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Abstract—Breakthroughs in Deep neural networks (DNNs)
steadily bring new innovations that substantially improve our
daily life. However, DNNs overwhelm our existing computer
architectures because the latter is largely bottlenecked by the data
movement between memory and processing units. As a matter
of fact, in the current von-Neumann architecture, which has
remained unchanged since the beginning, data repeatedly moves
back and forth between the physically-separated processing units
(e.g., CPU, accelerator, etc.) and memory. This, in turn, inevitably
leads to large latency and efficiency losses. In DNNs such a
bottleneck becomes more and more prominent due to the massive
amount of data that must be frequently transferred.

This paper provides a cross-layer overview on how post-
von-Neumann in-memory computing (IMC) architectures can
be realized using three different emerging technologies: Charge-
based ferroelectric transistors for logic-in-memory computations;
memristive devices for unconventional brain-inspired computing;
and ultra-low-power memristors especially suitable for Edge
AI. Various levels of abstraction will be covered starting from
semiconductor device physics to circuit and microarchitecture
levels all the way up to the system level, but special attention
will be put on reliability aspects.

Index Terms—In-memory computing, Ferroelectric FETs,
Memristors, Brain-Inspired Compuing

I. INTRODUCTION

In recent years, the accuracy of Deep Neural Networks

(DNNs) has continuously improved. This is often associated

with making the NN models deeper and more sophisticated,

This work was supported by by the DFG (German Research Foundation)
Priority Program Nano Security, Project MemCrypto (DU 1896/2–1, PO
1220/15–1). The work of H. Amrouch and I. Polian was partially supported
by Advantest as part of the Graduate School “Intelligent Methods for Test
and Reliability” (GS-IMTR) at the University of Stuttgart. We thank Simonn
Thomann for his help in Section III.

which, in turn, increases the already large demand for com-

puting power and memory requirements. As a matter of

fact, overwhelming data-centric workloads driven by DNNs

impose a serious challenge for conventional von-Neumann

architectures. In particular, data transfer between memory and

processing elements largely contributes to the total energy

consumption [1] and rapidly form a fundamental bottleneck.

Traditional Neural Processing Units (NPUs) to accelerate

deep learning accelerators, such as Google TPU, employ

huge systolic arrays of multiply-and-accumulate (MAC) units

(256× 256 = 64K MACs) [2]. In such hardware accelerators,

the data is transferred from external off-chip memory to a large

on-chip SRAM-based memories and then repeatedly fed to the

MAC array. Even through such an implementation minimizes

the need for off-chip communications, which indeed helps in

reducing the total energy, on-chip SRAM-based memories are

power hungry and their access time is significantly larger than

the processing time that MAC units requires to perform com-

putations. Furthermore, the massive number of multiplication

operations simultaneously performed within the systolic MAC

array leads to excessive on-chip power densities due to the

significant amount of power that is consumed within a small

confined area. The latter quickly leads to elevated temperatures

that form a thermal bottleneck for the entire NPU chip as it

has been recently demonstrated [3].

Because the underlying core principle of von-Neumann

architectures separates processing units from memory storage,

data must be frequently moved back and forth, resulting in

the so-called “memory wall”. To overcome this challenge

and significantly improve the efficiency, beyond von-Neumann
architectures, in which computations are executed inside the

memory itself, are being heavily researched by both academia

and industry. The demand for such novel architectures be-978-1-6654-2614-5/21/$31.00 ©2021 IEEE
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comes even more prominent when it comes to data-centric

workloads like those in DNNs.

To realize beyond von-Neumann architectures, recent works

demonstrated how a Boolean logic function (e.g., XNOR,

NAND, etc.) could be implemented using both conven-

tional SRAM memories [4] as well as emerging Non-volatile

memory (NVMs) such as resistive random access memory

(ReRAM), phase change memory (PCM) and spin trans-

fer torque magnetoresistive random access memory (STT-

MRAM) [5], and recently FeFET [6]. In addition, NVM-based

crossbar arrays are one excellent candidate for in-memory
computing (IMC) due to its profound energy efficiency, stem-

ming from analog computing [7], [8] when performing matrix

multiplications, which are the core of any DNN accelerator.

The remainder of the paper is organized as follows. The

next section provides the necessary background on IMC and its

enabling technologies. Section III focuses on the ferroelectric

FET (FeFET) technology. Section IV highlights the usage

of emerging devices for brain-inspired computing. Section

V shows how IMC can lead to ultra-low-power processing.

Section VI concludes the paper.

