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Abstract

Upper bounds for the kissing number can be written as a semidefinite program (SDP) through the
Delsarte-Goethals-Seidel method for spherical codes. This thesis solves the resulting SDP with a
cutting plane approach, in which a sequence of linear programs (LPs) is solved with the addition of linear
constraints every round. We study the computational efficiency of dense and sparser cuts. Sparse cuts
are obtained through a relation to the 𝑘-Sparse Principal Component Analysis problem. For the modest
polynomial degrees considered, the dense and sparse methods show similar performance. Upper
bounds are obtained through calculations in standard and where necessary quadruple precision. Lastly,
it is shown that under a linear cutting plane approach the SDP is solved quicker if not every subsequent
LP is solved till optimality.
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Layman Abstract

The kissing number in dimension 𝑛 is the maximum number of non-overlapping 𝑛-dimensional unit
spheres that can be aligned such that they all touch a central 𝑛-dimensional unit sphere. For most
dimensions only upper and lower bounds are known. Upper bounds can be calculated through an
optimization problem with an infinite amount of linear constraints. In this thesis its optimal solution is
approached through solving a sequence of linear programs, adding new linear constraints each round.
These constraints can involve a lot of variables (in which case they are called dense), or a lesser
amount (sparse). A strategy is presented to find effective sparse cuts. For the modest problem sizes
considered, the dense and sparse strategies lead to similar computational effort required to calculate
the kissing number upper bounds. The results show that in general the linear programs do not have to
be solved till optimality, which leads to shorter computation times.
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1
Introduction

Visualize - or grab - a tennis ball. How many other tennis balls would you be able to place around
this first one, such that every outer tennis ball touches (”kisses”) it? The maximum amount possible is
known as the kissing number in dimension three. With the help of some extra hands you could probably
let 12 tennis balls kiss a central one, but are you convinced that there is no room for number 13? The
mathematical formulation of the kissing number naturally extends to higher dimensions. A unit sphere
centered at the origin is defined as the set of points at distance 1 of the origin, i.e. 𝑆𝑛−1 = {𝑥 ∈ ℝ𝑛 ∶
||𝑥|| = 1}. What is the maximum number of unit spheres that can simultaneously touch a central one,
while none of them overlap? Trying to fit 7-dimensional spheres around another 7-dimensional sphere
is likely best left to a computer.

Even for a computer this is no easy task. Generally, the exact kissing numbers for higher dimensions
are unknown: we only have lower and upper bounds. The upper bounds for kissing numbers can
be obtained through solving an optimization problem. To understand this optimization problem, and
attempt to solve it, some preliminaries are necessary. The trace inner product of two matrices 𝐴, 𝐵 ∈
ℝ𝑛𝑥𝑛 is given by ⟨𝐴, 𝐵⟩ = 𝑇𝑟(𝐴𝑇𝐵) = ∑𝑛𝑖,𝑗=1 𝐴𝑖𝑗𝐵𝑖𝑗. A symmetric matrix 𝑋 is positive semidefinite
(denoted 𝑋 ⪰ 0) if 𝑣𝑇𝑋𝑣 ≥ 0 for all 𝑣 ∈ ℝ𝑛, or equivalently if all eigenvalues of 𝑋 are nonnegative. A
semidefinite program is the problem of finding a positive semidefinite matrix such that a given linear
combination of the matrix elements is minimized, while given linear constraints in the matrix elements
hold (Definition 1.0.1).

Definition 1.0.1. Let 𝑋, 𝐶, 𝐴𝑖 ∈ ℝ𝑛𝑥𝑛 be symmetric matrices and 𝑏𝑖 ∈ ℝ, 𝑖 ∈ {1, ..., 𝑚} . A semidefinite
program (SDP) is an optimization problem of the following form:

minimize ⟨𝐶, 𝑋⟩

subject to ⟨𝐴𝑖 , 𝑋⟩ = 𝑏𝑖 , 𝑖 = 1, ..., 𝑚
𝑋 ⪰ 0.

(1.1)

in which 𝑋 is the variable matrix.

While semidefinite optimization is a relatively modern field of optimizationmathematics, it is well-studied
and has practical and theoretical importance. In this thesis a non-standard approach, referred to as
the cutting plane method, to solving (1.1) will be studied with the goal of calculating upper bounds on
the kissing number. The cutting plane approach consists of solving a sequence of easier optimization
problems, in which each iteration cuts away a part of its feasible region till the feasible region and an
optimal solution therein of (1.1) is reached. The cutting planes considered in this thesis will be linear,
and of specific interest will be the construction of these cuts and the consequences for computational
efficiency. Particularly the performance of dense and sparser cuts for the kissing number problem will
be compared.
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2 1. Introduction

1.1. Content overview
A more complete review on the kissing number is given in Chapter 2. Bounds on the kissing number
and obtaining upper bounds via a SDP formulation are treated in Section 2.1. Having shown that
the kissing number bounds can be written in the form (1.1), Chapter 3 discusses the cutting plane
approach for (1.1). Section 3.1 explores potential advantages of using sparse cuts and lays out a
method for obtaining a single sparse cut. With this, a strategy to obtain a round of sparse cuts is
presented in Section 3.2. Finally, Chapter 4 applies the cutting plane method with strategies using
dense and sparse cuts to the kissing number problem. Analysis on computational efficiency is given
in Section 4.1, whereas the obtained kissing number upper bounds can be found in Section 4.2. The
results are explicitly stated and discussed through Chapter 5.



2
The Kissing Number

The kissing number is the maximum number of non-overlapping unit spheres that can simultaneously
touch a central unit sphere. With 𝑛 the dimension of the Euclidean space in which this problem is
considered, the kissing number is denoted by 𝜏𝑛. For the first two dimensions the kissing number
problem has trivial solutions. In dimension one the sphere configuration in Figure 2.1 leaves no contact
points on the central sphere left, thus 𝜏1 = 2. In dimension two the configuration in Figure 2.2 has all
neighbouring spheres touching and hence 𝜏2 = 6.

Figure 2.1: When a line is placed in a one-dimensional space, there is room for two other lines to touch the original line. Hence
the kissing number in the first dimension is two [28].

Figure 2.2: In dimension two the spheres are circles. Exactly six non-overlapping circles can kiss a central circle, hence 𝜏2 = 6
[29].

The formulation of the kissing number problem is not incredibly recent, but progress is. It is simple
to show that in the third dimension twelve spheres are possible (for instance by the configuration in
Figure 2.3), but the first correct proof showing that a configuration with thirteen spheres is impossible
and thus that 𝜏3 = 12 was published only in 1953 by Schütte and van der Waerden [37]. Sphere
configurations in higher dimensions can not be as easily visualized as in the first three dimensions, but
the kissing number problem is still well-defined for 𝑛 ≥ 4. In 2003 Musin proved 𝜏4 = 24 [30].

2.1. Bounds on the kissing number
Up to and including dimension four the kissing number is exactly known. Which techniques allowed
Musin to prove 𝜏4 = 24, and what is known about the kissing number in higher dimensions? For 𝑛 ≥ 5,
with the exception of 𝑛 = 8 and 𝑛 = 24, the exact kissing number is unknown: only lower and upper
bounds are available. An excellent and up-to-date overview of the current best bounds is kept by Henry
Cohn on [10].
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4 2. The Kissing Number

Figure 2.3: Unlike in the first two dimensions, the solution for the kissing number problem in the third dimension is not trivial.
Here one of the possible configurations with 12 spheres is shown - there is still space left, but not enough for a thirteenth sphere
[8].

Generally, lower bounds for a kissing number come from finding valid configurations in which the cen-
ters of the outer spheres lie on some lattice. The configuration in Figure 2.3 proves 𝜏3 ≥ 12, and
particularly the outer sphere centers are placed on vertices of a regular icosahedron [8]. Likewise, lat-
tice configurations show for instance 𝜏5 ≥ 40, 𝜏6 ≥ 72 ([18]) or 𝜏17 ≥ 5346, 𝜏18 ≥ 7398 ([21]). A recent
preprint by Ganzhinov [14] finds lower bound configurations from representation theory (𝜏10 ≥ 510,
𝜏11 ≥ 592). Finding upper bounds requires different techniques: by definition no valid sphere configu-
ration is possible for a strict upper bound. Upper bounds for the kissing number are a topic of ongoing
research, both in theoretical as well as computational aspects. The ground for current research was
laid in 1973 by Delsarte, Goethals and Seidel with the development of their two-point upper bound
method [11], also known as the linear programming bound.

2.1.1. Delsarte-Goethals-Seidel method
Consider the points of contact between any two outer unit spheres and the central sphere in a valid
kissing configuration; denote the associated vectors with 𝑥, 𝑦. The minimum angular distance between
these points of contact is then 𝜋

3 . Equivalently, 𝑥 ⋅ 𝑦 ≤ cos 𝜋3 where ⋅ denotes the standard inner
product. For instance, the configuration in Figure 2.2 has exactly an angular distance of 𝜋3 for any two
neighbouring outer spheres, and angular distances > 𝜋

3 for non-neighbouring outer spheres. Solving
the kissing number problem is equivalent to searching for the maximum amount of points we can place
on a unit sphere 𝑆𝑛−1 such that they have minimum angular distance 𝜋

3 , which is an instance of what
is known as the spherical code problem. Formally the maximum size of a spherical code is denoted by
𝐴(𝑛, 𝜃):

𝐴(𝑛, 𝜃) =max{|𝐶| ∶ 𝐶 ⊂ 𝑆𝑛−1, 𝑥 ⋅ 𝑦 ≤ cos𝜃 ∀𝑥, 𝑦 ∈ 𝐶 𝑠.𝑡. 𝑥 ≠ 𝑦},

and thus 𝜏𝑛 = 𝐴(𝑛,
𝜋
3 ). An upper bound for 𝐴(𝑛, 𝜃) is given by [11]:

Theorem 2.1.1 (Delsarte-Goethals-Seidel). Let 𝐹(𝑡) = ∑𝑑𝑘=0 𝑓𝑘𝑃𝑛𝑘 (𝑡). If:
1. 𝑓𝑘 ≥ 0 for all 𝑘 ≥ 1 and 𝑓0 > 0 and
2. 𝐹(𝑡) ≤ 0 for all 𝑡 ∈ [−1, cos𝜃],

then

𝐴(𝑛, 𝜃) ≤ 𝐹(1)
𝑓0

,

in which the Gegenbauer polynomials 𝑃𝑛𝑘 (𝑡) are given by the recursive relationship

𝑃𝑛𝑘 (𝑡) =
2𝑘 + 𝑛 − 4
𝑘 + 𝑛 − 3 𝑡𝑃

𝑛
𝑘−1(𝑡) −

𝑘 − 1
𝑘 + 𝑛 − 3𝑃

𝑛
𝑘−2(𝑡)

for 𝑘 ≥ 2, and 𝑃𝑛0 (𝑡) = 1, 𝑃𝑛1 (𝑡) = 𝑡. A full contemporary proof of Theorem 2.1.1 can be found in [4].
Less technical but recommended is the review in [32].



