
Formally proving the correctness of the (un)currying refactoring
Using Agda with a simple Haskell-like programming language

Michał Jóźwik1

Supervisor(s): Jesper Cockx1, Luka Miljak1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Michał Jóźwik
Final project course: CSE3000 Research Project
Thesis committee: Jesper Cockx, Luka Miljak, Koen Langendoen

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/


Abstract
When designing critical software, great care must
be taken to guarantee its correctness. Refactor-
ing is one of the techniques used to improve code
readability, maintainability, and other factors with-
out changing functionality. Thus, to ensure that
it is properly applied, automated tools are used to
perform refactoring. To ensure that the code re-
mained correct, we verified the correctness of the
tool actions using formal proof. This is assisted
by a dependently typed language Agda, which,
when used as a proof assistant, can directly sup-
port us by ensuring the soundness of the steps
taken. We consider the refactoring of currying and
its counterpart, uncurrying, using a small proof-
of-concept functional programming language with
intrinsically typed terms and de Bruijn indices.
Furthermore, we proved the retained properties of
well-typedness, termination, and value relation of
the input program. Finally, we argue that this re-
search could be extended to the full implementation
of Haskell, as well as applied to other languages
and similar refactorings.

1 Introduction
The development of secure, performant, and readable code is
a challenging problem in computer science. Every day, we
use more code for further aspects of our daily lives. The con-
tinuous development of critical systems makes it necessary
to be able to efficiently check the correctness of their func-
tionality. As these systems grow, changes are necessary and
more cognitive work is required to retain the validity of the
design. To aid with that, automated refactoring tools are used
to optimize the code structure. However, most developers are
still reluctant to use these tools because they do not trust these
guarantees of safety [1].

The motivation behind this study is to develop a tool for
automated refactoring and to prove its correctness. We want
to contribute to building trust in developers so that they can
use these refactoring tools without any issues. Second, we
want to further demonstrate the importance of formal meth-
ods, which directly allow us to verify the correctness of the
code with regard to the design and find logic bugs early in the
coding process, leading to reliable and safe software. This
has also been shown in action in real industrial processes [3],
as such the demand for such tools still exists in the industry
[5].

The primary focus of this project is to prove the correctness
of code refactoring. Specifically, we aim to address the op-
eration of currying, which involves transforming a function
that takes multiple arguments into a sequence of functions,
each with a single argument (see Listing 1). Additionally, we
investigate its inverse operation known as uncurrying.

Our objective is to formally prove that the refactoring pro-
cess has no unforeseen side effects, ensuring that the code
retains its original functionality. To achieve this, we will
employ Agda, a functional and dependently typed language

known for its ability to serve as a proof assistant, allowing
for the translation of mathematical proofs into computer pro-
grams and vice versa. The use of this assistant makes it easier
and more efficient compared to manual methods, as it can
directly accompany the development process, verify that the
steps taken follow the rules of formal logic, and support the
automated completion of parts of the proof.

This study explores an important topic that allows us to
improve code readability and performance while ensuring its
functional correctness. Although the topic of formal correct-
ness (see Section 8) and the usage of Agda for proving pro-
gram properties have been extensively researched, the refac-
toring of programs in functional languages, unlike object-
oriented languages such as Java, has received less attention
[9; 13]. Existing work provides valuable insights and an
overview of the topic’s usefulness. However, there is a lack
of in-depth research on the formal proofs of refactoring oper-
ations, particularly focusing on currying and uncurrying op-
erations.

1 -- Original function
2 f1 : (Int, Int) → Int
3 f1 (x, y) = x + y
4

5 -- Function after currying
6 f2 : Int → Int → Int
7 f2 = λ x → (λ y → x + y)

Listing 1: Example of currying and uncurrying (transformation back
from f2 to f1) operation.

Therefore, the main objective of this study is to investigate
the feasibility of formal proof methods to check the correct-
ness of the currying (and uncurrying) refactoring in a simple
Haskell-like language1 using Agda.

We make the following contributions, to explore this prob-
lem:

• We create an intrinsically well-typed language, with de
Bruijn indices, that mimics a small subset of Haskell’s
functionality.

• A set of big-step semantics rules is provided to show the
relation between the terms and the output values.

• The definitions of the functions for performing currying
and uncurrying transformation are given.

• We prove the retained well-typedness and termination,
and value relation of the refactoring.

In this research paper, firstly in Section 2, the background
of this research and all the important information is provided.
In Section 3, we describe the development of the special pro-
gramming language used for this research. The main proof
and its properties will be explained in Section 4. Limita-
tions follow this in Section 5. Furthermore, Section 6 reflects
on the ethics and overall reproducibility of the research out-
comes, followed by a general discussion of this research in
Section 7. Lastly, we consider the related work in Section

1The generalization of this choice is discussed in Section 5.1



8 and finally derive conclusions about this work and identify
potential future steps in Section 9.

2 Background
This section describes all the relevant information that might
be useful or required to properly understand the content of
this study. We provide detailed information about the refac-
toring, and Agda programming language and give general ad-
vice on the development process.

