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Abstract. Let G be a nilpotent Lie group and let π be a coherent state representation of G . The interplay
between the cyclicity of the restriction π|Γ to a lattice Γ≤G and the completeness of subsystems of coherent
states based on a homogeneous G-space is considered. In particular, it is shown that necessary density
conditions for Perelomov’s completeness problem can be obtained via density conditions for the cyclicity
of π|Γ.
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1. Introduction

Let G be a connected unimodular Lie group and let (π,Hπ) be an irreducible unitary representa-
tion of G . For a unit vector η ∈Hπ, consider its orbit under the action π on Hπ,

π(G)η= {
π(g )η : g ∈G

}
. (1)

As π is irreducible, π(G)η is complete in Hπ. Two elements π(g1)η and π(g2)η differ from one
another up to a phase factor, i.e. determine the same state or ray, only if π(g−1

2 g1)η ∈Cη.
Let H ≤G be a closed subgroup that stabilises the state defined by η ∈Hπ, i.e.

π(h)η=χ(h)η, h ∈ H , (2)

where χ : H → T is a unitary character of H . Denote by X = G/H the associated homogeneous
G-space and let σ : X → G be a cross-section for the canonical projection p : G → X . Then the
system of coherent vectors

{ηx }x∈X = {π(σ(x))η}x∈X , (3)

determine a π-system of coherent states based on X , in the sense of [24, 29].
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It will be assumed that X = G/H is unimodular, i.e. X admits a G-invariant positive Radon
measure µX , and that η is admissible, that is,∫

X
|〈η,ηx〉|2 dµX (x) <∞. (4)

Then there exists an admissibility constant dπ,η > 0 such that∫
X
|〈 f ,ηx〉|2 dµX (x) = d−1

π,η‖ f ‖2
Hπ

, for all f ∈Hπ. (5)

The identity (5) implies, in particular, that the system (3) is overcomplete, i.e. the system {ηx }x∈X

contains proper subsystems which are complete in Hπ.
For an irreducible representation (π,Hπ) of G that is square-integrable modulo the center Z =

Z (G) (resp. the kernel K = ker(π)), any vector η ∈Hπ satisfies (2) and (4) for H = Z (resp. H = K ).
Another common choice [12, 22, 26, 29] for the index space X = G/H is a symplectic G-space
or a homogeneous Kähler manifold that arises as a phase space in geometric quantization [34].
Subgroups H ≤G defining such a phase space do not need to satisfy (2) for all η ∈Hπ and might
not be contained in the isotropy group of a chosen η.

In [24, 26], a particular focus is on coherent states for which the stabilising subgroup H ≤G is
assumed to be maximal with the property (2), that is, H =G[η], where

G[η] := {
g ∈G :π(g )η= e iφ(g )η

}
(6)

is the stabiliser of η for the G-action in the projective Hilbert space P(Hπ). The associated
coherent states are so-called Perelomov-type coherent states; see Section 4.

Perelomov’s completeness problem [24, 26] concerns the completeness of subsystems arising
from discrete subgroups Γ≤G for which the volume of Γ\X is finite. More explicitly, subsystems
parametrised by an orbit Γ′ := Γ ·o of the base point o := eH ∈ X ,

{ηγ′ }γ′∈Γ′ = {π(σ(γ′))η}γ′∈Γ′ . (7)

Criteria for the completeness of subsystems (7) involving the volume of the coset space Γ\X and
the admissibility constant dπ,η > 0 were posed as a problem in [24, p. 226] and [26, p. 44]. Note
that if H =G[η], then X =G/G[η] depends on η, and so does the volume of Γ\G/G[η].