2.1. Bounds on the kissing number 5

Theorem 2.1.1 provides upper bounds for instances of the spherical code problem: particularly the
lowest upper bounds are of interest. First note that the polynomials 𝑃𝑛𝑘 (𝑡) are normalized in such a
way that 𝑃𝑛𝑘 (1) = 1, hence 𝐹(1) = ∑

𝑑
𝑘=0 𝑓𝑘. Using 𝜃 =

𝜋
3 , finding the lowest Delsarte-Goethals-Seidel

upper bound for the kissing number problem is the following optimization problem1:

minimize 1 +
𝑑

∑
𝑘=1

𝑓𝑘

subject to 𝑓𝑘 ≥ 0 ∀𝑘 = 1, ...𝑑,

1 +
𝑑

∑
𝑘=1

𝑓𝑘𝑃𝑛𝑘 (𝑡) ≤ 0 ∀𝑡 ∈ [−1, 0.5].

(2.1)

The linear programming problem (2.1) contains an infinite amount of linear constraints, namely one for
every 𝑡 ∈ [−1, 0.5]. Hence, the problem still needs some massaging to be of practical use. In particular,
the polynomial 1+∑𝑑𝑘=1 𝑓𝑘𝑃𝑛𝑘 (𝑡) of degree 𝑑 should be nonpositive on the interval [−1, 0.5]. A theorem
of Lukács ([39]) specifies when this is the case.

Theorem 2.1.2 (Lukács). Let 𝑓(𝑡) be a polynomial of even degree 𝑑. If and only if 𝑓 is nonpositive on
[𝑎, 𝑏], 𝑓 can be written as:

𝑓(𝑡) = −ℎ21(𝑡) − (𝑡 − 𝑎)(𝑏 − 𝑡)ℎ22(𝑡),

where ℎ1 and ℎ2 are polynomials of at most degree 𝑑
2 and 𝑑

2 − 1 respectively.

This thesis only concerns itself with the case in which 𝑑 is even; similar results hold for 𝑑 uneven. By
Theorem 2.1.2 the infinite amount of linear constraints on the polynomial 1 + ∑𝑑𝑘=1 𝑓𝑘𝑃𝑛𝑘 (𝑡) becomes:

1 +
𝑑

∑
𝑘=1

𝑓𝑘𝑃𝑛𝑘 (𝑡) = −ℎ21(𝑡) − (𝑡 + 1)(0.5 − 𝑡)ℎ22(𝑡). (2.2)

Sum-of-squares polynomials are polynomials of the form 𝑔(𝑡) = 𝑝21 + ... + 𝑝2𝑚. Writing 𝑞1 = ℎ21 and
𝑞2 = ℎ22, it is clear that 𝑞1 and 𝑞2 are sum-of-squares polynomials, specifically the sum of one square.
Thus the constraint (2.2) can be written as

1 +
𝑑

∑
𝑘=1

𝑓𝑘𝑃𝑛𝑘 (𝑡) = −𝑞1(𝑡) − (𝑡 + 1)(0.5 − 𝑡)𝑞2(𝑡), (2.3)

in which 𝑞1 and 𝑞2 are sums-of-squares. Theorem 2.1.3 connects sum-of-squares polynomials to pos-
itive semidefinite matrices.

Theorem 2.1.3. Let 𝑞 ∈ ℝ[𝑡] be a polynomial of even degree and let 𝐵 be a basis of ℝ[𝑡]≤𝑑2
with 𝑣𝐵

the associated basis vectors. If and only if 𝑞 is sum-of-squares there is a positive semidefinite matrix
𝑄 ∶ 𝐵 × 𝐵 → ℝ such that 𝑞 = 𝑣𝑇𝐵𝑄𝑣𝐵.

Proof. Included is a proof for ”⇒”. 𝑞 is sum-of-squares, i.e. 𝑞 = 𝑝21 + ... + 𝑝2𝑚 for some 𝑝1, ..., 𝑝𝑚. Since
𝑞 is of degree 𝑑, each 𝑝𝑖 has degree at most 𝑑2 and can be written as 𝑝𝑖 = 𝑢𝑇𝑖 𝑣𝐵 for some 𝑢𝑖 ∶ 𝐵 → ℝ.
Then 𝑞 = 𝑣𝑇𝐵𝑄𝑣𝐵 with 𝑄 = 𝑢1𝑢𝑇1 + ... + 𝑢𝑚𝑢𝑇𝑚 positive semidefinite.

1The code in Appendix A, B allows decision variables 𝑓0 , ..., 𝑓𝑑 instead of 𝑓1 , ..., 𝑓𝑑. This does not influence the optimization
problem, but is slightly less efficient.



6 2. The Kissing Number

Denote the spaces of polynomials up to degree 𝑑
2 and 𝑑

2 − 1 by ℝ[𝑡]≤𝑑2
and ℝ[𝑡]≤𝑑2−1

respectively and
let 𝐵1 and 𝐵2 be bases of ℝ[𝑡]≤𝑑2

and ℝ[𝑡]≤𝑑2−1
. By Theorem 2.1.3 the polynomials 𝑞1 and 𝑞2 can be

represented with the use of positive semidefinite matrices. In this thesis only the standard basis is used
- de Laat et al. [20] show selecting a different basis can be beneficial. Thus, write 𝑣𝑇𝐵1 = (1, 𝑡, ..., 𝑡

𝑑
2 )

and 𝑣𝑇𝐵2 = (1, 𝑡, ..., 𝑡
𝑑
2−1). Then there exist matrices 𝑋1 ⪰ 0 and 𝑋2 ⪰ 0 such that 𝑞1 = 𝑣𝑇𝐵1𝑋1𝑣𝐵1 and

𝑞2 = 𝑣𝑇𝐵2𝑋2𝑣𝐵2 . Alternatively 𝑞1 and 𝑞2 can be represented as a trace inner product: 𝑞1 = ⟨𝑣𝐵1𝑣𝑇𝐵1 , 𝑋1⟩
and 𝑞2 = ⟨𝑣𝐵2𝑣𝑇𝐵2 , 𝑋2⟩.
With the constraint (2.3) rewritten using trace inner products, the lowest Delsarte-Goethals-Seidel upper
bound for the kissing number is found by solving:

minimize 1 +
𝑑

∑
𝑘=1

𝑓𝑘

subject to 𝑓𝑘 ≥ 0 ∀𝑘 = 1, ...𝑑,

1 +
𝑑

∑
𝑘=1

𝑓𝑘𝑃𝑛𝑘 (𝑡) + ⟨𝑣𝐵1𝑣𝑇𝐵1 , 𝑋1⟩

+ ⟨(𝑡 + 1)(0.5 − 𝑡)𝑣𝐵2𝑣𝑇𝐵2 , 𝑋2⟩ = 0,
𝑋1, 𝑋2 ⪰ 0.

(2.4)

Finally, let𝑋 = ⎛⎜

⎝

𝑋1
𝑋2

𝑓1 . . .
𝑓𝑑

⎞
⎟

⎠

and 𝑣𝐵𝑣𝑇𝐵 =
⎛
⎜

⎝

𝑣1
𝑣2

0
. . .

0

⎞
⎟

⎠

in which

𝑣1 and 𝑣2 are the matrices 𝑣𝐵1𝑣𝑇𝐵1 and (𝑡 +1)(0.5− 𝑡)𝑣𝐵2𝑣𝑇𝐵2 respectively, to simplify (2.4). In particular
the nonnegativity constraints for the decision variables 𝑓𝑖 are incorporated into the decision matrix, of
which their is now only one (2.5).

minimize 1 +
𝑑

∑
𝑘=1

𝑓𝑘

subject to 1 +
𝑑

∑
𝑘=1

𝑓𝑘𝑃𝑛𝑘 (𝑡) + ⟨𝑣𝐵𝑣𝑇𝐵 , 𝑋⟩ = 0,

𝑋 ⪰ 0.

(2.5)

The semidefinite optimization problem (SDP) (2.5) outputs an upper bound for 𝜏𝑛, depending on the
maximum degree 𝑑 of the Gegenbauer polynomials 𝑃𝑛𝑘 (𝑡) used. The size of the optimization problem
is not dependent on the dimension 𝑛. With an increase of 𝑑 a larger set of polynomials is considered,
thus a higher 𝑑 leads to a lower upper bound found. This highlights the need for a computationally
efficient way to solve (2.5).

2.1.2. Recent improvements
While this thesis only considers the Delsarte-Goethals-Seidel upper bound in the form of (2.5), it is worth
mentioning its limitations and recent improvements. The formulation (2.1) was used by Odlyzko and
Sloane [31] to calculate a considerable amount of then best upper bounds for kissing numbers (although
via a constraint sampling method and subsequent interval arithmetic to arrive at upper bounds instead
of the semidefinite approach (2.5)). Still their best result for the fourth dimension was 𝜏4 ≤ 25.5585, i.e.
𝜏4 ≤ 25. In fact, in 2000 Arestov and Babenko proved that the Delsarte-Goethals-Seidel upper bound
for 𝜏4 will never be lower than 25 ([3]). Musin [30] finally showed that there exists conditions under
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which the constraint 1 + ∑𝑑𝑘=1 𝑓𝑘𝑃𝑛𝑘 (𝑡) ≤ 0 does not have to hold towards the left side of the interval
[−1, 0.5], which through a more involved optimization problem lead to 𝜏4 = 24. An interesting review
can once again be found in [32].

Further progress has been made by Bachoc and Vallentin [4] with the consideration of a three points
distance distribution on the unit sphere. The resulting SDP gives tighter bounds than the two points
distance distribution SDP (2.5). However, both optimization problems suffer from numerical instability.
While this instability is worse for higher dimensions, Mittelmann and Vallentin [26] showed that already
for 𝑛 = 5 quadruple precision leads to a better bound (𝜏5 ≤ 44, previously≤ 45 ([4])). In 2018 Machado
and Oliveira [9] calculated new best upper bounds for 𝜏9, ..., 𝜏23 by exploiting polynomial symmetry in
the formulation of the three point bound. While the numerical solver outcomes have not been rigorously
verified as correct polynomial solutions, computational speedup has been achieved by Leijenhorst and
de Laat with a semidefinite solver ([23]) for problems with low-rank constraint matrices, leading to
improved upper bounds for 𝜏11, ..., 𝜏23.





