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Abstract 
 
In this study, we use a defect prediction-based methodology to support maintenance 
decisions for railway infrastructure that are related to surface defects known as squats. 
The performance and cost-effectiveness of possible squat maintenance countermeasures 
are assessed by analysing scenarios for the evolution of detected squats. Thus, 
indicators are identified that can enable an infrastructure manager to determine which 
sections of the track are healthy and which sections require grinding or replacement. To 
support the decision-making process, a fuzzy expert system is developed to determine 
the health condition of the tracks and cluster of squats, to facilitate corrective 
maintenance planning. The benefits of the developed approach are demonstrated by 
considering a section of the Groningen-Assen track of the Dutch railway network. 
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INTRODUCTION 
 

Asset management plays a vital role in railway networks because a major part of 
the budget for railway infrastructure is related to maintenance. A typical railway 
network consists of several assets: tracks, switches, culverts, bridges, tunnels, light 
systems, embankments, yards, heating systems, different types of detectors, track locks, 
boards, signalling systems, power lines, stations, an overhead contact system, level 
crossings and vehicles. All of these assets require different types of maintenance that 
are specific to each asset. In the Netherlands, the railway network encompasses 
approximately 2,800 km of track and 388 stations. The intensive use of the Dutch 
railway network makes efficient track maintenance crucial for the performance of the 
entire railway system. Forty-four percent (the major part) of the maintenance budget is 
related to track maintenance (Zoeteman, 2006). 
 

To achieve a robust railway track maintenance decision system that can be used 
by an infrastructure manager, two primary factors must be considered: (1) stochastic 
variables, such as the tonnage and the evolution rate of defects in time, and (2) the 
distributed characteristics of the track, because infrastructures vary in space. To ensure 
the proper functioning of railway tracks, both the temporal and the spatial 
characteristics of the track need to be considered in maintenance decisions. To achieve 
optimal maintenance, early detection of the defects is essential to reduce the high cost of 
corrective maintenance and the disastrous consequences of rail breaks on the entire 
performance of the railway.  
 

Various defects can affect the tracks. Rail defects can be classified as rail 
corrugations; rolling contact fatigue (RCF) defects, such as squats; shatter cracking; 
vertical splits; head horizontal splits and head wheel burns.  These defects can be 
detected using different methods, such as non-automatic inspection using human 
inspectors, photo/video records, and non-destructive testing (NDT), such as ultrasonic 
and eddy current testing. In this study, we investigate squats, which are surface-initiated 
defects. These squats are detected using an axle box acceleration (ABA) system that 
was developed by our group at the Delft University of Technology in the Netherlands 
(Molodova et al., 2014). After defect detection, countermeasures must be used to 
prevent/correct the effect of the squats. The evolution of the squats depends on the 
dynamic wheel-rail interaction in a nonlinear stochastic system. Thus, the decision-
maker should consider these dynamics in determining which sections of the track are 
healthy and which regions require preventive or corrective maintenance.  

 
In this study, we use different predictive indicators to evaluate the cost-

effectiveness of potential squat maintenance countermeasures. The use of these 
indicators simplifies the analysis for decision-making. Light squats that appear with a 
high density are categorised as A squats. Thus, we define an indicator, which is based on 
a fuzzy c-mean, that creates clusters of A squats. Grinding planning is thus 
recommended for these conceptual track sections with a high density of A squats. For 
more severe squats, we define an indicator that is based on the density of squats. This 
indicator is combined with a predictive model to determine the impact of the squat on the 
health of the track, in particular where the risk of rail break is highest. Therefore, these 
indicators can provide an infrastructure manager with tangible information on the squats 
in the entire infrastructure, which the infrastructure manager can use to predict/decide 
which parts of the track are healthy and which parts require grinding or replacement.  
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BACKGROUND ON SQUATS IN RAILWAY INFRASTRUCTURE 

 
A squat is a type of RCF defect, which was little known in Europe until 

approximately 30 years ago. Squats were identified as a distinct type of failure in the 
1970s. This defect was thus named because it appears as if a heavy gnome has squatted 
on the rail. These squats are most commonly observed on the running band of a straight 
track and for large curves, independent of the type of track (Li et al., 2008). Squats are 
usually associated with one of the following features: corrugation, welds and small 
periodic indentations in the rail running surface (periodic squats). 

