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Abstract

Three-dimensional building models play a pivotal role in shaping the digital twin of our world. With the advance of
sensing technologies, unprecedented data acquisition capabilities on capturing the built environment have surfaced,
with photogrammetry and light detection and ranging being the two important sources, both of which can acquire
point clouds of buildings. A point cloud is anisotropically distributed in space, which—though conveying spatial
information itself—has to be converted into a surface model for a wider spectrum of usage. This conversion is often
referred to as reconstruction. Despite the enhanced availability of point cloud data in the built environment, how
to reconstruct high-quality building surface models remains non-trivial in remote sensing, computer vision, and
computer graphics. Most reconstruction methods are dedicated to smooth surfaces represented by dense triangles,
irrespective of the piecewise planarity that dominates the geometry of real-world buildings. Although some works
claim the possibility of reconstructing piecewise-planar shapes from point clouds, they either struggle to comply
with specific geometric constraints, or suffer from serious scalability issues. There is no versatile solution yet for
building reconstruction.

In this thesis, we propose a novel framework for reconstructing compact, watertight, polygonal building models
from point clouds. Our approach comprises three functional blocks: (a) a cell complex is generated via adaptive
space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learnt by a deep
neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated for surface
extraction via combinatorial optimisation, where an efficient graph-cut solver is applied. We extensively evaluate the
proposedmethod in comparison with state-of-the-art methods in shape reconstruction, surface approximation and
geometry simplification. Experimental results reveal that, with our neural-guided strategy, high-quality building
models can be obtained with significant advantages over fidelity, compactness and computational efficiency. The
method shows robustness to noise and insufficient measurements due to occlusions, and generalise reasonably well
from synthetic scans to real-world measurements. Moreover, our method remains generic to not only buildings,
but any piecewise-planar objects.
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1 Introduction

This chapter leads in with the background and motivation for building reconstruction in Section 1.1. In Section 1.2,
we retrace the inspiration from which we develop our approach. The main research questions and scope are framed
in Section 1.3. Finally, Section 1.4 outlines the structure of the thesis with an overview.

1.1 Background and motivation

Three-dimensional (3D) building models play a pivotal role in shaping the digital twin of our world, which, in
turn, are facilitating various intelligent applications in urban planning [Herbert and Chen, 2015], solar potential
analysis [Machete et al., 2018], environmental simulation [Stoter et al., 2020], etc (see Figure 1.1). Recently, with
the development of augmented and virtual reality applications, the demand for high-quality building modelling is
growing rapidly [Blut and Blankenbach, 2021].

Figure 1.1: Applications of 3D city models [Biljecki et al., 2015]

The advance of sensing technologies has empowered unprecedented data acquisition capabilities on capturing the
built environment, with photogrammetry and light detection and ranging (LiDAR) being the two important sources,
both of which can acquire point clouds of buildings, as shown in Figure 1.2. A point cloud is anisotropically dis-
tributed in space, which—though conveying spatial information itself—has to be converted into a surface mesh for
a wider spectrum of usage. The latter consists of facets, which themselves are represented by edges and vertices, as
illustrated in Figure 1.3. This conversion is often referred to as reconstruction.

Despite the enhanced availability of point cloud data in the built environment, how to reconstruct high-quality
building surface models remains non-trivial concerning the current state of automation in this field. Specifically,
the reconstruction problem is conceived challenging in terms of two factors summarised as follows:
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(a) Multi-view images (b) Photogrammetric point cloud (c) LiDAR point cloud1

Figure 1.2: Acquisition of point clouds. A photogrammetric point cloud (b) can be obtained frommulti-view images
(a). LiDAR can directly acquire a point cloud (c).

Figure 1.3: Surface mesh of an urban scene. A surface mesh consists of facets, which themselves consist of edges
(coloured brown) and vertices (coloured green).

• Geometric information is inevitably degraded or even lost during data acquisition. For example, noises are
always concomitant with measurements; occlusion, low-contrast or non-reflective surfaces all possibly result
in unreliability in the data. Figure 1.4 shows examples of real-world point clouds with geometric defects.

• Topological constraints need to be satisfied for the reconstructed building’s geometry. Figure 1.5 presents
possible invalid topological embeddings that defect a 3D buildingmodel. As required is a boundary represen-
tation (B-rep) that expresses a geometry of dimension n with its boundary of dimension n− 1 (see Figure 1.6),
how to guarantee the reconstructed building surface is watertight is of particular importance.

To address this long-standing problem in remote sensing, computer vision and graphics, various data- or model-
driven approaches or their combination have been proposed. However, there is no versatile solution yet to the fully
automatic reconstruction. Existing methods either fail to incorporate high-level shape information, or struggle to
comply with certain geometric constraints effectively and efficiently.

Human-created structures follow certain patterns, one of which—distinct from the natural ones—is piecewise pla-
1https://www.tudelft.nl/bk/onderzoek/projecten/geoinformation-technology-governance
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1.1 Background and motivation

(a) (b)

Figure 1.4: Examples of real-world point clouds from incomplete (a) and occluded (b) scans

Non-manifold edge

Non-manifold vertex

Non-closed surface
Internal facets

Inconsistent normals

Figure 1.5: Examples of non-manifold topological embeddings

narity. Piecewise-planar surfaces are ubiquitous in the built environment (see Figure 1.7). Being an efficient repre-
sentation for computing, storing and rendering, it describes a geometry with non-uniformity to represent large flat
regions and sharp features with sparse sets of parameters. Figure 1.8 illustrates a building described as a smooth
surface and piecewise-planar ones, where an arbitrary-sided polygonal surface exhibits the highest compactness
with respect to the number of facets that compose the surface. This non-uniformity and irregularity in the polyg-
onal form, however, hinder its creation from remote sensing measurement as significant abstraction is to impose
and the problem is de-facto ill-posed.

Most reconstruction methods are dedicated to smooth surfaces represented as dense triangles (see Figure 1.8a),
irrespective of piecewise planarity that exhibits in the built environment. Simplification is therefore required as a
follow-up procedure to convert the smooth surface into a compact one [Garland andHeckbert, 1997; Cohen-Steiner
et al., 2004; Salinas et al., 2015; Bouzas et al., 2020]. Although some works claim the possibility of reconstructing
piecewise-planar shapes directly from point clouds, they suffer from serious scalability issues [Boulch et al., 2014;
Mura et al., 2016; Nan and Wonka, 2017]. In this work, we aim at efficiently reconstructing compact building
surfaces directly from point clouds. Notice that 3D city buildings, in particular, can be abstracted with various level
of detail (LoD) via B-rep. In this research, however, a generic reconstruction approach is dedicated that does not limit
its application to specific LoD, but applies to any piecewise-planar objects.
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Figure 1.6: Boundary representation: a cube can be expressed by its six bounding facets.

Figure 1.7: Examples of piecewise-planar structures in the built environment

1.2 Inspiration and our approach

3D shapes are not confined to as explicit representations (e.g., point cloud, surface mesh, voxels), but can be en-
coded implicitly in a function space (see Figure 1.9). A signed distance function (SDF), for instance, can describe
an implicit field, where the surface of a shape is implicitly interpreted as zero-set of the SDF. The learnable indica-
tor function of the SDF takes as input a query point and yields an indication on whether the point belongs to the
shape (see Figure 1.10). The explicit geometry is then often extracted from the field via computational-expensive
iso-surfacing [Mescheder et al., 2019]. Compared with explicit expressions that are heterogeneously distributed,
this homogeneous functional representation is particularly favourable for geometric machine learning. Especially
recently, the scheme for learning in the function space has shown its competence in 3D geometric modelling [Park
et al., 2019].

(a) Dense triangles (b) Sparse triangles (c) Sparse polygons

Figure 1.8: Facets that compose a surface: dense triangles (326,234 facets), sparse triangles (198 facets) and polygons
(61 facets). Representing such piecewise-planar shape with arbitrary-sided polygons (c) is most compact.

Existing deep implicit fields-based reconstruction methods primarily aim at smooth surfaces [Park et al., 2019;
Mescheder et al., 2019; Chen and Zhang, 2019; Erler et al., 2020], and thus are unsuitable for addressing compact
buildingmodels. A few deliver limited piecewise-planar approximation while still lacking reasonable generalisation
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Figure 1.9: Explicit and implicit representation. A surface mesh can be extracted from the zero-set of the implicit
field via iso-surfacing.

Figure 1.10: Deep implicit field. Given query points sampled in space, the neural network learns to estimate their
distance (coloured) to the surface of the shape.

capability to unseen data during training [Chen et al., 2020; Deng et al., 2020]. None of these methods has tackled
the reconstruction problem with reasonable generalisation capability to real-world point clouds meanwhile with
piecewise planarity preserved. Nevertheless, the learnable implicit functions employed by these methods under-
pin strong priors exhibited in the training data, by enabling expression of automatically learnt deep features that
traditional methods with their hand-crafted features fall short of. Inspired by the recent advance in learning in
the function space, we further explore the possibility of this learning-based approach for piecewise-planar building
reconstruction with deep implicit fields.

In this thesis, we propose a novel framework for reconstructing compact, watertight, polygonal building surface
meshes from point clouds by incorporating implicitly encoded function space with explicitly constructed geometry.
The explicit geometry provides a polyhedral embedding as the candidate set, fromwhich extraction of the building’s
surface is neural-guided by a learnt deep implicit field. We formulate a Markov random field (MRF) to regularise
surface complexity, and solve this combinatorial optimisation problem using an efficient graph-cut solver.

We extensively evaluate the proposedmethod in comparisonwith state-of-the-art methods in shape reconstruction,
surface approximation and geometry simplification. Experimental results reveal that our adaptive strategy drasti-
cally reduces redundant candidate polyhedra while respecting the spatial layout. Moreover, the learnt implicit field
shows robustness to noise and insufficient measurements, and generalises reasonably well from synthetic scans to
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real-world measurements. The graph-cut solver is capable of extracting complex building surfaces efficiently. With
our approach, high-quality building models can be obtained with significant advantages over fidelity, compactness
and computational efficiency.

1.3 Research objective and scope

The goal of this research is to develop a learning-based approach for piecewise-planar 3D building model recon-
struction from point clouds, as depicted in Figure 1.11. The main research question to be addressed is how can deep
implicit fields be used for compact building model reconstruction, which further branches into the following research
sub-questions:

• How to incorporate a neural network architecture that leverages an implicit field?

• How to guarantee the reconstructed surface is compact and watertight?

• To what extent does the proposed method generalise across different point clouds?

• How sensitive is the method regarding contaminated (e.g., noisy) and incomplete point clouds?

• What are the (dis)advantages of the proposed method compared with state-of-the-art methods in terms of
geometry accuracy and topology validity?

(a) Point cloud (b) Watertight surface mesh

Figure 1.11: Goal of our approach: reconstruction of compact building surface meshes (b) from point clouds (a)
with deep implicit fields. Points coloured with height.

The output building model should be expressed in B-rep, representing the surface with a sparse set of polygons.
The model is watertight—but not necessarily manifold—such that volumetric information shall inhabit. Except
for piecewise planarity, no geometric assumption is imposed; the method thus remains generic to any piecewise-
planar objects besides buildings. Moreover, though deep learning is involved therefore the learnt priors may favour
characteristics of the training data, the proposed method should reasonably generalise to real-world point clouds
of any kind.

Due to the variety of neural network architectures for deep implicit field learning, it is thereby beyond the scope
of this thesis to prove which architecture outclasses the others. Instead, we select with justification one recent ar-
chitecture [Erler et al., 2020] with demonstrated generalisation capability for learning building-specific SDF, and
highlight the advantages and disadvantages of our approach—to the best of our knowledge the first to exploit deep
implicit fields for urban building reconstruction—so as to further evaluate the potential of deep implicit fields for
future urban applications.
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1.4 Structure of this thesis

The rest of the thesis is organised in chapters summarised as follows:

Chapter 2 describes and analyses the related work on approaching building surfaces, from both imagery and
point clouds. It concludes by listing some of the shortcomings of current approaches.

