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 A B S T R A C T

In integrated power and gas energy system optimization models (ESOMs), pipeline gas transmission with 
linepack is a particularly complex problem due to its non-linear and non-convex character. For ESOMs based 
on mixed-integer linear programming, piecewise linearization is a well-established convexification approach 
for this problem, which, however, requires binary variables to model feasible combinations of linear gas 
flow and pressure segments and thus can quickly become computationally challenging. In order to improve 
computational performance, this paper proposes a piecewise linearization method specifically designed to be 
tight, resulting in a reduced problem space a solver can explore faster. We provide numerical results comparing 
the proposed formulation against two piecewise linearizations from the literature, both from a theoretical point 
of view and in terms of practical computational performance, with results showing an average speed-up of 
2.57 times for our case study. Test cases are carried out on a modified 24-bus IEEE Reliability Test System 
and a 12-node gas system, considering discrete unit commitment decisions.
1. Introduction

1.1. Motivation and literature review

Decarbonization of energy systems is one of the pressing challenges 
of the twenty-first century. A highly renewable power sector and the 
electrification of energy demands are at the heart of this transforma-
tion. However, for applications and processes where electrification is 
not possible or efficient, e.g., for hard-to-abate industries or storing 
large quantities of energy for long duration [1], gases like hydrogen, 
ammonia, synthetic natural gas etc. will be key. As the production of 
large quantities of these gases from renewable power and their bulk 
transmission are envisioned – with projected investment costs of several 
hundred billion, e.g., [1] – co-optimization of power and gas systems 
is becoming more important [2,3].

In this context, energy system optimization models (ESOMs) can 
be valuable planning tools. ESOMs typically face the challenge of 
striking a balance between the representation of the technical, temporal 
and spatial domains, while providing globally optimal solutions and 
remaining computationally tractable [4]. In integrated power and gas 
ESOMs, pipeline gas transmission is a particularly complex problem in 
the technical domain due to the nonlinear and nonconvex relation of 
(bidirectional) gas flows and gas pressure [5]. In addition, the slow gas 
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flow dynamics, i.e., the time difference before a change in outflowing 
gas mass is reflected at the pipeline inlet, enables pipelines to be used 
for short-term gas storage (linepack). Linepack is particularly important 
to mitigate operational uncertainty, e.g., for balancing weather-induced 
gas demand variations [6], and as a source of flexibility for the power 
system, e.g., for frequently dispatched gas-fired power plants [7], or for 
buffering (offshore) hydrogen production in the future [8].

In the literature, there is a plethora of modeling approaches for 
the pipeline gas transmission problem with linepack. Typically, the 
methods with the highest level of physical detail, e.g., directly solving 
the problem via nonlinear programming [9], sequential linear program-
ming [10,11], mixed-integer conic relaxation [12,13] etc., cannot guar-
antee finding globally optimal solutions and/or are computationally 
expensive. In contrast, relaxation-based methods, such as polyhedral 
envelopes [14], show relatively fast computational performance but 
can significantly violate physical realities, i.e., gas flowing against the 
pressure difference. Raheli et al. [7] provides a detailed overview of 
these and other methods.

Under the paradigms of global optimality and physical feasibility, 
outer approximation based on Taylor series and piecewise lineariza-
tion methods have been suggested. Commonly, these methods require 
formulation as a mixed-integer linear program (MILP). For the outer 
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Nomenclature

Sets

 Set of hours 𝑘.
 Set of all generators 𝑔.
 Set of gas-fired generators 𝑡.
 Set of renewable generators 𝑟.
 Set of power buses 𝑖.
 Set of gas sources 𝑠.
 Set of gas nodes 𝑚, 𝑛.
 Set of pipelines 𝑙 connecting node 𝑚 and 𝑛.
 Set of compressors 𝑐 connecting node 𝑚 and 

𝑛.


𝑚 Set of gas-fired generators connected to 𝑚.


𝑚 Set of gas sources connected to 𝑚.
 Set of grid points 𝑧, 𝑧̃ for piecewise lin-

earization.
 Set for piecewise linearization with ele-

ments 𝑢, 𝑣.
 Set for piecewise linearization with ele-

ments 𝑤.
Parameters

𝐶𝐺
𝑠 Supply cost of gas source 𝑠 ($/MSm3).

𝐶𝑂𝑀
𝑔 O&M cost of generator 𝑔 ($/MWh).

𝐶𝐸𝑁,𝐺𝑁 Cost of electricity, gas non-supplied 
($/MWh), ($/MSm3).

𝐷𝐸
𝑘,𝑖 Electricity demand at time 𝑘 and bus 𝑖

(MW).
𝐷𝐺

𝑘,𝑚 Gas demand at time 𝑘 and node 𝑚
(MSm3/h).

𝑃
𝐺
𝑔 Max. production of gas source 𝑠 (MSm3/h).

𝑃 𝑔 , 𝑃 𝑔 Min./Max. output power of generator 𝑔
(MW).

𝑅𝑈𝑡, 𝑅𝐷𝑡 Ramp-up/down rate of generator 𝑡 (MW).
𝐶𝑆𝑉

𝑡 Variable gas consumption of generator 𝑡
(p.u.).

𝐻𝐺 Heating value of gas (MWh/MSm3).
𝑅𝐺
𝑙 Pipeline parameter of 𝑙 ((MSm3/h barg)2).

𝐿𝑃𝑙 Linepack factor of pipeline 𝑙 (MSm3/barg).
𝐿𝑃 𝑖𝑛𝑖

𝑙 Initial linepack of pipeline 𝑙 (MSm3/barg).
𝜂𝑙 Efficiency factor for gas loss of pipeline 𝑙

(p.u.).
𝛬𝑐 Compression ratio of compressor 𝑐 (p.u.).
𝐹

𝐶
𝑐 Max. compressor capacity of compressor 𝑐

(MSm3/h).
𝐶𝑆𝐺

𝑐 Gas consumption of compressor 𝑐 (p.u.).
𝐹𝑙,𝑧, 𝑃𝑙,𝑧 Flow, pressure of pipeline 𝑙 at grid point 𝑧

(MSm3/h), (barg).
𝑃 𝛥
𝑙,𝑧 Pressure difference of pipeline 𝑙 at grid 

point 𝑧 (barg).

approximation based on the Taylor series [15–17], binary variables are 
required to model bidirectional gas flows using big-Ms, while piecewise 
linearization methods, which have been reviewed in [18] and applied 
in the context of oil production [19] and hydropower scheduling [20], 
typically use binary or SOS2-type variables to select linear segments to 
approximate the average gas flow along a pipeline and pressures at its 
start and end points [5,21,22].
2 
Variables

𝑝𝐺𝑘,𝑠 Gas production at time 𝑘 of gas source 𝑠
(MSm3/h).

𝑝𝐸𝑘,𝑔 Power generation at time 𝑘 of generator 𝑔
(MW).

𝑝̂𝑘,𝑡 Power output at time 𝑘 above technical 
minimum of 𝑡 (MW).

𝑐𝑠𝐺𝑘,𝑡 Gas consumption at time 𝑘 of generator 𝑡
(MSm3/h).

𝑦𝑘,𝑡 Startup at time 𝑘 of generator 𝑡, ∈ {0, 1}.
𝑢𝑘,𝑡 Commitment at time 𝑘 of generator 𝑡, ∈

{0, 1}.
𝑧𝑘,𝑡 Shutdown at time 𝑘 of generator 𝑡, ∈ {0, 1}.
𝑝𝑘,𝑚 Gas pressure at time 𝑘 at node 𝑚 (barg).
𝑝+𝑘,𝑙 , 𝑝

−
𝑘,𝑙 Forward/reverse pressure difference at 

time 𝑘 of pipeline 𝑙 (barg).
𝑙𝑝𝑘,𝑙 Linepack at time 𝑘 of pipeline 𝑙 (MSm3).
𝑓𝑘,𝑙 Average gas flow at time 𝑘 of pipeline 𝑙

(MSm3/h).
𝑓+
𝑘,𝑙 , 𝑓

−
𝑘,𝑙 Forward/reverse average gas flow at time 𝑘

of 𝑙 (MSm3/h).
𝑓 𝐼𝑛,𝑂𝑢𝑡
𝑘,𝑙 Gas inflow and outflow at time 𝑘 of 

pipeline 𝑙 (MSm3/h).
𝑓𝐶
𝑘,𝑐 Gas flow at time 𝑘 of compressor 𝑐

(MSm3/h).
𝛾𝑘,𝑙,𝑧 Filling at time 𝑘 of pipeline 𝑙 of grid point 𝑧

(p.u.).
𝛿𝑘,𝑙,𝑧 Forces filling at time 𝑘 of pipeline 𝑙 of 

adjacent 𝑧, ∈ {0, 1}.
𝜉𝑘,𝑙 Gas flow direction at time 𝑘 for pipeline 𝑙, 

∈ {0, 1}.
𝑛𝑠𝐸𝑘,𝑖 Electricity non-supplied at time 𝑘 and bus 𝑖

(MW).
𝑛𝑠𝐺𝑘,𝑚 Gas non-supplied at time 𝑘 and node 𝑚

(MSm3/h).

