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Abstract: In this paper, waveforms for MIMO phased array radar to enhance cross-
range resolution are investigated. The problem of high sidelobes in range created by
the use of Hybrid Codes with a single waveform and spatial coding is considered and
a method to reduce these sidelobes by the use of Golay sequences as spatial codes is
proposed. It is shown that the proposed method achieves the same range performance
as a phased array radar with one waveform, despite creating additional sidelobes in
Doppler.

1. Introduction

A common way to use phased array radars is to transmit the same waveform simultaneously in
all transmit channels. By adjusting the phase shifts in between the different channels, one can
steer the transmit beam into different directions. In the following, this concept is called mono-
color transmission. Multiple Input Multiple Output (MIMO) radar can offer some advantages
over such a traditional radar system. For instance, due to the fact that it can transmit independent
signals in every channel [1], it offers additional degrees of freedom compared to traditional
phased array radar. If the transmit signals would be mutually orthogonal, several improvements
could be achieved, amongst others a virtual array that is bigger than the physical one [2], which
would lead to a better angular resolution. In addition to that, so-called colored transmission
could be accomplished [3, 4]. Applying this technique could help to deal with clutter coming
from specific directions. In [3] it is also argued that colored transmission can improve the clutter
rejection in an airborne application, since the clutter is spreading in Doppler due to a wide
transmit beam. If true orthogonality was achieved, the signals of the different channels would
not form a distinct beam, but rather radiate in all directions uniformly. Such a radar would thus
have the full angular coverage.

As each transmitted signal can be clearly associated with the according transmit direction in
colored transmission, digital beamforming (DBF) can be applied on transmit through signal
processing on receive. Theoretically, one can observe an unlimited number of beams while
keeping the amount of measurements the same as for a single beam [4]. However, the com-
putational effort on the receiver side increases. Since full orthogonality cannot be achieved in
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reality, two alternative techniques have been proposed by Babur et al. in [4] and [5] to realize
a similar performance. These techniques are called Circulating Codes and Hybrid Codes (also
called Delft Codes).

This paper is based on the results of the Master’s thesis results in [6] and introduces a technique
to improve the range resolution for Hybrid Codes for static and slow targets by the use of Golay
sequences and multiple pulses. After this introduction, section 2 gives a short overview of the
Circulating and Hybrid Codes. The new method is introduced in section 3, while simulation
results are shown in section 4. Finally, section 5 gives conclusions and recommendations for
future research, as well as a possible usage scenario.

2. Available Techniques

2.1. Circulating Codes

As described in [4], the concept of Circulating Codes is fairly simple: there is only one wave-
form used, which is shifted in time between the Ntx different transmit channels of the radar
system. The signal in the nth channel can be described as

snT (t) = s(t− (n− 1) ·∆t) , (1)

where s(t) is the basic signal and ∆t is the relative time shift between two channels. When the
time shift is set to ∆t = 1/B, the Circulating Codes achieve the full angular coverage of 180◦

[4]. However, the Circulating Codes do not constantly illuminate the whole 180◦ as is expected
from a real MIMO system with orthogonal signals, but rather cover the whole angular area with
a narrow beam sweep over all angles during one pulse [6]. The total transmit signal sT (t) is
the sum of the signals coming from each channel and depends on the transmit angle, since it
determines the relative phase differences.

Compared to other waveforms for MIMO radar, the Circulating Codes offer much lower range
sidelobes [7]. This makes them very attractive for practical applications. However, the extremely
low sidelobes come with the price of an Ntx times wider peak width than for mono-color trans-
mission, which leads to a decreased range resolution [4].

2.2. Hybrid Codes

To improve the range resolution of the Circulating Codes, a variation of the Circulating Codes
has been proposed, the so-called Hybrid Codes [5]. The idea is to add a spatial code over the
transmit antenna elements to influence the autocorrelation function. All transmit antenna ele-
ments are also used on receive, as in the equations of [5], thus there are N transmit and N

receive antennas whose positions along the x-axis are denoted as ~x.