Chapter 3 presents the proposed building reconstruction method that serves as the basis of this thesis. Our
method consists of three components namely adaptive binary space partitioning, occupancy learning in function space
and surface extraction.

Chapter 4 reveals the implementation details including how the experiments are framed, how the reconstruc-
tion results are evaluated, and how the numerical computations are performed for robustness concern.

Chapter 5 shows the experimental results. Extensive comparison ismade against the state-of-the-artmethods
for shape reconstruction, surface approximation and geometry simplification, from which the characteristics of the
proposed method are discussed. It concludes with potential applications of our approach.

Chapter 6 concludes this thesis by revisiting the research questions and listing the contributions of the re-
search. It also provides recommendations for future work as well as an outlook on how deep implicit fields can be
utilised in urban modelling.

Appendix A assesses the reproducibility of the research conducted within the thesis.

Appendix B describes an alternative cell complex formulation for generic shape reconstruction.

Appendix C describes alternative deep implicit field formulations and corresponding experimental results.
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2 Related work

In this chapter, previous related work on reconstruction is described and briefly analysed. The chapter begins with
minimal background on shape representation in Section 2.1. We then relatemethods for imagery-based reconstruc-
tion in Section 2.2, and, mainly, reconstructionmethods frompoint clouds in Section 2.3. The latter are summarised
as involving primitive detection, assembly of the primitives, and alternative approaches. We also cover the recent
implicit field-based reconstruction that part of this thesis is based on.

2.1 Shape representation

A shape’s geometry can be expressed in various formats: the underlying representations can be broadly categorised
as grid models, point sets, surface models and functional representation, as shown in Figure 2.1.

Figure 2.1: Shape representations. From left to right: voxels, point cloud, surface mesh and implicit func-
tion [Mescheder et al., 2019].

Among these representations, a point cloud is the most primitive one that can be obtained by multi-view stereo
(MVS) from overlapping images with correspondences, or directly from LiDAR measurements. Though preserving
the geometric detail, possibly with additional information such as colours or intensity, a point set’s incapacity for
representing the shape results from being anisotropically scattered in space therefore neither connectivity nor vol-
umetric information shall inhabit.

Voxels are equal-sized units embedded in 3D grid space, as a generalisation of pixels in the 3D domain. This uni-
form representation allows both preservation of volumetric information and inherent parallelisation of operations
on the voxels. However, this uniformity burdens the memory requirements when the grid resolution (i.e., density
of voxels) is high; the memory consumption grows cubically with the resolution. A low resolution, instead, hinders
its expression of geometric details. Though adaptive data structures such as octree [Meagher, 1982] and recent work
on multi-resolution shape reconstruction [Häne et al., 2017; Wang et al., 2018a] are possible to reduce the mem-
ory consumption, voxel representations are still limited to comparably small grid resolution, e.g., 2563. Moreover,
sampling errors are introduced irreversibly with the process of voxelisation unless the sampling interval is less than
a threshold described by the Nyquist-Shannon sampling theorem [Shannon, 1949].
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Mesh representation describes the surface of a shape with vertices, edges and faces. A triangle mesh comprises tri-
angles and is supported by most renderers and other graphics applications. A polygonal mesh relaxes the constraint
on the number of sides and can thus be regarded as a generalised form of a triangle mesh. Representing a shape with
such arbitrary-sided polygons further reduces the redundancy, as shown in Figure 1.8. Nowadays many renderers
support quadrangles and higher-sided polygons in addition to triangles. Urban building models, as one particular
mesh category, can be abstracted in various predefined LoD as shown in Figure 2.2. LoD0 delineates the footprint of
a building in 2D. LoD1 coarsely represents the building with a prismatic volume usually extruded from LoD1 model.
LoD2 models the roof with simplified piecewise-planar approximation. LoD3 provides further architectural detail
with roof superstructures, windows and doors. LoD4 complement LoD3 with a description of indoor features. In this
thesis, we aim at a general reconstruction approach that does not limit its application to specific LoD, but applies to
any piecewise-planar objects.

Figure 2.2: A building represented in various LoD [Biljecki et al., 2016]

Besides the aforementioned explicit representations, 3D shapes can be encoded implicitly in a function space, as
shown in Figure 2.1. An implicit field is defined by such a continuous function, where the explicit geometry is
then often extracted from the field via iso-surfacing such as marching cubes [Lorensen and Cline, 1987]. Recently,
modelling a shape as a learnable indicator function has been prevalent for geometric machine learning [Park et al.,
2019; Chen and Zhang, 2019; Mescheder et al., 2019]. Inspired by the recent advance in learning in the function
space, we further explore the possibility of urban building reconstruction empowered by deep implicit fields.

2.2 Shape reconstruction from imagery

Images are embedded in 2D space, yet are arguably the foremost source for machine perception of 3D scenes. Most
imagery-based reconstruction solutions extract point clouds from multi-view images using structure-from-motion
(SfM) and MVS algorithms, sequentially, from which the 3D geometry can be obtained. Calakli et al. [2012] propose
a framework for surface reconstruction from multi-view aerial images, which combines probabilistic volumetric
modelling with implicit surface estimation. Xu et al. [2016] propose an interactive system to generate both 3D
models and motion parameters; the latter can be directly animated through kinematic simulation. We also refer to
Schöning and Heidemann [2015] for a comprehensive evaluation of software solutions for 3D reconstruction from
multi-view images.

Multi-view images are an important source of accurate and timely updated 3D urban building models. Li et al.
[2016a] propose an automatic reconstructionmethod for large-scale urban scenes from images acquired by unmanned
aerial vehicles (UAVs), which comprises an object-level segmentation algorithm and a roof extraction algorithm
based on a regularised MRF formulation, as shown in Figure 2.3. Rupnik et al. [2018] address 3D reconstruction of
digital surface models from high-resolution multi-view satellite images by fusing the calculated depths maps with
dense image matching. Recent development in very high-resolution (VHR) satellite images has facilitated automatic
3D building model reconstruction. Partovi et al. [2019] propose an automatic multistage method for 3D building
model reconstruction from VHR stereo satellite images, which combines digital surface models (DSMs) and mul-
tispectral information from satellite sensors. Verdie et al. [2015] propose a method that reconstructs 3D urban
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scenes in multiple LoD. Furthermore, Yu et al. [2021] propose a fully automatic 3D building reconstruction method
targeting LoD1 building models from aerial imagery.

Figure 2.3: Reconstruction building mass models from images of UAVs. From left to right: point cloud, object-level
segmentation, reconstructed building models and textured models [Li et al., 2016a].

While conventional approaches can leverage stereo correspondence for multi-views, the reconstruction from a sin-
gle image is essentially ill-posed. Nonetheless, single-view reconstruction can be approached in a compromised
manner. Barinova et al. [2008] propose an efficient method to recover 3D models of urban scenes, as shown in
Figure 2.4. The variants include Koutsourakis et al. [2009] which incorporates shape grammars for urban environ-
ments. However, the 3D geometry inferred from these two methods is subject to topological ambiguity and is only
applicable to specific use cases, e.g., where a limited perspective suffice. Recently, the single-view reconstruction
problem has been approached with strong shape priors that can be learnt by deep neural networks. Wang et al.
[2018b]; Pan et al. [2019] both address the problem by deforming an initial mesh template guided by the learnt
visual prior from the image. Mesh R-CNN [Gkioxari et al., 2019], alternatively, extends the versatile Mask R-CNN
architecture [He et al., 2017] with a branch dedicated for mesh reconstruction with possibly varying topological
structures.

Figure 2.4: Fast automatic single-view3D reconstruction of urban scenes. From left to right: source image, processed
image, different positions of ground-vertical border along the vertical axis, reconstructed scene [Barinova et al.,
2008].

Particularly, piecewise-planar structures can be recovered from a single image. A convolutional neural network
(CNN) can be utilised to learn to directly estimate a set of plane parameters with a corresponding segmentation
map from a single RGB image [Liu et al., 2018; Yang and Zhou, 2018; Liu et al., 2019]. However, only a fixed
number of planes with predefined order can be detected by this approach. To address this limitation, Yu et al.
[2019] propose to train a CNN to map pixels to a feature space where planes are obtained by grouping the feature
vectors in planar regions with a mean shift clustering algorithm. Furthermore, the pairwise inter-plane relations
are exploited for piecewise-planar surface reconstruction by Qian and Furukawa [2020]. BSP-Net is claimed the
first to achieve structured single-view reconstruction by learning the convex decomposition [Chen et al., 2020],
which can produce compact meshes (see Figure 2.5). Similarly, Deng et al. [2020] propose to learn a piecewise
approximation of the geometry with a set of convexes. In the context of building reconstruction, however, none of
the aforementioned single-view reconstruction methods is capable to deliver quality building models, due to the
lack of geometric information that can inhabit one single image.
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Figure 2.5: Single-view compact mesh reconstruction with BSP-Net. Top: input images. Bottom: reconstructed
meshes [Chen et al., 2020].

2.3 Shape reconstruction from point clouds

A point cloud is anisotropically distributed in 3D space. To convert it into a compact surface mesh, significant
abstraction is required. In this section, we describe bottom-up approaches that first detect the planar primitives
then assembly them, as well as alternative methods by surface approximation and geometry simplification. Finally,
recent work on implicit field learning is introduced.

2.3.1 Primitive assembly

High-quality instances of primitives (e.g., plane, cylinder, sphere) are building blocks for bottom-up shape recon-
struction. In order to form a piecewise-planar surface, planar primitives can be detected by region growing [Vo
et al., 2015] or random sample consensus (RANSAC) [Schnabel et al., 2007]. Region growing segments the point
set into subsets by selectively accumulating neighbouring points around initial seeds, in an iterated manner. This
relies on a careful selection of the initial seeds and the similarity threshold value which determines whether a point
should be appended to the subset, and therefore may fail on corrupted data. RANSAC, instead, can produce reliable
plane estimation from samples of the point set. More advanced methods have been proposed which leverage the
geometric relationship between the primitives such as parallelism or orthogonality [Monszpart et al., 2015; Oesau
et al., 2016]. In our work, we directly use an efficient RANSAC algorithm [Schnabel et al., 2007] for planar primitive
detection. Figure 2.6 shows examples of the detected primitives by RANSAC. Reconstruction can then be addressed
by properly assembling the detected high-level primitives where two main families of methods exist.

Connectivity-based methods address the primitive assembly by extracting proper geometric primitives from an
adjacency graph built on planar shapes [Chen and Chen, 2008; Schindler et al., 2011; Van Kreveld et al., 2011].
Though the graph analysis can be efficiently executed, these methods are sensitive to the quality of the adjacency
graph: incorrect connectivity contaminated by linkage errors is prone to an incomplete reconstruction. Arikan
et al. [2013] propose an interactive solution enabling the user to complete the surface through an optimisation-
based snapping. Labatut et al. [2009]; Lafarge and Alliez [2013] propose a mixed strategy where the confident areas
are represented by polygonal shapes and the challenging ones by dense triangles. However, these two solutions
either suffer from laborious human interventions for complex scenes, or lack the required compactness for building
models, respectively.
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Figure 2.6: Primitives detection with RANSAC. First column: point clouds. Second column: Detected shapes
coloured randomly. Last column: Shapes coloured by type [Schnabel et al., 2007].

