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Abstract—A high drop-out rate is present during current-day
air traffic controller (ATCo) training, because the required
expertise level is not reached. The determination of the expertise
level of ATCo students is currently performed using subjective
assessments at a late stage in the training by means of high-
fidelity simulator sessions. It is desired to objectively measure
expertise earlier and more frequently in training to monitor the
progress of the student. However, it is currently unknown which
objective measures might describe the expertise level of an ATCo.
This paper presents a method that identifies a set of objective
measures that can classify an ATCo’s expertise level using a
genetic algorithm and hierarchical agglomerative clustering. A
large set of possible objective measures and a dataset containing
data from 10 ATCos (intermediate and pro level) is used. The
method found a set of 8 measures that can cluster the 10 ATCo’s
in the two expertise groups very accurately (97,5% accuracy).
The genetic algorithm showed a preference for measures
that have a distinction in the results between the expertise
groups. However, not all selected measures show a difference
between the expertise groups, resulting in signs of overfitting.
Furthermore, these measures only provided limited feedback for
the individual ATCos. Clustering the results of the 10 ATCo’s
gave valuable information about the overall expertise level of
an ATCo, as compared to the average intermediate- or pro-ATCo.

Index Terms—Air traffic control, proficiency, expertise level,
machine learning, genetic algorithm, hierarchical agglomerative
clustering

I. INTRODUCTION

The selection of candidates for the air traffic controller
(ATCo) training is strict, because of the high demanding
nature of the job. Due to the highly complex and dynamic
environment, ATCos need to process large amounts of
dynamically changing information while maintaining a good
balance between safety and efficiency within environmental
constraints defined to the procedures in his or her sector [1].
These candidates need to acquire the required competences
during the limited training period (usually two or three years).
Unfortunately, even after a strict selection, a high drop-out
rate is present during the training period, because the required
expertise level is not reached or cannot be reached within
the training period [2]. This is undesirable, because a large

amount of effort has been put into these students.

The determination of the level of expertise is currently
done by using subjective assessments. The instructor assesses
the level of the students based on his or her own experience.
These subjective assessments are performed at a late stage
in the training by means of high-fidelity simulator sessions.
It is more preferable to objectively measure expertise earlier
and more frequently in training, to continuously monitor the
progress of the student. However, it is currently unknown
which objective measures might describe the expertise level of
an ATCo. The determination of this combination of objective
measures is researched in this paper.

To find a good combination of objective measures, a
genetic algorithm is used with machine learning to determine
the performance of this combination. Studies that use machine
learning in order to determine experience level have already
been performed in other fields, such as speaking proficiency
levels [3], billiard players [4] and surgeons [5]. However, no
prior research has been conducted using machine learning
to find a set of objective measures that could determine the
expertise level of ATCos.

The research objective of this thesis is to identify a
set of objective measures that can classify an air traffic
controller’s level of control expertise by using machine
learning techniques.

In this research a large set of objective measures is
created from prior research. The dataset used to test the set of
measures consists of data from four air traffic scenarios solved
by ten different ATCos. Four participants were retired ATCos
and six participants completed a multiple day extensive
ATC-course and/or had worked as a researcher in the ATC
field [6]. To search in a large set of measures a genetic
algorithm will be used to find the best subset. To determine
the performance of the subset of measures the ATCo data
are clustered using a hierarchical clustering algorithm. The
accuracy and stability of the clusters can be calculated from
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the results to determine a single performance value. The
genetic algorithm uses this performance value to continue its
search for the best set of measures.

In the ideal case this best set of measures describes the
difference between novice-, intermediate- and pro-ATCos.
ATCo students could be objectively assessed for this best set of
measures during training. By doing this on a frequent base the
progress towards pro-ATCo behavior can be monitored. This
could reveal the competences that are still underdeveloped,
so that more attention and guidance can be given to these
competences during training [7]. Eventually, this could lead
to a more effective effort and a lower the amount of drop-outs.

This paper starts with the theoretical motivation (Section
II) in which the ATCo competences, ATC structural elements
and corresponding metrics are discussed. Section III provides
a description of the ATCo data and how this data are obtained.
Section IV describes the methodology used to find the set
of measures that best describes the different ATCo expertise
groups. This section includes the selected measures from
the theoretical motivation, the transformation of the dataset
and how the best set is obtained from the selected measures
using the processed dataset. The results from the genetic
algorithm and clustering algorithm are shown in Section V.
Section VI describes the method and results of a sensitivity
analysis. A sensitivity analysis reveals the robustness of the
best set of measures and the clusters, and reveals which
measures and ATCos contribute the most to the accuracy of
the clusters. A discussion of the results and the sensitivity
analysis is discussed in Section VII. Finally, the conclusion
of this research is given in Section VIII.

II. THEORETICAL MOTIVATION

The main goal of an ATCo is to ensure a safe, orderly
and expeditious flow of air traffic in his or her sector [8].
The expertise level is determined by a set of ATC related
competences. High requirements are set for these competences
because of the cognitive complexity for the ATCo. This cogni-
tive complexity cannot be seen separately from the operational
situation [1]. Therefore, both the ATCo competences and
the ATC structural elements in the operational situation are
discussed.

A. Competences and Structural Elements

Schuver-van Blanken et al. developed the ATCo Cognitive
Process & Operational Situation (ACoPOS) model which
provides a competence-based training model with elements
of the operational air traffic control (ATC) situation (Figure
1) [1]. This model also shows the relationship between the
ATCo competences and ATC elements.

The blocks situation assessment, problem solving &
decision making, and attention management & workload
management form a representation of the cognitive processes

Perception of 
information

Attention management
&

Workload management

Interpretation 
of current 
situation

Anticipation
of future
situation

Situation Assessment

Solving 
conflicts

Planning
Taking 

decisions

Problem-solving & decision-making

Actions

R/T Coordination

Teamwork
Use of 

systems

Air traffic controllerOperational situation

Systems

Tactical 
situation

TeamStrategic 
situation

Procedures

Airspace & 
sector

Airport & 
runways

Traffic 
volume & 

density

Flight plans

Other 
controllers

Adjacent 
sectors

Pilots

Airport 
actors

Supervisors

Positions & 
clearances

Traffic mix & 
performance

Traffic flows

Weather 
condition

Emergency 
situation

Procedures

Systems

(safety, efficiency & environment)

Fig. 1: The ATCo Cognitive Process & Operational Situation
model (ACoPOS model) (adapted from Schuver-van Blanken
et al. [1]).

of the ATCos. The competences present in the cognitive
processes can only be assessed subjectively. However, the
result of the cognitive process is reflected in the performed
actions, which can be objectively assessed [8].

In the Action block, Radio telephony (R/T) focuses on
the interaction between the ATCo and the aircraft, while the
other competences focus on interaction between ATCos or
interaction between the ATCo and the equipment [7].

Finding a correct balance between safety, efficiency and
environmental constraints is the core task of the ATCo [1].
Safety and efficiency are determined by the actions of the
ATCo. To what extent safety and efficiency are reached can
be determined by the flight movements and R/T recordings.
Therefore, safety and efficiency are highly linked to the ATCo
competences.

In the ACoPOS model, the strategic situation determines
the physical boundaries in which an ATCo needs to handle
traffic [1]. The tactical situation is marked by the dynamic and
changing nature of the situation. This aspect has an effect on
the cognitive complexity for the ATCo, since the results of the
changing situations are often non-preferable or unexpected [1].

The elements present in the block Team represent the
influence of other controllers, adjacent sectors, pilots, airport
sectors or supervisors. Since this research solely focuses on
the expertise of a single ATCo and not his or her team-
working capabilities, the elements in this block will not be
included in this research.

How the traffic needs to be handled formally inside the
sector is determined by the procedures [1]. These procedures
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can limit the ATCo’s action degrees of freedom. Therefore,
the element procedures has an influence on the ATCo.

B. Metrics

In order to determine to what extent the ATCo competences
are reflected, metrics are linked to each ATCo competence and
ATC structural element. Table I shows selected competences
and elements from the ACoPOS model with the linked metrics.

TABLE I: Metrics to assess ATCo competences and ATC
structural elements.

R/T
1 Consistency in the type of

instructions
Kallus et al. [9]

2 The way of R/T use to keep the
workload low

Hilburn [10]

Safety
3 Use sufficient safety buffers Schuver-van Blanken and van

Merriënboer [11]
Efficiency

4 Maximize efficiency Oprins et al. [8], Kirwan and
Flynn [12]

5 Moment of traffic handling (From hypothesis)
6 Create an expeditious flow of

traffic
ICAO [13]

Traffic volume & density
7 Availability of solution space Schuver-van Blanken and

Roerdink [2]
Procedures

8 Variability in procedures Schuver-van Blanken et al. [1]

According to Kallus et al., ATCos have an internal
“conflict solution library” [9, p.46]. The most frequent
and commonly used solutions come first in mind. These
solutions need certain types of instructions. It is therefore
expected that experienced ATCos are more consistent in
the use of certain types of instructions. Furthermore, an
experienced ATCo must keep his or her workload as low
as possible [10]. The way R/T is used has an influence on
this workload. ATCos could guide aircraft in such a way
that traffic flows require more monitoring, which increases
workload. Furthermore, communicating more with the aircraft
takes extra time. Therefore, the way R/T is used to keep the
workload low can be used as a metric to determine experience.

A way to ensure safety is to be more conservative or
cautious, depending on the ATCo’s age and fatigue, the
experienced workload, or factors like bad weather [14].
Therefore, sufficient safety buffers need to be maintained to
cope with uncertainties or to become more cautious [11].
Another way to assess safety is to ensure that separation
minimums are maintained [13] and that the amount of errors
in the used procedures is minimized [1].

By interviewing ATCos, Kirwan and Flynn found many
principles and strategies used by ATCos [12]. One of those
principles is to minimize the additional track miles flown. A
metric that is related to the minimization of the additional
track miles flown is to minimize the delay time of the aircraft
[8]. When an aircraft needs to fly additional track miles, it is

possible that a delay will occur, unless the ATCo allows the
aircraft to fly faster. Both minimizing additional track miles
as minimizing delay time are part of the maximization of
efficiency.

Since an experienced ATCo has more controller experience
compared to a novice ATCo, it is reasonable to think that the
experienced ATCo has a quicker overview of the situation
and handles traffic quicker. Therefore, it is reasonable to think
that an experienced ATCo will give all level, heading or speed
changes far before the aircraft leaves the sector. The moment
of traffic handling can therefore be seen as an efficiency
metric. Furthermore, part of the task of an ATCo is to create
an expeditious flow of air traffic in his or her sector [13].
A higher outflow of aircraft might indicate a higher efficiency.

To determine the effect of the traffic volume & density
on the ATCo, the availability of the solution space needs
to be determined. According to the findings of Schuver-van
Blanken and Roerdink, ATCos create solution space or use
the solution space that is already available [2]. A possibility
to operationalize solution space is by using a Solution Space
Diagram (SSD) which is developed for purposes such as
workload determination [15], decision-making support [16]
and airspace complexity [17]. The SSD can be graphically
represented as shown in Figure 2. This 2D SSD covers
all possible heading/velocity combinations in which the
aircraft can safely move within the sector and all possible
heading/velocity combinations in which the aircraft is on a
conflict course with another aircraft [18]. The area of the
SSD in which the aircraft is on a conflict course with another
aircraft is the occupied SSD area. This area is represented
by the dark grey area within the Vmin and Vmax bounds in
Figure 2. The availability of the solution space has influence
on the ability to use certain conflict resolution strategies (like
lateral resolutions), the efficiency and the prevention of future
problems [2].

Within a sector, a procedure can result in several options
for the ATCo. For example, in the AMS ACC South Sector
aircraft need to be transferred to Schiphol Approach at an
initial approach fix (IAF) between flight level 70 and 100 [19].
This means that there is a variability in this procedure. How
this variability is used could express differences between the
ATCo expertise groups. Deviating from the procedures does
not indicate a lesser expertise level, but could actually indicate
a higher expertise level, because this could be performed to
resolve certain conflicts or emergency situations. Therefore, it
is more interesting to look at the consistency in the variability
in the use of procedures.

III. DATA DESCRIPTION

The dataset used in this research consists of data from
four air traffic scenarios solved by ten different ATCos. Four
participants were retired ATCos (the professional group)

3
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(b) Solution Space Diagram for the controlled aircraft. The gray
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Fig. 2: Solution Space Diagram area of the controlled
aircraft (adapted from Mercado Velasco et al.).

and six participants completed a multiple day extensive
ATC-course and/or had worked as a researcher in the ATC
field (the ATC course/research group) [6]. The experience
of the professional group ranged from 33 to 35 years of
experience. Two pro-ATCos were area control center ATCos
and two were tower approach control ATCos.

The dataset was obtained in an experiment from Somers [6].
The goal of this experiment was “to investigate the correlation
of the 3D solution space metric with the workload” [6].
A simplified, medium-fidelity, three-dimensional simulator,
based on the Amsterdam Advanced Air Traffic Control
(AAA) system used in the Netherlands, was used which
showed a sector comparable to the AMS ACC South Sector
(Figure 3) [6]. The participant could control the traffic using a
separate control window, which could be operated by using a
mouse or a touchscreen (Figure 4). The traffic was controlled
by clicking on the aircraft and then giving a command using
the command window. The aircraft were separated by giving
heading, level or speed commands.

A few simplifications were made compared to the actual
AAA system, to minimize training effects and to solely
test the workload caused by the traffic in the sector [6].
There were three aircraft categories which were shown in the
aircraft label: light, medium or heavy. A caution that a loss
of separation will occur within 120 seconds was made visible
by changing the aircraft color to orange. An actual loss of

Airspace sector
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HERR

MORT
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Fig. 3: The three-dimensional simulator screen with the dif-
ferent waypoints, routes and one aircraft visible in the middle
(Adapted from [6]).
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Fig. 4: The command window participants had to use to control
the aircraft (Adapted from [6]).

separation within 60 seconds changed the aircraft color to
red. Commands given by the command window were always
followed by the aircraft immediately. All aircraft had the same
5 NM protected zone. Furthermore, an option was present to
turn the protected zone circle and the speed vector on/off to
aid the participants separate the traffic. However, it was not
logged in the data whether the protected zone circle and speed
vector were on or off. Only the change in on/off was recorded.

Taking into account the simplifications, this means that
many competences and structural elements discussed in
Section II do not emerge in the logged data. These include
the cognitive process of the ATCo, teamwork, coordination,
use of systems, team influences, tactical situation influences,
system influences, and a large part of the strategic situation
influences. Competences and structural elements that do
emerge are safety, efficiency, R/T, procedures and traffic
volume & density. Since the use of voice commands was
replaced by the command window, R/T was measured by the

4



input in the command window.

The task of the controllers was to separate the traffic and
hand them over to the adjacent sectors at predefined flight
levels [6]. Before the aircraft left the sector, a transfer of
control had to be given. The participant had to follow the
following specific instructions [6]:

• Inbound traffic coming from AZUL and BLIP and going
to the northern waypoint MIFA, has to be merged and
leave the sector between FL 70 - 100.

• Outbound traffic from NELO to FELO has to leave the
sector at F200.

• Over flights towards HALO have to be handed over at
FL210.

• Over flights towards VOZA leave the sector at the same
flight level as they enter (FL140).

• Aircraft have to be given a transfer of control before they
leave the sector.

• When aircraft are given a transfer of control they have
to be separated (at least 1000 ft vertically and 5NM
horizontally) from each other and should not be involved
in any conflicts.

The ATCos needed the solve 4 different scenarios. The
differences between the scenarios was characterized by
the amount of traffic, traffic mix, traffic merges, overtakes,
crossings and deviating aircraft [6]. In general, the differences
ranged from high/many to low/few. Each scenario had a
duration of 20 minutes.

The obtained data consist of two files per ATCo and
scenario. One file contains the given commands to the
aircraft from the command window, including a timestamp in
seconds. The other file contains the data from the simulation
window (Figure 3). This file includes, per logpoint, among
others, the aircraft position, (commanded) flight level,
(commanded) heading and (commanded) speed. A logpoint
was recorded every 3 seconds during the experiment. With
10 ATCos, this resulted in 40 radar logs and 40 command logs.

