler M. Applications of bio-capacitance 
to cell culture manufacturing. Biotechnol Adv. 2022;61:108048. 
https:// doi. org/ 10. 1016/j. biote chadv. 2022. 108048.

 5. Wasalathanthri DP, Rehmann MS, Song Y, Gu Y, Mi L, Shao C, 
Chemmalil L, Lee J, Ghose S, Borys MC. Technology outlook for 
real-time quality attribute and process parameter monitoring in 
biopharmaceutical development—a review. Biotechnol Bioeng. 
2020;117(10):3182–98. https:// doi. org/ 10. 1002/ bit. 27461.

 6. Rathore A, Bhambure R, Ghare V. Process analytical technol-
ogy (PAT) for biopharmaceutical products. Anal Bioanal Chem. 
2010;398(1):137–54. https:// doi. org/ 10. 1007/ s00216- 010- 3781-x.

 7. Lourenço N, Lopes J, Almeida C, Sarraguça M, Pinheiro H. Bio-
reactor monitoring with spectroscopy and chemometrics: a review. 
Anal Bioanal Chem. 2012;404(4):1211–37. https:// doi. org/ 10. 1007/ 
s00216- 012- 6073-9.

 8. Hirsch E, Pataki H, Domján J, Farkas A, Vass P, Fehér C, Barta Z, 
Nagy ZK, Marosi GJ, Csontos I. Inline noninvasive Raman monitor-
ing and feedback control of glucose concentration during ethanol 
fermentation. Biotechnol Prog. 2019;35(5):e2848. https:// doi. org/ 
10. 1002/ btpr. 2848.

 9. Webster TA, Hadley BC, Hilliard W, Jaques C, Mason C. Develop-
ment of generic Raman models for a GS-KOTM CHO platform 
process. Biotechnol Prog. 2018;34(3):730–7. https:// doi. org/ 10. 
1002/ btpr. 2633.

 10. Esmonde-White KA, Cuellar M, Lewis IR. The role of Raman spec-
troscopy in biopharmaceuticals from development to manufactur-
ing. Anal Bioanal Chem. 2021;414:1–23. https:// doi. org/ 10. 1007/ 
s00216- 021- 03727-4.

 11. Zavala-Ortiz DA, et al. Comparison of partial least square, artifi-
cial neural network, and support vector regressions for real-time 
monitoring of CHO cell culture processes using in situ near-infrared 
spectroscopy. Biotechnol Bioeng. 2022;119(2):535–49. https:// doi. 
org/ 10. 1002/ bit. 27997.

 12. Rafferty C, Johnson K, O’Mahony J, Burgoyne B, Rea R, Balss KM. 
Analysis of chemometric models applied to Raman spectroscopy 
for monitoring key metabolites of cell culture. Biotechnol Prog. 
2020;36(4):e2977. https:// doi. org/ 10. 1002/ btpr. 2977.

 13. Kozma B, Salgó A, Gergely S. Comparison of multivariate data anal-
ysis techniques to improve glucose concentration prediction in mam-
malian cell cultivations by Raman spectroscopy. J Pharm Biomed 
Anal. 2018;158:269–79. https:// doi. org/ 10. 1016/j. jpba. 2018. 06. 005.

 14. Wold S, Sjöström M, Eriksson L. PLS-regression: a basic tool of 
chemometrics. Chemom Intell Lab Syst. 2001;58(2):109–30. https:// 
doi. org/ 10. 1016/ S0169- 7439(01) 00155-1.

 15. Santos RM, Kessler JM, Salou P, Menezes JC, Peinado A. Monitor-
ing mAb cultivations with in-situ Raman spectroscopy: the influence 
of spectral selectivity on calibration models and industrial use as 
reliable PAT tool. Biotechnol Prog. 2018;34(3):659–70. https:// doi. 
org/ 10. 1002/ btpr. 2635.

 16. André S, Lagresle S, Da Sliva A, Heimendinger P, Hannas Z,  
Calvosa É, Duponchel L. Developing global regression models for 
metabolite concentration prediction regardless of cell line. Bio-
technol Bioeng. 2017;114(11):2550–9. https:// doi. org/ 10. 1002/ bit. 
26368.

 17. Domján J, Fricska A, Madarász L, Gyürkés M, Köte Á, Farkas A, 
Vass P, Fehér C, Horváth B, Könczöl K. Raman-based dynamic 
feeding strategies using real-time glucose concentration monitoring 
system during adalimumab producing CHO cell cultivation. Bio-
technol Prog. 2020;36(6):e3052. https:// doi. org/ 10. 1002/ btpr. 3052.

 18. Romann P, Kolar J, Tobler D, Herwig C, Bielser JM, Villiger TK. 
Advancing Raman model calibration for perfusion bioprocesses 
using spiked harvest libraries. Biotechnol J. 2022;17:2200184. 
https:// doi. org/ 10. 1002/ biot. 20220 0184.

 19. Webster TA, Hadley BC, Dickson M, Hodgkins J, Olin M, Wolnick 
N, Armstrong J, Mason C, Downey B. Automated Raman feed-
back control of multiple supplemental feeds to enable an intensi-
fied high inoculation density fed-batch platform process. Bio-
process Biosyst Eng. 2023;46:1457–70. https:// doi. org/ 10. 1007/ 
s00449- 023- 02912-2.