 
There are three categories of squats. Figure 1 shows photographs of these three 

classes of squats: light (A squats), moderate (B squats) and severe (C squats). An A 
squat appears as a simple imprint with a black spot. A B squat has a ‘V-shaped’ crack 
with black spots on both sides of the crack. A C squat has cracks with wavelengths 
between 20 to 40 mm and has a big black spot. The squat growth depends on the 
dynamic contact between the wheels and the rails.  

 
All simple defects do not grow into squats. The size of a rail surface defect on a 

Dutch track must exceed a critical size to grow into a squat. For tracks in the 
Netherlands, this critical size ranges from 6–8 mm for visual inspection (Molodova, 
2014). Defects below this threshold are considered to be trivial. In a severe squat with a 
network of surface and subsurface cracks, the maximum depth of the squat is 16 mm, 
and the squat length significantly exceeds the typical size range of squats of 2-6 cm. 
Squats in different infrastructures generally exhibit similar characteristics (Li et al., 
2010). These defects can be detected in straight lines or gentle curves and in locations 
with high driving traction. One of the most challenging aspects of studying squats is that 
they are usually isolated in different parts of the infrastructure.  

 
Our practical experience with squats has shown that squats in an early stage of 

development can be effectively treated using a grinding machine. Once the squat has 
developed cracks, the squat tends to reappear in the same location where it was before 
grinding. Generally, more severe squats tend to evolve faster than squats in the early 
stages of growth. In terms of mechanisms for generating squats, the more loaded is the 
track, the more likely are “seed” squats to develop. Squats on tracks with a higher 
megatonnage per year are also more likely to evolve at a faster rate than those on less 
occupied tracks. In this study, we develop a model to capture these characteristics of 
squats.  

Squat monitoring system 

 
Ultrasonic testing is currently the most extensively employed automatic 

inspection technique for squats. This method can only be used to reliably detect cracks 
with depths above 5–7 mm. Eddy current testing can be used to detect surface cracks at 
depths ranging from 0.1 to 2.5 mm. Surface defects that do not have cracks cannot be 
easily detected. Therefore, ultrasonic testing and eddy current testing are not suitable for 
detecting early-stage squats (Li et al. 2010). Another health monitoring system for 
railway tracks is based on ABA measurements. An ABA system can be used to detect 
defects such as corrugation, squats and poor quality welds. An ABA system offers the 
advantages of having a lower cost than other type of detection methods, being easy to 
maintain and can be implemented onboard in-service operational trains to monitor track 
conditions (Li et al., 2008; Molodova et al., 2014). Other significant advantages that 
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ABA offers over similar measurement systems include the ability to detect defects 
without cracks, the absence of complicated instrumentation and the ability to indicate the 
level of the dynamic contact force.  

 
The parameters that affect the detection of squats when using ABA include the 

train speed, the squat location on the track relative to the sleeper and the track design 
(Molodova et al., 2014). Molodova (2013) investigated the feasibility of detecting early-
stage squats using an ABA prototype and could detect squats by analysing the frequency 
content of the signals. Finite element (FE) modelling showed that the relevant 
frequencies for squats (signature tunes) were 300 Hz and 1060–1160 Hz, with a brief 
maximum high-frequency response of 2000 Hz. However, in practice, the useful 
frequency band for the detection of light squats ranges from 1000-2000 Hz (Molodova et 
al., 2014). 