IV. METHODOLOGY

This section describes the methodology that is used to
find a set of measures that best describes the different ATCo
expertise groups of which the results are shown in the next
Section (Section V). This measure selection process is shown
in Figure 5.

A. Measures

A total of 59 measures, linked to the metrics in Table I,
are used in which a set of measures can be extracted by the
genetic algorithm (Table II). These 59 measures are gathered
per ATCo and scenario. Table III shows the structure of the
processed data. The 40 rows represent the data from each

ATCo competences,
ATC structural elements Metrics Measures

(features set)

Genetic algorithm

Hierarchical
agglomerative clustering

�tness
evaluation

measure
subset

Best subset of
measures

Theoretical motivation

Feature selection wrapper

Dataset

Sensitivity
analysis

Fig. 5: Flow diagram of the measure selection process.

of the 4 scenarios (scenario a to d) solved by 10 ATCos.
C1 to C6 represents the course-group. P1 to P4 represents
the pro-group. The 59 columns represent the data of the 59
measures. The majority of these measures are measures of
central tendency (like the mean) or measures of variability
(like the standard deviation, maximum value and minimum
value). Also, ratios, summations and mean squared errors
(MSE) are used. This is done to summarize the generated
data of each individual ATCo.

TABLE II: Measures corresponding to the metrics of the ATCo
competences and ATC structural elements.

R/T Measures
1 Consistency in the type of

instructions
Number of DCT, EFL, HDG and
SPD commands

2 The way of R/T use to keep the
workload low

Total number of commands;
Amount of level changes per
aircraft

Safety Measures
3 Use sufficient safety buffers Relative distance between

aircraft; Average TCPA, DCPA
and TLOS

Efficiency Measures
4 Maximize efficiency Spent time in sector; Amount of

aircraft that reached their
waypoint

5 Moment of traffic handling Trackpenalty when using level,
heading or speed commands

6 Create an expeditious flow of
traffic

Outflow of traffic in the sector

Traffic volume & density Measures
7 Availability of solution space Mean occupied SSD area at each

given command; Total occupied
SSD area of every aircraft in the
sector

Procedures Measures
8 Variability in procedures Altitude of aircraft leaving the

sector

Looking at the type of instructions given by ATCos it is
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TABLE III: The structure of the processed data. The 40 rows
represent the data from each of the 4 scenarios (scenario a to
d) solved by 10 ATCos. C1 to C6 represents the course-group.
P1 to P4 represents the pro-group. The 59 columns represent
the data of the 59 measures.

Measure 1 Measure 2 · · · Measure 59
C1a · · ·
C1b · · ·
C1c · · ·
C1d · · ·
C2a · · ·

...
...

...
...

...
C6d · · ·
P1a · · ·

...
...

...
...

...
P4d · · ·

expected that more experienced ATCos are more consistent
in the type of given instructions. To measure this, the number
of direct (DCT), executive flight level (EFL), heading (HDG)
and speed (SPD) commands are gathered. The ratio between
each of these commands and the sum of these commands are
used as measures, resulting in 4 different measures.

Since ATCos prefer to use level changes over heading
changes when the workload is high [20], and want to keep the
workload low by minimizing the number of instructions [10],
the amount of level changes per aircraft is stored. From these
values the mean, standard deviation and maximum value are
used as measures, resulting in 3 measures. Furthermore, the
total number of instructions is used as a measure.

To measure the use of sufficient safety buffers the relative
distances between the aircraft is stored per logpoint. Only
aircraft are considered that do not have reached their
destination waypoint and have not been issued with a TOC
command, so that the ATCo still has an influence on the
aircraft. From these values the mean, standard deviation,
minimum value and the maximum value per logpoint is
stored. Then again from these new values the mean and
standard deviation are calculated, resulting in 8 measures.
Furthermore, from the mean values of the relative distances
between the aircraft per logpoint the maximum and minimum
value are calculated, resulting in 2 measures.

Other values to measure the use of sufficient safety buffers
is using the time to closest point of approach (TCPA),
distance at closest point of approach (DCPA) and the time to
loss of separation (TLOS). Only the positive TCPA, DCPA
and TLOS values are considered. The averages from all
aircraft of these values are stored per logpoint and again only
of all aircraft that the ATCo can control at that logpoint.
From these averages the mean, standard deviation, maximum
value and minimum value are used as measures, resulting in
12 measures.

To achieve an efficient flow of traffic it is expected that
aircraft spend as little time as possible inside the sector.
Therefore, the time that an aircraft spends inside the sector is
stored. Furthermore, the number of aircraft that reached their
destination waypoint is stored per logpoint. From these values
the mean and the standard deviation are used as measures,
resulting in 4 measures.

Considering the moment of traffic handling by ATCos it
is expected that more experienced ATCos will give all level,
heading or speed changes far before the aircraft leaves the
sector. To measure to what extent this metric is expressed, for
each aircraft the sum of the squared track miles when a level,
heading or speed command is given is used (Equation 1).
Figure 6 shows an example of this trackpenalty when using
heading commands for a single aircraft. For each aircraft and
each command type the sum of the squared track miles, when
a particular command type is given, is obtained. These sums
are taken together to get a single sum of squared track miles
for each command type. This results in a trackpenalty when
using level, heading or speed commands. The ratio between
these trackpenalties and the sum of these trackpenalties are
used as measures, resulting in 4 measures.

Trackpenalty:
∑

squared track miles
at command

= a2 + b2 + ... (1)

a Track miles of aircraft at first command [NM]
b Track miles of aircraft at second command [NM]

Furthermore, two sets of values of the flow of aircraft flying
out of the sector (the outflow) are stored. The first set contains
per logpoint the number of finished aircraft divided by the
total number of logpoints of the scenario. A finished aircraft
is an aircraft that reached its destination waypoint. From this
set the mean, standard deviation and maximum value are
used as measures, resulting in 3 measures. Furthermore, the
maximum value and the MSE of the change in this outflow
are used as measures, resulting in 2 measures. The second set
contains per logpoint the number of finished aircraft divided
by the current logpoint. From this set the mean and standard
deviation are used as measures, resulting in 2 measures.

According to the findings of Schuver-van Blanken and
Roerdink, ATCos create solution space or use the solution
space that is already available [2]. To assess this metric the
occupied SSD area is used. This occupied area is represented
as a ratio of the total SSD area with a value between 0 and 1.
The total SSD area is the total annular area bounded by Vmin

and Vmax as shown in Figure 2. The mean occupied SSD area
of every aircraft in the sector at each given command could
be used to see to what extend the solution space changes
between the given commands. The change between these
mean occupied SSD areas is calculated. From the changes
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(a) ATCo A issues one heading change and introduces a
trackpenalty of 302 = 900 NM2, according to Equation 1.

[HDG]

[HDG]
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(b) ATCo B issues two heading changes and introduces a
trackpenalty of 242 + (24 + 17)2 = 2257 NM2, according to

Equation 1.

Fig. 6: ATCo A handles the aircraft far before the aircraft
leaves the sector compared to ATCo B. This is represented
by a lower trackpenalty for ATCo A compared to ATCo B.

the percentage difference, mean, standard deviation and the
ratio between an increase or a decrease are used as measures.
Furthermore, the mean and the standard deviation of the
mean occupied SSD areas are used as measures. This results
in 6 measures.

The occupied SSD area of every aircraft in the sector at
each logpoint is stored. From these values the mean, standard
deviation, maximum value and minimum value are used as
measures, resulting in 4 measures.

In the sector the ATCos had the option to let the aircraft
leave the sector between flight level 70 and 100 for aircraft
flying to waypoint MIFA. Therefore, the flight level of aircraft
flying to waypoint MIFA when leaving the sector is stored.
From these values the mean, standard deviation, maximum
value and minimum value are used as measures, resulting in
4 measures.

B. Input Dataset

Table III shows the structure of the processed data which
is used as the input dataset for the genetic algorithm. After
the 59 measures are extracted from the data it is important
to remove highly correlated measures (|ρ| > 0.99). The
reason is that the size of the measure set can introduce
problems in clustering. These problems include a large
computation time, difficulty in interpretation of results and
the introduction of the curse of dimensionality [21]. The curse
of dimensionality describes that when the dimensionality
is high enough, the distance between the nearest points is
no different from that of other points [22]. Furthermore, by
removing highly correlated measures redundant measures
are also removed. Irrelevant measures do not provide any
useful information to the clustering method and can even
negatively impact the clustering results [23]. However,
since the measures are based on theoretical motivation
it is not expected that irrelevant measures are present.
After removing the highly correlated measures, 55 measures
remained. This results in an input dataset with a size of 40x55.

Figure 7 shows the process of splitting the input dataset
and standardizing the training set and test set. First, the input
dataset is split row-wise into 80% training data (5 course-
ATCos and 3 pro-ATCos) and 20% test data (1 course-ATCo
and 1 pro-ATCo). This is performed to minimize overfitting:
when the model is trained too specialized on a dataset. A
smaller training set than 80% results in a set with too few
samples to represent the complete ATCo population. The
training set consist of the processed data from each scenario of
ATCo C1, C3, C4, C5, C6, P2, P3 and P4. The test set consist
of the processed data from each scenario of ATCo C2 and P1.
Therefore, the training set and the test set have a matrix size
of 32x55 and 8x55, respectively.

x′n,m =
xn,m − µm

σm
n ∈ Z : n ∈ [1, 32]

m ∈ Z : m ∈ [1, 55]

(2)

All values in the training set are standardized according to
Equation 2 to get all the measures on the same scale as the
training set with zero mean and unit variance. In this equation
x′n,m represents the standardized value of ATCo scenario n
and measure m, xn,m the original value, µm the mean of
measure m and σm the standard deviation of measure m.
In other words: the value in each column in the matrix is
standardized using the mean and standard deviation of the
corresponding column. The values for µm and σm of the
training set are used to standardize the values of the test set.
This is done because the genetic algorithm and clustering
algorithm uses the scale of the training set to search the best
set of measures.

The 55 measures can be represented as a 55-bit binary
array. When a measure is part of the set, it is represented as
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Fig. 7: The process of splitting the input dataset and standardizing the training set and test set.

TABLE IV: The structure of the population of sets of mea-
sures. For each set of measures a fitness value can be calcu-
lated to determine the performance.

Measure 1 Measure 2 ... Measure 55
Set 1 0 0 ... 0 → Fitness value
Set 2 1 0 ... 0 → Fitness value
Set 3 1 1 ... 1 → Fitness value

: : : ... :
Set 100 1 1 ... 0 → Fitness value

a 1. It is represented as a 0 when a measure is not part of the
set. By initializing 100 possible set of measures randomly, a
population of sets of measures can be made (Table IV).

C. Feature Selection Wrapper

Since the number of samples (ATCos and scenarios) is
small, it is desired to directly get information about the
relationship between all the samples. Therefore, hierarchical
clustering is used which organizes the data in a hierarchical
structure according to the distance matrix [21]. Within
hierarchical clustering there are two methods of clustering:
agglomerative and divisive. Agglomerative clustering is a
“bottom up” method which starts with N clusters containing
a single data object each [21]. In the process that follows
the individual clusters are merged which finally leads to one
single cluster. Divisive clustering is a “top down” method
that starts as a single cluster containing all the data [21]. In
the process that follows the clusters are divided until there
are only clusters containing a single data object. Looking
at agglomerative clustering, the computational complexity
is at least O(n2). For divisive clustering the complexity
is even worse with a computational complexity of O(2n)
[21]. Therefore, agglomerative clustering will be used in this
research.

The difference between different agglomerative clustering
algorithms is determined by the linkage criterion which
determines the distance between clusters based on the
definition of the distance [21]. Ward’s method is a linkage
criterion that tries to keep the total within-cluster sum of
squares at a minimum value [21]. It is desired to create
clusters containing ATCos with similar experience level and

that the ATCos within each cluster are close to each other.
Therefore, total within-cluster sum of squares should be
minimized. Since Ward’s method already tries to keep the
total within-cluster sum of squares at a minimum value, using
this linkage criterion could lead to good clustering results.
The Euclidean distance measure is used in general when
using Ward’s method.

Genetic algorithms are defined as “a class of stochastic
search algorithms based on biological evolution” [24,
p.222]. A genetic algorithm measures the performance of the
individual set of measures based on a fitness function to carry
out reproduction. When reproduction takes place, crossover
and mutation take place. After a number of successive
reproductions, the result is that lower performing set of
measures will disappear and higher performing set will excel
[24]. A genetic algorithm is used to search the best subset
of measures from the pre-selected measures relatively quick.
A genetic algorithm does not get stuck in a local optimum,
because it uses mutation which is equivalent to a random
search in the search domain [24].

The feature selection wrapper selects from the pre-selected
measures a subset of measures which leads to the most distinct
clusters describing the different ATCo expertise groups. First,
an initial subset from the pre-selected measures is constructed.
The wrapper loop uses hierarchical agglomerative clustering
to cluster the subset data and evaluates the performance of
the formed clusters. This performance is used as a fitness
criterion for the genetic algorithm. Based on the fitness
evaluation, the genetic algorithm creates a new subset of
measures which is, again, used as an input for the clustering
algorithm to determine the performance of this subset. The
genetic algorithm creates new subsets based on the current
best performing subset and when the new subset is better than
the current best performing subset, the new subset becomes
the best performing subset. After a stop criterion is reached,
the output of the wrapper is the best performing subset of
measures.

Figure 8 shows the process of obtaining the best set of
measures using a random initial population (Table IV), the
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Fig. 8: Iterative process of finding the best set of measures.

standardized training set, and the standardized test set. First,
for each set of measures in the population the fitness is
calculated. This is done by selection of the measures from the
standardized training and test set according to the measures
present in the set of measures from the population. The
column size N depends on the amount of measures in a set of
measures. Hierarchical agglomerative clustering is performed
on both sets with selected measures.

From the clustering results the clustering accuracy is cal-
culated of both sets using a variant of the confusion matrix.
A confusion matrix is a matrix that shows the predicted clas-
sification and the actual classification of an object [25]. The
accuracy is the proportion of the total number of predictions
that were correct [25]. A variant of the confusion matrix is
used (Table V), because it is not clear beforehand what the
types of the predicted clusters are: a course-cluster or a pro-
cluster. This means that two accuracies can be calculated using
the two true positives (TP) and two true negatives (TN). The
highest accuracy of both accuracies determines the accuracy
of the clustering results (Equation 3) and therefore also what
the types are of the predicted clusters. An accuracy ranges
from not accurate (0) to perfectly accurate (1).

Accuracy = max(
TP1 + TN1

TP1 + TP2 + TN1 + TN2
,

TP2 + TN2

TP1 + TP2 + TN1 + TN2
)

(3)

TABLE V: The variant of the confusion matrix that is used to
calculate the maximum accuracy.

Actual
Course Pro

Predicted Course or Pro TP1 TN2
Pro or Course TP2 TN1

From the clustering results of the standardized training
set with selected measures the stability is calculated. This
is only performed for the training set, because the selection
of the measures is mainly based on the training set. The
stability is calculated using non-parametric bootstrapping
[26], because it is not known what the distribution is of
the data. A wrongly assumed distribution in parametric
bootstrapping can result in wrong stability results. The
bootstrapping algorithm uses a similarity measure called
the Jaccard coefficient. The Jaccard similarity between two
clusters is the ratio between the number of elements in the
intersection of the clusters and the elements in the union of
the clusters. The Jaccard coefficient ranges from no similarity
(0) to perfect similarity (1). Unstable clusters will result in
a Jaccard coefficient of 0.6 or less. Lesser stable clusters
result in a coefficient between 0.6 and 0.75. Highly stable
clusters will result in a coefficient of 0.85 or more [26]. The
following steps are used to get the stability of the clusters [26]:

1) Cluster the training set
2) Resample the original training set with the same size of
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the original training set. Alter the data in the resampled
set by creating duplicates of ATCos in the set and/or
removing ATCos.

3) Cluster the new resampled dataset
4) Calculate the similarity between the clusters of the origi-

nal training set and the clusters of the resampled set. This
will result in a Jaccard coefficient for each cluster. Store
these coefficients for this run.