Slicing-based methods show stronger robustness to challenging data with the divide-and-conquer strategy [Chauve
et al., 2010; Mura et al., 2016; Nan and Wonka, 2017]. They partition the 3D space with supporting planes of the de-
tected primitives into polyhedral cells, which themselves consist of polygonal facets. The reconstruction problem is
therefore transformed into a labelling problem where the polyhedral cells are labelled as either inside or outside the
shape, or equivalently with labelling other primitives. Themain limitation of slicing-basedmethods is the scalability
of their data structure. The pairwise intersection of supporting planes—known as a plane arrangement—results in
an over-complex tessellation, which is computationally expensive to compute, commonly via a binary tree updated
upon each plane’s insertion [Murali and Funkhouser, 1997]. When many planar primitives contribute to the inter-
section, the resulting tessellation may hamper the surface extraction. Moreover, since many anisotropic cells are
generated regardless of their spatial hierarchy, the resulting surface is inclined to geometric artefacts. For instance,
PolyFit [Nan and Wonka, 2017] formulates polygonal surface reconstruction as an integer programming problem,
with hard constraints guaranteeing the generated surface is watertight and manifold. However, it suffers heavily
from the scalability issue thus can only process simple models with limited complexity. In contrast, we do not ex-
haustively partition the 3D space with pairwise intersections, but with a spatially adaptive strategy to drastically
reduce the algorithmic complexity.

Figure 2.7: Polygonal surface reconstruction from point clouds [Nan and Wonka, 2017]

Recently, several works extend PolyFit to further exploit the inter-relation of the primitives. For example, Li and
Wu [2021] develop a method that incorporates the relations into procedural modelling for building reconstruction
in CityGML format. Xie et al. [2021] propose to combine the rule-based and the hypothesis-based strategies for
efficient building reconstruction. Distinct from these works on urban building reconstruction which use hand-
crafted features, our method exploits automatically learnt deep features in the function space.
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2.3.2 Surface approximation

An alternative approach to producing compact polygonal surfaces is to simplify an existing dense smooth surface,
which we refer to as surface approximation. The smooth surface can be approached from point clouds with Poisson
reconstruction [Kazhdan et al., 2006; Kazhdan and Hoppe, 2013], which addresses the problem by establishing an
indicator function whose gradient approximates the vector field, underpinned by the points with their oriented
normals. The output surface is acquired by extracting an iso-surface of this function (see Figure 2.8). We refer to
Berger et al. [2017] for a survey of smooth surface reconstruction algorithms.

Figure 2.8: Illustration of Poisson reconstruction. From left to right: oriented points, indicator gradient, indicator
function and surface [Kazhdan et al., 2006].

Dense triangles on a smooth surface can then be simplified into concise polygons via various approaches. Garland
and Heckbert [1997] propose to iteratively contract vertex pairs under quadric error metrics (QEM), such that the
number of facets is reduced to a specified number, as illustrated in Figure 2.9. To preserve the piecewise-planar
structure during contraction, Salinas et al. [2015] propose structure-aware mesh decimation (SAMD) which incor-
porates the planar proxies detected from pre-processing analysis into an adjacency graph, then approximate the
mesh as well as the proxies, as shown in Figure 2.10. However, these contraction operators are inclined to more
triangles than desired for piecewise-planar building representation. Alternatively, the variational shape approxima-
tion (VSA) proposed by Cohen-Steiner et al. [2004] approaches the approximation through repeatedly error-driven
partitioning, as shown in Figure 2.11. These methods demand the input smooth surface being accurate in both
geometry and topology for a faithful surface approximation. However, the requirement is rarely satisfied for real-
world measurements. Instead, our reconstruction method can directly output a concise polygonal mesh without
approximating an intermediate.

(a) Edge contraction (b) Non-edge contraction

Figure 2.9: Edge contraction with quadric error metrics (QEM). Both edge (a) and non-edge (b) vertex pairs can be
contracted [Garland and Heckbert, 1997].

2.3.3 Geometry simplification

By imposing stronger geometric assumptions, the reconstruction is further regularised towardsmodel-drivenwhere
the best-fitted model is selected from a model library. The Manhattan-world assumption [Coughlan and Yuille,
2000] restricts the orientation of facets in only three orthogonal directions and represent the 3D scene with axis-
aligned non-uniform polycubes [Ikehata et al., 2015; Li et al., 2016b]. Figure 2.12 demonstrates how a Manhattan-
world urban building can be reconstructed from a point cloud. This simplification drastically reduces the geomet-
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Figure 2.10: Structure-aware mesh decimation (SAMD) [Salinas et al., 2015]

Figure 2.11: Variational shape approximation (VSA). From left to right: error-driven partitioning, geometric proxies
and approximated polygonal mesh [Cohen-Steiner et al., 2004].

ric complexity and the solution space to explore. Another common assumption is restricting the output surface to
specific disk-topologies. The 2.5D view-dependent representation [Zhou and Neumann, 2010], for instance, can
generate arbitrarily shaped roofs with vertical walls connecting them, from airborne LiDAR measurements, as il-
lustrated in Figure 2.13. Furthermore, Verdie et al. [2015] propose an approach for reconstructing urban scenes
with various LoD configurations through classification of point cloud, abstraction of proxies and reconstruction,
as shown in Figure 2.14. The assumptions can maintain the uniformity of the reconstruction and thus efficient to
implement. However, they only apply to specific domains as a limited variety of the layout hypothesis astricts the
generalisation of these methods. Our reconstruction method, instead, imposes no geometric assumption except for
piecewise planarity, thus remaining generic.

Figure 2.12: Manhattan-world urban reconstruction. From left to right: input point cloud, plane primitives, candi-
date boxes, 3D model [Li et al., 2016b].
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Figure 2.13: Buildingmodelling with 2.5DDual Contouring. From left to right: input point cloud, 2D grid with sur-
face and boundary, hyper-points, reconstructed mesh model, final model with boundaries snapped to principal
directions [Zhou and Neumann, 2010].

Figure 2.14: LoD generation for urban scenes. From left to right: classification of point cloud, abstraction of icons
and proxies according to the LoD configuration, and reconstruction of four LoDs [Verdie et al., 2015].

2.3.4 Implicit field-based reconstruction

Recent advance in deep implicit fields has revealed their potential for 3D reconstruction, most of which aims at
reconstructing a smooth surface. The crux of implicit field learning is to learn a robust mapping from the input (e.g.,
a point cloud) to a continuous scalar field, as shown in Figure 1.9. The surface of the shape can then be extracted via
iso-surfacing techniques such asMarching Cubes [Lorensen and Cline, 1987] as illustrated in Figure 2.15. However,
iso-surfacing is computationally expensive and inevitably introduces discretization error. This discretization may
even result in non-watertight surfaces.

Figure 2.15: Marching Cubes. The position vx of a vertex v is determined along an edge via linear interpolation, in
between s i > 0 and s i < 0 [Remelli et al., 2020].

Various neural network architectures utilising the implicit representation have emerged since the trailblazing suc-
cess of DeepSDF [Park et al., 2019], which introduces two instantiations as shown in Figure 2.16. The single-shape
instantiation encodes the shape information in the neural network itself while the coded shape instantiation takes
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2.3 Shape reconstruction from point clouds

a code vector containing the shape information that is concatenated with the query point’s coordinates. Although
both produce the SDF estimation for an input query, training a neural network for each shape is of limited usage1.
Instead, the coded shape instantiation finds its applications in differentiable rendering [Liu et al., 2020], generative
modelling [Chen and Zhang, 2019] and surface reconstruction [Atzmon and Lipman, 2020]. Modelling the surface
as an indicator function transforms the reconstruction as a binary classification problem, whose precision is pro-
portional to the network complexity and thus can, in theory, approach to infinity if computation capacity allows.
However, like Poisson reconstruction which also formulates an indicator function, iso-surfacing is required as post-
processing at inference time. This not only adds execution overhead but fail to guarantee the topological validity of
the reconstructed surface.

(a) Single shape instantiation (b) Coded shape instantiation

Figure 2.16: Two DeepSDF instantiations. The single-shape instantiation encodes the shape information in the
neural network itself while the coded shape instantiation takes a code vector containing the shape information
that is concatenated with the query point’s coordinates [Park et al., 2019].

By incorporating constructed solid geometry (CSG), Chen et al. [2020] introduce an end-to-end neural network,
BSP-Net, to reconstruct a shape from a set of convexes obtained via binary space partitioning, as shown in Fig-
ure 2.17. Similarly, Deng et al. [2020] propose an architecture to represent a low dimensional family of convexes.
These two methods both learn to divide and conquer the 3D space with implicit fields. However, the inputs to these
two neural networks are either images or voxels, instead of point clouds that this thesis aims to address. Notice that
in Appendix C we describe an adapted network architecture with point clouds as input based on BSP-Net.

Convexes

Shapes

Planes

Figure 2.17: BSP-tree for learning convex decomposition. Adapted from Chen et al. [2020].

The single latent feature vector used by the aforementioned methods implies strong priors dependent on the train-
ing data. While this allows plausible surface reconstruction even with highly contaminated data, it significantly
limits the generalisation ability of these methods. With one feature vector encoding the whole shape, the feature
space inevitably overfits the shapes in the training set, and may fail completely given a shape of unseen categories.
To mitigate the notorious generalisation incapacity, Erler et al. [2020] propose Points2Surf architecture that esti-
mates an SDF with both local and global feature vectors. The separate feature vectors capture both the detailed local

1With one known exception of geometry compression by Davies et al. [2020].
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geometry and the course global shape information, the aggregation of which drastically enhances the generalisation
capability of the SDF learning. Similarly, the local deep implicit functions proposed by Genova et al. [2020] decom-
pose the implicit field into a structured set of implicit functions, which achieves accurate surface reconstruction
with improved efficiency. Since this thesis aims at a generalised reconstruction across point clouds of various kinds,
incorporating local geometry into the neural network is vital, we thereby adopt the Points2Surf architecture with
demonstrated generalisation capability.

Table 2.1 summarises the highly related work that we further compare our method with, including Poisson recon-
struction [Kazhdan et al., 2006], PolyFit [Nan andWonka, 2017], QEM [Garland andHeckbert, 1997], SAMD [Salinas
et al., 2015], VSA [Cohen-Steiner et al., 2004], Manhattan-world urban reconstruction [Li et al., 2016b] and 2.5D
Dual Contouring [Zhou andNeumann, 2010]. Verdicts are attached onwhether eachmethod can produce compact
and watertight surfaces, whether it applies to generic 3D objects, and whether it is efficient. Among these competi-
tors, PolyFit is the only one capable of reconstructing compact, watertight, generic surfaces from point clouds and
thus is considered the closest to ours. Yet our method satisfies all four requirements.

Related work Characteristics

Name Category Compact Watertight Generic Efficient

Poisson [Kazhdan et al., 2006] RC 7 7 3 3

Points2Surf [Erler et al., 2020] RC 7 7 3 7

PolyFit [Nan and Wonka, 2017] RC 3 3 3 7

QEM [Garland and Heckbert, 1997] AP 3 7 3 7

SAMD [Salinas et al., 2015] AP 3 7 3 7

VSA [Cohen-Steiner et al., 2004] AP 3 7 3 7

Manhattan-world [Li et al., 2016b] SP 3 3 7 3

2.5D DC [Zhou and Neumann, 2010] SP 7 3 7 3

Ours RC 3 3 3 3

Table 2.1: Characteristics overview of related work. RC, AP and SP stand for surface reconstruction, surface ap-
proximation and geometry simplification, respectively.
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3 Methodology

This chapter presents the method proposed in this thesis. Section 3.1 conveys an overview where the high-level
components and their interactions are introduced. The follow-up sections describe the respective components in
detail. Specifically, in Section 3.2 we propose adaptive binary space partitioning for candidate polyhedra construc-
tion. Section 3.3 describes how an implicit field is learnt that facilitates shape-conditioned building interior/exterior
classification. Finally, in Section 3.4, we formulate anMRF for surface extraction, and solve the optimisation problem
using an efficient graph-cut solver.

