

Cover illustrations:

Top: True ortho imagery of Haarlem, generated by READAR.

Bottom: Reclassified version of the Basisregistratie Grootschalige Topografie. Retrievable from https:
//www.pdok.nl/.

https://www.pdok.nl/
https://www.pdok.nl/

MSc thesis in Geomatics

Semantic Segmentation of RGB-Z Aerial
Imagery Using Convolutional Neural Networks

Amber E. Mulder

June 2020

A thesis submitted to the Delft University of Technology in partial
fulfillment of the requirements for the degree of Master of Science in
Geomatics

Amber E. Mulder: Semantic Segmentation of RGB-Z Aerial Imagery Using Convolutional Neural Networks
(2020)

@@® This work is licensed under a Creative Commons Attribution 4.0 International License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

The work in this thesis was carried out with:

3D geoinformation group

-i-; U D elft Department of Urbanism

30 f Faculty of the Built Environment & Architecture
geoinio Delft University of Technology

READAR

Vondellaan 16
R E A D A R 3521GD Utrecht

real estate radar https://readar.com/

Supervisors: Baldzs Dukai
Ravi Peters
Co-reader: Jantien Stoter

Company supervisors: Sven Briels
Jean-Michel Renders

http://creativecommons.org/licenses/by/4.0/
https://readar.com/

Abstract

Semantic segmentation (or pixel-level classification) of remotely sensed imagery has shown to be useful
for applications in fields as mapping of land cover, object detection, change detection and land-use anal-
ysis. Deep learning algorithms called convolutional neural networks (CNNs) have shown to outperform
traditional computer vision and machine learning approaches in tackling semantic segmentation tasks.
Furthermore, addition of height information (Z) to aerial imagery (RGB) is believed to improve segmen-
tation results. However, discussion remains on the following: to what extent height information adds
value; the best way to combine RGB information with height information; and what type of height in-
formation can best be used. This study aims to answer these questions. In this research work, the CNN
architectures FCN-8s, SegNet, U-Net and FuseNet-SF5 are trained to semantically segment 10 cm reso-
lution true ortho imagery of Haarlem, potentially augmented with height information. The outputted
topographic maps contain the classes building, road, water and other. Experiments are conducted
that allow for the comparison of 1) models trained on RGB and on RGB-Z, 2) models combining RGB
and height information through data fusion and through data stacking, and 3) models trained using
different types of absolute and relative height approaches. Performances are compared based on scores
on the performance measure (mean) intersection over union (IoU) and through visual assessment of
outputted prediction maps. The results indicated that on average segmentation performance improves
by approximately 1 percent when absolute height information is added. The class building showed to
benefit the most from the addition of height information. Furthermore, extracting features from height
information in a separate encoder and fusing these into RGB feature maps, led to a higher overall seg-
mentation quality than when height information is provided as a stacked extra band and processed
in the same encoder as the RGB information. Finally, models using relative height delivered a higher
quality segmentation than when absolute height approaches were used, especially for large objects. The
best performing model; FuseNet-SF5 trained on RGB imagery and pixel-level, relative height, retrieved
a mean IoU of 0.8427 and IoUs of 0.8744, 0.7865, 0.9131 and 0.7966 for the classes building, road, water
and other respectively. This model was able to correctly classify over 90% of the pixels of 67% of all
the objects present in the ground truth. Overall, this study showed that, when considering semantic
segmentation of aerial RGB imagery, 1) height information can improve segmentation results, 2) adding
height information through data fusion can result in a higher segmentation quality than when data
stacking is used, and 3) providing relative height to a network, rather than absolute height, can improve
semantic segmentation quality.

Acknowledgements

I would like to express my gratitude to my supervisors at TU Delft, Baldzs Dukai and Ravi Peters, for
their suggestions, advice and guidance throughout the execution of my research work. In addition, I
would like to thank my co-reader, Jantien Stoter, for her constructive feedback and useful questions.
Furthermore, I would like to thank Sven Briels from READAR for his technical supervision and help-
ful ideas. Finally, I would like to express my gratitude to Jean-Michel Renders, also from READAR,
who gave me invaluable help by sharing his knowledge trough answering all my question on deep
learning.

vii

Contents

1

Introduction
1.1 Objectives & research questions
1.2 Scope e
1.3 Reportstructure
State of the art
21 Deeplearning
211 Traininganetwork L L
2.2 CNNs for semantic segmentation L L L
22.1 Convolutional Neural Networks
222 Allowing for semantic segmentation 00 0L
23 25Dand3Dinformation
2.4 Semantic segmentation of remote sensingdata 0L
241 Patch-basedmethods
242 Pixel-basedmethods
243 Datafusion
25 Architectures. e
251 FCN-8s e
252 SegNet e
253 U-Net. e
254 FuseNet-SF5
Methodology
31 Selectionof CNNS L
3.2 Training and validationdata L oL o o
3.21 Heightapproaches
322 Dataaugmentation L Lo
33 Trainingof CNNs
3.3.1 Tweaking of hyperparameters
3.32 Performancemeasures
333 Earlystopping
3.4 Testdataandinference
3.5 Drawingconclusions
3.5.1 Performance measure comparison
3.5.2 Visualassessmentofresults
3.5.3 Object-level performance
Datasets, implementations and experiments
41 Datasets e
4.1.1 Basisregistratie Grootschalige Topografie
4.1.2 True ortho imagery and Digital Surface Model
413 Digital TerrainModel L o o
42 Implementations
421 Spatial data and performancemeasures L.
422 Dataloader
423 Supportof FuseNet-SF5
424 Earlystopping
425 Extraband and pretrained weights 000

31
31
32
32
32
32
32

ix

Contents

426 Lossfunction
427 Optimizer e
428 Serverand Docker
429 TensorBoard
43 Experiments
5 Results and analysis
51 Hyperparameters
52 RGBbaseline comparison L
5.3 Datastacking: RGBversusRGB-Z
53.1 Overall performance
532 Classperformances
5.3.3 Inclusion of height information trough data stacking
54 Stacking versusfusion L L
5.5 Heightapproaches
5.6 Object-level detection
5.6.1 Ground truthdetection
5.6.2 Object-level false positives. L L L
5.7 Disputableinconsistencies L L Lo o
5.8 Comparison performance torelatedwork o 000
6 Conclusions & future work
6.1 Conclusion
6.1.1 Discussion
6.12 Researchquestions
6.1.3 Contributions
6.2 Futurework
6.2.1 BGTerrorremoval
6.2.2 Extended data augmentation 0L,
6.2.3 Subdivisionofclasses L L Lo
6.24 Relative height withoutthe DTMof AHN3
6.2.5 Fusing stacked height information
A Additional figures
A.1 Methodology flowchart
A2 Heightapproaches
A3 Shade e
A4 Final predictionof FuseNet-SF5 L
A5 Object-level detection L
A6 Erodederrormaps e
A7 Interpolationofthe DTM
B Additional tables
B.1 Confusionmatrices L
B.2 Resultsofexperiments
C Reproducibility self-assessment
C.1 Reproducibility criteria L L
C.2 Reproducibilityscores
C3 Self-reflection e

List of Figures

2.1
2.2
23

24

25

2.6
2.7
2.8
29
2.10

3.1
3.2
3.3
34
35
3.6
3.7

4.1
4.2

51
52

5.3

54

5.5
5.6

5.7
5.8
59
5.10
5.11

5.12
5.13
5.14

5.15
5.16

A diagram of a simple (shallow) neural network, containing only one hidden layer
A diagram of a deep neural network, containing several hidden layers.
A filter with kernel size 3x3 and a stride of 2 is applied to a 5x5 image with a zero padding

Using convolutional layers to replace fully connected layers allows classical classification
networks to generate class heatmaps. oo o o L oL
The pooling and prediction layers of the FCN-8s architecture, consisting of 4 max-pooling
layers and 15 convolutional layers. L Lo o
The SegNet architecture
The impact of the max-pooling and unpooling operation.
Comparison of SegNet and FCN decoders.
The U-Net architecture
The FuseNet-SF5 architecture.

Overview of the methodology.
The training area (green) and test (red) area in Haarlem, the Netherlands.
Atrainingexample. L L
Horizontal flipping as data augmentation technique.
The frequencies of the different classes occurring in the training area and in the test area.

The overlap inference strategy.
Two iterations of binary morphological erosion applied to a 7x7 input.

Errorsare presentinthe BGT.
A screenshot of the TensorBoard interface.

The test area with the predictions of models on RGB imagery.
All models show to be successful in segmenting areas with straight streets, straight house
blocks and little vegetation. L o o
Shade performs a challenge on the segmentation quality of the algorithms using RGB
data. e
FCN-8s and SegNet show a similar quality of boundary representation on the RGB data,
whilst U-Net’s boundaries are of a poorer quality.
Height information shows to have the potential to aid the prediction in challenging cases.
Addition of height information leads to misclassification of road pixels corresponding to
alargebridge.
The performance on the validation data achieved per class during training.
Addition of height information increases the details of building predictions.
FuseNet-SF5 shows to outperform SegNet at areas containing shade.
Rescaling the height information per tile results in errors at the center of large buildings. .
Using relative height information allows for more homogeneous and filled up prediction
oflargebuildings.
Histograms for the object-level performance of FuseNet-SF5 using pixel-level, relative
heightinformation.
Typical examples of building objects in the ground truth for which 0 pixels have been
‘correctly’ predicted by the algorithm. o 0o L
Typical examples of road objects in the ground truth that are missed by the algorithm. . .
Small and thin ditches are sometimes (partly) missed by the algorithm.
Typical examples of other objects in the ground truth that are missed by the algorithm. . .

14

40

41
42

43
45
46
49
50

52

53
53
54
54

xi

List of Figures

xii

5.17 Polygonalization of the pixel-level false positives resulted in the count of 11 separate false
positives in this example, where it could be argued that only 4 are present.
5.18 Error maps of the prediction of FuseNet-SF5 using pixel-level, relative height, on the test

5.19 Predicted border pixels are wrongly denoted asanerror.
5.20 Small roads are not consistently mapped in the BGT whilst the algorithm does detect its
PIESENCE. o o e
521 A building is missing in the BGT while FuseNet-SF5 detectsit.
5.22 other object around the buildings is not consistently mapped in the ground truth whilst
the algorithm does detectits presence.
5.23 Misplacement of building objects in the BGT results in wrongly detected mis-labeling
EITOTS. . o o v v e ettt e e e

A1l Flowchart of the used methodology.,
A.2 Height information corresponding to the absolute and relative approaches of one training
example. e
A.3 Height information corresponding to the rescaling approaches of one training example. .
A4 For all data stacking models, the addition of height information does not improve seg-
mentation quality at shaded areas. o o L.
A.5 The prediction on the test area corresponding to the most successful model in this study;
FuseNet-SF5 trained using pixel level, relative height.
A.6 Object-detection for the classbuilding.
A.7 Object-detection for theclassroad.
A.8 Object-detection for theclasswater..
A.9 Object-detection for theclassother.
A.10 The eroded error maps per class for the prediction of FuseNet-SF5 using pixel-level, rela-
tive height, onthetestarea.
A.11 The interpolated DTM still contains some contours of buildings.
A.12 Interpolating holes of the DTM often results in sharp height transitions at the borders and
relatively smooth height transitions within theholes.
A.13 Example of when no building object is present in the DTM but there is a building in the
DSM. . . e

C.1 Reproducibility criteria. L

69
70

71

74
74

List of Tables

2.1

4.1
4.2
4.3

5.1
52
5.3

54
5.5
5.6
5.7

5.8
5.9
5.10
511

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9

C1

Results of Audebert et al. (2018) on the validation data of the Vaihingen dataset.

Mapping of BGT classes to the segmentationclasses.
The class weights used for the weighted cross-entropy loss function.
Schematic overview of the experiments conducted for hyperparameter selection.

Hyperparameter settings corresponding to the best performing models per architecture. .
Performance measures of the models on the test data when trained on RGBonly
Data stacking: performance measures on the test data of models trained on RGB and
RGB-Z. . . e
Class IoU performance of RGB and RGB-Z data stacking approaches on the test data.
Confusion matrix of SegNet (RGB) on thetestdata.
Confusion matrix of SegNet (RGB-Z) on thetestdata.
IoU performance of the SegNet RGB-Z data stacking approach versus the FuseNet-SF5
RGB-Z data fusion approach on the testdata.
Confusion matrix of FuseNet-SF5 on the test data, using absolute height.
IoU performance on the test data of FuseNet-SF5 using different height inputs.
mloU performance on the validation data of FuseNet-SF5 using different height inputs. .
Results gained by related studies and this study for the class building

Confusion matrix of SegNet (RGB) on thetestdata.
Confusion matrix of SegNet (RGB-Z) on thetestdata.
Confusion matrix of FuseNet-SF5 on the test data, using absolute height.
Confusion matrix of FuseNet-SF5 on the test data, using pixel-level, relative height.

Confusion matrix of FuseNet-SF5 using pixel-level, relative height, on the test data.

Results of all FCN-8s experiments performed in thisstudy.
Results of all SegNet experiments performed in thisstudy.
Results of all U-Net experiments performed in thisstudy.
Results of all FuseNet-SF5 experiments performed in thisstudy.

The self-assigned scores for this study on the criteria for reproducibility.

35

37
38

42
44
44
44

48
48
50
50
59

80
80
80
80
81
83
84
85
86

88

xiii

Acronyms

AHN Actueel Hoogte Bestand......... ... oo 22
BGT Basisregistratie Grootschalige Topografieo 1
BN Batch Normalization 15
CNN Convolutional Neural Network........ ..o 1
CRs Coordinate Reference System........... 32
DEM Digital Elevation Model........ 1
DSM Digital Surface Model 1
DTM Digital Terrain Modelo 22
FCN Fully Convolutional Networko 8
IDW Inverse Distance Weighting i 31
IoU Intersection over UNIONouiiiiuii e 24
IRRG Infrared Red Green e e 13
MFB Median Frequency Balancing.......... ... o i 11
mloU mean Intersection over Union........ i e 12
NAP Normaal Amsterdams Peil 20
nDSM Normalized Digital Surface Model 13
NDVI Normalized Difference Vegetation Index..............oooooiiiiiiiiiiii i 13
ReLU Rectified Linear Unit........ ... oo e 9
SGD Stochastic Gradient Descent 22
SPP Spatial Pyramid Pooling............ ... 31
TIF Tagged Image File..... 25

XV

1 Introduction

Semantic segmentation can be described as the process in which every pixel of an image is associated
with a class label. This process allows for the division of an image into meaningful, non-overlapping
parts [Zhu et al,, 2016]. Automatic semantic segmentation of aerial imagery can be useful for many
different types of applications that currently require extensive manual work by experts, which is time-
consuming and costly. Applications are present in fields as mapping of land cover, object detection,
land-use analysis and change detection [Saito et al., 2016; Kampffmeyer et al., 2016].

For example, ensuring high quality for topographic maps, such as the large scale dataset Basisregistratie
Grootschalige Topografie (BGT) of the Netherlands [Kadaster, 2019], requires regular updating of mu-
tations. Current change detection techniques are often based on visual comparison of aerial images by
experts. Automatic semantic segmentation can automate part of this process by semantically segment-
ing images of the same location of two different years. The segmentation results can be subject to simple
overlay operations in order to detect mutations.

Even though semantic segmentation is researched by many, the topic remains challenging. The
constantly increasing spatial and spectral resolution of remotely sensed imagery can be considered as
one of the main difficulties. This high resolution has the benefit of being able to capture small details
such as small objects. However, it also complicates the semantic segmentation process by introducing
higher imbalances in class-distributions, large variance between classes and small differences within
each class [Wang et al., 2016; Yuan et al., 2016].

In the last couple of years, the deep learning revolution has stimulated the use of deep architectures,
usually a Convolutional Neural Network (CNN), to successfully tackle general semantic segmentation
problems (i.e. Long et al. [2015]; Hariharan et al. [2014]; Feng Ning et al. [2005]), including remote
sensing related ones (i.e. Kampffmeyer et al. [2016]; Paisitkriangkrai et al. [2015]; Saito et al. [2016]).
When well trained, these algorithms act as non-linear functions that have the ability to take an image as
an input, and provide a segmented version of this image as an output. CNNs have shown to outperform
traditional computer vision and machine learning approaches in terms of accuracy and in some cases
efficiency [Garcia-Garcia et al., 2017].

The original focus in semantic segmentation has been on two-dimensional imagery. However, the
fast growing technological development in acquiring and analyzing 2.5D or 3D data, allows for the in-
troduction of a new dimension next to RGB information [Garcia-Garcia et al., 2017; Qin et al., 2016]. This
information is often available in the form of a depth map, Digital Elevation Model (DEM) or point cloud.
It is believed that the added 2.5D or 3D information, has the ability to improve semantic segmentation
results [Qi et al., 2017; Qin et al., 2016]. Even though inclusion of three dimensional information in se-
mantic segmentation problems has been researched for regular imagery (i.e. Qi et al. [2017]; Gupta et al.
[2014]; Couprie et al. [2013]), the inclusion of pixel-level height information to improve the quality of
the semantic segmentation is less represented in the current literature. Especially the extent to which
height information contributes to segmentation quality currently remains less researched. Therefore,
this study aims to examine the added value of height information, Z, to semantic segmentation of aerial
imagery. It is strived to explore the capability of CNNs to automatically, semantically segment RGB-Z
aerial imagery.

For this study 10 cm resolution, true ortho imagery of the city of Haarlem in the Netherlands is
used. This imagery is developed by the company READAR'. True ortho imagery is aerial imagery that
is corrected for relief displacement [Sheng et al., 2003]. Furthermore, height information provided to the
networks will be derived from a Digital Surface Model (DsM) generated from the same imagery, also by
READAR.

"https://readar.com/

https://readar.com/

1 Introduction

1.1 Objectives & research questions

The main objective of this study is to generate a CNN model that performs automatic, pixel-level seg-
mentation of remotely sensed imagery, potentially complemented with height information. Every pixel
of an aerial image is provided with a class label. The model should provide high resolution topographic
maps as output. Garcia-Garcia et al. [2017] showed that this problem can be formulated as the follow-
ing; a procedure is sought to assign a state given in the predefined label space L = {I3, 1, ..., Iy }, to each
element, present in a set of random variables X = {x1,x2,..., x5 }. Every label I represents a distinct
object or class, such as building, road, water etc. k represent the amount of possible labels and generally
X represents a two dimensional image containing W x H = N pixels (x), each consisting of three bands
(i.e. RGB). In this study, due to the addition of height information, three dimensional imagery is used.
This added information can be considered as an extra, fourth band.

The second objective of this study comprises the analysis of the added value of the included height
information. Studies have concluded that inclusion of 3D or 2.5D data can improve segmentation qual-
ity of natural imagery (i.e. Couprie et al. [2013]). However, this conclusion can not be adopted for
the auxiliary value of height information to segmentation of remotely sensed data, without any further
consideration.

Finally, if height information shows to be a useful addition for semantic segmentation, the last objec-
tive of this work is to explore in what way the height information can best be presented to the algorithms.
This includes both the approach used to combine height information with RGB information, as the form
in which the height information is delivered (i.e. absolute height or relative height).

In order to reach the described objectives, this study strives at answering the following question;

To what extent can convolutional neural networks be used for automatic semantic segmentation of RGB-Z aerial
imagery?

In order to answer this question, the following sub-questions are specified;

e Which neural network architectures are a suitable starting point for semantic segmentation of
aerial RGB-Z imagery?

o To what extent does the addition of height information improve semantic segmentation results?
o For which classes is the segmentation most successful; for building, road, water or other?

e How does the performance compare of different approaches on combining height information
with RGB information (stacking and fusion) in a network?

e What type of height information provided to a network leads to the most accurate results?

1.2 Scope

Considering the scope of this study, the following should be noted;

o For this research work it is aimed to exploit existing algorithms and to make adjustments to let the
existing implementations fit to the problem of this study. The goal is not to develop a new CNN
architecture to perform the semantic segmentation. Therefore, combining several architectures is
also out of scope of this study.

o This study aims to explore the potential of RGB-Z imagery. Experiments including imagery of
other parts of the spectrum, i.e. infrared or near-infrared, are beyond the scope of this work.

e Imagery other than aerial imagery, such as street view imagery, is out of scope of this study.

1.3 Report structure

e The focus of this study is on the generation of a model that performs well on the city of Haarlem.
Therefore, imagery belonging to geographic locations other than Haarlem are not taken into con-
sideration. However, it is strived to generate a model that is easily adapted or fine-tuned to other
locations.

1.3 Report structure

The remainder of the report is structured as follows;

Chapter 2 gives an overview of the theoretical background required for a complete understanding of
the rest of this research work. In addition a review is provided on related studies. This includes an
introduction to deep learning and CNNs, as well as researched approaches on semantic segmenta-
tion of aerial RGB-(Z) imagery.

Chapter 3 presents the developed methodology together with argumentation on the design choices of
this methodology.

Chapter 4 provides information on the used datasets, describes implementation details of the method-
ology and presents the experimental setup of this study.

Chapter 5 presents the results of the experiments, alongside with an in-depth analysis of these out-
comes.

Chapter 6 discusses the main limitations of the methodology of this study and provides answers to the
research questions. In addition, recommendations are given for future work.

2 State of the art

In this chapter an overview is provided on the theoretical background related to this thesis, along-
side with a review on related studies. Firstly, relevant concepts on deep learning will be explained
(Section 2.1). Subsequently, CNNs and their role in semantic segmentation are discussed (Section 2.2),
followed by an overview of the addition of 2.5D and 3D information to the input of CNN algorithms
(Section 2.3). Hereafter, studies on semantic segmentation of remotely sensed data are discussed (Sec-
tion 2.4). Lastly, four different neural network architectures, which will be used in this research work,
are described in more detail (Section 2.5).

2.1 Deep learning

Deep learning comprises a class of techniques in the field of machine learning in which computational
models consisting of multiple processing layers, called neural networks, learn to represent data with
different levels of abstraction [LeCun et al., 2015]. A neural network consists of an input layer, an
output layer and one to many hidden layers. Each layer of a neural network consists of multiple neurons
(Figure 2.1 and Figure 2.2). Each neuron can be seen as a feature, and is a mathematical operation which
has its own learnable weights and biases. Input is provided to each neuron, which is multiplied by its
corresponding weight and then summed. Hereafter, the function corresponding to the neuron, called
the activation function, is applied to the result. The bias is an extra parameter that allows to shift an
activation function to the right or left, through the addition of a constant to the input. The output of this
function is passed on to neurons in consecutive layers [Hush and Horne, 1993]. Key to deep learning is
that these layers of features used in the network are not provided, but are decided on by the network
itself, using general-purpose learning [LeCun et al., 2015].

At each layer in the network, the input data is transformed to a higher level of abstraction. Very
complex functions can be learned when enough of these transformations are executed. In the case of
classification, representations of higher levels of abstraction allow for the elimination of unimportant
variations and amplification of parts of the input that are important for distinction [LeCun et al., 2015].

2.1.1 Training a network

The parameters (weights and biases) in a neural network are learned through a training process. Neural
networks are most often trained through supervised learning. For example, a goal could be to build a
model that performs classification of images which contain a car, a face, a dog or a tree. The first step
comprises the generation of a dataset containing images of these four classes and labeling every image
with the corresponding class. The labels of the images are the ground truth. When RGB imagery is used,
the input data for the neural network is provided as three 2D arrays (tensors), giving pixel intensities
of the three channels. Throughout the training procedure, an image is presented to the network. Then,
the network calculates an output, which is provided as a vector of scores; one score for each class. It
is aimed to get the highest score for the class that corresponds to the ground truth label [LeCun et al,,
2015].

A loss function is used to calculate the error between the output scores of the network and the desired
output scores yielded from the ground truth. Training examples are usually presented to a network in
batches, for which the loss is averaged over the batch. As an attempt to reduce the calculated loss, the
weights and biases are updated with the help of an optimizer. The role of the optimizer is minimizing

2 State of the art

hidden layer

Input 1
output 1
Input 2
output 2
Input 3 § E i
Input 4 Shallow neural network
weights
inputs.
X;
activation
functon
x @ net input
net;
(D"
X @ activation
transfer
: : function
xﬂ

Figure 2.1: A diagram of a simple (shallow) neural network, containing only one hidden layer. Figure
from RSIP Vision [2018].

Deep neural network

hidden layer 1 hidden laver 2 hidden layer 3
T

input layer

output layer

L

h—

Figure 2.2: A diagram of a deep neural network, containing several hidden layers. Figure from NYU
[2019].

2.2 CNNss for semantic segmentation

the cost function. A gradient vector is generated that indicates for each weight by what value the calcu-
lated loss would decrease or increase if the weight is increased by a small amount. The gradient vector
is multiplied by the learning rate « and the weights are then adapted in the direction which is opposite
to the gradient vector [LeCun et al., 2015]. Different optimizers take different approaches in using the
learning rate «, which is a hyperparameter that is specified in advance. However, the general remark
can be made that a too small learning rate can make training slow, whilst a too large learning rate may
lead to failure of convergence, or even divergence, due to the overshooting of minima [Zeiler, 2012].
The general formula for the updating of a weight W is provided in Equation 2.1.

W' = W — a * gradient (2.1)

During training this process is repeated; 1) the network is fed with the vectors corresponding to a
batch of examples, 2) these vectors are fed forward through the network using the current weights and
biases, 3) the loss function is used to calculate the error of the output, 4) these errors are propagated
backwards through the network, 5) errors are used to modify the weights and bias in order to minimize
the loss in the future, 6) the way the modifications are executed is described by the optimizer, 7) the
process continues until the average loss stops decreasing. One iteration comprises one forward plus
one backward pass of one batch. One complete forward and backward pass of all the training examples
is called an epoch [LeCun et al., 2015]. Which loss function, optimizer, learning rate and what batch size
is used, is specified in advance.

After termination of the training, the performance of the model is assessed on a different set of
examples, which it has not seen before. This allows to examine the generalization capability of the
model.

2.2 CNNs for semantic segmentation

2.2.1 Convolutional Neural Networks

When compared to ordinary neural networks, CNNs are a distinct type of networks often used for image
analysis. These types of networks are specialized in detecting patterns and decipher them. Key to
CNNs are the convolutional layers, which consist of filters that perform the pattern detection. For each
convolutional layer, the amount of filters are specified. Each filter is specialized in detecting a specific
pattern [LeCun et al., 2015]. Filters in early layers of a CNN detect simple geometric features, such as
edges, corners, circles or squares. The deeper the layer of the network, the more sophisticated the filter.
Instead of detecting simple features, in later stages more complex patterns can be detected, such as eyes
or feathers. In even further stages, complete objects can be detected such as dogs and cars. A filter is a
matrix with predefined dimensions. Before starting a training, the values of these matrices are initialized
with random numbers. The filters ‘convolve’, or slide over, the complete input (image) and produce the
dot product of the filter and the input pixels. How many pixels at a time the filter shifts, is given by a
parameter definable per layer, called the stride. In order to also fully exploit the input information at
border pixels, padding can be used. Padding is the addition of extra pixels, generally with the value 0, to
the image before it is being processed by a filter. Consequently, the kernel has sufficient space to process
the whole image, leading to preservation of border information. Figure 2.3 provides an example of the
application of a 3x3 filter to an image. Equation 2.2 provides the calculation of the output dimensions of
a convolutional operation. I represents the input dimensions (assumed to be a squared image: width =
height), O represents the output dimensions, K represents the kernel size (i.e. 3 when kernel is 3x3) and
| .. | represent a floor division.