5) Repeat from step 2 N times
6) Calculate the average Jaccard coefficient for each cluster

over the N runs

The two accuracy values (one of the training set and one
of the test set) and two stability values (of both clusters from
the training set) are used in the fitness function to determine
the performance of the set of measures. Both accuracies are
equally important, because it is desired that the correct experi-
ence level is assigned to the ATCos in both seen (training) and
unseen (test) data. Also, both stabilities are equally important,
because both original course- and pro-cluster must still exist
when the data are altered.

The accuracies are more important than the stabilities,
because it is the goal of this research that the set of measures
can accurately determine the experience level of the ATCos.
Since the accuracy and stability both range from 0 to 1,
a weight of 10 is given to the accuracy to make it more
important than the stability and to keep the value of the
accuracy most likely on the left side and the stability on the
right side of the decimal separator. This results in a single
relation between the accuracies and stabilities that produces
a single fitness value (Equation 4). This fitness value has a
range from 0 to 11.

fitness = 10 ∗ min(ACC1, ACC2) +

min(Stab1, Stab2)
(4)

ACC1 Accuracy training set [0 ∼ 1]
ACC2 Accuracy test set [0 ∼ 1]
Stab1 Stability training set course-cluster [0 ∼ 1]
Stab2 Stability training set pro-cluster [0 ∼ 1]

The fitness value of all 100 sets of measures in the
population are calculated creating an array of fitness values
with a size of 100x1. With use of the fitness values, the set
of measures from the population with the highest fitness is
the current best set of measures. The iteration continues by
creating a new population from the current population using
crossover and mutation. The sets of measures with a high
fitness have a high probability to create new offspring for the
new population. This new generation is then used in the next
iteration as the population.

There is no specific rule which sets the probability when
crossover and mutation will occur (pc and pm) during the
generation of a new population. According to Negnevitsky

typical values for pc and pm are 0.7 and 0.001, respectively
[24]. Since the search domain is large, it is desired to rely
on the good “genes” of the previous population. Therefore,
a value of 0.8 will be used for the crossover probability.
When population fitness converges, it is desired to rely more
on the mutation of “genes” to escape a local optimum. The
typical mutation probability is very low for a 55-bit binary
array representation when there is a high reliance on bit-flips
in the array during convergence. Therefore, a much higher
mutation probability of 0.4 is used. This mutation probability
is still lower than the crossover probability, because the good
“genes” of the previous population must not be lost in the
next generation.

D. Sensitivity Analysis

The best performing subset is subjected to a sensitivity
analysis. A sensitivity analysis does not only reveal the robust-
ness of the subset and the clusters, but can also reveal which
measures and ATCos contribute the most to the accuracy of
the clusters. A detailed description of the methods and results
of the sensitivity analysis is given in Section VI.

V. RESULTS

A. Best set of measures

The iterative process shown in Figure 8 found a set of 8
measures that best describes the expertise level of the ATCos
in the dataset described in Section III (Table VI).

TABLE VI: Best set of measures found by the genetic algo-
rithm.

M1 Ratio between the number of given DCT commands and the total
number of given DCT, HDG, EFL and SPD commands

M2 Ratio between the number of given EFL commands and the total
number of given DCT, HDG, EFL and SPD commands

M3 Ratio between the number of given HDG commands and the total
number of given DCT, HDG, EFL and SPD commands

M4 Ratio between the total sum of squared track miles when a level
command is given and the total sum of squared track miles when
a level, heading or speed command is given

M5 Ratio between the total sum of squared track miles when a heading
command is given and the total sum of squared track miles when
a level, heading or speed command is given

M6 The aircraft with the highest flight level of all aircraft flying to
waypoint MIFA

M7 The mean over all logpoints of the average TCPA per logpoint
M8 The maximum over all logpoints of the average TLOS per logpoint

Figure 9 shows the boxplots of the actual data of the
individual measures from Table VI. In the figure it can be
seen that there is a difference between two groups for the
measures M1, M2, M4, M5 and M7. In M2, M4 and M5
this is a difference between the expertise groups. In M1,
M6 and M7 this is a difference between a mix of expertise.
In M3 and M8 there is no clear distinction between two groups.

When looking at the boxplots of the actual data of the
other measures (described in Section IV) that are not part
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of the best set, there was no distinct difference between two
groups of ATCos for the majority of the measures. Therefore,
there is no difference between expertise groups observed for
these measures. Two measures are an exception: there was a
difference observed between two groups in the total number
of given commands and the total track penalty when using
heading, speed of level commands. These two measure were
not chosen by the genetic algorithm to be part of the best set
of measures.

When clustering the complete set (training and test
set) using the 8 measures from Table VI a heatmap with
dendrogram can be created (Figure 10). From the dendrogram
on top of the heatmap it can be seen that two clusters are
formed: one cluster with only pro ATCos (the pro-cluster) and
one cluster with mainly course ATCos (the course-cluster).
While the accuracy of the pro-cluster is perfect, the accuracy
of the course-cluster is not perfect because of the presence
of a single pro ATCo. Furthermore, each row in the heatmap
corresponds to the scaled value of the corresponding measure
for each ATCo and each scenario. The dashed line in each
row corresponds to the average value of the course-cluster.

Another few observations can be made from Figure 10.
The most right scenario in the pro-cluster, a scenario of P4,
has a relatively large distance between itself and the rest of
the scenarios in the cluster. In the course-cluster, all scenarios
of C3 are close to each other, but are in its entirety far away
from the rest of de scenarios in the course-cluster.

Each single colored rectangle corresponds to the value of
the individual measure of each individual ATCo and scenario.
The color is red when the measure is below course-cluster
average and blue when the measure is above course-cluster
average. Furthermore, areas of equally colored rectangles can
be observed per measure. This indicates that, per measure,
equally colored ATCos show the same behavior. The black
line in each measure row shows the size of the standardized
value relative to the other ATCos and scenarios in the same
measure row.

It is expected that the measure results of the ATCos in the
course cluster will be close to the dashed line. In general,
this can be observed in the heatmap for all measures in the
course-cluster. Furthermore, it is expected that the ATCos in
the pro-cluster will differ uniformly from the dashed line.
This can clearly be observed in measure M2, M4, M5 and
M1. In the other measures this is not observed and the results
are either close to the dashed line (like in measure M8 and
M6) or are not uniformly distant from the dashed line (like
in measure M7 and M3)

B. Differences per measure

In the boxplot of M1 it can be seen that pro-ATCos use
relatively less DCT commands compared to the course-

ATCos. This difference is caused by a difference in strategy
and training [6]. Pro-ATCos do not want to increase their
workload by giving DCT commands while the aircraft is
already flying roughly in the correct direction [6]. Course-
ATCos tend to handle all aircraft more perfectly and aimed
the aircraft exactly to its destination using DCT commands [6].

Looking at the boxplot of M2 it can be seen that pro-
ATCos use relatively more EFL commands compared to the
course-ATCos. There was no distinct difference between the
amount of given EFL commands across the expertise groups
[6]. Therefore, this is linked to the fact that pro-ATCos use
relatively less other command types (DCT, HDG or SPD
commands).

The boxplot of M4 shows that pro-ATCos have a relative
higher track penalty when using level commands compared to
course-ATCos. This can be linked to M2. Because pro-ATCos
use relative more EFL commands it can also be expected that
the relative track penalty for using level commands is higher
compared to course-ATCos. The same explanation can be
given for the boxplot of M5. The heading commands exist
of DCT and HDG commands. Because there was no distinct
difference between the given HDG commands across the
expertise groups [6], the results from M5 mostly depend on
the DCT commands. Since course-ATCos use relative more
DCT commands it can also be expected that the relative track
penalty for using heading commands is higher compared to
pro-ATCos.

There is an indication that the M1, M2, M4, M5 are
correlated. Figure 11 shows the correlation matrix of M1,
M2, M4, M5, and shows that a correlation exists between the
measures. Although high correlated measures (|ρ| > 0.99)
were removed before the selection and clustering, correlated
measures still exist in the outcome of the measure selection.
To see if these correlated measures only amplify other
measures or will actually contribute to the difference between
all ATCos, the differences across measures need to be checked.

C. Differences across measures

Although M1 and M5 have a high positive correlation
(|ρ| = 0.8) differences can be seen across these measures.
Looking at ATCo C3 in M1, it can be seen that this ATCo
differs from the rest of the course-group and behaves more
like the ATCos in the pro-group. But looking at ATCo C3
in M5, it can be seen that this ATCo behaves more like the
rest of his or her course-group. Furthermore, this behavior is
also visible for ATCo P2: in M1 the ATCo behaves like the
rest of his or her pro-group, but in M5 he or she is close to
the course-group. This means that although the correlation
is large (|ρ| = 0.8) one of the measures cannot be excluded,
because information about the individual ATCos will be lost.
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Fig. 9: Boxplots showing the individual results of the measures from the best set.
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The correlation between M2 and M4 is even higher
(|ρ| = 0.98) compared to the correlation between M1 and M5
(|ρ| = 0.8). Looking at the differences across those measures,
there are no distinct differences between the ATCos. Since
the track penalty when using level commands depends only
on the given EFL commands, M4 is close related to the ratio
of given EFL commands (M2). This is different compared
to M5 where the track penalty does not only depend on the
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given DCT commands but also on the given HDG commands.
Looking at the boxplot of the ratio of given HDG commands
(M3 in Figure 9) it can be seen that the ratios of C3 and P2
differs significantly from its corresponding expertise group.
This results in the difference between C3 and P2 across M1
and M5. Since the correlation between M2 and M4 is high
(|ρ| = 0.98) and the difference across the measures is not
significant, one of the measures could be excluded.

VI. SENSITIVITY ANALYSIS

Since hierarchical clustering is a hard-clustering method
every ATCo and scenario is always assigned to a single cluster.
Even when there is no relationship in the measures, every
ATCo and scenario is still assigned to a cluster. This can result
into clusters that do not represent the actual relationship in the
data which are called unstable clusters. Therefore, the stability
of the clusters needs to be assessed. From Figure 9 it can
be seen that there is a difference in how large the difference
is between the two ATCo groups. Therefore, it is assessed
what the contribution of the measures are to the clustering
results. Furthermore, from Figure 9 it can be seen that there are
(small) differences between all ATCos within each measure.
Therefore, the contribution of the ATCos to the clustering
results are assessed.

A. Stability of clusters

Since the stability of the clusters is part of the fitness
function of the genetic algorithm, maximum stability is already
accounted for during the selection of measures. However, this
was only performed on the training set and not the complete
set. Non-parametric bootstrapping (as described in Section IV)
is performed on the complete set to get the stability of the
clusters. Table VII shows the results from the bootstrapping
process using 1000 runs.

TABLE VII: Cluster bootstrapping results.

Cluster 1 Cluster 2
Stability 0.94 0.91

Looking at the stability of both clusters, both have a value
above 0.85. This means that ATCos within each cluster highly
resemble each other and show comparative behavior.

B. Contribution of measures

The accuracy of the clusters of all possible measures,
ranging from a combination of 1 measure to a combination
of 8 measures, is calculated. This results in 255 possible
combinations of measures and each with its own clustering
accuracy. Figure 12 shows the average accuracy of the clusters
compared to the number of measures used in a combination.

In Figure 12 it can be seen that the average accuracy of the
cluster shows a decreasing pattern when using less measures
to cluster the ATCos (from a maximum of 0.975 to a
minimum of 0.73). When removing more measures, valuable
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Fig. 12: Average accuracy of the clusters compared to the
number of measures in a combination.

information about the distinction between the expertise groups
will be lost. However, this decrease in average accuracy is
negligible (> 1%) when omitting just one measure.

When more measures are omitted the average accuracy
decreases relatively more. Then it is important to look
which measures have a high contribution to the accuracy.
Table VIII shows the average clustering accuracy of the 255
combinations for each measure when it is present and not
present in those 255 combinations. The percentage difference
between the “With” and “Without” values is shown in “∆%”

TABLE VIII: Average clustering accuracy of the 255 possible
measure combinations for each measure when it is present
and not present in the 255 possible measure combinations.
The percentage difference between the “With” and “Without”
values is shown in “∆%”.

M1 M2 M3 M4 M5 M6 M7 M8
With [-] 0.93 0.90 0.82 0.88 0.89 0.80 0.83 0.85
Without [-] 0.75 0.79 0.87 0.80 0.80 0.88 0.85 0.84
∆% −18.7 −12.2 6.3 −9.1 −10.2 9.9 2.3 −0.9

Looking at Table VIII it can be seen that the average
accuracy drops down significantly when omitting M1, M2,
M4 and M5. These are the measures that have a uniform
distance between the expertise groups as discussed earlier and
strongly defines the differences between the two clusters. The
other measures either have a positive result on the average
accuracy (M3, M6 and M7) or a small negative result on the
average accuracy (M8) when they are omitted. Removing the
measures that have a positive effect on the average accuracy
when they are omitted will however not increase the average
accuracy. The average accuracy drops slightly from 0.975 to
0.95 when they are all omitted.

C. Contribution of the ATCos

The accuracy of the clusters of all possible ATCos,
ranging from a combination of 2 ATCos to a combination

13



of 10 ATCos, is calculated. A combination of ATCos must
always exist out of a minimum of one pro-ATCo and one
course-ATCo. This resulted in 945 possible combinations of
ATCos and each with its own clustering accuracy. Figure 13
shows the average accuracy of the clusters compared to the
number of ATCos that participated in a combination. The
figure also shows the number of possible combinations can
be made per number of ATCos in a combination.
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Fig. 13: Average accuracy of the clusters and the possible com-
binations compared to the number of ATCos in a combination.

At first, in Figure 13, it can be seen that the accuracy shows
a decreasing pattern when the number of ATCos decreases.
However, between 4 and 6 ATCos the accuracy stabilizes
and with less than 4 ATCos the accuracy increases again.
The opposite behavior is shown when looking at the possible
combinations of ATCos. A high accuracy is expected when
using a number of ATCos close to 10, because the selection
was mainly based on the accuracy of the 10 clustered ATCos.
A high accuracy is also expected when using 2 ATCos,
because they will always exist of one course-ATCo and one
pro-ATCo. The lower accuracies between a number of 3
and 8 ATCos are likely caused by the size of the possible
combinations. In the figure the accuracy range is from 0.98
to 0.90, so the accuracy stays large across the number of
ATCos. When removing just one ATCo, the accuracy changes
negligibly (> 1%).

Removing more ATCos will lead to a relative larger
decrease in accuracy. Then it is important to look which
ATCos contribute the most to the accuracy. Table IX shows
the average clustering accuracy of the 945 combinations for
each ATCo when it is present and not present in those 945
combinations. The percentage difference between the “With”
and “Without” values is shown in “∆%”

Looking at Table IX it can be seen that the accuracy
decreases significantly when omitting C1, C2, P3 and P4.
These 4 ATCos have a large contribution to the formation
of the two expertise clusters. The accuracy does not change
greatly when looking at C5, C6, P1 and P2. When looking
at C3 and C4 the accuracy increases when omitting these

TABLE IX: Average clustering accuracy of the 945 possible
ATCo combinations for each measure when it is present
and not present in the 945 possible ATCo combinations.
The percentage difference between the “With” and “Without”
values is shown in “∆%”.

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
With [-] 0.96 0.94 0.86 0.89 0.92 0.90 0.92 0.92 0.94 0.94
Without [-] 0.88 0.89 0.98 0.95 0.92 0.94 0.91 0.91 0.89 0.89
∆% -8.0 -5.6 13.2 6.9 0.4 5.0 -1.4 -0.8 -6.1 -5.8

ATCos. To explain this increase, the sum squared distances
between the ATCos and the expertise clusters are compared.

For each scenario of an ATCo, the distances of all measures
to the centroid of the pro-cluster are squared and summed
together. After that, the sums of squared distances are taken
together to get a single sum of squared distance for each ATCo.
The same is done for the distances of all measures to the
centroid of the course-cluster. Table X shows the resulting
sum of squared distances.

TABLE X: Sum of squared distances between the ATCos and
the course-cluster centroid and the pro-cluster centroid.

