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Abstract

Large companies suffer from the increasing complexity that exist in their soft-
ware systems. Evolving their software becomes even harder if we consider that a
change in one system can affect several other parts of their software architecture. Es-
pecially banks that need to be always complied with regulations, have to constantly
make changes in their software to reflect these changes. ING is a primary example
that currently tries to find a solution to these problems through the use of model driven
development and more specifically code generation. In particular, they have created a
Domain Specific Language called Maverick to specify the requirements/business logic
and through the usage of code generators to automatically generate their entire code-
base from these Maverick specifications. Code generators as any other software artifact
is not bug free, meaning that testing code generators is of paramount importance. How-
ever, testing code generators is not straightforward as their output is another program
that besides syntactic structure also has behavior. Many formal approaches have been
developed that try to formally prove the correctness of code generators. Nevertheless,
the complexity and scalability issues that these approaches face make them infeasible
in practice. This thesis presents a testing approach that leverages a definitional inter-
preter to test code generators. We evaluate and show the practicability of our approach
using Maverick specifications developed by ING and we conclude that our proposed
method can address many of the issues that formal approaches face.
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Chapter 1

Introduction

Large companies suffer from insurmountable complexity and an astonishing amount of
legacy that exist in their software systems. Evolving the software becomes extremely diffi-
cult since making a change in one of the systems that constitute the software architecture of
a company can affect a lot of other systems that are also part of the architecture.

In addition to that, the strong coupling that exists between the requirements and their
implementation not only prevents the evolution of the software but also makes extremely
hard to distinguish any requirements from the code and trace them in the implementation.
For example, a change in technology would result to reverse engineer these requirements
in the already existing implementation and then re-implement them according to the new
technology being used. As a result, companies, such as banks that constantly need to change
the requirements of their software in order to comply with changes in laws or regulations,
have to face with the same problem, that is, to reverse engineer the requirements in the
implementation.

ING, a large globally operating bank, is one of the companies that suffer from these
problems. In particular, figure 1.11 is an actual representation of a subset of the current
software architecture within ING where it become obvious that a single change (red star)
might affect several other systems (yellow stars).

The aforementioned reasons drive large corporations to search for alternative ways of
managing their codebases [8, 32]. To abstract away this complexity, a promising solution
that currently has attracted much interest in the research community is model driven en-
gineering [17, 18, 31]. In model driven engineering developers focus their efforts not in
developing code but in building models in which they try to capture all the functional re-
quirements of the software that they want to generate. Subsequently, they can use these
models to transform them into new models or code. The process of translating models into
a programming language is called code generation and the software artifact that is devel-
oped to perform this translation is known as code generator. Essentially a code generator
can also been seen as a compiler that translates a source language to a target language.

One way that is widely used nowadays in order to create these models is through the
use of Domain Specific Languages (DSLs). These are small, high-level and expressive

1The image is blurred because of sensitive information
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1. INTRODUCTION

Figure 1.1: Visual representation of a subset of ING’s current Software Architecture

programming languages which usually are tailored to a specific problem domain [51]. These
characteristics enable not only developers, but also domain experts with limited experience
in coding, to express their ideas in a higher level where implementation details are not
important.

However, as with other software development artifacts, code generators are not free
from bugs and, thus, to introduce code generation into production applications, it is essen-
tial to have a high degree of confidence in the code generator’s reliability and correctness.
Therefore, rigorously testing code generators becomes inevitable, especially when they are
used in the development of safety critical software [20].

Nevertheless, validating that a code generator transforms correctly a model into source
code is inherently more complex than validating any other individual software artifact [2].
To illustrate, a code generator’s inputs and outputs are complex objects and not just values or
event sequences as would be in the case of a typical software artifact. In particular, the input
of a code generator is a model expressed in a high level modeling language and its output is
another program which purpose is to preserve the behavior of the model. This means that
the output is a complex data structure that has also behavior and, hence, verifying that the
output program is the correct one is non-trivial as one has to show that the output preserves
the semantics of the model.

Many researchers have focused on developing techniques in order to improve code gen-
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erators’ reliability and robustness. According to Sturmer et al. [48] these techniques fall
apart in two categories:

• constructive procedures, which are related with the adoption of standards and guide-
lines

• analytical procedures, which are related with verifying and testing the code generator

The procedures that fall into the first category assure that a tool has been developed
according to a systematic development process [48] such as the Software Process Improve-
ment and Capability determination (SPiCE). Although, these procedures can guarantee that
a code generator has been developed with correctness in mind, do not assure that a code
generator is bug free or that any existing errors could be detected. Therefore, testing or
verifying the code generator still is of paramount importance.

A strong approach that researchers have extensively studied in recent years, and falls
in the second category, is to formally prove the correctness of compilers/code generators
[6, 10, 23]. However, the industrial benefit of these verification approaches could not yet
be shown, this can mainly be attributed to the following two reasons. Firstly, code gen-
erators are usually being developed in an environment that constantly faces technological
innovation which, subsequently, leads to new versions of the modelling language and code
generator to appear in shorter cycles [49]. The aforementioned reason along with the in-
creasing complexity that theoretical approaches address, make them infeasible in practice.

Another approach that falls into the second category, as described by Sturmer et. al.
[48], is testing. Despite that testing can only provide partial guarantees about the reliability
of a software artifact, still remains one of the most used techniques in practice. A widely
used approach in testing is unit testing [3]. Typically, in unit testing a test designer specifies
test cases for which he checks whether the system under test (SUT) behaves correct. For
each run of these text cases the outputs produced by the SUT are compared against the
expected outputs that also have been specified by the test designer. Having said that, when
applying this software testing method to a code generator the output is source code, so
ultimately the comparison between the expected output and the actual output would be a
string comparison, meaning that unit testing in that case focuses mostly in the syntactic
aspects of the generated code. Thus, unit testing constitutes a weak approach for testing a
code generator.

Consequently, several studies stressed the importance of testing generated code’s be-
havior when it is executed rather than its concrete syntax [9, 37, 42, 47, 49]. The technique
that is used in these approaches is back to back testing [52]. In this type of testing, two or
more software systems, that are supposed to respond with similar results, are tested with the
same input stimuli and the produced results are then compared to each other to confirm the
correctness of the systems under test. For the case of code generators this means that the
translation carried out by a code generator is tested through the execution of both the source
model and generated code. More specifically, both executions produce traces from which
the traces of the source model play the role of the expected output against which the traces
of the generated code are tested.
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1. INTRODUCTION

For modeling languages and more specifically DSLs a description of their execution
semantics is needed in place of the expected output to make feasible the testing approach
that we just described above. Several approaches exist that try to formally describe the
semantics of such languages [43, 35, 15] in order to avoid their ambiguity. Another way
to produce a concise definition of the semantics of a programming language is through the
usage of a definitional interpreter [38]. One of the advantages of this approach is that the
interpreter can be executed which allows to observe the behavior of specific programs of
the defined language.

In this thesis, we exploit the idea of definitional interpreters and we present a method
that focuses on testing code generators from a semantic perspective. In a similar way with
the previous studies we use a back-to-back technique established on execution semantics.
However, in contrast to these studies we use a definitional interpreter to provide us with a
specification of the expected output. Subsequently, we check if the execution of the gen-
erated code conforms to this output. This lead us to the main question of this thesis: how
could Code Generators be tested against a definitional interpreter?

Moreover, we develop and evaluate this method within ING. In particular, ING is a
prime example who are researching whether model driven engineering is the solution to
their problems. They have created a Domain Specific Language (DSL), called Maverick,
based on state machines in order to capture the requirements and formalize their business
logic in these DSL specifications. Using this model their aim is to automatically generate
their entire codebase. The method described in this work entails the development of a def-
initional interpreter for the Maverick DSL. Furthermore, we automatically generate input
stimuli, capable of traversing different paths of a state machine, for both the generated code
and the definitional interpreter. Finally, the traces produced by the execution of the gener-
ated code are tested for conformance to the traces produced by the definitional interpreter.

This thesis continues as follows: in Chapter 2 we give an overview of the approach
followed along with necessary details for the DSL and code generators developed by ING.
We then dive into the development of the definitional interpreter in Chapter 3. In Chapter
4, we first give some background information on the problem of generating test sequences
from state machines and then we continue with the description of the approach followed in
this work to tackle this problem. Afterwards, in Chapter 5 we evaluate our method using
experimental state machines that were created by ING. In Chapter 6 we discuss related
work and how this differs from our approach. Finally, Chapter 7 concludes this thesis, and
suggests some ideas for future work.
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Chapter 2

Testing approach

This chapter gives a high-level description of the testing approach that we implemented.
We describe the different steps our testing approach entails in order to reliably test ING’s
code generator. Subsequently, we present ING’s research project regarding code generators
and introduce the DSL named Maverick that they have created for that purpose. This will
enable the reader to better understand the next chapters.

2.1 Conformance testing of Code Generators

According to Stürmer et al. a code generator can be assumed that is working correctly if
invalid test models are rejected and the code that is generated by the translation of the valid
test models preserves the behavior of the model [49]. Our approach focuses on testing the
second characteristic: whether the generated code conforms to the model’s behavior.

To realize that, we employ a similar approach to back-to-back testing based on the
execution semantics. The back-to-back testing entails the execution of both generated code
and model, and then the comparison of their execution traces. Therefore, this approach
requires the generation of test cases that will steer the testing of the code generator and will
be identical for both the generated code and model. Testing can only give us confidence
that a software artifact is correct up to a certain degree, and that is related to the specified
test cases. Hence, it is important to generate test cases that will make the testing of the code
generator as reliable as possible. In the case examined in this work, the model is represented
as a state machine so our test cases should be, at least, capable of traversing the different
paths of a state machine.

In addition, to perform conformance testing of the code generator we need a specifi-
cation of the behavior captured in the model. We accomplish that by using a definitional
interpreter which gives us a concise definition of the model’s execution semantics.

Finally, the execution traces of the generated code should be checked for their correct-
ness against the traces produced by the definitional interpreter. However, as Stürmer et
al. argue, the traditional notion of correctness cannot be applied to code generators and
therefore "a notion of sufficiently similar behavior" should be used instead [49]. Thus, our
approach is based on this notion.
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2. TESTING APPROACH

Figure 2.1: Conformance testing of the Code Generator

In more detail, as depicted in 2.1, our approach consists of the following four main
parts:

• Test Case Generation: The first step of our approach is to generate test cases, capa-
ble of exploring different paths of our state machine model, that then will be given
us an input to both the Definition Interpreter and generated code. In particular, the
procedure followed in this work can be divided in the following two components:

– Abstract test case generation: The aim of this process is to create paths on the
model level. More specifically, as state machines are extended graphs, graph
traversal algorithms can be used to find different paths that exist in a state ma-
chine. Therefore, we first convert our model to a directed graph and then we
use a modified version of breadth-first search algorithm to find all the paths, up
to a certain length, that exist between the origin node and a final node of a state
machine. Then these paths can be used as abstract test cases which are only
missing the parameters that actually make the traversal of the identified paths
feasible.

– Concrete test case generation: In this step, the previous generated paths, which
basically contain only the names of the transitions that need to be taken, get
concretized by generating actual values in a pseudo-random way which fulfill
the conditions that enable the transition from one state to another.

• Definitional Interpreter: We use it in order to define the execution semantics of the
modeling language. Consequently, the interpreter can be executed, after taking the
test cases generated before as input, which enable us to observe the behavior of
specific programs of the modeling language. This is simply an interpreter written
using the Scala programming language which has well understood semantics and
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2.2. ING’s Code Generator

provides us with good support to represent programs and define evaluation functions
over them.

• Execution of the generated Scala backend: In order to execute the generated code,
the test cases generated in the first step, are converted to rest API calls which perform
requests to the generated Scala backend.

• Comparison of the different traces: Lastly, the traces produced by the execution of
the generated code are tested for conformance to the traces resulted from the defini-
tional interpreter. The comparison takes into account the notion of sufficiently similar
behavior for time related properties of the model and generated code.

2.2 ING’s Code Generator

Currently, ING is researching whether model-driven engineering, and more specifically
code generation, is the solution to the increasing complexity of their software systems.
Their main goal is to automate the software development process by capturing all the re-
quirements in a model and from this model to generate software that complies to all these
requirements.

In other words, their vision, as depicted in figure 2.2 is a software development process
where a domain expert writes the specifications that encapsulate all the requirements of the
software to be build, then a code generator takes as an input these specifications to gener-
ate the software artifacts that are required for the software to be deployed. Subsequently,
after the deployment of these artifacts, users can give their feedback based on their experi-
ence. If the user experience feedback is negative, their goal is to only have to re-write the
specifications and then generate the software again.

Moreover, this process indicates their purpose of not touching at all the generated code,
which makes the testing of the code generator of even bigger importance.

Currently, as can be seen in figure 2.3 they generate multiple things from those specifi-
cations. More specifically, they generate visualizations for the business but also visualiza-
tions that can be used for developers and documentation which includes experiments with
generating documents in English and Dutch. In addition, they generate a Scala backend ap-
plication with a RESTful application program interface (API) in order to implement these
specifications. That API is documented in Swagger which is typically a documentation of
an API that can potentially be leveraged to generate compliance. Finally, they generate mo-
bile apps and a portal that consume these APIs. Our main focus in this thesis is to test the
Scala backend application which implements the model and constitutes the basis of other
generated artifacts.

2.2.1 Maverick DSL

In this section we dive into the domain specific language named Maverick that ING have
created to capture their business logic. Maverick is a declarative language therefore in
this work we will be talking about Maverick specifications and not Maverick programs.

7



2. TESTING APPROACH

Figure 2.2: Software development process with Code Generators

Figure 2.3: ING’s Code Generators

Maverick specifications use a transition system (also known as state machines) as their
core. A maverick specification can be seen as a definition of a state machine that describes
its states and transitions with some extra annotations such as invariants.

An example of how a Maverick specification is formatted is given in listing 2.1, this
listing illustrates a simple account specification. A maverick specification starts with a
module definition which can be used by other files in order to import this specification. Then
we can import other specifications files or a library file which contains function declarations.