From a computational point of view, solving MILPs, which are 
generally NP-hard problems [23], has been improved immensely over 
the past 20 years, with an average total speed-up of 1000 due to com-
bined improvement of solvers and hardware [24]. Nevertheless, how a 
MILP is formulated can still significantly improve (or harm) its solution 
time [25]. Typically, the solution time of an MILP is improved the 
closer (tighter) its relaxed solution is to its MILP solution [26]. This is 
because the solver has to explore less space between the relaxed feasible 
solution and the integer feasible solution [26]. In addition, tightness 
not only helps to obtain higher quality MILP solutions, i.e., a reduced 
optimality gap, in a given time but also higher quality relaxed solutions 
since relaxed integer variables take values closer to their integer values. 
The second important characteristic alongside tightness is compactness, 
which corresponds to the number of constraints and nonzeros in the 
MILP formulation. In general, a MILP can be tightened by adding 
strong valid inequalities, i.e., cuts. Adding constraints, however, im-
plies repeatedly solving larger relaxed LP instances during the branch 
and bound procedure, so compromising compactness can also result 
in longer solution times compared to less tight MILP formulations. 
In a nutshell: Tightening typically harms compactness, while a more 
compact formulation is typically less tight [26]. Ultimately, the highest 
quality MILP formulations are both tight and compact simultaneously.

Considering the above, MILP formulations using outer approxima-
tion based on Taylor series are not tight, since they use big-Ms, which 
are not tight by definition, i.e., the purpose of big-Ms is to ensure that 
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specific constraints are non-binding. In contrast, piecewise lineariza-
tion methods studied in [21], e.g., incremental (INC) or SOS2, are 
tight formulations (convex hulls), which benefits their computational 
performance. The crux is that this is only valid for the linearization, 
i.e., INC or SOS2, per se. The union of two convex hulls, however, do 
not result in convex hulls. For the pipeline gas transmission problem 
with linepack, which requires linearization of average gas flow and
nodal gas pressures, this implies that the computational benefit due to 
the tight character of the linearization is expected to be diminished.

1.2. Contributions

In this paper, we propose a piecewise linearization method (Z) 
that is tailored to the pipeline gas transmission problem with linepack 
and specifically designed to be tight. Compared to the INC and SOS2 
linearizations, Z is a more conservative approximation of the general 
gas flow equation, particularly at high pressures. Therefore, the feasible 
regions of INC/SOS2 and Z are not identical, i.e., this can result in 
a moderate difference in gas flows and/or pressures. However, our 
numerical results show that the computational speed-up under Z is 
significant compared to INC or SOS2.

The contributions of this paper are:

• We propose the Z linearization method based on the forward (re-
verse) average gas flow and pressure difference along a pipeline. 
For symmetrical bidirectional gas flows, this results in a more 
compact formulation regarding the number of variables compared 
to INC and SOS2.1

• We show numerically that Z is tighter than INC and SOS2 by 
computing the fractional vertices of their relaxed LP feasible 
region.

• We illustrate the computational speed-up of Z over INC and SOS2 
numerically in a number of case studies of an integrated power 
and gas ESOM.

1.3. Paper organization

The remainder of this paper is structured as follows: In Section 2 
we describe the integrated power and gas ESOM; Section 3 presents 
the concept and mathematical framework of the proposed Z lineariza-
tion; and Section 4 compares numerical results of Z, SOS2 and INC 
with respect to tightness, problem size (compactness), computational 
performance and operational results. Finally, Section 5 concludes the 
paper.

2. Integrated power and gas optimization model

This section introduces the mathematical formulation of the inte-
grated power and gas optimization model. Since this paper focuses 
on gas flow modeling with linepack, constraints solely relevant to the 
power sector, e.g., generation from renewables, the power balance etc., 
are omitted here. For a detailed overview of these constraints, the 
interested reader is referred to state-of-the-art power system models, 
e.g., [27].

1 This is generally the case, except for some special network configurations, 
i.e., number of gas nodes ≪ number of pipelines (i.e., many parallel pipelines 
connecting the same gas nodes) while the number of linear segments is also 
very small.
3 
2.1. Objective function and bounds

The optimization model aims to minimize the operational cost of 
power and gas supply. The objective function (1) includes: (i) the cost 
of supplying gas to the system; (ii) operation and maintenance (OM) 
costs of gas-fired power plants; (iii) OM costs of renewable generation 
units; (iv) cost of non-supplied electricity; and (v) cost of non-supplied 
gas. Constraints (2)–(3) limit the amount of non-supplied electricity and 
gas per power bus and gas node respectively.

𝑚𝑖𝑛
∑

𝑘∈

(

∑

𝑠∈
𝐶𝐺
𝑠 𝑝

𝐺
𝑘,𝑠

⏟⏟⏟
(𝑖)

+
∑

𝑡∈
𝐶𝑂𝑀
𝑡 𝑝𝐸𝑘,𝑡

⏟⏞⏟⏞⏟
(𝑖𝑖)

+
∑

𝑟∈
𝐶𝑂𝑀
𝑟 𝑝𝐸𝑘,𝑟

⏟⏞⏟⏞⏟
(𝑖𝑖𝑖)

+
∑

𝑖∈
𝐶𝐸𝑁𝑛𝑠𝐸𝑘,𝑖
⏟⏞⏞⏟⏞⏞⏟

(𝑖𝑣)

+
∑

𝑚∈
𝐶𝐺𝑁𝑛𝑠𝐺𝑘,𝑚
⏟⏞⏞⏟⏞⏞⏟

(𝑣)

)

(1)

0 ≤ 𝑛𝑠𝐸𝑘,𝑖 ≤ 𝐷𝐸
𝑘,𝑖 ∀ 𝑘 ∈ , 𝑖 ∈  (2)

0 ≤ 𝑛𝑠𝐺𝑘,𝑚 ≤ 𝐷𝐺
𝑘,𝑚 ∀ 𝑘 ∈ , 𝑚 ∈  (3)

2.2. Gas production and consumption

The total gas demand of the integrated power and gas system is 
supplied by gas sources (4), which, for the sake of simplicity, are only 
constrained by an upper production limit. 

0 ≤ 𝑝𝐺𝑘,𝑠 ≤ 𝑃
𝐺
𝑠 ∀ 𝑘 ∈ , 𝑠 ∈  (4)

Besides the gas demand for heating and industrial processes 𝐷𝐺
𝑘,𝑚, gas-

fired power plants consume gas to produce power. Gas-fired units are 
modeled by a standard unit commitment (UC) problem [28] where: 
the total power generation 𝑝𝐸𝑘,𝑡 is defined as the sum of the technical 
minimum and the power output above the technical minimum 𝑝̂𝑘,𝑡 (5); 
the power output above the technical minimum is zero in case of 
startup (6) and shutdown decisions (7); ramp-up (8) and ramp-down 
rates (9) are limited; and the commitment, startup and shutdown 
decisions are related (10)–(12); and defined as binary variables (13). 
Finally, in addition to a standard UC problem in the power sector, (14) 
establishes a relation between the total power generation and the gas 
consumption of the unit. 