3
A Cutting Plane Approach

Semidefinite optimization is a relatively modern field within optimization mathematics, applicable to a
wide range (Figure 3.1) of real-life as well as more theoretical problems. In control and systems the-
ory, semidefinite programming is used in the search for Lyapunov functions for a range of different
systems, and linear matrix inequalities are found in a variety of problems [7]. Other semidefinite opti-
mization applications - a non-exhaustive list can be found in [41] - range from eigenvalue optimization,
to robust optimization, as well as relaxations for combinatorial problems. A notable result is a 0.87856-
approximation algorithm for the maximum cut problem by Goemans and Williamson [15]. Sphere pack-
ings and spherical codes fall under this last category as well, and indeed upper bounds for the kissing
number have been written as a semidefinite programming problem (2.5). A formal expression of a
semidefinite program is given by Definition 1.0.1.

Figure 3.1: Semidefinite programming encapsulates a wide range of problems in the class of conic optimization problems. In
particular any linear program, quadratic program, or second-order cone program can be written as a SDP [2].

There are multiple ways to view the matrix 𝑋 in Definition 1.0.1. In the context of this thesis, particularly
helpful is to realize 𝑋 ∈ ℝ𝑛𝑥𝑛 is essentially an array 𝑥 of decision variables, i.e. 𝑥 = (𝑥1, ..., 𝑥0.5(𝑛2+𝑛)).
A SDP minimizes a linear combination 𝑐𝑇𝑥 of these decision variables, while some linear constraints
𝑎𝑇𝑖 𝑥 = 𝑏𝑖 must hold. However, the constraint 𝑣𝑇𝑋𝑣 ≥ 0 ∀𝑣 ∈ ℝ𝑛 adds to the complexity of the
optimization problem. For instance, a classical example by Kyachiyan shows a SDP for which even
the bit-size of an optimal solution is exponential in the amount of variables [34]. In most practical
cases more favorable results hold and optimal solutions up to an additive 𝜖-precision can be found by
polynomial time algorithms. Algorithms to solve SDPs have mainly been generalizations of interior-
point methods for linear programs (LPs). An analysis of several interior-point methods for SDPs, their
complexity and practical performance can be found in [7]. The general theory of interior-point methods
for convex optimization is treated in [35].

9
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An alternative approach is to relax the constraint 𝑣𝑇𝑋𝑣 ≥ 0 ∀𝑣 ∈ ℝ𝑛 to include only a finite set of
vectors {𝑣𝑗}𝑘𝑗=1 , 𝑘 ∈ ℕ≥1 and to solve the resulting LP, or to solve a sequence of LPs with the addition
of constraints 𝑣𝑇𝑋𝑣 ≥ 0 in every iteration. These constraints 𝑣𝑇𝑋𝑣 ≥ 0 are known as (linear) cutting
planes. The sampling method used by Odlyzko and Sloane [31] to calculate upper bounds for the
kissing number is in fact a rudimentary implementation of the single LP relaxation. A more involved
example is the work of Krishnan and Mitchell [19]. Sequential linear cutting planes have previously
mostly been considered in the context of quadratically constrainted quadratic programs [33, 38].

Algorithm 1: Cutting Plane Method(SDP)
Input : An initial LP relaxation of a SDP
Parameters: TerminatingConditions: check if the LP solution is accepted as SDP

solution
Output : Solution matrix 𝑋

1 Initialize: LP1 ←LP, 𝑡 ← 1
2 repeat
3 Solve LP𝑡 to obtain a LP solution �̂�𝑡
4 Obtain a round of cuts {𝑣𝑖}𝑝𝑖=1 using GenerateCuts (LP)
5 LP𝑡+1 ← LP𝑡 with the addition of the cuts {𝑣𝑖}𝑝𝑖=1
6 𝑡 ← 𝑡 + 1
7 until TerminatingConditions
8 𝑋 ← �̂�𝑡
9 return 𝑋

Algorithm 1 more formally describes this method of sequential LP solving. How to obtain the set of cuts
each round, i.e. which algorithm to use for GenerateCuts(LP)? A first option is to use the eigenvectors
{𝑣𝑗}𝑚𝑗=1 corresponding to negative eigenvalues of a solution �̂�𝑡. These eigenvectors are valid cuts:
𝑣𝑗�̂�𝑡𝑣𝑗 < 0, and certainly the constraints 𝑣𝑗𝑋𝑣𝑗 ≥ 0 are valid for the SDP (1.1).

3.1. The use of k-sparse eigencuts
A known downside to this approach lies in the constraints added from the eigenvectors 𝑣𝑖. Typically
these cuts will be dense, and when a lot of them are used the LPs become slow to solve, as well as
potentially suffer from numerical issues. Furthermore, the amount of cuts added per iteration is quite
limited (one per negative eigenvalue), so a lot of LPs will need to be solved before the positive semidef-
inite cone is succesfully approached. Results from Baltean-Lugojan et al. and Qualizza et al. [5, 33]
show that the use of sparse cuts can improve computational effort required. In particular Qualizza et al.
[33] ”sparsify” the dense cuts found from eigenvectors corresponding to negative eigenvalues, among
the application of other methods. Recently Dey et al. [13] have performed an extensive computational
study on a cutting plane method in which sparsity is directly enforced, and it is their method applied in
this thesis.

Consider the support of a vector 𝑣, defined as the nonzero entries of this vector 𝑣 and denoted by
𝑠𝑢𝑝𝑝(𝑣). Enforcing a sparsity 𝑘 on 𝑣 means |𝑠𝑢𝑝𝑝(𝑣)| ≤ 𝑘. Thus Definition 3.1.1 characterizes 𝑘-
sparse eigencuts. A principle submatrix of �̂� for a certain index set 𝐼 is the matrix formed by the rows
and columns with indices in 𝐼 of �̂�, and denoted by �̂�𝐼.
Definition 3.1.1. A 𝑘-sparse eigencut of �̂� ∈ ℝ𝑛 is a vector 𝑣 ∈ ℝ𝑛 such that:

• 𝑣𝑇�̂�𝑣 < 0,
• ‖𝑣‖0 ∶= |𝑠𝑢𝑝𝑝(𝑣)| ≤ 𝑘, and
• The 𝑘-length vector consisting of the nonzero entries of 𝑣 is a unit eigenvector of the principal
submatrix of �̂� obtained through the indices in 𝑠𝑢𝑝𝑝(𝑣).

Ideally, the 𝑘-sparse eigencuts which close the most of the gap in objective value between the current
LP relaxation and the SDP would be added each round. Exactly selecting these most efficient vectors
would require solving the subsequent LPs, which defeats the purpose of adding lightweight cuts. Con-
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sider instead the violation of a cut 𝑣, the value 𝑣𝑇�̂�𝑣 (< 0), as a measure for its efficiency. In particular
finding the most promising (i.e. violated) 𝑘-sparse eigencut then equals the optimization problem (3.1),
which is similar to the 𝑘-Sparse Principal Component Analysis (𝑘-SCPA) problem (Definition 3.1.2).

minimize 𝑣𝑇�̂�𝑣

subject to ||𝑣||2 = 1
||𝑣||0 ≤ 𝑘

(3.1)

Definition 3.1.2. For a positive semidefinite matrix 𝐴 ∈ ℝ𝑛𝑥𝑛 and a sparsity level 𝑘 ∈ ℕ, the 𝑘-Sparse
Principal Component Analysis (𝑘-SPCA) problem consists of finding the following 𝑣 ∈ ℝ𝑛:

maximize 𝑣𝑇𝐴𝑣

subject to ||𝑣||2 = 1
||𝑣||0 ≤ 𝑘.

(3.2)

When solving the most violated 𝑘-sparse eigencut problem, the matrix �̂� will not be positive semidefinite
(by definition). The 𝑘-SPCA problem however is defined for matrices 𝑋 ⪰ 0. Dey et al. [13] show that
in any case an instance of (3.1) can be translated into an instance of (3.2); see Lemma 3.1.1. Their
proof is included and contains an explicit construction of this translation.

Lemma 3.1.1. For any matrix �̂� ⪰̸ 0, �̂� ∈ ℝ𝑛𝑥𝑛 and 𝑘 ∈ ℕ, there exists a matrix 𝐴 ⪰ 0, 𝐴 ∈ ℝ𝑛𝑥𝑛 such
that finding the most violated 𝑘-sparse eigencut of �̂� (3.1) is equivalent to solving the 𝑘-SPCA problem
(3.2), i.e. both optimization problems have the same solution vector 𝑣 ∈ ℝ𝑛.

Proof. Denote the largest eigenvalue of �̂� by 𝜆𝑚𝑎𝑥, and let 𝐴 = 𝜆𝑚𝑎𝑥𝐼 − �̂� in which 𝐼 is the 𝑛𝑥𝑛 identity
matrix. Then all eigenvalues of 𝐴 are positive: 𝐴 is positive semidefinite. Furthermore

𝑣𝑇�̂�𝑣 = 𝑣𝑇(�̂� − 𝜆𝑚𝑎𝑥𝐼)𝑣 + 𝜆𝑚𝑎𝑥𝑣𝑇𝑣,

and using 𝑣𝑇𝑣 = 1 and the fact that the solution of a minimization problem is equal to that of the problem
maximizing the negative of the same objective function, (3.1) can be written as

𝜆𝑚𝑎𝑥−maximize 𝑣𝑇(𝜆𝑚𝑎𝑥𝐼 − �̂�)𝑣

subject to ||𝑣||2 = 1
||𝑣||0 ≤ 𝑘

which is an instance of 𝑘-SPCA (3.2) using the positive semidefinite matrix 𝐴.

Thus, the most violated 𝑘-sparse eigencut of an intermediate LP solution �̂� can be found by solving
the 𝑘-SPCA problem for 𝐴 = 𝜆𝑚𝑎𝑥𝐼 − �̂�. The 𝑘-SCPA problem is NP-hard [27], but practically efficient
methods with good results on convergence and empirical worst-case performance exist [12, 42]. In
particular, consider the Truncated Power Method (Algorithm 2) proposed by Yuan and Zhang [42],
which is a variation on the power method; every iteration includes a truncation (Definition 3.1.3) step
via which 𝑘-sparsity is enforced.