After the import statements, the definition of the specification follows. A specification
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2.2. ING’s Code Generator

consists of the following five main blocks:

• fields: Contains the definition of one or more fields. It should be noted here that a
field can also be a reference to another specification.

• identity: This block defines a mandatory identity of at least one of the fields. The
identity is globally unique and identifies an instance of a specification.

• invariants: Includes the definition of predicates that must always hold during the exe-
cution of a transition. They are named and can refer to other fields of the specification.

• lifeCycle: The life cycle defines which transitions can be taken within this state ma-
chine and the source, destination states after a specific transition is taken. This can
be seen in the listing 2.1 in the form of: source –> destination: transitionName. In
addition the keyword initial is a "magic" source state, an instance of a specification
that does not exist yet comes from this state. Finally, the keyword final denotes that a
state is final which means that the state machine is finalized and no more transitions
can be taken.

• transitions: The transitions block defines the transitions that can be made. Each tran-
sition consists of a pre and post conditions block. These two blocks contain condi-
tions that act as guards for the transition. They can contain configuration parameters
which are optional and/or parameters that are mandatory. Finally, the notation <vari-
able> ’(prime) that can be seen inside a post-conditions block refers to the "new" (i.e.
post-transition) expression value.

Figure 2.4: Graphical representation of a simple account specification
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2. TESTING APPROACH

Each one of the aforementioned blocks can contain a block that starts with @doc, this
block is optional and only serves the purpose of documenting or explaining something that
is not clear.

Moreover, there are a number of types defined within this language, some of them are
tailored specifically for the banking domain. Such examples are, the Money type (eg. line
14 in listing 2.1) which is a monetary value like EUR 50 or USD 22.35 and IBAN type (eg.
line 13 in listing 2.1) which is a well formed IBAN such as NL03INGB0672370210.

An important aspect of the Maverick DSL is the capability of interaction between spec-
ifications. As mentioned before a transition of a specification contains pre and post con-
ditions that act as guards for this transition. All these are boolean expressions that define
a predicate that should hold in order for the transition to be successful. However, these
expressions can also refer to other specification instances and read their properties. Ac-
cordingly, these properties can be used as if they were local fields and hence be part of any
expression.

An explicit exception of what we mentioned above is the case of invoking transitions
in external specifications (an example of a specification with external invocations can be
seen in line 56, 57 of the listing 2.2). More particularly, if you have a reference to another
specification instance, you can invoke a transition on it. In the case of an external invocation,
in order for the primary transition to be valid the secondary transition must first succeed.
This means that any implementation of a Maverick specification must enforce that those
transitions will be taken atomically in respect of the perspective of the outside world. In
other words, if a secondary transition fails then the whole initial transition fails too.

As can be seen in the graphical representation of a simple specification account (figure
2.4), it might be possible to have a current state which would allow two or more transitions
to be taken. This possibility for multiple destination states or non-determinism is resolved
by the fact that Maverick is actor-based. This means that any transition or change is initi-
ated by an actor which basically enables non-deterministic options between transitions to
become deterministic in practice.

Finally, to get a better understanding of the semantics of the Maverick language consider
the following sequence of events, expressed in natural language and related with the account
and transaction specifications listed in 2.1, 2.2 (for the reader’s convenience we give trivial
names to IBAN values):

1. Open account with IBAN A1 and initial deposit of 60 EUR.

2. Open account with IBAN A2 and initial deposit of 100 EUR.

3. Start a transaction of 20 EUR from account A1 to account A2.

4. Book the transaction that started before.

This sequence of events will trigger a sequence of transitions in the Maverick specifi-
cations. For each transition, first the pre-conditions will be checked and if they hold then
the transition will be executed. Following, the post-conditions (along with the invariants)
will be checked using the post-transition expression values explained before (eg. line 48 in

10



2.2. ING’s Code Generator

listing 2.1). If they also hold then the transition is successful. In the given events all the con-
ditions hold, thus subsequently a sequence of state changes will be triggered in Maverick
instances as following:

1. The first event triggers the transition openAccount in listing 2.1 (line 43). This tran-
sition creates a specification instance of an account. This instance of an account will
be in state opened with account number equal to A1 and a balance of 60 EUR.

2. The second event also triggers the transition openAccount in listing 2.1 (line 43). This
transition creates another specification instance of an account which will be in state
opened with account number equal to A2 and a balance of 100 EUR.

3. The transition start in listing 2.2 (line 33) is triggered. A specification instance of a
transaction is created that will be in state validate with the amount being transferred
from account A1 to A2 equal to 20 EUR.

4. The transition book (listing 2.2 line 53) is triggered and this signals two external
transitions. First a withdraw transition takes place for the account A1 and then a
deposit transition occurs for the account A2. After the successful execution of these
transitions the instance of a transaction is now in its final state, namely booked. In
addition, the account A1 is in state opened with a balance of 40 EUR and account A2
is in state opened with a balance of 120 EUR.

1 module simple_transaction.Account;
2

3 import simple_transaction.Library;
4

5 @doc {
6 This is a specification of an Account.
7 The account can be opened, blocked and closed and can never be

overdrawn.
8 }
9

10 specification {
11

12 fields {
13 accountNumber: IBAN;
14 balance: Money;
15 }
16

17 identity {
18 accountNumber;
19 }
20

21 invariants {
22 @doc {
23 The balance should always be positive.

11
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24 }
25 positiveBalance {
26 this.balance >= EUR 0.00;
27 }
28 }
29

30 lifeCycle {
31 initial -> opened: openAccount[minimalDeposit = EUR 50.00];
32 opened -> opened: withdraw, deposit, interest;
33 opened -> blocked: block;
34 blocked -> opened: unblock;
35 opened -> closed: close;
36 final closed;
37 }
38

39 transitions {
40 @doc {
41 Opening an account needs a valid IBAN and some initial

deposit.
42 }
43 openAccount[minimalDeposit: Money = EUR 0.00](initialDeposit: Money) {
44 preconditions {
45 initialDeposit >= minimalDeposit;
46 }
47 postconditions {
48 balance’ == initialDeposit;
49 }
50 }
51

52 @doc {
53 Withdraw money from the account.
54 }
55 withdraw(amount: Money) {
56 preconditions {
57 amount > EUR 0.00;
58

59 balance - amount >= EUR 0.00;
60 }
61 postconditions {
62 balance’ == this.balance - amount;
63 }
64 }
65

66 @doc {
67 Deposit money on the account.
68 }
69 deposit(amount: Money) {
70 preconditions {
71 amount > EUR 0.00;
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72 }
73 postconditions {
74 balance’ == this.balance + amount;
75 }
76 }
77

78 @doc {
79 Block the account for withdrawals and deposits.
80 }
81 block() {}
82

83 @doc {
84 Unblock the account so that withdrawals and deposits can

happen again.
85 }
86

87 unblock() {}
88

89 @doc {
90 Close the account.
91 }
92 close() {
93 preconditions {
94 this.balance == EUR 0.00;
95 }
96 }
97

98 interest[maxInterest: Percentage = 10%](currentInterest: Percentage) {
99 preconditions {

100 currentInterest <= maxInterest;
101 }
102 postconditions {
103 this.balance’ == this.balance + singleInterest(this.balance,

currentInterest);
104 }
105 }
106 }
107 }

Listing 2.1: An example of a Maverick specification that specifies a simple account

1 module simple_transaction.Transaction;
2

3 import simple_transaction.Library;
4 import simple_transaction.Account;
5

6 @doc{
7 This is a specification of a Transaction.Via a transaction money
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can be transferred between two accounts.
8 }
9 specification {

10 fields {
11 id: Integer;
12 amount: Money;
13 from: Account;
14 to: Account;
15 }
16

17 identity {
18 id;
19 }
20

21 lifeCycle {
22 initial -> validated: start;
23 validated -> booked: book;
24 validated -> failed: fail;
25 final booked;
26 final failed;
27 }
28

29 transitions {
30 @doc {
31 Start a new transaction.
32 }
33 start(amount: Money, from: Account, to: Account) {
34 preconditions {
35 @doc{ From account must exist.}
36 from is initialized;
37 @doc{ To account must exist.}
38 to is initialized;
39 to != from;
40 amount > EUR 0.00;
41 amount.currency == EUR;
42 }
43 postconditions {
44 amount’ == amount;
45 from’ == from;
46 to’ == to;
47 }
48 }
49

50 @doc{
51 Book the transaction.
52 }
53 book() {
54 preconditions {}
55 postconditions {
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56 this.from.withdraw(this.amount);
57 this.to.deposit(this.amount);
58 }
59 }
60 ...
61 }
62 }

Listing 2.2: An example of Maverick specification that specifies a transaction between two
accounts

15





Chapter 3

Definitional Interpreter

This chapter introduces the main building block of our approach, the definitional interpreter
of the Maverick DSL. We first give some information on approaches that focus on defining
the behavior of a language and subsequently we explain what a definitional interpreter is
and what is necessary to know in order to understand the implementation of a definitional
interpreter. Finally, we dive into the implementation details of the definitional interpreter
developed for the Maverick DSL.

3.1 Background

Before start developing an implementation of a language, either this is a compiler or an
interpreter, it is first essential to know how a language is supposed to behave. Although the
syntax of a language give us information on how we can write a particular language and
which particular symbols we can use for that purpose, it give us limited information about
the meaning of these symbols and how they are supposed to work.

The meaning of the programming languages, often referred as semantics, can be di-
vided in to two main levels: static semantics which refers to restrictions of the set of valid
programs and dynamic semantics which refers to the run-time behavior of a program. In
this section, we are specifically interested in the execution semantics of a programming
language and which approaches exist that help us to grasp a better understanding of their
behavior.

One way that is often used to describe the behavior of a general purpose programming
language or a DSL is through the usage of natural languages (eg. English). However, using
a natural language to describe the meaning of a programming language leads to problems
related with the ambiguity and imprecision of the natural languages.

Therefore, beyond natural languages, formal approaches emerged to aid understanding
of programming languages. These formal approaches usually use some sort of mathemat-
ical formalism which makes their notation more precise and less ambiguous than natural
languages.The three main approaches to formal semantics, which also other approaches use
or combine in some way, are the following:

• Operational semantics[35]: The definition of a language is given by reduction rules
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which describe how a program from its initial state is transformed step by step into
its terminal state.

• Denotational semantics[43]: The definition of a language is given by mapping a pro-
gram into a mathematical object that is considered to represent its semantics.

• Axiomatic semantics[15]: The definition of a language is given by using assertions
that can be proven in some logic, and which describe what conclusions can be made
for the input or output of a program. Basically, this approach specifies what can be
proven about a program.

Another approach for defining the semantics of a language is to write a definitional
interpreter for a given language. A definitional interpreter, as introduced by Reynolds [38],
is a program which aims not only to give an implementation of a specific language but to
provide a definition of this language, even if this means that will have to sacrifice efficiency
for the clarity and simplicity of the definition. Reynolds showed that it is possible to write
a definitional interpreter that defines the semantics of the object language by relying on the
semantics of the host language. In other words, a definitional interpreter is an interpreter
written for one programming language using another one with the goal to implicitly specify
the execution semantics of the object language.

Moreover, Reynolds with his seminal study made a synopsis of earlier work where
he classified definitional interpreters based on two key characteristics: whether the defining
language is a higher-order language and whether the defining language uses a call-by-value
or call-by-name evaluation strategy. A programming language is higher-order if functions
in that language can occur as values, as arguments in other functions or as results of other
functions. In a language that use a call-by-value evaluation strategy expressions that are
passed as arguments to functions are first evaluated and then the value is bound to the
corresponding variable in the function. On the contrary, in a call-by-name evaluation an
expression passed as an argument in a function is substituted in the function’s body and
only evaluated when they used in the function, in case an argument does not appear in the
function body then it never gets evaluated and if it appears several times then each time is
getting evaluated again.

In more detail, a definitional interpreter operates over an abstract syntax tree (AST) rep-
resentation of an object program and calculate its value. An AST is a structural representa-
tion of the source code in tree form which is based on the syntax of a certain programming
language, but without caring about irrelevant syntactic details (eg. parenthesis, semicolons
etc).

Definitional interpreters are usually structured as recursive traversals over the aforemen-
tioned AST representation. An AST typically is modelled through the usage of algebraic
data types which basically are inductive data structures that can be recursively defined.
This allows the definition of a match case for each language constructor and subsequently
the recursive invocation of the interpreter on the sub-trees of this constructor. Therefore,
functional languages such as Scala, which provide us with algebraic data types and pattern
matching constructs, are particularly appropriate for implementing a definitional interpreter.
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In that way, a definitional interpreter defines the behavior of the language constructs
and enables us by its execution to observe the behavior of specific programs of the defined
language. In addition to that, by using as defining language one that has well-understood
semantics we can produce a clear definition of the semantics of the object language which
is easy to understand for any developer that knows the defining language.

3.2 Implementation of the Definitional Interpreter

As a first step of our testing approach, we implemented a definitional interpreter for the
Maverick DSL. The intention behind the definitional interpreter is to act as a simulator
for the Maverick specifications and provide us with an expected output. Our implementa-
tion was done in Scala and we made heavy use of algebraic data types (e.g. case classes)
and pattern matching. Furthermore, throughout our implementation we tried to maintain
a functional programming style by preferring immutable variables over mutable ones and
recursion over loops.

First of all, to implement a definitional interpreter for a target language, as we explained
in section 3.1, is necessary to have a structural representation of the object program which is
usually given by an AST. This can be realized through the implementation of a parser which
takes as input a string representation of a program in the target language and produces a
structural parse of the object program by breaking it into its language constructs. However,
in our case we will not need to build our own parser us ING have already built a parser for the
Maverick DSL which is used for the code generation process. In particular, the input to our
interpreter will be an AST intermediate representation of a Maverick specification, which
has passed all the necessary checks related with whether a specification is well formed or
not.

The starting point of our implementation is the function simulate as illustrated in the
listing 3.1. Some observations and explanations, supplementing listing 3.1, are presented in
the following list:

• As we described in section 2.2.1, Maverick DSL has two important characteristics:
first, is an actor based language which means any transition or change is initiated by
an actor and second, allows the interaction between different specification instances
through the usage of external invocations. This explains the signature of the simu-
late function which take as arguments a program which basically is a set of Maverick
specifications, a list of events which refer to these specifications, and a data struc-
ture named CurrentState which goal is twofold: to represent the current state of the
simulation by keeping track the specification instances that currently exist and to al-
low the interaction between the specification instances. In particular, CurrentState is
represented by a list of instances (instance values, see listing 3.3).