The basic signal is very similar to the one for the Circulating Codes and in [5] it is written as

snT (t) = cn · s(t− (n− 1) ·∆t) , (2)
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where cn is the spatial code along the antenna elements, usually consisting of combinations
of -1 and +1. Just like the Circulating Codes, the Hybrid Codes do not illuminate the full 180
degrees constantly. But in this case, not only one beam is sweeping over all the angles during
the pulse, but several ones [6]. Naturally, it is also possible to use code elements different to
-1 and +1. Using this idea, it was proposed to apply a so-called mismatched filtering instead
of matched filtering, to be able to decrease the sidelobes around the peak. Since it has been
covered extensively in literature [8, 9], this concept is not further addressed here.

Babur et al. show in [5] that the ambiguity function of the Hybrid Codes around the peak is
defined by the autocorrelation function of the spatial code:

|χθ′=θ0(i)|
2 ∼=


∣∣∣∑N

n=1 cn · ci−n
∣∣∣2 for |i| < N

0 else

, (3)

where θ′ is the hypothesis about the target direction, θ0 is the direction of the digital beam-
forming on receive, i is the index of the ambiguity function and cn is the spatial code along
the antennas. This means that the main “corridor” of width 2N − 1 around the target peak in
the ambiguity function is defined by the spatial code. So, if a code with a good autocorrelation
function is chosen, the resulting peak is as narrow as for mono-color transmission [5].

2.3. Research Problem Formulation

It has been shown in [5] that the Hybrid Codes recover the range resolution of mono-color
transmission. Still, there are a lot of high sidelobes in range, which might cover weak targets
or lead to false detections. The method proposed in section 3 tries to decrease these sidelobes
further. This comes at the price of additional sidelobes in Doppler.

3. Proposed Technique

Here, the use of so-called Golay sequences as spatial codes for the Hybrid Codes is proposed.
The Golay sequences were first introduced by Marcel Golay in 1961 in [10] and have the prop-
erty that the sum of the autocorrelation functions of a pair add up constructively and cancel
out the sidelobes. Taking a Golay pair ai and bi which both have length n, their autocorrelation
functions are given as

Ra,j =

n−j∑
i=1

aiai+j and Rb,j =

n−j∑
i=1

bibi+j , (4)

as stated in [10], where i denotes the index of the codes and j is the lag or shift applied in the
autocorrelation. If these two autocorrelation functions are added up, the result is

Ra,j +Rb,j =

{
0 for j 6= 0

2n for j = 0
. (5)
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Thus, the result of this calculation is 0 for all indexes that are unequal 0. Obviously, this code
pair has excellent properties for a radar application, because in theory the code produces no
sidelobes at all. In this section it is examined, how Golay pairs can be used in combination with
Hybrid Codes to improve the resolution of the resulting peak in range.

3.1. Usage of Hybrid Codes with Golay Pair

The easiest way to make use of Golay pairs in Hybrid Codes, is to transmit two consecutive
pulses, each containing one of the two codes of a Golay pair. A matched filter is applied to the
received reflected signal.

At first, the simple case of static targets is examined. Since the target has no speed, no Doppler
effect can be observed. In addition, there is no phase difference between the two pulses due to
a displacement. When it is assumed that there are no target fluctuations and the received signal
is just a delayed version of the complete transmit signal sT (t), the processing operation can be
described as

y(τ1, τ2) =

∫ ∞
−∞

(sT,1(t) + sT,2(t− td)) · (sT,1(t− τ1) + sT,2(t− td − τ2))∗ dt , (6)

where y is the processed matched filter output of the Golay pair, τ1 and τ2 are the times that the
signals need to travel to the target and back, sT,1(t) and sT,2(t) are the originally transmitted
signals with Golay code 1 and 2 respectively and td is the separation of the pulses in time, here
equivalent to the pulse repetition time (PRT).