Definition 3.1.3. The truncation operation 𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑥, 𝐹) for a given vector 𝑥 and index set 𝐹 sets
elements of 𝑥 not in 𝐹 to zero:

[𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑥, 𝐹)]𝑖 = {
[𝑥]𝑖 𝑖 ∈ 𝐹
0 else.
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Algorithm 2: Truncated Power Method(𝐴, 𝑥0, 𝑘)
Input : A symmetric matrix 𝐴 ∈ ℝ𝑛𝑥𝑛 and an initial vector 𝑥0 ∈ ℝ𝑛
Parameters: Cardinality 𝑘 ∈ {1, ..., 𝑛}
Output : 𝑘-sparse vector 𝑥

1 Initialize: 𝑡 ← 1
2 repeat
3 𝑥′𝑡 = 𝐴𝑥𝑡−1/||𝐴𝑥𝑡−1||
4 Let 𝐹𝑡 = supp (𝑥′𝑡 , 𝑘) be the indices of 𝑥′𝑡 with the largest 𝑘 absolute values
5 �̂�𝑡 = Truncate(𝑥′𝑡 , 𝐹𝑡)
6 Normalize 𝑥𝑡 = �̂�𝑡/||�̂�𝑡||
7 𝑡 ← 𝑡 + 1
8 until Convergence
9 𝑥 ← 𝑥𝑡
10 return 𝑥

Algorithm 2 allows for the calculation of a single 𝑘-sparse eigencut approximately solving (3.1). This
is not yet a complete strategy for generating cuts in between subsequent LPs: a multitude of 𝑘-sparse
eigencuts should be added, capable of reducing the relaxation gap in a manner similar to dense eigen-
cuts.

3.2. Generating a round of k-sparse eigencuts
The computational study by Dey et al. [13] shows that a round of 𝑘-sparse eigencuts should include
cuts from multiple supports to be effective. Furthermore, the violation 𝑣𝑇�̂�𝑣 is a suitable measure for
the strength of a cut, which justifies the approach (3.1) and thus allows a round of cuts to be generated
without having to solve additional LPs. Dey et al. propose the use of Algorithm 3 (SparseRound(�̂�, 𝑘)),
which returns a round of 𝑘-sparse eigencuts given a matrix �̂� ⪰̸ 0 and a sparsity 𝑘. Note the similarity
between Algorithm 3 and the standard matrix deflation method - particularly, for 𝑘 = 𝑛 all eigenvectors
corresponding to negative eigenvalues are returned [13].

Algorithm 3: SparseRound(�̂�, 𝑘): one round of 𝑘-sparse eigencuts
Input : A matrix �̂� ∈ ℝ𝑛𝑥𝑛 with �̂� ⪰̸ 0, and a sparsity level 𝑘
Parameters: MaxNumSupports: maximum number of considered supports

TruncatedPowerMethod: Algorithm 2
Output : A sequence of k-sparse eigencuts {�̂�𝑗}𝑝𝑗=1

1 Initialize: 𝑝 ← 0, 𝑖 ← 1, 𝑋1 ← �̂�, and 𝑤 ← TruncatedPowerMethod(𝑋1)
2 while 𝑤𝑇𝑋𝑖𝑤 < 0 and 𝑖 < MaxNumSupports do
3 𝐼 ← supp (w)
4 Let 𝜆𝑚𝑖𝑛𝑖 and 𝑞𝑖 denote the most negative eigenvalue and its corresponding unit

eigenvector of principal submatrix 𝑋𝑖𝐼
5 Let �̂�𝑖 denote 𝑞𝑖 lifted to ℝ𝑛𝑥𝑛 by setting all components not in 𝐼 to 0
6 𝑋𝑖+1 ← 𝑋𝑖 − 𝜆𝑚𝑖𝑛𝑖 �̂�𝑖�̂�𝑇𝑖
7 𝑖 ← 𝑖 + 1 and 𝑝 ← 𝑝 + 1
8 𝑤 ← TruncatedPowerMethod(𝑋𝑖)
9 end
10 return {�̂�𝑗}𝑝𝑗=1

Matrix deflation is prone to numerical instability, whereas Algorithm 2 returns a cut 𝑤 upon reaching
some predefined measure of convergence. The solution of Algorithm 3 is to take the support 𝐼 of 𝑤
and explicitly calculate the eigenvector corresponding to the most negative eigenvalue of 𝑋𝐼. This does
not negatively affect the computational effort required to solve (3.2): the NP-hardness lies in finding an
optimal support, not in finding 𝑤 for some given support. Specifically this allows an iteration limit to be
set for Algorithm 2. Lastly, note that Algorithm 2 is called after the translation from (3.1) to (3.2) as given
by Lemma 3.1.1, i.e. TruncatedPowerMethod(𝑋𝑖) = TruncatedPowerMethod(𝜆𝑚𝑎𝑥𝐼 −𝑋𝑖,𝑣0,𝑘) in which
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𝜆𝑚𝑎𝑥 denotes the largest eigenvalue of 𝑋𝑖. Dey et al. [13] prove that every cut provided by Algorithm 3
is a valid cut for the input matrix �̂� (Theorem 3.2.1). Thus a strategy to generate a complete round of
𝑘-sparse cuts for a matrix �̂� ⪰̸ 0 has been given as an alternative to the use of denser eigenvectors.

Theorem 3.2.1. All vectors �̂�𝑖 from {�̂�𝑗}𝑝𝑗=1 generated by Algorithm 3 are valid cuts for their respective
matrices 𝑋𝑖, and for the LP solution �̂� given as input, i.e.:

1. �̂�𝑇𝑖 𝑋𝑖�̂�𝑖 < 0 for every 𝑖 ∈ {1, ..., 𝑝}, and
2. �̂�𝑇𝑖 �̂��̂�𝑖 < 0 for every 𝑖 ∈ {1, ..., 𝑝}.

Proof. The first part follows from the definition of �̂�𝑖. Secondly, write

�̂� = 𝑋𝑖 +
𝑖−1

∑
𝑗=1
𝜆𝑚𝑖𝑛𝑗 �̂�𝑗�̂�𝑇𝑗 .

Then using the first part and 𝜆𝑚𝑖𝑛𝑗 < 0,

�̂�𝑇𝑖 �̂��̂�𝑖 = �̂�𝑇𝑖 𝑋𝑖�̂�𝑖 + �̂�𝑇𝑖 (
𝑖−1

∑
𝑗=1
𝜆𝑚𝑖𝑛𝑗 �̂�𝑗�̂�𝑇𝑗 )�̂�𝑖

= �̂�𝑇𝑖 𝑋𝑖�̂�𝑖 +
𝑖−1

∑
𝑗=1
𝜆𝑚𝑖𝑛𝑗 (�̂�𝑇𝑖 �̂�𝑗)2 < 0.





4
Application to the Kissing Number

Problem

Upper bounds for the kissing number have been written as a SDP (2.5), to which the cutting plane
approach given by Algorithm 1 can now be applied. In particular the performance of dense eigenvector
cuts will be compared to the performance of the 𝑘-sparse eigencuts generated by Algorithm 3. The
SDPs will generally be of smaller sizes than those considered by Dey et al. in [13], and furthermore the
matrix 𝑋 in (2.5) is block diagonal. For these reasons finding a sufficient amount of 𝑘-sparse eigencuts is
challenging, which potentially leads to solving a sequence of quite similar LPs, and it might often happen
that there are in fact no 𝑘-sparse eigencuts. However, adding a multitude of light-weight cuts is still
attractive whenever possible. This leads to the following two strategies forGenerateCuts (Algorithm 1):

• Dense: Add all eigenvectors corresponding to negative eigenvalues of �̂� as cuts for the next LP.

• Sparse: Generate 𝑘-sparse eigencuts for �̂� via Algorithm 3. If this generates at least as much
cuts as there are negative eigenvalues, and the amount of cuts is greater than two, the 𝑘-sparse
eigencuts are added as cuts for the next LP. Else, use the eigenvectors corresponding to negative
eigenvalues.

The requirement for at least three 𝑘-sparse eigencuts has been found helpful in the last stages of
Algorithm 1, i.e. results in quicker convergence. The kissing number SDP (2.5) comes with two param-
eters, dimension 𝑛 and polynomial degree 𝑑. The sparsity level 𝑘 will be fixed depending on degree 𝑑
at 𝑘 = 𝑑

2 − 1 such that the cuts for both relevant matrix blocks are sparse, for the second block min-
imally. Thus, this is not a computational study on an optimal sparsity level, and for matrices of larger
size a lower sparsity level would be more appropriate. The instances are referred to as Dense(𝑛, 𝑑) or
Sparse(𝑛, 𝑑). The SDPs considered can generally be solved within seconds by standard interior point
methods, for instance via SDPA [1]. All initial LPs include nonnegativity constraints for diagonal entries.
Lastly, in all cases the symmetry of matrix 𝑋 is exploited in the LP formulation.

4.1. Computational results
The cutting plane approach is implemented in Julia [6], a high-level, high-performance programming
language. The standard precision implementation (Appendix A) relies on JuMP [24], whereas the high-
precision version (Appendix B) is implemented directly through the underlying MOI [22]; JuMP at this
time does not support arbitrary precision [17]. All calculations are done single-threaded using an Intel
i7-8750H CPU @2.20GHz.

Solver. Interior point LP methods are more suitable for Algorithm 1, which was confirmed during pre-
liminary analysis. Specifically the open-source solver Tulip [40] is used. Tulip has arbitrary precision
capabilities. Unless mentioned otherwise, solver parameters are set to their standard values. Note that
all references to ”standard precision” in fact mean double precision - this is Tulip’s standard precision.

15
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Cut management. As more LPs are solved, constraints from old iterations might no longer be tight,
slowing down each LP while not contributing to the approach of the PSD cone. For this reason cuts
are deleted if they are inactive past a tolerance (𝑣𝑇𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(�̂�)𝑣 > 10−3) for two iterations in a row.

Parameters and tolerances. An eigenvalue 𝜆 is considered negative if 𝜆 < 10−6; thus Terminating-
Conditions in Algorithm 1 is true if all eigenvalues of �̂�𝑡 are larger than −10−6. Algorithm 2 is initiated
with the eigenvector corresponding to the smallest eigenvalue of 𝑋𝑖, and Convergence in Algorithm 2
is defined as ||𝑥𝑡+1 − 𝑥𝑡|| < 10−12, or an iteration limit of 104 is reached. Algorithm 3 adds cut while
𝑤𝑇𝑋𝑖𝑤 < −10−7. Elements of 𝑞𝑖 (Algorithm 3) are considered to be nonzero if their absolute values
are larger than 10−9.