2.1 Refactoring
The process of refactoring is one of the main subjects of this
study and is a well-known topic in literature. The term ”refac-
toring” was introduced in the 1990s by Smalltalk2 program-
mers, however, one of the more well-established definitions
was provided by Martin Fowler, who defines it as ”A series
of small steps, each of which changes the program’s internal
structure without changing its external behavior” [6].

According to Fowler, the general benefits of these changes
include better software maintainability, simpler code, the eas-
ier process of finding bugs, and the removal of code smell.
Furthermore, he provides guidelines for refactoring tools.
The most relevant rule for this research is that tools should be
based on provable transformations with mathematical proof
that the semantics do not change. In practice, these guide-
lines are often not adhered to; thus, some automated refac-
toring may introduce unforeseen changes that create bugs in
the software [7]. In other cases, refactoring may not be for-
mally proven; thus, program testing is still an important and
relevant part of the process [6].

2.2 Agda Programming Language
Agda is a functional programming language with a dependent
type system. It is based on the type theory, which concerns
both programming and logic, to express syntactic correctness.
For this reason, it is a total language, which means that if any
program with type T is executed, then it will always result
in the value of type T . This program must terminate in finite
time, and no runtime error can occur unless specified explic-
itly. The main reason for using Agda in this project is that it
can be used as a proof assistant and allows one to ensure the
correctness of specific programs at compile time. This is pos-
sible because of the Curry-Howard correspondence, which
shows a direct relationship between the logical specification
and the dependent types [11].

Dependent types
The main feature of Agda used in this paper is dependent
types. They are introduced by having hierarchies of types
indexed by objects of another type. An often-used example is
of a Vec A n type (see Listing 2).

In this case, the Vec A n type corresponds to a family of
vectors of a given type A with an explicitly given size n. This
allows us to better formalize the constraints required by the
program to avoid runtime errors. This exact dependent type

2Smalltalk is an Object Oriented Language created in 1970s
mostly for educational purposes, which later inspired new program-
ming languages such as Java.

1 -- Vec type definition
2 data Vec (A : Set) : Nat -> Set where
3 [] : Vec a˜zero
4 _::_ : {n : Nat}
5 -> a˜
6 -> Vec a˜n
7 -> Vec a˜(suc n)

Listing 2: Example of a dependent type definition.

can be interpreted as a list of a given length. The [] construc-
tor is used to create an empty Vec of a given type and size of
0. The other constructor is interpreted as a prepend opera-
tor3, where an element of type A is provided on the left and
the existing Vec of the same type. This results in a new Vec
that now includes the new element, and its type directly rep-
resents the updated size, which is a successor of the previous
size.

2.3 Development process

Most of the fundamental knowledge of this study has been
taken from the PLFA book (see [12]). It goes deeply into
the usage of Agda, from simple to very advanced tasks. It
has been used as a guide throughout development and as the
main source of code examples. Within the book content, there
have also been countless embedded exercises, which allow
for further development of a better understanding of the for-
mal methods. For a keen reader who would like to start re-
search in a given area, it is definitely necessary to read. To
further aid in obtaining a proper introduction to the field of
programming languages, we received additional exercise ma-
terial directly related to the creation of a small functional lan-
guage, which was later used as a base for the HLL, as de-
scribed in the following section.

3 Programming language development
To perform refactoring on a program, we have to begin with
a programming language to perform this action. The main
research area of this paper is the formal proofs of refactor-
ing; thus, we do not require the language to have a separate
parser, as we can only focus on the abstract syntax tree of this
language. With this approach, we avoid working on irrelevant
elements for this research and focus more on the main subject
of this study.

The language created during this research resembles the
syntax of other functional programming languages, particu-
larly Haskell. Throughout this paper, we refer to this created
language as Haskell-Like Language (HLL). The capabilities
of the possible programs are much less extensive, as the im-
plementation of all features is not feasible within the research
period. However, all the relevant parts of the refactoring were
implemented and are described in the following subsections.

3Underscores can be interpreted as places for arguments. Agda
calls these mixfix operators - they allow for a more convenient syn-
tax that allows mixing arguments within the defined syntax.



3.1 Type system
To start with the HLL definition we have to define the avail-
able types (Ty) as well as type context (Ctx) explained in
detail further in the text (see Listing 3).

1 data Ty : Set where
2 ...
3 numT : Ty -- Natural number
4 _⇒_ : Ty → Ty → Ty -- 1-arg functions
5 /_/_⇒_ : Ty → Ty → Ty → Ty -- 2-arg functions
6

7 Ctx = List Ty

Listing 3: The definition of the main types and type context used in
the HLL.

The HLL uses intrinsic typing for its syntax. It works in
such a way that only well-typed programs can be expressed,
which makes it much easier to show the preservation of type
after refactoring. We do not have to write separate type-
checking proofs, as they have already been checked by Agda.

This typing system is based directly on the notion of infer-
ence rules, which, given a list of premises, draw a conclusion.
An example of this would be the following derivation: given
two expressions n1 and n2 in context Γ of a type numT , the
result of add to these two expressions has a type numT as
well. This can be formally written, as shown in Figure 1.