II. ARCHITECTURE CLASSIFICATION AND BASICS OF

IN-MEMORY COMPUTING

A. In-Memory computing architecture classification

In-memory computing (IMC), also known as “computing-

in-memory” (CIM), is a paradigm in which the computation is

performed within the memory core where the data resides [9].

This capability enables in-memory computing to achieve a

higher energy-efficiency over the conventional von-Neumann

paradigm by avoiding the costly data movements between

processing and storage units in von-Neumann systems. In-

memory computing can be realized using different emerging

memristive technologies such as Resistive Random Access

Memory (RRAM), Phase Changing Memory (PCM) and Mag-

netic RAM (MRAM) as well as conventional memory tech-

nologies such as SRAM, DRAM and Ferroelectric FETs [10],

[11]. In-memory computing using emerging memrisitve de-

vices benefits from their non-volatile nature and their prac-

tically zero leakage compared to their conventional memory

technology counterparts.
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Fig. 1. Memory core for IMC architectures and its classification

Irrespective of the memory technology used, a memory core

consists of memory array and peripheral circuits. Any in-

memory computing block that implements a logic or arithmetic

operation in memory core produces the computing result either

within the memory array itself or within the periphery. Thus,

based on the location where the result of the computation is

generated, CIM architectures can be classified into two main

categories, namely IMC Array (CIM-A) and CIM Periphery

(CIM-P). Figure 1 shows the CIM classes in a memory core

where labels 1 and 2 indicate CIM-A and CIM-P classes,

respectively.

1) CIM-A (Array-oriented architecture): In this architec-

ture, the computing result is produced within the array [12]

(noted as position 1 in Figure 1). Typical examples of such ar-

chitectures that use memristive logic designs include MAGIC

and imply [13], [14]. These architectures can be further

subdivided into two groups: (1) basic, where only changes

inside the memory array are required to do the computation,

and (2) hybrid, where, in addition to major changes in the

memory array, minimal to medium changes are required in

the peripheral circuit.

2) CIM-P (Periphery-oriented architecture): In this archi-

tecture, the computing result is produced within the peripheral

circuitry [12] (noted as position 2 in Figure 1). Similar to

array-oriented architectures, periphery-oriented architectures

can be further classified into (1) basic, where only changes

inside the peripheral is required and (2) hybrid architectures,

where the majority of the changes take place in the periph-

eral circuit and minimal to medium changes in the memory

array. Typical examples of such architectures involve logical

operations and vector-matrix multiplications [15]–[17]

B. IMC technologies

A resistance-based computational memory device can be

modulated between a low resistance state (LRS) and a high

resistance state (HRS) (or among multiple resistance states) by

an appropriate electric stimulus. The programmed resistance

states are non-volatile. For implementing the IMC applica-

tions, the representative computational memory devices, such

as ReRAM, PCM and STT-MRAM, are typically constructed

in a crossbar array and require a selection transistor device

in series (as demonstrated in Figure 2) for the sake of the

elimination of sneak path currents during writing and reading

operations [18].

A resistive random access memory (ReRAM) consists

of one or multiple metal-oxide layers sandwiched between

top electrode (TE) and bottom electrode (BE). The resis-

tive switching process typically involves either the construc-

tion/disruption of conductive filaments, or the modulation

of carrier transport barrier at the electrode/switching layer

interface induced by ion migration. These two switching

mechanisms, called filamentary or interfacial switching, re-

spectively, are shown in insets of Figure 2(a). In filamentary

switching devices [19], [20], a one-time application of stronger

electric field strength upon device operation is required for

the initial formation process of the conducting filament, i.e.



electroforming process. A compliance current is necessary

to confine the current flows through the local path in LRS.

For this reason, there is a substantial interest in the usage

of interfacial switching devices [21] [22] for avoiding the

electroforming step altogether. Their further advantage is their

self-rectifying behavior, which is key for developing selector-

free memristive crossbar arrays (MCAs).

Fig. 2. Schematic illustrations of resistance-based computational memory
units for (a) ReRAM, (b) PCM, (c) STT-RAM and their corresponding
1T1R structures applied in crossbar array. The insets in (a) demonstrate the
distribution of mobil ions (blue dots) with filamentary and interfacial switching
mechanisms in the ReRAM devices.

A phase change memory (PCM) is relying on the re-

versible transition between a highly resistive amorphous struc-

ture and a highly conductive crystalline structure in a phase

change material within sub-nanosecond switching time [23].

The memory effect of PCM devices are driven by the thermal

excitation. As shown in Figure 2(b), an application of a large

current pulse with short duration leads to a near-hemispherical

shape of amorphous phase region, thus exhibiting a HRS state.