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
Pro-cluster [-] 84,0 77,0 117,2 34,6 56,3 45,7 9,4 15,0 10,7 36,4
Course-cluster [-] 15,3 19,2 49,3 11,6 12,7 11,5 50,5 40,0 67,6 92,1

Looking at C3 in Table X it can be seen that he or she is
relative distant (117,2 units) to the pro-cluster compared to
the rest of the course-group. Furthermore, C3 is also relative
distant (49,3 units) to his or her own course-cluster compared
to the rest of the course-group. Therefore, it can be stated
that C3 does not generally behave like a course-ATCo nor a
pro-ATCo. Omitting C3 will therefore prevent the clustering
algorithm to categorize C3 and will therefore lead to higher
accuracies.

Looking at C4 in Table X it can be seen that he or she is
relative more close (34,6 units) to the pro-cluster compared
to the rest of the course-group. Furthermore, C4 is also still
close (11,6 units) to the course-cluster compared to the rest
of his or her course-group. Therefore, it can be stated that C4
behaves like a course-ATCo, but also shows signs of moving
toward a pro-ATCo. This is again not clear behavior for the
clustering algorithm, just like C3. Omitting C4 will therefore
prevent the clustering algorithm to categorize C4 and will
therefore lead to higher accuracies.

VII. DISCUSSION

To assess the capabilities of an ATCo student more
frequently and at an earlier stage in training, objective
measures are needed. Current objective measures are
available which describe what good control behavior is.
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However, it is not known which combination of objective
measures could determine the expertise level of an ATCo
and could be used to determine the progress of the student.
This research aimed to identify a set of objective measures
that can classify an air traffic controller’s level of control
expertise by using machine learning techniques.

Looking at the boxplots of the individual results of the 8
measures selected by the genetic algorithm (Figure 9), it can
be seen that there is a preference for measures that have a
distinction in the results between the expertise groups. This
is desired, because these measures could be used to classify
an ATCo’s expertise level. The stronger these distinctions
are, the more it contributes to the separation between the
two expertise clusters. Furthermore, removing these preferred
measures will lead to a decrease in clustering accuracy.
Although the genetic algorithm found a good set of measures,
by analyzing results of all the measures directly, to search
for measures with a distinction in the results between the two
expertise groups, is probably a quicker method without using
a genetic algorithm.

Since the genetic algorithm showed a preference to
measures with a distinction in the results between the
expertise groups, measures M3 and M8 are oddly chosen.
These two measures do not show a distinction between
groups, but are probably selected to gain a higher fitness
value for this dataset. Therefore, the results of this algorithm
show signs of overfitting.

Not all results of the measures are as expected from the
metrics. Looking at the ratio between the number of given
DCT and EFL commands (measures M1 and M2, respectively),
these show a consistency in the type of instructions within each
expertise group. This is not observed in the ratio between the
number of given HDG commands (measure M3).

Measures M4 and M5 only show the ratio of the trackpenalty
when using heading or level commands, but do not describe
the moment of traffic handling. A measure that does describe
this metric is the total trackpenalty in the scenario. Although
this was part of the set of 55 measures, this measure was
not selected by the genetic algorithm. In this measure, the
difference between the expertise groups was less significant
than the difference showed in the trackpenalty ratios.

Measure M6 shows that most ATCos are generally consis-
tent in the maximum flight level of aircraft flying to waypoint
MIFA leaving the sector. However, it is more interesting to
look at the consistency in the flight level instead of the
maximum when looking at the variability in procedures, as
discussed in Section II. Although the standard deviation of this
flight level was part of the set of 55 measures, this measure was
not selected by the genetic algorithm, because the difference
between the expertise groups was less significant than the
difference showed in the maximum of this flight level.

Measure M7 shows a lower mean over all logpoints of the
average time to closest point of approach (TCPA) per logpoint

for all pro-ATCos and ATCo C5 and C6. This same pattern
is observed for the mean over all logpoints of the average
distance at closest point of approach (DCPA) per logpoint.
This could be caused by a greater experience of these ATCos.
More experienced ATCos are more experienced in estimating
future aircraft positions and therefore probably more willing
to let aircraft pass closer to each other.

Just like measure M3, the maximum over all logpoints of
the average TLOS per logpoint (measure M8) does not show
a difference between the expertise groups.

The results of these 8 measures could lead to limited
feedback that could be provided to the ATCos. This is
not only caused by the measures that do not describe its
corresponding metric, but also the correlation between
measures. Only general feedback could be provided by letting
the ATCo look at the use of level versus heading changes.
Furthermore, the mean over all logpoints of the average
TCPA per logpoint could be used as an indication for the
experience gained resulting in letting aircraft pass closer to
each other.

Since Ward’s method aims for compact expertise clusters,
there was a possibility that little variation existed within each
expertise cluster. This was not observed in the results of the 8
measures as ATCo C4 could be categorized to both expertise
groups, and ATCo C3 could neither be categorized to both
expertise groups. Therefore, for this dataset, Ward’s method
showed desired flexibility for uncertainly placed ATCos.

However, when omitting measure M3 it is likely that ATCo
C3 will move closer to the course-cluster, because C3 differs
significantly from the rest of the course-group in the results of
measure M3. Since the selection of M3 is probably caused by
overfitting, the position of C3 is therefore probably also caused
by overfitting. Therefore, it cannot be stated that the genetic
algorithm found a new expertise cluster with C3 being the
only ATCo in this cluster, beside the course- and pro-cluster.

Furthermore, when omitting measure M8, the scenario of
P4, that is relatively distant from its pro-cluster (as shown in
Figure 10), will likely move closer to the rest of the pro-cluster.

Omitting both measures M3 and M8 will therefore likely
lead to more compact clusters, but it is not known what the
impact will be on the accuracy of the clusters.

The chosen measures are highly scenario dependent,
because the decisions made by the ATCos that lead to these
results depend on the operational situation [1]. When adding
new ATCos to the dataset it is therefore important that the
new ATCos also solve the traffic problems in the same
scenario when using sector dependent measures.

When comparing new ATCos (that solved the same
scenarios) to the ATCos in the dataset it is not needed to
cluster the data again. For comparison, the expertise-clusters
are already fixed and just the boxplots of the individual
measures are sufficient to give feedback to the new ATCo.

15



When knowing the actual expertise of the new ATCo and it
needs to be appended to the dataset, then clustering is needed
to determine the new clusters and the centroid of the clusters.

When adding more and more new ATCos to the dataset
there is also a possibility that the current measures are not
sufficient anymore. Certain specific behavior of the ATCos
in this dataset could not emerge anymore and the clustering
accuracy decreases too much. When this happens a different
set of measures needs to be found that can describe the
accuracy of this greater group of ATCos. This will be an
iterative task dependent on the frequency of newly added
ATCos. The advantage is that this new set of measures
describes the expertise of a greater group of ATCos. When
new ATCos are compared again to the greater set of ATCos
his or her expertise classification will be more accurate. A
greater confidence in the measures can therefore be developed
as the dataset of ATCos increases.

Since analyzing the results of all the measures directly is
probably quicker than using a genetic algorithm, hierarchical
clustering could still be valuable. By clustering the results for
the measures that have a distinction in the results between
the expertise groups, the centroids of the clusters and the
positions of the ATcos relative to those clusters can be
determined. This could give information about the overall
expertise level of an ATCo compared to the average course-
or pro-ATCo.

VIII. CONCLUSION

In this research a method is described how machine learning
can be used to find a set of measures that best describes
the expertise level of an air traffic controller (ATCo). Not
only a genetic algorithm is used to search for the best set of
measures, but also an hierarchical agglomerative clustering
algorithm (using Ward’s method and a Euclidean distance
measure) is used to determine the performance of that set of
measures.

From prior research, a total set of objective measures was
constructed which can describe good control behavior. With
use of the dataset containing data of 10 ATCos (6 course-
ATCos and 4 pro-ATCos) a set of 8 measures was found that
can cluster the 10 ATCo’s in the two expertise groups very
accurately (97,5% accuracy). The genetic algorithm showed a
preference for measures that have a distinction in the results
between the expertise groups. Therefore, by analyzing the
results of all the measures directly, to search for these type of
measures, is probably a quicker method. Using hierarchical
agglomerative clustering to cluster the results for these type
of measures could still be used to get valuable information
about the overall expertise level of an ATCo compared to the
average course- or pro-ATCo.

However, not all selected measures show a difference
between the expertise groups. These measures probably
contribute to a better fitness, resulting in signs of overfitting.
These measures, together with correlated measures, also
result in limited feedback that can be provided to the ATCos.

For future research it is recommended to determine the
clustering performance of the set of measures that have a
distinction in the results between the expertise groups. When
this performance is comparable to the best set found by the
genetic algorithm, the use of a genetic algorithm could be
replaced by directly selecting the measures that show this
distinction.
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Chapter 1

Introduction

1-1 Background

In order to reach a safe, orderly and expeditious flow of aircraft within a Control Area
(CTA), Area Control Centers (ACCs) rely on the expertise of their Air Traffic Controllers
(ATCos) (ICAO, 2016). Due to the highly complex and dynamic environment, ATCos need to
process large amounts of dynamically changing information while maintaining a good balance
between safety, efficiency and environment (Schuver-van Blanken et al., 2010; Oprins et al.,
2006). Furthermore, human error is not allowed because of the strict safety requirements,
even while the workload has increased during the last decade (Oprins et al., 2006).
The selection of candidates for the Air Traffic Control (ATC) training is strict, because of the
high demanding nature of the job. Furthermore, these candidates need to acquire the required
competences during the limited training period (usually two or three years). Unfortunately,
even after a strict selection, a high drop-out rate is present during the training period, because
the required expertise level is not reached or cannot be reached within the training period
(Schuver-van Blanken & Roerdink, 2013). This is undesirable, because a large amount of
time, effort and money has been put into these students.
The determination of the level of expertise is currently done by using subjective assessments.
The instructor assesses the level of the students based on his or her own experience. Therefore,
this assessments will always have a subjective influence. To remove this subjective influence,
objective assessments are needed. These assessments consist of metrics with their correspond-
ing objective measures. Objective assessments might result in a reliable and more fair measure
of the capabilities of a student. Furthermore, objective assessments might give the ability to
determine the competences that are still underdeveloped, so that more attention can be given
to these competences during training (Oprins & Schuver, 2003). To find the combination of
which competences, which set of metrics, and which set of objective measures that determine
the levels of expertise accurately is part of an extensive search.
Conducting such an extensive search is a task that might be too extensive and complex for
the human mind to solve. A solution to this problem is using machine learning algorithms.
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Machine learning algorithms are capable of finding patterns, classifying objects, or learning
specific behavior by getting rewards or punishments (Russell & Norvig, 2010). The purpose
for which machine learning techniques are intended give good prospects for the determination
of which set of competences, metrics and objective measures determine the expertise levels.

1-2 Problem Description

It is currently known that certain competences can be objectively measured, but not which
particular set of objective measures might determine whether an ATCo is a novice, an inter-
mediate or an expert. Since there are many objective measures in ATC, a good set takes a
considerable amount of time to find.
Machine learning could be a solution to get good and quick results when one searches for
a good set of objective measures. Studies that use machine learning in order to determine
experience level have already been performed on speaking proficiency levels (Flanagan et
al., 2017), billiard players (Boccignone et al., 2014) and surgeons (Watson, 2014). All with
promising results. This gives a good outlook that machine learning techniques might also
be applied to identify a set of measures that is able to determine an ATCo’s level of control
expertise. The focus in this thesis will be on the cluster analysis techniques of machine
learning.
The goal is that the machine learning algorithm must be able to classify the data into the
expertise groups using a specific set of objective measures. The research objective of this
thesis is to identify a set of objective measures that can classify an air traffic controller’s level
of control expertise by using a cluster analysis machine learning technique.

1-3 Research Questions

Following the research objective, the research in this thesis is centered around a main research
question:

How can a clustering algorithm be used to determine a set of objective measures, based on
good control behavior, that accurately describe an air traffic controller’s expertise level?

In order to answer the main research question, five subquestions are defined:

1. (a) Which objective measures can accurately describe good control behavior?
(b) Which clustering algorithms can be used to determine a set of objective measures?

2. Which clustering algorithm has the best performance in clustering the data into different
expertise groups?

3. What is the performance of the clustering algorithm when it is subjected to unseen
data?

4. Does the set of objective measures accurately describe an air traffic controller’s expertise
level?
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1-4 Research Approach

To answer the main research question and subquestions first a literature review is conducted.
In this literature review it is analyzed what good control behavior looks like and what ob-
jective measures can be used to describe this behavior. Furthermore, the available clustering
algorithms are analyzed and explained. The advantages and disadvantages of each algorithm
will be discussed, and the most promising algorithm is chosen.

Next, data preparation is conducted on the available dataset, containing the data of the
professional group and the ATC course/research group. Based on the objective measures
from the literature review, the appropriate data is selected. This data is then preprocessed
in order to format the data into a workable form. As a final step in the data preparation,
the preprocessed data is transformed in order to use this data as an input in the clustering
algorithm. By testing the selected algorithms from the literature review, with the prepared
data, it is determined which algorithm and set of objective measures can perhaps cluster the
data into the two expertise groups.

After the testing of the clustering algorithm, an experiment is performed on novices. They
will solve the same traffic scenarios as the professional group and the ATC course/research
group. This generated dataset is used, after data preparation, to determine the performance
of the clustering algorithm with the set of objective measures when it is subjected to unseen
data.

Finally, conclusions are drawn to determine whether the clustering algorithm can cluster all
the prepared data into three expertise groups. An answer can be given to the question if the
set of determined measures can accurately describe an ATCo’s expertise level.

To limit the scope of this research project, several assumptions are made. First, the focus
is solely on objective measures. These measures can be directly gathered from the data
or constructed from the available data. Furthermore, the values of these measures are not
directly provided by the participant to remove the subjective influence. Second, a limited
set of measures and a limited number of samples are available in the dataset. Therefore, the
selection of the measures is based on the availability of the data in the dataset.

1-5 Report Structure

This report contains the preliminary part of this thesis. The preliminary phase consists of a
literature review and a preliminary analysis. Chapter 2 contains the literature review about
ATCo behavior and the corresponding objective measures. Chapter 3 contains the literature
review about available clustering algorithms. Chapter 4 contains an analysis of the selected
clustering algorithm, objective measures and the available dataset. Part of the dataset is
clustered to give a practical insight in the theory from the literature. Chapter 5 contains
the conclusion of the preliminary analysis, and some future steps for the main phase of this
thesis.
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Chapter 2

Air Traffic Controller Competences
and Assessment

In this chapter the ATCo competences, ATC structural elements, and the corresponding
metrics and measures are discussed. A competence is the ability to apply a combination of
acquired skills, knowledge and attitudes to perform a given task (Oprins et al., 2006). This
combination of skills, knowledge and attitudes must be acquired during the ATCo training.
ATC structural elements are elements from the operational situation that have an influence
on the competences of an ATCo.

MeasuresCompetence Metrics

Figure 2-1: Finding objective measures for each competence based on the metrics

Figure 2-1 shows how the competences can be assessed using metrics and corresponding
objective measures. For each competence there are one or more metrics available and for each
metric there are one ore more objective measures available. The outcome of the objective
measures are influenced by the ATC structural elements in the operational situation.

Section 2-1 describes what the goals are of an ATCo. The ATCo competences and ATC
structural elements are discussed in Section 2-2 with use of the ATC Cognitive Process &
Operational Situation model (ACoPOS) model (Schuver-van Blanken et al., 2010). In Section
2-3, metrics are linked to each competence and structural element. Finally, in Section 2-4,
measures are linked to each metric. This finishes a list with ATCo competences and ATC
structural elements, with the corresponding metrics and measures.
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2-1 The Air Traffic Controller

The main goal of an ATCo is to ensure a safe, orderly and expeditious flow of air traffic
in his or her sector (Oprins et al., 2006). By providing the pilots with heading, speed and
altitude commands, the ATCo prevent violation of separation minimums and possible colli-
sions. Beside the main goal, ATCos have several side goals. ATCos must also guide aircraft
in an efficient manner to avoid unnecessary delays of flights. Furthermore, an ATCo must
also manage his or her own mental workload, because of the high demanding nature of the
job, and deal with personal and environmental influences which can have an influence on the
performance (Oprins et al., 2006). These goals are reflected in the performed actions by the
ATCos.