[N]
Γ ⊢ n1 : numT

[N]
Γ ⊢ n2 : numT

Γ ⊢ (add n1 n2) : numT

Figure 1: Inference rules for the add instruction.

The previously described inference rules can be directly
translated to Agda to define HLL syntax as shown in Listing
4.

1 -- Following implicit arguments used on the code
have types as defined after the colon↪→

2 private
3 variable
4 Γ : Ctx
5

6 data _⊢_ : Ctx → Ty → Set where
7 num : N
8 → Γ ⊢ numT
9 add : Γ ⊢ numT

10 → Γ ⊢ numT
11 → Γ ⊢ numT

Listing 4: Example of syntax definition using intrinsic typing.

To further get to the point where currying refactoring is
possible, we need to define the language constructs for anony-
mous functions. With the current approach, we mostly re-
quire functions that accept a single argument and two argu-

ments to perform the currying as shown in the example pro-
vided in Listing 1. In Section 5, we define the generalization
for multi-argument functions with proper reasoning. Section
7.1 describes the use of special constructs instead of regular
tuples.

Currently, the most important parts include function defini-
tions, applications, and variables, which can be directly seen
in Listing 5.

1 private
2 variable
3 t u v : Ty
4 Γ : Ctx
5

6 data _⊢_ : Ctx → Ty → Set where
7 ...
8 -- Variable lookup
9 var : t ∈ Γ

10 → Γ ⊢ t
11 -- Single argument function
12 fun : (t :: Γ) ⊢ u
13 → Γ ⊢ (t ⇒ u)
14 -- Two argument function
15 fun2 : (t :: u :: Γ) ⊢ v
16 → Γ ⊢ (/ t / u ⇒ v)
17 -- Single argument function application
18 app : Γ ⊢ (t ⇒ u)
19 → Γ ⊢ t
20 → Γ ⊢ u
21 -- Two argument function application
22 app2 : Γ ⊢ (/ t / u ⇒ v)
23 → Γ ⊢ t
24 → Γ ⊢ u
25 → Γ ⊢ v

Listing 5: Syntax definition of functions in HLL.

3.2 De Bruijn indices

In the previous subsection, as one of the language constructs,
we used a variable lookup requiring t ∈ Γ as a premise for
its resulting type. In fact, it does not use a name to identify
variables but uses a concept known as the de Bruijn indices
[4]. They are represented similarly to natural numbers, with
the most recently bound variable and its successor (see the
definition in Listing 6). Thus, to perform a variable lookup,
we must provide a witness of the existence of the provided
type in the type context. The definition used here is based on
the Chapter ”DeBruijn” from the PLFA book [12].

1 data _∈_ : Ty → Ctx → Set where
2 here : ∀ {a as} → a ∈ (a :: as)
3 there : ∀ {a1 a2 as}
4 → (a1 ∈ as)
5 → a1 ∈ (a2 :: as)

Listing 6: Definition of the de Bruijn lookup.



3.3 Big-step semantics
The next important step when defining a language is the ac-
tual evaluation of the given program. We would want to end
up with a useful result after performing each instruction in
our code. In this case, the list of the possible output values
has to be defined, which for the HLL case can be seen in List-
ing 7. Furthermore, to be able to evaluate functions properly,
we need to use the environment (Env), which stores a corre-
sponding value to each element in the type context, which can
be later used to evaluate functions.

1 private
2 variable
3 t u v : Ty
4 Γ : Ctx
5 γ : Env Γ
6

7 data Env : Ctx → Set
8 [] : Env []
9 _::_ : Val t → Env Γ → Env (t :: Γ)

10

11 lookup-val : Env Γ → t ∈ Γ → Val t
12 lookup-val (v :: γ) here = v
13 lookup-val (v :: γ) (there x) = lookup-val γ x
14

15 data Val : Ty → Set where
16 ...
17 numV : N → Val
18 closV : Env Γ → (t :: Γ) ⊢ u → Val
19 closV2 : Env Γ → (t :: u :: Γ) ⊢ v → Val

Listing 7: Definition of all the available values in HLL, which repre-
sent the possible outputs of the program. It also defines the environ-
ment of the bound variables, as well as the function used to lookup
a given variable based on the witness from the previous chapter.

Finally, to obtain the result of the given program, we use
big-step semantics, which is a relation between the input
terms and output values [12]. Suppose we have a term P
that evaluates to a value V in the given environment γ, which
is represented by γ ⊢ P ⇓ V . We must define all these rela-
tions for each possible instruction in our program to represent
all the possible outcomes that could be calculated using the
provided syntax, which for the HLL is shown in Listing 8.
This formalization uses a call-by-value strategy as it directly
evaluates all arguments, even in cases where they might not
be directly needed. This is a different approach from that of
Haskell, which uses a call-by-need4 strategy.

4 Refactoring proof
After defining the language syntax and its semantics, we can
continue with the main subject of the paper, which is about
performing the actual refactoring.