Since we assume static targets, the traveling times for the two signals are the same and thus
τ1 = τ2 = τ . Furthermore, for a large td, we can neglect the cross-terms of the processing
operation (see section 3.2). Therefore, the following simplified equation can be obtained:

y(τ) =

∫ ∞
−∞

sT,1(t)s
∗
T,1(t− τ)dt+

∫ ∞
−∞

sT,2(t− td)s∗T,2(t− td − τ)dt , (7)

where τ is the delay of the received signals in time. Since the object is not moving, the resulting
main peak is the same, no matter how much time has passed between the two pulses. Since many
applications involve the observation of moving targets, the influence of their movement on the
measurements needs to be taken into account. Thus, the phase shift due to the displacement of
the target and the according Doppler shift are now added to (7):

y(τ1, τ2) =

∫ ∞
−∞

sT,1(t)s
∗
T,1(t− τ1)e4π(v·t)/λcdt

+ e−j4π(v·td)/λc ·
∫ ∞
−∞

sT,2(t− td)s∗T,2(t− td − τ2)e4π(v·(t−td))/λcdt ,
(8)

where v is the velocity of the target and λc is the carrier wavelength. The phase shift due to the
displacement is represented by the factor exp(−j4π(v·td)/λc). If the velocity of the target is
assumed to be constant during its illumination with the two pulses, the Doppler frequency shift
can be neglected. The use of the proposed technique is possible with a long or a short separation
between the two pulses, which is explained in the next two subsections.
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3.2. Transmitting with Long Separation in Time

There are two different cases of long separation. Firstly, a matched filter can be applied to the
received reflected signal from each pulse individually. This means that the first pulse has to be
received before the second one will be sent and the PRT has to be adjusted accordingly. After-
wards, the results from both matched filter operations are coherently added up to remove the
sidelobes. Since the pulses are handled individually, there will be no cross-terms that produce
extra sidelobes. Secondly, a matched filter can be applied to both signals jointly, with a long
delay time in between. The cross-term influences in (6) produce peaks at a distance of (c · td)/2
from the main peak. Therefore, when it is assumed that the separation in time td is very big
with respect to the length of the transmit pulses, we can neglect these terms because the extra
peaks will be cut off by the matched filter. In both cases, (7) and (8) can be applied. The use
of this technique with moving targets is difficult since the phase shift due to their displacement
influences the signals if the pulses are transmitted at different times.

In the case of moving targets, the effect of the phase shift can be removed, if the velocity of the
target is known. In order to do this, the second pulse must be multiplied by the negated phase
shift according to the assumed velocity. If this is done for an interval of assumed velocities, a
peak indicates the Doppler value, where the effect of the phase shift is reduced to a minimum
[6] and the result is similar to static targets. By summing the matched filter results of several
Hybrid Code pulses with Golay pairs consecutively, the peak in the Doppler domain becomes
more narrow [6]. Although most of the sidelobes in Doppler can be reduced in this way, there are
still ambiguities in Doppler according to the PRT. In addition to that, several targets with very
different velocities will produce sidelobes within each others range-angle ambiguity function.

3.3. Transmitting with Short Separation in Time

Alternatively, the two Golay pulses can also be transmitted right after each other, with no or only
a very short pause in between. In this case, there is still a phase shift, but it can be neglected
if the separation in time is very short with respect to the velocity of the target. Since the time
separation td is very small, the cross-terms have to be taken into account again. From (6),
assuming that τ1 ≈ τ2 ≈ τ , this leads to

y(τ) =

∫ ∞
−∞

(sT,1(t) + sT,2(t− td)) · (sT,1(t− τ) + sT,2(t− td − τ))∗ dt , (9)

where td is the delay between the two pulses. Here, the matched filter is applied to a signal
consisting of the sum of both consecutively transmitted pulses.