The classical example of coherent states arises from the Heisenberg group G = H1 and the
Schrödinger representation (π,L2(R)) of H1. For any η ∈ L2(R) \ {0}, the stabiliser G[η] defined
in (6) coincides with the centre Z (H1) of H1, and X = G/G[η]

∼= R2. Therefore, the coherent state
system (3) is parametrised by the classical phase space R2 and the subsystem (7) associated to
Γ ⊂ H1 is parametrised by a lattice Γ′ ⊂ R2. If the square-integrable representation (mod Z ) π
is treated as a projective representation ρ of G/G[η]

∼= R2, then the coherent vectors (3) and the
subsystem (7) arise as orbits of R2 and Γ′, respectively. In particular, a subsystem {π(σ(γ′))η}γ′∈Γ′
is complete in L2(R) if, and only if, η is a cyclic vector for ρ|Γ′ , i.e. the linear span of ρ(Γ′)η is
dense in L2(R). This shows that Perelomov’s completeness problem for the Heisenberg group is
equivalent to determining whether a vector is cyclic for the restriction ρ|Γ′ . If η is the Gaussian,
the cyclicity of η has been completely characterised in [2, 23] (see also [21]) in terms of the co-
volume or density of the lattice. The necessity of these density conditions have been shown
to hold for arbitrary vectors and in arbitrary dimensions [28], but a density condition alone
is not sufficient for describing the cyclicity of the Gaussian in higher-dimensions [7, 27]. The
criteria [2,23,28] coincide with the density conditions characterising the cyclicity of the restricted
projective representations as obainted in, e.g. [3, 30].

In other settings than the Heisenberg group, the stabilisers G[η] defined in (6) do not need to
be normal subgroups and could depend crucially on the vector η ∈ Hπ \ {0}. For example, this
occurs for the holomorphic discrete series π of G = PSL(2,R), where G[η] = PSO(2) for a class of
rotation-invariant vectors η. Hence, the coherent vectors (3) do not arise as orbits of a (projective)
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representation of G/G[η] and the subsystems (7) are not parametrised by an associated discrete
subgroup. Perelomov’s problem for the highest weight vector has been studied for this setting
in [9, 10, 25], and the criteria for the cyclicity of π|Γ are quite different from the completeness of
coherent state subsystems; see [31, Section 9.1] for an overview.

Of particular interest are representations and vectors that support a system of coherent states
based on an index manifold X =G/H with additional properties, such as a symplectic [16, 17] or
complex structure [13,18]. For nilpotent Lie groups, another common choice (cf. [26, Section 10])
is the manifold X to be the corresponding coadjoint orbit Oπ of the representationπ, which forms
the classical phase space, like in the special case of the Heisenberg group.

The purpose of this note is to combine characterisations of coherent state representations [13,
16,18] and criteria for the cyclicity of restricted representations [3,31] to obtain necessary density
conditions for (variants of) Perelomov’s completeness problem on nilpotent Lie groups.

The first result on the completeness of subsystems concerns π-systems of coherent states
based on the coadjoint orbit Oπ. (cf. Section 2 for the precise definitions.)

Theorem 1. Let G be a connected, simply connected nilpotent Lie group and let Γ ≤ G be a
discrete, co-compact subgroup. Suppose (π,Hπ) is an irreducible representation of G that admits
an admissible vector η ∈ Hπ \ {0} defining a π-system of coherent states based on a homogeneous
G-space X =G/H ∼=Oπ, with admissibility constant dπ,η > 0. Then

(i) H = {
g ∈G :π(g ) ∈C · IHπ

}
;

(ii) If {π(σ(γ′))η}γ′∈Γ·o is complete in Hπ, then covol(p(Γ))dπ,η ≤ 1.

(The value covol(p(Γ))dπ,η is independent of the normalisation of G-invariant measure on X .)

Theorem 1 considers π-systems of coherent states parametrised by the canonical phase space
Oπ (cf. [26, Section 10]), and provides a necessary condition for the completeness of associated
subsystems. The representations satisfying the hypothesis of Theorem 1 are called coherent
state representations in [16], and are characterised as those being an irreducible representation
whose associated coadjoint orbit is a linear variety. The considered representations are therefore
essentially square-integrable, like in the special case of the Heisenberg group.

The second result concerns π-systems of coherent states associated to vectors yielding a
symplectic projective orbit (cf. Section 4 for the precise definitions.)