4.1 Refactoring definition
The definition of the refactoring functions is provided in List-
ing 9. It uses a simple approach of pattern matching on all

4https://wiki.haskell.org/Lazy evaluation

1 private
2 variable
3 Γ ∆ : Ctx
4 γ : Env Γ
5 δ : Env ∆
6 n : N
7 v1 : Val t
8 v2 : Val u
9 t u v : Ty

10

11 data _⊢_⇓_ : Env Γ → Γ ⊢ t → Val t → Set where
12 ...
13 ⇓var : (x : t ∈ Γ)
14 → γ ⊢ (var x) ⇓ lookup-val γ x
15 ⇓num :
16 γ ⊢ (num n) ⇓ (numV n)
17 ⇓add : ∀ {e1 e2 n1 n2}
18 → γ ⊢ e1 ⇓ (numV n1)
19 → γ ⊢ e2 ⇓ (numV n2)
20 → γ ⊢ (add e1 e2) ⇓ numV (n1 + n2)
21 ⇓fun : ∀ {b}
22 → γ ⊢ (fun {t} {Γ} {u} b) ⇓ (closV γ b)
23 ⇓fun2 : ∀ {b}
24 → γ ⊢ (fun2 {t} {u} {Γ} {v} b) ⇓ (closV2 γ b)
25 ⇓app : ∀ {f : Γ ⊢ t ⇒ u}
26 {b : (t :: ∆) ⊢ u}
27 {arg}
28 → γ ⊢ f ⇓ (closV δ b)
29 → γ ⊢ arg ⇓ v1
30 → (v1 :: δ) ⊢ b ⇓ v2
31 → γ ⊢ (app f arg) ⇓ v2
32 ⇓app2 : ∀ {f : Γ ⊢ / t / u ⇒ v}
33 {b : (t :: u :: ∆) ⊢ v}
34 {arg1 arg2 v3}
35 → γ ⊢ f ⇓ (closV2 δ b)
36 → γ ⊢ arg1 ⇓ v1
37 → γ ⊢ arg2 ⇓ v2
38 → (v1 :: v2 :: δ) ⊢ b ⇓ v3
39 → γ ⊢ (app2 f arg1 arg2) ⇓ v3

Listing 8: Rules for evaluating all the relevant constructs in HLL.

possible constructs in the language, followed by either a re-
cursive call to the function or by transforming the relevant
construct. Some of the constructs were omitted to make the
listing more concise, as they only called the function recur-
sively. In this case, the most important construct is the func-
tion application, as when we encounter two applications fol-
lowing each other, we can directly translate them into a single
two-argument function application. The reverse also holds:
when we encounter a two-argument function application, we
can unwrap it into two separate function applications. The
type signature for both refactorings also provides us with
a well-typedness proof, as the type of program before and
after must match each other.

With this approach, there are some limitations to the ac-
tions that can be performed. In Section 5 we discuss the issue
that remains with the current approach to uncurrying, as it is
more restrictive in its application than currying. Another re-
mark that could be said about refactoring is that it applies to
all possible cases. Currently, owing to language limitations

https://wiki.haskell.org/Lazy_evaluation


and time constraints, it is not possible to perform refactoring
only on a subset of selected functions; thus, it is applied to all
possible locations in the provided code.

1 private
2 variable
3 p : Ty
4 Γ : Ctx
5

6 ref-type : Ty → Ty
7 ...
8 ref-type numT = numT
9 ref-type (t ⇒ u) =

10 (ref-type t) ⇒ (ref-type u)
11 ref-type (/ t / u ⇒ v) =
12 (ref-type u) ⇒ (ref-type t) ⇒ (ref-type v)
13

14 ref-ctx : Ctx → Ctx
15 ref-ctx [] = []
16 ref-ctx (x :: xs) = (ref-type x) :: (ref-ctx xs)
17

18 ref-curry : Γ ⊢ p → (ref-ctx Γ) ⊢ (ref-type p)
19 ...
20 ref-curry (fun2 x) = fun (fun (ref-curry x))
21 ref-curry (app2 x y z) =
22 app
23 (app (ref-curry x) (ref-curry z))
24 (ref-curry y)
25

26 ref-uncurry : Γ ⊢ p → Γ ⊢ p
27 ...
28 ref-uncurry (app (app (fun (fun x)) arg2) arg1) =
29 app2
30 (fun2 (ref-uncurry x))
31 (ref-uncurry arg1)
32 (ref-uncurry arg2)
33 ref-uncurry (app f arg) =
34 app (ref-uncurry f) (ref-uncurry arg)

Listing 9: Definition of the curry and uncurry refactoring with the
most relevant parts. The missing parts include pattern matching on
all other instructions from the language and recursively calling the
same refactoring.

4.2 Proof of correctness
With the definition of refactoring, we can perform proofs of
the properties previously mentioned in this paper. In practice,
all of the work done beforehand in the previous sections when
defining the language made this process much easier. Two of
the properties, which are well-typedness of the program after
refactoring as well as the proof of termination, have already
been provided to us.

We are sure that the created programs are always well-
typed because the HLL only allows well-typed expressions
to be represented with their syntax. The other property of ter-
mination is ensured automatically thanks to Agda’s design of
being a total language, which makes it such that if the pro-
gram written in the first place is accepted by Agda and defi-
nitely terminates, then the refactoring function cannot change
that fact and will perform this transformation in finite time.