• In addition, as mentioned in section 2.2.1, there are two type of transitions: initial
transitions which signal the creation of a specification instance and does not have
an origin state, and intermediate transitions which trigger a transition to an already
existing specification instance. For that reason, we implemented the Event trait which

19



3. DEFINITIONAL INTERPRETER

is extended by the case classes CreateInstance and TriggerTransition. Each type of
event consists of: the values of the identity of the instance, the module name of the
specification that this event refer to, the name of the transition to be taken, and finally
the arguments of the transition.

• An event is matched against the two aforementioned case classes. In the case of trig-
gering a transition to an already existing instance, we first search in our data structure
called CurrentState, which keeps track of the instances created in the simulation, and
return, if found, the instance that the transition refers to (line 23). Subsequently, we
check whether the instance has already reached its final state which means that no
transition is permitted (line 27), if the instance has not reached its final state we pro-
ceed with the population of the transition’s environment. On the contrary, in the case
of creating an non existing instance we do not look for the instance in the current
state of the simulation but we initialize the instance to be created with null values
(not listed here).

• The return value of the function is an updated list of the instances that currently exist
in the simulation (CurrentState).

1 def simulate(program: XlinqProgram, eventsList: List[Event], currentState:
CurrentState): CurrentState = eventsList match {

2 case List() => currentState
3 case event :: restEvents =>
4 event match {
5 case CreateInstance(instanceIdentityValues, moduleName,

transitionName, transitionArguments) =>
6 val spec = program.getMaverickSpec(moduleName) match {
7 case Some(s) => s
8 case None => throw new TransitionException("Specification not

found")
9 }

10 /* ... initialization with null values of the instance to be created
not listed ...*/

11 /* ... population of the transition’s environment not listed ...*/
12 .
13 .
14 handleTransition(program, transition, transitionEnvironment,

instanceToBeCreated, currentState, destination) match {
15 case Right(ncs) => simulate(program, restEvents, ncs)
16 case Left(message) => throw new TransitionException(message)
17 }
18 case TriggerTransition(instanceIdentityValues, moduleName,

transitionName, transitionArguments) =>
19 val spec = program.getMaverickSpec(moduleName) match {
20 case Some(s) => s
21 case None => throw new TransitionException("Specification not

found")
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22 }
23 val instance = findFSMinstance(currentState.listOfInstances,

formIdentity(spec.identity, instanceIdentityValues), moduleName)
match {// search and return, if found, the instance for which
the transition refers to

24 case Some(inst) => inst
25 case None => throw new UndefinedException("The FSM instance does

not exist.")
26 }
27 if (hasReachedFinalState(spec, instance.state)) //if the instance

has reached its final state no transition can be taken
28 throw new TransitionException("Event could not get processed

because the FSM has reached the final state")
29 /* ... population of the transition’s environment not listed ...*/
30 .
31 .
32 handleTransition(program, transition, transitionEnvironment,

instance, currentState, destination) match {
33 case Right(ncs) => simulate(program, restEvents, ncs)
34 case Left(message) => throw new TransitionException(message)
35 }
36 }
37 }

Listing 3.1: Starting point of our implementation: simulate function

Consequently, the handling of an event/transition, in both type of events, is delegated
to the function handleTransition(line 14 and 32 in listing 3.1). The function is depicted in
listing 3.2 and takes as arguments the given set of specifications (program), the transition
to be handled (transition), a map of variable bindings that are under scope (environment),
the instance that this transition refers to (fsmInstance), the current state of the simulation
(currentState) and the destination state of the specification instance (destination). Supple-
menting the listing 3.2 should be noted the following:

• Each transition is handled under a given environment. The environment is a map of
variable bindings that are under scope and can also have a parent environment. This
represents the two following scopes: the local scope of a transition which is extended
with the transition arguments, and its parent scope which is the scope of the instance
that this transition refers to and is extended with the definition of "this" as a sort of
hidden variable (line 2).

• We see in lines 3,5,8,9 and 14 the invocation of the actual interpreter through the
usage of auxiliary functions. First, the interpreter is invoked to evaluate the constant
expressions of a transition which are related with the default parameters of a transition
(line 3), after their evaluation the local environment of the transition is extended with
their values (line 4). In the remaining lines, we first perform a short-circuit evaluation
to the pre-conditions of a transition (line 5) and we proceed with the execution of the
transition’s actions that are not external invocations (line 8). Then, we evaluate the

21



3. DEFINITIONAL INTERPRETER

external invocations that a transition might entail. Following the description given
in section 2.2.1, if a secondary transition fails then the primary transition fails too
(line 11). Finally, we perform a short-circuit evaluation to the post-conditions of a
transition (line 13). If they also hold then a transition can be considered successful
and we proceed with updating the state of the simulation (line 14).

• It is worth to mention that in case that all the external invocations succeed then they
also return an updated state of the simulation (line 8). We will see how this is done in
the remaining of this section.

1 def handleTransition(program: XlinqProgram, transition: Transition,
environment: Environment, fsmInstance: InstanceV, currentState:
CurrentState, destination: String): Either[String, CurrentState] = {

2 environment.parent.updateEnvironment("this", fsmInstance)
3 val constantBinds = evalConstantExpressions(transition.constants,

program, environment, currentState)
4 constantBinds.foreach(constant =>

environment.updateEnvironment(constant.name, constant.value))
5 if (evalConditions(transition.preconditions, program, environment,

currentState)) {
6 val (externalInvocations, otherActions) = transition.actions.span(a =>

isExternalInvocation(a))
7 evalExpressions(otherActions, program, environment, currentState)
8 val newCurrentState = evalExternalInvocations(program,

externalInvocations.toList, environment, currentState) match {
9 case Right(ncs) => ncs

10 case Left(message) => throw new ExternalInvocationException(message)
11 }
12 val postconditions = filterPostConditions(transition.postconditions)

//filter external invocations(they have already succeed or failed
during execution of actions)

13 if (evalConditions(postconditions, program, environment,
newCurrentState))

14 updateCurrentState(newCurrentState, fsmInstance, environment,
destination)

15 else
16 Left("Post-conditions do not hold.")
17 }
18 else
19 Left("Pre-conditions do not hold.")
20 }

Listing 3.2: The function responsible for handling a transition

As we described previously, the function handleTransition invokes the interpreter, through
the usage of auxiliary methods, for evaluating the Maverick expressions. Before, we can
start to look the evaluations performed by the definitional interpreter, we need a way to rep-
resent the results of such evaluations. Therefore, we defined the trait Value as an algebraic
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data type with seventeen possible cases, one for each value type. This definition is shown
in listing 3.3.

1 sealed trait Value
2 final case class StringV(value: String) extends Value
3 final case class BooleanV(value: Boolean) extends Value
4 final case class IntegerV(value: Int) extends Value
5 final case class RealV(value: Double) extends Value
6 final case class CurrencyV(value: String) extends Value
7 final case class PercentageV(value: Double) extends Value
8 final case class MoneyV(currency: CurrencyV, amount: MonetaryAmountV) extends

Value
9 final case class MonetaryAmountV(amount: BigDecimal) extends Value

10 final case class NowV() extends Value
11 final case class IbanV(value: String) extends Value
12 final case class DateV(value: LocalDate) extends Value
13 final case class TimeV(value: LocalTime) extends Value
14 final case class DateTimeV(value: DateTime) extends Value
15 final case class PairV(key: Value, value: Value) extends Value
16 final case class SetV(values: Set[Value]) extends Value
17 final case class MapV(pairs: Seq[PairV]) extends Value
18 final case class InstanceV(identity: immutable.Map[String, Value],

moduleName: String, state: String, fields: mutable.Map[String, Value])
extends Value

Listing 3.3: Definition of trait Value

While string, integer, boolean and other values are trivial, instance values are somewhat
more interesting. A specification instance is characterized by its identity, the specification
that is an instance of, its current state and field values, therefore is implemented as the com-
bination of the aforementioned four components: an identity which is an immutable map of
values, a module name indicating the maverick specification, the state that is currently the
instance and a mutable map of field values.

The actual interpreter that implements the semantics of a Maverick expression is defined
in the object Interpreter. More specifically, it exposes three methods which exploit Scala’s
method overloading - using the same name for different methods that take different types
-, which are outlined in listing 3.4. They take a Maverick expression, a set of Maverick
specifications, an evaluation context and the current state of the simulation and return a
value (as defined in 3.3) or, in case of evaluating an external invocation, return an updated
state of the simulation(line 2 in listing 3.4).

1 def interp(exp: Expression, program: XlinqProgram, env: Environment,
currentState: CurrentState): Value

2 def interp(externalInvocation: ExternalInvocation, program: XlinqProgram,
environment: Environment, currentState: CurrentState): Either[String,
CurrentState]

3 def interp(lit: Literal, program: XlinqProgram, env: Environment,
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currentState: CurrentState): Value

Listing 3.4: Interpreter’s overloaded methods

These evaluation functions are a large match expression with cases for each node in the
intermediate AST representation. Each one is responsible for evaluating a different type
of expression. In particular, line 2 is responsible for evaluating external invocations, line 3
evaluates literal expressions and line 1 evaluates the rest of the expressions that do not fall
under one of the above categories (all lines refer to listing 3.3).

The leaves of an expression tree are literals and their evaluation is straightforward.
Therefore, we proceed with the listings in 3.5 and 3.6 where we present in more detail
the interpretation of the most important cases:

• Both of the functions in listings 3.5 and 3.6 are structured as recursive traversals. Most
of the expressions are recursively evaluated as they might contain more expressions
in their body.

• Variable references are looked up in the variable bindings that are contained in the
environment (line 2 in listing 3.5). If there is no variable defined in the environment
with the requested name, then an error is thrown.

• Arithmetic expressions are evaluated by delegating to the helper function evaluateArith-
meticExpression (line 19 in listing 3.5). In this helper function, which is not listed
here, besides arithmetic operations also subtraction of dates is defined which results
to an integer value. Finally, when arithmetic operations occur on operands of differ-
ent numeric types, the less inclusive type (eg. Int) is converted to the more inclusive
type (eg. Double).

• In a similar way, the evaluation of comparison expressions is delegated to the helper
function evaluateComparisonExpression (line 18 in listing 3.5).

• An assignment expression occurs during the execution of the actions of a transition
(line 6 in listing 3.5). The interesting part here is that it is possible to have a post
condition expression that refers twice to the same named variable but with the differ-
ence that one reference is related to the variable’s value before the execution of the
transition’s actions and the other one to the variable’s value after. Therefore, after
we check if the variable already exist in the environment, a post transition value of
a variable is stored in the environment, with the variable’s name concatenated with
the prefix "new". So in that way we can retrieve, if it is needed, both pre and post
transition values of a variable.

• The "PostTransitionMember" expression is used to retrieve the post transition value
of a variable (line 32 in listing 3.5). According to the previous definition, a post
transition variable is evaluated by looking up the variable’s name in the environment
after we concatenate the variable’s name with the prefix "new". If the variable is not
found then we look up once again in the environment as a transition might contain
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no assignments related with the variable and therefore the variable might still exist in
the environment without the prefix. If still the variable is not found then an error is
thrown.

• The expression "LocalReference" (line 20 in listing 3.5) basically refers to the key-
word "this" and therefore its value is equal with searching for the hidden variable with
name "this" in the given environment.

• An "InState" expression (line 28 in listing 3.5) is checking if a variable, which should
evaluate to an instance value, is in the given state and is evaluated to a boolean value
accordingly.

• The expression "Initialized (line 24 in listing 3.5) is evaluated to a boolean value ac-
cording to whether the interpretation of a variable would result in an instance value
which is not in the origin state (which means it has not been instantiated yet as de-
scribed in section 2.2.1).

• The evaluation of an external invocation is given in listing 3.6. We can have two
type of external invocations: either via a reference field (line 2) or via an identity
of a specification instance (line 20). The difference between the two different ways
to invoke an external invocation is the following: in the invocation via field we first
evaluate the field that refers to another specification (line 3) whereas in the invocation
via identity we call the interpreter recursively to evaluate the identity given (line 21).

• The latter evaluation is done by first evaluating the parameters that compose its iden-
tity value and followingly we look up for an instance that has this identity value in
the current state of the simulation (see line 44 in listing 3.5). While the former evalu-
ation should evaluate the given field (which ultimately is a variable) to a specification
instance already instantiated in the given environment. Subsequently, in both cases
we check whether the instance has reached already its final state(line 11 and 30). In
the case that the instance is in its final state an error is thrown as no transition can
take place. Otherwise, we proceed with the evaluation of the transition’s arguments
(line 13 and 31) and we prepare accordingly the environment for the transition to be
handled (lines 16, 17, 18 and 34, 35, 36). Lastly, we recursively invoke the function
handleTransition that we presented earlier.