4. Simulation Results

In both [4] and [5], linear frequency modulated (LFM) signals showed very good performance
with Circulating and Hybrid Codes. Therefore, they are used as basic signals for the simulations.
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Furthermore, the Barker 7 code is used as spatial code in these simulations, because of its very
good autocorrelation properties. Since Golay pairs do not exist for every length, the simulations
focus on a pair of length 8. Thus, the assumed number of transmit antenna elements is either
7 or 8 with a separation of a half wavelength. Following the example of [4] and [5], only one
receive antenna element is assumed in the simulations, in order to focus on the effect of the DBF
on transmit. The usage of several elements and DBF on receive would lead to an improvement
of the results shown below. The LFM sweep has a bandwidth of 2.55MHz at a center frequency
of 10GHz. Its length is 100μs at a sampling frequency of 1.25GHz. A single point target is
assumed at 0m and 0◦ in azimuth.

4.1. Transmitting Hybrid Codes with Barker 7 Code

The Matlab simulation results for Hybrid Codes with Barker 7 code are shown in Fig. 1. Since a
Barker 7 spatial code is used, only 7 antenna elements are assumed on transmit. The simulation
matches the results from [5]. A narrow peak is visible at 0◦ and 0m, surrounded by a 1km
wide sidelobe plateau with sidelobes between -16.5db and -10.4dB. The highest sidelobes in
angle are at about -12.7dB. By adding weightings over the reference signal and the usage of all
transmit antenna elements on receive, the performance can be improved.
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Figure 1: Simulation results for one Hybrid Codes pulse with Barker 7 code in Matlab. Top: two-
dimensional ambiguity function in range and angle. Bottom left: range cut at angle 0◦. Bottom
right: angle cut at range 0km.

4.2. Transmitting Hybrid Codes with Golay Pair with Long Separation in Time

In this simulation, two Hybrid Code pulses are assumed to be transmitted, each with one Golay
code of a pair as spatial code. The antenna is therefore assumed to have 8 elements. As can
be observed in Fig. 2, a very narrow peak in range is formed at 0◦. The sidelobes in range
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are at about -13.3dB, which is lower than in the case of Hybrid Codes with Barker 7 code. In
addition to that, there is a smaller number of sidelobes in range. It is obvious that the sidelobe
corridor in azimuth has a width of about 0.5 kilometers. This is half as wide as for the Hybrid
Codes with Barker 7 code. The angular pattern is similar, due to the usage of a very similar
antenna configuration. The highest angular sidelobes are at -11.8dB. By adding weightings and
the usage of all elements on receive, the performance can be improved.
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-90 -60 -30 0
Receive angle [°]

30 60 90

R
an

ge
 [k

m
]

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 [d

B
]

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Range [km]
-15 -10 -5 0 5 10 15

A
m

bi
gu

ity
 fu

nc
tio

n 
[d

B
]

-50

-40

-30

-20

-10

0
Ambiguity range cut at receive angle 0°

-90 -45 0
Receive angle [°]

45 90

A
m

bi
gu

ity
 fu

nc
tio

n 
[d

B
]

-50

-40

-30

-20

-10

0
Ambiguity angle cut at distance 0km

-0.5 0 0.5
-20

-10

0

Figure 2: Simulation results for Hybrid Codes pulses with Golay sequences in Matlab using a
long separation and assuming a static target. Top: two-dimensional ambiguity function in range
and angle. Bottom left: range cut at angle 0◦. Bottom right: angle cut at range 0km.

When the object is not static as assumed in Fig. 2, then the phase shift due to the displacement
of the target during the PRT needs to be corrected for (see section 3.2). In this example, we
use the same parameters as above, and the target now has a velocity of 15m/s. For the phase
shift correction it is assumed that the target has a velocity somewhere in between -60m/s and
+60m/s. For a finite number of velocity values, the correction is applied. Fig. 3 shows that two
peaks become visible. One at 15m/s, where the velocity got properly corrected and where the
range cut is the same as for static targets. The other peak at -60m/s is an ambiguity. Obviously,
the presence of multiple targets with different velocities will lead to sidelobes at other velocities.