I — K+ 2% padding
stride

o= |+1 (2.2)

2 State of the art

Filter (3x3)
1 =1 1
-1 0 -1
a2 | s \ Input (5x5)
0 0 0 0 0 0 0
ol 2zj2|1]2j0ojo0 Output (3x3)
0 0 1 0 2 2 0 <1 2 0
0 2 2 2 2 2 0 |— P 2 1 -1
0 1 2 0 2 1 0 -1 1 0
0 1 2 2 1 1 0
Stride = 2
Zero padding = 1 ojofofojojo|foO

Figure 2.3: A filter with kernel size 3x3 and a stride of 2 is applied to a 5x5 image with a zero padding
of 1.

After the filter has slided over the complete input, an output has been generated which is a matrix
of the stored dot products. This output is a new representation of the input. A non-linearity equation
is applied to this new representation, whereafter it is passed on to the next layer of the network [LeCun
et al., 2015].

In traditional CNNs, fully connected layers are present after the convolutional and pooling layers (see
Section 2.2.2). These layers have complete connections to all the activations in the previous layer. Their
role is to convert the 2D output of all previous operations into a 1D vector from which classification can
be derived [Voulodimos et al., 2018].

2.2.2 Allowing for semantic segmentation

CNNs are often used for semantic segmentation, especially since Long et al. [2015] have introduced Fully
Convolutional Network (FCN)s [Audebert et al., 2018]. In the semantic segmentation task, both global
and local information needs to be exploited. Global information tells ‘what’ is present, whilst local
information is essential in solving ‘where’ the observed is present. The features in a network contain
both the semantical and the location information in a hierarchy which can be thought of as a pyramid,
starting from local (in first layers) to global (in deeper layers). The challenge is to find a way to extract
or decode both these types of information from this ‘feature pyramid’.

Classical classification networks (i.e. AlexNet and VGG net) solely have the goal to distinguish the
presence of a class. In their work, Long et al. [2015] have converted these classical classification net-
works into FCNs. These networks allow for input imagery of arbitrary size and output correspondingly-
sized, pixel-level, semantic segmentation. The FCN architecture replaces the fully connected layers of
traditional CNNs by convolutional layers. Consequently, the classification networks can produce low
resolution class presence heatmaps (Figure 2.4). These heatmaps are upsampled with the use of decon-
volutions (reverse of convolution) that are initialized with billinear interpolation filters. In this study,
experiments will be executed with one of the architectures proposed by Long et al. [2015]. Therefore,
more details on their work is provided in Section 2.5.

As mentioned before, in semantic segmentation, one is not only interested in classification, but also
in the projection of the classification onto pixel space. A general network architecture for semantic
segmentation consists of an encoder network, connected to a decoder network. The encoder fulfills the
role of classification, whilst the decoder ensures dense classification by projecting the classification onto

2.3 2.5D and 3D information

“tabby cat”
———
250 N
9

1

convolutionalization

tabby cat heatmap

RN

&_olk _cO
/3‘6 EXatie

Figure 2.4: Using convolutional layers to replace fully connected layers allows classical classification
networks to generate class heatmaps. Figure from Long et al. [2015].

pixel space. Through down-sampling, the model aims to understand what is present in the image.
However, information on where it is present is then lost. The decoder aims at recovering this lost
information. Currently, architectures mostly differ in their decoder mechanism [Shah, 2017].

In parallel to the developments of FCN-based architectures, architectures based on residual learning
have also shown to be successful in semantic segmentation tasks [He et al., 2016]. These architectures
are adjusted versions of ResNet classification networks, which allow for state of the art performing
semantic segmentation (i.e. Zhao et al. [2017] and Pohlen et al. [2017]).

In general, four basic types of layers can be distinguished that are commonly used in CNNs for se-
mantic segmentation, namely;

o Convolutional layer: consists of simple filters which contain learnable parameters. Each neuron in
the layer searches for a specific pattern. As the aim is to search for the same patterns throughout
the whole input, the learnable weights and biases of the neurons of the output are shared [Liu
etal., 2017].

e Transposed convolutional layer: These layers allow for upsampling of the input; the dimensions
of the input are increased. The parameters can be based on simple bilinear interpolation or they
can be learned [Long et al., 2015].

e Non-linear function layer: often referred to as ‘activation function” and usually present after a
convolutional layer. This type of layer adds non-linearity to the network, by introducing for ex-
ample the Sigmoid function or the Rectified Linear Unit (ReLU) function; f(x) = max(0, x). ReLU
is currently used most often in deep learning research [Glorot et al.,, 2011]. This introduction of
non-linearity allows the network to represent a more complex function [Liu et al., 2017].

¢ Spatial pooling layer: uses a filter to reduces the size of the input. Functions commonly used are
max, sum and mean [Saxe et al., 2011].

2.3 2.5D and 3D information

The rise of technological developments of sensors and algorithms for 3D (or 2.5D) data acquisition,
generation and analysis, has led to a large increase in access to 2.5D and 3D information. This informa-
tion is often available in the form of a depth map, DEM or (LiDAR based) pointcloud [Qin et al., 2016].

2 State of the art

Even though the original focus of semantic segmentation in the literature has been on two-dimensional
imagery, these technological developments allow for the inclusion of an extra dimension next to the
regular photometric data [Garcia-Garcia et al., 2017]. It is believed that depth or height data contains
complementary information to RGB channels and contains valuable information on structure of the
scene [Hazirbas et al., 2017]. Even though generally class objects can be distinguished by their color and
texture, which is encoded in RGB information, it is possible that objects belonging to different classes
have comparable appearances. The addition of depth or height information potentially reduces the un-
certainty of the semantic segmentation of these types of objects [Hazirbas et al., 2017]. Several studies
using imagery plus depth information (RGB-D) for scene segmentation, have shown an increase in la-
beling precision when compared to solely using RGB data [Garcia-Garcia et al., 2017]. For example,
Couprie et al. [2013] showed with their study on indoor scenes that semantic segmentation of classes
having comparable appearance, depth and location, is improved when depth information is added.
However, it was also concluded that for classes with a high variability of the depth values, using solely
RGB leads to better results than when depth information is included. Consequently, the optimal way to
incorporate depth (or height) information is still a point of discussion.

Different approaches have been proposed for incorporating 2.5D or 3D information. In these ap-
proaches, two main groups can be distinguished, namely data stacking and data fusion. The first group
comprises the stacking of the extra 3D or 2.5D information to the RGB channels. If not yet supported,
networks can be adjusted to allow for the input of (an) extra band(s). Hereafter, using a four (or more)
channel input, networks can be trained on RGB-D (or -Z; height) data (see i.e. Liu et al. [2017]). An al-
ternative approach comprises fusion of photometric and 2.5D or 3D data. In this case, feature extraction
from the 3D or 2.5D data occurs separate from feature extraction from RGB data. The information is
then combined in a later stage in the architecture (see i.e. Eitel et al. [2015]).

Furthermore, it should be noted that the added value of depth information on indoor scenery seg-
mentation can not necessarily be considered as equal to the potential auxiliary value of height informa-
tion to segmentation of remotely sensed imagery. Even though inclusion of 3D data to improve semantic
segmentation results in natural imagery has been investigated, the added value of height information
to semantic segmentation of aerial imagery is less represented in the current literature.

2.4 Semantic segmentation of remote sensing data

Since computer vision solutions have been significantly improved by the use of deep learning, these
techniques are widely adopted to tackle remote sensing related problems [Audebert et al., 2018]. Two
types of approaches are distinguishable in current studies on semantic segmentation of (aerial) imagery;
patch-based methods and pixel-based methods. In the following paragraphs, both method types will
be discussed alongside with different approaches on incorporating height information into the algo-
rithms.

2.4.1 Patch-based methods

Patch-based methods either produce coarse maps, with one label per patch, or use a small window
to construct a label for each pixel independently. Consequently, with the latter, labels assigned to each
pixel are only based on its near surrounding pixels. In addition, the process is slow and computationally
expensive [Sermanet et al., 2013; Audebert et al., 2018]. An example of a patch-based approach is the
work of Saito et al. [2016], who used a five-layered CNN to automatically detect objects from aerial
imagery. Their goal was to generate a multi-channel label output from the input image, with one channel
per class. Even though promising results were obtained, only the classes building and road were
included and no height information was incorporated. This study did show that predicting classes
simultaneously can lead to a higher accuracy than when each class is predicted separately.

As an attempt to improve the expensive and slow patch-based labeling process for very high reso-
lution dense semantic segmentation of urban scenes, Campos-Taberner et al. [2016] used a superpixel-
based labeling approach. Superpixels are regions in an image that are perceptually uniform [Liu et al.,

10

2.4 Semantic segmentation of remote sensing data

2011]. In their work Campos-Taberner et al. [2016] used a combination of patch-based segmentation
methods and an unsupervised pre-segmentation. His reseaerch work has led to several other initiatives
using superpixels, such as the multi-scale approach of Lagrange et al. [2015].

2.4.2 Pixel-based methods

When compared to patch-based methods, pixel-based methods have a different approach by inferring
the labels for all of the pixels at the same time. When semantically segmenting remote sensing imagery,
this type of method has outperformed patch-based methods (see Kampffmeyer et al. [2016] and Volpi
and Tuia [2016]). Therefore, more recently, semantic segmentation of aerial imagery has moved towards
FCN models [Audebert et al., 2018; Maggiori et al., 2017; Volpi and Tuia, 2016]. By directly performing
pixel-wise classification, FCNs have shown to be suitable for semantic segmentation of aerial imagery.
FCNs have the ability to detect the spatial relationships between classes without pre-processing of the
imagery (such as superpixel segmentation). In addition, they can output dense predictions of high
resolution [Audebert et al., 2018]. Two studies that worked with FCN pixel-based approaches for the
semantic segmentation of aerial imagery are Kampffmeyer et al. [2016] and Liu et al. [2017]. Both these
studies use a data stacking approach to include height information in their algorithms. In their research
work, Kampffmeyer et al. [2016] compared a patch-based approach with a pixel-based approach and
used the the ISPRS Vaihingen 2D semantic labeling dataset [ISPRS, 2018a]. This dataset contains six
classes, namely; impervious surfaces, building, low vegetation, tree, car, clutter/ background.
Their results showed that the pixel-based (FCN) implementation (building F1 = 0.9581) generally out-
performed the patch-based (PB) implementation (building F1 = 0.9501).

In addition, Kampffmeyer experimented with median frequency balancing incorporated into the
cross-entropy loss function (referred to as FCN-Median Frequency Balancing (MFB)), to take class imbal-
ance into consideration. This approach provided the best average F1 score results (average F1 = 0.9084,
building F1 = 0.9530). Finally, it was concluded that combining all three models into one pipeline (PB
+ FCN + FCN-MFB) retrieved even better results than when compared to individual architectures. This
conclusion was based on considering accuracy for small objects while still maintaining a high overall
accuracy. Nevertheless, the average F1 score retrieved from this implementation (average F1 = 0.8879,
building F1 = 0.9577) did not exceed the FCN-MFB implementation. Some important remarks need to
be made when considering these results. Firstly, it should be noted that these resulting performance
measures presented are calculated on the validation data and not on an independent test dataset. It
is assumed that the validation data is therefore used to both tune the parameters and to provide final
results. However, no elaboration on this matter is present in the paper. Furthermore, to lower the neg-
ative effect of class boundaries, ground truth data for which boundaries were eroded were used during
performance measure computation. This erosion process comprises the elimination of boundary pix-
els, leading to the ignoring of boundaries when performance measures are calculated. Finally, the class
clutter/ background was not included in the calculations. Logically, these methodological choices
have resulted in relatively higher values for the F1 scores.

Liu et al. [2017] also designed their own architecture for semantic segmentation of remotely sensed
data. Their implementation integrates an ‘inception’ and 'residual’ module into the conventional encoder-
decoder paradigm. The inception module comprises the collection of filters of different sizes into one
layer, enabling the gathering of information from receptive areas of different scales. The residual mod-
ule allows to directly feed forward information from the encoder to the decoder. Liu et al. [2017] used
the same dataset and classes as the work of Kampffmeyer et al. [2016]. With their best performing archi-
tecture without post-processing, Liu and his colleagues retrieved an average F1 score of 0.8752 and an
F1 of 0.9466 for the class building, on the boundary eroded ground truth data. Using the same archi-
tecture but then non-eroded ground truth data, an average F1 score of 0.8341 was achieved and an F1
of 0.9237 for the class building. The class clutter/ background was not included in the calculation of
average F1. These result show the influence that using eroded ground truth data has on the performance
measures; the F1 values increased with more than 4% for the average F1 and more than 2% for the F1
score of the class building. Furthermore, again, the paper does not mention the use of an independent
test dataset for calculation of the performance measure. Therefore it is possible that both the parameter
selection procedure as the final inference is done on the validation set.

11

2 State of the art

Both the studies of Kampffmeyer et al. [2016] and Liu et al. [2017] did not examine the added value of
the included height information. They solely focused on optimizing the semantic segmentation while
using the extra (stacked) height band. This thesis will assess the added value of height information.
In addition, both Kampffmeyer et al. [2016] and Liu et al. [2017] only added the height information
by stacking it to the other bands, whilst this thesis also explores an alternative approach that involves
fusion of height information.

Even though the objects of interests, or classes, in both the researches of Kampffmeyer et al. [2016]
and Liu et al. [2017] did not overlap with the objects of interests in this proposed research work (apart
from the class building), examination of their implementation, or even using it as a starting point
would have been interesting. Unfortunately, the corresponding codes of the implementations could
not be discovered. However, findings of all the mentioned papers will be taken into consideration
while executing this study. For example, the conclusions from Kampffmeyer et al. [2016] that pixel-
based approaches (i.e. FCN) outperformed patch-based approached for semantic segmentation of aerial
imagery, will be taken into account when selecting architectures for this study. Furthermore, the findings
of Saito et al. [2016] that simultaneous class prediction may lead to a higher accuracy than predicting
each class separately, was an important reason for deciding on a simultaneous class prediction approach
in this thesis.

2.4.3 Data fusion

The traditional way of providing extra information to a neural network, next to RGB, is through data
stacking. This simply involves providing a four-band input to a network instead of a three-band input,
whilst keeping the rest of the network’s architecture the same. All the studies described above that
included height information used this stacking approach. As discussed in Section 2.3, an alternative
for incorporating height information is data fusion. An important research on this fusion approach is
the work of Hazirbas et al. [2017], who developed FuseNet. The FuseNet architecture was originally
developed for semantic segmentation of indoor scenes using RGB-D data. In his paper, Hazirbas argues
that stacking the depth information to the RGB information as a fourth band and training a network
accordingly, does not fully exploit the potential of the depth information. They suggest an alternative
approach to extract more informative features on the structure of the scene, which are encoded in the
depth data. The main idea of their CNN encoder-decoder type architecture is that the encoder part
consists of two branches of networks. These two branches operate simultaneously, extracting features
from RGB and depth images. At different depth levels of the network, retrieved depth features are
fused into the feature maps of the RGB imagery. It is argued that feature maps retrieved by fusion
of depth information into RGB information are more discriminant than when data stacking is applied.
Low-level features, extracted in RGB and depth imagery, have the ability to complement each other. For
example, an object lacking texture can be detected by its structure, whilst an object lacking structure
can be distinguished through its color. When these low-level features of RGB and depth are combined,
this also helps the network to detect high-level features, leading to a higher accuracy [Hazirbas et al,,
2017].

In his study, Hazirbas experiments with fusion at different stages in his architecture. Using the SUN
RGB-D dataset of indoor scenery [Song et al., 2015], it is concluded that FuseNet performs significantly
better than the network trained with stacked RGB-D. The mean Intersection over Union (mIoU) (a widely
used performance measure for semantic segmentation) of their best performing model FuseNet-SF5
is 0.3729. The model trained on stacked RGB-D achieved a mioU of 0.3195. Consequently they state
that when compared to stacking depth data to RGB, depth fusion is a better approach for retrieving
informative features from depth information and combining them with color features. It should be
noted that it is not specifically stated which RGB-D stacking architecture is used for this comparison.

In his work, Hazirbas successfully introduced depth fusion as an alternative to data stacking for in-
door scenery imagery. However, it should be noted that this thesis works with height information rather
than depth information, and remotely sensed imagery rather than natural indoor imagery. Therefore,
findings for the added value of fusion of the extra 2.5D information rather than stacking, can not be
adopted without further consideration.

12

2.4 Semantic segmentation of remote sensing data

Nevertheless, Audebert et al. [2018] did show that FuseNet can successfully be used to fuse LiDAR
data with remotely sensed imagery. In their study, Audebert and his colleagues compared SegNet and
ResNet implementations on either Infrared Red Green (IRRG) imagery or stacked DsM, Normalized Dig-
ital Surface Model (nDsM) (relative height) and Normalized Difference Vegetation Index (NDVI) with
FuseNet based implementations. Early fusion (original FuseNet architecture) is compared to a late fu-
sion approach, where prediction fusion through residual correction is executed rather than fusion of
features. In addition, an adjusted version of FuseNet is proposed, referred to as V-FuseNet. In this
architecture, instead of fusing the height information into the RGB encoder path, a third encoder path
is introduced that does not treat the height information as auxiliary data. Rather than fusing the con-
tributions by summing activations of the height encoder into the RGB branch, contributions are fused
by using a convolutional block and a summation. In addition, Audebert and his colleagues have im-
plemented the fusing properties of FuseNet into a ResNet-34 architecture, that was adapted to allow
semantic segmentation (see He et al. [2016]). The results of their tests on the Vaihingen dataset' are
presented in Table 2.1. The highest F1 score on the Vaihingen dataset for the class building, retrieved
by their SegNet-RC approach, is 0.945.

Model Input data Average F1
SegNet IRRG 0.893
SegNet DSM/nDSM/NDVI 0.816

SegNet-RC IRRG + DSM/nDSM/NDVI 0.892
FuseNet-SF5 IRRG + DSM/nDSM/NDVI 0.901
V-FuseNet IRRG + DSM/nDSM /NDVI 0.903

ResNet-34 IRRG 0.891
ResNet-34 DSM/nDSM/NDVI 0.834
ResNet-34-RC IRRG + DSM/nDSM/NDVI 0.891
FusResNet IRRG + DSM/nDSM/NDVI 0.893

Table 2.1: Results of Audebert et al. [2018] on the validation data of the Vaihingen dataset. The addition
of “-RC’ denotes architectures with prediction fusion through residual correction.

Overall, SegNet based architectures performed slightly better than ResNet based architectures. In addi-
tion, ResNet required significantly more memory, especially when fusion is used. Furthermore, when
considering the average F1 scores, early fusion showed a slightly better, but very similar performance
when compared to late fusion (0.901 for FuseNet and 0.892 for SegNet-RC). Audebert and his colleagues
showed that in comparison early fusion has the ability to learn stronger features, whilst late fusion can
sometimes correct for errors on challenging pixels. Finally, the results show that V-FuseNet gives a
similar performance when compared to FuseNet (average F1 scores of 0.903 and 0.901 respectively).

No implementation of V-FuseNet was publicly available and V-FuseNet did not show a remarkable
improvement when compared to the original FuseNet of Hazirbas et al. [2017]. Considering the findings
of the study of Audebert et al. [2018], it is decided to explore the original implementation of FuseNet
for semantic segmentation of aerial imagery and height information in this thesis. More details on this
selected architecture are provided in Section 2.5.4.

Even though in their study Audebert et al. [2018] did use FuseNet for semantic segmentation of
remotely sensed data, no research was executed that allowed for comparison of a fusing approach with a
stacked approach (i.e. IRRG-Z). Therefore, the added value of applying fusion to combine height features
with color information, rather than using a different tactic, is not provided. This will be examined in
this thesis. In addition, no experiments were executed with RGB imagery, solely with IRRG imagery.

1Same dataset as used by Kampffmeyer et al. [2016] and Liu et al. [2017], see ISPRS [2018a]

13

2 State of the art

2.5 Architectures

In the following paragraphs, the four different architectures which are used in this thesis will be pre-
sented, namely FCN-8s, SegNet, U-Net and FuseNet-SF5.

2.5.1 FCN-8s

As discussed in Section 2.2.2, by replacing the traditional fully connected layers in CNNs with convo-
lutional layers, Long et al. [2015] presented an approach to convert traditional classification networks
into FCNs performing pixel-level semantic segmentation. The adjusted classification networks can now
produce low resolution class presence heatmaps. These heatmaps are upsampled in the expanding path
of the network with the use of deconvolutions that are initialized with billinear interpolation filters.
To recover relevant segmentation information lost while the resolution is reduced in the encoder/con-
tracting path, Long et al. [2015] have constructed an approach that has the ability to combine semantic
information present in coarse, deep layers with information on appearance from fine, shallow layers.
Their paper presents three self-developed FCN architectures, namely FCN-32s, FCN-16s and FCN-8s. These
architectures are originally designed for object classification in natural imagery. These architectures dif-
fer in stride at the final prediction layer and the skip connections used to produce the output semantic
segmentation. These skip connections allow for recovery of spatial information at the expanding path,
through the merging of features that originate from different resolution levels in the contracting path
[Drozdzal et al., 2016]. The three architectures support an input of arbitrary dimensions and perform
pixel-level predictions. Using the PASCAL VOC2011 validation dataset [Everingham et al., 2010], FCN-
8s showed the best performance and was able to capture the most detail. FCN-8s can be considered
as a baseline architecture on which (improved) architectures have been built [Shah, 2017]. Neverthe-
less, FCN-8s is one of the selected architectures for this research work as the complete architecture, or
parts of it, is used by several of the most successful participants in The ISPRS Semantic Labeling Chal-
lenge [ISPRS, 2018b; Duc, Minh and Viet, Sang, 2018; Duy, Tring, Van and Sang, Dihn, Viet, 2018] on
the Vaihingen dataset [ISPRS, 2018a] mentioned before. In addition, the implementation of the FCN-8s
architecture is relatively simple. This makes it a suitable starting point for understanding CNNs and the
training process.

A schematic representation of the FCN-8s architecture is presented in Figure 2.5. The architecture
consists of 5 max-pooling layers that perform downsampling and 15 convolutional layers. The output
stride of the network is 8. Predictions from the pool 3 and pool 4 layer are forwarded and combined
with (intermediate) output layers in order to restore details in the segmented output.

32x upsampled 2x upsampled 16x upsampled 2x upsampled 8x upsampled
prediction prediction (FCN-8s)

prediction (FCN-32s)

pool3

image pooll pool2 pool3
T g prediction

Figure 2.5: The pooling and prediction layers of the FCN-8s architecture, consisting of 4 max-pooling
layers and 15 convolutional layers. FCN-16s and FCN-32s are also displayed. Figure from Long et al.
[2015].

2.5.2 SegNet

The SegNet architecture, presented by Badrinarayanan et al. [2017], is a variation of the FCN architecture
of Long et al. [2015]. Badrinarayanan and his colleagues argue that the FCN models can produce coarse

14

2.5 Architectures

Convolutional Encoder-Decoder

Output

Pooling Indices Y

RGB Image I conv + Batch Normalisation + ReLU Segmentation

I Pooling I Upsampling Softmax

Figure 2.6: The SegNet architecture. The encoder consists of 13 convolution layers and 5 max-pooling
layers. Using the transferred pooling indices, the decoder upsamples the encoder output and
executes convolutions to densify the feature maps. Figure from Badrinarayanan et al. [2017].

outputs with fuzzy boundaries, mostly due to the reduction of feature map resolution during max-
pooling and sub-sampling. They aim to tackle this issue and to find a way to map features of low
resolution to input-resolution allowing for classification at pixel-level. In this process, features must be
produced that are valuable for the localization of boundaries.

SegNet was primarily designed for applications focusing on the understanding of road scenery. For
this task it is necessary to model appearance (i.e. building or road) and shape (i.e. pedestrians and
cars). In addition, with road scenery it is important to understand the spatial-relationships that exist
between different classes (i.e. sidewalks present next to roads). Furthermore, as most of the pixels in
such scenery belong to large classes (i.e. building or road), smooth segmentation results are desired,
whilst also allowing for detection of objects based on their shape, even when having a small size. In
order to achieve this, good boundary representation is necessary [Badrinarayanan et al., 2017].

The SegNet architecture is selected for this thesis as even though the perspective of aerial imagery
differs strongly from street-view imagery, it is believed that it can be considered as a similar semantic
segmentation task. In both cases one is not interested in solely delineating one specific object out of
the scene, but segmentation of objects of different shapes and sizes throughout the whole image is
required.

SegNet consists of an encoder network that is connected to a decoder network and a final layer per-
forming pixel classification. A schematic overview of the architecture is presented in Figure 2.6. The en-
coder network correspond to the first 13 convolutional layers of the object classification network VGG-16
[Simonyan and Zisserman, 2014]. It contains five convolution blocks, having two or three convolutional
layers with kernel size 3x3 and a padding of one, connected to both a Batch Normalization (BN) layer
and a ReLU layer. Every convolution block is connected to a 2x2 max-pooling layer. Consequently, the
feature maps produced by the encoder have a resolution of W/32 x H/32, when the dimensions of the
original image are WxH [Audebert et al., 2018].

For every encoder layer, there is a corresponding layer in the decoder network. Therefore, the de-
coder network also consists of 13 layers and has a symmetrical structure to the encoder. The decoder
completes both the upsampling and the classification. The novelty of the SegNet architecture is the way
in which the decoder performs upsampling to its lower resolution feature maps. The encoders pass on
the indices computed in the max-pooling step to the corresponding decoders, which use this informa-
tion to execute non-linear upsampling of their input feature maps. Consequently it is not necessary to
learn to upsample. The resulting upsampled maps are sparse and are combined with the use of filters
that can be trained and deliver dense feature maps. This process allows to preserve high-frequency in-
formation. This is especially useful for small objects that might otherwise be misclassified or misplaced
[Badrinarayanan et al.,, 2017; Audebert et al., 2018]. In addition, the process of reusing max-pooling
indices improves boundary localization, lowers the number of parameters and the process can be easily

15

2 State of the art

implemented into any encoder-decoder architecture [Badrinarayanan et al,, 2017]. However, the un-
pooling does result in loss of neighboring information. A schematic overview of this max-pooling and
unpooling process is provided in Figure 2.7. The output of the final decoder is passed on to a multi-class
softmax classifier that provides for every pixel the class probabilities. The softmax function is a simple
function that takes a vector of K real numbers as input and normalizes these into a probability distri-
bution of K probabilities. After applying the function, all elements will be in the range of [0-1] and the
sum of the elements is 1.

indices

15 1.7 |14 13 e

i 0.2) (3,3) lin,
2021 1.8 16 maxpooling (unpooling o R o
o~ P

G il
22|21 | 1.6 G ' | 0| 0| 0 NG

23 19 15 14

2.1 1.8

activations

Figure 2.7: The impact of the max-pooling and unpooling operation. Figure from Audebert et al. [2018].