1 def interp(exp: Expression, program: XlinqProgram, env: Environment,
currentState: CurrentState): Value = exp match {

2 case Variable(name) => env.lookupVariable(name) match {
3 case Some(v) => v
4 case None => throw new UndefinedException("Variable not found.")
5 }
6 case Assignment(lhs, rhs) => lhs match {
7 case Variable(name) =>
8 env.lookupVariable(name) match {
9 case Some(_) =>
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10 val newValue = interp(rhs, program, env, currentState)
11 val newName = "new" + name
12 env.update(newName, newValue)
13 newValue
14 case None => throw new UndefinedException("Variable not found.")
15 }
16 case _ => throw new IllegalExpressionException("Left side of the

assignment expression should be a variable.")
17 }
18 case ce: ComparisonExpression => evaluateComparisonExpression(ce,

program, env, currentState)
19 case nbe: NumericBinaryExpression => evaluateArithmeticExpression(nbe,

program, env, currentState)
20 case LocalReference() => env.lookupVariable("this") match {
21 case Some(instance) => instance
22 case None => throw new UndefinedException("Local reference not found.")
23 }
24 case Initialized(_, variable) => interp(variable, program, env,

currentState) match {
25 case InstanceV(_,_,state,_) => if(state != "origin") BooleanV(true)

else BooleanV(false)
26 case _ => throw new UndefinedException("Specification instance not

found.")
27 }
28 case InState(_, variable, state) => interp(variable, program, env,

currentState) match {
29 case InstanceV(_, _, instanceState, _) => BooleanV(instanceState ==

state)
30 case _ => throw new UndefinedException("Specification instance not

found.")
31 }
32 case PostTransitionMember(expression) => expression match {
33 case Variable(name) =>
34 val postTransitionVariable = "new" + name
35 env.lookupVariable(postTransitionVariable) match {
36 case Some(value) => value
37 case None => env.lookupVariable(name) match { //look again for the

variable in the environment without the prefix "new" because
sometimes there are no actions so no assignments at all or no
assignments related with a variable

38 case Some(value) => value
39 case None => throw new UndefinedException("Variable not found.")
40 }
41 }
42 case _ => throw new IllegalExpressionException("Illegal expression for

a PostTransitionMember. It can only be a variable.")
43 }
44 case IdentityOf(reference, arguments) =>

program.getMaverickSpec(reference.fqn) match {
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45 case Some(s) =>
46 val instanceIdentityValues = arguments.map(p => interp(p, program,

env, currentState))
47 //look up for an instance with the given identity value in the current

state of the simulation
48 findFSMinstance(currentState.listOfInstances, formIdentity(s.identity,

instanceIdentityValues), reference.fqn) match {
49 case Some(inst) => inst
50 case None => throw new UndefinedException("FSM instance not

defined.")
51 }
52 case None => throw new UndefinedException("Specification not found")
53 }
54 /* ...some more cases... */

Listing 3.5: Evaluation of other Maverick expressions

To demonstrate how our interpreter implements the same semantics that we described
in section 2.2.1, suppose that we have the same example of sequence of events as the one
that we give in the preceding section (see example 2.2.1). This sequence of events will be
handled as following:

• The first three events are related with the creation of a new specification instance,
hence they will be matched against the case in line 5 of listing 3.1. After we find
the specification and transition that the corresponding event refers to, we delegate the
handling of the transition to the method handleTransition(line 14 in listing 3.1). In
that method, the handling of a transition is performed by following exactly the same
steps described in section 2.2.1. In particular, first the pre-conditions are checked
(line 6 in listing 3.2), then the actions that the transition entails are executed (line 7,
8 in listing 3.2) and finally we check whether the post conditions hold.

• The actual interpreter is invoked for the evaluation of the expression trees that com-
pose the aforementioned conditions and actions (listing 3.4). For instance, the evalu-
ation of the expression trees that compose the post-conditions will first match against
the case in line 18 of listing 3.5. This helper method will evaluate the expressions that
compose a comparison expression recursively. To give you an idea, at some point a
post-transition value expression will be necessary to be evaluated in the post condi-
tions (as explained in our example in section 2.2.1), this means that the method in 3.5
will be called recursively with argument the PostTransitionMember expression which
then will be matched against the case in line 32 of the same listing and the evaluation
will continue accordingly.

• After the interpreter has recursively evaluated the conditions and actions of a transi-
tion, an updated current state of the simulation will be returned which in this partic-
ular sequence of events will include three Maverick specification instances, namely
the account A1 in state opened and balance 60 EUR, the account A2 in state opened

27



3. DEFINITIONAL INTERPRETER

and balance 100 EUR and a transaction instance in state validated with amount 20
EUR from account A1 to account A2.

• Finally, the last event triggers a transition to an already existing instance, namely the
transaction instance. Thus, the event is matched against the case in line 18 of listing
3.1. Before, we delegate the handling of the transition to the method handleTransition
we first look up for the instance in the current state of the simulation (line 23 in listing
3.1) and perform the necessary checks (eg. instance reached final state).

• The transition follows the same procedure as explained before but what should be
noted here is that the book transition signals the external invocation of transitions in
the account A1 and account A2. This interaction is handled in line 8 of listing 3.2.
In more detail, a list of external invocations (withdraw 20 EUR from A1, deposit 20
EUR to A2) is passed to the interpreter (listing 3.6) for evaluation. First the withdraw
transition will be evaluated by recursively invoking the handleTransition (line 19 in
listing 3.6). If the withdraw transition fails then a error will be thrown causing also
the primary transition to fail. In case that it succeeds, then the deposit transition will
be evaluated. In that way we implement the semantics of the external invocations
described in section 2.2.1 (i.e. in order for the primary transition to be valid the
secondary transitions must first succeed).

• After the successful completion of the external invocations of withdraw and deposit,
the book transition will succeed too. As a result the current state of simulation in-
cludes: a transaction instance in the final state booked, account A1 in state opened
and balance 40 EUR, account A2 in state opened and balance 120 EUR.

1 def interp(externalInvocation: ExternalInvocation, program: XlinqProgram,
environment: Environment, currentState: CurrentState): Either[String,
CurrentState] = externalInvocation match {

2 case ExternalInvocationViaField(specification, field, transitionName,
arguments) =>

3 val instance = interp(field, program, environment, currentState) match {
4 case i: InstanceV => i
5 case _ => throw new ExternalInvocationException("Field doesn’t refer

to a specification instance, hence external invocation is not
possible.")

6 }
7 val spec = program.getMaverickSpec(specification.fqn) match {
8 case Some(s) => s
9 case None => throw new ExternalInvocationException("Specification not

found during external invocation.")
10 }
11 if (hasReachedFinalState(spec, instance.state))
12 throw new ExternalInvocationException("Transition is not possible

because the FSM has reached the final state")
13 val transitionArgumentsValues = arguments.map(arg => interp(arg,

program, environment, currentState))
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14 val (transition, destination) = getTransitionAndDestination(spec,
transitionName, instance.state)

15 val specificationEnvironment = new Environment(null)
16 instance.fields.foreach(field =>

specificationEnvironment.updateEnvironment(field._1, field._2))
17 val transitionEnvironment = new Environment(specificationEnvironment)
18 transitionEnvironment.populateEnv(transition.parameters.toList,

transitionArgumentsValues)
19 handleTransition(program, transition, transitionEnvironment, instance,

currentState, destination)
20 case ExternalInvocationViaIdentity(identity, transitionName,

injectedParams, ownParams) =>
21 val instance = interp(IdentityOf(identity.reference, injectedParams ++

identity.parameters), program, environment, currentState) match {
22 case i: InstanceV => i
23 case _ => throw new ExternalInvocationException("Specification

instance not found during external invocation via identity.")
24 }
25 val spec = program.getMaverickSpec(instance.moduleName) match {
26 case Some(s) => s
27 case None => throw new ExternalInvocationException("Specification not

found during external invocation.")
28 }
29 if (hasReachedFinalState(spec, instance.state))
30 throw new ExternalInvocationException("Transition is not possible

because the FSM has reached the final state")
31 val transitionArgumentsValues = ownParams.map(arg => interp(arg,

program, environment, currentState))
32 val (transition, destination) = getTransitionAndDestination(spec,

transitionName, instance.state)
33 val specificationEnvironment = new Environment(null)
34 instance.fields.foreach(field =>

specificationEnvironment.updateEnvironment(field._1, field._2))
35 val transitionEnvironment = new Environment(specificationEnvironment)
36 transitionEnvironment.populateEnv(transition.parameters.toList,

transitionArgumentsValues)
37 handleTransition(program, transition, transitionEnvironment, instance,

currentState, destination)
38 }

Listing 3.6: Evaluation of an external invocation

As can be seen from the above example the interpreter defines the meaning of the var-
ious components of the Maverick language and give to them a precise meaning matching
the description given in the previous chapter. Furthermore, the style of the code of our
interpreter reveals its primary goal, that is to define Maverick’s language constructs rather
than describe an efficient implementation of the Maverick language. We strive to emphasize
clarity and readability in our code by using compositional, recursively-defined evaluation
functions over the Maverick language constructs and maintaining a pure functional style.
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Finally, we never try to emphasize in efficiency, of course this might result in a slow im-
plementation or other performance issues but the purpose of a definitional interpreter is to
produce a specification rather than usability.
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Chapter 4

Test Case Generation from State
Machines

In this chapter, we present our approach regarding the generation of input stimuli for both
the definitional interpreter and generated code. As the Maverick DSL is based on state
machines, the problem lies on generating test sequences for a state machine. To test the
code generator in different circumstances and subsequently increase our confidence about
whether the code generator is bug-free or not, it is necessary the generated input stimuli to be
able to explore the different paths of a state machine. This chapter begins with introducing
the concept of generating test cases for behavioral models along with existing approaches
that try to tackle this problem. Then, we continue with our approach on generating test
cases capable of traversing different paths of a Maverick specification.

4.1 Background

Although formal approaches have been developed to verify software artifacts, software test-
ing remains one of the most widely used verification and validation technique. Software
testing entails the execution of the system under test (SUT) and the comparison of the ob-
tained behavior with an expected one. A significant factor in software testing, as testing can
only provide incomplete answers about the correctness of a software system, is the specified
test cases for which the behavior of the SUT will be tested. Therefore, specifying test cases
that are able to rigorously test a SUT is fundamental towards the development of trustable
and robust software systems.

An approach that has drawn a lot of interest in both industry and academia is model
based testing (MBT) in which models are used to steer the testing process. MBT relates
to a process in which tests are derived from a model of a SUT by employing a number of
sophisticated methods [11]. The main idea of model based testing is that instead of creating
manually test cases (eg. use cases) an algorithm derives them automatically from a model.
According to Utting et al. [50] MBT usually constitutes a type of functional testing (black
box) where no implementation details of the SUT are taken into account in the construction
of the model. The model of a SUT can either be derived for testing purposes or, in case of
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model driven development methods, the already available model can be leveraged also for
the generation of test cases. Some examples of software models that have been used for
testing are Finite State Machines (FSMs) [27], Markov chains [56] and Statecharts [14].

In this section we focus on the methodology that use state machines (or other variations
of state machines) as a basis for generation of tests.

4.1.1 State machines

Transition systems, also known as state machines, are a fundamental concept for computer
science and as such many variants exist. State machines and its variations have been widely
used to model systems in many different areas [12, 16] and therefore automated test case
generation from transition systems has long been studied.

A finite state machine is a model of computation based on an abstract machine which
is made of one or more states (finite number of states). Only one state can be active at any
given time, hence the machine must transition from one state to another state in order to
carry out different actions.

(a) A turnstile

(b) State-transition diagram for a turnstile

Figure 4.1: A turnstile represented as a state machine

To better grasp the concept of a state machine we can think one of the many examples
in which devices that are used in daily life exhibit the behavior of state machines. A good
example to illustrate that is to consider the case of modelling as a state machine a coin
operated turnstile machine which is used to control access in different type of locations (eg.
subways, amusement parks) [24]. A turnstile, which consists of three rotating arms at waist
level (figure 4.1a), is initially locked and the arms cannot be moved, blocking the entry in
that way. Inserting a coin or a token unlocks the turnstile which enables the arms to rotate,
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allowing a single customer/commuter to pass through. Once the customer passed, the arms
are locked again until the insertion of the next coin.

A FSM can be represented by a state-transition diagram which can also be seen as
a directed graph whose vertices correspond to the states of the machine and its edges to
the transitions that connect the different states of the machine. In addition, each edge is
labeled with information associated with the transition, for example, information regarding
the conditions that should hold (or the input that should be given) in order for a transition
to take place. In the example of a turnstile that we gave before, the state-transition diagram
is given by two vertices representing the states of a turnstile (Locked, Unlocked) and edges
that connect the vertices, indicating the transitions that can be taken along with the input
that must be given in order for a transition to take place (4.1b).

4.1.2 Automatic test case generation from State Machines

First of all, it should be clear that with the term test case we refer to the description of a
single test and with the term test suite we refer to a set of test cases. In addition, based on
the characteristics of the SUT, test cases can have different forms [58]. For instance, if the
characteristic of a SUT that is under consideration is functional, then a test case can have
the form of pairs of input and output values [58]. On the contrary, if the SUT is a reactive
system, then a test case would take the form of a sequence of events.

However, generating test cases for all possible behaviors of a SUT is not feasible. Thus,
it is necessary to select an adequate subset of test cases for driving the testing process.
Usually, this is achieved through the usage of coverage criteria which typically control the
generation of test cases or measure the quality of an already existing test suite [50]. The
coverage of a test suite can be defined using different criteria according to the abstraction
level of the SUT such as requirements, code or model coverage.

In particular, model coverage criteria help us to identify to which extent our generated
test cases resemble the modeled requirements and as a result enables us to test the SUT
in different scenarios. A model coverage criterion is agnostic of the specific details of a
model and can be applied to any element of a model (eg. state, event, transition) or to a
combination of them. More specifically, some of the most common coverage criteria for
state machines are the following[50]:

• All-states: This coverage criterion is satisfied if each state of a state machine is con-
tained to at least one test case.

• All-transitions: Satisfying this criterion requires for each transition of a state machine
to have at least one test case that contains it.

• All-n-transitions: Similar as before but with the difference that requires to traverse all
transition sequences up to length n.

• All-paths: A test suite satisfies this criterion if all possible paths of a state machine
are traversed. However, this coverage criterion is considered impossible to satisfy.
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Other type of coverage criteria used in state machines are related with transition condi-
tions and are known as control-flow based coverage criteria (eg. decision coverage, condi-
tion coverage).

Typically, the first step in generating test cases for state machines is to create paths on
the model level based on some coverage criteria, known as abstract test case generation.
As explained in section 4.1.1 state machines can also be seen as directed graphs. Therefore,
many approaches exist that use graph traversal algorithms to find paths in state machines
([7, 33, 39, 54, 53]). Traversing a graph entails to start at a node in a graph and continue
traversing edges of the graph until a stopping condition is met (eg. all states have been
visited, all edges have been traversed etc). This can be done using several graph traversal
algorithms such as breadth first search, depth first search or Dijkstra’s shortest path algo-
rithm.