Theorem 2. Let G be a connected, simply connected nilpotent Lie group and let Γ ≤ G be a
discrete, co-compact subgroup. Suppose (π,Hπ) is an irreducible representation of G that admits
an admissible vector η ∈ Hπ \ {0} yielding a symplectic orbit and defines a π-system of coherent
states based on X =G/G[η], with admissibility constant dπ,η > 0. Then

(i) G[η] =
{

g ∈G :π(g ) ∈C · IHπ

}
;

(ii) If {π(σ(γ′))η}γ′∈Γ·o is complete in Hπ, then covol(p(Γ))dπ,η ≤ 1.

In contrast to Theorem 1, the index manifold X = G/G[η] in Theorem 2 is selected via the
maximal subgroup (6) stabilising the state determined by η ∈Hπ\{0}. The vectors η ∈Hπ yielding
a symplectic orbit play a distinguished role in geometric quantization [12,22]. Theorem 2 applies,
in particular, to smooth vectors of a square-integrable representation (see Proposition 10) and to
so-called highest weight vectors (see Remark 12).

The proofs of Theorem 1 and Theorem 2 are relatively simple and short, but they hinge on
a combination of several non-trivial statements on coherent state representations [13, 16, 18]
and density conditions for restricted discrete series [3, 31]. More explicitly, exploiting results
of [13,16,18], it will be shown that the completeness of coherent state subsystems is equivalent to
the admissible vector being a cyclic vector for a restricted projective representation; the necessary
density conditions then being a direct consequence of [31].
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Notation

For a complex vector space H , the notation P(H ) will be used for its projective space, i.e. the
space of all one-dimensional subspaces. The subspace or ray generated by η ∈ H \ {0} will be
denoted by [η] := Cη. Henceforth, unless stated otherwise, G is a connected, simply connected
nilpotent Lie group with exponential map exp : g→ G . Haar measure on G is denoted by µG . If
Λ≤G is a discrete subgroup, then the co-volume is defined as covol(Λ) :=µG/Λ(G/Λ), whereµG/Λ

denotes G-invariant Radon measure on G/Λ.

2. Coherent state representations of nilpotent Lie groups

This section provides preliminaries on irreducible representations of nilpotent Lie groups and
associated coherent states. References for these topics are the books [6] and [1, 26].

2.1. Coadjoint orbits

Let g∗ denote the dual vector space of g. The coadjoint representation Ad∗ : G → GL(g∗) is
defined by Ad∗(g )` = ` ◦Ad(g )−1 for g ∈ G and ` ∈ g∗. The stabiliser of ` ∈ g∗ is the connected
closed subgroup G(`) = {g ∈ G : Ad∗(g )` = `}, its Lie algebra is the annihilator subalgebra
g(`) = {X ∈ g : `([Y , X ]) = 0, ∀ Y ∈ g}.

For ` ∈ g∗, its coadjoint orbit is denoted by O` := Ad∗(G)` and endowed with the relative
topology from g∗. The orbit O` is homeomorphic to G/G(`); in notation: O`

∼=G/G(`).

2.2. Irreducible representations

A Lie subalgebra p of g is subordinated to ` ∈ g∗ if `(X ) = 0 for every X ∈ [p,p]. If p is subordinate to
`, then the map χ` : exp(p) → T, χ`

(
exp(X )

) = e2πi`(X ) defines a unitary character of P = exp(p).
The associated induced representation of G is denoted by π` =π(`,p) = indG

P

(
χ`

)
.

For every π in the unitary dual Ĝ of G , there exists ` ∈ g∗ and a subalgebra p⊂ g, subordinate
to `, such that π is unitarily equivalent to π` = π(`,p). A representation π` = π(`,p), with p
subordinate to ` ∈ g∗, is irreducible if, and only if, p is a maximal subalgebra subordinated to
` ∈ g∗ satisfying dim(p) = dim(g)−dim(O`)/2, a so-called (real) polarisation.

Two irreducible induced representations indG
exp(p)(χ`) and indG

exp(p′)(χ`′ ) are unitarily equiva-
lent if and only if the linear functionals `,`′ ∈ g∗ belong to the same coadjoint orbit. The orbit
associated to the equivalence class π ∈ Ĝ will also be denoted by Oπ.