4.1.1. Standard precision computations
Before analyzing the performance of Sparse compared to Dense: does Algorithm 1 sufficiently ap-
proach a PSD solution at all? Figure 4.1 shows that this is the case for at least relatively small values
of 𝑛 and 𝑑. In general, not every LP will be solved till optimality, but rather the solver will terminate
on hitting its IPM iteration limit, more often so for larger optimization problems. This is not a problem
as long as a PSD solution is eventually still reached, but does point towards numerical instability for
iteration limits greater than a hundred [40].

(a) The LP values per iteration for Sparse and Dense in dimension 3,
polynomial degrees 8, 10 and 12.

(b) The LP values per iteration for Sparse and Dense in dimension 6,
polynomial degrees 8, 10 and 12.

Figure 4.1: The objective values of the iteratively solved LPs for two dimensions of the kissing number and different polynomial
degrees for the Dense and Sparse methods. Algorithm 1 converges to a suitable solution for the SDPs. A higher polynomial
degree implies a lower upper bound, but more LPs need to be solved. The IPM limit is set to 300; still, not every LP is solved till
optimality.

(a) The time spent solving LPs (in seconds) using Sparse and Dense for
dimension 3 and 6, with polynomial degrees 8 - 16.

(b) The ratio of time spent solving LPs between Sparse and Dense for
dimension 3 and 6, with polynomial degrees 8 - 16.

Figure 4.2: The computation times required to solve different cases of Sparse and Dense are compared. Figure 4.2a shows the
respective times for polynomial degrees 8 - 16 in dimension 3 and 6; notice the log scale. Figure 4.2b shows the ratio between
the time spent solving LPs for Sparse and Dense. Mostly Sparse is slightly quicker.
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Due to the iterative nature of Algorithm 2, the Sparse strategy requires more computational effort to
generate cuts than Dense. However for larger matrices generating cuts is not the computational bot-
tleneck - solving the LPs is. To compare Dense with Sparse, only the time spent solving LPs is taken
into account. Figure 4.2 shows these times for the cases in Figure 4.1 and for some higher polynomial
degrees. From Figure 4.2a it is clear that solve time increases greatly with a higher polynomial degree.
Sparse and Dense do not differ significantly, as can be seen in Figure 4.2b. The most positive result
of these results is (3,14), for which the Sparse/Dense time ratio is 0.688.

4.1.2. High precision computations
The cutting plane approach can not be blamed for all numerical difficulties encountered. The opti-
mization problem tends to be less stable for larger dimensions. For instance, using standard precision
computations SDPA can only solve (19, 𝑑) for 𝑑 ≥ 28. To still be able to compute upper bounds, Al-
gorithm 1 including cut generation is implemented in quadruple precision using DoubleFloats [36]. Of
course, performing calculations in higher precision comes at a computational cost.

(a) Quadruple precision makes upper bound calculations for the kissing
number in dimension 19 possible. Polynomial degrees 8 - 12 are used
and the iterative LP values plotted.

(b) Quadruple precision LP solve times for dimension 6 and 19, degrees
8 - 12. Compare dimension 6 with Figure 4.2a.

Figure 4.3: Using quadruple precision, the cutting plane method converges for higher dimensions as well, including 𝑛 = 19. The
operations are computationally more expensive than using standard precision.

Figure 4.3 shows that less stable problems can be solved as well. The Sparse algorithm did not lead to
significant improvements for computational effort required; results are comparable to those in standard
precision. This does show there is no numerical problemwith the cuts being generated from Algorithm 3
using standard precision, i.e. the matrix deflation is not too unstable.

4.1.3. IPM iteration limit
There are multiple possible approaches to solving LPs. Commonly used is the Simplex method, which
guarantees a vertex optimal solution and has superior warm-start capabilities. Still, interior point meth-
ods are more suited for cutting plane approaches, the problems studied here included. The advantage
of IPMs lies exactly in not returning a vertex solution, generally resulting in stronger cuts being gener-
ated [25]. Do the LPs even have to be solved till optimality at all? There are two possible advantages.
First, if an LP is terminated early less time has been spent solving it. Secondly, a more interior point
could result in stronger cuts. To study this, a couple of problems have been solved with varying IPM
iteration limits. When a PSD solution is found (which might not be optimal due to early termination) the
solver continues with iteration limit 200 till an optimal PSD solution is found. The results are shown in
Figure 4.4.

A lower IPM iteration limit leads to an improvement of time spent solving LPs. In particular, the result
seems more pronounced for larger SDPs, although one of the Dense cases ran into numerical issues.
By halving the IPM iteration limit, reasonably no more than a halving of the time spent solving LPs might
be expected, unless the cuts generated are also of higher quality. For some runs the latter seems to be
the case - for instance, compare Dense(5, 14) with iteration limits 100 and 50. In further support of this
is the fact that lowering the IPM iteration limit frequently leads to less iterations of LPs being necessary.
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(a) The time spent solving LPs (in seconds) using Dense(5, 8 − 14/16)
for varying maximum IPM iterations.

(b) The time spent solving LPs (in seconds) using Sparse(5, 8 − 14/16)
for varying maximum IPM iterations.

Figure 4.4: Both for Sparse and Dense the required solving time is positively affected by a lower IPM iteration limit. For limits 50
and 100 the algorithms are run for degrees 8 - 14, for limit 25 degree 16 is added. For higher degrees, generally the improvement
seems to increase. Dense(5, 14) with IPM limit 25 ran into numerical difficulties. All calculations are performed using standard
precision.

4.2. Upper bounds on the kissing number
Finally, an overview of upper bounds obtained using the cutting plane approach can now be presented.
Upper bounds are calculated for 𝜏3 up to 𝜏24. All calculations are performed such that they terminate
in a reasonable time frame: the upper bounds took between 300 and 7200 seconds of LP solving. All
computations are performed with an IPM iteration limit of 50 or 25. The results are shown in Table 4.1.

𝑛 Upper Bound Strategy 𝑛 Upper Bound Strategy

3 13.1583117 Sparse(3,18) 14 3492.20320 Dense(14,14)
4 25.5564353 Dense(4,16) 15 5431.02394 Dense(15,12)
5 46.3375628 Sparse(5,18) 16 8326.94691 Dense(16,12)
6 82.6311980 Sparse(6,16) 17 12290.0331 Dense(17,12)
7 140.162430 Sparse(7,16) 18 18199.2794 Dense(18,12)
8 239.999906 Dense(8,12) 19 26770.9892 Dense(19,12)
9 380.099018 Sparse(9,14) 20 39654.9827 Dense(20,12)
10 594.481567 Dense(10,16) 21 59693.0942 Dense(21,12)
11 914.388883 Dense(11,14) 22 88391.8427 Dense(22,12)
12 1416.08958 Dense(12,14) 23 130338.994 Dense(23,12)
13 2232.63206 Dense(13,14) 24 196559.963 Dense(24,12)

Table 4.1: Computed upper bounds on the kissing number 𝜏𝑛 for dimensions 𝑛 = 3 up to 𝑛 = 24 using the cutting plane
approach. The strategies denoted in italics are performed in quadruple precision.

In dimension 4 the standard precision implementation encountered numerical difficulties; hence high
precision is used. For the matrices considered in Table 4.1, the Dense strategy is preferable for high
precision calculations due to the computational effort necessary for Algorithm 2. For larger sized ma-
trices this would not be a problem: both strategies would spend most time solving LPs. Note the
outcomes for 𝑛 = 8 and 𝑛 = 24. For these dimensions the bound provided by (2.5) is actually tight
(240 and 196560 respectively). The cutting plane approach converges to these bounds from below for
smaller allowed tolerances on the eigenvalues of 𝑋.



5
Conclusion

In this thesis upper bounds on the kissing number in dimensions 3 − 24 have been calculated through
a semidefinite program obtained via the Delsarte-Goethals-Seidel method. The SDP has been solved
using a cutting plane approach, in which iteratively linear programs are solved with the addition of
linear cuts each round. A central topic has been the effect of 𝑘-sparse eigencuts on computational
efficiency, and to that end a Sparse and a Dense strategy have been presented. Due to the size and
block diagonal structure of the variable matrices considered, 𝑘-sparse eigencuts exist in low number.
For this reason the Sparse and Dense strategies performed fairly similar. With both strategies the
PSD cone is succesfully approached, where necessary with high precision computations to overcome
numerical instabilities. In any case the time spent solving LPs grows quickly with the size of the variable
matrix. Allowing less iterations for the interior point method reduced computational effort required. Most
importantly, the cuts generated through non-optimal intermediate LP solutions seem to be of higher
quality.

A numerical tolerance was allowed on the eigenvalues of the variable matrix, which means the polyno-
mials returned are not strictly valid. An interesting question is if a priori a kissing number upper bound
could be bounded for a known eigenvalue tolerance. This would allow a more informed choice of toler-
ance. The impact of sparsity on cuts could be better studied with a larger computational capacity. For
larger matrices it should be possible to generate more as well as sparser cuts. Lastly, not solving each
LP till optimality is a promising strategy to reduce the time spent solving the LP as well as generate a
higher quality round of cuts. When to stop solving inside an LP as well as the impact on problems of
larger size are possible topics for further research.
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Julia Code - Standard Precision

1

2 using AbstractAlgebra
3 using Symbolics
4 using DelimitedFiles
5 using ToeplitzMatrices
6 using BlockDiagonals
7 using LinearAlgebra
8 using JuMP
9 using DataStructures

10 import MathOptInterface as MOI
11 import Tulip
12 setprecision(BigFloat, 1024)
13

14 function gegenbauer_polynomials(n::Int, dmax::Int, t)
15 n >= 2 || error(”n must be >= 2”)
16 dmax >= 1 || error(”dmax must be >= 1”)
17

18 a = (n - 3) // 2
19 ret = [parent(t)(1), t]
20 for k = 2:dmax
21 push!(ret, ((2k + 2a - 1) // (k + 2a) * t * ret[end]
22 - (k - 1) // (k + 2a) * ret[end - 1]))
23 end
24

25 return ret
26 end
27

28 R, t = PolynomialRing(RealField, ”t”)
29

30 function coeff_b(n::Int, dmax::Int, t)
31 b = zeros((dmax+1, dmax+1))
32

33 for j = 1:dmax+1
34 R, t = PolynomialRing(RealField, ”t”)
35 geg = gegenbauer_polynomials(n, dmax, t)[j]
36 for k = 0:dmax
37 b[j, k+1] = BigFloat(coeff(geg, k))
38 end
39 end
40