 
An infrastructure manager could monitor the energy of the ABA signal to detect 

and predict the evolution of squats over time. Thus, we develop an experimental 
correlation between the squat length and the energy of the ABA signal (see Figure 1.d) 
by measuring photographs that were taken during track visits and ABA on-board train 
measurements for different tracks of the Dutch railway. We also develop a simple 
method to convert an ABA energy signal to the level of severity of the squat. In this 
method, the squat location and the severity of the squat are obtained using wavelet 
spectrum analysis and advanced signal processing methods. The evolution of the squats 
depends on the tonnage of the track. We analyse a case study in which approximately six 
months is required for an A squat to evolve into a B squat. This evolution is a stochastic 
process that is determined by different exogenous factors. We also investigate evolution 
scenarios for squats to capture general stochastic characteristics.  
 

Squat growth 

 
The optimum grinding strategy can be determined for a variety of conditions 

using models that predict the growth of surface rail cracks caused by surface defects 
(Hyde and Fletcher, 2010). Understanding the crack evolution process is critical to 
ensure safe and cost-efficient railway operation.  

 
Many factors can affect the growth process of squats. These factors interact with 

each other, making it difficult to model the squat growth evolution process. For 
instance, the growth of seed squats can be spontaneously halted by the wear of the 
commercial trains or by grinding. Late-stage squats with developed cracks are 
frequently too deep to be completely removed by grinding, and squats reappear in the 
same spot after some months. These factors and other factors, such as tonnage, make it 
difficult to predict the stochastic mechanism of squat growth evolution. Photographs 
were taken in the field (every six months from 2007 to 2012) and measured to obtain a 
cloud of data points to derive a relation between the squat length and the month. The 
data show that the larger is the defect, the higher is the rate of growth. The observations 
also reveal that different squats have different rates of growth. We propose three 
different evolution scenarios: (1) slow growth, (2) average growth and (3) fast growth. 
Figure 1.e shows the three evolution scenarios over time for a particular squat.  
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(d)      (e) 

FIGURE 1: Representative photographs of (a) a light squat, (b) a moderate squat 
and (c) a severe squat. (d) Squat length as a function of the energy value of the 

ABA signal and (e) squat evolution scenarios in time (months) 
 

Figure 1.e shows that the squats exhibit a maximum growth of 30 mm in the first 
months. The majority of the squats with lengths ranging from 10 to 30 mm contain no 
cracks or contain only shallow cracks: these squats are classified as A squats. The 
wavelengths (the squat lengths) of squats ranging from 30 to 50 mm grow rapidly and 
cracks develop. The squats in this regime are classified as B squats. The ensuing growth 
is accelerated by the network of cracks that develops beneath the squat. Squats with this 
level of severity are classified as C squats.  

 
The successful removal of squats by grinding requires that the grinding is 

performed when the squats are between 10-30 mm in length, when no cracks exist or 
when the cracks are shallow. The slow growth rate at this stage leaves sufficient time for 
planning and actions; otherwise, the squat may enter the rail break zone, which 
corresponds to squat lengths beyond 60 mm. Theoretical scenarios and piecewise 
functions are developed to capture the primary nonlinearities in the growth evolution of 
the squats. These curves are fit using data that were collected in a specific case study 
over a six-year period; however, these curves can be adapted to other types of tracks. The 
developed models can be employed to predict squat evolution with time to formulate 
robust maintenance strategies, which include stochastic effects for different scenarios. In 
a min-max robust strategy, the importance for the worst-case scenario (rapid squat 
growth) is weighted more strongly than other scenarios, whereas combining different 
models would result in a less conservative and more realistic and generic robust 
maintenance strategy. 
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MAINTENANCE ACTIONS 

 
Most squats initiate from rail top defects, such as indentations and corrugations. 

No effective measures are available to prevent the appearance of such squats, and the 
most practical way to treat squats is to remove them (Li et al., 2010). Once squats are 
detected, two maintenance actions can be considered: grinding and track replacement. To 
facilitate maintenance planning, fixed-track partitioning is used to organise the desired 
maintenance actions and obtain performance indicators for each partition.  