2.3. Moment set

Let (π,Hπ) be an irreducible unitary representation of G . Denote by H ∞
π the space of smooth

vectors for π, i.e. the space of η ∈Hπ for which g 7→π(g )η is smooth.
The derived representation dπ : g→ L(H ∞

π ) is defined by

dπ(X )η= d

dt

∣∣∣
t=0

π(exp(t X ))η, X ∈ g, η ∈H ∞
π . (8)

It can be extended complex linearly to a representation of the complexification gC of g.
The moment map of π is the mapping Jπ : H ∞

π → g∗ defined by

Jπ(η)(X ) = 1

i

〈dπ(X )η,η〉
〈η,η〉 , X ∈ g, η ∈H ∞

π . (9)

Note that the right-hand side of (9) only depends on the ray [η] generated by η ∈H ∞
π \ {0}.



Jordy Timo van Velthoven 803

The moment map Jπ is equivariant with respect to the canonical G-actions on H ∞
π and g∗,

i.e. Jπ(π(g )η)(X ) = (Ad(g )∗ Jπ(η))(X ) for g ∈ G , X ∈ g and η ∈ H ∞
π . In particular, Jπ(G ·η) is the

coadjoint orbit O Jπ(η) of Jπ(η) ∈ g∗.
The moment set Iπ of π is the closure Iπ := Jπ(H ∞

π ) in g∗. Its relation to the coadjoint Oπ of
π ∈ Ĝ is

Iπ = conv(Oπ), (10)

where conv denotes the closed convex hull; see [33, Theorem 4.2].

2.4. Coherent state representations

Henceforth, it is assumed that (π,Hπ) is non-trivial. Let η ∈Hπ be a unit vector and let H ≤G be
a closed subgroup such that there exists a unitary character χ : H →T satisfying

π(h)η=χ(h)η, h ∈ H . (11)

Denote X := G/H and let µX be G-invariant Radon measure on X , which is unique up to scalar
multiplication. Fix a Borel cross-section σ : X → G for the quotient map p : G → X . The vector η
is called admissible if ∫

X
|〈η,π(σ(x))η〉|2 dµX (x) <∞. (12)

A pair (η,χ) satisfying (11) and (12) is said to define a π-system of coherent states based on
X =G/H . The condition (12) is independent of the particular choice of section σ.

For a π-system of coherent states, there exists an admissibility constant dπ,η > 0 such that, for
all f ∈Hπ, ∫

X
|〈 f ,π(σ(x))η〉|2 dµX (x) = d−1

π,η‖ f ‖2
Hπ

. (13)

For further properties on square-integrability modulo a subgroup, see, e.g. [17, 19].
An irreducible representation (π,Hπ) is called a coherent state representation if it admits a π-

system of coherent states based on connected, simply connected homogeneous G-space X .1

3. Completeness of coherent state subsystems

This section considers the relation between subsystems of coherent states parametrised by a
simply connected G-space and lattice orbits of an associated projective representation.

3.1. Projective kernel

The kernel and projective kernel of a unitary representation (π,Hπ) of G are defined by

ker(π) = {g ∈G : π(g ) = IHπ } and pker(π) = {g ∈G : π(g ) ∈C · IHπ },

respectively. If (π,Hπ) is non-trivial and irreducible, then pker(π) ≤ G is a connected, closed
normal subgroup, and there exists χπ : pker(π) →T such that π(g ) =χπ(g )IHπ for g ∈ pker(π).

The following observation plays a key role in the sequel. Its proof hinges on [16, Lemma 3.5],
which characterises coherent state representations π in terms of their coadjoint orbit Oπ.

Proposition 3. Let H ≤G be a connected subgroup. Supposeπ admits aπ-system of coherent states
based on G/H. Then H = pker(π). In particular, H ≤G is normal.