In comparison; the decoder of SegNet uses the max-pooling indices for upsampling the feature maps
(without learning) and convolves the result with trainable decoder filters, whilst the FCN architecture of
Long et al. [2015] performs upsampling by learning to deconvolve the input feature map of the decoder,
and adds it to the encoder feature map (output of the max-pooling layer) that corresponds to it to deliver
the output of the decoder (Figure 2.8).

Convolution with trainable decoder filters +
1\
al0/0]0 x1 | Xz | X3 | %, Y1 |Y2|Y3|Ya
00 b0 Xs | X6 |X7 X | |Ys |6 |Y7|Vs
0/0/0|d X9 xlolxu'xlz Y9 Y10 Yu_ylz
c/0/0/0 . X13 X:i“ﬁ X15|X16 Y13\Y14|YV15|V16
Deconvolution nn y
. for upsamplin o
a|b| Max-pooling P pling [|\b |Dimensionality reduction
¢l d| Indices c|d
Encoder feature map
SegNet FCN

Figure 2.8: Comparison of SegNet and FCN Long et al. [2015] decoders. a, b, c and d represent values in
a feature map. While the FCN architecture from Long et al. [2015] learns deconvolution filters to
perform upsampling, SegNet uses max-pooling indices retrieved from corresponding encoder layers
for upsampling. Figure from Badrinarayanan et al. [2017].

2.5.3 U-Net

The U-Net architecture of Ronneberger et al. [2015] was originally designed for image segmentation in
the biomedical community. Its architecture is built upon the FCN architecture of Long et al. [2015]. Ron-
neberger and his colleagues have modified and extended the FCN architecture with the goal to allow it to
work with very little training data and to increase segmentation performance. One of the main modifi-
cations is the addition of a large number of feature channels in the upsampling part of the network. This
addition allows the network to pass on contextual information to layers with a higher resolution. No
fully connected layers are present in the architecture, solely the valid part part of every convolution is
used. Consequently, the output segmentation only consists of the pixels for which the complete context
is available. Due to this approach, seamless segmentation of tiles is possible but it requires the input
tiles to have overlap. Image border region pixel predictions are achieved by extrapolating the missing
context by mirroring of the input image [Ronneberger et al., 2015].

16

2.5 Architectures

64 64

128 64 64 2

input

image || »! output

| segmentation
& & map

=
[}

392 x 392

572 x 572

' 128 128

256 128

f k1 =»conv 3x3, ReLU
s S copy and crop

s sl ¥ max pool 2x2
1024 L SRR 4 up-conv 2x2
x‘ =» conv 1x1

Figure 2.9: The U-Net architecture. Every blue box represents a multi-channel feature map. On top of
every box the number of channels is given. The dimensions are given at the left lower edge of each
box. A white box corresponds to copied feature maps. Figure from Ronneberger et al. [2015].

An overview of the U-Net architecture is presented in Figure 2.9. In total, 23 convolutional layers
are present in the architecture. The encoder (left side of the U-shape, referred to as contracting path)
consists of five blocks with two 3x3 unpadded convolutions, all followed by a ReLU. After each convolu-
tional block, downsampling occurs through a max-pooling operation (2x2) with stride 2. The number of
feature channels is doubled at each downsampling step. Every step in the decoder network (right side
of U-shape, referred to as expansive path) entails an upsampling of the feature map, an up-convolution
(2x2) halving the number of feature channels, a concatenation with the feature map from the encoder
that is correspondingly cropped, and finally, two convolutions (3x3), both followed by a ReLU. Cropping
is necessary as at every convolution border pixels are lost. Concatination of the feature maps from the
encoder to the upsampled feature maps from the decoder, allows the decoder to retrieve important fea-
tures that were lost during pooling operations in the encoder. Finally, a 1x1 convolution is used at the
last layer of the decoder network for mapping the 64-elements feature vector to the correct number of
classes [Ronneberger et al., 2015].

When compared to SegNet, instead of transferring and reusing pooling indices, U-Net transfers the
entire feature map to the matching decoders and concatenates them to the by deconvolution upsampled
feature maps of the decoder, so that the target details can be recovered [Badrinarayanan et al., 2017].
Transferring entire feature maps does cost more memory, but it preserves neighboring information that
is lost when only passing on indices.

Even though a lack of training data is not an issue in this research work, and, as mentioned before,
the U-Net architecture was originally designed for semantic segmentation tasks in the biomedical field,
the architecture was selected for experimentation in this study as it has shown to be promising also in
the field of remote sensing image segmentation. When considering the The Dstl Satellite Imagery Fea-
ture Detection competition of Kaggle [Kaggle, 2017], held in 2017, most of the participants, including the
most successful ones, selected a U-Net (based) architecture. It should be noted that lack of training data
was an issue in this competition, which might be a part of the explanation why this architecture was
so often selected and successful. Even though some of the code of the winners of the competition was
made available, the implementations are extremely case-specific and miss required information on what
to adapt to apply the pipeline to a different problem or dataset. Code is not clean and it is explicitly men-
tioned that the scripts that are made available are not suitable for production environment. Therefore, it

17

2 State of the art

is decided to use the baseline architecture for this study as a starting point for U-Net experimentation.

2.5.4 FuseNet-SF5

As discussed in Section 2.4.3, Hazirbas et al. [2017] developed the FuseNet-SF5 architecture for semantic
segmentation of indoor scenes using RGB-D data. It was aimed to find an alternative for the data
stacking approach through the introduction of data fusion. FuseNet-SF5 can be considered as a multi-
modal architecture built on SegNet [Audebert et al., 2018]. Instead of one encoder branch, two encoder
branches are present, which simultaneously extract features either from the RGB imagery or the depth
images. The information is combined by fusing the feature maps retrieved in the depth branch into the
feature maps corresponding to the RGB branch [Hazirbas et al., 2017]. A schematic representation of the
FuseNet-SF5 architecture is given in Figure 2.10.

RGB encoder RGBW

/77 4

/

m;

O Conv+BN+ReLU (CBR) M Fusion B Dropout B Pooling B Unpooling B Score

Figure 2.10: The FuseNet-SF5 architecture. Red arrows demonstrate the fusion of the depth feature
maps into the RGB feature maps. Figure from Hazirbas et al. [2017].

The encoders of FuseNet-SF5 are similar to the 16-layer VGG classification network [Simonyan and
Zisserman, 2014], without the fully connected layers fc6, fc7 and fc8, as these enhance the difficulty of
upsampling. After each convolution layer in the network BN is applied for reduction of the internal
covariate shift [loffe and Szegedy, 2015], followed by a ReLU. The BN layer ensures normalization of
the feature maps with a zero mean and unit-variance, and hereafter applies scaling and shifting. Dur-
ing the training, the parameters connected to this scaling and shifting are learned. Consequently, no
overwriting of the RGB features by the depth features occurs; the network learns how they can be opti-
mally combined [HHazirbas et al., 2017]. The fusion layers in the FuseNet-SF5 network are present after
a convolution-BN-ReLU block and before pooling layers. By element-wise summation, the discontinu-
ities of the depth features maps are added to the RGB encoder branch, allowing for enhancement of the
RGB feature maps. This fusion approach of FuseNet can also be implemented into other deep neural
networks [Audebert et al., 2018].

A single decoder is used to upsample the output feature maps of the encoder part by applying mem-
orized unpooling. Convolutional layers followed by BN and ReLU are also present in the decoder. During
training, dropout of 0.5 is used in both the encoder and the decoder part of the network [Hazirbas et al.,
2017]. Dropout is a technique to prevent overfitting of the model by randomly dropping units (neurons)
from the neural network together with their connections during the training. This process prevents
redundant co-adaptation of neurons [Srivastava et al., 2014]. Dropout is not used during inference.

18

3 Methodology

In this chapter the methodology of this study presented. A simplified illustration of the methodology is
provided in Figure 3.1. A flowchart covering a more detailed version of the methodology can be found in
Figure A.1. In this chapter, firstly, Section 3.1 describes the selection procedure of the used architectures.
Hereafter, the steps on the generation of training and validation data are given in Section 3.2, followed
by a description of the training process of the CNNs in Section 3.3. Next, the test data generation and
the inference procedure is described in Section 3.4. Finally, Section 3.5 elaborates on the procedure of
answering the research questions. Implementation details on the presented methodology are provided
in Chapter 4.

Preparation phase Training phase

Inter-architecture
comparison
Selection & adjustment
of CNNs
Added value of
height information

F— Trainingof CNNs ——+—>
results per class

Training & test
data generation

Types of height

;
.
H
.
H
1
H
H
H
H
.
H
.
H
H
.
1
1
1
.

Difference in i
1
1
1
1
1
.
i
H
1
H
.
i
H
H

information .

H
.
H
1

Figure 3.1: Overview of the methodology.

3.1 Selection of CNNs

Firstly, a selection is made of existing neural networks that are considered to be suitable for this study.
This is done through a literature study and by examining code implementations corresponding to
promising research papers. Encountered networks were considered to be suitable when adherent to
the following criteria;

e Shown successful performance of semantic segmentation of any type of imagery. The performance
is based on quality measures in research papers and performances shown at The Dstl Satellite
Imagery Feature Detection competition of Kaggle [Kaggle, 2017] and The ISPRS Semantic Labeling
Challenge dataset [ISPRS, 2018a].

e Source code is available online, without any license restrictions.

¢ Implementation is not too complex or too specific for one segmentation task and allows for use of
own dataset.

19

3 Methodology

e Implementation is done in Python.

As a high number of architectures exists, it was aimed to select the few most promising ones. This
network selection procedure led to a state of the art literature review, presented in Chapter 2. The
architectures used in this study are FCN-8s, SegNet, U-Net and FuseNet-SF5. If necessary, the used
implementations were adjusted to allow for the support of the added height information. The rest of
the network’s architecture, such as the amount of layers and the number of nodes/neurons in each layer,
was kept exactly the same (see Section 4.2.5). For FCN-8s, SegNet and U-Net a data stacking approach
is used to accept the added height information, whilst FuseNet-SF5 works with a separate encoder.

3.2 Training and validation data

In order to train a network, example data is needed. For this study, data of the city of Haarlem in the
Netherlands is used. An area of approximately 4km? (2.048x2.048 km) is selected, containing both urban
and more rural areas (Figure 3.2). The training area is subdivided into smaller parts of 512x512 pixels,
with each pixel being 10x10 cm, leading to 1600 tiles (40x40). Data corresponding to each tile is one
training example. The dimensions of 512x512 is selected as 512 is a multiple factor of 2. Therefore, the
images can be downsampled by the networks, for example through max-pooling, several times without
the need of rounding off the dimensions to the nearest integer.

Each training example is a combination of an RGB true ortho image (see Section 4.1.2), plus pixel-
level height information and a mask layer. Depending on the experiment performed, the height infor-
mation is included or left out in the training of a network. The mask layer shows the ground truth; the
correct semantic segmentation of the image. In order to retrieve this information the Dutch national
topographic dataset BGT is used. Before using the dataset, an examination of the BGT was executed to
asses its strengths and weaknesses to serve as a mask layer (see Section 4.1.1). In addition, this analysis
allowed for the selection of the used classes in this study. A cleaned and rasterized version of this BGT is
used. In this cleaned version, terminated objects are removed and no overlapping objects are present, by
keeping only objects visible from the air. For example, at locations where a bridge is going over water,
the bridge is kept and the water polygon is removed. This cleaned version of the BGT is provided by
READAR. The dataset is reclassified into building, road, water and other. For more details on the BGT
and the use of it in this study, see Section 4.1.1.

In this thesis, there is experimented with different types of height information input, namely abso-
lute height relative to Normaal Amsterdams Peil (NAP), rescaled height ([0-1]) using Min-Max Feature
Scaling and two approaches of relative height. All these types of height input are based on a DsM
of READAR (see Section 4.1.2), which is matching to the true ortho imagery. The DSM has the exact
same resolution and pixel locations as the true ortho imagery, and is cut in the exact same pieces as
the RGB and mask data. Consequently, when the networks are trained with the additional height in-
formation, every pixel contains a separate value for the red band, the green band, the blue band and
the height information. In addition, for every pixel one class label derived from the BGT is available
(Figure 3.3). Further details on the generation of the different types of height information can be found
in Section 3.2.1.

A random 80 percent of the examples are used for the actual training of the models, and the re-
maining 20 percent are used for validation. Whilst the actual training examples allow for the learning
of model parameters (weights and biases), the validation data allows for assessment of model perfor-
mance during the training and prevents overfitting of the model on the training data. In addition, the
validation data is used for deciding on the tuning of the hyperparameters, which are the parameters set
before the learning process starts. Model parameters, the ones that are learned, are never updated with
the use of the validation data.

The U-Net implementation requires deviating input dimensions of 572x572. This dimensions are re-
quired as within the U-Net architecture unpadded convolutions are used together with cropping before
max-pooling operations are applied. In order to get the same amount of training examples, the training
area is made slightly larger (22,880x22,880 pixels of 10x10cm). This area is again subdivided into 1600

20

3.2 Training and validation data

Figure 3.2: The training area (green) and test (red) area in Haarlem, the Netherlands.

(a) (b) (c)

Figure 3.3: A training example. (a) RGB true ortho (b) DsM (c) Ground truth. Red = building, gray =
road, blue = water, green = other.

21

3 Methodology

(40x40) non-overlapping tiles. As the output dimensions of U-Net differ from the input dimensions, the
1600 ground truth images are cropped so that the center 388x388 pixels are kept and match with the
output prediction dimensions. The examples are again randomly subdivided in examples for training
(80%) and examples for validation (20%).

3.2.1 Height approaches

As an attempt to exploit the height information provided by the DsM to its full potential, several ap-
proaches were examined (Figure A.2 and Figure A.3).

o Absolute height: As the height information provided in the DsM is a physical value provided in a

physical unit (m relative to NAP), and therefore is in its purest form, it could be argued that altering
the data could lead to a loss of valuable information. In addition, many convolutional operations
are relative operations. Therefore, pre-processing of height might not be necessary. Consequently,
the 'baseline” approach of using the height information is providing the pure values present in the
DSM.

Rescaled height [0-1]: Rescaling the height information from 0 to 1 ensures that the range of the
distribution of the height values is equal to the ones of the normalized RGB input. This can be ben-
eficial as during training the gradients are multiplied by the learning rate, before updating model
parameters (weights). Consequently, deviating value ranges can lead to corrections of the weights
that are proportionally different from each other, resulting in over- and under-compensation of er-
rors (see Section 2.1.1). Nevertheless, when the Adam optimizer is used, individual learning rates
per parameter are maintained, which potentially already solves (part of) the problem (see Sec-
tion 4.2.7). However, as experiments are also executed with the Stochastic Gradient Descent (SGD)
optimizer in this study, and the problem solving property of Adam for the deviating value distri-
bution ranges is not certain, it is decided to use scaled height as one of the height approaches.

In order to generate the rescaled DsM, the Min-Max Feature Scaling algorithm is used (Equa-
tion 3.1). This algorithm is applied to each tile/input image independently in the data loader,
ensuring that all height values are rescaled to a value ranging from 0 to 1. In this algorithm X
represents the original feature (height) value, Xmin and Xmax the minimum and maximum value
of the feature (height) in the complete tile, and X’ the new rescaled feature value. In a later stage
of this study, experiments are also executed in which the Min-Max Feature scaling is based on the
minimum and maximum value of the whole training or test area, instead of on each tile individu-
ally.

X — Xmin

X = 2 fmin
Xmax - Xmin

(3.1)

Relative height (pixel-level): Rather than using absolute height, experiments are also performed
with relative height. Ideally, relative height provides the actual height of the pixel object, as the
height of the terrain is subtracted from it. Therefore, it could be argued that relative height is
more informative than absolute height. On the other hand, as many convolutional operations are
already relative operations, the use of relative height might be unnecessary or even detrimental.

The pixel-level, relative height is generated by subtracting the Digital Terrain Model (DT™M) of
Actueel Hoogte Bestand (AHN)3 [Actueel Hoogtebestand Nederland, 2020] from the DSM. As the
resolution of the DTM (0.5 m) differed from the resolution of the DsM (0.1 m), the DTM was first
upsampled using QGIS 3.12.1 to match the cell size of the DsM. This was done by subdividing
each pixel in the DTM into 25 (5x5) pixels with the same value. Even thought this approach does
not alter the resolution of the DTV, it does allow for a pixel-level subtraction operation. In order to
perform this subtraction, the GDAL raster calculator tool is used .

22

Thttps://gdal.org/programs/gdal_calc.html

https://gdal.org/programs/gdal_calc.html

3.3 Training of CNNs

¢ Relative height (tile-level): As the resolution of the DTM and the DsMm differ, pixel-level subtraction
potentially leads to a more fuzzy representation of object boundaries in the height information. In
addition, due to the flat nature of the area, terrain heights in Haarlem do not fluctuate strongly.
Therefore, as alternative to the pixel-level subtraction approach previously mentioned, the median
of the DTM is calculated at a tile-level, and then subtracted from every pixel in the DsM.

3.2.2 Data augmentation

After generation of the training data, data augmentation is applied. Data augmentation comprises dif-
ferent techniques that augment the size and the quality of the training data. This allows for the gener-
ation of deep learning models of a higher quality [Shorten and Khoshgoftaar, 2019]. Data augmenta-
tion is considered as an easy set of methods to reduce overfitting of a model on the training examples
[Krizhevsky et al., 2017]. Examples of image augmentation techniques are geometric transformations
such as rotation, zooming and flipping, but also adjustment of brightness and hue. Not every data aug-
mentation technique is suitable for this study. For example, rotation is considered to be unsuitable as it
may result in unrealistic shadows, which can provide a limitation to successful training of the network.
In addition, as the scope of this study is Haarlem and the data that will be used as input for inference
on trained models has similar spectral properties as to the training data, the focus of data augmentation
in this thesis is on generating extra, realistic example data. Therefore, horizontal flipping is applied to
the training examples (Figure 3.4). By mirroring the images across the horizontal axis, it is believed that
the issue of unrealistic shadows is prevented. The horizontal flipping is only applied to the data that is
used for model parameter learning and not to the validation data. Due to this data augmentation, the
amount of training examples is doubled.

Figure 3.4: Horizontal flipping as data augmentation technique. The flipping is also applied to the
height information and the mask layer.

3.3 Training of CNNs

Due to a limited availability of computational power and storage on an ordinary laptop, an external
server is used for training and testing of the neural networks. The implementations of the selected
architectures used in this study are equal to the architectures described in each of the corresponding
research papers. All architectures are implemented using the open source machine learning framework
PyTorch? (see Section 4.2).

The selected data stacking networks are first trained and tested using only the true ortho (RBG)
imagery, without the height information. It is aimed to first achieve the highest possible performance
of the networks on the aerial images, before including the height information. This procedure ensures a
valid assessment of the added value of the height information to the segmentation results.

2https://pytorch.org

23

https://pytorch.org

3 Methodology

3.3.1 Tweaking of hyperparameters

An important part of the training process comprises the tweaking of the hyperparameters such as
the initial learning-rate, batch size and number of epochs, and other design choices, such as the cost-
function and the optimizer used. For example, models can be either pretrained on a different dataset, or
not pretrained. Working with a pretrained model, also when trained on an unrelated dataset, could po-
tentially save training time and lead to better results [Azizpour et al., 2015]. Details on the experimental
setup of this thesis are provided in Section 4.3.

3.3.2 Performance measures

In order to assess the performance of a model, the output of a network needs to be converted to a final
prediction: one class label per pixel. The output of a network is provided as four 2D arrays, one per
class, that give for every pixel of the input image a score. The higher the score, the more likely that the
pixel belongs to that class. Therefore, during prediction, every pixel receives the label that corresponds
to the highest score for that pixel.

After this procedure, performance measures can be calculated. In this thesis, models will be assessed
based on the (mean) Intersection over Union (loU), also known as the Jaccard Index. IoU is a standard
performance measure in segmentation. In contrast to conventional accuracy measures, this measure
can overcome the problem of class imbalance. IoU represents the resemblance between the ground truth
and the predicted segmentation. It calculates the ratio between the intersection and the union of the
ground truth and the prediction. The intersection is the number of true positives and this is divided
by the union; the sum of the true positives, the false negatives and the false positives [Garcia-Garcia
etal., 2017]. 1oU is computed for each class and then averaged, providing the mloU. The equation for the
calculation of the mIoU is provided in Equation 3.2. In this equation, k represents number of classes, i
is the actual class of the pixel, j is the predicted class of the pixel, p;; is the number of true positives, pj
represents the number of false positives and pj; is the number of false negatives.

mlol = ! i Pii
k13 T8 o pij + Sio pji — pii

(3.2)

Next to the mloU, the (average) F1 score is calculated to allow for comparison with researches that did
not use the mloU. The F1 score is first computed per class (Equation 3.3), and hereafter averaged. The
F1 score uses precision and recall (Equation 3.4) to assess the accuracy. In these equations p;; represents
the number of true positives for the class i, P; corresponds to the number of pixels assigned to class i by
the prediction and C; is the actual total number of pixels belonging to the class i.

F1, — Zprecz'sz'oni x recall; (33)
precision; + recall;

precision = %,recall = % (34)

1 1

3.3.3 Early stopping

In order to decide on when a training process should be terminated, early stopping is implemented.
After every epoch, the model performance is evaluated using the validation data. Without updating the
parameters, the validation data is fed to the network and performance measures are calculated for the
total of the outputted predictions. If the calculated mioU is higher than the highest mioU calculated on

24

3.4 Test data and inference

Frequency of classes [%] Frequency of classes [%]
FCN-8s, SegNet, FuseNet data U-Net data

45 45
40 40
35 35
30 30
25 25
20 20
15 15
10 10

5 1l]

0 0

Building Road Water Other Building Road Water Other
Training ™ Test Training ™ Test

(@ (b)

Figure 3.5: The frequencies of the different classes occurring in the training area and in the test area. (a)
For the FCN-8s, SegNet and FuseNet-SF5 training area. (b) For the U-Net training area.

the validation data so far, the current model with its learned parameters is stored. If no improvement of
the mloU is detected, the current parameters will not be stored and the training process continues. If no
improvement is detected on the validation data for X epochs in a row, the training process terminates.
Therefore, X is a hyperparameter that needs to be specified in advance. This approach ensures that
when the training process has terminated, the parameters which resulted in the best performance on
the validation data can be retrieved.

3.4 Test data and inference

In order to test the performance of the final, trained, models, independent data is needed. This is
data that the algorithm has not seen before during training, and has not been used for hyperparam-
eter tweaking. In order to generate this test data, another area in Haarlem is selected with the exact
same dimensions and a similar frequency of the classes as the training area (Figure 3.5a). Due to mem-
ory limitations, it is not possible to perform inference on the whole training area at once. Therefore, the
test area is subdivided into smaller parts. Cutting the test area into non-overlapping tiles and feeding
these to a trained network can lead to inconsistencies in the segmentation at the border pixels of a tile.
These inconsistencies negatively influences the accuracy of the prediction [Liu et al., 2017]. In order to
solve this problem, it is decided to use overlap processing in the inference phase, which is inspired on
the U-Net overlap-tile strategy of Ronneberger et al. [2015].

Firstly, the test area is cut into overlapping tiles of 512x512 pixels. The amount of overlap is, similar
to Audebert et al. [2018], set to half the image (256 pixels), leading to 6,241 test images (79x79). Normal
inference is executed on each of the constructed tiles and one predicted class label per pixel is stored.
Hereafter, from each output prediction tile, the outer 128 pixels (256/2) are removed from each side.
These cropped images are compared to the equally cut and cropped ground truth, to calculate the per-
formance measures. Hereafter, the cropped prediction results are merged to form one Tagged Image
File (TIF). In this way;, it is aimed to eliminate the border issue.

25

3 Methodology

i~ sy — B

3 b2 - T 1 example Feed to CNN Out icti
put prediction
True ortho & DSM Cut in overlapping tiles (512x512)

N —
Crop
(256x256)
Ground truth Cut in overlapping tiles 1 example Crop Performance. measure
(512x512) (256x256) calculation &

merge predictions

Figure 3.6: The overlap inference strategy.

The idea behind this approach is that for every pixel prediction present in the merged output, enough
neighboring information was present to perform the prediction. In other words, it is assured that for all
the predictions provided in the output, the complete context was available. An illustration of the overlap
inference process is given in Figure 3.6. Comparing performance measures calculated on the test data
to performance measures calculated on the validation data provides an indication on consistency of the
quality of the model. Nevertheless, it should be noted that tile border pixels have not been removed
when calculating performance measures on the validation data.

As mentioned before, the U-Net implementation used has specific requirements for the input data.
Therefore, the dimensions of the test extent deviate slightly from the extent of the test data used for the
other models. In order to still allow for comparison of all the models, it is aimed to keep the geographic
location of the test data as similar as possible. The U-Net test extent is 22,688x22,688 pixels. Every image
is 572x572 pixels and images have an overlap of 184 pixels, leading to 3,364 test images in total (58x58).
The overlap is based on the amount of pixels that are cropped of the input dimensions by the algorithm
during the inference. Consequently, merging the output predictions of U-Net will automatically lead to
a seamless map.

3.5 Drawing conclusions

This section describes how conclusions are drawn after the models have been trained. To answer the
research questions, both performance measure comparisons (Section 3.5.1) and visual assessments (Sec-
tion 3.5.2) are required. In addition, the object-level performance (Section 3.5.3) will be assessed for the
best performing model.

3.5.1 Performance measure comparison

Firstly, the general performances of the different architectures are compared. Hereafter, the segmen-
tation results and the corresponding mioU scores derived from models when height information is in-
cluded, are compared to the results of the same architectures without the inclusion of height informa-
tion. In addition, to further assess the value of the height information, the difference in segmentation
results per class are examined and compared to the results without inclusion of height information.

26

3.5 Drawing conclusions

Input Erosion iteration 1 Erosion iteration 2
1] 1 1 0] 0 0]] 4] 0] 1] 1] (] 1] 0]] /] 0
1 1 1 1 1 0 0 0 1 1 0 0 0 0 (4]] 0 0 0 0 0
1 1 1 1 1 1] 0 o 1 1 1 o (1] 0 0 0 1]] (1] 1]

1 1 1 1 1 0 0] 1 1 1] 0 0 (1] o 0 0] 0 0
1 1 1 1 1 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0
0 0 0 0 0 0 0] 0 0 0 0 0 0 0 0 0 0] 0 0

Figure 3.7: Two iterations of binary morphological erosion applied to a 7x7 input.

Hereafter, the best performing data stacking models (which included height information) are compared
to FuseNet-SF5 results. Finally, the performances of the different height approaches are assessed.