Finally, we must discuss the remaining properties of the
retained semantics according to the specific mapping. This
requires explicit proof. In Listing 10 we provide the proof for
currying with the required lemma and helper functions.

1 private
2 variable
3 Γ : Ctx
4 γ : Env Γ
5 t : Ty
6 v : Val t
7 q : (Γ ⊢ t)
8

9 ref-env : Env Γ → Env (ref-ctx Γ)
10 ref-val : Val t → Val (ref-type t)
11

12 ref-env [] = []
13 ref-env (v :: vs) = (ref-val v) :: (ref-env vs)
14

15 -- Function which shows the mapping of values
16 -- after refactoring
17 ref-val (numV x) = numV x
18 ref-val (closV x x1) =
19 closV (ref-env x) (ref-curry x1)
20 ref-val (closV2 x x1) =
21 closV (ref-env x) (fun (ref-curry x1))
22

23 -- Small lemma used to prove that
24 -- the refactored lookups stay the same
25 -- Used in the proof for the ⇓var
26 lp : (γ : Env Γ) → (x : t ∈ Γ) →
27 lookup-val (ref-env γ) (ref-lookup x) ≡

ref-val (lookup-val γ x)↪→
28 lp (x :: xs) here = refl
29 lp (x :: xs) (there y) = lp xs y
30

31 curry-proof : γ ⊢ q ⇓ v
32 → (ref-env γ) ⊢ (ref-curry q) ⇓ (ref-val v)
33 ...
34 curry-proof {γ = γ} v@(⇓var x) =
35 subst
36 (λ x1 → _ ⊢ _ ⇓ x1)
37 (lp γ x)
38 (⇓var (ref-lookup x))
39 curry-proof ⇓fun = ⇓fun
40 curry-proof ⇓fun2 = ⇓fun
41 curry-proof (⇓app x x1 x2) =
42 ⇓app
43 (curry-proof x)
44 (curry-proof x1)
45 (curry-proof x2)
46 curry-proof (⇓app2 clos arg1 arg2 eval) =
47 ⇓app
48 (⇓app
49 (curry-proof clos)
50 (curry-proof arg2)
51 ⇓fun)
52 (curry-proof arg1)
53 (curry-proof eval)

Listing 10: Definition of the semantics proof of the currying refac-
toring. Less relevant constructs have again been commented out, as
they just included recursive calls to the proof function.



The proof is structured as a type of mapping from the
input semantic steps to the refactored ones. We use the
ref-val function to show how each value changes with
refactoring. The most important one is the closV2 value,
which changes to closV with the modified body containing
the previous function body wrapped with fun. Some read-
ers might also find it interesting that this function internally
uses ref-curry, which might lead to some confusion about
it being a circular proof. However, this is required to actually
work correctly as the defined closures directly take the body
of the function and store it within; thus, after the refactoring,
the value should also hold the refactored body.

The remaining uncurrying proof uses a similar structure
(see Listing 11) to that of the previous proof. It again uses
a function to show the mapping between the input and output
values; however, in this case, it does not transform the closure
types. This is done because of the different approach taken in
the refactoring function, as we only perform the transforma-
tion when the functions are directly coupled with the applica-
tion. This allowed us to change only the internal representa-
tion and retain the same output values.

With all of these assumptions taken, we still could not fin-
ish the proof in Agda because of the refactoring structure,
and these limitations also made it harder to close some of the
holes. The holes in the proof are indicated by {!n!}, where
n is used to index them in this paper. To properly complete
this formal proof, we provide a handwritten proof for the re-
maining holes.

First, we consider the hole with an index of 1. The pattern
match of (⇓app clos arg eval) is supposed to capture all
remaining cases of applications that were not followed by an-
other application. It is placed below the more specific pattern,
which is used to find the direct construct used in refactoring.
This hole could not be trivially filled because Agda still con-
siders the possibility of clos being in a form that could be
refactored, even though the previous matches would already
satisfy that. The most common way to solve this problem is
to match all the remaining options for the clos to satisfy all
the cases; however, Agda considers an option where the clo-
sure might be contained in a variable; thus, it cannot solve
the proper constraints. We assume that, in this case, refac-
toring is not performed, which means that the proof should
simply be called recursively without any modifications. Thus,
the hole must be filled with ⇓app (uncurry-proof clos)
(uncurry-proof arg) (uncurry-proof eval).

Second, we consider the hole with an index of 0. To for-
mally show how this can be solved manually, we provide the
following proof.

Proof. To fill in the hole with an index of 0 we need to satisfy
the goal provided by the type-checker.

The labels on the left directly correspond to the variables
provided in the specific case of pattern matching (see line 29
in Listing 11), whereas the expression after the label is the
type signature of the given variable.