To what extent these goals are reached is determined by the expertise level of the ATCo. The
level of expertise is among other things determined by experience, as well as having a natural
talent to the profession. The expertise level is determined by a set of ATC related compe-
tences. High requirements are set for these competences because of the cognitive complexity
for the ATCo. This cognitive complexity cannot be seen separately from the operational
situation (Schuver-van Blanken et al., 2010). Therefore, both the ATCo competences and the
ATC structural elements in the operational situation are discussed in Section 2-2.

2-2 ATCo Competences and ATC Structural Elements

In this section, the ATCo related competences and the ATC structural elements in the oper-
ational situation are discussed. The relationship between the competences of the ATCo and
the ATC structural elements can be viewed in the ACoPOS model (Figure 2-2). In Figure
2-2, the air traffic controller block contains the ATCo competences and the operational situ-
ation block contains the ATC structural elements. The selection of the competences and the
ATC structural elements will be based on the competences and the ATC structural elements
present in this model.
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Figure 2-2: The ATCo Cognitive Process & Operational Situation model (ACoPOS model)
(adapted from Schuver-van Blanken et al. 2010)

In this figure, the blocks situation assessment, problem solving & decision making, and atten-
tion management & workload management form a representation of the cognitive processes
of the ATCo. These cognitive processes form the basis for the performed actions of the ATCo
(Oprins et al., 2006). The competences present in the cognitive processes can only be assessed
subjectively, but the result of the cognitive process is reflected in the performed actions, which
can be objectively assessed (Oprins et al., 2006). Therefore, the competences present in the
cognitive processes will not be assessed in this research.

An exception is made for the solving conflicts competence. This competence reflects the
usage of conflict resolution strategies. According to Loft et al., a strategy is: ”a specific
class of air traffic management that achieves one or more objectives (e.g., safety, orderliness,
expeditiousness) with a certain investment of time and effort.” (Loft et al., 2007, p.380). The
performed actions can be objectively measured to demonstrate whether certain strategies
have been used.

In the ACoPOS model, the competences in the actions category can be objectively assessed.
Radio Telephony (R/T) focuses on the interaction between the ATCo and the aircraft, while
the other competences focus on interaction between ATCos or interaction between the ATCo
and the equipment (Oprins & Schuver, 2003). The focus in this research will be on the
interaction between the ATCo and the aircraft and therefore only R/T will be assessed in
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this research.

In the operational situation block of Figure 2-2, the ATC structural elements are present.
These elements have influence on the cognitive complexity of the ATCo.

The operational situation is marked by the safety, efficiency and environment requirements.
Finding a correct balance between these aspects is the core task of the ATCo (Schuver-van
Blanken et al., 2010).Safety and efficiency is determined by the actions of the ATCo. To what
extent safety and efficiency are reached can be determined by the flight movements and R/T
recordings. Therefore, safety and efficiency are highly linked to the ATCo competences.

How the traffic needs to be handled formally inside the sector is determined by the procedures
(Schuver-van Blanken et al., 2010). These procedures can limit the amount of available
solutions for an ATCo. Therefore, the element procedures has an influence on the ATCo.

In the ACoPOS model, the strategic traffic situation determines the physical boundaries in
which an ATCo needs to handle traffic (Schuver-van Blanken et al., 2010). These boundaries
are determined by traffic volume & density. Furthermore, airport & runway, flight plans,
and airspace & sector may limit the amount of available solutions for the ATCo. Although
these last three mentioned competences could have an influence on the ATCo, no metrics or
measures will be searched for these competences because of the limited availability of the data
for further analysis.

In the ACoPOS model, the tactical traffic situation is marked by the dynamic and changing
nature of the situation. This aspect has an effect on the cognitive complexity for the ATCo,
since the results of the changing situations are often non-preferable or unexpected. These
include deteriorated weather conditions and emergency situations (Schuver-van Blanken et
al., 2010). Although these two mentioned elements could have an influence on the ATCo’s
performance, no metrics or measures will be searched for these elements because of the limited
availability of the data for further analysis. Position & clearances, traffic mix & performance,
and traffic flows also have an influence on the decision making of the ATCo and can be
objectively measured.

Table 2-1 gives an overview of four ATCo competences that are assessed in this research.
Furthermore, the table shows the five ATC structural elements that have an influence to
what extent these competences are reached. The competences and structural elements can
be objectively assessed using the metrics described in the next section (Section 2-3).

Table 2-1: Selected ATCo competences and ATC structural elements from the ACoPOS model

ATCo competences
• Solving conflicts
• R/T
• Safety
• Efficiency

ATC structural elements
• Traffic volume & density
• Position & clearances
• Traffic mix & performance
• Traffic flows
• Procedures
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2-3 Metrics

In order to determine to what extent the ATCo competences are reflected, metrics are linked to
each competence. Each competence can have multiple metrics, because the same competence
can be assessed in multiple ways. First, a selection is made which metrics can be used to
assess the competences from Table 2-1. After the selection of the metrics for competences, a
selection of the metrics for the ATC structural elements from Table 2-1 is made.

2-3-1 ATCo Competences

To assess the solving conflict competence it must be determined what conflict resolution
strategies are used. The strategies described in this subsection are considered best practice in
conflict resolution. Fothergill & Neal performed a study observing a series of conflict resolution
strategies (Fothergill & Neal, 2013). These strategies consisted of lateral and vertical conflict
resolution strategies, observed from experienced en-route ATC operators. The choice between
level changes (vertical resolution) and vector/speed changes (lateral resolution) depended on
the experienced workload. Level changes are more preferred when the workload is high
(Fothergill & Neal, 2013). Furthermore, another best practice in conflict resolution strategies
is to minimize the number of aircraft to move (Kirwan & Flynn, 2001).

Within the vertical conflict resolution strategies, Fothergill & Neal identified two ”cut off”
strategies dependent on the available time an ATCo has (Fothergill & Neal, 2013). With less
time available, ATCos were more likely to cut off at the level closest to the current level of
the aircraft, compared to a cut off at the highest possible flight level on climb (Fothergill &
Neal, 2013).

Other vertical conflict resolution strategies, as found by Fothergill & Neal, include: letting
the aircraft descent to the nearest available level, or to ensure that every aircraft in his or her
sector is at a different flight level (Fothergill & Neal, 2013). Letting an aircraft descent to a
lower level will lead to a quick separation, but it is not beneficial for the fuel consumption
(Fothergill & Neal, 2013). Ensuring that all aircraft are on a different level may be beneficial
during high traffic load, but it is possible that an available level is not near the current level
of the aircraft (Fothergill & Neal, 2013). There is a possibility that a difference exists in use
of these two strategies within different expertise levels.

Under high workload, using vertical conflict resolution strategies are more preferred compared
to lateral conflict resolution strategies (Fothergill & Neal, 2013). However, under extremely
high workload, ATCos prefer to use lateral conflict resolution strategies (Fothergill & Neal,
2013). For example, when aircraft are in conflict, and can only climb and not descend, using
lateral conflict resolution strategies give separation assurance the quickest (Fothergill & Neal,
2013).
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First, to explain the lateral conflict resolution strategies, three types of conflict geometries
should be distinguished. These types are described by International Civil Aviation Organiza-
tion (ICAO) and are shown in Figure 2-3 (ICAO, 2016). The type of conflict geometry has an
influence in the conflict resolution choice of the ATCo. The three types of conflicts include:

• Same track (heading difference which is less than 45 degrees or more than 315 degrees)
• Reciprocal tracks (heading difference which is more than 135 degrees and less than 225

degrees)
• Crossing tracks (heading difference between 45 degrees and 135 degrees, or between 225

degrees and 315 degrees)
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Figure 2-3: Three types of conflict geometries defined by ICAO (ICAO, 2016)
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According to Kirwan & Flynn, for a same track conflict, the best practice for an ATCo is to
turn the faster aircraft direct to route in front of the slower aircraft (Kirwan & Flynn, 2001).
Next, for crossing tracks conflict, the best practice is to turn the slower aircraft behind the
faster aircraft. Kirwan & Flynn did not define a best practice solution in case of reciprocal
tracks conflicts, but only that reciprocal tracks conflicts need to be solved first of all present
conflicts (Kirwan & Flynn, 2001). The lateral conflict resolution strategies found by Fothergill
& Neal only describe the actual resolutions to the general principles described by Kirwan &
Flynn. For example, directing a slower aircraft on a track parallel to its original track could be
compared to the best practice to turn the slower aircraft behind the faster aircraft (Fothergill
& Neal, 2013). In this research, only the general principles regarding the lateral strategies
are assessed, since it is expected that these principles can be identified better from the data.
The difference in usage of these conflict resolution strategies may reflect the experience level
of the ATCo since expert controllers are more consistent and use similar solutions compared
to novices (Kallus et al., 1999).
An experienced ATCo must keep his or her workload as low as possible (Hilburn, 2004). The
way R/T is used, has an influence on this workload, because communicating more with the
aircraft takes extra time. Therefore, the way R/T is used to keep the workload low can be
used as a metric to determine experience. According to Kallus et al., ATCos have an internal
”conflict solution library” (Kallus et al., 1999, p.46). The most frequent and commonly
used solutions come first in mind. These solutions need certain types of instructions. It is
therefore expected that experienced ATCos are more consistent in the use of certain types of
instructions. Finally, it is expected as an ATCo is more experienced, he or she will make less
errors in the communication with aircraft. This can also be used as a metric for experience.
As stated in Section 2-1, ensuring a safe flow of air traffic is part of the main goal of an
ATCo. The safety inside the sector is ensured by maintaining the separation minimums.
These separation minimums are set by ICAO and described as 5NM horizontal separation
and 1000ft vertical separation (ICAO, 2016). This creates a Protected Zone (PZ) around
the aircraft that no other aircraft should access. Another way to ensure safety is to be
more conservative or cautious, dependent on the ATCo’s age and fatigue, the experienced
workload, or factors like bad weather (D’Arcy & Della Rocco, 2001). Furthermore, formal
operating procedures must be used inside a sector. The number of procedures, the complexity
of procedures, and the diversity in working methods all have an influence on the cognitive
complexity (Schuver-van Blanken et al., 2010). Therefore, with high cognitive complexity,
errors in the use of procedures could emerge. This leads to the use of sufficient safety buffers
when needed.
Another part of the main goal of an ATCo is to provide and efficient flow of air traffic, as
stated in Section 2-1. By interviewing ATCos, Kirwan & Flynn found many principles and
strategies used by ATCos (Kirwan & Flynn, 2001). One of those principles is to minimize
the additional track miles flown, that reflect the efficiency competence. A metric that is
related to the minimization of the additional track miles flown is to minimize the delay time
of the aircraft (Oprins et al., 2006). When an aircraft needs to fly additional track miles, it
is possible that a delay will occur, unless the ATCo allows the aircraft to fly faster. Finally,
part of the task of an ATCo is to create an expeditious flow of air traffic in his or her sector
(ICAO, 2016). A higher outflow of aircraft might indicate a higher efficiency.
The metrics that describe the ATCo competences from Table 2-1 are shown in Table 2-2.
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Table 2-2: Metrics to assess ATCo competences

Solving conflicts
1 Level changes vs vector/speed changes (Fothergill & Neal, 2013)
2 Minimize the number of aircraft to move (Fothergill & Neal, 2013)
3 Cut off at nearest available level on climb (Fothergill & Neal, 2013)
4 Cut off at highest possible level on climb (Fothergill & Neal, 2013)
5 Descend to nearest available level (Fothergill & Neal, 2013)
6 Assign the only level available (Fothergill & Neal, 2013)
7 For crossing conflicts, turn slower aircraft behind (Kirwan & Flynn, 2001)
8 For same track conflict, turn faster aircraft direct

to route in front of slower aircraft
(Kirwan & Flynn, 2001)

R/T
9 The way of R/T use to keep the workload low (Hilburn, 2004)

10 Consistency in the type of instructions (Kallus et al., 1999)
Safety

11 Maintain separation minimums (ICAO, 2016)
12 Use sufficient safety buffers (D’Arcy & Della Rocco, 2001)
13 Errors in using procedures (Schuver-van Blanken &

Merriënboer, 2012)
Efficiency

14 Minimize additional track miles flown (Kirwan & Flynn, 2001)
15 Minimize delay time (Oprins et al., 2006)
16 Create an expeditious flow of traffic (ICAO, 2016)

Beside the metrics described in Table 2-2, which are supported by literature, there are also
metrics that are supported by certain observations or expectations which cannot be directly
found in literature. For example, insights can be drawn from visualization of the available
data. By using this method metrics are formulated based on the observations from the data.
Metrics from expectations are formed based on a common sense. For example, an experienced
ATCo makes less R/T mistakes compared to a novice ATCo since the experienced ATCo had
more time to practice with R/T and therefore becoming better and making less mistakes.

Since an experienced ATCo has more controller experience in the field of ATC compared to
a novice ATCo, it is reasonable to think that the experienced ATCo has a quicker overview
of the situation and handles traffic quicker. Therefore, it is reasonable to think that an
experienced ATCo will give a level, heading or speed change far before the aircraft leaves the
sector. The moment of traffic handling can therefore be seen as a metric.

Table 2-3 shows metrics that are based on hypotheses instead of literature support. This
table is not a complete list of metrics, because more metrics can be formed when visually
inspecting the data in further analysis.
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Table 2-3: Metrics from hypotheses to assess ATCo competences

R/T
1 Minimize the amount of errors in R/T

Efficiency
2 Moment of traffic handling

2-3-2 ATC Structural Elements

To determine to what extent the ATC structural elements from Section 2-2 have an influence
on the reflection of the competences of the ATCo, metrics are linked to each element. Each
ATC element can have multiple metrics, because the same element can be assessed in multiple
ways. In the remainder of this section, a selection is made which metrics can be used to assess
the ATC structural elements from Table 2-1
To determine the effect of the traffic volume & density on the ATCo, the availability of the
solution space and the air traffic density needs to be determined. According to the findings
of Schuver-van Blanken & Roerdink, ATCos create solution space or use the solution space
that is already available (Schuver-van Blanken & Roerdink, 2013). The availability of the
solution space has influence on the ability to use certain conflict resolution strategies, like the
lateral resolutions, the efficiency and the prevention of future problems (Schuver-van Blanken
& Roerdink, 2013). Furthermore, the air traffic density has an influence on the complexity of
the ATCo’s task and has therefore an influence on the choice of action (Hilburn, 2004).
The detection of a conflict and the choice of an appropriate resolution strategy is dependent
on the position and the movement of the aircraft. An important factor is the Closest Point
of Approach (CPA) and especially the Distance at Closest Point of Approach (DCPA) and
the Time to Closest Point of Approach (TCPA). An ATCo uses the DCPA to determine if
separation minimums are not breached. Furthermore, the TCPA has an influence in the usage
of conflict resolution strategies (Fothergill & Neal, 2013). Furthermore, the conflict geometry
and speed difference have an influence in conflict resolutions described by Kirwan & Flynn
(Table 2-2). The ATCos in the research of Fothergill & Neal also stated that the amount of
aircraft that change their flight level has an influence on the decision making (Fothergill &
Neal, 2013).
Since the traffic in the sector consist of multiple types of aircraft, which do not all have
the same performance in terms of speed and climb performance, the type of aircraft has an
influence in the decision making of the ATCo (Fothergill & Neal, 2013). Furthermore, studies
by Schuver-van Blanken & Roerdink showed that ATCos create traffic patterns or use existing
patterns (Schuver-van Blanken & Roerdink, 2013). This helps them to create an overview
and manage expectations (Schuver-van Blanken & Roerdink, 2013).
Within a sector, a procedure can result in several options for the ATCo. For example, an
ATCo can have the option the let the aircraft leave the sector between flight level 70 and
100. This means that there is a variability in this procedure. An ATCo can decide to let
all aircraft leave the sector at flight level 70, but can also let the aircraft leave the sector at
different flight levels between flight level 70 and 100.
The metrics that describe the ATC structural elements from Table 2-1 are shown in Table
2-4.
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Table 2-4: Metrics to assess ATC structural elements

Traffic volume & density
1 Availability of solution space (Schuver-van Blanken & Roerdink, 2013)
2 Air traffic density (Hilburn, 2004)

Position & clearances
3 Closest point of approach (Fothergill & Neal, 2013)
4 Conflict geometry (Kirwan & Flynn, 2001)
5 Speed difference (Kirwan & Flynn, 2001)
6 Amount of aircraft changing levels (Fothergill & Neal, 2013)

Traffic mix & performance
7 Type of aircraft (Fothergill & Neal, 2013)

Traffic flows
8 Use of current traffic patterns (Schuver-van Blanken & Roerdink, 2013)

Procedures
9 Variability in procedures (Schuver-van Blanken et al., 2010)

2-4 Measures

From the metrics that assesses the ATCo competences, described in Section 2-3, objective
measures can be linked to each metric. Measures are the values from the data, either directly
obtained from the dataset or constructed from the directly available data. Objective measures
are obtained from measuring equipment or ATC equipment (i.e. radar). The measures are not
subjected to personal opinion or interpretation during measurement. Therefore, the objective
measures could explain how well the task is performed, regardless of what the experience was
while performing the task. Furthermore, it must be noted that the ATC structural elements
have an influence on the decision making of an ATCo. The result of this decision making
could be seen in the objective measures.