3.5.2 Visual assessment of results

The mIoU and the IoU per class provide an important indication on the performance of a model and
allow for easy comparison of performances of different models. Nevertheless, as the goal is to generate
high quality maps, assessing visualizations of the output is essential. It requires visual assessment to
detect what kind of errors are made and therefore what challenges are for a specific model. This can
not be done through solely taking the mioU into consideration. Therefore, complementary to merged
prediction outputs, binary error maps are generated, indicating per pixel if the class label assigned to the
pixel by the algorithm is correct (0) or incorrect (1) according to the ground truth. These maps allow for
detection of clusters or areas in an image that are mis-classified. Error maps are also generated per class
and erosion is applied to them using the SciPy Python library®. Erosion comprises the morphological
operation of shrinking the clusters or shapes in an image, in this case in the error maps, by eliminating
border pixels (Figure 3.7). The goal of this process is to emphasize large clusters corresponding to
large errors and eliminate small errors corresponding to, for example, slightly deviating borders. Four
iterations of erosion will be applied to erode the outer 40cm (4 pixels) of the error clusters. This value
is selected, with a little slack, to compensate for the difference in resolution of the ground truth (20cm)
and the aerial imagery (10cm).

3.5.3 Object-level performance

The 10U represents the performance of a class as a whole. However, it does not provide information
on object-level performance. Originally, the ground truth represents complete objects, and not pixels.
Consequently, it could be argued that, when assessing the performance of a model, it is interesting
to see how well individual objects are detected. Therefore, for each object in the ground truth, the
percentage of correctly classified pixels in the algorithm’s prediction is calculated. Firstly, using the
Zonal histogram tool in QGIS 3.12.1., counts are generated per ground truth object for each unique value
present in the outputted prediction raster. Hereafter, the field calculator is used to divide the count of
correctly classified pixels by the total number of pixels that covers the object’s location. The calculated
percentages are displayed in histogram plots per class. These histograms are generated using NumPy’s
Histogram function®. This method allows to receive an estimation on percentages of objects present
in the ground truth that are detected by the algorithm and percentages of objects that the algorithm
has missed. It should be noted that this method only allows for an estimation on the object-level true

Shttps://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html
4https://numpy.org/doc/1.18/reference/generated/numpy.histogram.html

27

https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.binary_erosion.html
https://numpy.org/doc/1.18/reference/generated/numpy.histogram.html

3 Methodology

positives and false negatives. It does not include any information on false positives; the objects that the
algorithm has detected but which are not present in the ground truth. It is believed that false positive
information is required to assess the quality of a model as a whole. Therefore, these histograms are not
taken into consideration for model comparison and selection, but are solely generated for the final, best
performing model.

In addition, it is attempted to receive an indication on the amount of false positives on object-level.
Using the raster calculator in QGIS 3.12.1, error maps are generated containing only pixel-level false
positives. Hereafter, four iterations of erosion are applied to erode the outer 40cm (4 pixels) of the false
positive clusters. The resulting raster map is vectorized using the Polygonize tool in QGIS 3.12.1. The
generated polygons represent the false positives on an object-level.

28

4 Datasets, implementations and experiments

This chapter provides a description of the used datasets (Section 4.1) and an analysis of the suitability
of the BGT to serve as ground truth. Hereafter, implementation details are provided on the methodology
in Section 4.2, followed by the presentation of the experimental setup of this study in Section 4.3.

4.1 Datasets

4.1.1 Basisregistratie Grootschalige Topografie

In this research work, the BGT dataset is used as a mask layer for the training examples. This dataset
has an accuracy of 20 centimeters and provides detailed topographic information of the Netherlands. It
can be accessed from the PDOK portal', which is the national open dataset portal for geo-information
of the Dutch government. The BGT is regulated by law and freely available for any user. It is developed
through a collaboration between municipalities, provinces, waterboards, the Ministry of Economic Af-
fairs, the Ministry of Defence, Rijkswaterstaat and ProRail. Every so called ‘bronhouder’ is responsible
for delivering a specific piece of the dataset. Rules are set on the minimal required quality that should
be delivered, as an attempt to guarantee high quality topographic information [Kadaster, 2018].

To ensure that the quality of the dataset is sufficient for this study and to assess the suitability of
the dataset for being a mask layer, the BGT was assessed manually before preparing the training data.
The metadata of the BGT was examined and the data covering Haarlem was visually compared to corre-
sponding aerial imagery. The following paragraphs summarize the most important findings.

The BGT covers many different classes, which suggests that this dataset has the potential to train a
network to distinguish a broad amount of objects. In addition, the large size and extent of the dataset
ensures a high number of instances per class, leading to a high amount of training data when com-
bined with aerial imagery. Furthermore, the borders of the geometries of the objects in the BGT generally
match with the borders of the objects visible in the aerial imagery. Nevertheless, in some rare occasions
the boundaries of the polygons show some deviation from the true ortho imagery (Figure 4.1a). How-
ever, it is believed that this will not have a large impact on the quality of the results, as the amount of
detected occurrences of this problem is small and the algorithms take surrounding pixels into consider-
ation during the convolutional operations.

A limitation detected is the content of the classes begroeid terreindeel and onbegroeid terreindeel
which indicate continuous vegetation and terrain without continuous vegetation respectively. It was
discovered that in practice both these classes have polygons containing vegetation and no vegetation.
In addition, the classification was incomplete and inconsistent. For example, patches containing grass
and trees were classifies as onbegroeid terreindeel (Figure 4.1b) and patches completely covered by
tarmac were classified as begroeid terreindeel (Figure 4.1c). It is believed that this inconsistency,
which was also detected in class attributes defining the type of object, strongly limits the ability of net-
works to properly learn to distinguish vegetation from non-vegetation. Consequently, when no manual
preselection through visual assessment is executed of the used training data, the BGT is considered as
unsuitable for training a network to classify vegetation. Therefore, this class is not included in this
study.

Ihttp://pdok.nl

29

http://pdok.nl

4 Datasets, implementations and experiments

(b) (c)

Figure 4.1: Errors are present in the BGT. (a) The boundaries of the BGT sometimes show a slight devia-
tion from the boundaries visible in the true ortho imagery. (b) Field with grass and trees is wrongly
classified in the BGT as onbegroeid terreindeel (terrain without continuous vegetation) with the
attribute ‘open verharding’ (open pavement). (c) Patch with tarmac is wrongly classified in the BGT as
begroeid terreindeel (continuous vegetation) with the attribute "heesters’ (shrubs).

Segmentation class BGT class

Building Gebouw installatie
Overig bouwwerk
Pand

Road Overbruggingsdeel
Wegdeel

Water Waterdeel

Other Begroeid terreindeel
Kunstwerkdeel

Onbegroeid terreindeel
Ondersteunend waterdeel
Ondersteunend wegdeel
Openbare ruimte

Table 4.1: Mapping of BGT classes to the segmentation classes.

Overall it can be concluded that both the quantity and quality of the BGT are considered to be suf-
ficient for the dataset to serve as a mask layer in this study, for the classes building, road, water and
other.

As mentioned in Section 3.2, a cleaned version of the BGT of Haarlem was provided by READAR, in
which only relevant classes are present, terminated objects were removed and no overlapping objects
are present as only objects visible from above are preserved. In order to allow this cleaned BGT to serve as
mask layer, some processing of this dataset was needed. First, using the field calculator in QGIS 3.12.1,
the objects were reclassified into the classes building, road, water and other (Table 4.1). Hereafter, the
shapefiles were merged to one layer. Next, the GDAL Rasterize tool was used to convert the vector data
to a raster with pixels of 10x10 cm. This raster was then clipped to the training and test extents.

4.1.2 True ortho imagery and Digital Surface Model

The aerial imagery used as input for the neural networks is true ortho imagery generated by READAR.
This is RGB aerial imagery with a 10 cm resolution and which is corrected for relief displacement. Re-
lief displacement comprises the problem that due to deviating distances from the central perspective
and vertical relief, too much information can be visible on one side of objects, while occlusions occur

30

4.2 Implementations

on the other sides of objects in an image [Sheng et al.,, 2003; Lemmens, 2011]. The true ortho imagery
is generated using READAR’s dense matching software which is based on deep learning techniques
[Zuurmond, Cor, 2018]. In order to create this imagery, the software uses the national high resolution
stereo imagery captured during spring 2018, from Beeldmateriaal Nederland [Beeldmateriaal Neder-
land, 2020] and PSM-Net. PSM-Net is a pyramid stereo matching network proposed by Chang and
Chen [2018] and consists of two modules; Spatial Pyramid Pooling (sPP) and 3D CNN. The sPP module is
responsible for retrieving information from different granularities, whilst the 3D CNN learns to regular-
ize the output of the SPP to generate disparity maps. These maps provide the horizontal shift in pixels
for each pixel in the reference image.

In addition, interpolation techniques based on Inverse Distance Weighting (IDW) are used for es-
timating values where occlusion has occurred. Holes are interpolated using the lowest points in its
surrounding. This methodology is used as the occlusion has occurred due to high objects located next
to these holes. Therefore, pixels located in the holes are expected to be more similar to the surrounding
low-lying pixels than to the surrounding pixels with high elevations. The resulting true ortho imagery
contains an extra band providing information on whether or not the present pixel values were interpo-
lated.

The point clouds obtained through the stereo matching represent the absolute height relative to NAP
per pixel and are converted to a DSM. This DsV, fulfills the role of the fourth band, the Z-band, in the
data stacking approaches in this study. In addition, this DsM is used in the generation of the alternative
height approaches with which is experimented with FuseNet-SF5.

4.1.3 Digital Terrain Model

In order to generate the data corresponding to the relative height approaches described in Section 3.2.1,
the height of the terrain is required. The AHN3 DTM provides this information. AHN is digital height
data covering the Netherlands and is a collaboration between provinces, the central government and
the water boards. In order to generate the DTM, a point cloud is generated using LiDAR, from which
non-ground points are removed. The remaining points are resampled to generate a raster using Squared
1DW. This data can be extracted from the PDOK portal”. For this study, the 0.5m resolution DTM is used.
It should be noted that the data for the DTM is not acquired at the same date as the true ortho imagery.
Nevertheless, it believed that this will not result in large errors due to the assumption that the terrain
height will not alter significantly over a short amount of time.

Due to the removal of non-ground points, holes are present in the DTM. This is not a problem for the
tile-level, relative height approach, where the median per tile is calculated. However, the pixel-level,
relative height approach, which involves pixel level subtraction, does require terrain data for each pixel.
Therefore, before using the DTM for the pixel-level subtraction approach, the holes are interpolated using
IDW.

4.2 Implementations

The existing neural networks which will be tested are implemented in Python, using the open source
machine learning framework PyTorch®. This package uses tensors which are similar to NumPy’s ndar-
rays. These tensors can use the power of GPUs to allow for fast computations. The PyTorch-SemSeg
repository on GitHub [Shah, 2017] aims at mirroring successful and popular semantic segmentation ar-
chitectures in PyTorch. In this repository currently 11 different architectures are implemented, together
with basic code for training the networks. Configuration files are used to specify hyperparameters and
other settings in advance, before the execution of a training. This repository is used as a starting point
for this study. It is selected as it is well documented, relatively easily modifiable to your own needs and
models are direct implementations of the architectures described in the corresponding research papers.

2https://www.pdok.nl
Shttps://pytorch.org

31

https://www.pdok.nl
https://pytorch.org

4 Datasets, implementations and experiments

The repository was set up in 2017, but it is still maintained and most of the model implementations
are less than 1.5 years old. Even though the repository is considered to be a suitable starting point,
adjustments had to be made and complementary code had to be developed to execute this study. The
following paragraphs describe these adjustments, alongside with details on the implementations of the
described methodology in Chapter 3.

4.2.1 Spatial data and performance measures

As the PyTorch-SemSeg repository has not been developed with spatial data in mind, support of a
Coordinate Reference System (CRS) needed to be implemented in order to know the exact location of
the segmented output. Using Rasterio®, the CRS information of the input tile is copied to the output
tile. Hereafter, if not yet present, the performance measures of interest, such as the F1 score, had to be
implemented.

4.2.2 Data loader

A data loader needed to be generated to allow for the architectures to use this specific training data. In
this data loader, input tiles are converted to numpy arrays and input imagery is normalized from [0-1],
using the Min-Max Feature scaling algorithm (see Equation 3.1). The min was set to 0, and the max to
255. For the ground truth information, if a pixel contained no data, the pixel received the class label 0
(other). When height is included in the training, this information is added to the numpy array as an
extra dimension. This allows all the training data to be stored in one numpy array instance per tile.
Before being presented to the network, the numpy arrays are converted to multi-dimensional tensors.
These tensors are the required input for neural networks programmed in PyTorch.

4.2.3 Support of FuseNet-SF5

As FuseNet-SF5 was not one of the 11 implemented architectures, the architecture needed to be in-
corporated in the used framework. In order to achieve this, a FuseNet implementation equal to the
FuseNet-SF5 architecture of Hazirbas et al. [2017] is used, which was available on GitHub".

4.2.4 Early stopping

As mentioned in Section 3.3.3, early stopping is used during training. Early stopping is an alternative
to fixing the number of iterations in advance. Beforehand, the user provides the number of consecutive
epochs for which no improvement of the mioU is detected, when compared to the best performing set of
parameters so far. As the used framework did not support early stopping but used a pre-fixed number of
iterations before termination, early stopping needed to be implemented. In addition, in order to improve
the the training of the model parameters, after every epoch the training examples are reshuffled.

4.2.5 Extra band and pretrained weights

In order to ensure that the data stacking architectures (FCN-8s, SegNet and U-Net) allowed for support
of an extra band next to RGB, the number of in-channels in the first convolutional layer needed to be
changed from three to four. The rest of the architecture could be kept equal. As mentioned before, using
pretrained models can save training time. However, a problem occurs when working with RGB-Z data,
as these pretrained networks generally lack the support of an extra band next to RGB [Kampffmeyer
et al., 2016]. As the architectures of FCN-8s and SegNet have encoders that are based on the VGG-16

4https://rasterio.readthedocs.io/en/latest/
Shttps://github.com/zanilzanzan/FuseNet_PyTorch/blob/master/models/fusenet_model.py

32

https://rasterio.readthedocs.io/en/latest/
https://github.com/zanilzanzan/FuseNet_PyTorch/blob/master/models/fusenet_model.py

4.2 Implementations

classification network [Simonyan and Zisserman, 2014], weights and biases of a trained VGG-16 model
were used to initialize these three networks. These were available through the PyTorch Torchvision
package®. With FCN-8s and SegNet, when trained with height information, the weights and biases cor-
responding to the fourth band were randomly initialized through the default procedure of PyTorch. In
this procedure, the initialization function depends on the type of layer’. Experiments were executed
which compared model performances when pretrained and when not pretrained. Due to a different
encoder structure, the VGG-16 weights could not be used for U-Net. Therefore U-Net is only trained
with randomly initialized weights.

As the encoders of FuseNet-SF5 are also based on the VGG-16 architecture, pretrained weights can
be used for this architecture. Since FuseNet-SF5 has a complete encoder dedicated to the height in-
formation, rather than one extra band, it requires a slightly different weight initialization approach. It
is decided to also copy the complete pretrained weights of VGG-16 to the height encoder and to take
the average of the first layer of weights over the channel dimension as the height encoder requires a
one-dimensional input (only height) rather than three (RGB).

4.2.6 Loss function

In this study, there is experimented with two different loss functions. The standard cross-entropy loss
function (Equation 4.1), and the weighted cross-entropy loss function (Equation 4.2). These equations
describe the calculation of the loss for an individual pixel. x[class] represents the target value for that
pixel (based on the correct class in the ground truth) and x[j] indicates the prediction of that pixel for
class j. During training, the loss function is used to calculate the error between the prediction of the
network and the ground truth (see Section 2.1.1).

B exp(x [class]) \ ,
loss(x, class) = —log (ZJGXID(x[j])) = —x [class| + log <}Zexp(x [}])) 4.1)
loss(x, class) = weight [class] <—x [class] + log <2exp(x [J}))) 4.2)
j

In order to calculate the loss for a batch, the output of the neural network is provided as input to the
loss calculations. The process works as follows; for each pixel four values are provided, one for each
class. The target class of each pixel, which is the label for that pixel in the ground truth, is known. The
softmax of the input is calculated, resulting in a probability distribution which sums up to one. These
probabilities indicate the chance of that pixel corresponding to a particular class. Hereafter, the loss is
calculated by taking the —log of the probability corresponding to the class present in the ground truth.
For each batch, the average loss is calculated. This loss is then back propagated and weights are updated
with the help of the optimizer, with the goal to reduce the error.

As can be seen in Figure 3.5, class imbalance is present in both the training as the test area. The classes
do not cover the same amount of pixels. Consequently, the frequencies of classes can be strongly inho-
mogeneous in the segmented output. This can potentially affect the performance of the cross-entropy
loss function [Liu et al., 2017]. As an attempt to reduce this (potential) negative influence and to im-
prove the mloU of a model, experiments are executed in which class weights are added, leading to the
weighted cross-entropy loss function [Audebert et al., 2018]. These weights are calculated using the in-
verse class frequencies (1/frequency of class in the whole area). For example, if 20 percent of the pixels
in the training area have the label building in the ground truth, than the class weight of building is 5
(1/0.2). Consequently, classes with a low frequency receive a higher weight resulting in an increased
influence in the calculation of the loss. The calculated weights used are provided in Table 4.2. As the
training area of U-Net slightly differs from the other models, the weights are calculated separately.

bhttps://pytorch.org/docs/stable/torchvision/models.html
"For more information see: https://pytorch.org/docs/master/nn.init.html#nn-init-doc

33

https://pytorch.org/docs/stable/torchvision/models.html
https://pytorch.org/docs/master/nn.init.html#nn-init-doc

4 Datasets, implementations and experiments

Building Road Water Other

FCN-8s, SegNet, FuseNet-SF5 4.221 3.624 15412 2.368
U-Net 4.321 3.766 14.825 2.296

Table 4.2: The class weights used for the weighted cross-entropy loss function.

4.2.7 Optimizer

In this study, experiments are executed with two different optimizers, namely SGD and Adam. sGD is a
traditional optimizer in which the weights are adjusted based on an estimation of the actual gradient
of the loss; the average gradient of training examples [LeCun et al., 2015]. Adam is considered as an
improvement of the SGD optimizer. Whilst SGD is widely used in different types of machine learning
applications, the Adam optimizer has been specifically designed for deep neural networks [Kingma
and Ba, 2014]. The biggest difference between the optimizers is the approach towards the learning rate;
the proportion that the parameters (weights) are updated. Traditional SGD maintains one learning rate
for all the updates of the weights in a network, and this rate does not change over time. On the contrary,
Adam maintains individual learning rates per parameter in a network. These are separately adapted
throughout the learning procedure. For both optimizers the implementations available in PyTorch were
used®. There is experimented with different (initial) learning rates, namely le-3, le-4 and le-5.

4.2.8 Server and Docker

As mentioned before, the computational power of an external server is used in this study. Models are
trained using a single GPU (rtx2080ti 12 GB). In order to allow for training and testing of the networks
on this server, Docker’ containers are used. A Docker container is a software unit in which all the code
and dependencies of an application can be stored. Consequently, the application can be easily used in
different computing environments.

4.2.9 TensorBoard

In order to follow the progress of a training and to detect configuration errors while the training is being
executed, support of TensorBoard!’ is implemented. TensorBoard is a visualization toolkit developed
for machine learning experimentation. It is used for the generation of real-time plots of performance
measures, such as the mloU and the per class loU (Figure 4.2). In addition, after every epoch the predicted
semantic segmentation of one validation tile is provided to visually keep track of the performance of the
model over time. In order to see the visualizations generated through TensorBoard, the local host of the
server was connected to the local host of the used laptop.

4.3 Experiments

In order to allow for a valid comparison between different architectures, RGB and RGB-Z input, stack-
ing and fusion approaches and use of different height types, several experiments needed to be executed.
A schematic overview of the performed tests done to detect the most promising hyperparameters, are
presented in Table 4.3. In order to select best performing hyperparameters per model, relative perfor-
mance (performance of one setting or value of the hyperparameter compared to performance using a
different setting or value) is more important than absolute performance. In other words, for being able
to distinguish the best setting of a hyperparameter, it is initially only relevant to assess the difference

8For more information, see: https://pytorch.org/docs/stable/optim.html
Shttps://www.docker.com/
Ohttps://www.tensorflow.org/tensorboard

34

https://pytorch.org/docs/stable/optim.html
https://www.docker.com/
https://www.tensorflow.org/tensorboard

4.3 Experiments

oo

ds3

M /m'vm"r”‘rrr' / WTF f WWTT‘

Figure 4.2: A screenshot of the TensorBoard interface. This toolkit allows for keeping track of the
training process by plotting performance measures.

RGB RGB-Z (data stacking) RGB-Z (data fusion)
Hyperparameter Options FCN-8s SegNet U-Net FCN-8s SegNet U-Net ‘ FuseNet-SF5
Weight initialization Pretrained / random X X X X X
(Initial) learning rate le-3 / le-4 / 1e-5 X X X X
Optimizer SGD / Adam X X X X
Loss function CP / WCP X X X X
epochs no improvement 10 / 20 / 50 X X X X
Horizontal flipping Yes/no X X X X
Height type AH / SHT / SHW / RHP / RHT AH & SHT AH&SHT AH & SHT X

Table 4.3: Schematic overview of the experiments conducted for hyperparameter selection. After these
experiments, models are trained in which the best performing settings are combined. An x indicates
that experiments are executed with all the options of the hyperparameter. CP = Cross-entropy, WCP
= Weighted cross-entropy, AH = Absolute height, SHT = Rescaled height [0-1] (tile-level), SHW =
Rescaled height [0-1] (whole area), RHP = Relative height (pixel-level), RHT = Relative height (tile-
level)

in results when that parameter is altered. After deciding on which hyperparameter settings are most
promising, experiments are executed in which these settings are combined. Consequently, some hyper-
parameter settings needed to be selected as "baseline settings’. These settings include; (initial) learning
rate of le-4, epochs of no improvement of 20, the Adam optimizer, the cross-entropy loss function, no
data augmentation and when possible, initialization with pretrained weights. When height information
was included, absolute height was used as default. The selection of these settings is based on a trade
off between the impact on computation time and the expected influence of that parameter on absolute
performance. In addition, the batch size is set to 5 for all FCN-8s, SegNet and U-Net experiments, and 4
for FuseNet-SF5 experiments. This batch size is selected to fit the memory of the used server.

With the RGB-Z data stacking architectures there is not experimented with all the hyperparameters,
as most of the promising hyperparameter settings will be discovered during the RGB experiments. The
RGB-Z data stacking architectures are trained with absolute height and scaled absolute height (tile-
level). In addition, experiments are performed with pretrained weights (if available) and randomly
initialized weights. Randomly initialized weights are also tested with the RGB-Z experiments to al-
low for comparison of randomly initialized weights with the performance of the developed pretrained
weights approach for the height band, as described in Section 4.2.5).

With the FuseNet-SF5 architecture experiments are performed with all the hyperparameter settings
and all the different height approaches. The decision to not test all the height approaches for the other
three architectures is based on the fact that FuseNet-SF5 was introduced to this study at a later phase
(see Figure A.1). The use of FuseNet-SF5 was a response to the demand for an alternative way to use

35

4 Datasets, implementations and experiments

the height information, which became clear through training results of the first three architectures (see
Chapter 5).

36

5 Results and analysis

In this chapter the results of the performed experiments are presented and analyzed. Firstly, Section 5.1
provides the hyperparameter settings that correspond to the best performing models per architecture.
Hereafter, in Section 5.2, the results of the models trained on only RGB imagery, without height informa-
tion, are discussed. Next, in Section 5.3, the added value of height information to segmentation quality
is examined for the overall performance of models (Section 5.3.1), and for the performance of the in-
dividual classes (Section 5.3.2). Next, in Section 5.4, the performance of the data stacking approach is
compared to the data fusion approach, followed by an analysis of the results of the experiments with dif-
ferent height approaches in Section 5.5. Hereafter, in Section 5.6 the object-level performance of the most
successful model will be assessed. Next, in Section 5.7 it is demonstrated that “errors’ in the outputted
predictions are not always actual errors, but can be the result of missing objects in the BGT. Finally,
Section 5.8 attempts to compare the best performing models of this study to results gained in related
work.

An overview of all the calculated performance measures, on both the validation and the test data, of
all the executed experiments, is given in Appendix B.2.

5.1 Hyperparameters

The hyperparameter settings corresponding to the best performing models per architecture are provided
in Table 5.1. These combinations of parameters have resulted in the highest mloU scores on the validation
data. In this section short remarks will be made on the selected parameters and their performance on
the validation data. The results on the fest data of the models corresponding to these settings will be
used for analysis in the remainder of this study, except when stated otherwise.

For all the architectures, when available, pretrained weights lead to a higher performance than ran-
domly initialized weights (i.e. +5% for FCN-s (RGB), +6% for SegNet (RGB) and +2% for FuseNet-SE5).
Furthermore, inclusion of horizontal flipping resulted in a slight increase in performance for each of
the architectures (on average +1%). In addition, with all the models the Adam optimizer with a initial
learning rate of le-4 resulted in higher mloU than when compared to SGD and other initial learning rates.
It should be noted that a successful training was only achieved with SGD for FCN-8s, as other models
retrieved extremely low mloU scores. Nevertheless, the training with SGD and FCN-8s took almost 43

Hyperparameter ‘ FCN-8s SegNet U-Net FuseNet-SF5
Weight initialization Pretrained Pretrained Random Pretrained
(Initial) learning rate le-4 le-4 le-4 le-4
Optimizer Adam Adam Adam Adam

Loss function cp CP Cp CP

epochs no improvement 50 50 50 50
Horizontal flipping Yes Yes Yes Yes

Height type (only with RGB-Z) | SHT SHT SHT RHP

Table 5.1: Hyperparameter settings corresponding to the best performing models per architecture. The
'height type’ is only relevant for the experiments in which height was included. For an overview of
the different hyperparameter options with which is experimented, see Table 4.3. CP = Cross-entropy,
AH = Absolute height, SHT = Rescaled height [0-1] (tile level), RHP = Relative height (pixel-level).

37

5 Results and analysis

Model mIoU Average F1

FCN-8s 0.8121 0.8958
SegNet 0.8219 0.9015
U-Net 0.7637 0.8647

Table 5.2: Performance measures of the models on the test data when trained on RGB only.

hours, which was approximately 10 times longer than the same experiment with Adam. In addition,
the mloU was 7 percent lower for this SGD experiment, when compared to the same experiment with the
Adam optimizer. Therefore, it was decided to select the Adam optimizer and to not consider SGD in the
remainder of the experiments.

Moreover, the use of the weighted cross-entropy loss function, did not lead to an increase in model
performance. For all four architectures, the normal cross-entropy loss function outperformed, or equally
performed when compared to the weighted loss function. U-Net even showed a decrease in mloU on the
validation data of more than 2 percent when the weighted loss function was used.

Furthermore, when considering the termination of the training procedures, the number of epochs of
no improvement corresponding to the best performing models was 50. Training with this setting did
take approximately 2 to 3.5 times longer for these models than when 20 epochs of no improvement was
used.

Finally, for the data stacking models, when height was included, scaled absolute height (tile-level)
showed a slightly better mloU performance than normal absolute height (on average almost +1%). For
the data fusion approach, the absolute height slightly outperformed scaled height (~+0.5%). In addi-
tion, when considering the height experiments executed with FuseNet-SF5, pixel-level, relative height
showed to outperform the other height approaches. A more extensive analysis of the performance of
the different height approaches is presented in Section 5.5.