1The definition of a coherent state representation used here is the same as in [16,17,19], but differs from the definition
in [13, 14, 18], where the square-integrability assumption (12) is not part of the definition.
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Proof. If π admits a pair (η,χ) satisfying (11) and (12), then π is unitarily equivalent to a
subrepresentation of the induced representation indG

H χ, see, e.g. [16, Proposition 1.2]. Since
H ≤ G is assumed to be connected, it follows by [16, Lemma 3.5] that H = G(`) for any ` ∈ Oπ.
By [4, Theorem 2.1], the projective kernel of an arbitrary irreducible representationπ of G is given
by pker(π) =⋂

`∈Oπ G(`). Therefore, pker(π) =⋂
`∈Oπ G(`) = H . �

The conclusion of Proposition 3 may fail for disconnected subgroups H ≤G whenever π has a
discrete kernel:

Remark 4. Let (π,Hπ) be an irreducible unitary representation of G .

(a) Ifπ is square-integrable modulo K = ker(π), thenπ|K satisfies (11) for the trivial character
χ≡ 1 and any vector η ∈Hπ defines a π-system of coherent states based on G/K .

(b) Ifπ is square-integrable modulo Z = Z (G), thenπ|Z satisfies (11) for the central character
χ ∈ Ẑ and any vector η ∈ Hπ defines a π-system of coherent states based on G/Z .
Moreover, pker(π) = Z (G) by [6, Corollary 4.5.4].

3.2. Necessary density conditions

A uniform subgroup Γ ≤ G is a discrete subgroup such that Γ\G is compact. For a nilpotent Lie
group G , the uniformity of a discrete subgroup Γ≤G is equivalent to Γ being a lattice, i.e. having
finite co-volume; see [6, Corollary 5.4.6].

The following result provides a criterium for cyclicity of restricted (projective) representations
in terms of the lattice co-volume or density (cf. [31, Theorem 7.4]).

Theorem 5 ([31]). Let (π,Hπ) be an irreducible, square-integrable projective unitary representa-
tion of a unimodular group G, with formal dimension dπ > 0. Let Γ≤G be a lattice. If there exists
η ∈Hπ such that π(Γ)η is complete in Hπ, then covol(Γ)dπ ≤ 1.

For a genuine representation π of G that is square-integrable modulo the centre Z (G), a
version of Theorem 5 can also be deduced from [3, Theorem 5]; see also [3, Theorem 3] for a
converse in the setting of nilpotent Lie groups. However, in order to treat a representation π

that is merely square-integrable modulo ker(π) (equivalently, pker(π)), the projective version of
Theorem 5 is particularly convenient for the purposes of the present note.

The following completeness result for coherent state subsystems can simply be obtained by
combining Proposition 3 and Theorem 5.

Theorem 6. Let H ≤G be a connected subgroup. Suppose (π,Hπ) is an irreducible representation
that admits an admissible vector η ∈Hπ defining a π-system of coherent states based on X =G/H,
with admissibility constant dπ,η > 0. Then

(i) H = pker(π);
(ii) If Γ≤G is uniform and {π(σ(γ′))η}γ′∈Γ·o is complete, then covol(p(Γ))dπ,η ≤ 1.

Proof. By Proposition 3, the admissibility ofπ implies that H = pker(π) ≤G is normal. Hence, the
induced mappingπ′ : G/H →U (Hπ), x 7→π(σ(x)) forms an irreducible projective representation
of G/H . Since the measure µX is Haar measure on X =G/H , it follows that π′ is square-integrable
on G/H by the admissibility condition (12). In particular, the constant dπ,η > 0 in (13) coincides
with the (unique) formal dimension dπ′ > 0 of the projective representation (π′,Hπ) normalised
according to the G-invariant measure µX .

Suppose Γ ≤ G is a uniform subgroup. As in the proof of Proposition 3, the admissibility of
π implies that pker(π) = G(`) for any ` ∈ Oπ. A combination of [6, Proposition 5.2.6] and [6,
Theorem 5.1.11] therefore yields that Γ∩ H is a uniform subgroup of H = pker(π). Hence, the
image p(Γ) is a uniform subgroup of G/H by [6, Lemma 5.1.4(a)].