1 private
2 variable
3 Γ : Ctx
4 γ : Env Γ
5 t : Ty
6 v : Val t
7 q : (Γ ⊢ t)
8

9 -- Implementation the same as in the previous
listing↪→

10 ref-env : Env Γ → Env Γ
11 ref-val : Val t → Val t
12 ...
13 ref-val (closV x x1) = closV (ref-env x)

(ref-uncurry x1)↪→
14 ref-val (closV2 x x1) = closV2 (ref-env x)

(ref-uncurry x1)↪→
15

16 uncurry-proof : γ ⊢ q ⇓ v
17 → (ref-env γ) ⊢ (ref-uncurry q) ⇓ (ref-val v)
18 ...
19 uncurry-proof ⇓fun = ⇓fun
20 uncurry-proof ⇓fun2 = ⇓fun2
21 uncurry-proof (⇓app (⇓app {f = var x} func arg2

clos) arg1 eval) =↪→
22 ⇓app
23 (⇓app
24 (uncurry-proof func)
25 (uncurry-proof arg2)
26 (uncurry-proof clos))
27 (uncurry-proof arg1)
28 (uncurry-proof eval)
29 uncurry-proof (⇓app (⇓app {f = fun (fun f)} func

arg2 clos) arg1 eval) =↪→
30 ⇓app2
31 ⇓fun2
32 (uncurry-proof arg1)
33 (uncurry-proof arg2)
34 (uncurry-proof {!0!})
35 uncurry-proof (⇓app clos arg eval) = {!1!}
36

Listing 11: Definition of the semantics proof of the uncurrying refac-
toring. Uses the same approach as the previous listing and omits the
less relevant constructs.

Goal: (v1 :: (v2 :: γ)) ⊢ f ⇓ v

func: γ ⊢ fun (fun f) ⇓ closV δ1 b1 (1)
= γ ⊢ fun (fun f) ⇓ closV γ (fun f) (2)
⇔ δ1 = γ; b1 = fun f (3)

arg2: γ ⊢ arg2 ⇓ v2 (4)
clos: (v2 :: δ1) ⊢ b1 ⇓ closV δ b (5)

= (v2 :: γ) ⊢ fun f ⇓ closV δ b (6)
= (v2 :: γ) ⊢ fun f ⇓ closV (v2 :: γ) f (7)
⇔ δ = (v2 :: γ); b = f (8)

arg1: γ ⊢ arg1 ⇓ v1 (9)
eval: (v1 :: δ) ⊢ b ⇓ v (10)

= (v1 :: (v2 :: γ)) ⊢ f ⇓ v (11)



The step from lines 1 to 2 is valid because we directly see
the fun that needs to be reduced. Thus, in this case, the en-
vironment in the closure is directly equivalent to the current
execution environment. Similarly, we can use this knowledge
to demonstrate that the body of this closure is more detailed.

In steps from lines 6 to 7 we perform the same exact rea-
soning as before owing to the direct existence of the fun con-
struct.
∴ eval satisfies our goal, which we can use to fill in the
hole

Finally, with the second hole filled, we can conclude that
the proof for both currying and uncurrying is finished.

5 Limitations
In this section, all possible limitations encountered during the
research process are described to show the potential issues
encountered and their consequences.

5.1 Generalization of results
The research conducted in this study directly proves the refac-
toring of a specially crafted language for this purpose. This
might lead to the conclusion that this study is relevant only
to this specific language. In practice, HLL has been crafted
to resemble the syntax of the well-known programming lan-
guage Haskell. The minimal subset presented in HLL con-
tains all the most relevant constructs for the (un)currying
refactoring, thus all the non-implemented parts should not be
influenced directly by this refactoring. However, this has not
been tested, as the proper extension of the HLL to resemble
its parent was not possible within the research timeframe, but
definitely is a valid point for future research.

5.2 Assumptions
Refactoring restrictions
Throughout this research, there have been a handful of as-
sumptions that were made to aid the process of constructing
this proof. The main issue relates directly to the subject of this
research - the refactoring is done only on the two-argument
functions. In practice, the extension to three or four-argument
builds up using the same rule of converting the n-argument
function to n subsequent calls of the given sub-functions. The
ability to prove it for other exact numbers of arguments was
possible, but the best approach would be to create a generaliz-
able language construct for n-argument functions. However,
the implementation of it did not fit within the provided time
frame thus this argument remains.

Uncurrying limitation
This definition considers only programs that have direct func-
tion definition instructions. This implies that for the uncurry-
ing case, the code must be directly constructed as two func-
tions, followed by two applications, to be transformed back
to the corresponding two-argument function and application.
There is a possibility of constructing an example in which
one of the functions is actually a variable, which after proper
substitution would result in the same pattern of two functions
and applications. However, to get to that point, we need to go
through the actual semantics of the code, as refactoring only

directly changes the instruction of the program in the static
context. We have considered this edge case and determined it
to be out of the scope of this project, but might be an interest-
ing problem for any future work on this topic.

5.3 Agda as a proof-assistant
The verification of the formal proofs in this study is mostly
based on Agda. This provides us with another dependency
in our proof that Agda actually checks everything correctly.
Its capabilities are limited mostly to the language context;
thus, correctness is checked based on the Curry-Howard cor-
respondence. This does not consider the problem that there
might have been a logical error in the design itself, and as
such, Agda would not help with such cases. When this pro-
cess is performed for a more elaborate project, the code and
design of the tool must be formally specified as well as peer-
reviewed by multiple people. This would significantly de-
crease the possibility of general errors and make the process
more robust.