5.2 RGB baseline comparison

In order to allow for an assessment of the added value of height information, baseline models were
trained in which solely RGB information was used. The mloU and average F1 scores of the best per-
forming models on the test data are presented in Table 5.2. In addition, the mloUs together with the
outputted segmentations allowed for a comparison of the suitability of the different architectures for
semantic segmentation of the true ortho imagery.

The mIoUs indicate that SegNet provides the best segmentation performance. However, the achieved
performance measures are very similar to FCN-8s. U-Net scores approximately 6 percent lower on mloU,
when compared to SegNet. U-Net did require only three hours to finish the training procedure, whilst
FCN-8s and SegNet took approximately 4 times longer.

Visual assessment of the segmented output led to similar findings. On first sight, the segmented
output of FCN-8s and SegNet appears of similar quality, whilst U-Net generally delivered more messy
and less homogeneous predictions (Figure 5.1). In areas with straight streets, straight house blocks
and little vegetation, all three models perform well (Figure 5.2). Especially FCN-8s and SegNet show
homogeneously segmented patches with little to no distortion in residential areas. In general, for all
three models, the biggest challenge for the segmentation quality seems to be imposed by shade. Shady
areas belonging to the classes road or other are often misclassified as water. A possible explanation
could be that the dark color of shady areas confuses the algorithms, resulting in a misinterpretation for
water. Generally, SegNet outperforms the other models at shady areas and especially U-Net shows to
have difficulty with this issue (Figure 5.3).

As mentioned in Section 2.5.2, one of the goals of the development of the SegNet architecture was
the improvement of boundary predictions, when compared to FCN performance. Even though SegNet

38

5.2 RGB baseline comparison

(a) (b)

(c) (d) (e)

Figure 5.1: The test area with the predictions of models on RGB imagery. Red = building, gray = road,
blue = water, green = other. (a) RGB true ortho (b) Ground truth (c) Prediction FCN-8s (d) Prediction
SegNet (e) Prediction U-Net.

39

5 Results and analysis

-..' .

(b)

1-". ; "L'~

!l:

Figure 5.2: All models show to be successful in segmenting areas with straight streets, straight house
blocks and little vegetation. Red = building, gray = road, green = other. (a) RGB true ortho (b) Ground
truth (c) Prediction FCN-8s (d) Prediction SegNet (e) Prediction U-Net.

')—

(a) (c)

Figure 5.3: Shade performs a challenge on the segmentation quality of the algorithms using RGB data.
Red = building, gray = road, blue = water, green = other. (a) RGB true ortho (b) Ground truth (c)
Prediction FCN-8s (d) Prediction SegNet (e) Prediction U-Net.

40

5.3 Data stacking: RGB versus RGB-Z

Figure 5.4: FCN-8s and SegNet show a similar quality of boundary representation on the RGB data,
whilst U-Net’s boundaries are of a poorer quality. Red = building, gray = road, blue = water, green =
other. (a) RGB true ortho (b) Ground truth (c) Prediction FCN-8s (d) Prediction SegNet (e) Prediction
U-Net.

does provide a slightly higher mIoU, visual assessment of the output predictions did not indicate a better
boundary representation (Figure 5.4).

Due to the self-learning nature and the tens of millions of trainable parameters present in the indi-
vidual architectures, directly pointing out why an individual architecture outperforms another is chal-
lenging. The results on the RGB data indicate that especially the strategy of SegNet leads to a high per-
formance. Therefore, it could be argued that the transferring of max-pooling indices from the encoder
to the decoder for upsampling and using trainable decoder filters, is a successful approach for seman-
tically segmenting aerial imagery. However, it should be noted that using pretrained weights instead
of randomly initialized weights resulted in a increase in mioU on the validation data of approximately
5 and 6 percent for FCN-8s and SegNet respectively. Therefore, a large part of the lower performance of
U-Net can presumably be attributed to the absence of pretrained weights. Nevertheless, a comparison
between FCN-8s and SegNet with randomly initialized weights to U-Net also indicated a slightly lower
performance of U-Net, namely; approximately 1 and 3 percent lower when compared to FCN-8s and
SegNet respectively. These outputs suggest that even though U-Net performance is lower than FCN-8s
and SegNet, the difference in performance is presumably smaller than the current mloU suggests.

5.3 Data stacking: RGB versus RGB-Z

In this section, the results of the RGB-Z stacking experiments, in which height is included, are presented
and compared to the results gained with the models discussed in the previous section where only RGB
information was used. First, the overall performance of the different models will be compared in Sec-
tion 5.3.1. Hereafter, in Section 5.3.2 the performances per class will be assessed.

5.3.1 Overall performance

In Table 5.3 the mloU and average F1 scores show that for every architecture the addition of height in-
formation led to a (slight) improvement. However, as the added value to the mloU for both FCN-8s and
SegNet is solely approximately half a percent, this overall improvementis considered as small. U-Net
does show an increase in the mloU of just over two percent when height information is included, indi-
cating that U-Net benefits more from the added information than the other architectures. Nevertheless,
even with this increase, U-Net still shows a 4 percent lower mloU performance when compared to Seg-
Net. Therefore, the inclusion of height information did not alter the hierarchy of performance of the
architectures.

41

5 Results and analysis

Model Input mloU AverageF1

FCN-8s RGB 0.8121 0.8958
FCN-8s RGB-Z 0.8177 0.8990

SegNet RGB 0.8219 0.9015
SegNet RGB-Z 0.8257 0.9039

U-Net RGB 0.7637 0.8647
U-Net RGB-Z 0.7851 0.8786

Table 5.3: Data stacking: performance measures on the test data of models trained on RGB and RGB-Z.

(d) (e

Figure 5.5: Height information shows to have the potential to aid the prediction in challenging cases. A
parking lot is present on top of a building. Red = building, gray = road, blue = water, green = other.
(a) RGB true ortho (b) Dsm (¢) Ground truth (d) Prediction FCN-8s (RGB) (e) Prediction FCN-8s (RGB-Z)

Visual assessment of the outputted maps indicates that the prediction quality of U-Net indeed im-
proves when height information is added. Predictions are more smooth and homogeneous and less
messy. In addition, boundary representation is less fuzzy. On first sight, the quality of the segmented
outputs of FCN-8s and SegNet do not show any improvement when height information is added. How-
ever, interesting differences can be observed when zooming in. For example, in some challenging envi-
ronments the addition of height information does indeed show to aid the prediction. A clear example
is demonstrated in Figure 5.5, in which a parking lot in present on top op a building. When no height
information is included, the pixels corresponding to this parking lot on top of the building are misclass-
fied as road and other. With height information included, most of the pixels receive the correct label of
building.

The result presented in Section 5.2 showed that the presence of shade negatively influences the per-
formance of the algorithms. As height information could show for shady areas that they actually do
not differ in structure from areas next to it where no shade is present, it was hoped that the addition of
the DsM would improve segmentation results in shady areas. However, for none of the architecture this
seemed to be the case (see Figure A.4). A possible explanation could be that the stacking approach does
not allow the algorithms to learn a different type of features from the height information, other than
the features that are also relevant for the RGB data. This could be a problem as the RGB data encodes
information on color and texture, rather than on structure.

42

5.3 Data stacking: RGB versus RGB-Z

(@ (b) (c) (d) (e)

Figure 5.6: Addition of height information leads to misclassification of road pixels corresponding to a
large bridge. Red = building, gray = road, blue = water, green = other. (a) RGB true ortho (b) DsM (c)
Ground truth (d) Prediction FCN-8s (RGB) (e) Prediction FCN-8s (RGB-Z)

Even though throughout most of the test area added height information seems to have either no
influence or a positive influence, one occasion is detected in which the added height information seemed
to confuse the algorithms. This occurs at a large bridge that passes over water (Figure 5.6). Before
addition of the height information, most of the pixels are correctly classified as road. However, when
height information is added, the algorithms misinterprets the bridge for a building, especially FCN-
8s has this issue. A possible explanation could be that the algorithms have learned that one of the
properties of road pixels is that they belong to the lowest pixels of the surrounding, as roads usually
have the same elevation as the terrain. When a large bridge crosses over water, the road is suddenly
elevated when related to its surrounding, which might cause confusion. Luckily, the classification of
other, smaller and lower bridges going over water in the test area did not show the same issue.

5.3.2 Class performances

In order to assess the performance per class, the loUs corresponding to each class are given in Table 5.4.
From these results in can be noted that in general, with both RGB and RGB-Z input, the algorithms
predictions for the classes building and water are of a higher quality than for the classes road and
other. Furthermore, the results indicate that for FCN-8s and SegNet the addition of height information
positively influences the class building with approximately 2.5 percent and 1 percent respectively. The
other classes do not seem to be influenced by the height information, with the exception of road. When
height information is used, the segmentation quality of road for FCN-8s is lowered by 1 percent. U-Net
clearly benefits the most from the addition of height information. An increase in performance is detected
of almost 6 percent for building, 1.6 percent for road and almost 3 percent for other. However, the class
water does not benefit from the height information.

Even though the IoUs provide a good first indication, it should be noted that the IoUs presented
correspond to the models that showed the best overall performance; the best mloU. Consequently, if
for example one set of parameters leads to a lower than average performance on the class water, but
shows to be extremely successful in segmenting the class building, it is still possible that this model is
selected as final model, as the mloU outperforms others. However, this model then does not reflect the
potential performance on the class water. Therefore, it is interesting to assess the IoUs achieved on the
validation data throughout the training process (Figure 5.7). From this information it can be detected if,
on average, height information has an influence on the segmentation performance of a class.

The plots validate that for FCN-8s, SegNet and U-Net the performance of the class building improves
when height information is added (Figure 5.7 a, b & c). For U-Net, the same can be concluded for the

43

5 Results and analysis

Model Input Building Road Water Other

FCN-8 RGB 0.8305 0.7822 0.8661 0.7698
FCN-8s RGB-Z 0.8567 0.7714 0.8700 0.7725
+0.0262 -0.0108 +0.0039 +0.0027

SegNet RGB 0.8426 0.7810 0.8907 0.7735
SegNet RGB-Z 0.8538 0.7827 0.8841 0.7822
+0.0112 +0.0017 -0.0066 +0.0087

U-Net RGB 0.7814 0.6974 0.8535 0.7225
U-Net RGB-Z 0.8384 0.7134 0.8365 0.7521
+0.0570 +0.0160 -0.0170 +0.0296

Table 5.4: Class loU performance of RGB and RGB-Z data stacking approaches on the test data. The
added value of height information is presented in green (positive influence) and red (negative influ-
ence).

classes road and other (Figure 5.7 f & i). For FCN-8s and for SegNet, the class other generally shows an
increase in performance as the RGB-Z line (red) is mostly located above the RGB line (blue) (Figure 5.7
j & k). For FCN-8s and SegNet road does not show any influence of height information (Figure 5.7 d &
e). Slightly contrary to the IoU, water for FCN-8s seems to be lightly negatively influenced when height
information is added whilst for the class water for SegNet no impact seems to be present (Figure 5.7 g

&h).

In Table 5.5 and Table 5.6 the confusion matrices of SegNet trained on RGB and SegNet trained on
RGB-Z are given. In these tables the values are provided in percentages of the total pixels belonging to
that class in the ground truth. The original confusion matrices with the absolute values, are provided
in Table B.1 and Table B.2. From the matrices representing the absolute values, it can be noticed that for
both models the biggest sources of errors are buildings predicted as other, roads predicted as other and
pixels which actually belong to other predicted as road. The addition of height information allowed the
algorithm to correctly classify over one percent more building pixels, mostly by reducing the amount
of actual building pixels being wrongly predicted as other. However, the height information did not
provide a solution for road pixels being classified as other and other pixels being classified as road. In
addition, the added height resulted in over 0.7 percent less water pixels being correctly classified, and
over 1 percent more water pixels now being misclassified for building.

Prediction
| Building Road Water Other
= Building 90.55 1.04 0.09 8.32
.§ Road 1.19 89.49 0.14 9.19
< Water 1.98 0.70 9231 5.01
Other 4.15 8.01 0.67 87.16

Table 5.5: Confusion matrix of SegNet (RGB) on the test data. The values are given in percentages.

Prediction
| Building Road Water Other
= Building 91.77 0.84 0.15 7.24
§ Road 1.19 89.51 0.18 9.11
< Water 3.13 0.57 91.58 4.71
Other 3.91 8.06 0.59 87.44

Table 5.6: Confusion matrix of SegNet (RGB-Z) on the test data. The values are given in percentages.

44

5.3 Data stacking: RGB versus RGB-Z

FCN-8s 'Building’ SegNet 'Building' U-Net 'Building’
0.89 0.89 0.86
0.84
0.87 \ 0.87 f 0.82
0.85 0.85 08
3 (" 3 Bom
0.83 0.83 076
0.74
0.81 0.81
0.72
0.79 0.79 07
0 40 80 120 160 200 0 40 80 120 160 200 240 0 40 80 120 160
Epoch —RGB —RGB-Z Epoch —RGB —RGB-Z Epoch —RGB —RGB-Z
(@ (b) (0
FCN-8s 'Road' SegNet 'Road' U-Net 'Road’
0.85 0.85 0.76
0.83 s 0.83 0.74
0.81 0.81 0.72
> =} >
2 ° 2
0.79 0.79 0.7
0.77 0.77 0.68
0.75 0.75 0.66
0 40 80 120 160 200 0 40 80 120 160 200 240 0 40 80 120 160
Epoch —RGB —RGB-Z Epoch —RGB —RGB-Z Epoch —RGB —RGB-Z
(d) (e) f)
FCN-8s 'Water' SegNet ‘Water" U-Net "Water'
0.88 0.87 0.86
0.86 0.85 0.84
0.84 0.83 0.82
2 2 =}
Cl E El
0.82 0.81 08
0.8 0.79 0.78
0.78 0.77 0.76
0 40 80 120 160 200 0 40 80 120 160 200 240 0
Epoch ~ —RGB —RGB-Z Epoch ~ —RGB —RGB-Z Epoch ~ —RGB —RGB-Z
(g (h) (0]
FCN-8s 'Other’ SegNet 'Other’ U-Net 'Other’
0.84 0.84 0.8
0.82 0.82 0.78
08 08 0.76
2 2 2
2 2 2
0.78 0.78 0.74
0.76 0.76 0.72
074 0.74 07
0 40 80 120 160 200 0 40 80 120 160 200 240 0 40 80 120 160
Epoch —RGB —RGB-Z Epoch —RGB —RGB-Z Epoch —RGB —RGB-Z
G) (k) ()]

Figure 5.7: The performance on the validation data achieved per class during training, for; FCN-8s (a, d,
g,j), SegNet (b, e, h, k) and U-Net (¢, f, i, I).

5 Results and analysis

Figure 5.8: Addition of height information increases the details of building predictions. (a) RGB true
ortho (b) DsM (c) Ground truth (only buildings) (d) Prediction FCN-8s (RGB) (e) Prediction FCN-8s
(RGB-2)

Visual assessment of the segmented outputs of the different models indicated that the increase in
performance for the class building is mostly visible in the form of the filling up of incorrect holes
and the improvement of details at parts of buildings that are not directly attached to the road (usually
backside of houses, house extensions and sheds) (Figure 5.8). This finding is in line with the information
retrieved from the confusion matrix that when height information is added less building pixels are
misclassified as other.

It is expected that in general the class building performs better than the classes road and other as
buildings usually have crisp, straight boundaries that are clearly visible from the air. These boundaries
could potentially easily be detected by edge detection filters. The improvement of segmentation quality
of the class building when height information is included, could be explained by the fact that buildings
are always elevated from the ground. This elevation in combination with usually clearly visible crisp
boundaries is believed to boost the segmentation performance.

On the other hand, roads in aerial imagery contain a large amount of noise. Cars, trees, shade from
buildings and other obstacles present next to, or on top of, roads, limit the visibility of the roads and
their boundaries from the air. In addition, the ground truth information of the class road appears to be
of a relatively lower quality than the other classes. Especially small roads are not always consistently
mapped in the BGT (see also Section 5.7 & Figure 5.20). This has a negative influence on the training
procedure and results in an erroneous reduction of the calculated performance measure. The noise of
the objects present on top of, and next to, roads are also present in the height information. This, in
combination with the fact that roads often follow the height of the terrain, is believed to make height
information less distinctive for road than for building. This could be a possible explanation for why
the addition of height information is currently not contributory for the segmentation of the class road.
However, roads have the property that they are usually flat and of equal height (and width) in the
cross sectional view. Therefore, it is believed that when obstacles are less present, height information in
general still contains the potential to improve the segmentation of this class.

Generally, segmentation of water is believed to be of a relatively high quality as the consistent dark

46

5.4 Stacking versus fusion

color of water is discriminant in the RGB imagery and, comparable to building, water usually has crisp
borders. At large water bodies, the DsM is of low quality due to the challenge that the highly resembling
water pixels impose on the dense matching technique used to generate the data. As a result of the flat
nature of water, it is believed that at water bodies where the DsM does provide correct information,
height information can be valuable for the segmentation. However, at areas with water where the DSM
is of low quality, it is believed that it will not aid the prediction, and might even confuse the algorithm
leading to a lower performance.

The class other is a challenging class in general as it contains everything that does not belong to
one of the other three classes. This includes for example high vegetation but also bare ground, shrubs
and construction sites. As the spectral properties differ strongly of these different types of areas, it
is assumed that this explains the relatively lower performance of the class other. Figure 5.7 j, k and
1, showed that addition of height information did provide some added value to the segmentation of
other. This is somewhat contradicting to findings of Couprie et al. [2013], discussed in Section 2.3, that
for classes with a high variability of the depth values, using solely RGB leads to better results than when
depth information is included.

5.3.3 Inclusion of height information trough data stacking

The comparison of models trained on RGB with models using a RGB-Z stacking approach led to a
number of findings. The addition of height information through data stacking resulted in;

e an increase in mloU of over 2 percent for U-Net but only a marginal improvement for FCN-8s and
SegNet;

e an improvement of the segmentation quality of building for all the models and a potentially slight
improvement of the class other;

¢ addition of valuable information at complex segmentation task (i.e. parking lot on top of building);

e no improvement or even introduction of confusion for the class water and no real influence on the
class road (with exception of the positive influence on U-Net).

e no improvement of segmentation of areas containing shade

Overall, these findings indicate that height information does have the potential to add value to se-
mantic segmentation of aerial imagery. However, this added value currently differs per class. Solely
providing height information for specific classes goes against the self-learning nature of CNN algorithms
and is therefore not considered as an option. In addition, it is argued that the stacking approach does
not allow to decode relevant information from the height data related to structure, which could be use-
ful in segmenting areas containing shade. The question therefore arises if height information can be
exploited to its full potential with height stacking approaches. This question resulted in the search for
an alternative approach, which led to the experimentation with data fusion.

5.4 Stacking versus fusion

In this section a comparison will be made with the best performing data stacking model using RGB-Z;
SegNet, and FuseNet-SF5 which includes height information through data fusion. For this comparison,
only the experiments of FuseNet-SF5 with absolute and rescaled height (tile-level) were considered,
as these were the only height approaches with which experiments were executed with the stacking
models. From the results presented in Table 5.7 it can be noted that FuseNet-SF5 outperforms SegNet
by slightly over 1 percent on mloU. FuseNet-SF5 retrieved a slightly better performance using absolute
height (mloU: 0.8381) when compared to rescaled height (mloU: 0.8326). Therefore, the model trained
on absolute height is used for the comparison with SegNet. Nevertheless, the rescaled height approach
also outperformed the stacking models.

47

5 Results and analysis

A clear increase in performance is present for the classes building and water and a marginal in-
crease is present for the class other. It should be noted that SegNet trained on RGB-Z did not provide
the highest IoU for the classes building and water. Nevertheless, FuseNet-SF5 also outperformed the
highest performances of all the stacking models on these classes. However, FuseNet-SF5 did not out-
perform the data stacking models for the class road. For this class FuseNet-SF5 scored approximately
half a percent lower.

Model Building Road Water Other mloU
SegNet (RGB-Z) 0.8538 0.7827 0.8841 0.7822 0.8257
FuseNet-SF5 0.8723 0.7767 0.9143 0.7890 0.8381

+0.0185 -0.0060 +0.0302 +0.0068 +0.0124

Table 5.7: 10U performance of the SegNet RGB-Z data stacking approach versus the FuseNet-SF5 RGB-Z
data fusion approach on the test data. The added value of the fusion approach when related to the
stacking approach is presented in green (positive) and red (negative).

Prediction
| Building Road Water Other
= Building 93.10 0.92 0.04 5.94
.g Road 1.18 88.94 0.07 9.81
< Water 1.34 0.82 93.61 4.23
Other 3.78 8.02 047 87.73

Table 5.8: Confusion matrix of FuseNet-SF5 on the test data, using absolute height. Values are given in
percentages.

The confusion matrix with percentages corresponding to the prediction of FuseNet-SF5 with abso-
lute height on the test area is presented in Table 5.8. In Table B.3 the confusion matrix with absolute
values is provided. By comparing these matrices to the confusion matrices of SegNet (RGB) (Table 5.5)
and SegNet (RGB-Z) (Table 5.6), it can be noticed that FuseNet-SF5 is able to extend the benefit that Seg-
Net (RGB-Z) showed to have over SegNet (RGB). FuseNet-SF5 was able to reduce the misclassification
of building pixels for other and to increase the amount of correctly classified building pixels by both
approximately 2.5 percent, when compared to SegNet (RGB). Furthermore, in Section 5.3.2 it was men-
tioned that the addition of height to SegNet resulted in a reduction of correctly classified water pixels,
and introduced extra errors in which water pixels were wrongly predicted as building. FuseNet-SF5
shows to not have this problem and is able to classify approximately 1.5 percent more water pixels
correctly when compared to SegNet (RGB). This is mostly achieved by reducing the misclassification
of water pixels for building and other. However, FuseNet-SF5 was not able to reduce the problem
of road and water pixels being misclassified for each other and actually ensured that even more road
pixels are misclassified for other.

A disadvantage of FuseNet-SF5 when compared to the other models is the training time. When 50
epochs of no improvement on the validation data was used, it took approximately 28 hours to train the
model, which is 10 hours longer than SegNet. However, a model only needs to learn its parameters
once, whereafter it can be used without limits.

Visual assessment of the output predictions did not show a remarkable difference between the seg-
mentation quality of SegNet (RGB-Z) and FuseNet-SF5. However, when zooming in, it could be noted
that FuseNet-SF5 provides a higher segmentation quality in shady areas when compared to SegNet
(Figure 5.9). However, shady areas sometimes still showed to be a challenge for FuseNet-SF5.

Overall, the results of the comparison of FuseNet-SF5 to SegNet indicate that an increase in overall
semantic segmentation performance on RGB-Z aerial imagery can be achieved by, instead of providing
the height information as an extra band (data stacking), using a separate encoder for the height data
and by fusing the retrieved features into the feature maps of the RGB imagery. In addition, even though
shade is still a challenge for FuseNet-SF5, the fusion approach showed to outperform the other models

48

5.5 Height approaches

(d) (e)

Figure 5.9: FuseNet-SF5 shows to outperform SegNet at areas containing shade. Red = building, gray =
road, blue = water, green = other. (a) RGB true ortho (b) DsM (c) Ground truth (d) Prediction SegNet
(RGB-Z) (e) Prediciton FuseNet-SF5

in areas were shade is present. This suggests that different types of features are learned from the height
information when two separate encoders are used. Therefore, the potential of height information is
believed to be exploited to a higher extent than when data stacking is used. FuseNet-SF5 improved the
segmentation for building and water, but did not solve the problem present throughout all models that
road pixels are misinterpreted for other, and the other way around.

5.5 Height approaches

In this study experiments were executed with several different approaches on representing the height
information. Experimentation with all these approaches was done with FuseNet-SF5, as this archi-
tecture showed to outperform the other architectures in the previous experiments. For each of these
experiments an initial learning rate of 1.0e-4, the Adam optimizer, 50 epochs of no improvement on the
validation data, horizontal flipping and the cross-entropy loss function were used. These settings were
selected as they showed the best performance for FuseNet-SF5 in the previous experiments. The results
are presented in Table 5.9. It can be noted that overall performances are very similar. When considering
the mloU, it can be concluded that using pixel-level, relative height led to the highest semantic segmen-
tation performance of 0.8427. This approach scored 1 percent higher than the least well performing
approach; using height rescaled per tile. When assessing the performance of the algorithms on the val-
idation data, the outperforming of the pixel-level, relative height approach was more outstanding than
when considering the performances on the test data (Table 5.10).

The absolute and the rescaled height approaches contain the same information, but are presented
to the algorithm in a different way. During visual assessment of the outputted prediction maps it was
noticed that height rescaled at a tile-level resulted in some squared 'holes” at the center of buildings.
A possible explanation for this phenomenon is that when the input tile is completely covered by a
building and rescaling is applied at tile-level, no ground pixels are present in the tile that indicate that
these building pixels are elevated from its surrounding. Therefore, the rescaling results in a loss of
information and small differences due to roof structures are now wrongly emphasized during relative
operations performed by convolutional filters. This potentially leads to misclassification of the building
pixels and noisy predictions. Based on these findings, it was decided to also train a model using height

49

5 Results and analysis

Height type Building Road Water Other mloU
Absolute 0.8723 0.7767 09143 0.7890 0.8381
Rescaled [0-1] (tile-level) 0.8671 0.7750 0.9023 0.7860 0.8326
Rescaled [0-1] (whole area) 0.8708 0.7846 0.9152 0.7897 0.8401
Relative (pixel-level) 0.8744 0.7865 09131 0.7966 0.8427
Relative (tile-level) 0.8792 0.7785 0.9070 0.7891 0.8384

Table 5.9: loU performance on the test data of FuseNet-SF5 using different height inputs.

Height type mloU

Absolute 0.8573
Rescaled [0-1] (tile-level) 0.8543
Rescaled [0-1] (whole area) 0.8599
Relative (pixel-level) 0.8729
Relative (tile-level) 0.8574

Table 5.10: mloU performance on the validation data of FuseNet-SF5 using different height inputs.

rescaled by using the minimum and maximum value of the whole training area. This approach showed
to strongly reduce this issue (Figure 5.10). It lead to a slight increase in IoU for all the classes and an
increase of 0.75 percent for the mloU.

When comparing the rescaled height (whole area) approach with absolute height, no noteworthy
difference in either mIoU or map quality was detected. A possible explanation is sought in the property
of FuseNet-SF5 that it uses a separate encoder for learning from the height information. Consequently,
the importance of the values of RGB and height information being in the same distribution range di-
minishes.

Through assessment of the outputted predictions, it was observed that in general the relative height
approaches provided higher quality segmentation maps than the approaches using absolute or rescaled
absolute height. Large buildings at rural and industrial areas, which often contained holes or messy
predictions with absolute height, showed to be more smooth and homogeneously segmented when
relative height was included (Figure 5.11). The same phenomenon was observed for long and thick road
segments. Predictions of both approaches on residential areas showed to be of similar (high) quality.