However, abstract test cases only contain information about the sequence of the transi-
tions that are needed to traverse a certain path, but missing information regarding the con-
crete parameter values that are necessary to make feasible the traversal of a path. Several
approaches have been developed in combination with graph traversal techniques to produce
concrete test cases. To name a few, such methods are partition testing which defines input
value partitions and selects representative values from them [55, 54], boundary value anal-
ysis in which the idea is to select values at the boundaries of an input domain (eg. guard
condition) [25] and using a constraint solver which basically tries to produce values that
satisfy a set of constraints [13].

Finally, another approach in test case generation is random testing [34]. The power
of random testing lies in the fact that without spending much effort someone can produce
quickly a large number of test cases, and in that way, reveal flaws of the SUT early in
the development phase [58]. This approach can also be combined with the graph traversal
technique by selecting, for instance, randomly the next state to be visited or transition to be
traversed.

4.2 Implementation of the Test Case Generation for the
Maverick DSL

This study does not focus on the design of a novel test case generation for state machines.
Hence, the approached implemented and described in the current section follows the general
methodology described in section 4.1.2, namely first the generation of abstract test cases and
subsequently their concretization with actual values. Its purpose is twofold: first to increase
our confidence in code generator’s reliability and correctness, and second to evaluate the
proposed testing approach for code generators.

As we described in section 2.2.1, Maverick is an actor based language meaning that
any transition is initiated by an actor. Therefore, we are interested in generating test cases
that would have the form of a sequence of events and which will enable us to observe the
behavior of the Maverick specifications and generated code.

As Maverick is based on state machines, the first step of our approach is to convert a
Maverick specification into a representation of a directed graph with labeled edges, the pos-
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sible states of a Maverick specification as vertices and its transitions along with the origin
and destination states of a transition as labeled edges. The traits in listing 4.1 serve exactly
that purpose, as can be seen in that figure the directed graph (line 1) is represented with an
adjacency map that has as key a vertex in the graph and as value a set of vertices that are
adjacent to that vertex. The labels of the edges are captured in a map which has as a key a
tuple consisting of the origin and destination state of a transition and as value the transition
itself (line 7).

1 trait DirectedGraph[A] extends Iterable[A] {
2 protected val adjacency: mutable.Map[A, Set[A]] = mutable.Map()
3 ...
4 }
5 trait LabeledEdges[A, T] {
6 this: DirectedGraph[A] =>
7 protected val labels: mutable.Map[(A, A), Set[T]] = mutable.Map()
8 ...
9 }

Listing 4.1: The traits used to represent a Maverick specification as a directed graph

Subsequently, we follow the methodology that is described in section 4.1.2 for test case
generation from state machines. In particular, we first create abstract test cases using a
modified version of the breadth-first search algorithm illustrated in listing 4.2. The aim of
this algorithm is the following: given a directed graph of a Maverick specification to find
all the paths between an origin and a destination state. However, finding all the paths in a
directed graph that might contains cycles, which is the case for the Maverick specifications
(see figure 2.4), is infeasible. Therefore, our algorithm finds all the paths between two
states that are under a given length (line 14). At the end the algorithm returns a list of the
paths found represented by the consecutive vertices/states that were visited during the graph
traversal from the starting to the target node.

1 def bfs_findPaths(graph: DirectedGraph[String] with
LabeledEdges[String,Transition], start: String, end: String, length:
Int): List[List[String]] = {

2 var pathQueue = List[List[String]]()
3 var tmp_path = List[String](start)
4 var paths = List[List[String]]()
5 pathQueue = pathQueue :+ tmp_path
6

7 while (pathQueue.nonEmpty) {
8 tmp_path = pathQueue.head
9 pathQueue = pathQueue.filterNot( p => p == tmp_path)

10 val last_node = tmp_path.last
11 if(last_node == end)
12 paths = paths :+ tmp_path
13 for(link_node <- graph.directSuccessors(last_node)) {
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14 if(tmp_path.size < length) {
15 val new_path = tmp_path :+ link_node
16 pathQueue = pathQueue :+ new_path
17 }
18 }
19 }
20 paths
21 }

Listing 4.2: Modified version of breadth-first algorithm for finding all the paths under a
certain length between an origin and destination state

Following, using an auxiliary method we convert the output of the algorithm described
before to the classes illustrated in listing 4.3, in which a path (line 2) resembles a list of
transitions. This helper method connects the consecutive states that were produced before
with possible transitions. In case that there is more than one possible transition between
a start and end state, the helper function determines which transition will connect the two
nodes by first looking whether there is a transition (from the set of possible transitions
between two nodes) which has not been used yet. If all of them have been used then a
transition from all possible transitions will be selected randomly.

The next step is to generate concrete parameters for the abstract test cases generated
before. The aim is to generate parameters for the transitions that will actually make possible
their execution, or in other words, parameters that satisfy the conditions required for a
transition to be executed. It should be noted that this step is tailored to the experimental
machines presented in chapter 2. For this step we generate pseudo-randomly values for the
transitions’ parameters of the experimental Maverick specifications.

1 case class FsmTransition(from: String, to: String, transition: Transition)
2 case class FsmPath(transitions: List[FsmTransition])

Listing 4.3: Definition of the path and transition classes

The method responsible for making concrete the abstract test cases is defined in the ob-
ject InputGenerator and is presented in the listing 4.4 where we depict the overall structure
of the method. Some clarifications supplementing listing 4.4 are listed below:

• The method takes us an input: a list of the generated abstract paths, the Maverick
specification for which we will generate concrete test cases, a set of Maverick speci-
fications (program), a mutable map which purpose is to store the identity values that
will be generated for each test case and finally a boolean parameter that indicates
whether the test cases that will be created will be valid test cases or completely ran-
dom, meaning that invalid cases might be created.

• The mutable map identitiesCreated stores the identities created during the concretiza-
tion of a test case. In that way each event contained in a test case can be populated in
such way to refer to the same specification instance.
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• The method is structured as an iteration over each path that was generated in the
previous step. For each transition included in the corresponding path we create a con-
crete event. To do so, we first determine if a transition refers to an initial transition
(line 8). If that is the case, we generate events for the referenced fields of the speci-
fication (if there are any, line 10) and we continue by creating values for the identity
and transition arguments using the auxiliary methods in lines 11, 15, 17. In case that
the transition that we want to create a concrete event is not an initial transition, we
follow the same procedure but with the difference that the identity values needed for
the transition will be retrieved from already existing values (line 19).

• As we mentioned earlier, the concretization step described here is specifically tailored
to the needs of the experimental Maverick specifications that are illustrated in section
2.2.1 (i.e. only when the createValid parameter is set to true). To be more precise,
consider the example of having a Maverick specification of a simple account (listing
2.1) and receiving an event that triggers the transition close (line 92 in listing 2.1). As
it can be seen in the aforementioned listing, the transition close requires the balance of
the account to be equal with zero euro (line 94 in listing 2.1) in order to be executed.
To create a valid transition we keep track of the balance of the account (line 5 in
listing 4.4) during the concrete creation of the events. Subsequently, we create an
extra withdraw transition that will withdraw the remaining amount of money from
the corresponding account(line 28 in listing 4.4). In that way, we assure we will have
a valid close transition.

• Similarly, the auxiliary method in lines 13, 22 in listing 4.4) creates an amount that
will make the transition possible. This is accomplished by taking into account the
name of the transition that is about to get concretized. For example, in case of a
withdraw transition, the method will create a pseudo-random amount which will be
below the current balance (i.e. current balance is given as an argument). Finally, it
will return the amount that was generated and an updated balance. In case of the
withdraw transition this means that the updated balance will be equal to: balance -
generatedAmount.

• Finally, the auxiliary methods in lines 11, 17, 24 generate values based on the type
of the transition’s argument and by using a primitive value randomizer which is listed
in 4.5). Thus, for each type like Integer, String etc., a random generator has been
implemented inside the object PrimitiveValueRandomizer. However, the IBAN type
is more complex than the other types as its value should be compliant to the IBAN
standards. This is required in the generated system which is a banking system and
therefore must be compliant to the IBAN standards. For that reason the library iban4j1

has been used to generate randomly valid IBAN values (line 5 in listing 4.5). Finally,
the primitive value randomizer is instantiated by using as seed the current date time
expressed in milliseconds (line 2 in listing 4.5).

1https://github.com/arturmkrtchyan/iban4j
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1 def createConcreteEventSequences(paths: List[FsmPath], spec: Specification,
program: XlinqProgram, identitiesCreated: mutable.Map[String,
Set[List[Value]]], createValid: Boolean): TestSuite = {

2 var eventsForExternalFields: List[Event] = List()
3 var balance: BigDecimal = 0.0
4 val testCases: List[TestCase] = for(path <- paths) yield { //iterate over

all the abstract paths
5 balance = 0.0 //keeping track of the balance of an account based on the

events generated
6 /*...*/
7 var concreteEventSequences: List[Event] = transitions.map(tr =>
8 if(tr.from == "origin") {
9 //create events for the reference fields of a specification (if any)

10 eventsForExternalFields =
initializeExternalFields(externalReferencedFields, program,
identitiesCreated)

11 val identityValues = createIdentityValues(spec.identity)
12 //update the map which stores the identities that have been created
13 identitiesCreated.update(spec.module.fqn,identitiesCreated.getOrElse(spec.module.fqn,

Set.empty) + identityValues)
14 //creates a valid amount (or a completely random amount) and updates

accordingly the balance)
15 val (amount, updatedBal) = createValidAmount(tr.transition.name,

balance, createValid)
16 balance = updatedBal
17 val argumentsValues =

createTransitionArgumentValues(tr.transition.parameters.toList,amount,
identitiesCreated)

18 CreateInstance(identityValues, spec.module.fqn, tr.transition.name,
argumentsValues)

19 }else{
20 val identityValues = findIdentiyValues(spec.module.fqn,

identitiesCreated)
21 //creates a valid amount (or a completely random amount) and updates

accordingly the balance)
22 val (amount, updatedBal) = createValidAmount(tr.transition.name,

balance, createValid)
23 balance = updatedBal
24 val argumentsValues =

createTransitionArgumentValues(tr.transition.parameters.toList,
amount, identitiesCreated)

25 TriggerTransition(identityValues, spec.module.fqn,
tr.transition.name,argumentsValues)

26 }
27 )
28 if(createValid && spec.name == "Account") { // to create a valid

"close" transition
29 /*...*/
30 val argumentsValues =
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createTransitionArgumentValues(transWithdraw.transition.parameters.toList,
balance, identitiesCreated)

31 concreteEventSequences = concreteEventSequences :+
TriggerTransition(identityValues, spec.module.fqn, "withdraw",
argumentsValues)

32 concreteEventSequences = concreteEventSequences :+
TriggerTransition(identityValues, spec.module.fqn, "close", List())

33 }
34 identitiesCreated.update(spec.module.fqn, Set.empty) //initialize back

to empty the map for the next test case
35 TestCase(eventsForExternalFields ++ concreteEventSequences)
36 }
37 TestSuite(testCases)
38 }

Listing 4.4: Method responsible for the concretization of the abstract test cases

1 object PrimitiveValueRandomizer {
2 def apply(seed : Long = DateTime.now(UTC).getMillis):

PrimitiveValueRandomizer = new PrimitiveValueRandomizer(seed)
3

4 /*...*/
5 //random generation of IBAN using iban4j
6 def randomIBAN(country : CountryCode = DefaultCountryCode,
7 bankCode : String = DefaultBankCode,
8 branchCode : String = DefaultBranchCode) : String = {
9 new Iban.Builder().

10 countryCode(country).
11 bankCode(bankCode).
12 branchCode(branchCode).
13 buildRandom.
14 toString
15 }
16

17 /*...*/
18 }
19 //instantiated as following in the InputGenerator object
20 implicit val rand: PrimitiveValueRandomizer = PrimitiveValueRandomizer()

Listing 4.5: Primitive value randomizer

The method described above yields a test suite related with the given Maverick speci-
fication and represented by a list of test cases (resembled in the classes displayed in listing
4.6). It should be mentioned that the concrete test cases generated after this step are in the
form of the events that the method simulate described in section 3.2 take us an input.

1 case class TestSuite(testCases: List[TestCase])
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2 case class TestCase(eventSequence: List[Event])

Listing 4.6: Definition of the test case and test suite classes
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Chapter 5

Evaluation

In section 1 we introduced the following research question: how could Code Generators
be tested against a definitional interpreter?. In the previous chapters, we presented and
described our approach on testing ING’s code generator using a definitional interpreter. In
the current chapter, we evaluate the practical applicability of our approach with respect to
whether is able to discover bugs in ING’s code generation tool chain. We first describe
the setup of the different experiments that we conducted and subsequently we present the
results along with their interpretation.

5.1 Setup of the Evaluation

First of all, to evaluate our approach we use the experimental Maverick specifications cre-
ated by ING and presented in section 2.2.1, namely the account and transaction specifica-
tions. To be more precise, we also use two modified versions of the Maverick specifications
mentioned above, that still model a simple bank account and a transaction between two
accounts, but with the difference that these versions contain more or different language
constructs of the Maverick language than those included in listings 2.1, 2.2.

More specifically, in listing 5.1 a Maverick specification that models a transaction is
depicted, it uses date/time fields (eg. lines 8, 9) and also expressions that entail operations
with date/time fields (line 42). Another example is presented in listing 5.2, the specifica-
tion illustrated in that listing is an account that contains other language constructs of the
Maverick language such as sets and other expressions that in the other versions we did not
encounter (eg. lines 8, 18).

Using different versions of Maverick specifications enable us to observe the behavior
most of the language constructs that constitute the Maverick language and consecutively to
test whether the code generator preserves their behavior in the generated code.