𝑝𝐸𝑘,𝑡 = 𝑢𝑘,𝑡𝑃 𝑡 + 𝑝̂𝑘,𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (5)

𝑝̂𝑘,𝑡 ≤ (𝑃 𝑡 − 𝑃 𝑡)(𝑢𝑘,𝑡 − 𝑦𝑘,𝑡) ∀ 𝑘 ∈ , 𝑡 ∈  (6)

𝑝̂𝑘,𝑡 ≤ (𝑃 𝑡 − 𝑃 𝑡)(𝑢𝑘,𝑡 − 𝑧𝑘+1,𝑡) ∀ 𝑘 ∈ , 𝑡 ∈  (7)

𝑝̂𝑘,𝑡 − 𝑝̂𝑘−1,𝑡 ≤ 𝑢𝑘,𝑡𝑅𝑈𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (8)

𝑝̂𝑘,𝑡 − 𝑝̂𝑘−1,𝑡 ≥ −𝑢𝑘−1,𝑡𝑅𝐷𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (9)

𝑢𝑘,𝑡 − 𝑢𝑘−1,𝑡 = 𝑦𝑘,𝑡 − 𝑧𝑘,𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (10)

𝑦𝑘,𝑡 ≤ 𝑢𝑘,𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (11)

𝑧𝑘,𝑡 ≤ 1 − 𝑢𝑘,𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (12)

𝑢𝑘,𝑡, 𝑦𝑘,𝑡, 𝑧𝑘,𝑡 ∈ {0, 1} ∀ 𝑘 ∈ , 𝑡 ∈  (13)

𝑐𝑠𝐺𝑘,𝑡𝐻
𝐺 = 𝑝𝐸𝑘,𝑡𝐶𝑆𝑉

𝑡 ∀ 𝑘 ∈ , 𝑡 ∈  (14)
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2.3. Gas transmission

The gas flow in high-pressure transmission pipelines follows a set 
of partial differential equations (PDEs). In the context of optimization 
models, the discretized PDEs (dynamic gas flow model) are commonly 
reduced to the quasi-dynamic gas flow model by neglecting the im-
pacts of inertia and kinetic energy on the gas flow [5]. In the quasi-
dynamic model, (15) relates the (bidirectional) squared average gas 
flow 𝑓𝑘,𝑙|𝑓𝑘,𝑙| (where | ⋅ | is the absolute function) and the squared nodal 
pressures 𝑝2𝑘,𝑚 and 𝑝2𝑘,𝑛 via the constant 𝑅𝐺

𝑙 , which comprises pipeline 
and gas characteristics [5]. Note that in the ESOM, (15) is modeled 
as (45)–(59). 

𝑓𝑘,𝑙|𝑓𝑘,𝑙| = 𝑅𝐺
𝑙 (𝑝

2
𝑘,𝑚 − 𝑝2𝑘,𝑛) ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (15)

The amount of gas stored in a pipeline is referred to as linepack. 
Although the mathematical framework for including linepack in opti-
mization models has been described in previous works, e.g., [5], below 
we provide a brief overview for context.

Linepack 𝑙𝑝𝑘,𝑙 is modeled as the product of the average pressure 
along the pipeline and a linepack factor 𝐿𝑃𝑙 (16). 

𝑙𝑝𝑘,𝑙 = 𝐿𝑃𝑙
𝑝𝑘,𝑚 + 𝑝𝑘,𝑛

2
∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (16)

It follows a state of charge concept, which relates the linepack of two 
consecutive time steps (including gas losses represented by the effi-
ciency 𝜂𝑙), the gas inflow 𝑓 𝐼𝑛

𝑘,𝑙  and the outflow 𝑓𝑂𝑢𝑡
𝑘,𝑙  (17). Constraint (18) 

enforces equality of initial and final linepack. 

𝑙𝑝𝑘,𝑙 = 𝑙𝑝𝑘−1,𝑙𝜂𝑙 + 𝑓 𝐼𝑛
𝑘,𝑙 − 𝑓𝑂𝑢𝑡

𝑘,𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (17)

𝑙𝑝𝑘,𝑙 = 𝐿𝑃 𝑖𝑛𝑖
𝑙 ∀ 𝑘 ∈ {1, 𝐾}, 𝑙(𝑚, 𝑛) ∈  (18)

Finally, inflow and outflow define the average pipeline gas flow 𝑓𝑘,𝑙
(19). 

𝑓𝑘,𝑙 =
𝑓 𝐼𝑛
𝑘,𝑙 + 𝑓𝑂𝑢𝑡

𝑘,𝑙

2
∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (19)

The nodal pressures in (16) and the average gas flow in (19) are then 
related to the non-linear and non-convex general gas flow equation (15) 
using a (piecewise) linearization method, e.g., INC, SOS2 [21] or Z, 
which is proposed in Section 3.

Moving gas along a pipeline requires a pressure difference. To main-
tain adequate flow rates, compressor units are used in gas transmission 
systems to pressurize the gas. These units are typically installed in 100-
200 km intervals and consume a percentage of the transported gas [29]. 
In the optimization model, compressors are represented in a simplified 
way, where the pressure of the incoming gas can be boosted by a 
constant compression ratio 𝛬𝑐 (20) and its flow rate is limited by an 
upper bound 𝐹𝐶

𝑐 , typically the maximum pipeline capacity (21). 

𝑝𝑘,𝑛 ≤ 𝛬𝑐𝑝𝑘,𝑚 ∀ 𝑘 ∈ , 𝑐(𝑚, 𝑛) ∈  (20)

0 ≤ 𝑓𝐶
𝑘,𝑐 ≤ 𝐹

𝐶
𝑐 ∀ 𝑘 ∈ , 𝑐(𝑚, 𝑛) ∈  (21)

Finally, the nodal gas balance (22) links gas production, demand and 
consumption of gas-fired power plants via pipeline gas flows. Note that 
a flow through a compressor increases the nodal gas demand by its 
consumption rate 𝐶𝑆𝐺

𝑐 .
∑

𝑠∈
𝑚

𝑝𝐺𝑘,𝑠 +
∑

𝑙(𝑛,𝑚)∈
𝑓𝑂𝑢𝑡
𝑘,𝑙 −

∑

𝑙(𝑚,𝑛)∈
𝑓 𝐼𝑛
𝑘,𝑙 +

∑

𝑐(𝑛,𝑚)∈
𝑓𝐶
𝑘,𝑐 −

∑

𝑐(𝑚,𝑛)∈
𝑓𝐶
𝑘,𝑐 + 𝑛𝑠𝐺𝑘,𝑚

= 𝐷𝐺
𝑘,𝑚 +

∑



𝑐𝑠𝐺𝑘,𝑡 +
∑

𝑐(𝑚,𝑛)∈
𝐶𝑆𝐺

𝑐 𝑓
𝐶
𝑘,𝑐 ∀ 𝑘 ∈ , 𝑚 ∈  (22)
𝑡∈𝑚

4 
3. Proposed linearization method

This section introduces the concept and mathematical framework 
of the proposed Z piecewise linearization method. In contrast to other 
piecewise methods, e.g., INC or SOS2 [21], Z linearizes the general 
gas flow equation (15) based on the positive forward (+)/reverse (−) 
average gas flow 𝑓+

𝑘,𝑙 , 𝑓
−
𝑘,𝑙 and pressure difference 𝑝+𝑘,𝑙 , 𝑝−𝑘,𝑙 respectively. 

Since Z is a self-contained, tight formulation, it can be utilized for quasi-
dynamic gas flow modeling (this paper) or incorporated in dynamic gas 
flow modeling.

3.1. Concept of Z linearization

For the Z linearization, (15) is rewritten as (23). Here, the nodal 
pressure difference (𝑝𝑘,𝑚 − 𝑝𝑘,𝑛), which indicates the gas flow direction, 
is substituted by (𝑝+𝑘,𝑙 + 𝑝−𝑘,𝑙), where only one can take a value greater 
zero at a time. 
𝑓𝑘,𝑙|𝑓𝑘,𝑙| = 𝑅𝐺

𝑙 (𝑝𝑘,𝑚 − 𝑝𝑘,𝑛
⏟⏞⏞⏞⏟⏞⏞⏞⏟
(𝑝+𝑘,𝑙+𝑝

−
𝑘,𝑙 )

)(𝑝𝑘,𝑚 + 𝑝𝑘,𝑛) ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (23)

With this, 𝑓𝑘,𝑙|𝑓𝑘,𝑙| in (23) is expressed as squared average gas flow 
in (24). 