 
Each 200-m track section is generally characterised in terms of the particular 

features of the track infrastructure (Andrade and Teixeira, 2011). The potential 
deterioration rates of different track sections are determined by partitioning the track 
using the associated radii and stations. Curves with radii greater than 1,800 m are 
considered to be straight tracks. Figure 4.a is a schematic of the fixed partitioning 
scheme. Stations can serve as suitable references in partitioning; however, the 
remainder of the track should be partitioned such that the infrastructure manager can 
interpret the results easily. In this study, five generic partitions are considered, just to 
facilitate the explanation of the example. In a real-life implementation we suggest the 
partitioning design to be according similar characteristics of tracks and radii. In the 
figure, Hi(t) indicates the set of key performance indicators for monitoring the health of 
the partition i of the track, which is defined as the track between xi and xi+1 km of the 
track. 
 

Grinding 

A rail-grinding program is a critical component of profile optimisation in any rail 
maintenance program (Magel and Kalousek, 2002). Dutch railways typically have a 
cyclic grinding regime. Research studies have shown that rail grinding plays an 
important role in the reducing the effects of rail degradation, including the prevention of 
derailments. The majority of RCF cracks are removed by grinding. Therefore, early 
detection of RCF rail defects is extremely important to prevent derailment. When squats 
are detected at an early stage, and the degradation is minor, tracks can be easily treated 
by grinding a thin layer from the surface. For A squats (light squats) and simple defects, 
grinding the rail top can be an effective corrective measure (Li et al., 2008). The most 
important benefit of grinding is that the maintenance and life cycle cost of the tracks are 
reduced.  

 
Grinding severe squats generally results in the reappearance of squats at their 

original location, even if all of the visible effects at the surface are removed by grinding. 
Figure 2.a shows the squat evolution before and after grinding. Note that grinding is not 
efficient for cracks deeper than 5–7 mm. In the figure, A squats are located in the 
effective zone for grinding, such that these squats have a zero length after grinding (i.e., 
these squats will disappear from the model). Squats that are near moderate levels of 
severity are located in the ineffective zone for grinding. After grinding, these squats will 
not disappear, and their rate of evolution will be determined by the specific scenario, as 
shown in Figure 1.e. Grinding severe squats delays rail replacement but may accelerate 
squat evolution, because the cracks beneath the squats are not treated.  
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(a) 

        
(b)       (c) 

FIGURE 2: (a) Comparison of squat growth before and after grinding. (b) Squat 
evolution between welds (before and after rail replacement) and (c) squat evolution 
of welds after rail replacement: red circle shows the starting point of the growth of 

the defect, which depends on the quality of the weld 
 

 
Rail replacement  

 
Replacing rails with lengths greater than 110 m is known as rail replacement. 

Rail replacement may be employed for severe squats (C squats), especially at switches 
and crossings. Rail replacement is based on several factors. Rails are frequently 
replaced based on their life, tonnage, wear limit and fatigue. Weather conditions are 
also an important factor. Determining the optimal rail replacement interval is a critical 
issue for rail industry players (infrastructure managers, contractors and operators).  

 
Rail replacement is only performed when absolutely necessary because it has a 

high cost and affects the performance of the entire system. Welds are used to join rail 
sections. The use of different materials increases the likelihood of weld deterioration. 
Welds account for approximately 25.5% of the total number of rail breaks (Lewis and 
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Olofsson, 2009). There are two primary types of welding: (1) alumino-thermic welding 
and (2) flash-butt welding. Alumino-thermic welding is generally used to repair rail 
breaks and involves the generation of a superheated liquid metal by an exothermic 
reaction between iron oxide and aluminium powders. Flash-butt welding is used for re-
railing and renewals. In this method, two rail sections are brought together, and 
resistance heating is employed to soften and melt the rail edges (arcs form across the 
interface, resulting in flashing). Manual metal arc welding is used for rail repair: an arc 
is struck between the rail and a consumable electrode, thereby depositing molten metal 
onto the rail (Lewis and Olofsson, 2009).  

 
Figure 2.b and 2.c shows squat evolution before and after rail replacement. 

