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Abstract— We present the design, fabrication and 

characterization of a broadband lossless matching layer for 

shallow lens arrays. The matching layer we propose is based on 

silicon pyramids fabricated on top of the lens array by means of 

laser ablation. This matching layer has the advantage that it covers 

over an octave of bandwidth. We have compared the performance 

of this matching layer with the commonly used parylene-C 

matching layer at the center of the targetted band, 500 GHz. The 

matching layer based on the silicon pyramids has 1.6 dB higher 

transmission.  

I. INTRODUCTION 

ILICON is widely used for submillimeter-wave integrated 

lens antennas [1]-[3]. However, the high permittivity of 

silicon (��
�� � 11.9) results in high reflection at the lens-air 

interface. These reflections negatively impact the sidelobes [3], 

[4] decrease the gain [4] and have a strong impact on the input 

impedance [5]. Numerous anti-reflection coatings (also known 

as matching layers, ML) have been developed to limit these 

reflections [6]-[9]. However, the coating materials themselves 

may incur additional dielectric losses, which may not be 

negligible at submillimeter wavelengths. Furthermore, the 

adhesion of the matching layers to the silicon lens can be 

difficult, especially for cryogenically cooled lenses. Periodic 

sub-wavelength structures in the same material (silicon) as the 

lens have been used as matching layers in the past [10]-[13]. 

However, there is not direct comparison between the 

performance of a quarter-wavelength AR coating and a 

continuous impedance-transforming matching layer in an 

integrated silicon lens antenna. 

II. LENS MATCHING LAYER ANALYSIS 

We compare the simulated performance of two matching 

layers on the silicon lens antenna described in [14] in the 

operational bandwidth of this antenna of 450-650 GHz: a 

quarter-wavelength (94 	
) layer of parylene-C and a periodic 

arrangement of sub-wavelength flat-topped square pyramids in 

silicon. The pyramids are fabricated using laser ablation at Veld 

Laser Innovations B.V. (www.veldlaser.nl). Due to the small 

dimensions of the pyramids, this micro-fabrication technique 

has two constrains for the design: i) it is not possible to carve 

straight walls in the silicon. The minimum angle that can be 

obtained for these specific pyramid dimensions is 13 degrees. 

This is not a problem since we want a broadband matching layer 

and the tapered walls increase the bandwidth; ii) it is very 

difficult to end the pyramids a sharp point at the top reliably for 

the whole lens array. We therefore decided to truncate the top 

of the pyramids and form a frusta instead. These dimensions are 

given in [15] for a higher frequency design (2 THz) and have 

been scaled to 500 GHz to meet our frequency band. The design 

values can be found in Table I. The simulated transmission of 

both the parylene-C and frustra matching layers are given in 

Fig. 1. They are better than -0.3 dB for both structures in the 

center of the band but the parylene-C ML transmission decays 

for lower and higher frequencies whereas the pyramid ML stays 

fairly constant for the full bandwidth. 

III. CHARACTERIZATION OF THE FABRICATED AR COATING 

The lens array is fabricated in two steps. First, the full lens 

array is manufactured thicker than the lens nominal design. 

Secondly, this extra thickness will be carved later and become 

the pyramids. These two steps are fabrication is performed in 

the same laser setup but with two different settings. The lens 

array is made using a 3D file, where the laser follows its profile. 

Afterwards, the setup is changed to a 2D mode and the grid 

where the excess material will be removed is defined. The frusta 

are carved by passing the laser several times to obtain the 

correct depth. It is not possible to carve the frusta conformally 

using this technique but this is not a problem since the lenses 

are very shallow. The frusta of the matching layer are measured 

using a confocal microscope (Fig. 1). This type of microscope 

takes 2D images of the surface at different depths, enabling the 

reconstruction of the 3D image. The 3D images can be sliced 

and used to measure the profile of the frusta, and therefore 

obtain their period, their dimension of the top flat part and their 

height. 
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Fig. 1. Simulated transmission of both the parylene-C and the periodic frusta
matching layer. The inset shows a 3D image of the central lens and zoomed 

view of the frusta. 
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IV. MEASUREMENTS AND RESULTS 

The lens arrays are integrated and measured one-by-one in a 

lens antenna fed by a high-efficiency leaky-wave feed 

described in [14]. We measure the antenna between 450 and 

500 GHz using a VNA and two WR-2.2 frequency extenders. 

The antenna under test is in a fixed position and the receiving 

antenna placed in a 3-axis CNC stage. The antenna patterns in 

the far field at 10 cm distance are measured using an open-

ended waveguide flange with eccosorb material surrounding the 

waveguide aperture on the flange, whereas the antenna gain is 

measured using a horn with a gain of around 20 dBi. The 

measured radiation pattern is compared to the simulated pattern 

at 480 GHz (Fig. 2a). The measurements are in good agreement 

with the simulated patterns. The patterns from the parylene-C 

and pyramid matching layer are nearly identical, indicating 

similar directivity. We use Friis’ equation to simulate the 

coupling between the antenna and horn ��
�� at broadside. The 

measured coupling is in very good agreement for the frusta 

matching layer but ~1.6dB lower for the parylene-C matching 

layer (Fig. 2b). This difference can be explained by the ohmic 

loss present in the parylene-C (Fig. 2c), where an absorption 

coefficient of 35cm-1 is used [16].  

V. DISCUSSION AND CONCLUSIONS 

We compare the performance at submillimeter wavelengths 

of two different matching layers on the same silicon leaky-wave 

lens antenna. The fabricated antennas are the same with the 

exception of the matching layer. We describe the commercial 

laser ablation process used to create the frusta matching layer. 

The measured gain of the antenna with frusta matching layer is 

~1.6 dB higher than with the parylene-C matching layer. The 

difference is explained by the dielectric loss of the parylene-C, 

which is in line with the absorption coefficient in the literature. 

Furthermore, the frusta matching layer operates over more than 

an octave bandwidth. 
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