𝑝+𝑘,𝑙 + 𝑝−𝑘,𝑙 =
1
𝑅𝐺
𝑙

𝑓 2
𝑘,𝑙

𝑝𝑘,𝑚 + 𝑝𝑘,𝑛
∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (24)

We approximate (24) with the linear constraints (25)–(26), which relate 
and piecewise linearize 𝑝+𝑘,𝑙 , 𝑝−𝑘,𝑙 and 𝑓+

𝑘,𝑙 , 𝑓
−
𝑘,𝑙 based on the parame-

ters 𝐹𝑙,𝑧 and 𝑃𝑙,𝑧 using the continuous variable 𝛾𝑘,𝑙,𝑧 (27). Parameter 𝑃𝑙,𝑧
is composed of the minimum pipeline pressure 𝑃𝑚, the pressure differ-
ence 𝑃 𝛥

𝑙,𝑧, the corresponding value for the squared flow 𝐹 2
𝑙,𝑧, and the 

pipeline parameter 𝑅𝐺
𝑙 . 

𝑝+𝑘,𝑙 + 𝑝−𝑘,𝑙 =
∑

𝑧∈

1
𝑅𝐺
𝑙

𝐹 2
𝑙,𝑧

2𝑃𝑚 + 𝑃 𝛥
𝑙,𝑧

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝑃𝑙,𝑧

𝛾𝑘,𝑙,𝑧 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (25)

𝑓+
𝑘,𝑙 + 𝑓−

𝑘,𝑙 =
∑

𝑧∈
𝐹𝑙,𝑧𝛾𝑘,𝑙,𝑧 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (26)

As for the key logic of the Z piecewise linearization, the binary variable 
𝛿𝑘,𝑙,𝑧 (41) ensures only adjacent 𝛾𝑘,𝑙,𝑧 take non-zero values (28), while 
(29)–(30) force both their sums to equal 1. The binary variable 𝜉𝑘,𝑙 (42) 
determines the direction of the pressure difference (31)–(32) and gas 
flow (33)–(34) along a pipeline. Pressure difference and nodal pres-
sures are related (35) and bound (36)–(37). Similarly, gas flow and 
directional gas flow are related (38) and bound (39)–(40). 
0 ≤ 𝛾𝑘,𝑙,𝑧 ≤ 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈  (27)

𝛾𝑘,𝑙,𝑧 ≤ 𝛿𝑘,𝑙,𝑧 + 𝛿𝑘,𝑙,𝑧−1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈  (28)

∑

𝑧∈
𝛾𝑘,𝑙,𝑧 = 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (29)

∑

𝑧∈
𝛿𝑘,𝑙,𝑧 = 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (30)

0 ≤ 𝑝+𝑘,𝑙 ≤ 𝜉𝑘,𝑙𝑃 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (31)

0 ≤ 𝑝−𝑘,𝑙 ≤ (1 − 𝜉𝑘,𝑙)𝑃 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (32)

0 ≤ 𝑓+
𝑘,𝑙 ≤ 𝜉𝑘,𝑙𝐹 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (33)

0 ≤ 𝑓−
𝑘,𝑙 ≤ (1 − 𝜉𝑘,𝑙)𝐹 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (34)

𝑝 − 𝑝 = 𝑝+ − 𝑝− ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (35)
𝑘,𝑚 𝑘,𝑛 𝑘,𝑙 𝑘,𝑙
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0 ≤ 𝑝+𝑘,𝑙 , 𝑝
−
𝑘,𝑙 ≤ 𝑃 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (36)

𝑃𝑚 ≤ 𝑝𝑘,𝑚 ≤ 𝑃𝑚 ∀ 𝑘 ∈ , 𝑚 ∈  (37)

𝑓𝑘,𝑙 = 𝑓+
𝑘,𝑙 − 𝑓−

𝑘,𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (38)

−𝐹 𝑙 ≤ 𝑓𝑘,𝑙 ≤ 𝐹 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (39)

0 ≤ 𝑓+
𝑘,𝑙 , 𝑓

−
𝑘,𝑙 ≤ 𝐹 𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (40)

𝛿𝑘,𝑙,𝑧 ∈ {0, 1} ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈  (41)

𝜉𝑘,𝑙 ∈ {0, 1} ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (42)

0 ≤ 𝛿𝑘,𝑙,𝑧 ≤ 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈  (43)

0 ≤ 𝜉𝑘,𝑙 ≤ 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (44)

Fig.  1 illustrates the approximation accuracy of the INC, SOS2 and Z 
piecewise linearization methods for a 1000 mm diameter pipeline over 
the full pressure range from 43 to 68 barg.2 The linearizations are based 
on selected pressure differences of 1, 3, 9, 15 and 25 barg and the 
evaluation of (24) for INC and SOS2 (in terms of absolute pressure), 
and (25) for Z. All linearizations assume an average gas velocity of 
7 m/s. The main factors affecting the approximation accuracy are the 
number of linear segments used and the pressure range to be linearized. 
In this example, the full pressure range is linearized. Thus, the max-
imum relative approximation error is −19.7% (at 𝑝𝑘,𝑚 = 68 barg; 
𝑝𝑘,𝑛 = 67 barg), making the Z linearization a more conservative ap-
proximation than INC/SOS2 at high absolute pressures. Generally, the 
approximation error can be limited by selecting appropriate pressure 
linearization points, e.g., derived from knowledge of typical operating 
conditions. For example, choosing three linearization points between 
𝑝𝑘,𝑛 = 53 barg and 𝑝𝑘,𝑚 = 62 barg, results in maximum approximation 
errors in the average gas flow of +4.7% and −4.3%, respectively, for 
an absolute deviation in the pressure range of 62 ± 5 barg compared to 
INC/SOS2. However, the LP feasible region of constraints (25)–(42) is 
not tight. The following section illustrates the process for deriving its 
tight feasible region t .

3.2. Deriving tight feasible region

The LP feasible region   of the full set of mixed-integer linear 
constraints (25)–(42) is not tight, e.g., because it contains big-M con-
straints, which are not tight by definition (see Section 1). Fig.  2 illus-
trates the process for deriving the tight feasible region t from   us-
ing the Polyhedron Representation Transformation Algorithm (PORTA) 
software package (v1.4.1) [30]. In PORTA, for a given set of input 
parameters 𝑗 ∈  , e.g., 𝐹 𝑙,𝑗 , 𝑃𝑙,𝑧,𝑗 , (25)–(42) are represented by their 
equivalent relaxed set of constraints (25)–(40) and (43)–(44) with 
feasible region 𝑗 . PORTA transforms 𝑗 from the constraint space (CS) 
to the vertex space (VS). In the VS, the feasible region 𝑗 is tightened 
by adding strong valid inequalities, i.e., cuts, that satisfy integrality of 
binary variables in the relaxed problem, which results in a set of tight 
vertices  t

𝑗 in the VS. Then, the set of tight vertices is transformed 
back to the CS, corresponding to a linear system of constraints with 
the tight feasible region t

𝑗 . Finally, the linear constraints from PORTA 
representing t

𝑗 are interpreted and generalized to the set of linear 
constraints that model the tight feasible region t , which follows in 
the next section.

2 This is based on the Austrian transmission system.
5 
3.3. Set of tight constraints

This section presents the generalized set of linear constraint
(45)–(59) that describe the tight feasible region t . Fundamentally,
(45)–(59) follow the same concept as (25)–(42). However, as a direct 
result of the tightening in PORTA, (45)–(59) are designed in such a 
way that binary variables 𝛿𝑘,𝑙,𝑧 and 𝜉𝑘,𝑙 always take binary values, even 
when integrality is relaxed. This is due to the cuts added in the vertex 
space in PORTA, which ensures that relaxed binary variables only take 
binary values in the vertices.

Achieving a tight feasible region requires calculating parameters 
𝐴̃𝑙,𝑧,𝑧̃ to 𝐹𝑙,𝑢,𝑣,𝑧, 𝑍𝑠𝑔𝑛

𝑙,𝑢,𝑣,𝑤 and 𝑍𝑅𝐻𝑆
𝑙,𝑢,𝑣,𝑤. The respective pre-processing al-

gorithm for calculating these parameters is presented in Appendix  A. 
Note that for these calculations, 𝑃𝑙,𝑧 and 𝐹𝑙,𝑧 must be integer. This is 
to determine discrete combinations of the indices 𝑢, 𝑣,𝑤 via the pre-
processing algorithm in order to formulate the set of tight constraints. 
For the case study in this paper, the corresponding computational time 
of the algorithm is approximately 80 to 200 s per pipeline. However, 
these calculations can be parallelized.