Figure 2.b shows the response between welds, showing that all of the defects prior to 
replacement (independent of the defect size) disappear after replacement. As shown in 
Figure 2.c, the model predicts that squats will be initiated at the weld. The exact 
moment at which this deterioration occurs depends on the quality of the weld. Our 
prediction horizon obviates making an estimate of this variable (which is shown as a red 
circle in Figure 2.c), which would however become relevant for a longer prediction 
horizon, which we will consider in a future study. 
 
 
MAINTENANCE DECISION SUPPORT 

 
In this study, we develop a model to reduce squat maintenance costs and prevent 

hazards in railway networks. Squats are detected by ABA measurement, which is a 
more reliable method than other detection methods for surface defects. After collecting 
the detection data for each track partition, the evolution of the squats are used to 
generate different possible scenarios. Figure 3 is a flowchart of the squat maintenance 
decision support methodology. Infrastructure managers can use the defined indicators to 
locate defects and monitor defect growth on the track. 

 
 Indicators based on three different scenarios are defined to assess the 

maintenance action decision that should be taken depending on the squat evolution 
behaviour. These indicators are used to determine whether an unhealthy rail should be 
repaired (using corrective grinding) or replaced. A nonlinear regression analysis based 
on the least squares method is used to determine the relation between the squat length of 
a squat and the time. The following functional is then minimised: 

 

2

1

p

i
i

S r


  

where the   (errors) can be defined as 

 ,i i ir y f x    

where p is the number of data points (x1,y1), (x2,y2),…, (xp,yp), and y f (x,β)  is a 

nonlinear piecewise affine model with the set of parameters 1 2 n β ( β ,  β , ,  β )  , 

which comprises the rates of growth and transitions. The data obtained from Figure 1.e 
is used to generate three different time predictions. In this study, only detected squats 
are analysed; in future studies, this model will be further developed to create scenarios 
generation of new seed squats over time. 





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FIGURE 3: Flowchart of developed methodology 

 
   

Squat number 
 

Squat enumeration is a tool that an infrastructure manager can use to monitor the 
number of squats that are evolving in subsequent stages with time in each section i. The 

indicator , ( )d
s iN t  represents the number of A, B and C squats and the number of squats 

with potential risk (RC), i.e., the squats that are longer than 60 mm in length, that can be 
obtained at time t in section i using prediction scenario s. This key performance 
indicator is defined as 
 

 1

, ,
,

( ) ( , )
i i

d d
s i s i

x x x

N t x t


   

where  A,BC,RCd , t is the time, and  , ,d
s i x t  is unity if the defect type d exists at 

position x, partition i and growth scenario s and is zero otherwise.  
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Squat density  
 

The fourth indicator is the density of squats A, B and C. A window is defined 
for the position coordinates (in this study, the window is 50 m in length) to inform 
infrastructure managers of the number of squats per m that are on the tracks. A high 
density of B and C squats indicates a high potential risk to track safety, whereas a high 
density of A squats indicates that the area is suitable for grinding operations. The squat 
density indicator for scenario s at section i is defined as 

 

   
 

   
 1 1

, ,
,

,
,

,, , ,
i i i i

A A BC
s

BC
s i s ii s i

x x x x x x

y t t yd d xt tx
  

    

where t is the time,  , ,s i
Ad x t  is the density of A squats, and  , ,B

s i
Cd x t  is the density of 

B and C squats with respect to a window Xw that is defined around the position x.  
 
 
Fuzzy global indicator  

 
We assess the general track condition for each section by developing a fuzzy 

system that combines all of the developed key performance indicators. This fuzzy set of 
rules yields a score between zero and two to indicate the extent of deterioration of the 
track due to squats. Thus, corrective grinding and replacement decisions can be based 
on this global indicator. The rules are defined below. 