The objective measures are used in different ways to assess a specific metric. Looking at the
metrics that assess the solving conflicts competence (Table 2-2), it mainly consists of conflict
resolution strategies. To determine if a particular strategy is used, a combination of objective
measurements must be analyzed. This can be seen for example, in the metric for crossing
conflicts. In this metric the slower aircraft is turned behind the faster aircraft. To determine
if this metric is used, not only the aircraft heading must be gathered, but also the speed of the
aircraft. Furthermore, this strategy is used in a conflict situation, and therefore the position
and the altitude of the aircraft must also be gathered. This shows that the performance of a
metric cannot always be determined by a single measure.
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Besides that a combination of multiple measures can only describe the performance of a single
metric, it is also possible that individual single measures describe the performance of a metric.
This can be seen in the metric that an ATCo needs to maintain separation minimums. To
determine the performance of this metric, not only the number of conflicts can be measured,
but also the number of mid-air collisions or the number of Loss of Separation (LOS).

Table 2-5 shows a list of objective measures that can be used to determine the performance
of the corresponding metric.
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Table 2-5: Measures corresponding to the ATCo competences metrics

Solving conflicts
1 Level changes vs vector/speed changes Number of level, heading and speed changes
2 Minimize the number of aircraft to move Number of level, heading and speed changes
3 Cut off at nearest available level on climb Altitude of aircraft; Vertical speed of aircraft; Position of aircraft;

Instructed altitude of aircraft
4 Cut off at highest possible level on climb Altitude of aircraft; Vertical speed of aircraft; Position of aircraft;

Instructed altitude of aircraft
5 Descend to nearest available level Altitude of aircraft; Vertical speed of aircraft; Position of aircraft;

Instructed altitude of aircraft
6 Assign the only level available Altitude of aircraft; Vertical speed of aircraft; Position of aircraft;

Instructed altitude of aircraft
7 For crossing conflicts, turn slower aircraft behind Heading of aircraft; Speed of aircraft; Position of aircraft; Altitude of

aircraft
8 For same track conflict, turn faster aircraft direct to

route in front of slower aircraft
Heading of aircraft; Speed of aircraft; Position of aircraft; Altitude of
aircraft

R/T
9 The way of R/T use to keep the workload low Number of instructions

10 Consistency in the type of instructions Number of type of instructions
11 Minimize the amount of errors in R/T Number of errors in the instructions

Safety
12 Maintain separation minimums Number of mid-air collisions, LOS, conflicts; Time in conflict
13 Use sufficient safety buffers Average distance at CPA; Average Time to CPA; Time between con-

flict detection and action.
14 Errors in using procedures Number of errors in the use of procedures

Efficiency
15 Minimize additional track miles flown Total additional track miles flown compared to a direct undisturbed

route
16 Minimize delay time Total delay time compared to a direct undisturbed route
17 Create an expeditious flow of traffic Outflow of traffic in the sector
18 Moment of traffic handling Flown track miles at each given instruction
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Table 2-6 shows a list of measures corresponding to the ATC structural elements metrics from
Table 2-4. The measures from this table will have an influence on the measures from ATCo
competences in Table 2-5.

Considering the availability of solution space, this metric can be interpreted in two ways.
At first, the Solution Space Diagram (SSD) area can be used as a measure (Figure 2-4).
The solution space is the space around the aircraft bounded by its minimum and maximum
velocity. This solution space can be graphically represented in the SSD. This 2D SSD covers
all possible heading/velocity combinations in which the aircraft can safely move within the
sector and all possible heading/velocity combinations in which the aircraft is on a conflict
course with another aircraft (Mercado Velasco et al., 2010). Another way to look at the
availability of the solution space is to look at the solution space of the whole sector, instead
of the solution space of individual aircraft. This is highly linked to the air traffic density in
the sector, because with more aircraft inside the sector, less solution space is available. The
number of aircraft is a measure for the air traffic density inside the sector.

ACobs

ACcon

Vcon

Vobs
−Vobs

Vrel

FBZ

(a) Plan view of the traffic scenario

Vobs

Vmin

Vmax

ACcon

Vcon

(b) Solution Space Diagram for the controlled aircraft.
The gray striped SSD area is the available solution

space.

Figure 2-4: Solution Space Diagram area of the controlled aircraft (adapted from
Mercado Velasco et al.)

As stated in Section 2-3, the DCPA and the TCPA are important values when looking at the
CPA. To determine the conflict geometry, the heading of both aircraft in conflict needs to be
known. For the determination of the speed difference, the speed of both aircraft is used as
a measure. Furthermore, the amount of aircraft that change levels inside the sector has an
influence, which is measured by the number of climbing and descending aircraft.

The decisions of the ATCo are determined by the type of aircraft. The type of aircraft
gives the ATCo an indication of the performance of an aircraft in terms of, for example,
maneuverability and climb/descent rate. Furthermore, the maximum and minimum speed of
the aircraft has an influence in the decision making of an ATCo. As a measure for the use
of current traffic patterns, the number of traffic patterns, the amount of aircraft per pattern
and the variation in traffic pattern can be used.

Finally, when variability in procedures is present in for example the flight level of aircraft
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that leave the sector, then the altitude of aircraft that leave the sector are used as a measure.

Table 2-6: Measures corresponding to the ATC structural elements

Traffic volume & density
1 Availability of solution space SSD area,

Sector solution space area
2 Air traffic density Number of aircraft

Position & clearances
3 Closest point of approach Time to CPA,

Distance to CPA
4 Conflict geometry Heading of aircraft
5 Speed difference Speed of aircraft
6 Amount of aircraft changing levels Number of climbing aircraft,

Number of descending aircraft
Traffic mix & performance

7 Type of aircraft Type of aircraft,
Maximum/Minimum speed of aircraft

Traffic flows
8 Use of current traffic patterns Number of traffic patterns,

Number of aircraft per pattern,
Variation in traffic pattern

Procedures
9 Variability in procedures Altitude of aircraft leaving the sector
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Chapter 3

Machine Learning

This chapter describes the results from the literature study about Machine Learning (ML)
and ML techniques. Section 3-1 describes the definition of ML and gives an overview of the
ML types and applications. One of these applications is cluster analysis which is discussed,
together with hierarchical clustering, in Section 3-2. Finally, Section 3-3 describes the selection
and extraction of features from the dataset.

3-1 Definition

ML is a field within Artificial Intelligence (AI) that gives computer algorithms the ability to
learn from experience, learn by example and learn by analogy (Negnevitsky, 2011). There are
three main types of learning: unsupervised learning, supervised learning and reinforcement
learning (Figure 3-1) (Russell & Norvig, 2010). In unsupervised learning the algorithm is
subjected to inputs without letting the algorithm know what the desired output is. With
unsupervised learning the algorithm is able to learn certain patterns in the input data with
help of an application called clustering. Other applications of unsupervised learning are
dimensionality reduction and density estimation. Dimensionality reduction simplifies input
data and density estimation is used to find the statistical distribution of input data. In
supervised learning the algorithm is subjected to input-output pairs and learns a function
that maps input to output. Applications of supervised learning include classification, which
classifies observations (from input data) into one of two or more classes, and regression where
the outputs are continuous instead of discrete. In reinforcement learning the algorithm learns
by getting rewards or punishments from the actions it performs (Russell & Norvig, 2010).
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Machine Learning

Supervised learningUnsupervised learning Reinforcement learning

Clustering Classi�cation RegressionDensity
estimation

Dimensionality 
reduction

Figure 3-1: Overview of the machine learning types and applications

3-2 Cluster Analysis

Cluster analysis is an exploratory data analysis technique that divides objects into individual
groups or clusters. The objects within the same cluster show resemblance with each other
and differ in some respects from objects in other clusters (Everitt et al., 2011). As there is
no specific output known, the algorithm is mainly used to get insight into the input data.

Within the clustering techniques, clustering can be generally divided into two types: hard-
clustering (non-fuzzy clustering) and soft-clustering (fuzzy clustering). With hard-clustering
each object belongs to an individual cluster completely or does not belong to a cluster at
all. In soft-clustering the likelihood or probability that an object belongs to any cluster is
determined. This means that objects can be assigned to multiple clusters.

To deal with a small number of samples in a dataset, it is desired to directly get information
about the relationship between all the samples. A good clustering method that achieves
this desire is a hard-clustering technique called hierarchical clustering. Since there is a small
number of samples in the dataset, hierarchical clustering will be used in this research.

3-2-1 Hierarchical Clustering

In hierarchical clustering the data is organized in a hierarchical structure according to the
distance matrix (Xu & Wunsch Ii, 2005). This structure is usually visualized in a dendrogram
or binary tree. Looking at a dendrogram, the root node represents the whole dataset, while
each leaf node represents a single data object (Figure 3-2). The nodes in between the root
and leaf nodes represent how close the objects are to each other. The height of a dendrogram
represents the distance between an object and a cluster or a pair of objects and or clusters.
When cutting the dendrogram (setting a threshold) at different levels, a visual representation
is created for the potential data clustering structures (Xu & Wunsch Ii, 2005). Figure 3-2
shows a threshold of three clusters.
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Figure 3-2: An example of a dendrogram including the elements

Within hierarchical clustering there are two methods of clustering: agglomerative and divisive.
Agglomerative clustering is a ”bottom up” method which starts with N clusters containing
a single data object each (Xu & Wunsch Ii, 2005). In the process that follows the individual
clusters are merged which finally leads to one single cluster. Divisive clustering is a ”top
down” method that starts as a single cluster containing all the data (Xu & Wunsch Ii, 2005).
In the process that follows the clusters are divided until there are only clusters containing a
single data object.

The advantages of using hierarchical clustering is that it outputs a hierarchy structure that
is more informative compared to the unstructured set of clusters which is returned by a
flat clustering algorithm, like K-means clustering (Manning et al., 2008). Furthermore, hi-
erarchical clustering does not need a prespecified number of clusters (Manning et al., 2008).
However, the advantages of hierarchical clustering come at a cost of lower efficiency. Looking
at agglomerative clustering, the computational complexity is at least O(n2) compared to the
linear complexity of K-means clustering (Xu & Wunsch Ii, 2005). For divisive clustering the
complexity is even worse with a computational complexity of O(2n) (Xu & Wunsch Ii, 2005).
Therefore, agglomerative clustering will be used in this research.

Agglomerative clustering can be achieved with the following steps. Figure 3-3 shows an
example of hierarchical agglomerative clustering after each run through the steps:

1. Initialize N clusters each containing a single data object. Then, calculate the distance
matrix for the N clusters.

2. Search the minimal distance

D(Ci, Cj) = min
1≤m,l≤N

m̸=l

D(Cm, Cl)

where D is the distance function in the distance matrix. Then, combine cluster Ci and
Cj to form a new cluster.

3. Update the distance matrix by computing the distances between the new clusters
4. Repeat steps 2 and 3 until all the objects are in the same cluster.
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Figure 3-3: Example of hierarchical agglomerative clustering (adapted from Janssen et al.)

The difference between different agglomerative clustering algorithms is determined by the
linkage criterion which determines the distance between clusters based on the definition of
the distance (Xu & Wunsch Ii, 2005). Examples of commonly used distance metrics are
Euclidean distance and Manhattan distance. The used metric has an influence on the shape
of the clusters(Xu & Wunsch Ii, 2005). Examples of commonly used linkage criteria are single-
linkage, complete-linkage and Ward’s method. While single-linkage and complete-linkage use
the distance between, respectively, the two closest objects and the two farthest objects in the
different clusters, Ward’s method tries to keep the total within-cluster sum of squares at a
minimum value (Xu & Wunsch Ii, 2005).

By using a certain clustering algorithm, it is desired to get clear and distinct clusters. This
means that variance within each cluster should be small and the variance between all clusters
should be large. Therefore, the ratio between the between-cluster sum of squares and the
total within-cluster sum of squares should be maximized. This ratio is called the F-ratio.
Maximizing this ratio can be used as a clustering performance measure (Xu & Wunsch Ii,
2005). No conclusions can be drawn from a single F-ratio value. However, comparing the
F-ratio of different clustering results can give information about which clustering result has
more distinct clusters. Since Ward’s method already tries to keep the total within-cluster sum
of squares at a minimum value, using this linkage criterion together with this performance
measure can lead to good clustering results.

3-3 Feature Selection and Extraction

Since the data contains many features, the size of the feature set can introduce problems in
clustering. These problems include a large computation time, difficulty in interpretation of
results and the introduction of the curse of dimensionality (Xu & Wunsch Ii, 2005). The curse
of dimensionality describes that when the dimensionality is high enough, the distance between
the nearest points is no different from that of other points (Beyer et al., 1999). Distance based
clustering algorithms are therefore no longer effective when using high dimensional data.
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The idea behind feature selection is that the dataset contains features that are redundant
or irrelevant and that selection will remove these types of features. Feature selection is
often used in a dataset with many features and a few numbers of observations. Redundant
features are features that are already described by other features and therefore provide no
additional information. Irrelevant features do not provide any useful information to the
clustering method and even negatively impact the clustering results (Kaufman & Rousseeuw,
1990). Irrelevant features will lead to a lot of random terms in the distances and therefore
hide the information from the relevant features.

Feature selection techniques can be divided into three different methods: filter methods,
wrapper methods and embedded methods (Stańczyk & Jain, 2015). Filter methods gives a
ranking to each feature in the subset and the user can select the features based on the ranking.
The advantage of these method is that it has a relatively low computation time, but these
methods do not consider the relationship between features. Wrapper methods use a model
that determine the best performing set of features from all features. The advantage over the
filter methods is that wrapper methods do consider the relationship between features, but it
can have a relatively high computation time. Furthermore, there is a possible risk of overfitting
when the number of observations is not sufficient. Embedded methods select features as part
of the model construction process. Embedded methods combine the advantages of both the
filter and the wrapper method, but the use of an embedded method highly depends on the
used learning model.

Feature extraction is different from feature selection. In feature extraction new features are
created from existing features (Xu & Wunsch Ii, 2005). A commonly used feature extrac-
tion method is Principal Component Analysis (PCA). PCA reduces the data with use of
the principal components of the data. The first principle component describes as much of
the variability in the data as possible, and each next component describes as much of the
remaining variability as possible (Xu & Wunsch Ii, 2005). With this method the number of
dimensions can be reduced. The downside is that the original features cannot be extracted
from an PCA. Therefore, the impact of each individual feature or set of features cannot be
determined. However, PCA can be used to reduce the dimensionality of the data in such
extent that the data can be made visual.
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Chapter 4

Preliminary Analysis

With use of the literature survey described in Chapter 2 and Chapter 3 a preliminary analysis
is conducted to give practical insight in the theory from the literature. The focus in this
preliminary analysis is mainly on the clustering instead of the selection of features. First, a
conceptual design is made that describes the process in getting the best feature set which can
cluster the ATCos in the different expertise groups (Section 4-1). The data needed for the
preliminary analysis is analyzed in Section 4-2, in which the relevant features are extracted
from the data. The analyzed data is clustered in Section 4-3 and the results are shown in
Section 4-4. Finally, the results from the data clustering are discussed in Section 4-5.