3.1 Overview

Explicit Implicit

Point cloud(a)

Planar primitives(b)

RANSAC

Adaptive binary
space partitioning

Candidate cells(c)

Neural implicit 
field(d)

Markov random field Surface(f)

Query points(e)

Reconstruction

Training

Graph-cut solver Surface extraction

Figure 3.1: Overview of our approach. The approach comprises three functional blocks: within the explicit block
(coloured blue), candidate cells are generated fromapoint cloud; within the implicit block (coloured red), a neural
implicit field is learnt that indicates spatial occupancy of the building instance; within the surface extraction
block (coloured green), an MRF is formulated for surface extraction where an efficient graph-cut solver is applied.
Indices correspond to those in Figure 3.2.
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We propose a novel bottom-up method for building reconstruction from point clouds utilising the learnt implicit
representation as an occupancy indicator for explicitly constructed cell complexes. The indicator can be intuitively
interpreted as a shape-conditioned binary classifier for which the decision boundary is the surface of the building
itself [Park et al., 2019]. An MRF is formulated for surface extraction where an efficient graph-cut solver is applied.
Figure 3.1 reveals the method conceptually. The proposed method comprises three main components summarised
as follows:

(a) Point cloud (b) Planar primitives (c) Candidate polyhedra (truncated)

(d) Implicit field (volume rendering) (e) Query points

(f) Surface (g) Candidate wireframe

Figure 3.2: Intermediate formulation of our approach. Planar primitives (b) are detected from the input point cloud
(a). The primitives tessellate the ambient space into candidate polyhedra (d, truncated with a clipping plane for
clearer visualisation), with wireframe (g). An implicit field (d, volume rendering) is learnt by a neural network,
fromwhich the signed distance of query points (e) can be obtained. The surface (f) is extracted from the candidate
polyhedra with the distance queries. Indices correspond to those in Figure 3.1.

• Adaptive binary space partitioning tessellates the ambient 3D space to generates a cell complex that complies
with planar primitives detected from the point cloud. The partitioning is spatially adaptive therefore being
efficient and respective of the building’s geometry. The non-overlapping polyhedra in the complex serve as
candidates that constitute the final surface.

• Occupancy learning in function space utilises a deep neural network to learn a shape-conditioned implicit
field that characterises the input point cloud. The implicit field describes the spatial occupancy of the building
given any query point in space.

• Surface extraction with graph-cut optimisation takes as input the learnt implicit function as an occupancy
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3.2 Adaptive binary space partitioning

indicator, and output the B-rep of the building’s surface with complexity regularisation. We formulate surface
extraction as an MRF optimisation problem where an efficient graph-cut solver is applied.

Figure 3.2 further illustrates the intermediate formulation corresponding to Figure 3.1. Indicated by the learnt
implicit field, each candidate polyhedron is classified as being inside or outside the building. The building’s surface
can be extracted from the corresponding cell pairs where one is classified as inside and the other one as outside.
With this hypothesizing-and-selection strategy, the candidate polyhedral embedding is guaranteed to be watertight,
leading to the inherited building model being watertight.

3.2 Adaptive binary space partitioning

In this section, we introduce adaptive binary space partitioning that generates a cell complex from an input point
cloud. Planar primitives are first detected and refined, the hyperplanes of which recursively subdivide the ambient
space into a convex set. The generated cell complex consists of high-quality polytopes that serve as candidate cells
of the building’s shape. With our adaptive strategy, the partition is efficient yet respects the building’s geometric
structure.

3.2.1 Primitive detection

Planar primitives present in the point cloud are detected using an efficient RANSAC algorithm [Schnabel et al., 2007].
These primitives not only characterise the piece-wise planarity of the shape, but also approximate non-planar sur-
faces with consecutive segments, as shown in Figure 3.3. To preserve the buildings’ structure from point clouds that
lack measurements from certain perspectives (e.g., the ground of a building is often invisible to the LiDAR scanner),
six facets of the axis-aligned bounding box (AABB) are appended as extra primitives.

(a) (b)

(c) (d)

Figure 3.3: Planar primitive detection from point clouds of piecewise-planar (a) and curve surface (c). The curve
surface can be approximated by consecutively segmented primitives (d). (b) and (d) are coloured randomly per
primitive.

RANSAC can be configured for its rejection rate of low-quality planar primitives. In this step, however, we favour a
relatively large number of primitives being detected, to capture as much geometric detail of a building as possible.
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Nevertheless, not all detected primitives appear in the ultimate reconstruction results because of the subsequent
measures to mitigate noisy input and inappropriate detection.

3.2.2 Primitive refinement

Due to possible contamination that exists in the input point cloud, the detected primitives in Section 3.2.1 may
not faithfully reflect planar structures of the shape. Therefore, we refine the primitives by iteratively merging them
under specific proximity conditions, with re-estimated plane parameters using principal component analysis (PCA),
as detailed in Algorithm 3.1. Meanwhile, we assign a priority to each primitive based on the criteria described in
Table 3.1. The high priority on vertical primitives ensures walls are present in the final reconstruction even if points
are missing on the building facades. The area-based priority favours larger primitives such that the unnecessary
partitions can be minimised. Section 3.2.3 further elaborates the superiority of the chosen priority order.

Algorithm 3.1: Refinement of planar primitives (S)
Input: Raw planar segments S , angle tolerance θ and distance tolerance ε
Output: Refined planar segments S̃

1 Q← initialise priority queue;
2 for (i, j) ∈ S do
3 αi,j ← compute angle between Si and Sj;
4 Q← push (αi,j, i, j) ordered by αi,j;

5 whileQ not empty do
6 (αi,j, i, j)← pop fromQ with the smallest αi,j;
7 di,j ← compute distance between Si and Sj;
8 if αi,j < θ and di,j < ε then
9 m←merge Si and Sj with new plane parameters by PCA;

10 αm,n ← compute angle between m and every plane inQ;
11 Q← push (αm,n,m,n) ordered by αm,n;
12 else

// no more possible coplanar pairs can exist in the priority queue
13 S̃ ← extract planar segments fromQ;
14 break;

15 return S̃

Type Priority Rule
Perpendicularity Highest (binary) slope > threshold(0.9)

Size By area area/max(area)
Overall priority = priority(perpendicularity) ∗ priority(size)

Table 3.1: Primitive priority. Perpendicular and large-area primitives are assigned higher priorities.

Figure 3.4 shows how the normals of refined primitives are of higher regularization than the original ones. Primitives
with proximate positions andnormal directions are clustered into one, since they high likely belong to the sameplane
but are separated due to noise. Notice for extremely noisy scenes where many false-positive planes are detected by
RANSAC, the reduction of the number of planes can be significant.
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Original Refined 

Figure 3.4: Planar primitive refinement. Normal angles are exaggerated.

3.2.3 Construction of cell complex

A topological space can be decomposed into non-intersecting polytopes, each with simple topology and glued along
their boundaries into a cell complex. This explicit space partitioning inherently preserves volumetric information,
with which the reconstruction problem is then transformed into a proper selection of cells from the complex. Un-
derpinned by this hypothesizing-and-selection strategy, we construct a cell complex of candidate polyhedra C from
the refined primitives.

A

B C

𝑯𝑳 𝑯𝑹

A

B C

∩𝑯𝑳 ∩𝑯𝑹

Figure 3.5: Binary space partitioning. The supporting plane of a primitive partitions a parent polyhedron into two
children. A binary tree structure is dynamically updated upon insertion of each primitive.

Binary space partitioning (BSP) recursively subdivides a given space into two convex sets using hyperplanes as parti-
tions. Traditionally, the initial BSP tree has one root corresponding to the bounding box of the point cloud. Each time
a primitive Pi is inserted, two infinite half-space PiL and PiR are generated to partition the parent cell into two chil-
dren with the Boolean intersection operator, as shown in Figure 3.5. The pairwise intersections of these infinitely-
extended hyperplanes, however, burden the creation of candidate sets (e.g., facets or convexes) with unnecessary
complexity (Figure 3.6a). To avoid redundant partitioning, instead, we propose an efficient adaptive binary space
partitioning that minimises the intersections while respecting the spatial layout which primitives present.
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Upon insertion of a primitive, with our adaptive strategy, only the polyhedra that are spatially correlated with the
primitive are to be partitioned, as shown in Figure 3.6b. We describe this correlation by intersection test of the AABB

between the primitive and the existing polyhedra in the BSP tree, which underlines parallelisation. Compared with
exhaustive partitioning, our strategy canminimise redundant partitions that would otherwise generatemeaningless
candidates, which in turn results in both computational overhead and incompact building surfaces.

(a) Exhaustive (b) Adaptive

Figure 3.6: Exhaustive partitioning versus adaptive partitioning. Top: 2D illustration. Bottom: 3D wireframe with
intersections. Adaptive partitioning minimises redundant intersections while generates fewer yet more mean-
ingful polyhedral candidates.

As illustrated in Figure 3.7, the priority assigned in Table 3.1 preserves the building facades, which may otherwise
be underrepresented in the cell complex due to deficient measurements (see Figure 3.7c). Higher priority on larger
primitives intuitively resembles an octree structure [Meagher, 1982] where the constructed BSP tree has a minimal
number of nodes (see Figure 3.7b). During partitioning, the BSP tree structure, as well as the adjacency among the
cells, is incrementally obtained, as shown in Figure 3.8. Notice that the prioritised partition not only improves the
performance, but also avoids redundant cells that hinder the follow-up surface reconstruction from the complex.

3.3 Occupancy learning in function space

The constructed cell complex C from adaptive binary space partitioning serves as a candidate set where a subcom-
plex L of C is to be extracted such that its occupancy OL is predicted as inside the shape by the learnt implicit
function. To address this occupancy classification problem, in this section, we train a deep neural network that
learns an implicit function representing the signed distance from each polyhedron to the surface. The learnt map-
ping can fully exploit the shape prior that resides in the training data, making it flexible for encoding various forms
of point clouds. Meanwhile, the aggregation of local information empowers the functional mapping with strong
generalisation performance.
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(a) Input incomplete point cloud (b) Optimal

(c) Missing facade (d) Random

Figure 3.7: Priority impacts the cell complex construction. The optimal priority in Table 3.1 (b) yields a simpler cell
complex while keeping the complete facade structure of a building.

3.3.1 Signed distance function

An SDF is learnt by a neural network such that, for any given query point x in 3D space, it outputs the distance s
between the point to its closest surface whose sign signifies whether the point lies inside or outside of the watertight
surface:

SDF(x) = s ∶ x ∈ R3, s ∈ R. (3.1)

The SDF depicts a continuous field in 3D space. The surface is thus implicitly defined by the iso-surface where
SDF(⋅) = 0. The SDF for a unit sphere centred at the origin, for example, can be expressed as

SDF(x, y, z) =
√
x2 + y2 + z2 − 1. (3.2)

where (x, y, z) are the coordinates of the query point. Figure 3.9 further illustrates an example of the signed distance
field defined by Equation 3.1 where the building’s surface lies on the interface between the samples with positive
distances and those with negative distances. We acquire the SDF from each building’s point cloudwith deep learning,
and employ the estimated signed distance as a confidence indicator for determining whether each polyhedron in
the cell complex belongs to the building or not.
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Figure 3.8: Cell adjacency is obtained while partitioning. A binary tree structure is dynamically and locally updated
upon insertion of each primitive.

3.3.2 Neural network architecture

We train a neural network that takes a point cloud as input and outputs an estimation of its SDF:

fS(x) ≈ f̃P(x) = sθ(x ∣ z), with z = eφ(P), (3.3)

where z is a latent representation of building surface S that is encoded from the input point cloud P by an encoder
e, and s represents a neural network. Encoder e and neural network s are parameterised by θ and φ, respectively.
Following the neural network formulation by Erler et al. [2020], we aspire to learn a reliable mapping from the input
point cloud to its signed distance field. Since the parameters θ and φ are learnt via supervised learning, the neural
network should derive strong priors that are specific to the training data. However, it is required to generalise across
various types of point clouds.

Wedecompose the SDF into two separate components: the absolute distance fd and its sign fs, based on thePoints2Surf
architecture [Erler et al., 2020]. The estimated absolute distance f̃dP(x) can be determined from only the neighbour-
hood of the query point:

f̃dP(x) = sdθ (x ∣ z
d
x ) , with zd

x = edφ (pd
x) (3.4)

where pd
x ∈ P is a sampling of the neighbouring points around query point x. Estimating the absolute distance

locally instead of deriving from the entire shape forces the network to rely on local encoding zd
x for more accurate

distance estimation around x.