 

   , ,1 , 2 3 , 4( ) ( )A RC
s i s i

A BC
s i s iIf is A and y t isN t N tA and is A and y t is A then U is D  

 
where , ( )A

s iN t  is the indicator for the number of A squats,  ,
A
s iy t  is the density of A 

squats, , ( )RC
s iN t is the indicator for the number of potential risk points, and  ,

BC
s iy t  is the 

density of B and C squats. A1, A2, A3, A4 and C are the membership functions for the 
linguistic terms Very High (VH), High (H), Medium (M), Low (L) and Very Low (VL). 
VH or H indicate that an indicator is high, which corresponds to an unacceptable track 
condition; L and VL indicate that the indicator is low, which corresponds to a healthy 
track condition, and M is an intermediate condition between the high and low indicator 
values. The variable U denotes the condition of the health of the track, which takes the 
value Unhealthy when there are many severe squats (because many squats trigger track 
replacement), Average (which designates a mixture of replacement and grinding zones) 
and Healthy when the track is free of severe squats. The levels can be tuned by 
infrastructure managers to adjust to their needs (we just propose an example). 

 
The linguistic terms of the fuzzy system are defined in Table 1. The fuzzy model is 

implemented using the Mamdani algorithm. The inputs and outputs are fuzzified with 
Gaussian membership functions. A total of 28 fuzzy if-then rules for assessing the 
health condition are generated. The crisp values in the last step of the inference system 
are determined using the centre of gravity method in the defuzzification process.  

 
 
 
 
 


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TABLE 1: Definition of fuzzy and crisp ratings 

Factors 
Linguistic 

term 
Crisp 
rating 

Fuzzy ratings 
Universe of 

discourse (X) 

,
A
s iN  

Very high (VH) 5 3.5 < yA ≤5 

A1   (1,5) 
High (H) 4 3 < yA ≤5 

Medium (M) 3 2 < yA ≤4 
Low (L) 2 1 < yA ≤3 

Very low (VL) 1 1 < yA ≤2.5 

,
A
s iy  

Very high (VH) 5 3.5 < dA ≤ 5 

A2   (1,5) 
High (H) 4 3 < dA ≤ 5 

Medium (M) 3 2 < dA ≤ 4 
Low (L) 2 1 < dA ≤3 

Very low (VL) 1 1 < dA ≤2.5 

,
RC
s iN  

Very high (VH) 5 3.5 < yC ≤5 

 A3    (1,5) 

High (H) 4 3 < yC ≤5 
Medium (M) 3 2 < yC ≤4 

Low (L) 2 1 < yC ≤3 
Very low (VL) 1 1 < yC ≤2.5 

,
BC
s iy  

Very high (VH) 5 3.5 < dBC ≤5 

 A4   (1,5) 
High (H) 4 3 < dBC ≤5 

Medium (M) 3 2 < dBC ≤4 
Low (L) 2 1 < dBC ≤3 

Very low (VL) 1 1 < dBC ≤2.5 

U 
Unhealthy 2 1.5 < U ≤2 

 D   [0,2] Average 1 0.5 < U ≤ 1.5 
Healthy 0 0 ≤ U ≤ 0.5 

 
MEASUREMENTS AND SIMULATION RESULTS 
 

In this section, we present the model predictions for squats on the entire left rail 
track between Groningen and Assen, which was measured beginning 2010. In this 
study, the track between Groningen and Assen is partitioned into five parts as shown in 
Figure 4.a. Table 2.a shows the number of predicted squats versus the month (T) for 
different growth scenarios, which are obtained based on the piecewise affine functions 
that are determined using equation (1), as shown in Figure 1.e. It is assumed that no 
maintenance is performed. Table 2.a shows the number of C squats for three predicted 
scenarios in the rail break risk zone (RC). Table 2.b shows the results of the fuzzy 
expert system for assessing the global condition of the track after 24 months when no 
track maintenance is performed. 