4-1 Conceptual Design

This section describes the conceptual design of the process, in finding a set of features that
best describes the different ATCo expertise groups. The feature selection process is shown in
Figure 4-1.
From the literature survey, measures are selected which corresponds to metrics that assess the
ATCo competences. These competences are influenced by ATC structural elements to which
measures are linked to. This results in a set of measures, or features, which are extracted
from the dataset. This pre-selection of features from the literature results in a smaller search
domain and therefore lower computation time for the feature selection wrapper.
The feature selection wrapper selects from the pre-selected features a subset of features which
leads to the most distinct clusters describing the different ATCo expertise groups. First, an
initial subset from the pre-selected features is constructed. The wrapper loop uses hierarchical
agglomerative clustering to cluster the subset data and evaluates the distinctiveness of the
formed clusters. This distinctiveness is used as a fitness criterion for the genetic algorithm.
The fitness criterion describes how good the performance is of this feature subset. Based on
the fitness evaluation the genetic algorithm creates a new subset of features which is, again,
used as an input for the clustering algorithm to determine the performance of this subset. The
genetic algorithm creates new subsets based on the current best performing subset and when
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the new subset is better than the current best performing subset, the new subset becomes
the best performing subset. After a stop criterion is reached, the output of the wrapper is
the best performing subset of features.
The best performing subset is subjected to a sensitivity analysis. A sensitivity analysis does
not only reveal the robustness of the subset, but also can reveal if overfitting has occurred
in the feature selection wrapper. Finally, conclusions can be drawn based on the feature
selection process.
In this preliminary analysis the focus is mainly on a part of the data analysis, where the data
is visualized and features are gathered from the data (Section 4-2), and data clustering, where
the gathered features are clustered using hierarchical agglomerative clustering (Section 4-3).

ATCo competences,
ATC structural elements Metrics Measures

(features set)

Genetic algorithm

Hierarchical
agglomerative clustering

�tness
evaluation

feature
subset

Best subset of
features Conclusion

Literature survey

Feature selection wrapper

Dataset

Sensitivity
analysis

Figure 4-1: Flow diagram of the feature selection process

4-2 Data Analysis

In this section the data from the dataset is analyzed. The dataset consists of data from four
different air traffic scenarios solved by ten different ATCos. Four participants were retired
ATCos (the professional group) and six participants completed a multiple day extensive ATC-
course and/or had worked as a researcher in the ATC field (the ATC course/research group).
Each of the participants solved scenarios in a sector that can be compared to the AMS ACC
South Sector. At each timestamp, the information of all aircraft, like position, altitude, speed
and heading is recorded. Furthermore, the communication between the participant and the
aircraft, by means of command inputs, is recorded, and a subjective workload rating is given
by each participant.
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Looking at the available data, not everything that is recorded could be used to determine
the experience of the ATCo or could have an influence on the ATCo. The use of systems,
coordination and teamwork are part of the competences from the ACoPOS model shown
in Figure 2-2 in Chapter 2, but no data is recorded. Likewise, influences from systems,
airport & runways, flight plans, the team, weather conditions and emergency situations are
also not in the data. Furthermore, the influence of airspace & sector will not be measurable,
because there is no change across the scenarios. Although these ATCo competences and ATC
structural elements could have an influence in the determination of the expertise level, these
competences and elements are not assessed in this research. Therefore, only the selected ATCo
competences and ATC structural elements from Table 2-1 from Chapter 2 will be assessed in
this research.
Looking at the moment of traffic handling by ATCos it is expected that more experienced
ATCos will give a level, heading or speed change far before the aircraft leaves the sector
(Table 2-3 from Chapter 2). To visualize this, scatter plots are made of the positions of
aircraft when a level, heading or speed command is given to that particular aircraft (Figure
4-2). The scatter plots are separated per expertise group and per scenario. The aircraft in
these plots were flying from waypoint AZUL and BLIP, south of the sector, and were merged
inside the sector into a single traffic stream towards waypoint MIFA, north of the sector.
These traffic streams are chosen in this analysis, because merging two streams can cause
potential conflicts which need to be solved by using level, heading and speed commands.
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Figure 4-2: Positions of aircraft when a level, heading or speed command is given to that
particular aircraft. The scatter plots are separated per expertise group and per scenario.

For the ATC course/research group, it can be seen that a large portion of their commands is
given above the dashed line compared to the professional group. Table 4-1 shows the percent-
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age of the given commands that are above the dashed line in Figure 4-2 per expertise group
and per scenario. There is a clear difference between the two expertise groups. Therefore, by
visually inspecting the data, it is reasonable to think that there is a difference in the moment
of traffic handling between the expertise groups.

a

b

Figure 4-3: Flown track of an aircraft that has been subjected to two heading changes. Length
a represents the flown track miles before the first heading change. Length b represents the flown

track miles before the second heading change.

∑
squared track miles

= a2 + b2 + ... (4-1)

To measure to what extent this metric is expressed, for each aircraft in the scenario the sum
of the squared track miles when a level, heading or speed command is given is used (Figure
4-3 and Equation 4-1). For each ATCo, each scenario, each aircraft and each command type
the sum of the squared track miles, when a particular command type is given, is obtained.
These sums are taken together to get a single sum of squared track miles for each ATCo, each
scenario and each command type. It is expected that the professional group has a lower overall
sum of squared track miles compared to the ATC course/research group. These measures are
used for the data clustering in Section 4-3.

Table 4-1: Percentage of the given commands that are above the dashed line from Figure 4-2
per expertise group and per scenario

Scenario
1 2 3 4

Course group 33% 31% 32% 25%
Professional group 3.0% 0.0% 6.2% 5.8%

Looking at the type of instructions given by ATCos it is expected that more experienced
ATCos are more consistent in the type of given instructions (Table 2-2 from Chapter 2). To
measure this, the number of Direct (DCT), Executive Flight Level (EFL), Heading (HDG)
and Speed (SPD) commands are gathered from the data. These measures are used for the
data clustering in Section 4-3.

Table 4-2 shows the metrics with corresponding measures discussed in this section that are
used in the data clustering in Section 4-3.
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Table 4-2: Metrics and measures for the preliminary analysis

1 Moment of traffic handling Sum of squared track miles for level commands
Sum of squared track miles for heading commands
Sum of squared track miles for speed commands

2 Consistency in type of instructions Number of DCT commands
Number of EFL commands
Number of HDG commands
Number of SPD commands

4-3 Data Clustering

In this section the data from the data analysis is clustered based on the measures, or fea-
tures, from Table 4-2. Hierarchical agglomerative clustering is used, because this clustering
method outputs a hierarchy structure, a dendrogram, that is more informative compared to
unstructured set of clusters, which is returned by a flat clustering algorithm, like K-means
clustering. Furthermore, agglomerative clustering is better in terms of computational com-
plexity, compared to divisive clustering as stated in Chapter 3.

As stated in Chapter 3, Ward’s method will be used as the linkage criterion and the ratio
between the between-cluster sum of squares and the total within-cluster sum of squares will
be used as a performance measure. Since Ward’s method already tries to keep the total
within-cluster sum of squares at a minimum value, it is beneficial for the maximization of the
performance measure.

From the measures from each metric in Table 4-2, the ratio of each measure to the total sum
of all measures of that metric is calculated. After the ratios have been calculated, the entire
set of measures is standardized to get all the measures on the same scale with zero mean and
unit variance. Section 4-4 shows the results from the data clustering.

4-4 Results

In this section, the results are shown of the data clustering. Figure 4-4 shows the clustering
results of the metric 1: ”Moment of traffic handling”. Figure 4-5 shows the clustering results
of the metric 2: ”Consistency in type of instructions”. Figure 4-6 shows the clustering results
of using both metrics. The ATCos from the professional group are shown in black and the
ATCos of the ATC course/research group are shown in gray. Furthermore, since it is desired
to have two distinct clusters, the dendrograms are cut, such that two clusters emerge which
are boxed with dashed lines.
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Figure 4-4: Dendrogram of the metric 1: ”Moment of traffic handling” with two clusters
showing the ATC course/research ATCos in gray and the professional ATCos in black
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Figure 4-5: Dendrogram of the metric 2: ”Consistency in type of instructions” with two
clusters showing the ATC course/research ATCos in gray and the professional ATCos in black
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Figure 4-6: Dendrogram of the both metrics (”Moment of traffic handling” and ”Consistency
in type of instructions”) with two clusters showing the ATC course/research ATCos in gray and

the professional ATCos in black

Table 4-3 shows the performance parameters of the clustering results. These parameters
include the Total Sum of Squares (TSS), the Within-cluster Sum of Squares (WSS), the
Between-cluster Sum of Squares (BSS) and the F-ratio, which is the ratio between BSS and
WSS.

Table 4-3: Performance parameters of the clustering results of both individual metrics and
combined metrics

Metric
1 2 1+2

Total sum of squares (TSS) 156 117 273
Within-cluster sum of squares (WSS) 99.2 54.7 154
Between-cluster sum of squares (BSS) 56.7 62.3 119
F-ratio (BSS/WSS) 0.57 1.14 0.78

4-5 Discussion

From the results from Section 4-4 interesting insights can be gathered for future analysis.
When looking at the emerging clusters of all three dendrograms, it can be seen that the most
ATCos tend to cluster with ATCos from the same expertise group. Therefore, showing that
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it is indeed possible to cluster the data into the two different expertise groups with use of
these metrics. The F-ratios of all dendrograms show which metrics result in the most distinct
clusters (Table 4-3). This shows that the data from the metric 2 (Figure 4-5) result in the
most distinct clusters.

Although Figure 4-5 shows the best performing metric, it also shows that one cluster does not
only contain professionals and one cluster does not only contain ATC course/research ATCos.
Furthermore, the TSS, WSS and BSS of metric 1+2 is the result of a summation of the TSS,
WSS and BSS from metric 1 and metric 2, but no such relationship can be established about
the composition of the clusters. Therefore, during feature selection it is possible that badly
composed clusters can have a relative large F-ratio. This raises the question that for future
analysis possibly an additional performance parameter is needed to create clusters, containing
only ATCos of a single expertise group.

Looking at the F-ratio of metric 1+2 (Table 4-3) it shows that it is performing better than
just metric 1, but worse compared to just metric 2. This shows that using more metrics to
cluster the data does not always lead into better performance. Furthermore, it must be noted
that although there are 7 measures (3 measures from metric 1 and 4 measures from metric
2) used for the clustering of metric 1+2, the measures of each metric depend on each other,
because the ratio is taken. Removing a measure can therefore lead into completely different
ratios. This must be considered with the feature selection in future analysis.
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Chapter 5

Conclusion

In this preliminary thesis a first analysis is given about how a clustering algorithm can be
used to determine a set of objective measures, based on good control behavior, that accurately
describe an air traffic controller’s expertise level. At first, a literature survey was conducted on
the ATCo competences and assessment. In this chapter, relevant competences are discussed,
and corresponding metrics and measures are linked to each competence. Furthermore, relevant
ATC structural elements, that have an influence on the decision making of an ATCo, are
discussed and corresponding metrics and measures are linked to each element. Secondly,
the concept of ML and an application of clustering, hierarchical clustering, is discussed.
Furthermore, methods are presented for the selection of features. Finally, a preliminary
analysis is conducted to show the capabilities of hierarchical clustering with a part of the
dataset.

In this chapter, Section 5-1 describes the preliminary conclusion using the results from the
literature study and the preliminary analysis. Section 5-2 describes the steps that need to be
taken for future analysis.

5-1 Preliminary Conclusion

This section describes the preliminary conclusions of this preliminary thesis. Answers will
be given to the first two subquestion. Furthermore, the third subquestion will be partially
answered. To answer the remaining subquestions and the research question future research
needs to be conducted.

”Which objective measures can accurately describe good control behavior?”

Table 5-1 shows the objective measures that can accurately describe good control behavior.
The objective measures are categorized into measures from ATCo competences and measures
from ATC structural elements. Some measures are in both categories, because they both
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serve as an influence in the decision making of an ATCo and to determine to what extent a
metric is used by an ATCo. There is a possibility that more measures exist, but this depends
on the metrics that are formed when visually inspecting the data in further analysis.

Table 5-1: Objective measures that can accurately describe good control behavior. Categorized
into measures from ATCo competences and measures from ATC structural elements.

ATCo competences
• Altitude of aircraft
• Average distance at CPA
• Average Time to CPA
• Flown track miles at each given instruction
• Heading of aircraft
• Instructed altitude of aircraft
• Number of errors in the instructions
• Number of errors in the use of procedures
• Number of instructions
• Number of level, heading and speed changes
• Number of mid-air collisions, LOS, conflicts
• Number of type of instructions
• Outflow of traffic in the sector
• Position of aircraft
• Speed of aircraft
• Time between conflict detection and action.
• Time in conflict
• Total additional track miles flown compared

to a direct undisturbed route
• Total delay time compared to a

direct undisturbed route
• Vertical speed of aircraft

ATC structural elements
• Altitude of aircraft leaving the sector
• Distance to CPA
• Heading of aircraft
• Maximum/Minimum speed of aircraft
• Number of aircraft
• Number of aircraft per pattern,
• Number of climbing aircraft and

descending aircraft
• Number of traffic patterns
• Solution space area
• Speed of aircraft
• SSD area
• Time to CPA
• Type of aircraft
• Variation in traffic pattern

”Which clustering algorithms can be used to determine a set of objective measures?”

Based on a dataset with a small number of samples and to keep the computational complexity
relatively low, hierarchical agglomerative clustering is used as the basis for clustering. The
difference between the different hierarchal agglomerative clustering algorithms is determined
by the linkage criterion which determines the distance between clusters based on the definition
of the distance (Xu & Wunsch Ii, 2005). Table 5-2 shows which linkage criteria and which
distance measures can be used to form different clustering algorithms.
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Table 5-2: Clustering algorithms that can be used to determine a set of objective measures.
Both different linkage criteria and distance measures are shown.

Linkage criteria
• Single-linkage
• Complete-linkage
• Ward’s method

Distance measures
• Euclidean
• Manhattan

From the results from the preliminary analysis it can be seen that a hierarchical agglomerative
clustering algorithm using Ward’s method and a Euclidean distance measure can cluster the
data into the professional group and the ATC course/research group.

To measure the performance of the clustering algorithms it is desired to keep the variance
within each cluster small and the variance between all clusters large. Therefore, the ratio
between the between-cluster sum of squares and the total within-cluster sum of squares (F-
ratio) should be maximized.

5-2 Future Steps

Future analysis is needed to answer the remaining subquestions and finally the research ques-
tion. The preliminary analysis only conducted part of the conceptual design. The next step
will be to implement the feature selection wrapper that will select the best subset of features.

Furthermore, since the primary analysis only conducted a part of the metrics and measures,
the next step is to conduct all metrics from the literature survey. The different clustering al-
gorithms (linkage criteria and distance measures) need to be tested to get the best performing
algorithm conducting all the metrics. A sensitivity analysis needs to be performed to reveal
the robustness of the subset and the algorithm and if overfitting has occurred.

An experiment with novices needs to be performed to increase the dataset with new data
from a new expertise group (novice group). These novice participants will perform the same
experiment (with the same scenarios) as the professional group and the ATC course/research
group did.