6 Responsible Research
This section has examined all the considerations taken into
account while doing the research to ensure that all of the core
principles of good research standards have been met.

6.1 Ethics of this research
The subject discussed in this paper does not involve any ethi-
cal issues, as it only revolves around logic and mathematical
methods. No external data has been used, as every result in
this paper has been directly derived from the created code.
Furthermore, the whole codebase is available for a public au-
dit to be verified that it has no malicious elements.

6.2 Reproducibility
The research done in this paper had been completely docu-
mented. All of the code listings describing the valid Agda
code can be directly used to prove the main subject of this
paper. As mentioned previously the code has been published
in the public repository on Github5, which allows for direct
code download, manual testing of the implementation, and
verification of the results.

7 Discussion
This section goes more in-depth into the process and ana-
lyzes the steps taken to reach a conclusion. We reflect on
the choices made during this study.

7.1 Currying definition
Some readers may find the definition of currying in this pa-
per unusual. Instead of using tuples directly, our language
presents a special construct for functions using two argu-
ments. Using tuples, we can directly use them and nest them
to have access to n-argument functions without additional
language constructs. However, this caused a problem dur-
ing the coding of the refactoring function. Because tuples

5See:
https://github.com/MetaBorgCube/brp-agda-refactoring-mjozwik

https://github.com/MetaBorgCube/brp-agda-refactoring-mjozwik


are considered to be a single element in the environment, af-
ter refactoring, they are unwrapped into multiple elements,
thus changing the size of the environment. This has caused
problems with nested definitions. The approach with special
language constructs has the advantage of retaining the envi-
ronment size and order; thus, only the interpretation of the
values is changed.

7.2 Use of manual proof
As one of the steps in formalizing the relationship between
the retained values, we had a proof that contained two holes.
The inability to finish this proof using Agda directly was most
likely due to the convoluted pattern matching in the refactor-
ing function. With some proper changes to the code struc-
ture and some other adaptations, it should be possible to con-
clude this proof directly in code; however, because of time
constraints, this was not done. a similar problem with these
kinds of holes was encountered during the development of
currying and was solved by generalizing the case for curry-
ing; however, with uncurrying being more restrictive, it was
not possible.

7.3 Choice of intrinsically-typed terms
During the early stages of development, a decision was made
regarding the type of system design of the HLL. The choice
was to employ intrinsic typing rather than having distinct
terms and type rules. This, of course, affected the develop-
ment of refactoring as well as the proof. The main benefit
of this decision is that it has automatically provided us with
a well-typedness proof of the refactored program because we
can only generate well-typed programs. This has also helped
identify potential issues earlier in the process. When consid-
ering these disadvantages, we must consider the extra com-
plexity of this approach. We must follow stricter rules when
constructing the proof and refactoring, which could poten-
tially extend the time spent on the development. In practice,
this approach would require the creation of an external well-
typedness proof, which could be longer than the more com-
plex approach. Therefore, intrinsic typing was selected de-
spite its potential for additional complexity.

8 Related work
The topic of formal methods in the refactoring of functional
programs has not been as widely researched as its object-
oriented counterpart. There exists a knowledge gap between
these different paradigms, but there are still some relevant ex-
amples of work on this subject.

One research study performed a similar case study on re-
naming refactoring in a subset of Haskell [2]. In their re-
search, they were able to implement a refactoring function to
rename the selected variables or functions, as well as prove
the soundness of this operation, which directly relates to the
work done in this study. It was similarly aided by a depen-
dently typed language, Idris, which was used as a proof assis-
tant.

Several studies have been conducted on the theory of refac-
toring operations. In [10], the authors described an approach
for the formal verification of refactoring. This subject is

closely related; however, their work is highly theoretical and
more extensible, than the one done in this paper. One of the
suggestions made by this study was the use of anonymous
syntax for convenience during the refactoring process. This
has been directly applied in this research using de Bruijn in-
dices.

Further research on this topic involves creating a generic
framework for trustworthy program refactoring [8]. It pro-
poses a general high-level abstraction of the refactoring
pipeline that allows it to be used in multiple languages. In
their work, as concrete examples, they used Java to show us-
age in object-oriented paradigms and Erlang for functional
paradigms. With this framework in mind, the research con-
ducted in this study might be extended to create a fully func-
tional refactoring tool.

9 Conclusions and Future Work
In the conclusion and future work section, we summarize the
key findings and contributions of our study, emphasizing their
importance. Additionally, we explore potential paths for fur-
ther development in this area.

9.1 Conclusions
With this research paper, we achieved the final goal of demon-
strating the feasibility of proving the correctness of curry-
ing and uncurrying refactoring using formal methods. As for
the other contributions, a small functional programming lan-
guage was created, which we argue resembled Haskell. This
language could be used as a foundation for extending this
research to other more standard languages. A basic proof-
of-concept refactoring tool was created as a function that
works directly on the internal representation of the language.
The proofs have been formally described using Agda. With
these proofs, we were able to show that the property of well-
typedness and termination is retained and that the output val-
ues relate to each other in a specifically defined way.