 

TABLE 2.a : Predicted number of A, B and C squats and rail break risk squats 
(RC) over the entire track in the absence of maintenance 

Evolution 
scenarios 

Squat 
type 

T=0 T=12 T=24 T=36 T=48 T=60 

Slow 
growth 

A 30 13 5 0 0 0 
B 19 28 29 29 21 10 
C 2 5 12 17 25 36 

RC 0 0 2 5 12 18 

Average 
growth 

A 30 9 2 0 0 0 
B 19 31 28 22 8 2 
C 2 6 16 24 38 44 

RC 0 1 5 12 19 32 

Fast 
growth 

A 30 8 0 0 0 0 
B 19 30 29 14 3 0 
C 2 8 17 32 43 46 

RC 0 1 5 16 29 41 
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TABLE 2.b: Definition of fuzzy global indicator after 12 and 24 months in the 
absence of maintenance 

Evolution 
scenarios 

Partition 
i 

At the moment of the 
measurement 

Fuzzy indicator 
after 12 months 

Fuzzy indicator 
after 24 months 

Slow 
growth 

1 1.39/2 Average 1.51/2 Unhealthy 1.59/2 Unhealthy 
2 0.86/2 Average 0.98/2 Average 0.99/2 Average 
3 0.95/2 Average 1.00/2 Average 1.10/2 Average 
4 0.87/2 Average 0.96/2 Average 1.00/2 Average 
5 1.44/2 Average 1.52/2 Unhealthy 1.60/2 Unhealthy 

Average 
growth 

1 1.39/2 Average 1.63/2 Unhealthy 1.70/2 Unhealthy 
2 0.86/2 Average 0.98/2 Average 0.99/2 Average 
3 0.95/2 Average 1.10/2 Average 1.20/2 Average 
4 0.87/2 Average 1.20/2 Average 1.30/2 Average 
5 1.44/2 Average 1.59/2 Unhealthy 1.60/2 Unhealthy 

Fast 
growth 

1 1.39/2 Average 1.64/2 Unhealthy 1.70/2 Unhealthy 
2 0.86/2 Average 1.18/2 Average 1.20/5 Average 
3 0.95/2 Average 1.15/2 Average 1.25/2 Average 
4 0.87/2 Average 1.35/2 Average 1.40/2 Average 
5 1.44/2 Average 1.70/2 Unhealthy 1.80/2 Unhealthy 

 
 
Table 3.a shows the calculated costs for different maintenance strategies for each 

segment of the track. The no action option has a cost of zero Euros with the 
consequences that are listed in Tables 2.a and 2.b. The rail renewal cost and grinding 
cost per m are 100 Euros and three Euros, respectively. The cost for one rail 
replacement of six metres is 5000 Euros. Complete renewal is not a realistic strategy 
because squats are located everywhere, so this cost is shown in Table 3.a just as a 
higher bound of the maintenance costs. The disadvantage of cyclic grinding is that 
severe squats are not removed, and grinding healthy pieces of track is not efficient in 
the long-term. A conditioned-based maintenance strategy can substantially reduce all of 
these costs in terms of performance. This result is obtained because the relative 
importance of different defects is considered in this type of maintenance, and a mixed 
strategy that combines grinding and replacement can be performed locally without 
grinding tracks that are healthy and replacing tracks when necessary. Table 3.a shows 
an estimation of sporadic rail replacement costs, considering replacing pieces of tracks 
where squats B and C were detected, for left and right tracks.   

 
To further exploit ABA system information, a condition-based methodology can 

be used to evaluate the best alternative for squat maintenance. Corrective grinding, 
unlike cyclic grinding, enables infrastructure managers to reduce maintenance costs and 
resources. Given the large number of A squats in the early stages of squat development, 
fuzzy c-mean clustering is used to group squats to facilitate the grinding operation. The 
clustering method groups squats that are sufficiently close to each other into the same 
cluster but groups squats that are sufficiently separated from each other into different 
clusters. Details on fuzzy C-means can be found in Babuška (1998). In this paper, we 
use the squats with at least 75% of membership degree to a given cluster. Those squats 
define the kilometres of track with a high number of defects near to each other; thus, 
good candidates kilometers to be grinded. 