Identical to the set of constraints presented in Section 3.1, in the 
set of tight constraints the gas flow is expressed as directional gas 
flows (45) and the nodal pressures are expressed as pressure differ-
ences (46). The directional gas flow and pressure difference are related 
and piecewise linearized in (47)–(48). 
𝑓𝑘,𝑙 = 𝑓+

𝑘,𝑙 − 𝑓−
𝑘,𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (45)

𝑝𝑘,𝑚 − 𝑝𝑘,𝑛 = 𝑝+𝑘,𝑙 − 𝑝−𝑘,𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (46)

𝑝+𝑘,𝑙 + 𝑝−𝑘,𝑙 =
∑

𝑧∈
𝑃𝑙,𝑧𝛾𝑘,𝑙,𝑧 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (47)

𝑃𝑙,𝑧=𝑍
∑

𝑧∈{1,…,𝑍−1}
𝐹𝑙,𝑧𝛾𝑘,𝑙,𝑧 − 𝐹𝑙,𝑧=𝑍

∑

𝑧∈{1,…,𝑍−1}
𝑃𝑙,𝑧𝛾𝑘,𝑙,𝑧

= 𝑃𝑙,𝑧=𝑍 (𝑓+
𝑘,𝑙 + 𝑓−

𝑘,𝑙) − 𝐹𝑙,𝑧=𝑍 (𝑝+𝑘,𝑙 + 𝑝−𝑘,𝑙) ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (48)

The key logic of the original piecewise linearization – that only ad-
jacent 𝛾𝑘,𝑙,𝑧 take non-zero values – remains unchanged. However, to 
achieve a tight feasible region, original constraints (27)–(30) and 
(41)–(42) are expressed as (49)–(53). Again, tightness of the feasible 
region forces 𝛿𝑘,𝑙,𝑧 to always take binary values, even when defined as 
continuous variable. 
∑

𝑧∈
𝛾𝑘,𝑙,𝑧 = 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (49)

∑

𝑧∈
𝛿𝑘,𝑙,𝑧 = 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (50)

∑

𝑧∈{1,…,𝑍−1}
𝛾𝑘,𝑙,𝑧 ≤ 1 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , if 𝑍 > 3 (51)

∑

𝑧<𝑧̃≤𝑍
𝛿𝑘,𝑙,𝑧̃ ≤

∑

𝑧<𝑧̃≤𝑍
𝛾𝑘,𝑙,𝑧̃ ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈ {1,… , 𝑍 − 1} (52)

∑

𝑧<𝑧̃≤𝑍
𝛿𝑘,𝑙,𝑧̃ ≥

∑

𝑧+1<𝑧̃≤𝑍
𝛾𝑘,𝑙,𝑧̃ ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈ {1,… , 𝑍 − 1} (53)

Constraints (54)–(55) establish tight lower and upper bounds on feasi-
ble combinations of the reverse average gas flow and the corresponding 
pressure difference simultaneously. Note that their structure is a design 
choice to achieve tight inequality constraints. 

𝑃𝑙,𝑧𝑓
−
𝑘,𝑙 − 𝐹𝑙,𝑧𝑝

−
𝑘,𝑙 ≥

∑

𝑧̃∈
𝐴̃𝑙,𝑧,𝑧̃𝛾𝑘,𝑙,𝑧̃ ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈ {2,… , 𝑍}

(54)

𝑃𝑙,𝑧𝑓
−
𝑘,𝑙 − 𝐹𝑙,𝑧𝑝

−
𝑘,𝑙 ≤

∑

𝐵̃𝑙,𝑧̃,𝑧𝛾𝑘,𝑙,𝑧̃ −
∑

𝐶̃𝑙,𝑧,𝑧̃𝛾𝑘,𝑙,𝑧̃

𝑧̃∈ 𝑧̃∈



T. Klatzer et al. International Journal of Electrical Power and Energy Systems 169 (2025) 110734 
Fig. 1. Comparison of the linearized average gas flow under the Z and INC/SOS2 frameworks.
Fig. 2. Process for deriving tight feasible region with PORTA.
∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈ , 𝑧 ∈ {2,… , 𝑍} (55)

Constraints (56)–(57) determine the gas flow direction via 𝜉𝑘,𝑙. Here, 
indices 𝑢 ∈  = {1, 2,… , 𝑚𝑎𝑥(𝐹𝑙,𝑧=𝑍 −𝐹𝑙,𝑧=2, 𝑃𝑙,𝑧=𝑍 −𝑃𝑙,𝑧=2)} with alias 
𝑣, and 𝑤 ∈  = {1, 2,… , ⌊𝑍−1

2 ⌋} are introduced. The pre-processing 
algorithm determines valid combinations of 𝑢, 𝑣,𝑤 (for which 𝑃𝑙,𝑧 and 
𝐹𝑙,𝑧 must be integer) and calculates the corresponding parameters 
𝐷̃𝑙,𝑢,𝑣,𝑧, 𝐸̃𝑙,𝑢,𝑣,𝑧, 𝐹𝑙,𝑢,𝑣,𝑧, 𝑍𝑅𝐻𝑆

𝑙,𝑢,𝑣,𝑤 and 𝑍𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤 to establish tight inequalities. 

Again, tightness of the constraints forces 𝜉𝑘,𝑙 to take binary values, even 
when defined as a continuous variable. Note that the parameters 𝑢 and 
𝑣 correspond to the order of the determined valid combinations of 𝑢
and 𝑣 indices. In terms of notation, 𝑠𝑔𝑛(⋅) is the signum function.

− 𝑠𝑔𝑛(𝑍𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤)𝑢 𝑓−

𝑘,𝑙 + 𝑠𝑔𝑛(𝑍𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤)𝑣 𝑝−𝑘,𝑙

+
∑

𝑧∈{2,…,𝑍}
(𝐷̃𝑙,𝑢,𝑣,𝑧 + 𝐸̃𝑙,𝑢,𝑣,𝑧)𝛾𝑘,𝑙,𝑧 ≤ −𝜉𝑘,𝑙𝑍𝑅𝐻𝑆

𝑙,𝑢,𝑣,𝑤

∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  ∩ 𝑍𝑅𝐻𝑆
𝑙,𝑢,𝑣,𝑤 ≠ 0 (56)

+ 𝑠𝑔𝑛(𝑍𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤)𝑢 𝑓−

𝑘,𝑙 − 𝑠𝑔𝑛(𝑍𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤)𝑣 𝑝−𝑘,𝑙

+
∑

𝑧∈{2,…,𝑍}
𝐹𝑙,𝑢,𝑣,𝑧𝛾𝑘,𝑙,𝑧 ≤ −𝑍𝑅𝐻𝑆

𝑙,𝑢,𝑣,𝑤(1 − 𝜉𝑘,𝑙)

∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  ∩ 𝑍𝑅𝐻𝑆
𝑙,𝑢,𝑣,𝑤 ≠ 0 (57)
6 
Finally, (58)–(59) establish tight lower and upper bounds on the nodal 
pressures.3

𝑃𝑚 ≤ 𝑝𝑘,𝑛 − 𝑝−𝑘,𝑙 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (58)

𝑝𝑘,𝑛 − 𝑝−𝑘,𝑙 ≤ 𝑃𝑚 −
∑

𝑧∈{2,…,𝑍}
𝑃𝑙,𝑧𝛾𝑘,𝑙,𝑧 ∀ 𝑘 ∈ , 𝑙(𝑚, 𝑛) ∈  (59)

4. Numerical results

In this section, we illustrate the characteristics and study the perfor-
mance of Z compared with the INC and SOS2 piecewise linearization 
methods. First, we compare their tightness and compactness, which 
gives a theoretical indication about their expected computational per-
formance. Then we apply the formulations in various case studies of an 
integrated power and gas ESOM and analyze their operational results 
and practical computational performance.