For estimating the sign f̃sP(x) at x, local sampling does not suffice because the occupancy information cannot be
reliably estimated from the local neighbourhood only. Therefore, a global sub-sample P is taken as input:

f̃sP(x) = sgn (g̃sP(x)) = sgn (ssθ (x ∣ z
s
x)) , with zs

x = esψ (ps
x) (3.5)

where ps
x ∈ P is a uniform subsample of the input point cloud, ψ parameterises the encoder, and g̃sP(x) are logits

expressing the confidence that x has a positive distance to the surface. The two latent descriptions zs
x and zd

x share
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3.3 Occupancy learning in function space

Figure 3.9: Signed distance field. (a) signed distance for sampled points; (b) cross-section of the signed distance
field; (c) 3D surface where SDF = 0.

information in between, resulting in the formulation for signed distance learning:

(̃fdP(x), g̃sP(x)) = sθ (x ∣ zd
x,z

s
x) , with zd

x = edφ (pd
x) and zs

x = esψ (ps
x) (3.6)

Figure 3.10 shows an overview of the neural network architecture for SDF estimation. The two encoders edψ and esψ
are both implemented with PointNets [Qi et al., 2017], with identical architecture but asynchronous parameters.
Each point’s feature vector is computed using multiple multi-layer perceptron (MLP) layers. The point features are
then aggregated into latent vectors zd

x = edψ(pd
x) and zs

x = esψ(pd
x) with channel-wise maximum. The decoder sθ is

implemented with MLP as well that takes as input the concatenated feature vectors zd
x and zs

x and outputs both the
the absolute distance f̃d(x) and sign logits g̃s(x). For a detailed description of the architecture, we refer to Erler
et al. [2020].

Figure 3.10: Points2Surf neural network architecture. Given a query point (in red), both its neighbouring points
(in yellow) and a global subsample (in purple) are fed as input, which are encoded into two feature vectors. The
network outputs the estimated SDF as a combination of absolute distance and the sign. Adapted from Erler et al.
[2020].

3.3.3 Training with loss function

We train the neural network to estimate separately the absolute distance from the query point x to the building
surface S, and to classify whether x is inside S or outside S. The building’s surfaces are available during training.
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Therefore, we pre-sample query points with known signed distance, and use these query points as training examples.
We use an L2-based loss function for the absolute distance:

Ld(x,P, S) = ∥tanh (∣̃fdP(x)∣) − tanh(∣d(x, S)∣)∥
2

2 (3.7)

where d(x, S) is the distance from x to the reference building surface S. The tanh function distributes more weight
to the query points with smaller absolute distances, since they are critical for accurate reconstruction. For the sign
classification branch, the binary cross-entropy H is used as a loss:

Ls(x,P, S) = H (σ (g̃sP(x)) , [fS(x) > 0]) (3.8)

where σ is the sigmoid function: σ(x) = 1
1+e−x , and [fS(x) > 0] is an indicator function which equals 1 if x lies

outside the surface S, and 0 otherwise. During the training, we jointly minimise these two losses across all buildings
and the attached query points in our training set:

∑
(P,S)∈S

∑
x∈XS

Ld(x,P, S) +Ls(x,P, S) (3.9)

where S represents a set including buildings’ surfaces S and their point clouds P, and XS is a set of pre-sampled
query points.

Figure 3.11 reveals how the neural network learns to approximate the surfaces of two buildings in a synthetic training
dataset. The implicit field gradually approximates the ground truth geometry with iterations. To clarify, the iso-
surfacing for the visualisation is performed with marching cubes [Lorensen and Cline, 1987] without constraining
the piecewise planarity.

Figure 3.11: Process of approximating a surface with the neural network. Iteration step increases from left to right
with the last column depicting the ground truth geometry.

After the neural network is trained, for any given point cloud, it can generate its signed distance field. Since the field
is a continuous representation, we can query the distance from any point in space to the surface of the building.
Figure 3.12 illustrates a series of cross-sections of the signed distance field as predicted by the neural network.

Figure 3.12: A series of 2D cross-sections of a signed distance field of the building in Figure 3.9
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3.4 Surface reconstruction

3.3.4 Signed distance voting

The continuous SDF describes a scalar field, where we now assign each candidate polyhedron in the complex an
aggregated signed distance through voting (see Figure 3.13):

S̄DP = 1
p∑i∈P

SDP
i (3.10)

where SDp
i is the inferred signed distance of the i-th query point in the polyhedron P, and p is the number of query

points in P.

(a) Candidate polyhedra (b) Implicit field (c) Query points with distances

Figure 3.13: Signed distance estimation for each candidate polyhedron

As shown in Figure 3.14, the signed distance value of each polyhedron is generated by averaging the votes of SDF

values from the samples in the polyhedron., which all represents the confidence that the polyhedron belongs to
the shape. With more representatives joining the voting, the polyhedral signed distance can be more accurately
reflected. However, too many representatives may burden the inference computation. Since the SDF depicts a con-
tinuous field, no abrupt changes exist given a high-quality candidate polyhedral embedding. Therefore, we experi-
mented with different settings and eventually choose only the centre of each polyhedron as a representative vote.

Figure 3.14: Signed distance voting. The signed distance of a candidate polyhedron can be expressed by averaging
the votes from representatives inside the polyhedron.

3.4 Surface reconstruction

With the cell complex constructed via adaptive binary space partitioning, and the indicator function learnt by the
neural network, the surface reconstruction can be addressed as a combinatorial binary labelling problem, where an
inside-outside label is to be assigned to each polyhedron in the complex. The surface exists between every pair of
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inside polyhedron and outside polyhedron, as shown in Figure 3.15a. As our adaptive binary space partitioning
produces a valid polyhedral embedding, the surface is inherently guaranteed to be watertight. Notice that, however,
the output surface may be non-manifold. As shown in Figure 3.15b, two inside polyhedra can be connected along
one non-manifold edge or at one non-manifold vertex. We argue this non-manifold abstraction can be seen in
real-world building structures (see Figure 3.16) and therefore should be allowed in reconstruction.

(a) Manifold

(b) Non-manifold

Figure 3.15: Two labelling examples. Both are valid polyhedral embeddings from our reconstruction.

Figure 3.16: An example of non-manifold buildings. The 2D surface is not homeomorphic to a plane [Ohori, 2016].
Non-manifold structure can exist in real-world buildings therefore should be allowed in reconstruction.

A naive reconstruction can be achieved by extracting the surface between each pair of polyhedra where one is
classified as inside while the other one as outside. However, this solution does not take into consideration the
regularisation needed for compact building models, thus may result in overly complex geometry. In this section, we
propose an efficient surface extraction method based on an MRF formulation, and solve the optimisation problem
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using an efficient graph-cut solver. Our method allows adjustable complexity configurations on the reconstructed
building surfaces.

3.4.1 Energy formulation

We formulate reconstruction as a binary labelling problem. Given the cell complex C we denote the binary label
to be assigned to each polyhedron in C by xi = {in, out}. The quality of the reconstruction is measured with the
two-term energy denoted as

E(x) = D(x) + λV(x) (3.11)

where D(x) and V(x)measures the fidelity and complexity of the reconstructed building surface, respectively. λ is
a parameter that weights the regularisation imposed by V(x). The optimal surface is then obtained where E(x) is
minimised.

The fidelity term D(x)measures the confidence that the subcomplex L belongs to the building’s shape, and is indi-
cated by the neural network’s prediction of the signed distance. After associating the representatives to the polyhe-
dra, we express the geometric fidelity by voting on each polyhedron under the form

D(X) = 1
∣C∣∑i∈C

di(Ci, xi) (3.12)

where di(Ci, xi) = ∣probability(Ci) − xi∣, and the probability of each polyhedron is further expressed as

probability(Ci) = sigmoid(SDi ⋅ volumei) (3.13)

where SDi is the signeddistance prediction of xi from theneural network, volumei is the volumeof xi, and sigmoid(x) =
1

1+e−x . The sigmoid function normalises the signed distance to (0, 1). Intuitively, a polyhedron with larger volume
should weight higher than that of smaller volume though given identical signed distance.

(a) (b) (c)

Figure 3.17: Complexity term penalises zigzagging artefact. Our combinatorial optimisation tends to reconstruct a
compact surface (a) rather than a zigzagging one (b and c).

The other termV(x) functions by penalising the complexity of the output building surface by its area, where a lower
one is favoured. Intuitively, the zigzagging artefact on the surface would yield a higher V(x) value, while a compact
surface would minimise this term, as shown in Figure 3.17. The complexity term is expressed by

V(X) = 1
A ∑
{i,j}∈C

aij ⋅ 1xi≠xi (3.14)

where {i, j} ∈ C represents pairs of adjacent polyhedra in the complex, aij denotes the shared area between polyhe-
dron i and j, and A is a normalisation factor specified as the maximum area of all facets in the cell complex.
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3 Methodology

The energy formulation in Equation 3.11 implies an MRF, where D(x) and V(x) define the unary potential and
the pairwise potential, respectively. If λ is assigned 0, i.e., no regularisation is imposed, the energy formulation is
equivalent to a naive extraction of cells.

3.4.2 Surface extraction

The candidate polyhedra in the cell complex form a graph embedding, where each polyhedron represents a node in
the graph. From adaptive binary space partitioning, the adjacency information among the polyhedra is dynamically
obtained, representing links in the graph. Figure 3.18 illustrates how a cell complex can be interpreted as a graph.
Since the energy expressed in Equation 3.11 satisfies the MRF formulation, we employ the graph-cut algorithm to
solve this optimisation efficiently.

Figure 3.18: Cell complex interpreted as a graph. Links exist in between adjacent polyhedra with shared facets.

Let G =< N,L > be a graph formed by a set of nodesN and a set of undirected links L that connect them. InN there
are two distinctive terminal nodes which are defined as the source and the sink, and the other nodes are non-terminal
nodes P. Such type of graph is called s-t graph and Figure 3.19 shows an example. Non-negative and undirected
weight w(p, q) is assigned to the link connecting node p and q in the graph. A link is called a t-link if it connects a
non-terminal node with a terminal, and is called an n-link if it connects two non-terminal nodes.

(a) Cut on 2D grid (b) Cut on 3D grid with hypersurface

Figure 3.19: Graph cuts as hypersurfaces [Boykov and Funka-Lea, 2006]
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3.4 Surface reconstruction

We denote a cut as CT. The cost of the cut ∣CT∣ aggregates the weights on CT, which can be expressed as

∣CT∣ =∑
e∈C

we. (3.15)

Intuitively, a cut is a segmentation of the nodes inG into two disjoint subsets, denoted S and T, such that the source s
belongs to S and the sink t belongs toT. As illustrated in Figure 3.19, a cut is a hypersurface over the links, separating
the graph into two subsets, namely polyhedra inside the building’s shape and those outside. A minimal cut is the
partition corresponding with a minimal value of ∣CT∣, which, according to Boykov and Funka-Lea [2006], can be
solved by finding the maximum flow from s to t, which is equal to the cost of the minimal cut. Figure 3.20 illustrates
different topological properties for separating S and T with hypersurfaces where multiple disjoint components can
present. For building reconstruction, both connected segment and disjoint ones are rational since one building can
consist of one or multiple components.

(a) Connected source segment (b) Disjoint source segments

Figure 3.20: Different topological properties for separating source S and terminal Twith hypersurfaces [Boykov and
Funka-Lea, 2006]

The surface to be extracted lies at the intersection between every pair of adjacent polyhedra where one is classified
as inside and the other one as outside the building; this is exactly where the hypersurfaces cut the graph. Therefore,
as illustrated in Figure 3.21, the surface can be directly retrieved where the cut is performed whose interface can
be cached during the computation of facet area. Compared with the integer programming solver used by Nan and
Wonka [2017], our graph-cut solver is substantially more efficient.