Upon an application of a current pulse for a relatively longer

duration, the amorphous region is turned into crystalline, thus

decreasing the resistance to LRS. The phase change materials

Ge2Sb2Te4 (GST) [23] and TiTe2/Sb2Te3 [24] can be used for

constructing PCM devices.

A relatively new alternative promising computational mem-

ory technology is spin transfer torque magnetoresistive
random access memory (STT-MRAM), where a magnetic

tunnel junction structure is composed with a free and a pinned

ferromagnetic metal layers, such as CoFeB alloys [25]. A thin

insulating tunnel oxide barrier, such as MgO, separates these

two layers as shown in Figure 2(c). The magnetic polarization

in the free layer is free to change during the writing operation.

The LRS or HRS of STT-MRAM devices are obtained upon

an application of a current, which can change the free layer to

be parallel or antiparallel with the pinned layer, respectively.

The aforementioned resistance based RAMs can be served

as elements of a computational memory unit for low-cost

in-memory computing applications. The promising alternative

IMC technologies offer prospective gains in programming rate,

energy consumption, device lifetime, and storage capacity, as

well as in-memory storage and computing capabilities.

C. Potentials of IMC

IMC architecture provides efficient computing capability for

a wide range of applications and computation kernels. Some

examples application kernels which can benefit from IMC

include:

• Database query: database query applications can benefit

from IMC by accelerating the bulky bitwise AND/OR

operations with scouting logic [26].

• Deep learning: AI and deep learning application can use

IMC to accelerate the resource intensive vector matrix

multiplication kernels [10].

• Automata processor: in automata processors State Tran-

sition Element (STE) matrix is usually huge, but it can

be easily mapped to an IMC array in order to accelerate

the automata processor.

• Hyperdimensional computing: similar to database query

and deep learning, hyperdimensional computing is full of

bitwise AND operations and vector matrix multiplication

operations which are suitable for IMC acceleration.

In general, the IMC implementations are shown to achieve

significant benefits in energy and area with respect to alter-

nate implementations that do not use IMC. Recent published

work based on circuit simulation and small-scale prototypes

has shown the promise of IMC. Simulation-based work re-

ported that IMC architecture provides two to three orders of

magnitude improvement in energy-delay product and energy

spent per operation compared to conventional von-Neumann

architecture [9], and around 10 fJ per arithmetic operation (1

MAC = 255 arithmetic operations) can be realized [8]. Small-

scale prototype work considering database query applications

demonstrated that IMC architecture can achieve 6 fJ per

logic operation. All these examples highlight the tremendous

potential of IMC over von-Neumann architecture.

III. RELIABLE COMPUTING BEYOND VON-NEUMANN ON

UNRELIABLE FERROELECTRIC TRANSISTORS

Emerging Non-Volatile Memory NVM technologies keep

gaining a significant attraction akin to their promise in build-

ing ultra-efficient Logic-in-Memory (LiM) and In-Memory

Computing (IMC). In this section, we focus on discussing

Ferroelectric Field-Effect Transistor (FeFET) technology as

an example of charge-based memory devices and in the

next section, we discuss Resistive Random-Access Memory

(ReRAM) as an example of memristive devices.

After the discovery of how hafnium-based oxide material

can be converted into a ferroelectric material, FeFET-based

NVM has become fully compatible with the existing fabri-

cation process of conventional CMOS. Several leading semi-

conductor vendors are currently exploring FeFETs for both

memory and neuromorphic applications. For instance, Glob-

alFoundries has shown the successful fabrication of FeFETs

using their commercial 28nm CMOS through a dual mask

patterning [27] and demonstrated 10MiB memory chips using

FeFET-based NVM that feature 1ns read latency. Further, Intel

has recently demonstrated, for the first time, FeFET devices

with an endurance of 1012 cycles [28].

FeFET Basic Operation: Hafnium-based high-k dielectric

is the conventional material to construct the transistor’s gate

in the current CMOS technology. When it is doped with
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zirconium, a ferroelectricity phenomenon is then realized,

which turns an ordinary transistor into an NVM device. The

basic concept to store the information is charge-based in which

the polarized dipoles inside the ferroelectric (FE) layer interact

with the electrical characteristics of the underlying transistor.

When a vertical electric field across the transistor gate is

applied, the FE dipoles switch towards a certain direction (up

or down). As a result, the underlying transistor exhibits either

a low threshold voltage (low VT ) or a high threshold voltage

(high VT ) as illustrated in Fig. 3.