Table 3.b shows the number of A squats for corrective grinding for different 
numbers of clusters and the positions of the cluster centre. The estimated costs of this 
strategy are included in the last column of Table 3.a. The negative position values in 
Table 3.b are related to the travel direction: for track B of Groningen-Assen, the starting 
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location is in Groningen and the remaining locations have negative position values. The 
developed model shows that the densities of the B and C squats should be considered to 
determine if the track should be replaced. The highlighted zones in Figure 4.b for the 
entire track (the left and right rails) correspond to the locations that should be replaced 
over the next 12 months. The relative importance of the indicators is considered in the 
developed model to determine the most inexpensive decision that combines sporadic 
rail replacement and grinding. 

 
TABLE 3.a: Maintenance costs of different decisions 

 

Cost 
do nothing 
decision 

(1000 euro) 

Complete 
rail renewal 

decision 
(1000 euro) 

Full cyclic 
grinding 
decision 

(1000 euro) 

Sporadic rail 
replacement, 

left rail 
(1000 euro) 

Sporadic rail 
replacement, 

right rail 
(1000 euro) 

Corrective 
grinding 

(1000 euro) 

Partition 
1 

0 500000 15.0 423.33 128.78 4.04 

Partition 
2 

0 500000 15.0 55.22 110.45 2.12 

Partition 
3 

0 500000 15.0 202.41 55.22 2.60 

Partition 
4 

0 500000 15.0 73.63 36.73 1.65 

Partition 
5 

0 251709.2 7.56 533.61 331.28 1.80 

 
TABLE 3.b: Three different fuzzy partitions for corrective grinding, t=0 

No. of 
clusters 

Centers of 
clusters 

(km) 

No. of 
treated 
squat A 

Grinded interval  
(km) 

No. of 
squat A 

(not 
treated) 

Intervals not grinded 
using fuzzy 

clustering  (km) 

2 
-52.4499 37 -53.6510 to -50.1950 

18 
-61.3789 to -57.7783
-72.5170 to -70.8834 -66.7307 17 -70.8835 to -62.6731 

3 
-51.7411 37 -53.6510 to -50.1950 

11 
-67.1838 to -63.6713
-58.3440 to -57.7783 

-60.9880 12 -63.1587to -58.7025 
-70.4759 12 -72.5171 to -67.9765 

4 

-51.6954 37 -53.6510 to -50.1950 

2 -67.9764 to -67.1838 
-59.2416 13 -61.3789 to -57.7783 
-63.8745 9 -64.9760 to -62.6731 
-70.8966  11 -72.5171 to -68.9199 

5 

-51.6919 34 -53.1677 to -50.1950 

4 
-62.6730 to -60.6123
-53.6510 to -53.5224 

 

-59.1877 12 -60.6123 to -57.7783 
-63.5923 9 -64.9760 to -62.6731 
-68.0267 3 -68.9199  to -67.1838 
-71.3246 10 -72.5471 to -69.9791 
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(a)       (b) 

FIGURE 4: (a) Schematic of track partitioning between two stations, Groningen 
and Assen, (i is the counter for different partitions), (b) Decision zones for track 

replacement for the left rail and the right rail 
 
 

CONCLUSION 
 

In this study, we develop a methodology for modelling the squat maintenance 
process in railway infrastructure. This methodology is used to formulate a fuzzy-based 
methodology for making maintenance decisions. Six indicators based on the prediction 
of squat evolution are defined. These maintenance indicators can enable an 
infrastructure manager to easily manipulate information on squats. For squats that are 
detected at an early stage of growth (A squats), corrective grinding can be planned over 
cluster of squats. For dangerous squats on a track, an accurate estimate of the positions 
for rail replacement can enable the problem to be resolved, thereby averting dangerous 
consequences, such as rail breakage and derailment. In future studies, we will develop a 
multi-objective optimisation framework to analytically reduce life cycle costs and 
develop key performance indicators for different partners (the infrastructure manager, 
the operator and the contractor).   
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