Our evaluation approach can be divided in two main scenarios. In the first scenario, each
one of the different versions of the Maverick specifications is given to the code generation
tool chain us an input and then the generated code produced is tested by following our
approach. In the second scenario, we introduce a bug in the generated code and we then test
it using our approach, during which we expect that the introduced bug will be discovered.
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1 ...
2 specification {
3 fields {
4 id: Integer;
5 amount: Money;
6 from: Account;
7 to: Account;
8 currentDate: Date;
9 currentTime: Time;

10 createdOn: DateTime;
11 bookedOn: DateTime;
12 endOfDayTime: Time;
13 failureDate: DateTime;
14 }
15 ...
16 transitions {
17 @doc {
18 Start a new transaction.
19 }
20 start(amount: Money, from: Account, to: Account) {
21 preconditions {...}
22 postconditions {
23 amount’ == amount;
24 from’ == from;
25 to’ == to;
26 createdOn’ == now;
27 currentDate’ == now;
28 currentTime’ == now;
29 endOfDayTime’ == 17:00;
30 }
31 }
32

33 @doc{
34 Book the transaction.
35 }
36 book() {
37 preconditions {}
38 postconditions {
39 this.from.withdraw(this.amount);
40 this.to.deposit(this.amount);
41 bookedOn’ == now;
42 2018-08-23 - currentDate == 1;
43 }
44 }
45 ...
46 }
47 }

Listing 5.1: An example of a transaction specification that incorporates date/time fields and
operations

42



5.1. Setup of the Evaluation

1 ...
2 specification {
3

4 fields {
5 accountNumber: IBAN;
6 balance: Money;
7 country: String;
8 elements: Set[Money];
9 }

10 ...
11 transitions {
12 @doc {
13 Opening an account needs a valid IBAN and some initial

deposit.
14 }
15 openAccount[minimalDeposit: Money = EUR 0.00, allowedCountries: Set[String

] = {"Netherlands", "Germany"}](initialDeposit: Money, country :
String) {

16 preconditions {
17 initialDeposit >= minimalDeposit;
18 country in allowedCountries;
19 }
20 postconditions {
21 balance’ == initialDeposit;
22 elements’ == { initialDeposit };
23 country’ == country;
24 }
25 }
26 ...
27 }
28 }

Listing 5.2: An example of an account specification that contains sets

Using the approach we described in section 4, for each of the aforementioned Maver-
ick specifications we generate test cases for both the generated code and our definitional
interpreter. Our approach produce test cases in the form that our definitional interpreter
accepts, hence they do not need any further processing before we supply with them our
interpreter. As our approach incorporates the use of a primitive value randomizer generates
paseudo-randomly test cases, we can generate fast a number of test cases, which should be
noted that will be different each time that we run our input generator. To give you an idea,
we present a test case (listing 5.3), as generated from our method, related with the account
specification. As explained and as can be seen in the listing below, a test case is simply a
sequence of events that create a new specification instance or that trigger a transition to an
already existing specification instance.

An event contains a list of the identity values of a specification instance that this event
refers to, the module name of the specification that the instance belongs to, the name of the
transition that is triggered and the values of the transition’s arguments. To illustrate, for the
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creation of an account the identity values of an account is its IBAN (line 1 in listing 5.3
and the values of the transition’s arguments is the initial deposit that is needed to open the
account (line 4 in listing 5.3). The sequence of events presented in listing 5.3 will trigger the
consecutive execution of the following transitions: openAccount, block, unblock, deposit,
withdraw, interest, interest, deposit, withdraw, close. In the same way we create test cases
for the transaction specification with the difference that first two events will be created that
instantiate two accounts. In other words, a sequence of events for the specification transac-
tion would look like following: open an account, open another account, start a transaction
between the two accounts, book the transaction.

1 CreateInstance(List(IbanV("NL09INGB0604094712")),
2 "simple_transaction.Account",
3 "openAccount",
4 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(466.33))))
5 TriggerTransition(List(IbanV("NL09INGB0604094712")),
6 "simple_transaction.Account",
7 "block",
8 List()),
9 TriggerTransition(List(IbanV("NL09INGB0604094712")),

10 "simple_transaction.Account",
11 "unblock",
12 List()),
13 TriggerTransition(List(IbanV("NL09INGB0604094712")),
14 "simple_transaction.Account",
15 "deposit",
16 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(46.43)))),
17 TriggerTransition(List(IbanV("NL09INGB0604094712")),
18 "simple_transaction.Account",
19 "withdraw",
20 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(38.81)))),
21 TriggerTransition(List(IbanV("NL09INGB0604094712")),
22 "simple_transaction.Account",
23 "interest",
24 List(PercentageV(5.0)),
25 TriggerTransition(List(IbanV("NL09INGB0604094712")),
26 "simple_transaction.Account",
27 "interest",
28 List(PercentageV(5.0)),
29 TriggerTransition(List(IbanV("NL09INGB0604094712")),
30 "simple_transaction.Account",
31 "deposit",
32 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(7.84)))),
33 TriggerTransition(List(IbanV("NL09INGB0604094712")),
34 "simple_transaction.Account",
35 "withdraw",
36 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(505.4875)))),
37 TriggerTransition(List(IbanV("NL09INGB0604094712")),
38 "simple_transaction.Account",
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39 "close",
40 List())

Listing 5.3: A test case for a specification account

However, as the generated code is a Scala application with a RESTful API the generated
test cases need to be further processed. In particular, to invoke the generated code, and
more precisely the backend, we create a rest API call for each event included in a test
case. For that purpose, we developed a backend invoker where the test cases are converted
accordingly to HTTP requests with JSON body that contains the parameters of a transition.
For example, the event CreateIstance in listing 5.3 will be converted to an HTTP request as
following:

http://localhost:8080/simple_transaction/Account/NL09INGB0604094712/OpenAccount
with JSON body { "initialDeposit": "EUR 60.0" }

The identity of the instance, the module name of the specification that the instance
belongs to and the name of the transition to be triggered construct the URL of the request
and the parameters of the transition constitute the JSON body of the request. Equivalently,
the rest of the events included in the test case above are converted to HTTP requests that
will be sent consecutively in order to invoke the backend.

As is evident from the example above the generated test case covers all the states and
transitions of the specification account. It should be noted that other test cases might not
cover all the transitions and states of the specification account, as they might include paths
from the origin state of an account to its final state without including all the possible transi-
tions. Such an example could be a sequence of events that trigger the following transitions:
openAccount, deposit, block, unblock, withdraw, close (i.e. transition interest is not con-
tained).

In addition, to test the behavior of the generated code in conditions that invalid transi-
tions are triggered, we generated test cases which contain a sequence of events that their
consecutive execution cannot be successful. To do so we adjust our approach to generate
completely random test cases. This leads to the generation of many invalid sequences of
events.Two examples of invalid sequence of events are demonstrated in listing 5.4.To il-
lustrate, a transition cannot take place to an account that is in the blocked state, hence an
error should be thrown instead (line 6,10 in listing 5.4). Similarly, triggering a withdraw
transition for an instance of an account that will result to the negative balance of the account
should be interrupted abnormally (i.e. as it will result to a negative balance of an account
which is not permitted by the invariants of a specification account, line 27 in listin 5.4).

1 /*An invalid sequence of events*/
2 CreateInstance(List(IbanV("NL05INGB8991436658")),
3 "simple_transaction.Account",
4 "openAccount",
5 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(412.89))))
6 TriggerTransition(List(IbanV("NL05INGB8991436658")),
7 "simple_transaction.Account",
8 "block",
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9 List()),
10 TriggerTransition(List(IbanV("NL05INGB8991436658")),
11 "simple_transaction.Account",
12 "withdraw",
13 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(262.89)))),
14 TriggerTransition(List(IbanV("NL05INGB8991436658")),
15 "simple_transaction.Account",
16 "close",
17 List())
18

19 /*Another invalid sequence of events*/
20 CreateInstance(List(IbanV("NL85INGB9511369477")),
21 "simple_transaction.Account",
22 "openAccount",
23 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(214.58))))
24 TriggerTransition(List(IbanV("NL85INGB9511369477")),
25 "simple_transaction.Account",
26 "interest",
27 List(PercentageV(5.0)),
28 TriggerTransition(List(IbanV("NL85INGB9511369477")),
29 "simple_transaction.Account",
30 "withdraw",
31 List(MoneyV(CurrencyV("EUR"),MonetaryAmountV(786.48)))),
32 TriggerTransition(List(IbanV("NL85INGB9511369477")),
33 "simple_transaction.Account",
34 "close",
35 List())

Listing 5.4: Two invalid test cases for a specification account

Finally, in order to further evaluate our proposed testing approach for code generators,
we introduced manually a bug in the generated code. More specifically, we changed the
invariants of a specification account in order to allow a negative balance of an account.
Hypothetically, if the code generation tool chain had wrongly translated the invariants of
the models to the generated code, then our method should be able to catch this fatal bug of
the code generator.

5.2 Comparison between the traces of the generated code and
the definitional interpreter

As we pointed out in the previous chapters, the main goal of our approach is to test the code
generation tool chain and more specifically to test whether the generated code produced by
the code generator preserves the behavior of the model. Accordingly, after we stimulate the
generated code and the interpreter with the generated test cases, a comparison between the
traces produced by the generated code and the traces produced by the definitional interpreter
needs to take place.
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To realize that, we compare the two traces after the execution of each event. In more
detail, each test case is constituted of a sequence of events, hence after the process of the
corresponding event by the definitional interpreter and the generated code a comparison
takes place between the instances that have been formed in the current state of the interpreter
and the instances that have been formed by the backend application (generated code).

Before we perform the comparison, we convert the instances that have been created by
the backend to the representation that is used by our interpreter and described in chapter 3.
However, even in the case that the code generator translates correct the model into code, we
cannot expect identical behavior in certain type of fields that a state machine instance might
contain, such fields are the date/time fields and operations (see an example of a Maverick
specification with date/time fields and operations in listing 5.1). Thus, the comparison
algorithm in that case should be able to tolerate differences between date/time fields that
exist in the interpreter and those that are in the generated code.

As Stürmer et al. argue it is important to use "a notion of sufficiently similar behavior"
[49]. Therefore, date/times fields are compared with respect the following definition of
similar behavior: Two date/time fields are compatible if their absolute difference is equal or
less than the threshold of twenty seconds. Then given this definition of compatibility, we
proceed by comparing each state machine instance in the simulation with the state machine
in produced by the generated code. The comparison checks whether the fields and state of
an instance produced by the generated code conforms to the fields and state of the instance
produced by the interpreter.

In case that the comparison fails, then a message is displayed indicating where exactly
the comparison failed along with an indication of the value that was expected (produce by
our definitional interpreter) and the actual value (produced by the generated code).

5.3 Results

In the current section we present the results of the execution of different test cases. Before
we display a result of the conformance testing performed for a particular test case, we first
present the test case by mentioning the sequence of transitions that it triggers. It should be
mentioned that all the test cases are in the form we presented in section 5.1. Because it
is impossible to present the results of all the generated cases for which we tested the code
generator, we describe representative examples of test cases along with their results.

We begin with the scenario of introducing a bug in the generated backend by changing
the invariant conditions of an account. These invariants state that an account must always
have an account balance that is greater or equal to zero euros. In more detail, the invari-
ant block, which contains predicates that must always hold for a specification instance, is
translated by the code generator to conditions that are included to both pre- and post- of
each transition of a Maverick specification. For instance, the generated code of a withdraw
transition of an account specification, as illustrated in listing 5.5, includes in its pre- and
post- conditions predicates which assure the amount that will be deducted from the balance
of an account will not result to a not negative balance (lines 9,18 in listing 5.5).

47



5. EVALUATION

1

2 case class Withdraw(amount: MMoney) extends AccountCommand {
3 override def preCondition(implicit rc: ReadContext): PreConditionF = {
4 case f =>
5 // Are all variables present? &&
6 condition(f.data.balance.isDefined, """Variable ‘balance‘ is not

defined.""") &&
7 // And the actual preconditions &&
8 condition((amount > net.ing.xlinq.builtin.MMoney.box(EUR(0.00))),

"""amount > EUR 0.00""") &&
9 condition(((f.data.balance.get - amount) >=

net.ing.xlinq.builtin.MMoney.box(EUR(0.00))), """balance - amount
>= EUR 0.00""")

10 }
11

12 /*....*/
13

14 // No external invocations
15 override def postCondition(implicit pc: PrevReadContext, rc:

ReadContext): PostConditionF = {
16 case f =>
17 condition((f.newState.data.balance.get == (f.oldState.data.balance.get

- amount)), """balance’ == balance - amount""") &&
18 condition((f.newState.data.balance.get >=

net.ing.xlinq.builtin.MMoney.box(EUR(0.00))), """this.balance >=
EUR 0.00""")

19 }
20

21 }

Listing 5.5: The generated code of a withdraw transition

To evaluate our approach we introduce a bug in the aforementioned generated code by
putting into comments the lines 9,18 in listing 5.5). This means that we should expect our
approach to catch this fatal error of allowing an account to have negative balance after a
withdraw transition. This assumption is proved correctly after the run of a few test cases.
In particular given the following test case:

1. Open account with IBAN NL60INGB7304192254 and initial balance of 318.82 EUR.

2. Withdraw 460.17 EUR from account with IBAN NL60INGB7304192254.

3. Block account with IBAN NL60INGB7304192254.

4. Unblock account with IBAN NL60INGB7304192254.

After the execution of the second event our interpreter throws an error and does not
proceed with the handling of the remaining events. This is illustrated in figure 5.1 where
it becomes evident that a TransitionException was thrown after the execution of the second
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Figure 5.1: An error is thrown from the interpreter after processing the second event.

Figure 5.2: Negative balance of an account instance

event (as described above). On the other hand, the generated code process successfully the
event. To double check that this is the case we send a GET request to retrieve the current
state of the aforementioned account (using the Postman tool1). Indeed, as shown in figure
5.2 the account is in state opened with a negative balance which should have been prevented.

After reverting back the change that we made in the generated code, we proceed with
testing thoroughly the backend as generated by the code generator and without any modifi-
cation from us.

Our approach, after the run of multiple different test cases, revealed an already existing
bug in the generated system. More particularly, given the following sequence of events:

1. Open account with IBAN NL37INGB6374353384 and initial balance of 705.44 EUR.

2. Withdraw 26.66 EUR from account with IBAN NL37INGB6374353384.

1https://www.getpostman.com/
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Figure 5.3: Sequence of events that indicate a bug after the execution of transition interest.

3. Withdraw 7.43 EUR from account with IBAN NL37INGB6374353384. Perform the
interest transition on the same account with an interest rate of %5.