41 return b
42 end
43

44 function h(n::Int, i::Int)
45 first_column = zeros(BigFloat, 1, n + 1)
46 last_row = zeros(BigFloat, 1, n + 1)
47 for j = 1:n+1
48 if 1 + j - 2 == i
49 first_column[j] = BigFloat(”1”)

23
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50 end
51 if n + j - 1 == i
52 last_row[j] = BigFloat(”1”)
53 end
54 end
55 return Hankel(vec(first_column), vec(last_row));
56 end
57

58 function lp_sos(n::Int, dmax::Int)
59 a = Matrix{BigFloat}[]
60 a_fin = Matrix{BigFloat}[]
61 for i = 0:dmax
62 push!(a, BlockDiagonal([h(Int(dmax / 2), i), -1/2 * h(Int(dmax / 2 - 1), i - 1) + 1/2

* h(Int(dmax / 2 - 1), i) - h(Int(dmax / 2 - 1), i - 2)]));
63 end
64 for i = reverse(1:dmax+1)
65 coeff = coeff_b(n, dmax, t)[:, i]
66 for j = reverse(1:length(coeff))
67 if j > i
68 a[i] = a[i] - coeff[j]*a[j]
69 end
70 if j == i
71 a[j] = a[j] / coeff[j]
72 end
73 end
74 k = zeros(BigFloat, dmax + 1, dmax + 1)
75 k[i, i] = BigFloat(”1”)
76 push!(a_fin, BlockDiagonal([a[i], k]));
77 end
78 a_fin = reverse(a_fin)
79

80 open(”lp_sos.txt”, ”w”) do file
81 ar = zeros(dmax + 1)
82 ar[1] = dmax + 1
83 writedlm(file, [ar])
84 ar[1] = 3
85 writedlm(file, [ar])
86 if isodd(dmax)
87 dim1 = (dmax + 1) / 2
88 dim2 = (dmax + 1) / 2
89 dim3 = dmax + 1
90 writedlm(file, [Int(dim1) Int(dim2) -Int(dim3)])
91 else
92 dim1 = (dmax + 1 + 1) / 2
93 dim2 = (dmax + 1 - 1) / 2
94 dim3 = dmax + 1
95 ar = zeros(dim3)
96 ar[1] = Int(dim1)
97 ar[2] = Int(dim2)
98 ar[3] = -Int(dim3)
99 writedlm(file, [ar])

100 end
101 writedlm(file, [-1 zeros(1, dmax)])
102

103 for m = 0:length(a_fin)
104 for i = 1:2*dmax+2
105 for j = i:2*dmax+2
106 line2 = []
107 if m == 0
108 if i == j
109 if i >= dim1 + dim2 + 1
110 val = -1
111 else
112 val = 0
113 end
114 else
115 val = 0
116 end
117 else
118 val = a_fin[m][i,j]
119 end
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120

121 if val != 0
122 if i >= dim1 + dim2 + 1
123 blocknum = 3
124 pos1 = i - dim1 - dim2
125 pos2 = j - dim1 - dim2
126 line = [m blocknum pos1 pos2 val]
127 for i = 1:length(line)-1
128 push!(line2, Int.(line[i]));
129 end
130 push!(line2, line[length(line)])
131 elseif i >= dim1 + 1
132 blocknum = 2
133 pos1 = i - dim1
134 pos2 = j - dim1
135 line = [m blocknum pos1 pos2 val]
136 for i = 1:length(line)-1
137 push!(line2, Int.(line[i]));
138 end
139 push!(line2, line[length(line)])
140 else
141 blocknum = 1
142 pos1 = i
143 pos2 = j
144 line = [m blocknum pos1 pos2 val]
145 for i = 1:length(line)-1
146 push!(line2, Int.(line[i]));
147 end
148 push!(line2, line[length(line)])
149 end
150 for i = 1:(dim3-5)
151 push!(line2, 0)
152 end
153 writedlm(file, [line2])
154 end
155 end
156 end
157 end
158 end
159 return a_fin
160 end
161

162 function truncate(v::Vector{Float64}, k::Int)
163 ab = abs.(v)
164 b = partialsortperm(ab, 1:k, rev=true)
165 truncated = zeros(length(v));
166 for i = 1:k
167 truncated[b[i]] = v[b[i]]
168 end
169 return truncated
170 end
171

172 function tpmethod(A::Matrix{Float64}, v::Vector{Float64}, k::Int)
173 if checkpsd(A) == false
174 print(”NON PSD”)
175 return [1]
176 end
177 v_new = v
178 v_new = normalize(v_new)
179 v_old = zeros(length(v_new));
180 counter = 0
181 while abs(norm(v_new - v_old)) >= 1e-12
182 if abs(norm(v_new + v_old)) <= 1e-12
183 break
184 end
185 counter = counter + 1
186 if counter == 10000
187 return v_new
188 end
189 v_old = v_new
190 if norm(A*v_old) == 0
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191 print(”WARNINGZERO”)
192 break
193 end
194 v_new = A*v_old/norm(A*v_old)
195 v_new = truncate(v_new, k)
196 v_new = normalize(v_new)
197 end
198 v_new = truncate(v_new, k)
199 v_new = normalize(v_new)
200 return v_new
201 end
202

203 function sparseround(M::Matrix{Float64}, maxnumsupports::Int, k::Int, mode::Int)
204 eigencuts = []
205 M_c = copy(M)
206 if mode == 2 || mode == 0
207 eigenval = real.(eigen(M).values)
208 eigenvec = real.(eigen(M).vectors)
209 count = 0
210 for eig in eigenval
211 count = count + 1
212 if eig < 0 - 1e-06
213 push!(eigencuts, eigenvec[:, count]);
214 end
215 end
216 return eigencuts
217 end
218

219 eigenval = real.(eigen(M).values)
220 count = 0
221 for eig in eigenval
222 if eig < 0 - 1e-06
223 count = count + 1
224 end
225 end
226

227 lmin::Float64 = eigen(M).values[1]
228 lmax::Float64 = last(eigen(M).values);
229 A_psd::Matrix{Float64} = lmax*I - M
230 vecmin::Vector{Float64} = eigen(M).vectors[:, 1]
231 w::Vector{Float64} = tpmethod(A_psd, vecmin, k)
232 if w == [1]
233 return sparseround(M, maxnumsupports, k, 0)
234 end
235

236 i = 1
237 while transpose(w)*M*w < -1e-7 && i < maxnumsupports
238 supp = findall(!iszero, w)
239 princ = M[supp, supp]
240 cut = zeros(length(w));
241 lmin = real.(eigen(princ).values[1])
242 vmin::Vector{Float64} = real.(eigen(princ).vectors[:, 1])
243 for i = 1:length(vmin)
244 if abs(vmin[i]) > 1e-09
245 cut[supp[i]] = vmin[i]
246 end
247 end
248 push!(eigencuts, cut)
249 M::Matrix{Float64} = M - lmin*cut*transpose(cut)
250 lmax = last(real.(eigen(M).values));
251 A_psd = lmax*I - M
252 vecmin = real.(eigen(M).vectors[:, 1])
253 w = tpmethod(A_psd, vecmin, k)
254 if w == [1]
255 return sparseround(M, maxnumsupports, k, 0)
256 end
257 i = i + 1
258 end
259 if length(eigencuts) < count || (length(eigencuts) < 3 && length(eigencuts) == count)
260 eigencuts = sparseround(M_c, maxnumsupports, k, 0)
261 end
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262 return eigencuts
263 end
264

265 function matrixreconstruct(dat)
266 M_l = []
267 for i = 1:(Int(dat[1])+1)
268 M = zeros(2*Int(dat[1]), 2*Int(dat[1]))
269 push!(M_l, M)
270 end
271 for i = 5:Int(size(dat)[1])
272 m = Int(dat[i, 1])
273 block = Int(dat[i, 2])
274 if block == 1
275 j = Int(dat[i, 3])
276 k = Int(dat[i, 4])
277 elseif block == 2
278 j = Int(dat[i, 3] + dat[3, 1])
279 k = Int(dat[i, 4] + dat[3, 1])
280 else
281 j = Int(dat[i, 3] + dat[3, 1] + dat[3, 2])
282 k = Int(dat[i, 4] + dat[3, 1] + dat[3, 2])
283 end
284 M_l[m+1][j, k] = dat[i, 5]
285 M_l[m+1][k, j] = dat[i, 5]
286 end
287 return M_l
288 end
289

290 function soltomatrix(dim::Int, v::Vector)
291 matrix = zeros(2*dim, 2*dim)
292 count = 1
293 for i = 1:2*dim
294 for j = i:2*dim
295 if (i <= dim && j <= dim) || i == j
296 matrix[i, j] = v[count]
297 matrix[j, i] = v[count]
298 count = count + 1
299 end
300 end
301 end
302 return matrix
303 end
304

305 function checkpsd(M::Matrix)
306 M2 = copy(M)
307 l_min = eigmin(M2)
308 if l_min >= -1e-06
309 return true
310 else
311 return false
312 end
313 end
314

315 function cuttingplane(dimension, degree, maxnumsupports, sparsity, mode)
316 val_list = []
317 total_in_solve = 0
318 if mode == 0
319 #DENSE
320 sparsity_used = (degree + 1) * 2
321 else
322 #SPARSE
323 sparsity_used = sparsity
324 end
325 model = Model(Tulip.Optimizer)
326 MOI.set(model, MOI.RawOptimizerAttribute(”IPM_IterationsLimit”), 50)
327 set_silent(model)
328 lp_sos(dimension, degree)
329 dat = readdlm(”lp_sos.txt”)
330 dim = Int(dat[1])
331 M_l = matrixreconstruct(dat)
332 b = zeros(BigFloat, dim)
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333 b[1] = BigFloat(-1)
334

335 @variable(model, x[i = 1:2*dim, j = i:2*dim; (i <= dim && j <= dim) || i == j])
336 @objective(model, Max, sum(-1*x[j, j] for j = (dim+1):2*dim))
337

338 variablelist = []
339 for j = 1:2*dim
340 for k = j:2*dim
341 if (j <= dim && k <= dim) || j == k
342 push!(variablelist, [j, k])
343 end
344 end
345 end
346

347 for i = 1:length(M_l)
348 for j = 1:2dim
349 for k = (j+1):2*dim
350 M_l[i][j,k] = 2*M_l[i][j,k]
351 end
352 end
353 end
354