4.1. Case study setup

The case study is based on a modified version of an integrated 24-
bus IEEE Reliability Test System and a 12-node gas system depicted in 

3 Note that the bounds on 𝑝+𝑘,𝑙 and 𝑝𝑘,𝑚 are implicitly included in the set of 
tight constraints (45)–(59).
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Fig. 3. Integrated power and gas system.
Fig.  3 [29]. The systems are interlinked by 5 gas-fired generation units 
with a total capacity of 1476 MW. The installed renewable capacity 
amounts to 6000 MW wind and 3130 MW solar and is modeled based 
on capacity factors. Table  1 provides the techno-economic data for the 
generation units. For the high-pressure gas transmission system, we 
assume a uniform inner pipeline diameter of 800 mm and a typical 
operating pressure of 43–68 barg (based on the Austrian system). Table 
2 summarizes the most relevant data of the pipeline system. Power 
flows are approximated by a DC-optimal power flow based on voltage 
angles. The power and gas demands follow the downscaled Austrian 
time series (hourly resolution) and are distributed across gas nodes 
and power busses. All case studies are solved on a Workstation with 
a 12th Generation Intel Core i9-12900 (2.4 GHz, 16 cores, 24 threads) 
with 128 GB RAM using GAMS 46.4.1 and Gurobi 11.0.1. with default 
settings. The data is accessible in a GitHub repository [31].

4.2. Results

4.2.1. Tightness
The tightness of a MILP model is measured by the integrality 

gap [26], defined as the difference between the objective function 
values of the MILP model and its LP relaxation. However, explicitly 
measuring the tightness of a subset of constraints in a MILP model 
is non-trivial, as it is generally impacted by linking constraints from 
the subset with constraints outside the subset, e.g., 𝑓𝑘,𝑙 links (19) 
and (45). In order to analyze the tightness of the INC, SOS2 and Z 
formulations without interference of other constraints, which is how 
different MILP formulation are usually compared [18], we compute the 
number of vertices of their respective relaxed LP feasible regions using 
PORTA. In this context, we can evaluate their tightness by comparing 
the number of binary variables in the polyhedron that take fractional 
values, while the number of vertices in the polyhedron is a proxy for 
the LP complexity. Table  3 presents the results for a single pipeline for 
two sets of linear segments (a) and (b). These numbers clearly illustrate 
that applying INC and SOS2 to linearize both average gas flow and 
nodal pressures, i.e., their union, harms the tightness of the resulting 
MILP as more than 90% of vertices include fractional binaries. Note 
that the number of vertices for INC are more than 42 and 247 times 
larger than for Z. For SOS2 case (a), this is more than 1009 times, while 
PORTA cannot compute SOS2 case (b). In contrast to INC and SOS2, the 
Z linearization has the characteristics of a tight formulation, in fact the 
tightest possible, at least for the parameters used for these case studies.

4.2.2. Problem size
As mentioned in the introduction, the computational performance 

of an MILP model is not solely impacted by its tightness, but also by 
its compactness or model size. Typically, tightening can be achieved 
7 
Table 1
Generator data.
 Gen 𝑃 𝑃 𝑅𝑈∕𝑅𝐷 𝐶𝑂𝑀 𝐶𝑆𝑉  
 [MW] [MW] [MW] [$/MWh] [MWhth/MWh] 
 G1 480 280 200 4 1.96  
 G2 404 260 144 4 1.79  
 G3 240 116 124 4 2.17  
 G4 240 116 124 4 2.17  
 G5 112 77 35 4 2.57  
 Wind 50 – – 2 –  
 Solar 5 – – – –  

Table 2
High-pressure pipeline transmission system data.
 Pipeline Length 𝑅𝐺 𝐹 LP  
 [km] [(kSm3/h barg)2] [kSm3/h] [kSm3/barg] 
 1–2, 3–5, 4–7 70 379.82 1026.65 42.84  
 5–4, 5–6 60 443.13 1108.91 36.72  
 6–8 50 332.34 960.34 48.96  
 9–10, 10–11 40 664.69 1358.13 24.48  
 11–12 100 265.88 858.95 61.20  

by adding tighter valid inequalities, i.e., cuts. However, increasing the 
number of constraints implies repeatedly solving larger LP relaxations 
during the branch and bound phase, which can worsen computational 
performance compared to a less tight model [26]. Table  4 presents the 
number of constraints, continuous and binary variables, where  and 
 are the number of pipelines and gas nodes,  and  are the number 
of flow and pressure grid points for the INC and SOS2, and  is the 
number of grid points for the Z linearization. In addition, the number 
of nonzeros is illustrated. Numbers are shown for: a single pipeline 
(1P), the pipeline system (PS) and the complete energy system (ES) 
in Fig.  3.4 As shown, the number of constraints and nonzeros, which 
are proxies for the compactness of a formulation, increases under Z, 
while the number of variables is reduced by 1.77 and 2.43 times for 
continuous and binary variables compared to INC. Consequently, Z is 
a more compact formulation with respect to the number of variables. 
However, given the above, it is difficult to make a priori statements 
about the expected computational performance of Z based on problem 
size. Rather, it is the combination of tightness, number of vertices 
in the polyhedron and problem size that determines computational 
performance in practice, which we study in the following section.

4 Numbers are based on case (b). For 1P and PS the time horizon is one 
hour and the number of constraints, variables and nonzeros increases linearly 
with the number of time periods modeled. Numbers for ES refer to a model 
run with 24 time periods.
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Table 3
Characteristics of polyhedra.
 INC SOS2 Z

 (a) (b) (a) (b) (a) (b)  
 # vertices in polyhedron 1,202 9,888 28,254 * 28 40  
 % vertices with fractional binaries 94.34 96.78 99.53 * 0.00 0.00 
 average

(

# fractional binaries
# fractional vertices

)

2.73 4.18 4.51 * 0.00 0.00 
(a) INC/SOS2: 2 × 3 nodal pressure segments;  6 average gas flow segments. Z: 3 segments.
(b) INC/SOS2: 2 × 5 nodal pressure segments; 10 average gas flow segments. Z: 5 segments.
* Cannot be computed by PORTA.
Table 4
Problem size.
 Case # Constraints # Continuous variables # Binary variables # Nonzeros 
 
INC

– 2(+(−2)+(−2))+ ++(−1)+(−1) (−2)+(−2) –  
 1P 38 23 17 111  
 PS 288 171 129 835  
 ES 11,304 10,354 3,463 37,333  
 
SOS2

– 3+2 +++ –* –  
 1P 7 26 * 70  
 PS 51 192 * 552  
 ES 5,616 10,858 367* 30,541  
 
Z

– 9+8(−1) 5++ +  –  
 1P 49 13 7 269  
 PS 421 111 63 2,421  
 ES 14,976 8,698 1,879 75,181  
* The SOS2 formulation does not use explicit binaries, but SOS2-type variables, which are handled by the solver. Binaries reported for the 
SOS2-ES case are related to UC decisions.
4.2.3. Computational performance
In the following, we evaluate the computational performance of the 

ESOM under INC, SOS2 and Z for a representative summer (S-24) and 
winter (W-24) day (hourly resolution) and conduct sensitivity analyses 
with respect to the number of piecewise linear segments, increased 
temporal complexity (S-48), gas losses and gas costs. Model statistics 
include the objective function value, the number of explored nodes, 
the relative MILP gap, CPU time and the resulting speed-up of Z over 
INC or SOS2, depending on which has the shorter CPU time. To increase 
the level of computational complexity, gas-fired generators are modeled 
based on discrete unit commitment decisions (5)–(14) and the problem 
is solved to a relative MILP optimality gap of 0.1%.

Table  5 shows the model statistics for three sets of piecewise linear 
segments (a), (b) and (c) assuming a moderate difference in gas costs 
per source (GS1: +0.8%; GS2: +0.0%; GS3: +0.4%). All cases yield the 
same objective function value for Z and INC at similar final gaps — 
independent of the number of segments used. Note that under SOS2, 
none of the case can be solved to the optimality gap within the 3600-
second time limit. The number of explored nodes gives an indication of 
the complexity of the LP relaxations during the solution procedure [26]. 
Here, Z explores on average approximately twice the number of nodes 
per unit of time compared to INC. Consequently, there is a significant 
difference in the CPU time for the model solution, with an average 
speed-up of 3.72 for the summer (lower gas and power demand) and 
2.18 for the winter days (high gas and power demand). Note that 
despite using more segments, case S-24 (b) shows faster CPU times than 
case (a), which seems counterintuitive but is consistent under both INC 
and Z. Potential reasons for this could be the different feasible region 
when using more segments or the use of heuristics during branch and 
bound under Gurobi’s default settings. For the winter case, both the 
number of explored nodes and the CPU time increase. This is mainly 
due to the combination of high gas demand and temporal linking 
established by linepack, where the ESOM tries to minimize operational 
cost by storing gas from the least-cost gas well for later use. Note 
that INC performs better for case W-24 (c) than Z, which does not 
solve to the gap of 0.1% within the time limit. For increased temporal 
complexity (48 h), only case S-48 (b) can be solved.
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Table  6 illustrates the impact of gas losses on model statistics for 
case W-24 (a), again for a moderate difference in gas cost. In general, 
considering gas losses in the linepack state of charge formulation (17) 
results in longer CPU times, with INC eventually exceeding the solving 
time limit of one hour. Moreover, an opposing trend between INC and 
Z can be observed for increasing losses.