4. Withdraw 704.9175 EUR from account with IBAN NL37INGB6374353384.

5. Close account with IBAN NL37INGB6374353384.

As it can be seen in figure 5.3, the conformance check first fails after the execution of the
transition interest and continues to fail after the execution of the remaining events. Having a
closer look in that case leads us to the observation that the error lies in the multiplication of
the percentage with the amount of money. This error cause a difference in the balance of the
two account instances (i.e. instance of the account resulted from the definitional interpreter
versus the instance resulted from the generated code). Subsequently, this difference in the
balance of the account causes the next transitions to also fail in the conformance check.

An interest transition multiplies the balance of an account with a percentage indicating
the current interest rate and adds this result to the current balance of an account. Taking into
account this and using our approach we can understand that the bug lies in the multiplica-
tion of a percentage type with a money field. Therefore, the first step in the investigation
of the failing test case is to search where the multiplication of a percentage type with a
money type is defined in the generated code. This leads us to actually locate the bug in the
generated Mul.scala file. In particular, the bug is located in one of the overloading methods
of the object Mul (line 3 in listing 5.6). This is opposed to the correct definition of a multi-
plication that is given by our definitional interpreter (line 9 in listing 5.6). In particular, the
implementation of "multiplication by percentage" is off by a factor of 100.

1 //Definition of Money * Percentage in the generated code
2 def apply(percentage: Dimensionless, d: MMoney): MMoney = Mul(d, percentage)
3 def apply(money: MMoney, percentage: Dimensionless): MMoney = money match {
4 case SomeMoney(amount) => box(amount * percentage.toPercent)
5 case ZeroMoney => ZeroMoney
6 }
7

8 //Definition of Money * Percentage given by our definitional interpreter
9 case MoneyV(CurrencyV(lc), MonetaryAmountV(lv)) => interp(rhs, program, env,

currentState) match {
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Figure 5.4: Using Squants library in Scala REPL

10 case RealV(rv) => MoneyV(CurrencyV(lc), MonetaryAmountV(lv *
BigDecimal(rv)))

11 case IntegerV(rv) => MoneyV(CurrencyV(lc), MonetaryAmountV(lv *
BigDecimal(rv)))

12 case PercentageV(rv) => MoneyV(CurrencyV(lc), MonetaryAmountV(lv *
BigDecimal(rv / 100)))

13 case MoneyV(CurrencyV(rc), MonetaryAmountV(rv)) =>
14 if (lc == rc)
15 MoneyV(CurrencyV(lc), MonetaryAmountV(lv * rv))
16 else
17 throw IllegalExpressionException("Illegal expression. You cannot

multiply different currencies.")
18 case _ => throw IllegalExpressionException("Illegal expression for

multiplication")
19 }

Listing 5.6: Definition of multiplication between a percentage and a money type

To understand better why this is the case we need to dive into the generated code. More
specifically, the generated application uses the library Squants2 to deal with Money and
Percentage types. Using the Scala REPL we can understand how exactly the open-source
library Squants works in line 4 (listing 5.6), this helps us to see immediately why the multi-
plication is wrong. The figure 5.4 shows that the expression percentage.toPercent converts
a percent to a double representation, however, without dividing with 100 and this is what
makes the "multiplication by percentage" wrong.

Furthermore, we performed several runs of test cases related with the modified versions
of the specifications account and transaction. The modified version of the specification
transaction helps us to test whether the date/time fields and their operations behave sufficient
similar with the definition given by our definitional interpreter (i.e. based on our definition
of compatibility). The differences that we observed during the run of the respective test
cases were only some milliseconds indicating that the generated system conforms to the
expected result. A simple example with the modified version of the transaction specification
is presented in figure 5.5 where first two accounts are created and then a transaction is
initiated between them.

Similarly, the modified version of the specification account allows us to test the behavior
of other data structures that the Maverick language supports such as set and map. Based on

2http://www.squants.com/
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Figure 5.5: Testing the modified version of the specification Transaction (with date and time
fields)

Figure 5.6: Testing the modified version of the specification Account (with date and time
fields)

Figure 5.7: Handling an invalid test case

the results of the test cases runs, these data structures also seem to behave as expected (eg.
figure 5.6).

Table 5.1: Summary of results per specification for a valid execution of test cases

Specification name Test cases generated (#) Conf. succeeded (#) Conf. failed (#)

Account 20 13 7

Account (sets and maps) 20 11 9

Transaction 1 1 0

Transaction (date/time) 1 1 0

A summary of the results for a valid execution of test cases is given in table 5.1 (con-
taining only valid test cases). The results displayed in that table are given for one run of
valid test cases. It should be clarified that the number of the generated test cases is directly
related with the number of transitions and states that a Maverick specification contains and
the maximum length of a path from an origin to a destination state (the length that is used
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in abstract test case generation). For the table presented in 5.1 the test cases were generated
by taking into account a maximum length of 8 events/transitions in a sequence. In addition,
the test cases that failed to the conformance check had a common cause that lead to that
failure. That is the transition interest, which as we showed earlier contains a bug related
with the "multiplication by percentage". Finally, it should be noted that the number of test
cases that succeeded the conformance check might differ in another run of valid test cases.
The reason behind this is that in each run different test cases will be generated which might
contain less or more event sequences that contain an event related with the faulty interest
transition.

In addition, we tested several times the code generation tool chain with invalid test cases
to see if the generated code handles correctly these cases. An example of such invalid test
case we presented earlier where we introduced a bug in the generated code to check if our
interpreter will catch the error. If we do not modify the generated code we see that the
generated system reacts in the correct way by interrupting the execution of the transition.

Another example can be seen in figure 5.7, where first two accounts are created and
then a transaction is initiated between the two accounts. However, the amount that is being
transferred from the one account to the other will cause the balance of the "sender" to
become negative. Therefore, we should except that the external invocation of the withdraw
transition in the "sender" account will fail, causing also the primary transition to fail. This
means that the book transition should not be completed successfully. Indeed the generated
code handles correct also this invalid test case and therefore throws an error. Thus, the
atomicity of a transition seems to be preserved in the generated system, meaning that when
a secondary transition fails then the primary transition fails too.
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Chapter 6

Related Work

In this chapter we discuss relevant research that focuses on testing code generators. In
addition, we briefly discuss approaches which try to verify whether a code generator works
correctly. We divide these works into two main categories: testing approaches and formal
approaches. It should be mentioned that as "formal" we consider approaches that aim to
prove properties of a system using some sort of mathematical reasoning and which try to
guarantee that these properties hold in all cases. On the other hand, testing approaches try to
detect bugs or prove that a property does not hold (or holds) under a sample of all possible
cases. However, it could be the case that a testing approach uses as its basis the formal
methods of mathematics to test a code generator (eg. formal specification of the semantics).

6.1 Testing approaches for code generators

In the current section we describe approaches that are directly related with our approach
as they have the exact same purpose, that is to test code generators. As we explained in
our introductory section, code generators are not typical software artifacts as their input and
output are objects that also have execution semantics besides just syntactic structure. Our
approach focuses on testing generated code’s behavior when it is executed, hence, we do
not discuss approaches that focus mainly on syntactic constructs of a code generator (eg.
grammar-based testing [26, 29]).

Rajeev et al. do not focus only on the syntactical aspects of a code generator but sim-
ilarly to our approach they also try to test code generators from a semantics perspective
[37, 40, 41, 42]. In particular, in the aforementioned papers they propose an approach for
generating test models that take into account both syntactic and semantic aspects of the
modelling language.

The input to their method is a formal meta-model that contains syntactic and semantic
definitions of the modelling language expressed using inference rules along with a test spec-
ification that contains coverage criteria regarding which syntactic and semantic rules should
be tested. Their method constructs an inference tree representing the semantic scenario to
be tested and uses a custom constraint solver to solve the constraints extracted from the
inference tree. In that way the method generates syntactically valid test models along with
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inputs/outputs that will make the model capable of exhibiting the scenario. These test mod-
els are fed to the code generator and the generated program is then executed using as inputs
those that were generated along with the test model. Finally, the output of the execution is
compared for conformance to the output that was also generated with the test model.

Their method is similar to our approach in terms that both approaches focus on the
execution semantics of the modelling language and in the fact that their generated test suite
also proceeds in a back-to-back fashion. However, our approach differs in many ways, the
two main differences are: that our approach do not take into account syntactic aspects of the
modelling language as we do not generate test models, and secondly their approach is based
on formal methods (eg. inference rules) whereas our approach is based on a definitional
interpreter.

Other works that also employ the idea of back-to-back testing for code generators are
those of Sturmer et. al. [46, 47, 49]. The approach of Stürmer et al. mainly focuses on
the automatic generation of test cases (i.e. test models, inputs and outputs for the models)
using graph transformation rules. In particular, they formalize the transformation rules
implemented in the code generation tool chain as graph transformation rules which serve
as blueprint for the test model generation. Before they proceed to back-to-back-testing of a
model and the corresponding generated code they generate input and expected outputs for
the models based on structural test design techniques on both model and code level. During
the comparison of two outputs they use a definition of sufficient similar behavior to tolerate
the differences in the value and in the time domain. This workflow is also integrated by
Conrad into the certification process defined by the safety standard IEC 61508-3 [4, 9].

The aforementioned testing approach has many similarities to our testing approach such
us the use of back-to-back-testing and the notion of a sufficient similar behavior in order
to tolerate expected differences between the generated code and the model. However, their
approach relies on transformation rules implemented in the code generator which means that
this requires details of the implementation of the code generation tool chain. In contrast
to their approach, our testing approach does not require any specific details of the code
generator’s source code. In addition to that, we develop a definitional interpreter to get a
concise definition of the semantics of the modelling language and its expected behavior.

Another testing approach that tests the transformation performed by a code generator
from a semantic perspective is given by Jörges et al.[21]. Similarly with others and to
our method they presented a back-to-back-testing approach of the Genesys code generator
framework which is based on jABC (i.e. a framework for model driven development)[22].

More specifically, the authors exploit the fact that the models (Service Logic Graphs) are
composed by components (Service Independent Building Blocks) that upon their execution
leave a unique footprint, the concatenation of these footprints represents a particular trace
which is then compared against the traces that the execution of the generated code produced.
This testing approach, in contrast to our, can perform testing on multiple meta-levels as the
code generators are also created in a model-based manner. In addition, we also leverage the
execution of the model, however, we do so by using a definitional interpreter.

Stoel et al. use an interactive simulation of Rebel specifications by translating an event
that a user wants to perform into Satisfiability Modulo Theories (SMT) formulas [45]. Sub-
sequently, they use an SMT solver to check whether the event’s execution is feasible, if it
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is not they inform accordingly the user in order to try a different event. Finally, the traces
produced by the simulation are replayed to the generated system which produces an output
that is then compared to the simulation’s output. Our approach also exploits the simulation
of the model by, in contrast to their approach, using a definitional interpreter. Also we do
not develop an interactive simulation but on the contrary we generate test cases capable of
exhibiting different scenarios on the model level which serve as the input for our simulation.

In another work, Yang et al. are testing C compilers using randomly synthesized pro-
grams [57]. In particular, they exploit a similar idea as we do, that is if one has two or more
implementations of the same specification, then all implementations must produce the same
result from the same valid input otherwise one of the implementation is faulty. However, we
do not generate programs and we use a definitional interpreter as another implementation
of the modelling language instead of multiple compilers.

6.2 Formal approaches for verifying code generators

In this section we briefly discuss approaches that try to formally prove that the generated
code has the same semantics as the model or aim to prove that a property of the model
holds in the generated code for every valid input. These approaches differ inherently from
our approach us we develop a testing approach that from its nature can only provide partial
guarantees for the correctness of the code generation tool chain.

One category of verification approaches is the use of theorem proving techniques [28,
19]. Although these approaches constitute a very strong approach in proving the correctness
of code generators, in practice their use in an industrial context is still considered infeasi-
ble. This is due to several reasons, some of them including the complexity that entails the
construction of such proofs, the effort needed for the use of theorem proving tools and last
but not least a model transformation in an industrial context might contain hundreds of rules
which besides the increased difficulty, create scalability issues [36].

Model checking is another formal method that is used to prove whether a system is
working correctly. Model checkers exploit state-space exploration to specify all the possible
paths of a system, having executed all paths can prove if a system is correct [30]. Basically
the goal of model checking is to find a reachable state in which a property of the model
does not hold (known also as safety property). In case that a state is reached where this
property does not hold then a counterexample is returned with the trace that leads to that
state. Model checking can be applied either to the generated system or to the source model
by translating properties of the model that should be preserved to some formal language.
Examples of such approaches constitute the works of Staats et al. [44] and Rahim et al. [1].

Stoel et al. uses bounded model checking, which is a variant of model checking that
searches a counterexample in executions whose length is bounded by some integer k [5],
to check whether there are states where the invariants modeled with the Rebel specification
language do not hold [45]. They do so by mapping Rebel to SMT formulas with which they
are trying to verify that the invariants hold for traces up to length k.

However, model checking is an incredibly expensive method. Taking into account all the
possible inputs that a system accepts along with the failures which can experience, running
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a model checker makes it an extremely expensive procedure in terms of time and resources
[30].
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Chapter 7

Conclusion and Future Work

In this last chapter we give a summary of this thesis and we discuss the project’s contri-
butions. Then, we give some suggestions for further research and improvements of our
approach.

7.1 Conclusion

In this thesis we focused on testing generated code’s behavior rather than its concrete syntax.
In the introduction we already stressed the importance of testing code generators from a
semantic perspective and we presented the main research question of the current thesis:
how could Code Generators be tested against a definitional interpreter?

To answer this question, we described and demonstrated our method that leverages a
definitional interpreter to test whether the generated backend application is generated prop-
erly from ING’s Maverick specifications. In chapter 2 we gave a high-level description of
our testing approach that employs a similar approach to back-to-back testing based on the
execution semantics of the Maverick DSL given by a definitional interpreter. In addition,
we provided an overview of ING’s code generators and we described the semantics of the
Maverick DSL.

Consequently, we described in chapter 3 the implementation of the main building block
of our approach, that is the development of the definitional interpeter which has the explicit
goal to provide us with a semnatic specification of the Maverick DSL. On top of that we
presented our approach for generating test sequences that will be given as input to both the
definitional interpreter and generated code. This enable us firstly to proceed in back-to-back
fashion and secondly to increase our confidence about the correctness of the generated code
as well as the practicability of our approach.