(a) Candidates (b) Labelled as building (c) Surface

Figure 3.21: Surface extraction from labelled cell complex. Building Surface (c) can be extracted from the labelled
cell complex (b) where the hypersurfaces cut the graph.
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3 Methodology

A consistent orientation contributes to a topologically valid building surface representation. Though orientation
information is not stored in our data structure during adaptive binary space partitioning, it can be redressed once
the surface is obtained alongside a valid adjacency graph for all polyhedra. Specifically, we start from an arbitrary
polygon, trace its adjacent polygons and reverse their orientation if the shared edge is expressed in the same direction
(see Figure 3.22). The predicate recursively evaluates every pair of adjacent facets until they all are of opposite
directions. This post-processing results in a consistent orientation of the building’s surface.

(a) (b)

Figure 3.22: Consistent orientation of building’s surface. The shared edge between every pair of adjacent facets is
recursively evaluated where (a) is reversed to (b).

34



4 Implementation details

This chapter reveals the implementation details. Section 4.1 explains how the datasets are prepared including syn-
thetic data and real-world scans. Section 4.2 describes the metric under which the proposed method is evaluated.
The exact numerical representation of geometry is key to the robustness of our implementation, which is explained
in Section 4.3. Finally, Section 4.4 lists the main libraries and software used to implement this thesis.

4.1 Datasets

Avariety of datasets are used to evaluate the proposedmethod. Since this thesis targets building reconstructionwith
a learning-based approach, high-quality point cloud-surfacemesh pairs are required as training data. Due to the lack
of data in this domain, however, we simulate our own point clouds based on the Helsinki LoD2 CityGML models1.
Specifically, we pick 678 watertight buildingmeshes for training, 45 for validation and another 45 for testing. Notice
that, due to the patch-based architecture described in Section 3.3.2, a large number of diverse patches are produced
from each mesh as training samples.

(a) (b)

Figure 4.1: Simulation with Blensor. A LiDAR scanner rotates on a sphere around the building mesh to generate
a full-view point cloud (a). The scanner’s position is constrained on the upper half of the sphere to simulate a
no-bottom point cloud (b).

The point clouds are generated by simulated scanning on the building meshes. For pre-processing, the watertight
building meshes are translated to the origin and scaled uniformly to unit length. To simulate point clouds P on the
buildings S, a LiDAR sensor is configured from random perspectives. We use Blensor [Gschwandtner et al., 2011] to
simulate the scanning, intentionally with various levels of Gaussian noise and artefacts such as occlusions and light
reflections. Each Helsinki building model is scanned randomly from 10 to 30 times to simulate the heterogeneous
point distribution in real-world measurement. For each scan, we follow the configuration described in Erler et al.
[2020] and position the scanner at a random location on a circumsphere centred at the origin, with a scanning radius
set inU[3R, 5R], where R is the largest side of the building’s 3D bounding box. The scanner is oriented to target the
building but with a slight random shift, between U[−0.1R, 0.1R] along each axis, and rotated randomly around the

1https://kartta.hel.fi/3d/
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4 Implementation details

scanning direction. Each scan yields approximately 25,000 points, minusmissingmeasurements given intentionally
simulated scanning artefacts. The final point cloud comprises the point clouds of several scans on the same building.
Figure 4.1a illustrates the simulation process. Notice that due to a limitation of Blensor’s configuration, an equivalent
workaround is implemented2.

For evaluating ourmethod against various levels of noise, we simulatemultiple versions of theHelsinki dataset, each
with different amounts of Gaussian noise configured. Various Gaussian noise simulates measurement inaccuracies
onto the depth values. We prepare point clouds with Gaussian noise whose standard deviation is randomly set
in U[0, 0.005R], and use this version for training the neural network. We also create multiple versions where the
Gaussian noise is fixed per dataset, from {0, 0.001R, 0.005R, 0.010R, 0.050R}, for evaluating the robustness of the
proposed method and its competitors.

In addition to the simulated point clouds, the training set also contains a set of query points XS for each building.
Since query points with smaller absolute distances are of higher importance for detailed surface reconstruction,
we randomly sample 1000 points on the surface then apply perturbation in their normal direction by a random
displacement inU[−0.02R, 0.02R]. In addition, we sample 1000 query points randomly distributed in the bounding
box of the building, mounting up to 2000 query points in total per building. To enhance robustness of the learnt
SDF, we randomly drop out 1000 query points and use the other 1000 samples for training. We denote this full-view
dataset as Helsinki full-view. Figure 4.2 shows the dataset examples.

Figure 4.2: Helsinki dataset examples. From top to bottom: Gaussian noise ranging from 0.001 to 0.050.

We further constrain the scanner’s position such that no bottom view is captured and create theHelsinki no-bottom
dataset. The simulated point clouds resemble the real-world data of buildings acquired via MVS or LiDAR, where
rare points from the bottom of a building can be captured. Like with Helsinki full-view, we generate a version of
point clouds with various Gaussian noise, along with the query points, as training data, and a series of point clouds

2https://github.com/ErlerPhilipp/points2surf/issues/6
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4.1 Datasets

with fixed noise for evaluation purpose only. This simulation without the bottom view is illustrated in Figure 4.1b.
Figure 4.3 shows the difference between Helsinki full-view and Helsinki no-bottom with examples.

Figure 4.3: Helsinki full-view (left) versus Helsinki no-bottom (right).

In case the simulated point clouds still deviate from real-world scans, we further evaluate our method on the real-
world photogrammetric point clouds of six buildings in Shenzhen, China, produced from aerial images with MVS.
The original imageswere captured byUAVs from top and lateral perspectives. Themain bodies of buildings are visible
with well-captured roof structures. However, the building facades are only partially visible with missing areas due
to occlusions and poor lighting conditions at lower part of the buildings. Examples of the Shenzhen point clouds
are shown in Figure 4.4.

Figure 4.4: Shenzhen dataset examples

Table 4.1 summarises the characteristics of the datasets used for evaluation in this thesis. Since global shape priors
are dataset-dependent, conceivably the neural network trained on one dataset may not capture the characteristics of
another. Nonetheless, we train our neural network for SDF estimation on the Helsinki full-view dataset and Helsinki
no-bottom dataset with various noise only, individually. The trained model on the former is used for evaluation on
full-view point clouds, while the latter on no-bottom point clouds of typical building scans where the bottom view
is not visible to the scanner.
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Name Type Perspective Quantity Usage
Top Bottom Lateral

Helsinki full-view Simulated LiDAR 3 3 3 768 Training + evaluation
Helsinki no-bottom Simulated LiDAR 3 7 3 768 Training + evaluation
Shenzhen Real-world MVS 3 7 3 6 Evaluation

Table 4.1: Datasets overview

4.2 Evaluation metrics

We evaluate the proposed method in terms of geometric fidelity and complexity, as well as its computational effi-
ciency. Since each building in both Helsinki full-view dataset and Helsinki no-bottom has a ground truth surface,
we sample both the reconstructed surface and the reference each with 10,000 points. The symmetric mean Haus-
dorff (SMH) distance is used as the metric to assess the geometric discrepancy between the reconstructed surface
and its reference. The one-sided distance DistA,B from point set A to set B is denoted as

Dista,B = minb∈B(∥a − b∥) DistA,B = maxa∈A(Dista,B). (4.1)

As this distance is non-symmetric, the SMH is computed by taking the maximum of DistA,B and DistB,A:

DistSMH = max(DistA,B,DistB,A). (4.2)

In the context of surface reconstruction from point clouds,

DistSMH = max(DistSR,DistRS) (4.3)

where DistSR and DistRS represent the one-side Hausdorff distances from surface to reference, and from reference
to surface, respectively. Because there are no ground truth surfaces present in Shenzhen dataset, we instead calcu-
late the one-side Hausdorff distance DistSR from the surface to the input point cloud as reference. Notice that for
visualising the error distribution over the reconstructed building surfaces, we generate the error map showing the
discrepancy between the vertices and their closest reference points.

The geometric compactness of the output building models is assessed by the number of facets it comprises, where
the more facets are used to represent a building, the more geometrically complex the reconstructed model is. To
clarify, this measure mainly addresses complexity in terms of data structure, instead of visual compactness, since
multiple adjacent coplanar facets are of the same visual complexity as one combined.

In addition to the distance measures, we also evaluate the efficiency of our method on a single computer with an
Intel i5 CPU clocked at 2.90 GHz and an NVIDIA GTX 2080Ti GPU. Specifically, the running time of cell complex
construction, occupancy estimation and surface extraction are respectively timed in sequence for scenes of various
complexity. One of the measures we adopt that particularly reflects scalability is the maximum number of planar
primitives our method can process without exceeding 103 seconds.

Evaluation Metric Description

Fidelity Hausdorff distance From reconstructed surface to reference
Compactness Number of facets Number of facets that composite the surface
Efficiency Execution time Total running time for reconstruction

Table 4.2: Evaluation metrics
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4.3 Numerical robustness

To tackle the notorious consistency error in geometry, we employ exact arithmetic in the construction of explicit
geometry. Since a computer cannot precisely represent a point in R3, we cast all geometric primitives into the
exact rational coordinate space Q3. This exactness underpins the robustness of the geometry processing including
adaptive binary space partitioning and surface extraction because the set of vertices, polygons and polyhedra inQ3

are self-contained under Boolean spatial operations.

(2/3, 1/3, 0)

Figure 4.5: Exact representation by rational numbers. The intersection’s position (2/3, 1/3, 0) cannot be precisely
described with floating-point arithmetic.

The floating-point coordinate space F3 does not retain the exactness. For example, the intersection between line
segments shown in Figure 4.5 lies at position (2/3, 1/3, 0) which cannot be precisely described with floating-point
arithmetic. The exact rational spaceQ3 contains the floating-point space as a subset: F3 ∈ Q3. Therefore, given the
input planar primitives with floating-point vertex positions, we can losslessly cast them to the exact space. Given
the output building’s surfaces, we can still cast them into floating-point coordinate space, but with a compromised
precision.

(a) Intersection at edge (b) Intersection at vertex

Figure 4.6: Example of degenerate geometry due to floating-point arithmetic. A half-space may intersect with an
existing polyhedron at its edge (a) or vertex (b). Both have degenerate volumetric configurations.

The rational-based exact representation effectively avoids degenerate cases thatmay otherwise cause inconsistencies
in the geometry. For example, as illustrated in Figure 4.6, empty polyhedron, possibly formed by supporting planes
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intersecting at one vertex or one plane in adaptive binary space partitioning, can be easily identified and further
eliminated when the exact representation is used.

4.4 Libraries and software used within this thesis

The main libraries used in this thesis are listed as follows:

• SageMath [The SageDevelopers, 2021] is amathematics software systemwith features covering algebra, com-
binatorics, graph theory, numerical analysis, number theory, calculus and statistics. It is used for implement-
ing the adaptive space partitioningwith its class Polyhedra. It also provides the ring of rational numbers which
facilitates numerical robustness.

• PyTorch [Paszke et al., 2019] is an optimised tensor library for deep learning. Theneural network architecture
for occupancy learning in function space is built with PyTorch.

• NetworkX [Hagberg et al., 2008] is a Python package for the creation, manipulation, and study of the struc-
ture, dynamics, and functions of complex networks. It supports the graph structure dynamically constructed
during binary space partitioning, and provides an efficient implementation for computing the node partition
of a minimum s − t cut based on the max-flow min-cut theorem [Boykov and Funka-Lea, 2006].

• Blensor [Gschwandtner et al., 2011] is a simulation package binding with Blender for LiDAR and Kinect sen-
sors. It is used for simulating the point clouds from the Helsinki city models.

• Easy3D [Nan, 2018] is a lightweight library for 3D modelling, geometry processing, and rendering. It is used
for planar primitive detection from point clouds, and visualisation of the 3D geometry including points and
surface meshes.