355 starting_cuts = []
356 @constraint(model, c[i = 1:dim], sum(M_l[i+1][j, k]*x[j, k] for (j,k) in variablelist) ==

b[i])
357 for j = 1:2*dim
358 f = @constraint(model, x[j,j] >= 0)
359 c = zeros(2*dim)
360 c[j] = 1
361 push!(starting_cuts, c)
362 end
363 starting_constraints = ConstraintRef[]
364 for (F, S) in list_of_constraint_types(model)
365 for con in all_constraints(model, F, S)
366 push!(starting_constraints, con)
367 end
368 end
369

370 optimize!(model)
371 val = -MOI.get(model, MOI.ObjectiveValue()) + 1
372 push!(val_list, val)
373 solution_summary(model)
374 sol_v = []
375 for i = 1:2*dim
376 for j = i:2*dim
377 if (i <= dim && j <= dim) || i == j
378 push!(sol_v, value(x[i,j]));
379 end
380 end
381 end
382 sol_m = soltomatrix(dim, sol_v)
383 cutpool = []
384 cutpool_tot = []
385 it = 1
386 cc = 0
387 cuts_counter = Dict()
388 threshold = 1e-3
389 c_it = 0
390 while (checkpsd(sol_m) == false && it <= 50000)
391 cuts = sparseround(sol_m, maxnumsupports, sparsity_used, mode)
392 cuts = unique(cuts)
393 println(length(cuts));
394 for c in cuts
395 push!(cutpool, c)
396 push!(cutpool_tot, c)
397 cuts_counter[c] = 0;
398 end
399 cutpool = unique(cutpool);
400 cut_m = []
401 for i = 1:length(cuts)
402 push!(cut_m, cuts[i]*transpose(cuts[i]));
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403 end
404

405 mult = ones(2*dim, 2*dim)
406 for i = 1:2*dim
407 for j = (i+1):2*dim
408 mult[i,j] = 2;
409 end
410 end
411 for cut in cuts
412 cut_m = cut*transpose(cut)
413 d = @constraint(model, sum(mult[j,k]*cut_m[j, k]*x[j, k] for (j,k) in

variablelist) >= 0)
414 set_name(d, string(cut));
415 end
416 println(length(cutpool));
417 for cut in cutpool
418 if transpose(cut)*normalize(sol_m)*cut >= threshold && it > 200
419 cuts_counter[cut] = cuts_counter[cut] + 1
420 if cut in starting_cuts
421 #
422 else
423 if cuts_counter[cut] == 2
424 push!(starting_cuts, cut)
425 c_name = string(cut)
426 delete(model, constraint_by_name(model, c_name));
427 deleteat!(cutpool, findfirst(x->x==cut,cutpool));
428 unregister(model, :c_name)
429 delete!(cuts_counter, cut)
430 end
431 end
432 else
433 cuts_counter[cut] = 0
434 end
435 end
436 optimize!(model)
437 total_in_solve = total_in_solve + MOI.get(model, MOI.SolveTimeSec())
438 println(round(solve_time(model), digits = 5));
439 sol_v2 = []
440 for i = 1:2*dim
441 for j = i:2*dim
442 if (i <= dim && j <= dim) || i == j
443 push!(sol_v2, value(x[i,j]));
444 end
445 end
446 end
447 sol_m = soltomatrix(dim, sol_v2)
448 violated_count = 0
449 val = -MOI.get(model, MOI.ObjectiveValue()) + 1
450 push!(val_list, val)
451 println((MOI.get(model, MOI.ObjectiveValue())));
452 if checkpsd(sol_m) == true && c_it == 1
453 print(eigmin(sol_m))
454 print(”PSD reached”)
455 break
456 end
457 if checkpsd(sol_m) == true && c_it == 0
458 c_it = c_it + 1
459 println(”switch iteration limit”)
460 MOI.set(model, MOI.RawOptimizerAttribute(”IPM_IterationsLimit”), 300)
461 set_attribute(model, ”IPM_CorrectionLimit”, 5)
462 optimize!(model)
463 sol_v2 = []
464 for i = 1:2*dim
465 for j = i:2*dim
466 if (i <= dim && j <= dim) || i == j
467 push!(sol_v2, value(x[i,j]));
468 end
469 end
470 end
471 sol_m = soltomatrix(dim, sol_v2)
472 end
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473 it = it + 1
474 end
475 print(it)
476 println(MOI.get(model, MOI.TerminationStatus()))
477 println(MOI.get(model, MOI.ObjectiveValue()))
478 println(”total in solve:”)
479 println(total_in_solve)
480 return val_list
481 end
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1 using LinearAlgebra
2 using JuMP
3 using DataStructures
4 import MathOptInterface as MOI
5 using GenericLinearAlgebra
6 import Tulip
7 using IterativeRefinement
8 using DoubleFloats
9 setprecision(BigFloat, 512)

10

11 function truncate(v::Vector{Double64}, k::Int)
12 ab = abs.(v)
13 b = partialsortperm(ab, 1:k, rev=true)
14 truncated = zeros(Double64, length(v));
15 for i = 1:k
16 truncated[b[i]] = v[b[i]]
17 end
18 return truncated
19 end
20

21 function tpmethod(A::Matrix{Double64}, v::Vector{Double64}, k::Int)
22 v_new::Vector = v
23 v_new = normalize(v_new)
24 v_old = zeros(Double64, length(v_new));
25 counter = 0
26 while abs(norm(v_new - v_old)) >= 1e-12
27 if abs(norm(v_new + v_old)) <= 1e-12
28 break
29 end
30 counter = counter + 1
31 if counter == 1000
32 return v_new
33 end
34 v_old = v_new
35 if norm(A*v_old) == 0
36 print(”WARNINGZERO”)
37 break
38 end
39 v_new = A*v_old/norm(A*v_old)
40 v_new = truncate(v_new, k)
41 v_new = normalize(v_new)
42 end
43 v_new = truncate(v_new, k)
44 v_new = normalize(v_new)
45 return v_new
46 end
47

48 cutpool = []
49

31
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50 function sparseround(M::Matrix{Double64}, maxnumsupports::Int, k::Int, mode::Int)
51 eigencuts = []
52 eigencuts_or = []
53 M_c = copy(M)
54 M_est = convert(Matrix{Float64}, M)
55 ef = eigen(M_est)
56 lambda_est_list = real.(ef.values)
57 eigenval = []
58 eigenvec_or = real.(ef.vectors)
59 eigenvec = []
60 if mode == 2 || mode == 0
61 for i = 1:length(lambda_est_list)
62 try
63 push!(eigenval, rfeigen(M, convert(Vector{Double64}, real.(ef.vectors[:, i]))

, Double64(lambda_est_list[i]))[1])
64 push!(eigenvec, rfeigen(M, convert(Vector{Double64}, real.(ef.vectors[:, i]))

, Double64(lambda_est_list[i]))[2])
65 catch
66 else
67 e = 1e-500
68 M_adj = M + e*I
69 push!(eigenval, rfeigen(M_adj, convert(Vector{Double64}, real.(ef.vectors[:,

i])), Double64(lambda_est_list[i]))[1])
70 push!(eigenvec, rfeigen(M_adj, convert(Vector{Double64}, real.(ef.vectors[:,

i])), Double64(lambda_est_list[i]))[2])
71 end
72 end
73 count = 0
74 for eig in eigenval
75 count = count + 1
76 if eig < 0 - 1e-06
77 push!(eigencuts_or, eigenvec_or[:, count]);
78 push!(eigencuts, eigenvec[count]);
79 end
80 end
81 return eigencuts
82 end
83

84 count = 0
85 for eig in lambda_est_list
86 if eig < 0 - 1e-06
87 count = count + 1
88 end
89 end
90

91 M2::Matrix{Float64} = convert(Matrix{Float64}, M)
92 M3::Matrix{Double64} = copy(M)
93 lmin::Double64 = minimum(real(GenericLinearAlgebra._eigvals!(M3)));
94 lmax::Double64 = maximum(real(GenericLinearAlgebra._eigvals!(M3)));
95 A_psd::Matrix{Double64} = lmax*I - M
96 vecmin::Vector{Float64} = eigen(M2).vectors[:, 1]
97 w::Vector{Double64} = tpmethod(A_psd, convert(Vector{Double64}, vecmin), k)
98

99 i = 1
100 while (transpose(w)*M*w < -1e-7 && i < maxnumsupports)
101 supp = findall(!iszero, w)
102 princ = M[supp, supp]
103 princ2::Matrix{Float64} = convert(Matrix{Float64}, princ)
104 princ3::Matrix{Double64} = copy(princ)
105 cut::Vector{Double64} = zeros(Double64, length(w));
106 lmin = minimum(real(GenericLinearAlgebra._eigvals!(princ3)));
107 vmin::Vector{Float64} = real.(eigen(princ2).vectors[:, 1])
108

109 ef = eigen(princ2)
110 lambda_est = real(ef.values[1])
111 eigenv_est = real.(ef.vectors[:, 1])
112 try
113 lambda = rfeigen(princ, convert(Vector{Double64}, eigenv_est), Double64(

lambda_est))[1]
114 eigenv = rfeigen(princ, convert(Vector{Double64}, eigenv_est), Double64(

lambda_est))[2]
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115 eigenv = normalize(eigenv);
116 catch
117 else
118 e = 1e-500
119 princ_adj = princ + e*I
120 lambda = rfeigen(princ_adj, convert(Vector{Double64}, eigenv_est), Double64(

lambda_est))[1]
121 eigenv = rfeigen(princ_adj, convert(Vector{Double64}, eigenv_est), Double64(

lambda_est))[2]
122 eigenv = normalize(eigenv);
123 end
124

125 cut = zeros(Double64, length(w));
126 for i = 1:length(eigenv)
127 if abs(eigenv[i]) > 1e-9
128 cut[supp[i]] = eigenv[i]
129 end
130 end
131 push!(eigencuts, cut)
132

133 M = M - lmin*cut*transpose(cut)
134 M3 = copy(M)
135 lmax = maximum(real(GenericLinearAlgebra._eigvals!(M3)));
136 A_psd = lmax*I - M
137 M2 = convert(Matrix{Float64}, M)
138 vecmin = real.(eigen(M2).vectors[:, 1])
139 w = tpmethod(A_psd, convert(Vector{Double64}, vecmin), k)
140 i = i + 1
141 end
142 if length(eigencuts) < count|| (length(eigencuts) < 3 && length(eigencuts) == count)
143 eigencuts = sparseround(M_c, maxnumsupports, k, 0)
144 end
145 return eigencuts
146 end
147