Visual comparison of the performance of pixel-level, relative height and tile-level, relative height
indicated that even though the predictions clearly differed from each other, no conclusions could be

Figure 5.10: Rescaling the height information per tile results in errors at the center of large buildings.
Red = building, gray = road, blue = water, green = other. (a) RGB true ortho (b) DsM (c) Ground truth
(d) Prediction FuseNet-SF5 with rescaled height (tile-level) (e) Prediction FuseNet-SF5 with rescaled
height (whole area)

50

5.6 Object-level detection

(d (e)

Figure 5.11: Using relative height information allows for more homogeneous and filled up prediction
of large buildings. Red = building, gray = road, blue = water, green = other. (a) RGB true ortho
(b) DsMm (c) Ground truth (d) Prediction FuseNet-SF5 with rescaled height (whole area) (e) Prediction
FuseNet-SF5 with relative height (tile-level)

drawn on which approach performed better. Per case it differed which model was the most successful.
However, the mioU did indicate an almost half a percent better performance of the pixel-level, relative
height approach on the test data when compared to the tile-level, relative height approach.

Nevertheless, is should be noted that pixel-level, relative height information comes with a risk. For
example, imagine a house being located on the side of a hill. When the terrain height is subtracted per
pixel from the absolute height to generate the relative height, the resulting height values will represent
the roof of the building in a strangely skewed way. The same problem occurs with a road passing
through a hilly or mountainous landscape. Consequently, distinctive properties of specific objects, such
as the non-skewness of roads in the cross-sectional view, will be lost. As a result, the ability of the
algorithm to distinguish specific objects can be reduced. It is believed that due to the flat nature of
Haarlem this potential disadvantage of the pixel-level, relative height approach is not reflected in the
results. Therefore, for this study, FuseNet-SF5 trained with pixel-level, relative height is selected as
the most suitable model for semantic segmentation of aerial RGB-Z imagery of the city of Haarlem.
However, when applied to data corresponding to a different geographical location, with similar tile
dimensions, but with more variation in terrain height, it is advised to focus on the tile-level relative
height approach.

The semantic segmentation of the test area of the most successful model in this study; FuseNet-SF5
trained with pixel-level, relative height information is provided in Figure A.5.

5.6 Object-level detection

As mloU and IoU does not provide information on the object-level performance of the model, this section
presents the capability of FusNet-SF5 using pixel-level, relative height to detect individual objects in the
test area. In Section 5.6.1 the ability of the model to detect the objects in the ground truth is assessed per
class. Section 5.6.2 describes the results of the attempt to capture the object-level false positives of the
model’s prediction.

5.6.1 Ground truth detection

In Figure 5.12 histograms are provided representing object-level performance of FuseNet-SF5 using
pixel-level, relative height on the test data. Additional figures that aid in understanding the intuition of
the method are presented in Appendix A.5. In total, the ground truth contains 19,796 building objects,
6,176 road objects, 75 water objects and 6,769 other objects. For each class it can be noted that the last
bin is the largest. This bin indicates the percentage of objects for which 90 to 100 percent of the pixels

51

5 Results and analysis

Object-level building detection Object-level road detection

=
o
<]
=
o
]

9 90
80
70
60
50
40
30
20

% of total building objects
% of total road objects

10 10
0 0
S IO ONNON S S S O S S S SN) S D D) S
¢ &S &S & & & & & &S
A GO O\ S R O U . OO Q¥ e ¢ ¢
% pixels correctly predicted % pixels correctly predicted
(a) (b)
Object-level water detection Object-level other detection
100 100
4‘3 90 4‘2 90
o 80 g 80
S 2 7
o ~
g 60 5 60
N S
3 50 S 50
B 40 4‘3 40
9 30 9 30
Y
‘6 20 o 20
] (=}
S 10 B 10
0 0
S D S © O & O & » S D SN © & & O & »
& &S &S T & & & & & &5
A A - O O T F e ¢ e oS
% pixels correctly predicted % pixels correctly predicted
(0) (d)

Figure 5.12: Histograms for the object-level performance of FuseNet-SF5 using pixel-level, relative
height information. The y-axes represent the percentage of total objects in the ground truth of that
class in the test area. The x-axes show the percentage of pixels corresponding to the ground truth
object in the prediction that are correctly classified by the algorithm. a) Class building b) Class road
¢) Class water d) Class other

corresponding to the object are correctly classified by the algorithm. For the classes building, road
and other, the majority of ground truth objects belong to this bin (65%, 82% and 58% respectively).
For the class water only 39% of the objects in the ground truth are completely (90+%) detected by the
algorithm. Overall, the algorithm was able to correctly classify over 90% of the pixels of 67% of all the
objects present in the ground truth.

Furthermore, for each class a local peak is present at the first bin. This bin shows the object-level
false negatives; objects present in the ground truth that are missed by the algorithm. When visually
assessing these false negatives for the class building, two types of cases could be distinguished. An
estimated half of these cases occur as a consequence of the limited visibility of the object from the air,
due to the presence of trees (Figure 5.13a). The largest part of the other half of the missed objects are
not observed in the aerial imagery or DsM, and are therefore considered as errors in the ground truth
(Figure 5.13b). Finally, a small part of these missed objects are considered to be actual errors of the
algorithm as a building object is visible in the imagery, but not detected. Similar discoveries were
made for the missed objects of the class road. In addition, as noted before, shade present on top of roads
resulted in the lack of detection of (parts of) the objects (Figure 5.14). The false negatives of the class

52

5.6 Object-level detection

Figure 5.13: Typical examples of building objects in the ground truth for which 0 pixels have been
‘correctly’ predicted by the algorithm. Red indicates the prediction of building of FuseNet-SF5 using
pixel-level, relative height. Yellow indicates the outlines of the building objects in the ground truth.
The numbers indicate the percentage of correctly classified pixels by the algorithm for that object. a)
The presence of trees blocks the visibility of the object. b) The object is an error in the ground truth; it
is not present in reality.

e

(a) (b)

Figure 5.14: Typical examples of road objects in the ground truth that are missed by the algorithm. Pur-
ple indicates the prediction of road of FuseNet-SF5 using pixel-level, relative height. Yellow indicates
the outlines of the road objects in the ground truth. The numbers indicate the percentage of correctly
classified pixels by the algorithm for that object. a) The presence of trees blocks the visibility of the
objects. b) The objects are errors in the ground truth; it is not present in reality.

water are mostly observed at thin water bodies; usually ditches. In addition, the visibility of ditches
from the air is frequently blocked due to the presence of trees. Consequently, only parts of the object
are detected at these cases (Figure 5.15). Unfortunately, this is a limitation of using remotely sensed
imagery and is therefore an issue that can not be solved completely. For the class other, objects missed
by the algorithm are often; 1) small objects that are not (clearly) distinctive in the aerial imagery, 2) thin
segments misinterpreted for road and 3) objects that are errors in the ground truth (Figure 5.16).

Interestingly, these histograms suggest that the class road is the most successful and the class water
the least. This is contradicting to the calculated ToU scores for this model that indicated the exact op-
posite. This phenomenon can be explained by the fact that this method, in contrast to the loU, does
not provide any information on false positives. These are objects that are detected by the algorithm
but which are not present in the ground truth. When examining the confusion matrix corresponding
to FuseNet-SF5 using pixel-level, relative height (Table B.4), it can be noted that at pixel-level, the class
road contains over 8 percent more false positives than when compared to the class water. Therefore,
even though the highest percentage of objects have been detected for the class road, a large amount of
pixels have received the label road whilst a different label was present in the ground truth. In addition,
this relatively low performance of water for object-level detection, when compared to its loU score, can
also be explained by the fact that most of the water objects missed by the algorithm correspond to small
and thin water bodies. These objects solely consist of a small amount of pixels in the aerial imagery,

53

5 Results and analysis

Figure 5.15: Small and thin ditches are sometimes (partly) missed by the algorithm. In addition, trees
next to ditches often limit the visibility of the water bodies from the air. Blue indicates the prediction
of water of FuseNet-SF5 using pixel-level, relative height. Yellow indicates the outlines of the water
objects in the ground truth. The numbers indicate the percentage of correctly classified pixels by the

algorithm for that object.

(a) (b)

Figure 5.16: Typical examples of other objects in the ground truth that are missed by the algorithm.
Green indicates the prediction of other of FuseNet-SF5 using pixel-level, relative height. Yellow
indicates the outlines of the other objects in the ground truth. The numbers indicate the percentage
of correctly classified pixels by the algorithm for that object. a) Small objects which are not clearly
distinguishable are often missed by algorithm. b) Thin or small segments on top of roads are often
misinterpreted for road. In addition, at the bottom left, a building is mis-labeled for other in the
ground truth and leads to a wrong false negative.

54

5.7 Disputable inconsistencies

Figure 5.17: Polygonalization of the pixel-level false positives resulted in the count of 11 separate false
positives in this example, where it could be argued that only 4 are present. Red indicates the
polygonized false positive prediction of building of FuseNet-SF5 using pixel-level, relative height.
Yellow indicates the outlines of the building objects in the ground truth.

resulting in a small impact on the overall IoU score. Contradictory, the size of the object is not of any
value for object-level performance assessment, as every individual object is counted as one.

5.6.2 Object-level false positives

Generation of object-level false positives through polygonizing the eroded, false positive pixel predic-
tions, showed to be an unsuccessful approach. Visual assessment indicated that the generated polygons
did not completely represent the desired object-level false positives. Counts of generated polygons (i.e.
11,955 for building) were too high due to the introduction of noise. This is a result of the multitude of
small clusters of pixels and individual pixels that were converted to individual polygons. Each cluster
is counted as an individual false positive, whilst visual assessment indicates that a combination of clus-
ters should often be counted as one. An example that demonstrate this issue is provided in Figure 5.17.
These clusters are a consequence of the property of the algorithm that it performs pixel-level predic-
tions, rather than instance-level predictions. These predictions are often not completely homogeneous
and smooth. Excluding polygons that are smaller than a predefined threshold is not believed to solve
the issue. Many small polygons also exist individually at separate locations that should be counted as
separate false positive. Therefore, it is believed that the generation and quantification of meaningful,
object-level false positives is currently not possible and can only be done if the algorithm produces com-
pletely smooth and homogeneous predictions. It is believed that false positives information is required
to assess the quality of a model as a whole. Therefore, these findings support the methodological de-
cision for this research work to use the mioU and IoU for model performance comparison, rather than
object-level performance.

5.7 Disputable inconsistencies

Through analysis of pixel-level error maps, hotspots of errors can be detected. In the original error map
of FuseNet-SF5 using pixel-level, relative height, complete outlines of objects are visible (Figure 5.18a).

55

5 Results and analysis

This indicates that either the prediction of borders by the algorithm is not accurate, or the ground truth
of borders is not accurate. It should be noted that the 20 centimeter accuracy of the BGT is of a lower qual-
ity than the 10 centimeter resolution of the aerial imagery and the algorithm predictions. In addition,
borders in the BGT are often represented as sharp transitions which do not always truly reflect the bor-
ders present in the imagery. Therefore, border pixels are often wrongly considered as mislabeling errors
(Figure 5.19). Unfortunately, with the current ground truth data this problem can not be resolved.

(a) (b)

Figure 5.18: Error maps of the prediction of FuseNet-SF5 using pixel-level, relative height, on the test
area. Per pixel it is indicated if the prediction corresponds to the ground truth (white), or if it deviates
(black). a) Original error map. b) Eroded error map (40cm).

Morphological erosion eliminates the boundary errors from the error maps, allowing for a more clear
overview of errors with a different cause (Figure 5.18b). The eroded error maps per class are provided
in Figure A.10. Assessment of these maps showed that an extensive amount of these groups of mis-
classified pixel were not a mistake of the algorithm, but the result of errors in the BGT. In Section 5.6.1,
analysis of the object-level false negatives already showed that many of the ‘missed objects” are actu-
ally BGT errors. In addition, in Section 5.3.2 it was briefly mentioned that small roads are not always
consistently mapped in the BGT. However, by analyzing the error hotspots, it became clear that more
objects were missing or misplaced in the BGT. In Figure 5.20, Figure 5.21 and Figure 5.22 examples are
presented where FuseNet-SF5 detects roads, water bodies and buildings that are missing in the ground

Figure 5.19: Predicted border pixels are wrongly denoted as an error. Red = building, gray = road, green
= other. (a) RGB true ortho (b) Error map (black is error) (c) Ground truth (d) Prediction FuseNet-SF5
using pixel-level, relative height information.

56

5.8 Comparison performance to related work

Figure 5.20: Small roads are not consistently mapped in the BGT whilst the algorithm does detect its
presence. In addition, the BGT misses the ditch at the left of the image, which is detected by the
algorithms. Red = building, gray = road, blue = water, green = other. (a) RGB true ortho (b) DsM (c)
Ground truth (d) Prediction FuseNet-SF5 using pixel-level, relative height information.

o

(D

Figure 5.21: A building is missing in the BGT while FuseNet-SF5 detects it. Red = building, gray =
road, green = other. (a) RGB true ortho (b) DsM (c) Ground truth (d) Prediction FuseNet-SF5 using
pixel-level, relative height information.

truth information. The problem of misplacement in the BGT is especially present for the class building,
at the back side of houses (Figure 5.23). The combination of these missing and misplaced objects in the
BGT and the previously described border issue, results in an unfair reduction of the calculated mloU and
IoU scores.

5.8 Comparison performance to related work

Due to the use of different datasets and different classes, comparison of the gained results to other
studies is a challenging task. Nevertheless, the class building is also present in the ISPRS Vahingen 2D
semantic labeling dataset, which is used by the researches of Kampffmeyer et al. [2016], Liu et al. [2017]
and Audebert et al. [2018], discussed in Section 2.4.2 and Section 2.4.3. This dataset has a resolution
of 9x9 cm per pixel, which is similar to the 10x10 cm used in this research work. Instead of RGB,
the imagery in this dataset is IRRG. For height information, the researches use both an DsMm and relative
height information. In Table 5.11 an overview is provided of the F1 scores of the best performing models
of these three studies on the class building. On first sight, it seems that the gained results in this
study on the test data for the class building are slightly lower than the best performing approaches of
related studies. However, some important remarks need to be made on this matter. Firstly, as discussed
before, the studies have provided their results on the validation data instead of on separate test data.
Furthermore, for some of these results eroded ground truth information is used, which will lead to an

57

5 Results and analysis

(€Y (d

Figure 5.22: other object around the buildings is not consistently mapped in the ground truth whilst
the algorithm does detect its presence. Red = building, gray = road, green = other. (a) RGB true ortho
(b) DsM (c) Ground truth (d) Prediction FuseNet-SF5 using pixel-level, relative height information.

Figure 5.23: Misplacement of building objects in the BGT results in wrongly detected mis-labeling
errors. Red indicates the prediction of building of FuseNet-SF5 using pixel-level, relative height.
Yellow indicates the outlines of the building objects in the ground truth.

58

5.8 Comparison performance to related work

On validation data, with eroded ground truth boundaries.
On validation data, with eroded ground truth boundaries.
On validation data, no eroded ground truth boundaries.
On validation data, unclear if boundaries are eroded.

On validation data, no eroded ground truth boundaries.
On validation data, no eroded ground truth boundaries.
On test data, no eroded ground truth boundaries.

Method F1 Building Note
PB + FCN [Kampffmeyer et al., 2016] 0.9586

HSN + Ol erGT [Liu et al., 2017] 0.9466

HSN + OI GT [Liu et al., 2017] 0.9237

SegNet-RC [Audebert et al., 2018] 0.9450

This study

FuseNet-SF5-RHT (validation) 0.9436
FuseNet-SF5-RHP (validation) 0.9429
FuseNet-SF5-RHT (test) 0.9330
FuseNet-SF5-RHP (test) 0.9288

On test data, no eroded ground truth boundaries.

Table 5.11: Results gained by related studies and this study for the class building. PB = Patch based,
HSN = Houreglass-shaped network, OI = Overlap inference, GT = Ground truth, erGT = Eroded
ground truth, RC = Residual correction, RHP = Relative height (pixel-level), RHT = Relative height

(tile-level).

increase in F1 performance (i.e. more than +2% for the work of Liu et al. [2017]). Therefore, it could
be argued that at least 2 percent of the F1 score achieved by Kampffmeyer et al. [2016] needs to be
subtracted, to allow for a more valid comparison to results of this thesis. Consequently, while still
emphasizing the limitations of this comparison, it can be argued that the quality of the class building
for the best performing models of this study, are comparable to the state of the art.

59

6 Conclusions & future work

6.1 Conclusion

The conclusion of this study consist of three parts. First, limitations of the used methodology are dis-
cussed (Section 6.1.1). Next, answers are provided to the research questions (Section 6.1.2). Finally, the
contributions of this study are provided (Section 6.1.3).

6.1.1 Discussion

Even though the methodology used is considered to be of sufficient quality for the objectives of this
study, some remarks need to be made. In the following paragraphs the most important limitations will
be discussed.

Firstly, as for U-Net not the exact same training data extent is used to learn the model parameters.
Therefore, it could be argued that a direct comparison to the other architectures is not completely valid.
A better approach would have been to select a training extent that is divisible in tiles with the dimen-
sions required by the used implementation of U-Net (572x572) and by the used tile dimensions for the
other models (512x512). Nevertheless, a solution than still needs to be sought for the problem that due
to the deviating dimensions it is not possible to use the exact same training data set and validation data
set.

Next, the hyperparameter selection procedure used in this study could be improved. Currently,
hyperparameter selection is based on a comparison in performance of an experiment executed with one
specific setting (i.e.initial learning rate of 1.0e-3), to an equal experiment with another setting (i.e. initial
learning rate of 1.0e-4). If the initialized weights are equal for both experiments, and no other form of
randomness is introduced throughout the training, two experiments with the exact same settings will
provide the exact same results. However, with the pretrained weights RGB-Z stacking experiments, the
Z-band is initialized with random weights. For FuseNet-SF5 the exact same pretrained weights are used
for each experiment. However, for all the experiments, after every epoch, the training data is shuffled.
Consequently, all the experiments include a source of randomness. Therefore, the current experimental
setup does not allow for conclusions on if the used hyperparameter settings significantly outperform
alternative settings. This can especially be a problem when the difference in performance is very small.
A way to test for significance is to run the experiment X times with random initialization, where X is i.e.
10 or 100. Hereafter, using mloU as metric, an unpaired t-test can be executed to establish a significant
difference. However, due to the limit of computational power available, the procedure is considered
as out of scope for this study. Even though the objective of this study to automatically generate high
quality topographic maps was still achieved, inclusion of the t-tests is believed to improve the validity
of the drawn conclusions.

Furthermore, more attention could have been drawn to the training procedure executed to generate
the pretrained weights that are used in this study. Currently, it is not taken into consideration in what
way the training examples were provided to the algorithm used to generate the pretrained weights. By
normalizing the training examples in this study using mean and standard deviation values predefined
by VGG-16, it is possible that results of a higher quality could have been achieved.

Lastly, several remarks needs to be made on the used height approaches. The pixel-level, relative
height approach, in which the DTM (0.5m resolution) is subtracted from the DsM (0.1m resolution), has
shown to outperform the other approaches. Even though pixel-level subtraction is performed, the de-
viating resolutions ensure that the subtraction is as detailed as the lowest resolution (0.5m). Therefore,

61

6 Conclusions & future work

the pixel-level subtraction approach could be considered as a 0.5m level approach; one DTM value is
subtracted of a patch of 5x5 pixels in the DSM.

Moreover, IDW interpolation was used to fill the holes in the DTM, before it was upsampled and
subtracted from the DsM. The reasoning behind the interpolation was that the presence of holes could
be considered as a pre-filtering of building objects. The output of the building and water detection
technique of AHN would then be part of the input of the neural network and could influence the per-
formance. This is an undesired consequence as this pre-filtering would guide the algorithm, whilst the
goal is to let the algorithms learn for themselves. However, when holes are large (i.e. due to a large
building), the contours of the holes were still visible in the interpolated output (Figure A.11). Relatively
sharp, unrealistic transitions in terrain height are present at locations with large building blocks, grand
buildings and large water bodies. In addition, the terrain height transition inside these interpolated
holes is relatively smooth (Figure A.12). This potentially influences the pixel-level, relative height gen-
eration. At these locations, large blocks with sharp edges but smooth height transitions on the inside
are subtracted from the DSM, rather than more realistic terrain height values that are comparable to the
non-interpolated areas. Theoretically, this can make objects easier to distinguish by the algorithm for the
wrong reasons. Whilst the relative height for areas that were not interpolated in the DTM will have in-
corporated the more rough and realistic terrain transitions, only smooth terrain heights were subtracted
from areas corresponding to the in the DTM interpolated regions. Consequently, it is possible that the
success of the pixel-level, relative height approach can not only be explained by the fact that it provides
detailed information on the actual height of objects and by the flat nature of Haarlem. It is possible
that part of the success originates from that the interpolated holes in the DTM ensure that building and
water objects together become more distinctive from the road and other objects, and the other way
around.

In order to examine if these interpolated holes influence the algorithms predictions, the 3D BAG of
the TU Delft 3D geoinformation group [Dukai, 2018] was used. This dataset helped to identify buildings
that are missing in the DTM of AHN, but that are present in the DsM of READAR. By examining the
algorithms predictions at these locations, it could be noted that the algorithm was still able to detect
the buildings (Figure A.13). This finding shows that if the algorithm has learned features on the typical
appearance of areas that were interpolated in the DTV, it is not completely dependent on these features
for detection of building objects. It would be even more valuable to examine the prediction of an area
where a building is present in the DTM, but absent in the DsM. Unfortunately, no such building could be
identified.

6.1.2 Research questions

This study addressed the question; to what extent can convolutional neural networks be used for automatic
semantic segmentation of RGB-Z aerial imagery? In order to answer this question, five sub-questions were
specified. The following paragraphs will answer each of these questions based on the results of this
study.

e Q: Which neural network architectures are a suitable starting point for semantic segmentation
of aerial RGB-Z imagery?

A: The architectures FCN-8s, SegNet, U-Net and FuseNet-SF5 are considered to be a suitable starting point
for the semantic segmentation of aerial, RGB-Z imagery.

These architectures were selected through a literature research. Each of the architectures showed
a successful performance of semantic segmentation on aerial imagery, or a similar segmentation
task. The source code was openly available online in the form of a non-complex implementation
in Python, using PyTorch. The implementations were not explicitly designed for one dataset and
therefore allowed for the use of self-introduced input data. For FCN-8s, SegNet and U-Net height
information can be added in the form of an extra band stacked on top of RGB. FuseNet-SF5 uses a
separate encoder for the height information and fuses the extracted features into the feature maps
corresponding to the RGB branch.

62

6.1 Conclusion

o Q: To what extent does the addition of height information improve semantic segmentation re-
sults?

A: The addition of height information has improved the overall semantic segmentation quality (mloll) of the
data stacking approaches on average by 1 percent. The added value of the height information deviated per
class. Visual analysis of the outputted predictions indicated that height data can provide valuable informa-
tion that is essential for successful segmentation of complex environments.

For all the data stacking architectures, the addition of height information resulted in an increase
in overall segmentation quality. U-Net showed to benefit the most from the addition of height
information (+2.14% on mIoU), the increase was marginal for FCN-8s (+0.56% on mIoU) and SegNet
(+0.38% on mIoU). The additional value of height information to segmentation results strongly
differed per class. Analysis of outputted prediction maps showed that height information can be
crucial in complex semantic segmentation tasks, in which height is the only property that allows
for distinction between classes (i.e. parking lots on top of building or shady areas). Therefore, it
can be concluded that height data contains valuable information for the semantic segmentation
of aerial imagery and when exploited in a suitable manner, has the ability to improve semantic
segmentation quality.

¢ Q: For which classes is the segmentation most successful; for building, road, water or other?

A: The segmentation was most successful for the classes water and duslding. The class building showed
to benefit the most form the addition of height information.

It can be concluded that both the RGB based models and the RGB-Z based models, provided the
highest segmentation quality for water and building. The best performing model; FuseNet-SF5
using pixel-level, relative height information, scored IoUs of 0.8744 for building, 0.7865 for road,
0.9131 for water and 0.7966 for other. It is argued that the segmentation quality of water outper-
forms the other classes as the dark color, in combination with crisp borders, is believed to make the
class clearly distinctive in RGB imagery. In addition, building is believed to outperform road and
other as buildings usually have straight, crisp boundaries that are clearly visible from the air. On
the other hand, many objects are present on top of, or directly next to roads, making them less vis-
ible in the imagery. Furthermore, the diversity in objects and terrain types that belong to the class
other is believed to complicate the semantic segmentation of this class. When comparing data
stacking models trained on RGB with models trained on RGB-Z, it could be concluded that the
class building benefits the most from the addition of height information (+3% on average). The
other classes were not affected to the same extent by height information. A possible explanation
for the success for building is the property of buildings that they are always elevated from their
surrounding, with a usually clearly visible, sharp transition. It is believed that height information
is less distinctive for the other classes.

The most successful model was able to correctly classify over 90% of the pixels of 65% of the
building objects, 82% of the road objects, 58% of the other objects and 39% of the water objects,
present in the ground truth. It should be noted that even though these numbers provide an in-
dication on the model’s capability to detect the ground truth objects, they do not provide any
information on the false positives of the algorithm’s prediction.

e Q: How does the performance compare of different approaches on combining height informa-
tion with RGB information (stacking and fusion) in a network?

A: Fusing height features, retrieved in a separate encoder, into RGB feature maps led to a higher overall
semantic segmentation quality (+1.24% on mioll) than when height information was provided as a stacked
extra band on top of RGB information.

The data fusion approach of FuseNet-SF5 outperforms the most successful data stacking approach
(SegNet RGB-Z) by over 1 percent on mloU. When compared to data stacking, data fusion showed
an increase in performance of the classes building (+1.85%) and water (+3.02%), a marginal in-
crease in performance of the class other (+0.68%), but a slight decrease in the segmentation qual-
ity of the class road (-0.60%). In addition, even though shade remained to impose a challenge,
visual assessment showed that the fusion approach is able to achieve better segmentation results

63

6 Conclusions & future work

in shady areas. This finding indicates that the use of two separate encoders, one for RGB and one
for height data, allows for the extraction of a different type of features from the height information
than when all data is stacked and fed to one encoder. Therefore, it is believed that with data fusion
the potential of height information for semantic segmentation of aerial imagery is exploited to a
higher degree than when data stacking is used.

e Q: What type of height information provided to a network leads to the most accurate results?

A: Relative height, generated through pixel-level subtraction of the DTM from the DSM, provided the most
accurate semantic segmentation results.

In this study, experiments were executed with;

Absolute height (DSM)

Rescaled absolute height [0-1] (per tile)

Rescaled absolute height [0-1] (based on whole training/test area)
Relative height (pixel-level subtraction)

Relative height (tile-level subtraction of the median)

Relative height generated through the pixel-level subtraction of the DTM from the DSM resulted
in the highest mioU of 0.8427 on the test data. Even though the achieved mioUs indicated simi-
lar performances, visual comparison of the prediction maps showed that the relative height ap-
proaches produced higher quality maps when compared to the absolute height approaches. The
most remarkable improvement is that relative height approaches produce more homogeneous and
less messy predictions for large objects. Especially the model that used tile-level, rescaled height
contained large holes and noise in predictions on large objects. No remarkable difference in per-
formance was detected when visually comparing the pixel-level, relative height approach with the
tile-level relative height approach. However, as the performance measure indicated a better per-
formance of the pixel-level approach, this approach is selected as the height information leading to
the most accurate results. The remark is made that it is believed that the flat nature of the terrain of
Haarlem plays an important role in the success of the pixel-level, relative height approach. There-
fore, it is stressed that it is not guaranteed that this approach also leads to the best performance at
other geographical locations with more variation in terrain height.