In combination, applying Theorem 5 to (π′,Hπ) and p(Γ) ≤G/H yields the result. �
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Remark 7. The constant dπ,η > 0 coincides with the formal dimension dπ′ > 0 of the projec-
tive representation (π′,Hπ) of X = G/pker(π). In particular, the product covol(p(Γ))dπ′ is inde-
pendent of the choice of G-invariant measure µX : if µ′

X = c ·µX for c > 0, then covol′(p(Γ)) =
c ·covol(p(Γ)) and d ′

π′ = dπ′/c.

Theorem 1 follows directly from Proposition 3 and Theorem 6:

Proof of Theorem 1. By assumption, there exists an admissible η ∈Hπ and associated character
χ : H → T defining a π-system of coherent states based on G/H ∼= Oπ. Since Oπ is simply
connected, it follows that H ⊂ G is connected, see, e.g. [11, Proposition 1.94]. The conclusions
are therefore a direct consequence of Proposition 3 and Theorem 6. �

4. Perelomov-type coherent states

Let (π,Hπ) be an irreducible representation of G . Then π yields an action of G on the projective
spaces P(Hπ) and P(H ∞

π ) by g · [η] = [π(g )η].
A system of Perelomov-type coherent states is a G-orbit in P(Hπ),

G · [η] = {
[π(g )η] : g ∈G

}
.

Let G[η] be the isotropy group of η ∈Hπ \ {0} in the projective space P(Hπ),

G[η] := {
g ∈G : π(g )η ∈Cη}

. (14)

Denote by X =G/G[η] the associated homogeneous space and let σ : X →G be a Borel section for
the quotient map p : G → X . Then a Perelomov-type coherent state system is determined by the
system of vectors,

{ηx }x∈X = {π(σ(x))η}x∈X .

See [24, Section 2] and [26, Chapter 2] for the basic properties of Perelomov-type states.
Let χη : G[η] →T be the unitary character of G[η] such that π(g )η= χη(g )η for all g ∈G[η]. Note

that G[η] is the maximal subgroup satisfying the property (11) for a chosen η.
The following sections consider Perelomov-type coherent states of vectors η ∈ H ∞

π \ {0} with
the property that G/G[η] has a symplectic or complex structure. Such systems are of particular
interest for geometric quantization, see [22] and [26, Section 16].

4.1. Symplectic projective orbits

Following [12, 13], an orbit G · [η] = {[π(g )η] : g ∈G} is called symplectic if [η] ∈ P(H ∞
π ) and G · [η]

is a symplectic submanifold of P(Hπ).
The following simple characterisation of symplectic orbits will be used below, see, e.g. [8,

Theorem 26.8] or [5, Proposition 2.1] for proofs.

Lemma 8 ([8]). Let [η] ∈ P(H ∞
π ) and let Jπ : P(H ∞

π ) → g∗ be the momentum map of π. The orbit
G · [η] is symplectic if, and only if, the stabiliser G[η] is an open subgroup of G(Jπ(η)).

For the purposes of this note, the significance of a symplectic orbit is that its stabiliser
subgroups coincides with the projective kernel, and hence does not depend on the chosen vector.
This is demonstrated by the following proposition.

Proposition 9. Suppose η ∈ H ∞
π \ {0} is such that G · [η] is symplectic. Then G[η] is connected. In

particular, if η is an admissible vector defining a π-system of coherent states based on G/G[η], then
G[η] = pker(π).
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Proof. If G · [η] is symplectic, then G · [η] forms a Hamiltonian G-space, with momentum map
Jπ : G · [η] → g∗ given as in (9), see, e.g. [13, Section 2.5]. Set ` := Jπ([η]). Then, by Lemma 8, the
stabiliser G[η] is an open subgroup of G(`). Since G(`) is connected (cf. Section 2.1), it follows that
G[η] =G(`) is connected. The last assertion follows from Proposition 3. �

The following provides a partial converse to Proposition 9.