148 function matrixreconstruct(dat)
149 M_l = Matrix{Double64}[]
150 for i = 1:(Int(dat[1])+1)
151 M = zeros(2*Int(dat[1]), 2*Int(dat[1]))
152 push!(M_l, M)
153 end
154 for i = 5:Int(size(dat)[1])
155 m = Int(dat[i, 1])
156 block = Int(dat[i, 2])
157 if block == 1
158 j = Int(dat[i, 3])
159 k = Int(dat[i, 4])
160 elseif block == 2
161 j = Int(dat[i, 3] + dat[3, 1])
162 k = Int(dat[i, 4] + dat[3, 1])
163 else
164 j = Int(dat[i, 3] + dat[3, 1] + dat[3, 2])
165 k = Int(dat[i, 4] + dat[3, 1] + dat[3, 2])
166 end
167 M_l[m+1][j, k] = dat[i, 5]
168 M_l[m+1][k, j] = dat[i, 5]
169 end
170 return M_l
171 end
172

173 function soltomatrix(dim::Int, v::Vector)
174 matrix = zeros(Double64, 2*dim, 2*dim)
175 count = 1
176 for i = 1:2*dim
177 for j = i:2*dim
178 if (i <= dim && j <= dim) || i == j
179 matrix[i, j] = Double64(v[count])
180 matrix[j, i] = Double64(v[count])
181 count = count + 1
182 end
183 end
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184 end
185 return matrix
186 end
187

188 function checkpsd(M::Matrix)
189 M2 = copy(M)
190 l = real(GenericLinearAlgebra._eigvals!(M2));
191 l_min = minimum(l)
192 if l_min >= -1e-06
193 return true
194 else
195 return false
196 end
197 end
198

199 function cuttingplane(dimension::Int, degree::Int, maxnumsupports::Int, sparsity::Int, mode::
Int)

200 val_list = []
201 total_in_solve = 0
202 if mode == 0
203 #DENSE
204 sparsity_used = (degree + 1) * 2
205 else mode == 1
206 #SPARSE
207 sparsity_used = sparsity
208 end
209 model = Tulip.Optimizer{Double64}()
210 MOI.set(model, MOI.RawOptimizerAttribute(”IPM_IterationsLimit”), 50)
211 lp_sos(dimension, degree)
212 dat = readdlm(”lp_sos.txt”, Double64)
213 dim = Int(dat[1])
214 println(dim)
215 M_l = matrixreconstruct(dat)
216 b = zeros(Double64, dim)
217 b[1] = Double64(”-1”)
218

219 c = zeros(Double64, Int((dim * dim + dim) / 2 + dim))
220 for i = Int(((dim * dim + dim) / 2 + 1)):Int(((dim * dim + dim) / 2 + dim))
221 c[i] = Double64(”-1”)
222 end
223 x = MOI.add_variables(model, (dim * dim + dim) / 2 + dim)
224

225 MOI.set(
226 model,
227 MOI.ObjectiveFunction{MOI.ScalarAffineFunction{Double64}}(),
228 MOI.ScalarAffineFunction(
229 [MOI.ScalarAffineTerm(c[i], x[i]) for i = (Int((dim * dim + dim) / 2 + 1)):

Int(((dim * dim + dim) / 2 + dim))], Double64(”0”)),
230 );
231 MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
232

233 variablelist = []
234 for j = 1:2*dim
235 for k = j:2*dim
236 if (j <= dim && k <= dim) || j == k
237 push!(variablelist, [j, k])
238 end
239 end
240 end
241

242 for i = 1:length(M_l)
243 for j = 1:2dim
244 for k = (j+1):2*dim
245 M_l[i][j,k] = Double64(”2”)*M_l[i][j,k]
246 end
247 end
248 end
249

250 starting_cuts = []
251

252 for i = 1:dim
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253 matrix = M_l[i+1]
254 c_vector = zeros(Double64, Int((dim * dim + dim) / 2 + dim))
255 j = 0
256 k = 1
257 z_c = 0
258 for z = 1:(dim+1)*(dim)
259 if z <= dim*dim
260 j = j + 1
261 if j >= k
262 z_c = z_c + 1
263 c_vector[z_c] = Double64(matrix[k,j])
264 end
265 if j % dim == 0 && z < dim*dim
266 j = 0
267 k = k + 1
268 end
269 else
270 z_c = z_c + 1
271 j = j + 1
272 k = k + 1
273 c_vector[z_c] = Double64(matrix[k,j])
274 end
275 end
276 con = MOI.add_constraint(
277 model,
278 MOI.ScalarAffineFunction{Double64}(MOI.ScalarAffineTerm.(c_vector, x), Double64(”

0.0”)),
279 MOI.EqualTo(b[i]),
280 );
281 end
282

283 x_count = 0
284 for j = 1:2*dim
285 for k = j:2*dim
286 if (j <= dim && k <= dim) || j == k
287 x_count = x_count + 1
288 if j == k
289 f = MOI.add_constraint(
290 model,
291 x[x_count],
292 MOI.GreaterThan(Double64(”0”))
293 );
294 c = zeros(2*dim)
295 c[j] = 1
296 push!(starting_cuts, c)
297 end
298 end
299 end
300 end
301

302 MOI.optimize!(model)
303 print(MOI.get(model, MOI.TerminationStatus()))
304 print(MOI.get(model, MOI.ObjectiveValue()))
305 val = -MOI.get(model, MOI.ObjectiveValue()) + 1
306 push!(val_list, val)
307 x_sol = MOI.get(model, MOI.VariablePrimal(), x)
308 sol_m = soltomatrix(dim, x_sol)
309 cutpool = []
310 cutpool_tot = []
311 it = 1
312 cuts_counter = Dict()
313 cuts_index = Dict()
314 threshold = 1e-3
315 c_it = 0
316 while (checkpsd(sol_m) == false && it <= 50000)
317 if it > 50
318 cuts = sparseround(sol_m, maxnumsupports, sparsity_used, mode)
319 else
320 cuts = sparseround(sol_m, maxnumsupports, sparsity_used, 0)
321 end
322 cuts = unique(cuts)
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323 println(length(cuts));
324 for c in cuts
325 push!(cutpool, c)
326 push!(cutpool_tot, c)
327 cuts_counter[c] = 0;
328 end
329 cutpool = unique(cutpool);
330 cut_m = []
331 for i = 1:length(cuts)
332 push!(cut_m, cuts[i]*transpose(cuts[i]));
333 end
334

335 mult = ones(Double64, 2*dim, 2*dim)
336 for i = 1:2*dim
337 for j = (i+1):2*dim
338 mult[i,j] = Double64(”2”);
339 end
340 end
341

342 for cut in cuts
343 cut_m = cut*transpose(cut)
344 c_vector = zeros(Double64, Int((dim * dim + dim) / 2 + dim))
345 j = 0
346 k = 1
347 z_c = 0
348 for z = 1:(dim+1)*(dim)
349 if z <= dim*dim
350 j = j + 1
351 if j >= k
352 z_c = z_c + 1
353 c_vector[z_c] = Double64(mult[k,j]*cut_m[k,j]);
354 end
355 if j % dim == 0 && z < dim*dim
356 j = 0
357 k = k + 1
358 end
359 else
360 j = j + 1
361 k = k + 1
362 z_c = z_c + 1
363 c_vector[z_c] = Double64(mult[k,j]*cut_m[k,j]);
364 end
365 end
366 d = MOI.add_constraint(
367 model,
368 MOI.ScalarAffineFunction{Double64}(MOI.ScalarAffineTerm.(c_vector, x),

Double64(”0”)),
369 MOI.GreaterThan(Double64(”0”)),
370 );
371 MOI.set(model, MOI.ConstraintName(), d, string(cut));
372 cuts_index[cut] = d
373 end
374

375 println(length(cutpool));
376 for cut in cutpool
377 if transpose(cut)*normalize(sol_m)*cut >= threshold && it > 200
378 cuts_counter[cut] = cuts_counter[cut] + 1
379 if cut in starting_cuts
380 #
381 else
382 if cuts_counter[cut] == 2
383 push!(starting_cuts, cut)
384 c_name = string(cut)
385 MOI.delete(model, cuts_index[cut]);
386 deleteat!(cutpool, findfirst(x->x==cut,cutpool));
387 delete!(cuts_counter, cut)
388 end
389 end
390 else
391 cuts_counter[cut] = 0
392 end
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393 end
394

395 MOI.optimize!(model)
396 println(MOI.get(model, MOI.TerminationStatus()))
397 println(MOI.get(model, MOI.ObjectiveValue()))
398 x_sol = MOI.get(model, MOI.VariablePrimal(), x)
399 val = -MOI.get(model, MOI.ObjectiveValue()) + 1
400 push!(val_list, val)
401 total_in_solve = total_in_solve + MOI.get(model, MOI.SolveTimeSec());
402 println(”total”)
403 println(total_in_solve)
404 if total_in_solve > 360000
405 break
406 end
407 println(round((MOI.get(model, MOI.SolveTimeSec())), digits = 5));
408 sol_m = soltomatrix(dim, x_sol)
409 if checkpsd(sol_m) == true && c_it == 1
410 print(eigmin(sol_m))
411 print(”PSD reached”)
412 break
413 end
414 if checkpsd(sol_m) == true && c_it == 0
415 c_it = c_it + 1
416 println(”switch iteration limit”)
417 MOI.set(model, MOI.RawOptimizerAttribute(”IPM_IterationsLimit”), 300)
418 MOI.optimize!(model)
419 x_sol = MOI.get(model, MOI.VariablePrimal(), x)
420 sol_m = soltomatrix(dim, x_sol)
421 end
422 it = it + 1
423 end
424 print(it)
425 println(MOI.get(model, MOI.TerminationStatus()))
426 println(MOI.get(model, MOI.ObjectiveValue()))
427 println(”total in solve:”)
428 println(total_in_solve)
429 return val_list
430 end


	Preface
	Abstract
	Layman Abstract
	Introduction
	Content overview

	The Kissing Number
	Bounds on the kissing number
	Delsarte-Goethals-Seidel method
	Recent improvements


	A Cutting Plane Approach
	The use of k-sparse eigencuts
	Generating a round of k-sparse eigencuts

	Application to the Kissing Number Problem
	Computational results
	Standard precision computations
	High precision computations
	IPM iteration limit

	Upper bounds on the kissing number

	Conclusion
	References
	Julia Code - Standard Precision
	Julia Code - High Precision