During the evaluation part of our approach (chapter 5), we tested the generated backend
application using invalid and valid execution. With the invalid execution we tested the
generated system whether it behaves correct in cases that the input triggers a sequence of
events that should not be possible according to the specification. With the valid execution
we tested whether the traces produced by the execution of the generated code conform to
the traces expected from the definitional interpreter.
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7. CONCLUSION AND FUTURE WORK

With our testing approach we found bugs that were manually injected in the generated
code but also an already existing bug in the generated system. This proves that the proposed
approach already can be efficiently used to detect bugs in the system that was generated by
the code generation tool chain. In particular, we demonstrated that our approach is capa-
ble of finding faults related with wrongly generated pre/post conditions or invariants of the
model. An example of this is given in section 5.3 where we intentionally changed the gener-
ated pre and post conditions of a withdraw transition to allow an account to have a negative
balance. In addition, our approach detected an already existing error in the implementation
of the multiplication of a percentage type field with a money type field.

No faults were found when we tested the capability of the specification instances to in-
teract with each other. More specifically, a transition’s atomicity seems to be preserved in
the generated code, in the sense that when a secondary transition fails the primary transition
fails too. However, our approach does not support concurrent interactions between spec-
ification instances and therefore we cannot draw conclusions about the behavior of these
interactions on concurrent situations.

Moreover, compared to other related works that we described in chapter 6 our method
distinguishes itself mainly through the use of the definitional interpreter. As we showed
in chapter 3, the development of a definitional interpreter can provide us with a concise
definition of the behavior of the modelling language by focusing on the simplicity and
clarity of the implementation. In contrast to formal approaches, our approach is capable of
addressing complexity and scalability issues. For instance, as modelling languages usually
tend to evolve by adding or alternating language constructs, code generators have also to
be updated to resemble these changes. In such cases our testing approach could easily
reflect this change by possibly just adding a new case in the large match expression that
we presented in chapter 3 and proceed with implementing the definition of the newly added
constructs.

Finally, based also on our experience within ING, such approach produces a specifica-
tion of the semantics of the modelling language which can be easily communicated along
the developers, especially compared to semantic formalisms that are used in formal ap-
proaches. Most of the developers are expert programmers which makes it easier for them to
understand a semantic specification given by a definitional interpreter.

7.2 Future work

In this section we suggest some directions for further research and improvements of our
approach based on our findings and the limitations of our approach.

As we explained earlier, one of the limitations of our approach is that does not test the
generated code in situations that we have concurrent interactions between several specifica-
tion instances as this is not supported through the current simulation of the model. Because
concurrent interactions is mostly the case in production environments, it is very important
to focus on modifying the current simulation of the model in order to support concurrent
interactions between the specification instances.

Furthermore, our approach is not focusing on developing a novel method for generating

60



7.2. Future work

test cases that can be given to both the interpreter and generated system. Our approach is
a testing method, which means can only give partial guarantees for the correctness of the
generated code. As a result, further research should be conducted in combining our method
with a more sophisticated approach in generating test cases that might lead to the exposure
of new bugs.

Finally, the Maverick specifications used during the experiments that we conducted, are
only simple examples of an account and transaction specification. Although, we were able
to detect bugs and prove the value of our approach using these specifications, normally such
specifications will be far more complex within a banking environment. Therefore, future
work should use more complex specifications along with our approach.

61





Bibliography

[1] Lukman Ab Rahim and Jon Whittle. Verifying semantic conformance of state
machine-to-java code generators. In International Conference on Model Driven Engi-
neering Languages and Systems, pages 166–180. Springer, 2010.

[2] Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon Simmonds, Robert
France, Sudipto Ghosh, Franck Fleurey, and Yves Le Traon. Model transformation
testing challenges. In ECMDA workshop on Integration of Model Driven Develop-
ment and Model Driven Testing., 2006.

[3] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,
2003.

[4] Ron Bell. Introduction to iec 61508. In Proceedings of the 10th Australian workshop
on Safety critical systems and software-Volume 55, pages 3–12. Australian Computer
Society, Inc., 2006.

[5] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu,
et al. Bounded model checking. Advances in computers, 58(11):117–148, 2003.

[6] Bettina Buth, Karl-Heinz Buth, Martin Fränzle, Burghard v Karger, Yassine
Lakhneche, Hans Langmaack, and Markus Müller-Olm. Provably correct compiler
development and implementation. In International Conference on Compiler Construc-
tion, pages 141–155. Springer, 1992.

[7] Tsun S. Chow. Testing software design modeled by finite-state machines. IEEE trans-
actions on software engineering, (3):178–187, 1978.

[8] David R Christiansen, Klaus Grue, Henning Niss, Peter Sestoft, and Kristján S
Sigtryggsson. An actuarial programming language for life insurance and pensions.
In Proceedings of 30th International Congress of Actuaries. Washington DC: Interna-
tional Actuarial Association, 2013.

[9] Mirko Conrad. Testing-based translation validation of generated code in the context
of iec 61508. Formal Methods in System Design, 35(3):389–401, 2009.

63



BIBLIOGRAPHY

[10] Maulik A Dave. Compiler verification: a bibliography. ACM SIGSOFT Software
Engineering Notes, 28(6):2–2, 2003.

[11] Ibrahim K El-Far and James A Whittaker. Model-based software testing. Encyclope-
dia of Software Engineering, 2002.

[12] Arthur D Friedman and Premachandran R Menon. Fault detection in digital circuits.
Prentice Hall, 1971.

[13] Neelam Gupta, Aditya P Mathur, and Mary Lou Soffa. Automated test data generation
using an iterative relaxation method. ACM SIGSOFT Software Engineering Notes, 23
(6):231–244, 1998.

[14] David Harel. Statecharts: A visual formalism for complex systems. Science of com-
puter programming, 8(3):231–274, 1987.

[15] Charles Antony Richard Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576–580, 1969.

[16] Gerard J Holzmann and William Slattery Lieberman. Design and validation of com-
puter protocols, volume 512. Prentice hall Englewood Cliffs, 1991.

[17] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-driven engineering prac-
tices in industry. In Proceedings of the 33rd International Conference on Software
Engineering, pages 633–642. ACM, 2011.

[18] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Empirical
assessment of mde in industry. In Proceedings of the 33rd international conference on
software engineering, pages 471–480. ACM, 2011.

[19] Nassima Izerrouken, Xavier Thirioux, Marc Pantel, and Martin Strecker. Certifying an
automated code generator using formal tools: Preliminary experiments in the geneauto
project. In European Congress on Embedded Real-Time Software (ERTS), Toulouse,
volume 29, pages 2008–01, 2008.

[20] Leslie A Johnson et al. Do-178b, software considerations in airborne systems and
equipment certification. Crosstalk, October, 199, 1998.

[21] Sven Jörges and Bernhard Steffen. Back-to-back testing of model-based code gener-
ators. In International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, pages 425–444. Springer, 2014.

[22] Sven Jörges, Tiziana Margaria, and Bernhard Steffen. Genesys: service-oriented con-
struction of property conform code generators. Innovations in Systems and Software
Engineering, 4(4):361–384, 2008.

[23] Sarmen Keshishzadeh and Arjan J Mooij. Formalizing dsl semantics for reasoning
and conformance testing. In International Conference on Software Engineering and
Formal Methods, pages 81–95. Springer, 2014.

64



Bibliography

[24] Thomas Koshy. Discrete mathematics with applications. Elsevier, 2004.

[25] Nikolai Kosmatov, Bruno Legeard, Fabien Peureux, and Mark Utting. Boundary cov-
erage criteria for test generation from formal models. In Software Reliability Engi-
neering, 2004. ISSRE 2004. 15th International Symposium on, pages 139–150. IEEE,
2004.

[26] Ralf Lämmel and Wolfram Schulte. Controllable combinatorial coverage in grammar-
based testing. In IFIP International Conference on Testing of Communicating Systems,
pages 19–38. Springer, 2006.

[27] David Lee and Mihalis Yannakakis. Principles and methods of testing finite state
machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[28] Dirk Leinenbach, Wolfgang Paul, and Elena Petrova. Towards the formal verification
of a c0 compiler: Code generation and implementation correctnes. In null, pages 2–12.
IEEE, 2005.

[29] Peter M. Maurer. Generating test data with enhanced context-free grammars. Ieee
Software, 7(4):50–55, 1990.

[30] Caitie McCaffrey. The verification of a distributed system. Communications of the
ACM, 59(2):52–55, 2016.

[31] Parastoo Mohagheghi and Vegard Dehlen. Where is the proof?-a review of expe-
riences from applying mde in industry. In European Conference on Model Driven
Architecture-Foundations and Applications, pages 432–443. Springer, 2008.

[32] Chamin Nalinda and Chamath Keppitiyagama. Domain specific language for speci-
fying operations of a central counterparty. In Advances in ICT for Emerging Regions
(ICTer), 2017 Seventeenth International Conference on, pages 1–8. IEEE, 2017.

[33] Jeff Offutt and Aynur Abdurazik. Generating tests from uml specifications. In In-
ternational Conference on the Unified Modeling Language, pages 416–429. Springer,
1999.

[34] David Owen, Dejan Desovski, and Bojan Cukic. Random testing of formal software
models and induced coverage. In Proceedings of the 1st international workshop on
Random testing, pages 20–27. ACM, 2006.

[35] Gordon D Plotkin. A structural approach to operational semantics. 1981.

[36] Lukman Ab Rahim and Jon Whittle. A survey of approaches for verifying model
transformations. Software & Systems Modeling, 14(2):1003–1028, 2015.

[37] AC Rajeev, Prahladavaradan Sampath, KC Shashidhar, and S Ramesh. Cogente: A
tool for code generator testing. In Proceedings of the IEEE/ACM international con-
ference on Automated software engineering, pages 349–350. ACM, 2010.

65



BIBLIOGRAPHY

[38] John C Reynolds. Definitional interpreters for higher-order programming languages.
In Proceedings of the ACM annual conference-Volume 2, pages 717–740. ACM, 1972.

[39] Krishan Sabnani and Anton Dahbura. A protocol test generation procedure. Computer
Networks and ISDN systems, 15(4):285–297, 1988.

[40] Prahladavaradan Sampath, AC Rajeev, S Ramesh, and KC Shashidhar. Testing model-
processing tools for embedded systems. In Real Time and Embedded Technology and
Applications Symposium, 2007. RTAS’07. 13th IEEE, pages 203–214. IEEE, 2007.

[41] Prahladavaradan Sampath, AC Rajeev, KC Shashidhar, and S Ramesh. How to test
program generators? a case study using flex. In Software Engineering and Formal
Methods, 2007. SEFM 2007. Fifth IEEE International Conference on, pages 80–92.
IEEE, 2007.

[42] Prahladavaradan Sampath, AC Rajeev, S Ramesh, and KC Shashidhar. Behaviour
directed testing of auto-code generators. In 2008 Sixth IEEE International Conference
on Software Engineering and Formal Methods, pages 191–200. IEEE, 2008.

[43] David A Schmidt and Denotational Semantics. A methodology for language develop-
ment. 1997.

[44] Matthew Staats and Mats PE Heimdahl. Partial translation verification for untrusted
code-generators. In International Conference on Formal Engineering Methods, pages
226–237. Springer, 2008.

[45] Jouke Stoel, Tijs van der Storm, Jurgen Vinju, and Joost Bosman. Solving the bank
with rebel: on the design of the rebel specification language and its application inside
a bank. In Proceedings of the 1st Industry Track on Software Language Engineering,
pages 13–20. ACM, 2016.

[46] Igno Sturmer and Mirko Conrad. Test suite design for code generation tools. In Auto-
mated Software Engineering, 2003. Proceedings. 18th IEEE International Conference
on, pages 286–290. IEEE, 2003.

[47] Ingo Stürmer and Mirko Conrad. Code generator testing in practice. In GI Jahresta-
gung (2), pages 33–37, 2004.

[48] Ingo Stürmer, Daniela Weinberg, and Mirko Conrad. Overview of existing safeguard-
ing techniques for automatically generated code. In ACM SIGSOFT Software Engi-
neering Notes, volume 30, pages 1–6. ACM, 2005.

[49] Ingo Stürmer, Mirko Conrad, Heiko Doerr, and Peter Pepper. Systematic testing of
model-based code generators. IEEE Transactions on Software Engineering, 33(9):
622–634, 2007.

[50] Mark Utting and Bruno Legeard. Practical model-based testing: a tools approach.
Elsevier, 2010.

66



Bibliography

[51] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An an-
notated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

[52] Mladen A Vouk. Back-to-back testing. Information and software technology, 32(1):
34–45, 1990.

[53] Stephan Weißleder. Simulated satisfaction of coverage criteria on uml state machines.
In Software Testing, Verification and Validation (ICST), 2010 Third International Con-
ference on, pages 117–126. IEEE, 2010.

[54] Stephan Weißleder and Bernd-Holger Schlingloff. Deriving input partitions from uml
models for automatic test generation. In International Conference on Model Driven
Engineering Languages and Systems, pages 151–163. Springer, 2007.

[55] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strategies. IEEE
Transactions on software Engineering, (7):703–711, 1991.

[56] James A Whittaker and Michael G Thomason. A markov chain model for statistical
software testing. IEEE Transactions on Software engineering, 20(10):812–824, 1994.

[57] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. In ACM SIGPLAN Notices, volume 46, pages 283–294. ACM,
2011.

[58] Justyna Zander, Ina Schieferdecker, and Pieter J. Mosterman. Model-Based Testing
for Embedded Systems. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2011.
ISBN 1439818452, 9781439818459.

67


	Preface
	Contents
	List of Figures
	Listings
	Introduction
	Testing approach
	Conformance testing of Code Generators
	ING's Code Generator

	Definitional Interpreter
	Background
	Implementation of the Definitional Interpreter

	Test Case Generation from State Machines
	Background
	Implementation of the Test Case Generation for the Maverick DSL

	Evaluation
	Setup of the Evaluation
	Comparison between the traces of the generated code and the definitional interpreter
	Results

	Related Work
	Testing approaches for code generators
	Formal approaches for verifying code generators

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