FeFET-based Logic-in-Memory: Through coupling two

FeFET transistors together [30], as presented in Fig. 4, an

XNOR logic function can be realized. When a value X
is stored within the XNOR gate, it is always stored in a

complementary manner. Hence, one of the two FeFETs is in a

low-VT state and the other FeFET is in a high-VT state. When

the FeFET-based XNOR receives an input (Y ), depending

whether a match (i.e., X = Y ) or mismatch (i.e., X �= Y ),

the output voltage either remains high or drops, leading to

either ‘0’ or ‘1’, respectively. To achieve that, the match

line is first charged (i.e., full Vdd) and when X = Y , both

FeFET transistors will be OFF. Therefore, no conducting path

is possible and hence the voltage remains high. In other words,

the XNOR’s output will be logic ‘1’. Only when X �= Y , a

path is formed and the current can go through the FeFET that

is in low-VT state. In other words, the voltage drops and the

XNOR output becomes logic ‘0’. All in all, if and only if

X �= Y , the output is ‘0’. Otherwise, it is ‘1’. Hence, an

LiM-based XNOR Boolean function is realized.

FeFET-based In-Memory Computing: In the majority of

classification tasks, Hamming distance calculation is essen-

tial to compute the similarity between vectors. This holds

even more when it comes to brain-inspired hyperdimensional

computing. In order to accelerate classification, computing

Hamming distance within the memory without accessing it

is vital. To achieve that, several LiM-based XNOR gates (as

explained above) can be connected in series. When a vector is

compared against the stored vector, the output of every LiM

can provide a discharging current or not based on whether a

match or mismatch has occurred. Then, through sensing the

overall output, one can estimate the number of mismatches

and hence the corresponding Hamming distance [29].

IV. EMERGING DEVICES FOR UNCONVENTIONAL

BRAIN-INSPIRED COMPUTING

Within the big data era, the conventional digital comput-

ers based on the von Neumann architecture are becoming

ineffective while dealing with unstructured real-time big data

flow. The human brain is an advanced information storage and

computation platform, which is able to process massive real-

time data in a parallel and adaptive manner with very low

energy consumption of only approx. 10 W. Inspired by the

biological human brain, the unconventional non-von Neumann

computing architectures are attracting significant interest for

handling vast amounts of data efficiently.

The aforementioned beyond-CMOS (complementary-

metal-oxide-semiconductor) computational memory devices

ReRAM, PCM and STT-MRAM are potential solutions

for the implementation of power-efficient unconventional

brain-inspired computing. Such computational memory

devices possess direct interfaces with analog signals and

offer an intrinsically electrically-tunable conductance. They

can update their conductances (artificial synaptic weights)

upon electrical stimuli (neuronal activities) and demonstrate

stable resistive states within itheir dynamic range (analog

behavior). Besides that, they provide a number of other

beneficial functional properties [18], including low power

consumption, reconfigurability, fast switching speed, high

endurance/retention, and excellent scalability (e.g., 3D

integration manufacturing techniques) [31].

For instance, memristive crossbar array with a 2 nm feature

size and a single layer density up to 4.5 Tbit/in2 [32] has been

demonstrated, where the information density is comparable

with the three-dimensional stacking in state-of-the-art 64-layer



and multilevel 3D-NAND flash memory [33]. Last but not

least, the computational memory devices perform massive

parallel computations supported by a dense array of millions of

nanoscale compute units, which improves the time complexity

and is the key to low-cost cognitive computing.

In the past decades, the vast amounts of data and huge

cost of computational power are the main driving factors for

the development of power-efficient brain-inspired computing,

i.e. implementation of deep learning (DL) accelerators and

spiking neural networks (SNN). The DL [32], inspired by bi-

ological neural networks, relies on the computational networks

of connected computational units (plastic synapse) operating

in parallel. By exploiting brain-inspired IMC, the inference

(forward propagation) and training (backward propagation) of

various layers of DNN are adapted to the computational units

organized in a crossbar configuration. The propagation of data

is performed in a single step by sourcing the data to the

crossbar word lines and recording the feedback at each bit

line. The synaptic weights are stored as the conductance state

of computational memory units in crossbar. In contrast to DL

networks, the distinct feature of SNN [34] is the incorpora-

tion of spike timing in the data processing according to the

biologically inspired spike-timing dependent plasticity (STDP)

rule [35]. For example, based on a simplified STDP model,

the auto-associative pattern learning tasks are demonstrated

by exploiting an integrated neuromorphic core with 256*256

PCM synapses fabricated along with Si CMOS neuron circuits

with high learning efficiency [34]. Nevertheless the emerging

technologies are still to realize their full potential in the

promoted DL-based and spike-based learning and inferences.