4.3. Transmitting Hybrid Codes with Golay Pair with Short Separation in Time

When the Golay pair is transmitted with a short time separation, the phase shift due to the
displacement of a moving target has a much smaller impact and is assumed to be negligible.
Thus, this simulation does not involve a moving target. Both an up- and a down-chirp LFM
signal are used in the simulation to avoid high sidelobes due to the cross-terms. The result is
shown in Fig. 4. The highest sidelobes in range are at -13.3dB, which corresponds to the result
in Fig. 2. In addition to that, there are many sidelobes at distances bigger than 2km at slightly

7



Range-Doppler ambiguity function at 0° (zoomed in range)
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Figure 3: Simulation results for Hybrid Codes pulses with Golay sequences in Matlab using a
long separation and assuming a moving target. It shows the range ambiguity cut for the correc-
tion of 161 different assumed velocities between -60m/s and +60m/s.

below -30dB. The angular sidelobes can be found at -12.7dB. By adding weightings and the
usage of all elements on receive, the performance can be slightly improved.
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Figure 4: Simulation results for Hybrid Codes pulse with Golay sequences in Matlab using a
short separation with one LFM up- and one LFM down-chirp. Top: two-dimensional ambiguity
function in range and angle. Bottom left: range cut at angle 0◦. Bottom right: angle cut at range
0km.
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4.4. Comparison with Mono-Color Transmission

The use of Hybrid Codes in combination with a Golay pair delivers the same sidelobe structure
in the range cut of the ambiguity function as the mono-color transmission. This can be clearly
seen in Fig. 5 where different range cuts at 0◦ are being compared. Thus, all additional sidelobes
that were present in the range cut of Hybrid Codes with Barker 7 code have been removed.
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Figure 5: Range-cuts of the ambiguity function at angle 0◦ for different waveforms. (a): Mono-
color transmission with single LFM signal. (b): Hybrid Codes with Barker 7 spatial code. (c):
Hybrid Codes with Golay pair and long separation. (d): Hybrid Code with Golay pair and short
separation.

5. Conclusions

In this paper, we analyzed the Hybrid Codes for MIMO radar and proposed a new method which
combines the Hybrid Codes with Golay pairs to recover the range performance of mono-color
transmission, while still providing similar properties to a MIMO radar with orthogonal signals.

The simulations of the Hybrid Codes in combination with Golay pairs showed a very narrow
peak in range for static targets, as expected from the theory. Two ways of using Golay sequences
have been explained. When a long separation between the Golay pulses is used, small phase
shifts due to the displacement of a moving target have a big influence on the final result. This
effect can be reduced, but only for one velocity at a time. If there are multiple targets with very
different velocities, this method is suboptimal. Apart from that, a very short separation in time
can be used. In that case, the phase shift will be small enough to omit it. The average level of
sidelobes in range is higher than for the individual processing.

A possible use-case is the observation of ship traffic near the coast. Since ships are compara-
tively slow targets, the influence of the phase shift due to the displacement of the targets will
be comparatively small. It is assumed that the ships do not exceed a speed of 50km/h, which is
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equivalent to about 16.67m/s. If the same radar configuration as in the simulations is used, a PRT
of about 450μs leads to an observable velocity range of ±16.67m/s and a maximum observable
distance of 67.5km. If a long separation is used, the sidelobes in range due to the displacement
can be decreased by the use of a sequence of several Golay pairs. Alternatively, a very short or
no separation can be applied, which removes the sidelobes in Doppler, but increases the general
range sidelobe level.

To conclude, the usage of Hybrid Codes with Golay pairs for MIMO radar manages to improve
the range resolution of the Circulating Codes while still providing very low sidelobes compared
to other MIMO radar waveforms. These advantages can be used for slow or static targets. Future
research needs to be conducted on the effects of the additional sidelobes due to multiple targets
with different velocities

Acknowledgment: The authors would like to thank François Le Chevalier for his support dur-
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