With the best performing clustering algorithm, best subset of features and the new dataset,
the performance is measured of the clustering algorithm when it is subjected to the new
unseen data. It is then desired that the chosen clustering algorithm and subset of features
will result in three distinct clusters.
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Appendix A

Data and Measures

A-1 Conflict Detection

A large part of the preliminary research has been spent on the search for conflict resolution
metrics. Table A-1 shows the conflict resolution metrics that were found from the literature.
Since the scenarios that the 10 ATCos solved contained a traffic merging problem, it was
expected that sufficient conflicts were present in the data. Conflicts were indeed present in
each solved scenario, but the amount of conflicts were too small to detect a difference between
the expertise groups. Furthermore, the conflict resolutions used were also categorized in the
metrics from Table A-1. This means that the little conflicts that were detected are spread even
further, so that differences between the expertise groups were even harder to find. Therefore,
the solving conflicts competences have not been researched further. This competence could
be included in the future when the dataset is much larger.

Table A-1: Conflict resolution metrics to assess ATCo competences

Solving conflicts
1 Level changes vs vector/speed changes (Fothergill & Neal, 2013)
2 Minimize the number of aircraft to move (Fothergill & Neal, 2013)
3 Cut off at nearest available level on climb (Fothergill & Neal, 2013)
4 Cut off at highest possible level on climb (Fothergill & Neal, 2013)
5 Descend to nearest available level (Fothergill & Neal, 2013)
6 Assign the only level available (Fothergill & Neal, 2013)
7 For crossing conflicts, turn slower aircraft behind (Kirwan & Flynn, 2001)
8 For same track conflict, turn faster aircraft direct to

route in front of slower aircraft
(Kirwan & Flynn, 2001)
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A-2 List of Measures

This section shows a list of 59 measures in which a set of measures can be extracted by the
genetic algorithm. The name of the measure and a short description is given.
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Table A-2: List of 59 measures in which a set of measures can be extracted

Measure name Short description
1 numOfcmds Number of commands
2 ratio_DCT Ratio DCT commands
3 ratio_EFL Ratio EFL commands
4 ratio_HDG Ratio HDG commands
5 ratio_SPD Ratio SPD commands
6 totalPenalty Total trackpenalty
7 ratio_levelPenalty Ratio trackpenalty when using level commands
8 ratio_headingPenalty Ratio trackpenalty when using heading commands
9 ratio_speedPenalty Ratio trackpenalty when using speed commands

Mean occupied SSD area at each command
10 pctChangeMeanOccupiedSSDAreaAtCommand : Percentage change
11 signRatioMeanOccupiedSSDAreaAtCommand : Ratio of the sign of change
12 meanMeanOccupiedSSDAreaAtCommand : Mean
13 sdMeanOccupiedSSDAreaAtCommand : SD
14 meanChangeMeanOccupiedSSDAreaAtCommand : Mean of change
15 sdChangeMeanOccupiedSSDAreaAtCommand : SD of change

Occupied SSD areas
16 meanOccupiedSSDAreas : Mean
17 sdOccupiedSSDAreas : SD
18 maxOccupiedSSDAreas : Maximum
19 minOccupiedSSDAreas : Minimum

Aircraft time in sector
20 meanAircraftTimeInSector : Mean
21 sdAircraftTimeInSector : SD

Finished aircraft per logpoint
22 meanFinishedAircraftPerLogpoint : Mean
23 sdFinishedAircraftPerLogpoint : SD
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Measure name Short description
Outflow (per total logpoints) of aircraft per logpoint

24 maxOutflowPerLogpoint : Maximum
25 maxChangeOutflowPerLogpoint : Maximum change
26 mseChangeOutflowPerLogpoint : MSE of change
27 meanOutflowPerLogpoint : Mean
28 sdOutflowPerLogpoint : SD

Outflow (per current logpoint) of aircraft per logpoint
29 meanOutflow2PerLogpoint : Mean
30 sdOutflow2PerLogpoint : SD

Relative distance beween aircraft per logpoint
31 meanSdRelDistancePerLogpoint : Mean of SD per logpoint
32 sdSdRelDistancePerLogpoint : SD of SD per logpoint
33 meanMinRelDistancePerLogpoint : Mean of minimum per logpoint
34 sdMinRelDistancePerLogpoint : SD of minimum per logpoint
35 meanMaxRelDistancePerLogpoint : Mean of maximum per logpoint
36 sdMaxRelDistancePerLogpoint : SD of maximum per logpoint

Flight level of aircraft to MIFA
37 meanFlightLevelAircraftToMIFA : Mean
38 sdFlightLevelAircraftToMIFA : SD
39 maxFlightLevelAircraftToMIFA : Maximum
40 minFlightLevelAircraftToMIFA : Minimum

Level changes per aircraft
41 meanLevelChangesPerAircraft : Mean
42 sdLevelChangesPerAircraft : SD
43 maxLevelChangesPerAircraft : Maximum
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Measure name Short description
Average TCPA per logpoint

44 meanAverageTcpaPerLogpoint : Mean
45 sdAverageTcpaPerLogpoint : SD
46 maxAverageTcpaPerLogpoint : Maximum
47 minAverageTcpaPerLogpoint : Minimum

Average TLOS per logpoint
48 meanAverageTlosPerLogpoint : Mean
49 sdAverageTlosPerLogpoint : SD
50 maxAverageTlosPerLogpoint : Maximum
51 minAverageTlosPerLogpoint : Minimum

Average DCPA per logpoint
52 meanAverageDcpaPerLogpoint : Mean
53 sdAverageDcpaPerLogpoint : SD
54 maxAverageDcpaPerLogpoint : Maximum
55 minAverageDcpaPerLogpoint : Minimum

Average relative distance between aircraft per logpoint
56 meanAverageRelDistancePerLogpoint : Mean
57 sdAverageRelDistancePerLogpoint : SD
58 maxAverageRelDistancePerLogpoint : Maximum
59 minAverageRelDistancePerLogpoint : Minimum
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A-3 Boxplots of Measures

In this section the boxplots of the raw results of the 55 measures are shown in Figure A-1,
Figure A-2, Figure A-3 and Figure A-4. This is after the correlated measures were removed.
These removed measures are the mean and standard deviation of the finished aircraft per
logpoint, the standard deviation of the outflow (per total logpoints) of aircraft per logpoint,
and the mean flight level of aircraft flying to waypoint MIFA.
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Figure A-1: Boxplots of measure 1 to 16
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Figure A-2: Boxplots of measure 17 to 32
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Figure A-3: Boxplots of measure 33 to 48

60

70

80

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
ATCo

sdMaxRelDistance
PerLogpoint [nm]

0

250

500

750

C1C2C3C4C5C6 P1 P2 P3 P4
ATCo

sdFlightLevelAircraft
ToMIFA [ft]

7000

8000

9000

10000

11000

12000

C1C2C3C4C5C6P1P2P3P4
ATCo

maxFlightLevelAircraft
ToMIFA [ft]

7000

8000

9000

10000

C1C2C3C4C5C6P1P2P3P4
ATCo

minFlightLevelAircraft
ToMIFA [ft]

1.2

1.6

2.0

C1C2C3C4C5C6 P1 P2 P3 P4
ATCo

meanLevelChanges
PerAircraft [-]

0.00

0.25

0.50

0.75

1.00

C1C2C3C4C5C6P1 P2 P3 P4
ATCo

sdLevelChangesPerAircraft [-]

1

2

3

4

5

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
ATCo

maxLevelChangesPerAircraft [-]

0.4

0.5

0.6

C1C2C3C4C5C6 P1 P2 P3 P4
ATCo

meanAverageTcpa
PerLogpoint [h]

0.2

0.3

0.4

0.5

0.6

0.7

C1C2C3C4C5C6 P1 P2 P3 P4
ATCo

sdAverageTcpaPerLogpoint [h]

5

10

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
ATCo

maxAverageTcpa
PerLogpoint [h]

0.15

0.20

0.25

0.30

C1C2C3C4C5C6P1 P2 P3 P4
ATCo

minAverageTcpa
PerLogpoint [h]

0.6

0.9

1.2

1.5

C1C2C3C4C5C6 P1 P2 P3 P4
ATCo

meanAverageTlos
PerLogpoint [h]

1

2

3

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
ATCo

sdAverageTlosPerLogpoint [h]

0

20

40

60

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
ATCo

maxAverageTlosPerLogpoint [h]

0.0

0.1

0.2

0.3

C1C2C3C4C5C6 P1 P2 P3 P4
ATCo

minAverageTlosPerLogpoint [h]

30

40

50

60

C1 C2 C3 C4 C5 C6 P1 P2 P3 P4
ATCo

meanAverageDcpa
PerLogpoint [nm]

Determining Air Traffic Controller Proficiency T.P. de Jong



70 Data and Measures

Figure A-4: Boxplot of measure 48 to 55
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Genetic Algorithm and Hierarchical
Clustering

B-1 Genetic Algorithm Theory

This section describes the theory of hierarchical clustering and a genetic algorithm.
A genetic algorithm is a technique within the concept of the evolutionary computation.
Evolutionary computation is based on computational models of natural selection and
genetics, and is the evolutionary approach to machine learning (Negnevitsky, 2011). All
evolutionary computation techniques simulate evolution by using the biological inspired
concepts of selection, mutation and reproduction to explore the search domain (Negnevitsky,
2011).

Genetic algorithms are used to find solutions to optimization and search problems. The
advantage of using a genetic algorithm is that it can search in a huge search domain relatively
quick. A genetic algorithm does not get stuck in a local optimum, because it uses mutation in
the chromosome which is equivalent to a random search in the search domain (Negnevitsky,
2011).

Genetic algorithms are defined as “a class of stochastic search algorithms based on biological
evolution” (Negnevitsky, 2011, p.222). The genetic algorithm measures the performance of
the individual chromosomes based on a fitness function to carry out reproduction. When
reproduction takes place, crossover between parts of chromosomes and mutation of individual
values within a chromosome take place. After a number of successive reproductions, the result
is that lower performing chromosomes will disappear and higher performing chromosomes
will excel (Negnevitsky, 2011).

At the start of the algorithm the candidate solutions must be represented by a binary string
of a fixed length. This binary string will be the chromosome within the population. An initial
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chromosome population of size N is randomly generated where each chromosome has the
same length as the amount of candidate solutions: x1, x2, ..., xN . Furthermore, the crossover
probability pc and the mutation probability pm is set. Finally, a fitness function is defined to
measure the performance of an individual chromosome. The fitness of a chromosome forms
the basis for the selection of chromosomes that will be used for reproduction (Negnevitsky,
2011).

After the initialization of the algorithm an iterative process follows according to the following
steps (Negnevitsky, 2011). Figure B-1 shows an example of the genetic algorithm after each
run through the steps:

1. Calculate the fitness of each individual chromosome in the population:
f(x1), f(x2), ..., f(xN )

2. Select a pair of chromosomes from the current population for reproduction. The pair of
chromosomes are selected with a probability based on their fitness. Chromosomes with
a high fitness have a higher probability to be selected.

3. Create a new pair of offspring chromosomes from the selected chromosomes in step 2
by using crossover and mutation.

4. Place the created offspring chromosomes in the new population.
5. Repeat step 2 until the size of the new chromosome population has the same size as the

initial population.
6. Replace the initial population with the new chromosome population.
7. A new generation was born! Go to step 1 and repeat the process to create the next

generation until the termination criterion is satisfied.
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Figure B-1: Example of the GA cycle (adapted from Negnevitsky (2011))

In Figure B-1 a roulette wheel is present, which is a commonly used chromosome selection
technique (Negnevitsky, 2011). Each chromosome has its own slice on the roulette wheel and
the size of the slice depends on how fit the chromosome is. Therefore, chromosomes that have
a higher fitness will have a higher probability to be chosen to create offspring.

B-2 Fitness Functions

Several fitness functions have been tried using max(BSS/WSS). The use of max(BSS/WSS)
is discussed in the preliminary report (Part II). This subsection shows the advantages and
disadvantages of the tried fitness functions.

Fitness functions with max(BSS/WSS) (Figure B-2):
1. Does not consider cluster composition.
2. High tendency to pick “sawtooth measures”.
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Figure B-2: Cluster phenomenon when the fitness function contains max(BSS/WSS).

Split population into the expertise groups beforehand and calculate max(BSS/WSS) (Figure
B-3):

1. Does consider cluster composition!
2. No actual clustering is performed, because the desired expertise clusters are already

determined beforehand by splitting the population.
3. Picks good performing measures.

Figure B-3: Cluster phenomenon when max(BSS/WSS) is calculated for the individual expertise
groups
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B-3 PCA Representation

This section shows a principal component analysis (PCA) representation of the clustered data
set using the 8 measures from the best set of measures. This representation could be used
to get graphical insight in the clustering results. Figure B-4 shows a 3D representation while
Figure B-5, Figure B-6 and Figure B-7 show the 2D representation.

Figure B-4: PCA in 3D of the standardized data [-]
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Figure B-5: PCA 1 and PCA 2 of the standardized data [-]
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Figure B-6: PCA 1 and PCA 3 of the standardized data [-]
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Figure B-7: PCA 2 and PCA 3 of the standardized data [-]
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Appendix C

Different Scenario

The dataset consists of data from four different runs solved by three different ATCos. All par-
ticipants completed a multiple day extensive ATC-course and/or had worked as a researcher
in the ATC field (the ATC course/research group) (Van Rooijen, 2018).

The experiment was performed in a medium-fidelity ATC simulation tool called Sector X
(Van Rooijen, 2018). A sector was used which was comparable to the AMS ACC South Sec-
tor. Participant were able to provide commands to the aircraft using the separate command
window by means of clicking on buttons using a computer mouse. The traffic was controlled
by clicking on the aircraft and then giving a command using the command window. The
aircraft were separated by giving heading and speed commands.

The participant had to follow the following specific instructions (Van Rooijen, 2018):

• Loss-of-Separation should be avoided.
• Aim to guide the aircraft to their exit waypoint as efficiently as possible.

Two different scenarios were used in this experiment. Each ATCo performed the scenario
twice: one time with SSD and one time without SSD. The scenario had constant sector
settings but had different traffic. Each scenario contained 10 conflict pairs caused by 20
aircraft which needed to be solved.

The obtained data consist of two files. One file contains the given commands to the aircraft
from the command window, including a timestamp. The other file contains the data from
the simulation window. This file includes, per logpoint, the aircraft position, (commanded)
heading and (commanded) speed. A logpoint was recorded every 5 seconds during the exper-
iment.

Giving level commands was not part of this experiment and all aircraft in the scenarios
were on the same flight level (Van Rooijen, 2018). Therefore, all metrics and measures that
incorporate the use of a variable flight level were excluded for the comparison. With the
altered total measure set the selection process was run again to find the best set of measures.
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Table C-1: Set of measures, without flight level measures, that best describes the expertise level
of the ATCos from the dataset of Somers

M1 Total given number of commands
M2 Ratio between the number of given DCT commands and the total number of given

DCT, HDG and SPD commands
M3 Ratio between the number of given HDG commands and the total number of given

DCT, HDG and SPD commands
M4 Ratio between the total sum of squared track miles when a heading command is

given and the total sum of squared track miles when a heading or speed command
is given

M5 Ratio between the total sum of squared track miles when a speed command is given
and the total sum of squared track miles when a heading or speed command is given

M6 Minimum value of all the occupied SSD Areas
M7 Standard deviation of the aircraft time in sector
M8 Mean of the average TCPA per logpoint
M9 Maximum of the average TLOS per logpoint
M10 Standard deviation of the relative distance between aircraft per logpoint

Table C-1 shows the set of measures, without flight level measures, that best describes the
expertise level of the ATCos from the dataset of Somers.

The data of the measures from Table C-1 are extracted from the data from Van Rooijen. The
extracted data is standardized with the mean and standard deviation of the measures from
the data from Somers. Only then can the data be clustered together to get the results shown
in Figure C-1.
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Figure C-1: Dendrogram when adding a test set containing data from a different experiment.
The data from Somers is represented by C and P participants. The data from Van Rooijen is
represented by V participants

From the figure it can be seen that the data from Van Rooijen is very distant from the data
from Somers. The measures used in Table C-1 are scenario dependent and can therefore only
be used to compare data from the same experiment.
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Appendix D

Software Architecture

This appendix chapter shows the software architecture used to obtain the best set of measures
that describes the expertise level. Figure D-1 shows the steps in preparing, processing and
clustering the data. To achieve this, a combination of Python and R is used.
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Figure D-1: The software architecture used to find the best set of measures that describes the
expertise level
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