9.2 Future work
As a next step in this research, the refactoring function would
have to be extended to allow for more customizability and to
be used as a proper developer tool. As previously mentioned
in the limitations, currently the function refactors all occur-
rences of the given type, which might not be intended by the
programmer. Preferably, we would want to include user in-
teractions to make the tool more useful.

Furthermore, going more into the details of the implemen-
tation, the refactoring could be extended to work on the n-
argument functions, as mentioned previously in the limita-
tions. An alternative would be to use a more general defini-
tion of currying, which directly uses tuples, instead of special
multi-argument constructs.

Lastly, the research done in this paper mainly focused on
the single refactoring of currying; however, from the given
one, we could relate a handful of other examples, which
would have a similar approach to that described in this doc-
ument. During the process of identifying edge cases, a case
that included a function as an argument was identified. In
practice, this case was an example of a higher-order func-
tion that took another function as an argument. This could



be considered separate refactoring on its own, which could
be researched in a similar manner. If the same function is
used subsequently, it might be beneficial to factor it out, thus
making the code more modular and avoiding unnecessary re-
dundancy.

References
[1] Eman Abdullah AlOmar, Mohamed Wiem Mkaouer,

Christian Newman, and Ali Ouni. On preserving the
behavior in software refactoring: A systematic map-
ping study. Information and Software Technology,
140:106675, 2021.

[2] Adam David Barwell, Christopher Mark Brown, and
Susmit Sarkar. Proving renaming for haskell via de-
pendent types: a case-study in refactoring soundness.
In 8th International Workshop on Rewriting Techniques
for Program Transformations and Evaluation (WPTE
2021), 2021.

[3] Abderrahmane Brahmi, Marie-Jo Carolus, David Del-
mas, Mohamed Habib Essoussi, Pascal Lacabanne, Vic-
toria Moya Lamiel, Famantanantsoa Randimbivololona,
Jean Souyris, and Airbus Operation SAS. Industrial use
of a safe and efficient formal method based software
engineering process in avionics. Embedded Real Time
Software and Systems (ERTS 2020), 2020.

[4] N.G. de Bruijn. Lambda calculus notation with name-
less dummies, a tool for automatic formula manipu-
lation, with application to the church-rosser theorem.
Indagationes Mathematicae, 75(5):381–392, 1972.

[5] Alessio Ferrari and Maurice H Ter Beek. Formal meth-
ods in railways: a systematic mapping study. ACM
Computing Surveys, 55(4):1–37, 2022.

[6] Martin Fowler. Refactoring: Improving the design of
existing code. In 11th European Conference. Jyväskylä,
Finland, 1997.

[7] Milos Gligoric, Farnaz Behrang, Yilong Li, Jeffrey
Overbey, Munawar Hafiz, and Darko Marinov. Sys-
tematic testing of refactoring engines on real soft-
ware projects. In ECOOP 2013–Object-Oriented Pro-
gramming: 27th European Conference, Montpellier,
France, July 1-5, 2013. Proceedings 27, pages 629–653.
Springer, 2013.

[8] Dániel Horpácsi, Judit Kőszegi, and Dávid J Németh.
Towards a generic framework for trustworthy program
refactoring. Acta Cybernetica, 25(4):753–779, 2022.

[9] John Paul, Nadya Kuzmina, Ruben Gamboa, and James
Caldwell. Toward a formal evaluation of refactorings. In
Proceedings of The Sixth NASA Langley Formal Meth-
ods Workshop, 2008.

[10] Nik Sultana and Simon Thompson. Mechanical ver-
ification of refactorings. In Proceedings of the 2008
ACM SIGPLAN symposium on Partial evaluation and
semantics-based program manipulation, pages 51–60,
2008.

[11] The Agda Team. What is agda? https:
//agda.readthedocs.io/en/v2.6.3/getting-started/
what-is-agda.html, 2023. [Online; accessed 26-
May-2023].

[12] Philip Wadler, Wen Kokke, and Jeremy G. Siek. Pro-
gramming Language Foundations in Agda. August
2022.

[13] Xiang Yin, John Knight, and Westley Weimer. Exploit-
ing refactoring in formal verification. In 2009 IEEE/I-
FIP International Conference on Dependable Systems
Networks, pages 53–62, 2009.

https://agda.readthedocs.io/en/v2.6.3/getting-started/what-is-agda.html
https://agda.readthedocs.io/en/v2.6.3/getting-started/what-is-agda.html
https://agda.readthedocs.io/en/v2.6.3/getting-started/what-is-agda.html

	Introduction
	Background
	Refactoring
	Agda Programming Language
	Dependent types

	Development process

	Programming language development
	Type system
	De Bruijn indices
	Big-step semantics

	Refactoring proof
	Refactoring definition
	Proof of correctness

	Limitations
	Generalization of results
	Assumptions
	Refactoring restrictions
	Uncurrying limitation

	Agda as a proof-assistant

	Responsible Research
	Ethics of this research
	Reproducibility

	Discussion
	Currying definition
	Use of manual proof
	Choice of intrinsically-typed terms

	Related work
	Conclusions and Future Work
	Conclusions
	Future work