V. ULTRA-LOW POWER MEMRISTOR BASED IN-MEMORY

COMPUTING FOR EDGE AI

Edge computing (aka edge-AI), is a promising solution

to overcome the latency, data transfer bandwidth barriers of

cloud-based systems by performing local computing (on the

edge-devices) [36]–[38]. The main advantages of edge-AI over

traditional AI applications are energy-efficiency, bandwidth

minimization and real-time response. However, edge-AI has

stringent requirements that must be dealt with in order to har-

ness its full potential; edge-AI hardware must be fast, compact

and extremely energy-efficient, as edge-devices have limited

resource such as battery lifetime or harvested energy [36],

[39], [40].

Memristor-based in-memory computing has the potential to

break the aforementioned challenge (due to the nature of the

architecture and the devices used to realize it) and deliver

energy efficient implementations of hardware edge-AI [9].

Such architecture perform computation on the stored data

and hence, circumventing the costly data movement of von-

Neumann based systems [12].

A. In-memory computing architecture for Edge-AI

As shown in Figure 5(b), an in-memory computing core for

edge applications has two main architectural units: Memory

array commonly known as crossbar array unit, and periphery

unit. The crossbar array stores the data and perform operation.

Similarly, the periphery unit converts input/output data formats

between analog and digital. Moreover, the periphery unit can

also be used to perform basic logical and arithmetic operations.

Crossbar array: Neural networks for edge-AI applications

use multiply and accumulate (MAC) extensively in order

to perform matrix-matrix multiplication (MMM) with large

operand sizes [8]. Such units can be easily mapped into a

memristive-based crossbar array and perform their operation

e.g., MMM in the crossbar unit. Figure 5(a) shows a subset

of MMM operation i.e., vector-matrix multiplication (VMM)

using in-memory computing crossbar array. From Figure 5(a)

it can be observed that the VMM is performed by applying a

voltage vector V = Vj (where j ∈ {1,m}) to a memristor-

crossbar matrix of conductance values G = Gij (where

i ∈ {1, n}, j ∈ {1,m}). At any instance, each column

performs a vector-vector multiplication (VVM) or a MAC

operation, with the output current vector I , in which each

element is Ii = ΣVj · Gij . Note that all n MAC operations

are performed with O(1) time complexity.

Periphery: An in-memory computing core needs some

major modifications to accommodate analog-based computing,

as shown in Figure 5(b). The circuit blocks comprising the

periphery that supports the bitcell array need to be modified

to support in-memory operations. For example, the following

is needed to perform VMM operation in a crossbar: 1) Row-

decoder becomes complex as it involves enabling several rows

in parallel. Also, 1-bit row or word-line drivers are now

replaced by digital-to-analog converters (DACs) that convert

multi-bit VMM operands into an array of analog voltages. 2)

Column periphery circuits performing read operations need to

be replaced by analog-to-digital converters (ADCs). 3) Control

block needs to deal with complex instructions such as handling

intricacies of multi-operand VMM operations.

B. In-memory computing-based neuromorphic design for edge
applications

Neuromoprhic computing is one of the application domains

which can significantly benefit from in-memory computing

architecture. The main reason for this is the fact that the

main operation employed by neuromorphic systems involves

intensive Matrix-Matrix Multiplication (MMM) or Vector-

Matrix Multiplication (VMM). Since both MMM and VMM

Fig. 5. Basic in-memory computing architecture for edge-AI (a) ReRAM
based crossbar operation demo (b) In-memory computing core architecture
i.e., Periphery + crossbar array



kernels can be easily accelerated using in-memory computing

architecture, neuromorphic computing can achieve substantial

improvement in energy-efficiency and alleviate data movement

problems by employing in-memory computing architecture.

However, there are several open questions that need to

be addressed in order to fully harness the potential of in-

memory computing for edge-AI. At circuit level, issues such

as device endurance, high resistance ratio between the off

and on state of the devices, multi-level storage, precision of

analog weight representation must be addressed. Similarly, at

the circuit and architecture levels, various challenges have to

be addressed; examples are high precision programming of

memory elements, complexity of signal conversion circuits,

scalability of the crossbars and their impact on computation

accuracy etc. Moreover, maturity of system- and compiler-

level tools e.g., profiling, simulation and design tools is of

decisive importance.

VI. CONCLUSIONS

Post-von-Neumann in-memory computing architectures are

an important foundation for emerging applications, and they

can maximally benefit from novel devices. We reviewed sev-

eral promising technologies, from ferroelectric transistors to

ultra-low-power memristors, and architectures on their basis.

Reliability turns out to be a central challenge that needs to be

addressed by solutions coordinated across the layers.
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