More libraries are used under the hood, such as scipy and Qhull for convex hull calculation, sklearn for PCA, rtree
for spatial indexing, etc.

All methods in comparison within this thesis are either authors’ implementations or from CGAL3 as openly avail-
able software, including Poisson reconstruction, Points2Surf, PolyFit, Manhattan-world reconstruction, 2.5D Dual
Contouring, QEM, SAMD and VSA. The non-commercial SCIP4 solver is used for PolyFit.

3https://www.cgal.org/
4https://www.scipopt.org/
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5 Results and discussion

Figure 5.1: Reconstructions from Helsinki full-view point clouds. From left to right: input point cloud (coloured
randomly per primitive), wireframe of candidate polyhedra, volume rendering of SDF, and reconstructed building
model. Best viewed digitally.

This chapter presents the experimental results. Reconstruction results on several datasets are shown in Section 5.1.
Section 5.2 extensively evaluates the proposed method in comparison with state-of-the-art methods. In Section 5.3
and Section 5.4 we delineate the limitations and the application scope respectively.
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5 Results and discussion

5.1 Reconstruction results

With the neural network trained onHelsinki full-view point clouds, the proposed method can reconstruct buildings
of various architectural styles. Figure 5.1 presents a few reconstruction results fromHelsinki full-view data. The SDF

can accurately describe occupancy of the buildings even though their styles may be distinct from the data that the
neural network is trained on.

Table 5.1 reveals the reconstruction error both visually and quantitatively. Most errors occur where subtle structures
exist, due to the abstraction from planar primitive detection and the regularisation imposed to surface extraction.
Nonetheless, all building surfaces can be effectively retrieved from the point clouds with plausible visual quality and
SMH distance less than 0.3%.

Index Reference Reconstructed Error Map DistSMH (%)

#1 0.04541

#2 0.04440

#3 0.11673

#4 0.22028

#5 0.21887

#6 0.08891

#7 0.14784

#8 0.02611

Low High

Table 5.1: Error analysis on Helsinki full-view data. DistSMH represents SMH distance.

The global information estimating the sign of the SDF ensures the shape prior is preserved even when the local point
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5.1 Reconstruction results

samples are contaminated, e.g., missing the bottom view from the measurements. To demonstrate the capacity of
our approach on these incompletemeasurements, we additionally train the neural network then evaluate onHelsinki
no-bottom point clouds. As shown in Figure 5.2, our method can still correctly infer the occupancy of the entire
buildings, resulting in complete reconstruction. Unlike PolyFit [Nan and Wonka, 2017], we make no assumption
that the model is closed by the detected primitives. Instead, with appended facets of the AABB, the candidate poly-
hedra embedding is always closed. Therefore, complete facades can be reconstructed though barely associated with
points. The learnable strong prior for SDF estimation enables our method to adapt to possibly deficient scans of
other kinds, e.g., from terrestrial laser scanner (TLS) where the roof structure may be invisible.

(a) Point cloud (b) Surface (c) Overlay

Figure 5.2: Reconstructions from Helsinki no-bottom point clouds. Our method can reconstruct a closed building
model even given insufficient scans on the bottom or facades. Point clouds coloured by height.

Since the deep implicit field trained on Helsinki no-bottom data takes advantage of both local geometry and the
general shape prior characterising point clouds of urban buildings, our reconstruction can reasonably generalise
from synthetic data to real-world scans. Figure 5.4 shows the reconstruction results from Shenzhen point clouds
directly using the neural network trained on Helsinki no-bottom data. The inferred distance fields still conform to
the real-world point clouds of styles unseen by the network during training. Though lower parts of the buildings
are insufficiently measured due to occlusion and unfavourable lighting conditions, our method can still successfully
reconstruct the entire building (see Figure 5.3).

(a) Point cloud (b) Surface (c) Overlay

Figure 5.3: Complete reconstruction from insufficient scans of Shenzhen data.

Table 5.2 presents the error analysis on Shenzhen data. Since no ground truth surface is available, the error is
measured asymmetrically from the reconstructed surface to the input point cloud as a reference. Therefore, the
most prominent error lies where themeasurement ismissing, because no proximate reference exists for the correctly
reconstructed surface at lower part of the building. In addition, the intricate roof structures occasionally introduce
tangible errors when approximated with piecewise-planar abstraction. For instance, the protuberance on top of
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building #4 of Shenzhen data is approximated with a superfluous cuboid. Building #6 of Shenzhen data contains a
nested structure which causes ambiguity in interior/exterior classification.

Figure 5.4: Reconstructions from Shenzhen point clouds. From left to right: input point cloud (with RGB), wire-
frame of candidate polyhedra, volume rendering of SDF, and reconstructed building model. Best viewed digitally.

5.2 Evaluation

In this section, we analyse the proposedmethod on variousmetrics over fidelity, complexity, robustness and compu-
tational efficiency, in comparison with state-of-the-art methods in smooth surface reconstruction, piecewise-planar
shape reconstruction, surface approximation and geometry simplification.

5.2.1 Fidelity and complexity

Figure 5.5 compares the surfaces reconstructed by ourmethod and twomethods for smooth surface reconstruction,
namely Poisson reconstruction [Kazhdan et al., 2006] and Points2Surf [Erler et al., 2020]. The former is considered
the golden standard for non-data-driven surface reconstruction, while the latter is a recent learning-based approach
that partly constitutes the occupancy learning in our framework. Unlike our approach describing a surface with
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Index Reference Reconstructed Error Map DistSR (%)

#1 3.8815

#2 2.0045

#3 1.1059

#4 1.5759

#5 2.5830

#6 3.3763

Low High

Table 5.2: Error analysis on Shenzhen data. DistSR represents Hausdorff distance from surface to reference.

piecewise planarity, both these two methods produce a massive number of triangle facets. This not only leads to
extra memory consumption, but also potentially results in non-watertight surfaces.

Figure 5.6 compares our results onHelsinki full-view and Shenzhenwith PolyFit [Nan andWonka, 2017],Manhattan-
world reconstruction [Li et al., 2016b] and 2.5DDual Contouring [Zhou andNeumann, 2010]. NeitherManhattan-
world reconstruction nor 2.5D Dual Contouring can deliver high-quality building models. The former constrains
facets to be axis-aligned thus cannot faithfully represent those of arbitrary orientation, while the latter produces
a prohibitive number of facets that do not properly address the piecewise planarity of urban buildings but with
undesirable discontinuity. However, bothManhattan-world reconstruction and 2.5DDual Contouring allows users
to specify the ground plane through their graphical user interface (GUI) such that, for incomplete point clouds from
Shenzhen data, the lower part of the buildings can be recovered.

Among these methods, PolyFit is most comparable with ours for generating compact piecewise-planar building
surfaces. In fact, both PolyFit and our method adopt the hypothesizing-and-selection strategy: we both tessellate
the ambient space into a candidate set with detected planar primitives, and then seek a proper arrangement of the
candidates with combinatorial analysis. However, the optimisation goal in PolyFit is hardcoded with proper weights
distributed for model-fitting, coverage and complexity. Instead, with our approach, the optimisation is essentially
guided by the implicit field estimated from the neural network with regularization imposed by the MRF.
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Figure 5.5: Comparison with smooth surface reconstruction. From left to right: point cloud (coloured randomly
per primitive), Poisson reconstruction, Points2Surf, and ours.

Since PolyFit assumes all necessary planes are provided to form a closed surface, the substance of a building is not
guaranteed to be recovered when a pertinent planar primitive fails to be extracted, which, unfortunately, happens
to most real-world buildings scans where the ground plane is missed out. For instance, PolyFit fails to recover the
lower part of the building from the Shenzhen point clouds, as shown in Figure 5.4. Instead, we relax this assumption
by initialising with a bounding box of the point cloud for cell complex construction, which effectively guarantees
complete reconstructions from incomplete measurements.

Ours PolyFit

Index Fidelity Complexity Fidelity Complexity

DistSR DistRS DistSMH #Facets DistSR DistRS DistSMH #Facets
#1 0.01858 0.04541 0.04541 102 0.01758 0.04543 0.04543 158
#2 0.03438 0.04441 0.04441 117 0.15216 0.08322 0.15216 643
#3 0.11674 0.06079 0.11673 155 0.02774 0.06174 0.06174 816
#4 0.02369 0.22029 0.22029 112 0.02125 0.22144 0.22144 180
#5 0.08391 0.21888 0.21888 108 0.02937 0.22151 0.22151 271
#6 0.02372 0.08892 0.08892 162 0.02506 0.09165 0.09165 1278
#7 0.02940 0.14785 0.14785 312 0.03461 0.14145 0.14145 1919
#8 0.02612 0.02368 0.02612 203 0.02038 0.02182 0.02182 849

Table 5.3: Evaluation of fidelity and complexity. DistSR,DistRS andDistSMH representHausdorff distance from surface
to reference, from reference to surface and SMH distance, respectively.

Table 5.3 further quantitatively compares the fidelity and complexity of the Helsinki full-view building models gen-
erated by our method and by PolyFit. The comparable SMH distances indicate no significant fidelity advantage from
either method. However, by overlaying the point cloud on the reconstructed surface in Figure 5.7, we notice, with
default complexity configuration1, PolyFit tends to output a more regularised surface while ours conforms more

10.46, 0.27, and 0.27 as weights for model-fitting, coverage, and complexity in PolyFit, respectively; λ = 0.001 for complexity in ours.
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(a) Point cloud (b) PolyFit (c) Ours

(d) Manhattan-world (e) 2.5D DC

Figure 5.6: Comparison with piecewise-planar reconstruction methods from both Helsinki full-view (top) data and
Shenzhen (bottom) data.

(a) PolyFit (b) Ours

(c) PolyFit overlay (d) Ours overlay

Figure 5.7: Comparison with PolyFit. PolyFit outputs a more regularised surface with more facets, while ours con-
forms more to the geometric detail exhibited in the building with fewer facets.
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to the geometric detail exhibited in the data. As in the scope of urban building reconstruction, there is always a
trade-off between the fidelity and complexity of reconstructed building models.

Compared with exhaustive partitioning adopted by PolyFit, our adaptive strategy can produce building surfaces
with lower complexity, measured by the number of facets on the reconstructed surface, as shown qualitatively in
Figure 5.7 and quantitatively in Table 5.3. Note that this measure of complexity may not fully comply with the visual
compactness of a building model but only for data structure, because multiple adjacent coplanar facets are of the
same visual complexity as one combined. Through polygonisation as post-processing, the number of facets gener-
ated by PolyFit can be reduced. Nevertheless, our reconstruction method has the advantage of directly generating
compact building models. Moreover, we argue the adaptive partitioning strategy cannot be plugged into PolyFit
since it would otherwise break the manifold precondition asserted in PolyFit.

(a) Point cloud (b) PolyFit (c) Ours

Figure 5.8: A non-manifold example. For the input point cloud (a), ourmethod can faithfully reconstruct the surface
(b). PolyFit is under its manifold constraint and includes an impertinent space in the reconstruction (c).

Through evaluation on synthetic point clouds, we observe the non-manifold structure (see Figure 3.15b) can sig-
nificantly affect the surface reconstruction, as exemplified by Figure 5.8. Since our method constrains only water-
tightness but not manifoldness, the reconstructed surface respects faithfully the geometry of the point cloud that
exhibits the non-manifold structure. For PolyFit, however, an impertinent space is included in its reconstruction,
as a consequence of its manifoldness constraint. The non-manifold structure is expected in urban building models,
for which our method applies while PolyFit does not.

Figure 5.9: Comparison with surface approximation methods. From left to right: point cloud (coloured randomly
per primitive), QEM, SAMD, VSA, and ours.