6.1.3 Contributions

The main contributions of this research comprise:

o It is established that height information can add value to semantic segmentation of aerial RGB
imagery.

e Itis shown that adding height information through data fusion can result in a higher segmentation
quality of aerial imagery than when data stacking approaches are used.

o It is demonstrated that presenting relative height, rather than absolute height, to a network can
improve semantic segmentation quality of aerial imagery, especially for large objects.

6.2 Future work

Throughout this study, several new ideas arose that are recommended for future work. This section
describes these recommendations. Firstly, Section 6.2.1 elaborates on the removal of wrong mislabeling
errors from performance measure computation. Next, Section 6.2.2 suggests extended data augmenta-
tion. Hereafter, Section 6.2.3 recommends the subdivision of segmentation classes. Next, Section 6.2.4
proposes an alternative procedure for the generation of the relative height information. Finally, Sec-
tion 6.2.5 provides a suggestion on stacking of different height types before data fusion.

64

6.2 Future work

6.2.1 BGT error removal

In Section 5.7 it was noted that some objects are misplaced or missing in the BGT and imprecise border
representations are present as a result of deviating resolutions. Consequently, algorithm predictions
at these locations are often wrongly considered as mislabeling errors. This leads to lower scores on
performance measures. By distinguishing what part of the error is due to the algorithms and what
part is due to the BGT, a more realistic estimate can be made on the quality of the produced models.
Therefore, it is recommended to eliminate the BGT errors and boundary errors before calculating the
performance measures. By applying morphological erosion to the error maps, clusters of errors became
clearly visible (Figure 5.18b). One can manually assess these clusters and if indeed an error in the BGT
is present, eliminate the corresponding pixels from the performance measure calculation procedure.
In addition, similar to the ISPRS Vaihingen 2D semantic labeling dataset used by related studies (see
Section 2.4.2), eroded ground truth data could be used during performance measure computation. This
will eliminate the negative effect of class boundaries on performance scores.

6.2.2 Extended data augmentation

In this study, horizontal flipping is applied to reduce overfitting of the models to the training examples
and therefore to generate higher quality models. For future work, it is recommended to explore addi-
tional forms of data augmentation techniques. Currently the assumption is made that vertical flipping
can lead to unrealistic shadows. This possibly has a negative effect on the training procedure. How-
ever, this theory has not yet been researched in this thesis. In addition, the added value of zooming,
adjustment of brightness and hue and a larger amount of overlap between training examples could be
explored.

6.2.3 Subdivision of classes

The confusion matrices of the models on the test area have shown that a large part of the errors are
pixels corresponding to the class road that are misclassified for other and pixels of the class other
that are misclassified for road. A suggestion on a method to reduce these kind of errors comprises the
introduction of new segmentation classes. This can be achieved through the subdivision of the existing
ones. For this subdivision, object attributes present in the BGT, such as ‘FysiekVoorkomen’ (physical
appearance), could be used. For example, it could be explored if dividing the class road into paved
road and dirt road will lead to a reduction of misclassification errors and therefore a higher mloU
value.

6.2.4 Relative height without the DTM of AHN3

In this study, in order to generate the relative height approaches, the DTM of AHN3 is subtracted from
the DsM of READAR. Alternatively, it is suggested to generate a DTM directly from the used DSM and
subtract it from the DsM. This can be done using software such as TerraScan' or the PDAL library”.
Even though these implementations are originally developed for LiDAR pointclouds which contain
"last return’ information, they can also be used for pointclouds generated through stereo matching.
The advantage of this technique is that both models then have the same resolution, allowing for actual
pixel-level subtraction. In addition, data present in the models then originates from the same date. These
properties could lead to a more accurate relative height representation. However, it should be noted that
the DTM of AHN3 is manually checked for errors. Ideally, the proposed alternative method for generation
of the DTM would also undergo manual assessment, to ensure that no new errors are introduced at
locations were the model is not generated correctly. However, this would require extensive manual
work. Furthermore, the generated interpolated DTM will still contain outlines for building and water

Ihttp://wuw.terrasolid.com/products/terrascanpage.php
2https://pdal.io/tutorial/ground-filters.html

65

http://www.terrasolid.com/products/terrascanpage.php
https://pdal.io/tutorial/ground-filters.html

6 Conclusions & future work

objects. Therefore, the issue is not solved that pre-filtering information is passed on to the algorithms
that potentially influences the detection of these types of objects.

6.2.5 Fusing stacked height information

In this study, only one type of height information is used per experiment. Resulting prediction maps
indicated that no height approach clearly outperformed all the other approaches in every segmentation
case. Therefore, it is possible that different height approaches have the ability to augment each other.
As an attempt to further exploit the potential added value that height information showed to have, it is
suggested to combine different height types. Whilst still using separate encoders for RGB information
and height data, several height approaches could be stacked before fed to its predestined encoder.

66

A Additional figures

67

A Additional figures

A.1 Methodology flowchart

|epow Dulwioped
1580 10 souBwWoiad
[ELER=EIl)
10 JUBLISSSSSY

LE 8U] 10 8]E]S
0} |apow Bunwiopad
1seq uosuedwo)

(sayoeosdde ybiay
pUETETITE-RTLTENTE
“sA Bunoe)s) synsal
10 JUBLISSBSSY

uolsnj e1eq

§45-18Nasny
Jo Buiues)

f

auadid
Bunsaybues

S8Ipnis Jaue
yim uosuedwod
10} MOJ[E 0] 81025
14 Bunuawsajdw)

H

0JU §43-18N3sNS
bugesodioou|

]

sayoeosdde Jybiay
au] o} BIED 158] pue
uonepien ‘Bujues

||g Bunesauan

uoisny :BuRpElS
E]Ep 0] S8AIEWSE)E
uo Apnjs aimesay

(sauewsopad
558[0 %% -30Y SA
g9H 'sanayye

JusIBYIp
@JuewIopad)
synsal
10 JUBLISSSSY

fBa1ens deyano uo
| (Buiddiy jeyuozuoy) nmuﬁ% Hwn,EmeE_
uoneawbne ejeq T e

}

ele

=9H WM
18N-N % 18NDag

sayoeoidde biay
uo Apms snjessi

‘58-ND4 Jo Bues)

Z-94 umm
1BIN-N 7 13NDES

¥

Buiuiesy mau Bunesauag)
TLSXZLS “Elep I
BuiliEs] J0 SUOISUBLWID

(uinn puncif |
104 88EXYE 9 BIEP

P

‘sg-ND4 Jo Bumnes)

Buiuien 10} Z/6%2/G)
SUOISUSIIIP Pa1INDa)
ynm e1ep }58] ¥ Buiuien

H Buuedaid JaN-N
(sdew sous uoiezyequl Wbiem BN
- 10} /X,

3) sauewuopad puBg-¥ pue pueq —muuww m%mm_mmw _wE
s5asse A[ENnsiA EBIJ%8 10} MO|[E 0} Ziexie Wad EEp
0} sayreoidde 18NN pue JaNGag Buiuen Gupedaid

Bunuawsidw '$8-ND4 bunsnipy 2 WSQ Bulwexg Bunyoels eleg

21ep
somaley
Buisuas ajowal uonepuswbas
Ejep [enydeiboab pue (jaNDeg B 58 Buiuies)| desp uo
011 01 Stwaunsnipy ¥ | -ND4) sainpanue ue ._uﬂﬁ:&w:m_mww :EM““M:M”,%E_._ 3 yaIeasal ainjesay
15l j0 uogasies yaIessal sinjess)]
Aiabewn oyuo
B8Ni] JO UOHEUILEXT
(89y) lenfag T I fo
PUE S8-NO4 — gaoy) elep
10 SwBLWL Alm.u_w_ e 159) pue Buiuiey €
Buluien jsn4 4 a eqiul buuedsig
1980
Ayenb Juswssassy uonewjusLIO

terature study, green

algorithm training, purple = result analys

i

Flowchart of the used methodology. Blue =1

preparation/implementation, orange

Figure A.1

1S.

68

A.2 Height approaches

A.2 Height approaches

(a) (b)

Height

(c)

Figure A.2: Height information corresponding to the absolute and relative approaches of one training
example. The color ramps are intentionally set to be equal, allowing for visual assessment of the
differences. (a) Absolute height (DsMm) (b) Relative height (pixel-level) (c) Relative height (tile-level)

69

A Additional figures

Height (rescaled)

0 1

(a)

Height (rescaled)

0 1

(b)

Figure A.3: Height information corresponding to the rescaling approaches of one training example. The
color ramps are intentionally set to be equal, allowing for visual assessment of the differences. (a)
Rescaled height [0-1] (tile-level) (b) Rescaled height [0-1] (whole area)

70

A.3 Shade

A.3 Shade

(@ (b)

'r"‘

Vh Iy

P‘ "M«

Lil 2

ny A—-s:w

'f A’

i)

Figure A.4: For all data stacking models, the addition of height information does not improve segmen-
tation quality at shaded areas. Red = building, gray = road, blue = water, green = other. (a) RGB
true ortho (b) Ground truth (c) DsM (d) Prediction FCN-8s (RGB) (e) Prediction FCN-8s (RGB-Z) (f) Pre-
diction SegNet (RGB) (g) Prediction SegNet (RGB-Z) (h) Prediction U-Net (RGB) (i) Prediction U-Net

71

A Additional figures

A.4 Final prediction of FuseNet-SF5

(a) ’ (b)

S PISIN X ST AN N ARSI

RS NN N

TNE NG v e NG
Y

N
&l(

il
ST l \ll~ ;‘ / L N '
N/ N

% d

4

{3

Figure A.5: The prediction on the test area corresponding to the most successful model in this study;
FuseNet-SF5 trained using pixel level, relative height. Red = building, gray = road, blue = water,
green = other. (a) RGB true ortho (b) Relative height (DsM - DTM) (c) Ground truth (d) Prediction
FuseNet-SF5

72

A.5 Object-level detection

A.5 Object-level detection

Figure A.6: Object-detection for the class building. Red indicates the prediction of building of
FuseNet-SF5 using pixel-level, relative height. Yellow indicates the outlines of the building objects
in the ground truth. The numbers indicate the percentage of correctly classified pixels by the
algorithm for that object.

RO b
Y

Figure A.7: Object-detection for the class road. Purple indicates the prediction of road of FuseNet-SF5
using pixel-level, relative height. Purple indicates the outlines of the road objects in the ground truth.
The numbers indicate the percentage of correctly classified pixels by the algorithm for that object.

73

A Additional figures

Figure A.8: Object-detection for the class water. Blue indicates the prediction of water of FuseNet-SF5
using pixel-level, relative height. Yellow indicates the outlines of the water objects in the ground
truth. The numbers indicate the percentage of correctly classified pixels by the algorithm for that

object.

Figure A.9: Object-detection for the class other. Green indicates the prediction of other of
FuseNet-SF5 using pixel-level, relative height. Yellow indicates the outlines of the other objects in
the ground truth. The numbers indicate the percentage of correctly classified pixels by the algorithm
for that object.

74

A.6 Eroded error maps

A.6 Eroded error maps

(a)

A

(c) (d

Figure A.10: The eroded error maps per class for the prediction of FuseNet-SE5 using pixel-level, relative
height, on the test area. Per pixel it is indicated if the prediction corresponds to the ground truth
(white), or if it deviates (black). a) Class building b) Class road c) Class water d) Class other

75

A Additional figures

A.7 Interpolation of the DTM

Figure A.11: The interpolated DTM still contains some contours of buildings.

76

A.7 Interpolation of the DTM

o
" N :
e P
&)
-
¥
/; Ton
' 14
! .
Height
0.05m 1.13m
(b)

W2

e, i
P % T
P 4 y
4 ¥
Height
0.05m 1.13 m

(c)

Figure A.12: Interpolating holes of the DTM often results in sharp height transitions at the borders and
relatively smooth height transitions within the holes. a) RGB true ortho b) DTM c) Interpolated DTM

77

A Additional figures

(a)

Height
-0.19m

(b)

Height
-0.19m

(c)

Height
-0.19m

(d)

(e)

Figure A.13: Example of when no building object is present in the DTM but there is a building in the DSM.
The algorithm is still able to detect the building object. a) RGB true ortho b) DTM c¢) Interpolated DTM
d) DsM e) Prediction of FuseNet-SF5 using pixel-level, relative height. Red = building, gray = road,
blue = water and green = other.

78

B Additional tables

79

B Additional tables

B.1 Confusion matrices

Prediction
| Building Road Water Other | Sum
= Building | 103,645,897 1,190,460 103,950 9,526,305 | 114,466,612
*§ Road 1,162,577 87,718,204 136,307 9,003,977 98,021,065
< Water 715,728 254,878 33,385,942 1,811,799 36,168,347
Other 6,660,397 12,851,906 1,076,145 139,765,704 | 160,354,152
Sum ‘ 112,184,599 102,015,448 34,702,344 160,107,785 ‘ 409,010,176
Table B.1: Confusion matrix of SegNet (RGB) on the test data.
Prediction
Building Road Water Other | Sum
= Building | 105,046,640 961,453 174,759 8,283,760 | 114,466,612
§ Road 1,165,707 87,743,326 178,998 8,933,034 | 98,021,065
< Water 1,133,757 206,011 33,124,569 1,704,010 | 36,168,347
Other 6,274,098 12,917,119 942,875 140,220,060 | 160,354,152
Sum ‘ 113,620,202 101,827,909 34,421,201 159,140,864 ‘ 409,010,176
Table B.2: Confusion matrix of SegNet (RGB-Z) on the test data.
Prediction
Building Road Water Other | Sum
= Building | 103,645,897 1190,460 103,950 9,526,305 | 114,466,612
§ Road 1,162,577 87,718,204 136,307 9,003,977 98,021,065
< Water 715,728 254,878 33,385,942 1,811,799 36,168,347

Other 6,660,397 12,851,906 1,076,145 139,765,704 | 160,354,152
Sum ‘ 112,184,599 10,2015,448 34,702,344 160,107,785 ‘ 409,010,176

Table B.3: Confusion matrix of FuseNet-SF5 on the test data, using absolute height.

Prediction
Building Road Water Other | Sum
= Building | 106,806,528 850,443 56,360 6,753,281 | 114,466,612
.§ Road 1,441,692 87,912,694 265,227 8,401,452 | 98,021,065
< Water 474,888 160,855 34,197,218 1,335,386 | 36,168,347

Other 5,762,744 12,747,545 961,288 140,882,575 | 160,354,152
Sum ‘ 114,485,852 101,671,537 35,480,093 157,372,694 ‘ 409,010,176

Table B.4: Confusion matrix of FuseNet-SF5 on the test data, using pixel-level, relative height.

80

B.1 Confusion matrices

Prediction
| Building Road Water Other
= Building 93.31 0.74 0.05 5.90
“?, Road 1.47 89.69 0.27 8.57
< Water 1.31 044 94.55 3.69
Other 3.59 7.95 0.60 87.86

Table B.5: Confusion matrix of FuseNet-SF5 using pixel-level, relative height, on the test data. The
values are given in percentages.

81

B Additional tables

B.2 Results of experiments

82

B.2 Results of experiments

WSy 2AnERY = JHY ‘(ed1e S[0ym) 1Y3PY pa[edsay = MHS ‘([2A9]-3[1) 1Sy Paedsay

([9A91-91) 1YS1eY poredssy = LHY ‘([Pad-[ox1d)

= LHS WSm1Yy amjosqy = IV ‘Adorjua-ssord pajy3iop =

IDM “Adonus-sso1)) = D “(eyep uonepifea uo) juswasoxrdwr ou jo sypody = [NF Apms sy} ur pauriograd syusurriadxs sg-NDJ [[e JO SHNSIY :9°g d[qeL

S0£60 | 0180 82260 | 180 0080 [#1200 29680 SzL0 06680 L2180 | Ge260 | 96060 €660 | 81060 /680 | res0 0580 19280 8160 8180 WL | 0¢ S wepy, D SK LHS | pourenoig

SEr60 | 61980 96260 | 16/80 16680 | 09920 8980 1800 01060 980 | ovz60 | 81060 29660 | 62060 86680 | 19280 10880 0€280 12160 180 wpEys | 0¢ S wepy, D Sk HY | powresioig
o) 598

76260 | 7180 €0260 | 180 22880 | Teiro £2680 920 29630 L6180 | 96260 | L2680 £9260 | 16680 08680 | er180 12980 <0180 20160 1980 WLE [0z < 20T wepy D ON LHS | pouresioid

68660 | 19580 6260 | 82980 61880 | <890 £1980 £85£0 85680 6180 | 66160 | 11680 L6660 | /0680 L1680 | 0080 95/80 62080 88060 56680 wipyL [oz S o0l wepy 4D ON HY | pauendid
adhy jyS1ap]

68660 | 19580 5260 | 82980 61830 | S8v/0 £1980 8510 8680 €180 | 66160 | 11680 LEE60 | 20680 £IE80 | 06080 9580 62080 88060 SEE80 WipL | 0¢ S 720 Wwepy, D ON HV | pouresoig

91160 | 66640 22160 | 12180 SLE80 | 99990 S8E80 L6890 06580 99620 | 180 | 09%80 €6160 | 06680 81470 | 16620 90580 L6020 $2U80 87400 Wiy | 0z S 720 wepy, D ON HY | wopuey _

g M
(Z-A5W S8-NDI

8260 | 8480 72060 | 66980 19980 | zzsro 0880 8690 8680 ITI80 | 26260 | 26060 61260 | 01060 8/980 | ¢80 75680 66180 5160 180 Wep Ul | 0c < 7201 wepy LD N - [pouresaig
oy qU0) 598

86160 | €890 €060 | £6980 SIS0 | €900 €780 650 8880 0080 | 1260 | 12680 29160 | 90680 TS50 | €610 9180 82080 <9060 26280 WLy | 0¢ S 70T wepy. D ON ~ | pourenaig

2260 | 12980 60060 | 87680 €1980 | 98640 96180 1940 19880 2640 | 20260 | 01680 12160 | 02880 €680 | ce080 88680 68820 €106 11280 Weg T |02 S TR0 wepy, DM ON - | pourenaig

260 | 7980 21060 | £0980 8580 | 60900 Tizs 61520 8880 8667 SE06 89160 | £6630 26680 €980 U080 1680 Wigyz | oc 720 wepy D ON - | paurenazg

86160 | €898 $E060 | £6980 cIss0 | €90 8628 1650 28890 0080 LL680 29160 | 90680 eS80 2980 82080 26230 (TN T TR0 wepy i) ON| - | paurenaig

Sz60 | 6980 12060 | 08580 96580 | 66940 91280 15L0 08880 96620 9680 L6160 | 6/880 L1580 180 £86/0 28280 wouz [o1 S o0l wepy 4D ON - [pauresaig
iy ou sipod g

86160 | £8980 7E060 | £6980 SIS0 | €90 €780 6540 £888°0 0080 | 1260 | 12680 29160 | 90680 TS50 | €6180 9180 82080 9060 26280 Wiy | 0¢ S 70T wepy. D ON ~ | pourenoig

8160 | €0£80 60480 | €9280 96780 | 66040 €1420 01040 01980 0860 | 0£880 | /8780 €780 | 8/980 0620 | 1620 99400 L5620 €980 00940 wee gy |02 S T20T aos DD ON - | pourenaig
wZado

86160 | €890 76060 | €980 SIS0 | €90 16540 8830 12680 29160 | 90680 T80 9180 26230 Wiy |07 wepy D ON - [pourenaig

62660 | 14/80 8060 | 60/80 T80 | 12800 €120 €630 28060 01260 | 96680 2980 96680 9280 wogys [0z wepy i) N - [paurenaig
g/ ori0zor

08160 | 26580 £0680 | 90180 w0 | 0pr0 5080 16240 0980 01880 2060 | 65/80 TSR0 | e/820 £2280 2630 09080 Wiy | 0z S S20T1 wepy. D oN ~ | paurenaig

86160 | £8980 $E060 | £6980 SIG80 | €900 €280 6540 £888°0 12680 £9160 | 90680 T80 | €610 29180 <9060 26280 Wiy | 0¢ S P20 wepy. Fe) ON ~ | pourenaig

S1z60 | /2280 72880 | 68280 $PS80 | 88690 26820 60,0 SE980 £2980 22680 | 82980 91080 | 085£0 £5080 89/80 60840 weug | 0z s €20 wepy, D ON - | pourenaig
i Supanr]

86160 | €890 76060 | £6980 SIS0 | €90 16540 8830 12680 29160 | 90680 TIE80 | eelm 9180 06 26230 Wiy | 0¢ < wepy D ON - [pourenaig

00160 | 81280 8180 £0280 SYES0 | 61040 £6690 1980 01980 9880 | 06680 £6080 | 66520 €80 €6/80 L0 woy9 [0z < TR0 wepy DD ON| | wopuey
l M
(@D¥) 58-ND

320M 11 | PeON 11 | BUIPIING 11 | 19WI0 L | 121€M 101 | PEON 001 | SUIPIINg NO] | 39Wi0 NOT | L1 98€124Y | 0] WP | 121eM T4 | PeOY [d | SUIPIINg 14 | 19W10 T | 393¢M 101 | peoy 001 | SUIPIg 101 | 39410 N0 | 14988124V | n0] Weo | owrny Sururedy, | [NA# | 9215 yieq | oyer Surureo| yuj | sozpuindo | wonouny 5507 | -dip 0H | 0juriySioH | sdiom

vjop 3501 10 sy

vjop

1DpIa 10 sy

St

iH

83

B Additional tables

Resull on validation dala Resulls on Test data
Weights Height info Loss function | Opti Batch size ining time | Mean IoU [Average F1 [ToU Other [IoU Building [ToU Road | ToU Water [F1 Other | F1 Building [F1 Road [F1 Water | Mean IoU | Average F1 [IoU Other | IoU Building | ToU Road [ToU Water | F1 Other [F1 Building | F1 Road | F1 Water
SegNet (RGB)
Weight it
Random | - No [« Adam 5 20 [3hi0m 07961 05864 07737 08176 07785 | 08145 08724 | 0899 08756 | 08977 | 07811 05762 07330 07992 07351 08570 08459 | 08884 08473 | 09230
Pretrained | - No (<3 Adam 5 20 | 2h36m 08337 09092 08096 08531 08179 | 0854 08948 | 09207 08998 | 09215 | 08116 05952 07622 08339 07700 | 08801 08651 | 09094 05702 | 09362
Learn
Dretrained | - No < Adam T0e3 5 20 [dhdm 07961 05564 08159 0785 | 08129 08701 | 05986 05799 | 08968 | 07741 08717 07203 07976 07307 | 08479 08374 08874 08| 09177
Pretrained | - No cr Adam 10e-4 5 20 2h 36m 0.8337 0.9092 0.8531 0.8179 0.8544 0.8948 0.9207 0.8998 09215 08116 0.8952 0.7622 0.8339 0.7702 0.8801 0.8651 0.9094 0.8702 0.9362
retrained | - No CcP Adam 10e-5 5 20 4h 9m 0.8091 0.8943 0.8300 0.7895 8310 0.8802 0.9071 0.8824 0.9077 0.7955 0.8850 0.7400 08176 0.747(0.8773 0.8506 0.8997 0.8552 0.9346
Hortzontal flip.
Prefrained | - Yes [« Adam T0ed 5 20 [4h3im 08394 09126 08152 08573 08265 | 08585 08982 | 09232 09050 | 09238 | 08226 09020 07762 08120 07836 | 08887 08740 | 09142 08786 | 09411
Pretrained | - No (<3 Adam T0ed 5 20 | 2h36m 08337 09092 0809 08531 08179 | 08544 08948 | 09207 08998 | 09215 | 08116 05952 07622 08339 07702 | 08801 08651 | 09094 05702 | 09362
Opfimizer
Pretrained | - No (o SGD TOed 5 0 [dhi7m 02679 03826 05832 01837 02530 | 00216 07367 | 03103 04412 | 0094 | 02563 03738 05152 02004 0255 | 00263 07057 | 03339 040H | 00512
Pretrained | - No CP Adam T0cd 5 20 [2h36m 0.8337 09092 0.309% 08531 08179 | 0854 08945 | 09207 08995 | 09215 | 08116 05952 07622 08339 07702 [08801 08651 | 09094 05702 | 09362
Epochs no impr.
Pretrained | - No CP Adam 5 10 2h 26m 0.8371 09112 0.8145 0.8561 0.8207 0.8572 0.8977 0.9225 0.9015 0.9231 0.8117 0.8952 0.7624 0.8346 0.7686 0.8811 0.8652 0.9098 0.8691 0.9368
Pretrained | - No [« Adam 5 20 | 2h36m 08337 09092 0809 08531 08179 | 08544 08948 | 09207 08998 | 09215 | 08116 058952 07622 08339 07702 | 08801 08651 | 0.9094 08702_| 09362
Pretrained | - No [« Adam 5 50 [8hdm 08412 09136 08149 08567 08256 | 08677 08980 | 09228 09045 | 09292 | 08143 05969 07676 08326 07761 0.8808 08685 | 0.9086 05739 | 09366
Toss furction
Pretrained | - No WP Adam T0ed 5 20 [3hdsm 08362 09106 05081 08519 08189 | 08655 08941 | 09200 09008 | 09779 | 08115 05999 07561 08327 07661 | 08908 08611 | 09087 08677 | 09422
Dretrained | - No P Adam TOed 5 20| 2h36m 08337 09092 0509 08531 08179 | 0850 08945 | 09207 08995 | 09215 | 08116 05952 07622 08339 07702 | 08801 08651 | 09094 05702_| 09362
Best conbination
Pretrained | - wcr Adam 10e4 5 50 9h 45m 0.8426 09144 0.8163 0.8592 0.8289 .8660 0.8989 0.9242 0.9064 0.9282 0.8178 0.8988 0.7636 0.8351 0.7748 0.8976 0.8660 0.910 0.8731
Pretrained | - <3 Adam T0ed 5 50 | 12h2/m 08152 09160 08199 08605 08326 | 08677 09010 | 09250 09087 | 09292 | 08219 09015 0773 08926 07810 | 08907 08723 09146 08770
SegNet (RGB-2)
Weight it
Random | AH No (o Adam TOed 5 20 [dh27m 05006 05588 07709 08519 07633 | 08151 08706 | 09218 08658 | 08971 | 07840 08773 07215 08370 07131 | 08641 0838209113 08327 09271
Pretrained | AH No cr Adam 10e-4 5 20 2h 35m 0.8357 0.9103 0.8094 0.8737 0.8079 0.8519 0.8947 0.9326 0.8937 0.9200 0.8140 0.8966 0.7636 0.8497 0.7627 0.8801 0.8659 0.9187 0.8654 0.9362
Prefrained | AH No [« Adam T0ed 5 20 | 2h3m 08357 09103 0809% 08737 08079 | 08519 08947 | 09326 08937 | 09200 | 08140 05966 07636 08497 07627 | 08801 08659 | 09187 08651 | 09362
Pretrained | SHT No <3 Adam T0ed 5 20 [2h5/m 08417 09139 08185 08655 08216 | 08611 09002 | 09279 09021 | 09255 | 08221 09017 07767 08476 07783 | 08858 08743 09175 08753 | 09395
Pretrained | SHT Yes (o3 Adam T0ed 5 50| T6h5im 08501 09189 05290 08730 05366 | 08619 09065 | 09522 09110 | 09258 | 08257 09039 07822 08538 07827 | 08l 08778 | 09711 05781 | 09385

Table B.7: Results of all SegNet experiments performed in this study. ENI = Epochs of no improvement (on validation data), CP = Cross-entropy, WCP
= Weighted cross-entropy, AH = Absolute height, SHT = Rescaled height (tile-level), SHW = Rescaled height (whole area), RHP = Relative height
(pixel-level), RHT = Rescaled height (tile-level).