Finally, Table  7 shows the model statistics for identical and very 
different gas costs (GS1: +84%; GS2: +0.0%; GS3: +42%) under cases 
S-24 (a) and W-24 (a), which are ambiguous. In the latter case, the 
summer day stands out, as INC performs better than Z (and even the 
base case in Table  5). However, as observed before, for the winter day, 
both the number of nodes explored and CPU time increase, which is 
amplified by the difference in gas cost. We conclude that one cannot 
make statements a priori on computational performance based on a 
high difference in gas cost, although this may initially seem intuitive. 
In the case of identical gas costs, it appears that INC benefits from 
‘‘symmetry’’ in the optimization problem, as both summer and winter 
days show similar or improved CPU times compared to the base case, 
while the opposite is true for Z.

4.2.4. Operational results
Table  8 illustrates gas-related operational results for S-24 and W-24 

case (a) and moderately different gas cost.5 For both cases, the total 
linepack, particularly under INC and SOS2, is significantly different, de-
spite being equivalent formulations. This is due to the fully endogenous 
pressure decisions, i.e., no fixed slack pressure due to the assumption of 
downstream pressure regulating equipment, which enables the highest 
level of linepack flexibility. In general, Z results in lower total linepack 
and thus lower absolute pressures. This is due to the implied uniform 
character of the average gas flow over the absolute pressure (see Fig. 
1). However, gas production and gas-fired generation are very similar 
across the three frameworks. Considering INC as the base case, Z yields 
identical results for the summer day, except for the generation of G3 

5 All cases are solved within the relative MILP gap of 0.1%. Solution time 
for the winter day under SOS2 is more than 60 h.
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Table 5
Model statistics summer versus winter periods. 
 Case Objective function # Nodes [×103] Gap CPU time Speed-up 
 [M$] [–] [%] [s] [–]  
 INC SOS2 Z INC SOS2 Z INC SOS2 Z INC SOS2 Z –  
 
S-24

(a) 2.085 2.108* 2.085 8.6 133.2 4.4 0.057 1.359 0.088 385 3600 91 4.23  
 (b) 2.085 2.462* 2.085 5.5 86.8 7.0 0.097 15.55 0.086 152 3600 68 2.24  
 (c) 2.085 2.098* 2.085 7.5 143.6 3.3 0.083 0.982 0.079 493 3600 105 4.70  
 
W-24

(a) 6.900 6.935* 6.904 22.0 76.3 11.1 0.086 0.586 0.086 1373 3600 283 4.85  
 (b) 6.900 7.007* 6.904 32.7 80.0 7.8 0.099 1.577 0.096 2856 3600 1034 2.76  
 (c) 6.900 6.949* 6.933* 37.4 134.4 9.2 0.038 0.787 0.300 3401 3600 3600 <0.94  
 S-48 (b) 4.180 N/A 4.180 111.1 28.5 59.6 0.067 N/A 0.097 3600 3600 2011 1.79  
(a) INC, SOS2: nodal pressures (2x 5 segments), bidirectional average gas flow (10 segments); Z  5 segments.
(b) INC, SOS2: nodal pressures (2x 7 segments), bidirectional average gas flow (14 segments); Z  7 segments.
(c) INC, SOS2: nodal pressures (2x 10 segments), bidirectional average gas flow (20 segments); Z  10 segments.
* Exceeded time limit (3600 s).
Table 6
Model statistics winter day — sensitivity losses. 
 Case Objective function # Nodes [×103] Gap CPU time Speed-up 
 W-24 (a) [M$] [–] [%] [s] [–]  
 INC SOS2 Z INC SOS2 Z INC SOS2 Z INC SOS2 Z –  
 0.01% 6.911 6.948* 6.914 41.7 56.8 44.9 0.086 1.096 0.094 2574 3600 1132 2.27  
 0.1% 7.006* 7.140* 6.999 37.1 70.1 32.2 0.228 2.481 0.099 3600 3600 672 > 5.36  
 1% 7.937* 9.302* 7.853 51.4 93.5 31.3 0.925 23.591 0.099 3600 3600 448 > 8.04  
* Exceeded time limit (3600 s).
Table 7
Model statistics — sensitivity gas cost. 
 Case Objective function # Nodes [×103] Gap CPU time Speed-up 
 [M$] [–] [%] [s] [–]  
 INC SOS2 Z INC SOS2 Z INC SOS2 Z INC SOS2 Z –  
 S-24 (a) identical 2.080 2.093* 2.080 9.7 123.4 8.5 0.075 0.879 0.082 395 3600 242 1.63  
 very different 2.513 2.522* 2.513 4.1 153.4 5.0 0.030 0.448 0.002 83 3600 125 0.66  
 W-24 (a) identical 6.889 6.955* 6.894 13.6 81.2 39.6 0.093 1.009 0.087 712 3600 833 0.85  
 very different 7.843* 7.887* 7.946 113.9 94.6 103.1 0.195 1.181 0.097 3600 3600 2018 > 1.78  
* Exceeded time limit (3600 s).
Table 8
Operational results. 
 Case Total linepack Gas production Gas-fired generation
 [MSm3] [MSm3] [MWh]

 GS1 GS2 GS3 G1 G2 G3 G4 G5  
 
S-24 (a)

INC 51.265 0.000 3.419 0.837 1120 2705 348 1167 308 
 SOS2 82.390 0.000 3.385 0.872 1120 3096 973 232 308 
 Z 17.186 0.000 3.419 0.837 1120 2705 1167 348 308 
 W-24 (a) INC 83.483 0.246 11.053 3.043 2216 4580 464 116 231 
 SOS2 97.617 0.341 10.938 3.064 2216 4580 348 232 231 
 Z 56.305 0.395 10.349 3.605 2216 4278 232 464 385 
and G4, which is reversed. For the winter day, differences per gas 
source and generator are more pronounced, as illustrated by Table 
8 and Fig.  4, which shows gas-fired generation over time. However, 
total gas-fired generation under Z is less than 0.5% off compared to 
INC. To evaluate the feasibility of the operational decisions determined 
under Z, we fix all relevant operating decisions in the power sector, 
i.e., thermal and renewable generation and power flows, determined 
under INC and re-run the model under the Z framework. The resulting 
difference in total system cost is +0.008 M$ (+0.116%), which we 
consider acceptable.

As a general takeaway, compared to INC and SOS2, the tightness, 
i.e., the reduced feasible region due to integrality of binary variables 
in the polyhedron, and the compactness with respect to the number 
of variables of the Z framework result in improved computational 
performance at an acceptable difference of operational decisions and 
total system cost.
9 
5. Conclusions

This paper presented the Z piecewise linearization method for the 
pipeline gas transmission problem with linepack. The proposed Z for-
mulation is specifically designed to be tight, which we showed numer-
ically. The convex hull proof, however, was beyond the scope of this 
paper. The tightness of Z reduces the solution space to be explored by a 
MILP solver. In addition, Z is more compact in the number of variables 
than other piecewise linearizations in the literature, e.g., INC and SOS2. 
As a result of these characteristics, on average Z can explore more 
nodes per time during the branch and bound phase, suggesting that the 
reduced LP relaxations repeatedly solved during this phase are solved 
faster. This could be due to the reduced number of vertices of the feasi-
ble region of Z (see Table  3), which potentially speeds up the search for 
the LP optimum of the simplex algorithms. Our numerical results of an 
integrated power and gas energy system optimization model illustrate 
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Fig. 4. Generation of gas-fired units under the INC (top), SOS2 (middle) and Z (bottom) framework for W-24 (a).
that Z enables finding high-quality solutions and solving the given 
problem instances 2.57 times faster on average. However, compared to 
existing methods, Z is a more conservative approximation of gas flows, 
which results in a moderate difference in the determined operational 
decisions and the objective function value. In future research, we plan 
to further improve the quality of the Z linearization in terms of gas 
flow physics and extend it to include pipeline transmission expansion 
planning while maintaining its beneficial characteristics with respect to 
solution time.
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Appendix A. Algorithm for apriori parameter computation

This section presents a verbal description of the algorithm for the 
apriori calculation, i.e., before running the ESOM, of parameters 𝐴̃𝑙,𝑧,𝑧̃
to 𝐹𝑙,𝑢,𝑣,𝑧 including 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤, 𝑍
𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤, 𝑍𝑅𝐻𝑆

𝑙,𝑢,𝑣,𝑤 and 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤 relevant for 

constraints (54)–(57). The algorithm is implemented in Python and 
accessible in a GitHub repository [31].