Proposition 10. Suppose (π,Hπ) is square-integrable modulo pker(π). Then, for any [η] ∈
P(H ∞

π ), the orbit G · [η] is symplectic and G[η] = pker(π).

Proof. Let η ∈H ∞
π \{0} be fixed. The inclusion pker(π) ⊆G[η] is immediate. Conversely, if g ∈G[η],

then

Jπ([π(g )η]) = 1

i

〈π(g )η,dπ(X )π(g )η〉
〈π(g )η,π(g )η〉 = 1

i

〈η,dπ(X )η〉
〈η,η〉 = Jπ([η]), X ∈ g,

so that by the G-equivariance of Jπ it follows that Ad∗(g )Jπ([η]) = Jπ([η]). This means that
g ∈G(Jπ([η])), and it remains to show that G(Jπ([η])) ⊆ pker(π).

Since π ∈ Ĝ is square-integrable modulo pker(π), it is also square-integrable modulo ker(π),
see, e.g., [4, Corollary 2.1]. It follows therefore by [6, Theorem 4.5.2] and [6, Theorem 3.2.3] that
Oπ is a linear variety of the form Oπ = `+ k⊥ for ` ∈ Oπ, with k being the Lie algebra of pker(π).
In addition, [6, Theorem 3.2.3] yields that g(`) = k for ` ∈ Oπ, so that G(`) = pker(π) for ` ∈ Oπ.
By [33, Theorem 4.2] (see also Equation (10)) it follows, in particular, that

Jπ([η]) ∈ Jπ(P(H ∞
π )) ⊆ Iπ = conv(Oπ) =Oπ,

where Iπ := Jπ(H ∞
π ) denotes the moment set of π. Therefore, G(Jπ([η])) = pker(π).

Lastly, since G[η] = pker(π) =G(Jπ([η])) by the arguments above, the orbit G · [η] is symplectic
by Lemma 8. �

Proof of Theorem 2. If G · [η] is symplectic, then G[η] is connected by Proposition 9. Therefore, if
η determines a π-system of coherent states based on G/G[η], the conclusions of Theorem 2 follow
directly from Theorem 6. �

4.2. Highest weight vectors

In [13,18], an orbit G ·[η] = {[π(g )η] : g ∈G} is called complex if [η] ∈ P(H ∞
π ) and G ·[η] is a complex

submanifold of P(Hπ).
The following lemma characterises complex orbits in terms of a (complex) stabiliser; cf. [13,

Proposition 2.8] and [20, Lemma XV.2.3].

Lemma 11 ([13]). Let s= (g)C. For [η] ∈ P(H ∞
π ), let s[η] = {X ∈ s : dπ(X )η ∈C ·η}.

The following assertions are equivalent:

(i) The orbit G · [η] is complex;
(ii) s[η] +s[η] = s.

A stabiliser s[η] satisfying part (ii) of Lemma 11 is called maximal in [26, Section 2.4], where
it is part of a principle for selecting coherent states that minimise the uncertainty principle.
Such vectors and associated orbits play an important role in Berezin’s quantization, see [26,
Section 16]. In addition, vectors of this type are intimately related to highest weight modules and
representations (cf. [18, 20]) and are also referred to as highest weight vectors.

Remark 12. By [13, Proposition 2.8], any complex orbit is automatically symplectic in the sense
of Section 4.1. Theorem 2 applies therefore to highest weight vectors.
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Remark 13. The significance of a complex orbit G ·[η] is that the quotient manifold G/G[η] admits
a complex structure (cf. [20, Section XV.2]). In turn, for certain (classes of) representations admit-
ting highest weight vectors, the representation space may be realised as a space of holomorphic
functions (see [26, Section 2.4] and [32]); in particular, see [15, Section 5] for complex orbits for
the Heisenberg group. For nilpotent Lie groups, the existence of complex orbits appears to be re-
strictive, i.e. [14, Theorem 1] asserts that the only irreducible representations with a discrete ker-
nel admitting complex orbits are those of Heisenberg groups. In contrast, symplectic orbits do
exist for all groups admitting square-integrable representations by Proposition 10.
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