84

B.2 Results of experiments

3oy eaney =
IDM “Adoxyua-ssorD)) = 1D “(eyep uonepifea uo) yusuwesoxdwr ou jo sysodq = NI

JHY “(ea1e 3[0ym) JyS1oy pafessay = MHS “(1949]-o1) 1yS1oy paredsay = LHS WSy anjosqy = HY

“(19A3]-9[1) 3Y31oY pa[edsay = LHY ‘([PAd[-[ox1d)

‘Adoxyua-ssoxd pajy3rop =

‘Apmys sy ur pawroyrad syuawzadxe JPN-N [[€ JO SHNSIY :8°d [qeL

01160 | 8ce80 12160 | S8580 R VA 8680 12520 98/80 16820 | 15160] 90980 0v160 | 98880 YEKR0 [vees0 91F80 6620 91680 00180 wyiye [o8 S 10T wepy oN LHS | wopuey
6160 | 19280 8060 | 19580 01180 | 26020 £2680 S8IL0 19/80 ¥18£0 | 98060 | 0W¥80 TH060 | 16/80 17280 | 00620 75280 £18L0 £2880 60620 T 70T wepy ON LHS | wopuey
70160 | 256£0 8160 | £5680 cces0 | 00990 26180 2L1L0 8980 69,0 | 09880 | vhes0 91160 | 61980 6640 | £1020 9680 71920 9180 66LL10 0] oz 70T wepy ON HY | wopuey
01260 | 21280 €480 | 68680 SES80 | 690 1840 St 11980 €920 | 0v160 | 29180 SIS80 | 0180 L1380 | bees0 28820 1220 8/80 LE8L0 Wicuz | og S 7201 Wepy. D N ~ | wiopuey
02160 | 8180 6780 | 16680 8680 | L2690 9.0 €620 71980 08S/0 | 8£630 | cces0 0480 | 69980 08080 | €£120 60820 05920 £8980 6900 wpedo | o¢ < 7201 D ON ~ | wiopuey
6480 | 166£0 71980 | 99180 05840 | 5990 9540 00690 16680 TheL0 | 00880 | /6180 €980 | 06180 L6820 | 88890 859/0 LELD 05580 THPL0 wgpyo | o¢ S 70T oM ON - [(wopuey
9160 | 99180 L5180 | 19580 TEP80 | 00690 8820 8810 71980 €8S/0 | 18060 | 29780 01880 | 6080 OIE80 | pees0 8L0 1220 980 60820 WoTuz | 0¢ D ON ~ | wiopuey
02160 | S8180 6730 | 16680 8680 | L2690 900 €620 21980 0850 | 86680 | cces0 04480 | 69980 08080 | 6/120 60820 05920 £898°0 61900 weyo | 0¢ D ON wopuey
61480 | 91080 £0980 | 20880 62400 | 06190 $56£0 £60£0 81780 8/2/0 | €8630 | 9880 05480 | 70980 €6180 | 7020 1400 05620 95980 6£9.0 wpdo | ot wepy, D ON wopuey
02160 | 8180 6780 | 16680 T80 | L2690 91100 €620 71980 08570 | 86680 | cces0 04480 | 69980 08080 | €£120 60820 05920 £8980 61920 wpgdo | 0¢ Wwepy, D ON wopuey
82100 | 62000 10000 | 26850 79000 | #1000 00000 9LIT0 TIET0 79010 | G100 | 0€000 10000 | 00890 85000 | 61000 00000 90470 9E910 S6110 Wiy | o¢ ass ES) ON wopuey
02160 | 8180 6780 TR0 | L2690 91100 08520 | 8€680 69950 08080 60820 05920 £8950 wgdo | 0¢ < 7201 wepy, D ON wopuey
260 | L7180 7880 €1980 | /890 16820 0r9L0 | 11160 9180 TTr80 S2LL0 64150 wWigyz | 0c < 7201 wepy, ES) Sk wopuey
ELVR0 1EF9°0 WYe Y1 S wepy ON wopuey

6480 L2690 wys 4o S wepy ON
EE18°0 0LL80 0¥280 2080 £589°0 S1LL0 69FL°0 17980 wp 4y S awpy ON -

(9% 1BIN-N

321em 14 | peod 11 | Suipiing 1 | 12wi0 14 [s1em ot 23410 NO1 | 14 28esaay | noj uesw | s21em 14 [peow 11 12410 14 | 129eM NO1 1290 NI | 11 38esvay | nojuesw | awn ui INA# | oz1s yaieq | ajes Suruaea) g | 12znundo [uonduny ssoq | -diy aoH | ojuriySem [sySam
jp vp

85

B Additional tables

T Resulf on validation dafa Resulfs o fest data

Weights | Height info | Hor. flip. | Loss function | Optimizer | Init. learning rate | Batch size | #ENT | Training & Mean ToU | Average F1 | ToU Other | ToU Building | ToU Road | ToU Water | F1 Other | F1 Building | F1 Road | F1 Water | Mean IoU | Average F1 | ToU Other | ToU Building | ToU Road | ToU Water | F1 Other | F1 Building | F1 Road | FI Water
Weight it

Random | AH No Adam T0ed 20 [7hd5m 08290 09062 08004 08720 07972 03166 08891 | 09316 08871 | 09169 | 08202 09001 07672 08668 07570 0590 08683 | 09286 08617 | 09418

Pretrained | AH No Adam T0ed 20 [7h2Z/m 08502 09189 05261 08537 05252 0.8660 09048 | 09382 09042 | 09282 | 0.8366 09099 07882 08747 07715 09161 08791 | 09332 05710 | 09562
Learning rate

Pretrained | AH No cP Adam T0ed T 20 | 5h5em 07955 05855 07667 08641 07551 07956 038680 | 09273 038605 | 08862 | 0.7978 05859 07410 08610 07187 05705 08513 | 09253 05363 | 09308

Pretrained | AH No cP Adam T0ed T 20 [7hZ/m 05502 09159 05261 0.5837 05252 0.5660 09045 | 0.9382 09042 | 09252 | 0.8366 09099 07582 05747 07715 09761 08791 | 09332 05710 | 09562

Pretrained | AF No cP Adam T0e5 T 20 [3hism 06022 07398 06568 07583 03518 06430 07929 | 0859 05235 | 07527 | 0.5981 07215 06332 07752 0235 07457 07751 | 0875 03811 | 05543
Horizontal flip.

Pretrained | AH Yes CP Adam T0ed 20 [16h23m 05572 09229 05544 08931 08315 08695 09097 | 09436 09050 | 09302 | 08392 09116 07915 05752 07509 09094 05536 | 09334 05770 | 09525

Pretrained | AH No 3 Adam T0ed 20 | 7h2/m 08502 09189 05261 05857 05252 05660 09045 | 09382 09042 | 09252 | 08366 09099 07842 05747 07715 09761 08791 | 09352 05710 | 09562
Opfimizer

Pretrained | AH No cP 5GD T0ed T 20 [1hom 01378 02178 03729 0.0551 01110 00118 05032 | 01019 01999 | 00233 | 00313 02106 03506 0.0579 01038 00131 05192 | 01095 01881 | 00258

Pretrained | AH No cP Adam T0ed 1 20 _[7hZ/m 08502 09189 05261 08837 05252 0.8660 09048 | 0.9382 09042 | 09282 | 0.8366 09099 07882 05747 07715 09161 08791 | 09332 05710 | 09562
Epochs 1o impr.

Pretrained | AH No cP Adam T0ed 10| 3ho7m 05333 09088 0.509% 0.5503 058055 08376 05945 | 09363 08925 | 09116 | 08244 09024 07700 08652 07567 09057 05700 | 09277 08615 | 09505

Pretrained | AF No CP Adam T0ed 20 [7h27m 05502 09159 05261 05837 05252 0.5660 09045 | 09382 09042 | 09252 | 0.8366 09099 07582 05747 07715 09761 05791 | 09332 05710 | 09562

Pretrained | AF No cP Adam T0ed 50 [20n39m 05564 09225 05336 05592 083570 03658 09095 | 09414 09113 09281 | 08362 09097 07851 05729 07761 09106 0579% [09322 05739 | 09532

Pretrained | AH No WCP Adam T0ed 20 | 7h2%m 05403 09129 05103 05505 08113 05591 08952 | 09365 08956 | 09242 | 08258 09033 07691 05706 0.7601 09034 05695 | 09308 08637 | 09992

Pretrained | AH No C Adam T0ed 20 [7h27m 08502 09189 05261 08837 0252 0.8660 09048 | 09382 09042 | 09282 | 08366 09099 07812 08747 07715 09161 08791 | 09332 08710 | 09562
Height type

Pretrained | AH Yes cP Adam T0ed 50 [27hdom 08573 09230 08361 08913 08355 08663 09107 | 09425 09104 | 09284 | 0.8381 09109 07890 08723 07767 09183 08821 | 09318 05743 | 09552

Pretrained | SHT Yes cP Adam T0ed 50 [32h50m 08583 09212 08327 0.5569 08305 08671 09087 | 0.9400 09074 | 09288 | 08326 09077 0.7860 08671 07750 09023 05802 | 0.9288 05733 | 09487

Pretrained | SHW Yes cP Adam T0ed 50 [28h7m 05599 09245 05408 08921 05438 05628 09135 | 0.9430 09153 | 09264 | 0.8401 09121 07897 05708 07546 09152 08525 | 09309 05795 | 09557

Pretrained | RHP Yes CP Adam T0ed 50 [T6hd7m 05729 09519 05456 05920 05428 09114 09163 | 0.0429 09147 [09536 | 08427 09137 07966 05744 07865 09131 05865 | 0.9330 05805 | 09546

Pretrained | RHT Yes cP Adam T0ed 50 [2dh5m 05574 09231 05353 05932 05522 05690 09105 | 09436 09054 | 09299 | 0.8384 09111 07891 05792 07785 09070 08521 | 09357 05751 | 09512

Table B.9: Results of all FuseNet-SF5 experiments performed in this study. ENI = Epochs of no improvement (on validation data), CP = Cross-entropy,
WCP = Weighted cross-entropy, AH = Absolute height, SHT = Rescaled height (tile-level), SHW = Rescaled height (whole area), RHP = Relative height
(pixel-level), RHT = Rescaled height (tile-level).

86

C Reproducibility self-assessment

87

C Reproducibility self-assessment

C.1 Reproducibility criteria

[level] Data criteria [~~~ """~ """ TTTTTTTTTTTTOTTTTOTTTTOTTTOOTOY

[0] unavailable (including available upon request) and
not recreatable (even if documented or with metadata)

I
i
i
Input Data I[1d d (includi data) and
} recreatable (same or similar data can be retrieved from original source)
1 [2] available, but non-public licenses/no license or non-permanent websites (e.g. no DOI)
I
| [3] available, open and permanent (with DOI)
[level] Methods criteria [~~~ """~ """ TT 77T N
} [0] unavailable (including available on request) i
i [1] documented (text, pseudo code, workflow description, |
. . H | versions, Dockerfile, Vagrantfile !
Criteria for Preprocessing — | . ganfile) ;
R d .bl L2 available (source code online, e.g. Github; |
epro ucible i referring to specific example from paper) |
! I
Research | [3]available and open (runtime image/container, i
Methods ! standardised metadata, open license) 1
B it e !
Method, analysis, processing --------|]
1
Computational environment -——-—__ same
criteria

[level] Results criteria [T~~~ """ ""7""TTTTTTTT OO OOTTOOTOY

[0] unavailable/insufficient

[1] documented (understandable, context provided), i.e.

Results reasonable statistical measures/summaries, textual descriptions, tables, maps

[2] available, i.e. models, "output data", scripted plots/maps

[3] available, open and permanent

Figure C.1: Reproducibility criteria. Figure from Niist et al. [2018].

C.2 Reproducibility scores

Criteria Score
Input data 0
Preprocessing 1
Methods, analysis, processing 1
Computational environment 1
Results 1

Table C.1: The self-assigned scores for this study on the criteria for reproducibility, presented in Fig-
ure C.1.

88

C.3 Self-reflection

C.3 Self-reflection

This research work was executed for the company READAR. This collaboration enabled the use of high
quality input data and an external server that strongly enhanced the available computational power and
memory. Nevertheless, the cooperation also came with restrictions leading to limitations in the repro-
ducibility of this study. As the used true ortho imagery and matching DsM is developed by READAR,
input data used in this work can not be made openly available, nor exactly recreated. The same re-
strictions are present for the source code corresponding to the preprocessing steps and methodology
implementations and the Docker containers used. Nevertheless, details on the used methodology are
described in the report in such a way that they could be implemented by the readers themselves. When
considering the results of this study, all the calculated performance measures for all the experiments are
provided. For the best performing models, textual descriptions and maps are given. This information
allows for verification of the drawn conclusions. However, the trained models are not made openly
available as these belong to READAR.

89

Bibliography

Actueel Hoogtebestand Nederland (2020). Data. https://www.ahn.nl/data. Accessed 13 May. 2020.

Audebert, N., Le Saux, B., and Lefevre, S. (2018). Beyond RGB: Very high resolution urban remote
sensing with multimodal deep networks. ISPRS Journal of Photogrammetry and Remote Sensing, 140:20—
32.

Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., and Carlsson, S. (2015). Factors of transferability
for a generic convnet representation. IEEE transactions on pattern analysis and machine intelligence,
38(9):1790-1802.

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder
architecture for image segmentation. IEEE transactions on pattern analysis and machine intelligence,
39(12):2481-2495.

Beeldmateriaal Nederland (2020). Voorjaarsvlucht. https://www.beeldmateriaal.nl/
voorjaarsvlucht. Accessed 16 Jun. 2020.

Campos-Taberner, M., Romero-Soriano, A., Gatta, C., Camps-Valls, G., Lagrange, A., Saux, B. L.,
Beaupere, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo, H., Ferecatu, M., Shimoni,
M., Moser, G., and Tuia, D. (2016). Processing of Extremely High-Resolution LiDAR and RGB Data:
Outcome of the 2015 IEEE GRSS Data Fusion Contest-Part A: 2-D Contest. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 9(12):5547-5559.

Chang, J.-R. and Chen, Y.-S. (2018). Pyramid stereo matching network. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 5410-5418.

Couprie, C., Farabet, C., Najman, L., and LeCun, Y. (2013). Indoor Semantic Segmentation using depth
information.

Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., and Pal, C. (2016). The importance of skip con-
nections in biomedical image segmentation. In Deep Learning and Data Labeling for Medical Applications,
pages 179-187. Springer.

Duc, Minh and Viet, Sang (2018). Method Description for Vaihingen:2D Labelling Chal-
lenge. http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/
papers/BKHN10_method.pdf. Accessed 16 Jun. 2020.

Dukai, B. (2018). 3D Registration of Buildings and Addresses (BAG). http://3dbag.bk.tudelft.nl/.
Accessed 10 Jun. 2020.

Duy, Tring, Van and Sang, Dihn, Viet (2018). Method Description for Vaihingen:2D Labelling
Challenge. http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/
papers/report_BKHN_4.pdf. Accessed 16 Jun. 2020.

Eitel, A., Springenberg, J. T., Spinello, L., Riedmiller, M., and Burgard, W. (2015). Multimodal deep
learning for robust RGB-D object recognition. In 2015 IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), pages 681-687.

Everingham, M., Van Gool, L., Williams, C. K., Winn, J., and Zisserman, A. (2010). The pascal visual
object classes (voc) challenge. International journal of computer vision, 88(2):303-338.

91

https://www.beeldmateriaal.nl/voorjaarsvlucht
https://www.beeldmateriaal.nl/voorjaarsvlucht
http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/papers/BKHN10_method.pdf
http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/papers/BKHN10_method.pdf
http://3dbag.bk.tudelft.nl/
http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/papers/report_BKHN_4.pdf
http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/papers/report_BKHN_4.pdf

Bibliography

Feng Ning, Delhomme, D., LeCun, Y., Piano, F.,, Bottou, L., and Barbano, P. (2005). Toward automatic
phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 14(9):1360—
1371.

Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., and Garcia-Rodriguez, . (2017). A
Review on Deep Learning Techniques Applied to Semantic Segmentation.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep Sparse Rectifier Neural Networks. In Gordon, G.,
Dunson, D., and Dudik, M., editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15 of Proceedings of Machine Learning Research, pages 315-323, Fort
Lauderdale, FL, USA. PMLR.

Gupta, S., Girshick, R., Arbeldez, P, and Malik, J. (2014). Learning Rich Features from RGB-D Images
for Object Detection and Segmentation.

Hariharan, B., Arbeldez, P., Girshick, R., and Malik, J. (2014). Simultaneous Detection and Segmentation.

Hazirbas, C., Ma, L., Domokos, C., and Cremers, D. (2017). FuseNet: Incorporating Depth into Se-
mantic Segmentation via Fusion-Based CNN Architecture. In Lai, S.-H., Lepetit, V., Nishino, K., and
Sato, Y., editors, Computer Vision — ACCV 2016, volume 10111, pages 213-228. Springer International
Publishing, Cham. Series Title: Lecture Notes in Computer Science.

He, K., Zhang, X,, Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Hush, D. R. and Horne, B. G. (1993). Progress in supervised neural networks. IEEE signal processing
magazine, 10(1):8-39.

Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167.

ISPRS (2018a). 2D Semantic Labeling - Vaihingen data. http://www2.isprs.org/commissions/comm3/
wg4/2d-sem-label-vaihingen.html. Accessed 16 Jun. 2020.

ISPRS (2018b). 2D Semantic Labeling Contest. http://www2.isprs.org/commissions/comm3/wgs/
semantic-labeling.html. Accessed 16 Jun. 2020.

Kadaster (2018). BGT. Published: hhttps:/ /zakelijk.kadaster.nl/bgt.
Kadaster (2019). BGT. https://zakelijk.kadaster.nl/bgt. Accessed 10 Feb. 2020.

Kaggle (2017). Dstl Satellite Imagery Feature Detection. https://wuw.kaggle.com/c/
dstl-satellite-imagery-feature-detection/overview. Accessed 16 Jun. 2020.

Kampffmeyer, M., Salberg, A.-B., and Jenssen, R. (2016). Semantic Segmentation of Small Objects and
Modeling of Uncertainty in Urban Remote Sensing Images Using Deep Convolutional Neural Net-
works. pages 1-9.

Kingma, D. P. and Ba, J. (2014). Adam: A Method for Stochastic Optimization.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional
Neural Networks. Commun. ACM, 60(6):84-90. Place: New York, NY, USA Publisher: Association for
Computing Machinery.

Lagrange, A., Saux, B. L., Beaupére, A., Boulch, A., Chan-Hon-Tong, A., Herbin, S., Randrianarivo,
H., and Ferecatu, M. (2015). Benchmarking classification of earth-observation data: From learning
explicit features to convolutional networks. In 2015 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), pages 4173-4176.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-444.

Lemmens, M. (2011). Geo-information: technologies, applications and the environment, volume 5. Springer
Science & Business Media.

92

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
https://zakelijk.kadaster.nl/bgt
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/overview
https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/overview

Bibliography

Liu, M., Tuzel, O., Ramalingam, S., and Chellappa, R. (2011). Entropy rate superpixel segmentation. In
CVPR 2011, pages 2097-2104.

Liu, Y, Minh Nguyen, D., Deligiannis, N., Ding, W., and Munteanu, A. (2017). Hourglass-
ShapeNetwork Based Semantic Segmentation for High Resolution Aerial Imagery. Remote Sensing,
9(6):522.

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic segmentation.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 3431-3440.

Maggiori, E., Tarabalka, Y., Charpiat, G., and Alliez, P. (2017). Convolutional Neural Networks for
Large-Scale Remote-Sensing Image Classification. IEEE Transactions on Geoscience and Remote Sensing,
55(2):645-657.

Nist, D., Granell, C., Hofer, B., Konkol, M., Ostermann, F. O,, Sileryte, R., and Cerutti, V. (2018). Repro-
ducible research and giscience: an evaluation using agile conference papers. Peer], 6:e5072.

NYU (2019). Deep-Neural-Network. https://itp.nyu.edu/classes/roy20/illusion/
deep-neural-network-1/. Accessed 18 Mar. 2019.

Paisitkriangkrai, S., Sherrah, J., Janney, P., and Van-Den Hengel, A. (2015). Effective Semantic Pixel
Labelling With Convolutional Networks and Conditional Random Fields. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops.

Pohlen, T., Hermans, A., Mathias, M., and Leibe, B. (2017). Full-Resolution Residual Networks for Se-
mantic Segmentation in Street Scenes. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Qi, X, Liao, R, Jia, J., Fidler, S., and Urtasun, R. (2017). 3D Graph Neural Networks for RGBD Seman-
tic Segmentation. In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5209-5218,
Venice. IEEE.

Qin, R, Tian, J., and Reinartz, P. (2016). 3D change detection — Approaches and applications. ISPRS
Journal of Photogrammetry and Remote Sensing, 122:41-56.

Ronneberger, O., Fischer, P, and Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image
Segmentation.

RSIP Vision (2018). Deep Learning and Convolutional Neural Networks: RSIP Vision Blogs. https:
//www.rsipvision.com/exploring-deep-learning/. Accessed 18 Mar. 2020.

Saito, S., Yamashita, T., and Aoki, Y. (2016). Multiple Object Extraction from Aerial Imagery with Con-
volutional Neural Networks. Electronic Imaging, 2016(10):1-9.

Saxe, A. M., Koh, P. W,, Chen, Z., Bhand, M., Suresh, B., and Ng, A. Y. (2011). On random weights and
unsupervised feature learning. In ICML, volume 2, page 6.

Sermanet, P, Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. (2013). Overfeat: Integrated
recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229.

Shah, M. P (2017). Semantic Segmentation Architectures Implemented in PyTorch.
https://github.com/meetshah1995/pytorch-semseg.

Sheng, Y., Gong, P, and Biging, G. S. (2003). True Orthoimage Production for Forested Areas from
Large-Scale Aerial Photographs. Photogrammetric Engineering & Remote Sensing, 69(3):259-266.

Shorten, C. and Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning.
Journal of Big Data, 6(1):60.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556.

93

https://itp.nyu.edu/classes/roy20/illusion/deep-neural-network-1/
https://itp.nyu.edu/classes/roy20/illusion/deep-neural-network-1/
https://www.rsipvision.com/exploring-deep-learning/
https://www.rsipvision.com/exploring-deep-learning/

Bibliography
Song, S., Lichtenberg, S. P, and Xiao, J. (2015). SUN RGB-D: A RGB-D Scene Understanding Benchmark
Suite. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., and Salakhutdinov, R. (2014). Dropout: A
Simple Way to Prevent Neural Networks from Overfitting. Journal of Machine Learning Research,
15(56):1929-1958.

Volpi, M. and Tuia, D. (2016). Dense semantic labeling of subdecimeter resolution images with convo-
lutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 55(2):881-893.

Voulodimos, A., Doulamis, N., Doulamis, A., and Protopapadakis, E. (2018). Deep learning for com-
puter vision: A brief review. Computational intelligence and neuroscience, 2018. Publisher: Hindawi.

Wang, Q., Lin, J., and Yuan, Y. (2016). Salient Band Selection for Hyperspectral Image Classification via
Manifold Ranking. IEEE Transactions on Neural Networks and Learning Systems, 27(6):1279-1289.

Yuan, Y., Ma, D., and Wang, Q. (2016). Hyperspectral Anomaly Detection by Graph Pixel Selection.
IEEE Transactions on Cybernetics, 46(12):3123-3134.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701.

Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Pyramid Scene Parsing Network. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Zhu, H., Meng, E, Cai, J., and Lu, S. (2016). Beyond pixels: A comprehensive survey from bottom-
up to semantic image segmentation and cosegmentation. Journal of Visual Communication and Image
Representation, 34:12-27.

Zuurmond, Cor (2018). Height Estimation from Aerial Imagery with Stereo Matching Networks. https:
//scripties.uba.uva.nl/scriptie/662652. Accessed 12 Apr. 2020.

94

https://scripties.uba.uva.nl/scriptie/662652
https://scripties.uba.uva.nl/scriptie/662652

Colophon

This document was typeset using IXTEX, using the KOMA-Script class scrbook. The main font is Palatino.

%
TUDeltt

	Introduction
	Objectives & research questions
	Scope
	Report structure

	State of the art
	Deep learning
	Training a network

	CNNs for semantic segmentation
	Convolutional Neural Networks
	Allowing for semantic segmentation

	2.5D and 3D information
	Semantic segmentation of remote sensing data
	Patch-based methods
	Pixel-based methods
	Data fusion

	Architectures
	FCN-8s
	SegNet
	U-Net
	FuseNet-SF5

	Methodology
	Selection of CNNs
	Training and validation data
	Height approaches
	Data augmentation

	Training of CNNs
	Tweaking of hyperparameters
	Performance measures
	Early stopping

	Test data and inference
	Drawing conclusions
	Performance measure comparison
	Visual assessment of results
	Object-level performance

	Datasets, implementations and experiments
	Datasets
	Basisregistratie Grootschalige Topografie
	True ortho imagery and Digital Surface Model
	Digital Terrain Model

	Implementations
	Spatial data and performance measures
	Data loader
	Support of FuseNet-SF5
	Early stopping
	Extra band and pretrained weights
	Loss function
	Optimizer
	Server and Docker
	TensorBoard

	Experiments

	Results and analysis
	Hyperparameters
	RGB baseline comparison
	Data stacking: RGB versus RGB-Z
	Overall performance
	Class performances
	Inclusion of height information trough data stacking

	Stacking versus fusion
	Height approaches
	Object-level detection
	Ground truth detection
	Object-level false positives

	Disputable inconsistencies
	Comparison performance to related work

	Conclusions & future work
	Conclusion
	Discussion
	Research questions
	Contributions

	Future work
	BGT error removal
	Extended data augmentation
	Subdivision of classes
	Relative height without the DTM of AHN3
	Fusing stacked height information

	Additional figures
	Methodology flowchart
	Height approaches
	Shade
	Final prediction of FuseNet-SF5
	Object-level detection
	Eroded error maps
	Interpolation of the DTM

	Additional tables
	Confusion matrices
	Results of experiments

	Reproducibility self-assessment
	Reproducibility criteria
	Reproducibility scores
	Self-reflection