 20. Nijkamp JF, van den Broek M, Datema E, de Kok S, Bosman L, 
Luttik MA, Daran-Lapujade P, Vongsangnak W, Nielsen J, Heijne 
WH. De novo sequencing, assembly and analysis of the genome of 
the laboratory strain Saccharomyces cerevisiae CEN. PK113–7D, a 
model for modern industrial biotechnology. Microbial Cell Facto-
ries. 2012;11(1):1–17. https:// doi. org/ 10. 1186/ 1475- 2859- 11- 36.

 21. Verduyn C, et al. Effect of benzoic acid on metabolic fluxes in 
yeasts: a continuous-culture study on the regulation of respiration 
and alcoholic fermentation. Yeast. 1992;8(7):501–17. https:// doi. 
org/ 10. 1002/ yea. 32008 0703.

 22. André S, Lagresle S, Hannas Z, Calvosa É, Duponchel L. Mam-
malian cell culture monitoring using in situ spectroscopy: is your 
method really optimised? Biotechnol Prog. 2017;33(2):308–16. 
https:// doi. org/ 10. 1002/ btpr. 2430.

 23. Martyna A, Menżyk A, Damin A, Michalska A, Martra G, Alladio E, 
Zadora G. Improving discrimination of Raman spectra by optimising 
preprocessing strategies on the basis of the ability to refine the 
relationship between variance components. Chemom Intell Lab Syst. 
2020;202:104029. https:// doi. org/ 10. 1016/j. chemo lab. 2020. 104029.

 24. Balabin RM, Smirnov SV. Interpolation and extrapolation problems 
of multivariate regression in analytical chemistry: benchmarking 
the robustness on near-infrared (NIR) spectroscopy data. Analyst. 
2012;137(7):1604–10. https:// doi. org/ 10. 1039/ c2an1 5972d.

 25. Seasholtz MB, Kowalski BR. Qualitative information from multi-
variate calibration models. Appl Spectrosc. 1990;44(8):1337–48. 
https:// doi. org/ 10. 1366/ 00037 02907 89619 478.

 26. Dudek M, Zajac G, Szafraniec E, Wiercigroch E, Tott S, Malek K, 
Kaczor A, Baranska M. Raman optical activity and Raman spec-
troscopy of carbohydrates in solution. Spectrochim Acta Part A Mol 
Biomol Spectrosc. 2019;206:597–612. https:// doi. org/ 10. 1016/j. saa. 
2018. 08. 017.

 27. Boyaci IH, Genis HE, Guven B, Tamer U, Alper N. A novel 
method for quantification of ethanol and methanol in distilled alco-
holic beverages using Raman spectroscopy. J Raman Spectrosc. 
2012;43(8):1171–6. https:// doi. org/ 10. 1002/ jrs. 3159.

 28. Iversen JA, Berg RW, Ahring BK. Quantitative monitoring of yeast 
fermentation using Raman spectroscopy. Anal Bioanal Chem. 
2014;406(20):4911–9. https:// doi. org/ 10. 1007/ s00216- 014- 7897-2.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.talanta.2017.07.088
https://doi.org/10.3390/chemosensors7040066
https://doi.org/10.3390/chemosensors7040066
https://doi.org/10.1016/j.biotechadv.2022.108048
https://doi.org/10.1002/bit.27461
https://doi.org/10.1007/s00216-010-3781-x
https://doi.org/10.1007/s00216-012-6073-9
https://doi.org/10.1007/s00216-012-6073-9
https://doi.org/10.1002/btpr.2848
https://doi.org/10.1002/btpr.2848
https://doi.org/10.1002/btpr.2633
https://doi.org/10.1002/btpr.2633
https://doi.org/10.1007/s00216-021-03727-4
https://doi.org/10.1007/s00216-021-03727-4
https://doi.org/10.1002/bit.27997
https://doi.org/10.1002/bit.27997
https://doi.org/10.1002/btpr.2977
https://doi.org/10.1016/j.jpba.2018.06.005
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1016/S0169-7439(01)00155-1
https://doi.org/10.1002/btpr.2635
https://doi.org/10.1002/btpr.2635
https://doi.org/10.1002/bit.26368
https://doi.org/10.1002/bit.26368
https://doi.org/10.1002/btpr.3052
https://doi.org/10.1002/biot.202200184
https://doi.org/10.1007/s00449-023-02912-2
https://doi.org/10.1007/s00449-023-02912-2
https://doi.org/10.1186/1475-2859-11-36
https://doi.org/10.1002/yea.320080703
https://doi.org/10.1002/yea.320080703
https://doi.org/10.1002/btpr.2430
https://doi.org/10.1016/j.chemolab.2020.104029
https://doi.org/10.1039/c2an15972d
https://doi.org/10.1366/000370290789619478
https://doi.org/10.1016/j.saa.2018.08.017
https://doi.org/10.1016/j.saa.2018.08.017
https://doi.org/10.1002/jrs.3159
https://doi.org/10.1007/s00216-014-7897-2

	Single compound data supplementation to enhance transferability of fermentation specific Raman spectroscopy models
	Abstract
	Introduction
	Materials and methods
	Fermentation
	Single compound solutions
	Reference data
	Biomass
	HPLC

	Raman spectroscopy
	Signal acquisition
	Signal pre-processing and model building


	Results and discussion
	Quantitative analysis of base model performance for batch data
	Base model performance on fed-batch data
	Qualitative assessment of base model
	Impact of single compound spectra data supplementation

	Conclusion
	Acknowledgements 
	References