The following calculations are done for every pipeline 𝑙.

1. We calculate 𝐴̃𝑙,𝑧,𝑧̃, 𝐵̃𝑙,𝑧̃,𝑧, and 𝐶̃𝑙,𝑧,𝑧̃ where 𝑧̃ is an alias of 𝑧 ∈ :
𝐴̃𝑙,𝑧,𝑧̃ = 𝑚𝑖𝑛(𝑃𝑙,𝑧𝐹𝑙,𝑧̃ − 𝐹𝑙,𝑧𝑃𝑙,𝑧̃, 0) ∀ 𝑧 ∈ , 𝑧 ≠ 𝑧̃
𝐵̃𝑙,𝑧̃,𝑧 = 𝑚𝑎𝑥(𝐹𝑙,𝑧𝑃𝑙,𝑧̃ − 𝑃𝑙,𝑧𝐹𝑙,𝑧̃, 0) ∀ 𝑧 ∈ {2,… , 𝑍} ≤ 𝑧̃
𝐶̃ = 𝑚𝑖𝑛(𝐹 𝑃 − 𝑃 𝐹 , 0) ∀ 𝑧 ∈ {2,… , 𝑍} ≤ 𝑧̃
𝑙,𝑧,𝑧̃ 𝑙,𝑧 𝑙,𝑧̃ 𝑙,𝑧 𝑙,𝑧̃
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Fig. B.5. Logic of the Z piecewise linearization method.
2. To determine 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤, 𝑍

𝑠𝑔𝑛
𝑙,𝑢,𝑣,𝑤, 𝑍𝑅𝐻𝑆

𝑙,𝑢,𝑣,𝑤 and 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤, we introduce 

index 𝑢 ∈  = {1, 2,… , 𝑚𝑎𝑥(𝐹𝑙,𝑧=𝑍 −𝐹𝑙,𝑧=2, 𝑃𝑙,𝑧=𝑍 −𝑃𝑙,𝑧=2)} with 
alias 𝑣.

3. We then calculate 𝑍𝑙,𝑢,𝑣,𝑧 = 𝑢𝐹𝑙,𝑧 − 𝑣𝑃𝑙,𝑧 ∀ 𝑙(𝑚, 𝑛) ∈ , 𝑢, 𝑣 ∈
 , 𝑧 ∈ .

4. We iterate through the tuples (𝑢, 𝑣, 𝑧) of 𝑍𝑙,𝑢,𝑣,𝑧 to identify tuples 
that have at least 2 identical values in 𝑍𝑙,𝑢,𝑣,𝑧 and set 𝑍𝑙,𝑢,𝑣,𝑧 = 0
for all tuples where 𝑍𝑙,𝑢,𝑣,𝑧 of the current tuple is a multiple 
(element-wise) of 𝑍𝑙,𝑢,𝑣,𝑧 of any previous tuple.

5. From this reduced 𝑍𝑙,𝑢,𝑣,𝑧 we set 𝑍̂𝑙,𝑢,𝑣,𝑧 = 𝑍𝑙,𝑢,𝑣,𝑧
∀ 𝑧 ∈ , 𝑧 ≠ 𝑧̃, 𝑍𝑙,𝑢,𝑣,𝑧 = 𝑍𝑙,𝑢,𝑣,𝑧̃.

6. Tuples (𝑢, 𝑣, 𝑧) of 𝑍̂𝑙,𝑢,𝑣,𝑧 can contain up to ⌊𝑍−1
2 ⌋ sets with at 

least 2 identical values for 𝑍̂𝑙,𝑢,𝑣,𝑧. With the index 𝑤 ∈  =
{1, 2,… , ⌊𝑍−1

2 ⌋} we partition these tuples such that every set 
with at least 2 identical values for 𝑍̂𝑙,𝑢,𝑣,𝑧 is mapped as a distinct 
tuple in 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤.
7. In an interim step in the partitioning, we calculate 𝑍𝑠𝑔𝑛

𝑙,𝑢,𝑣,𝑤 and 
𝑍𝑅𝐻𝑆

𝑙,𝑢,𝑣,𝑤, where 𝑍𝑅𝐻𝑆
𝑙,𝑢,𝑣,𝑤 = −𝑎𝑏𝑠(𝑍𝑠𝑔𝑛

𝑙,𝑢,𝑣,𝑤).
8. For 𝑤 = {2,… , ⌊𝑍−1

2 ⌋} we assign 𝑍𝑙,𝑢,𝑣,𝑧,𝑤 = 𝑍𝑙,𝑢,𝑣,𝑧 and filter 
𝑍𝑙,𝑢,𝑣,𝑧,𝑤 using 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 to derive 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤.

9. Finally, we calculate 𝐷̃𝑙,𝑢,𝑣,𝑧, 𝐸̃𝑙,𝑢,𝑣,𝑧 and 𝐹𝑙,𝑢,𝑣,𝑧:

𝐷̃𝑙,𝑢,𝑣,𝑧 =

⎧

⎪

⎨

⎪

⎩

+𝑢𝐹𝑙,𝑧 − 𝑣𝑃𝑙,𝑧 if 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤 ≤ 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 and 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 > 0

−𝑢𝐹𝑙,𝑧 + 𝑣𝑃𝑙,𝑧 if 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤 ≥ 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 and 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 < 0

0 otherwise

𝐸̃𝑙,𝑢,𝑣,𝑧 =

⎧

⎪

⎨

⎪

⎩

+𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 if 𝑍𝑃𝑟𝑒

𝑙,𝑢,𝑣,𝑧,𝑤 > 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 and 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 > 0
−𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 if 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤 < 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 and 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 < 0

0 otherwise

𝐹𝑙,𝑢,𝑣,𝑧 =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

+𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 − (𝑢𝐹𝑙,𝑧 − 𝑣𝑃𝑙,𝑧)

if 𝑍𝑃𝑟𝑒
𝑙,𝑢,𝑣,𝑧,𝑤 > 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤
and 𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 > 0
−𝑍𝐴𝑢𝑥

𝑙,𝑢,𝑣,𝑧,𝑤 + (𝑢𝐹𝑙,𝑧 − 𝑣𝑃𝑙,𝑧)
if 𝑍𝑃𝑟𝑒

𝑙,𝑢,𝑣,𝑧,𝑤 ≤ 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤

and 𝑍𝐴𝑢𝑥
𝑙,𝑢,𝑣,𝑧,𝑤 < 0

0 otherwise

Appendix B. Logic for piecewise linearization

The key logic to model the average gas flow and pressure difference 
is to ensure both are constrained to follow the specified piecewise linear 
segments representing their relation. To achieve this, the sum of the 
11 
grid point activation variables 𝛾𝑘,𝑙,𝑧 (27) must be equal to 1 (29) and 
only adjacent 𝛾𝑘,𝑙,𝑧 must take values greater than zero. Adjacency is 
enforced by the binary variable 𝛿𝑘,𝑙,𝑧 (41) via (28), where the sum of 
all 𝛿𝑘,𝑙,𝑧 is also equal to 1 (30). Fig.  B.5 illustrates this logic for a case 
where 𝛾𝑘,𝑙,𝑧=4 = 𝛾𝑘,𝑙,𝑧=5 = 0.5. Accordingly, (28) and (30) force 𝛿𝑘,𝑙,𝑧=4 =
1 and all 𝛿𝑘,𝑙,𝑧≠4 = 0. Note that for the set of tight constraints in 
Section 3.3, 𝛿𝑘,𝑙,𝑧 always takes binary values, even when defined as a 
continuous variable.

Data availability

Data is available in a GitHub repository. The repository is referenced 
in the manuscript.
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