48



5.2 Evaluation

In addition to the aforementioned reconstruction methods, we further compare our method with state-of-the-
art surface approximation methods, namely QEM [Garland and Heckbert, 1997], SAMD [Salinas et al., 2015] and
VSA [Cohen-Steiner et al., 2004], which all can approach a compact surface by simplifying a smooth surface com-
prised of dense triangles, i.e., the dense triangular surfaces from smooth surface reconstruction serves as input for
QEM, SAMD and VSA.

We set up the expected number of vertices after approximation equal to ours and compare the quality of the gen-
erated building surfaces with comparable complexity. As shown in Figure 5.9, our reconstruction method can
produce surfaces of significantly more piecewise planarity, with sharp edges kept, compared with QEM, SAMD and
VSA. The quadric error metrics in QEM contract edges without attention onto planar structures thus generate frac-
tured surfaces. However, its output is the closest to our reconstruction among the three approximation methods in
comparison. SAMD, though claiming structure-aware, struggles to deliver building models with compact surfaces,
partially because of its strong compliance to the detected primitives, which, when given in low quality, limits its
compactness on the contrary. VSA produces surfaces with the lowest quality given the same complexity. Notice
QEM, SAMD and VSA all output surfaces with triangles instead of arbitrary-sided polygons as with our method.

Figure 5.10: Adaptive partitioning (left) versus exhaustive partitioning (right). Adaptive space partitioning avoids
over-tessellation and the subsequent ‘caved’ artefact.

The adaptive strategy in our approach effectively avoids over-tessellation and mitigates the subsequent ‘caved’ arte-
fact, as shown in Figure 5.10. Exhaustive partitioning, on the contrary, produces numerous small-sized candidate
polyhedra, especially near the building’s surface. These unnecessary candidates are more likely to be misclassified
than those with larger volumes generated by adaptive partitioning. Once an interior candidate is classified as outside
the building instance, a ‘caved’ surface appears, and vice versa.
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5.2.2 Computational efficiency
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Figure 5.11: Distribution of execution time. Surface extraction consumes no more than 0.01 second for all of the
eight buildings thus barely visible as bars.

Figure 5.11 presents the execution time distribution for each component of our method. Most running time is due
to the creation of cell complex where the adjacency graph of polyhedra is dynamically obtained. The adoption of
exact arithmetic slows computation, while being critical for the numerical robustness of our approach. For all the
eight buildings shown in Figure 5.1, the surface extraction with our graph-cut solver consumes no more than 0.01
second, which is significantly faster than that of PolyFit with its integer programming solver. Inference of SDF is done
by the neural network on a GPU in a batch manner, i.e., computations are parallelised across different query points
and even across different objects. In our experiment, approximately one thousand query points can be processed
per second, obtaining the aggregated signed distances of the same amount of polyhedra instantly.
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Figure 5.12: Efficiency of adaptive partitioning

We evaluate the efficiency of our adaptive binary space partitioning with exhaustive partitioning in comparison.
Figure 5.12 shows the evolution of their construction time and complexity in function of the number of planar
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5.2 Evaluation

primitives. Adaptive space partitioning drastically reduces the computations for cell complex creation, yet gen-
erating much fewer polyhedra which in turn speeds up the follow-up occupancy inference and surface extraction
procedures. With exhaustive partitioning by pairwise intersections, a massive number of candidate polyhedra are
indiscriminately produced regardless of their spatial subordination; the partitioning time increases accordingly. The
excessive amount of candidates not only hinders computation, but incline to defective surface on subtle structures
where wrong labels are more likely to be assigned. Instead, the adaptive strategy avoids redundant partitioning thus
is able to produce compact surfaces efficiently.
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Figure 5.13: Scalability comparison with PolyFit

We further compare the scalability of ourmethodwith that of PolyFit in Figure 5.13. With pairwise intersection from
a large number of planar primitives, PolyFit first generates a prohibitive number of candidate facets, from which an
optimal combination is to be obtained by its integer programming solver. In our experiment, PolyFit struggles to
reconstruct the surface when the number of primitives exceeds 100 and the number of polyhedra exceeds 20,000
as a consequence. For complex building models, PolyFit may even take days for solving its integer programming
problem, only if solvable. Its solver may also fail with memory complaints when the scale of the candidate set
exceeds capacity due to computationally intensive global optimisation. Instead, our method can process more than
one thousand primitives at least one order of magnitude more efficiently by adopting the efficient graph-cut solver
andminimising the candidate set with adaptive binary space partitioning. For instance, as shown in Figure 5.14, our
method can produce a high-quality surface for a complex building with 260 detected primitives within 100 seconds,
with only 0.13 second spent on solving the combinatorial optimisation problem, while PolyFit fails to solve its integer
programming problem.

(a) Point cloud (b) Ours (c) PolyFit

Figure 5.14: Complex building reconstruction. Our method can produce complex building model (b) from point
cloudwith 260 primitives (a), while PolyFit fails to solve its integer programming problem frommassive candidate
facets (c).
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5 Results and discussion

5.2.3 Robustness to noise and incomplete input

Since our deep implicit field is trained intentionally on the synthetic point clouds with various levels of Gaussian
noise in between U[0, 0.005R], the proposed method is robust to Gaussian noise within a reasonable range, as long
as planar primitives can be accurately retrieved from the point clouds. Figure 5.15 shows the reconstruction results
on input point clouds with various Gaussian noise ranging from 0R to 0.050R. Our method can produce reasonable
reconstruction until the noise reaches 0.010R, which, for instance, may indicate a measurement error of as high as 1
meter against an 100 meter-sided building; this level of noise is already beyond a practical tolerance. A prohibitive
level of noise larger than what the neural network is trained on, however, may hinder the occupancy estimation
and eventually deteriorate the reconstruction. The reconstruction may still degrade due to poor explicit geometry
from inaccurate primitive detection, even though the deep implicit field can accurately estimate the interior/exte-
rior occupancy. Nonetheless, our refinement on detected primitives and the MRF formulation inclined to compact
surfaces are designed to mitigate this inaccuracy.

(a) 0R (b) 0.001R (c) 0.005R (d) 0.010R (e) 0.050R

Figure 5.15: Robustness to noise. Our neural network is trainedwith noise of rangeU[0, 0.005R], while it reasonably
extrapolates to until noise of 0.01R.

Moreover, since the neural network takes the global shape prior to complement the local geometry, the proposed
method is robust to incomplete input as well, such as Helsinki no-bottom point clouds shown in Figure 5.2, and
Shenzhen data shown in Figure 5.4. Initialising with bounding facets also contributes to a complete reconstruction
from insufficient scans. However, the global prior is data-dependent: the learnt prior remains effective only when
applied to point clouds with identical general characteristics as those of training data. For instance, Helsinki no-
bottom and Shenzhen both lack measurements on their grounds, therefore the learnt SDF from the former applies to
the latter.

5.2.4 Effect of parameter λ

λ in Equation 3.11 weights the complexity term formulated in the MRF for surface extraction from the cell complex.
It controls the complexity of the output building surface: increasing λ leads to a more compact surface with fewer
facets. However, a high λ results in shrinking of the surface where the geometric fidelitymay deteriorate. Figure 5.16
illustrates the evolution of complexity and fidelity with respect to the choice of λ value. A high λ value may result
in undesired shrinking of the surface model, as shown in Figure 5.17. In the experiment, λ is typically set to 0.001.
We argue the limited choice of λ is a worthy compromise for its significant computational efficiency.

5.3 Limitations

Two main limitations exist within this research:
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Figure 5.16: Impact of parameter λ. Increasing λ leads to a more compact surface with fewer facets, but meanwhile
with larger geometric error.

(a) λ = 0 (b) λ = 0.05

Figure 5.17: A high λ value results in shrinking of the surface

Primitive detection. With hypothesizing-and-selection, our framework focuses on a proper assembly of planar prim-
itives into piecewise-planar building surfaces, not on detecting them. An assumption is made that planar primitives
can be accurately detected from inputs points, which is not always possible from contaminated or insufficient point
clouds. Nevertheless, a few steps are designed to mitigate the inaccuracy from primitive detection, including prim-
itive refinement and the complexity term in the MRF formulation. With accurately detected primitives, our method
can produce high-quality building models. When the primitives are of low quality, however, the resulting building
models may lose geometric detail, as shown in Figure 5.19. The piecewise-planar abstraction also leaves out other
types of primitives that exist in real-world buildings, such as curved structures. Figure 5.18 shows how a curved
surface is approximated with our assumption.

Figure 5.18: An example of non-planar buildings and how it is approximated
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5 Results and discussion

Figure 5.19: Quality of planar primitives impacts reconstruction. Ourmethod can reconstruct high-quality building
models from accurately detected primitives (top), but results in low-quality models from inaccurate detection
(bottom).

The ‘caved’ artefact. Though the complexity term in our MRF formulation penalises irregularity on the surface, the
‘caved’ artefact can remain because a shrunk surface would have a smaller area which is favoured towards the goal
of the optimisation (see Figure 5.20). Due to the formulation of MRF that only composes of the unary potential (i.e.,
energy defined on each polyhedron) and the pairwise potential (i.e., energy defined between polyhedra pairs), no
global constraints can be imposed such as the total number of facets defined by Nan and Wonka [2017]. The ‘caved’
artefact can be mitigated with a carefully chosen λ value.

(a) (b)

Figure 5.20: Formulation of the ‘caved’ artefact: area of a ‘caved’ surface (b) is smaller than a complete one (a).

5.4 Application scope

The proposed method is capable of reconstructing high-quality 3D building models from point clouds effectively
and efficiently. The reconstructed building models can be employed in various downstream applications such as
building informationmodelling (BIM), solar potential assessment, environmental simulation, etc (see Figure 1.1).
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5.4 Application scope

A by-product of our adaptive binary space partitioning is the spatial tessellation of a building, which may represent
different functional zones inside the building. Therefore, by extracting and aggregating subordinate information for
each polyhedron in the binary tree (Figure 3.8), building components can be analysed, as illustrated in Figure 5.21.
This component information can enrich the reconstructed building models with additional semantics.

Figure 5.21: Application in building component analysis

Since we do not assert building-specific assumptions except for the priority assigned to planar primitives, our ap-
proach remains generic and can naturally be extended to free-form objects. Figure 5.22 shows the Stanford Bunny
model reconstructed by our approach. Being an efficient representation for computing, storing and rendering,
piecewise-planar surfaces produced by our method can represent the raw geometry with various scales. This finds
applications in geometry compression, real-time rendering, physical simulations, etc.

Figure 5.22: Application in free-form shape reconstruction
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6 Conclusions and future work

In this chapter, the research questions of this thesis are revisited and answered with justification based on the exper-
imental results in Section 6.1. We then highlight the main contributions of this thesis in Section 6.2, and conclude
with a list of future work and an outlook in Section 6.3.

6.1 Research overview

To address themain research question on how candeep implicit fields be used for compact buildingmodel recon-
struction, in this thesis, we present a novel framework utilising the learnt implicit representation as an occupancy
indicator for explicitly constructed cell complex geometry from adaptive binary space partitioning. The indicator
describes a scalar field in which the surface of a building is extracted from an MRF by an efficient graph-cut solver.
With our neural-guided strategy, we demonstrate that high-quality building models can be obtained with signifi-
cant advantages over fidelity, compactness and computational efficiency. To the best of our knowledge, this is the
first work where a deep implicit field is explored for building reconstruction.

The sub-questions are addressed as follows:

• How to incorporate a neural network architecture that leverages an implicit field?

A neural network is incorporated which learns the SDF such that, for a given query point in 3D space, it
estimates the distance from the point to its closest surface whose sign signifies whether the point is inside or
outside of the surface. To alleviate the notorious generalisation incapacity when representing the shape with
one global feature vector, we follow the Points2Surf architecture [Erler et al., 2020] that takes the neighbouring
geometry around the query point into account, and factorise the SDF into the absolute distance and the sign
of the distance, separately. The local geometry facilitates accurate surface representation, while the global
geometry enables the expression of general shape priors.

We incorporate the deep implicit field to the explicit geometry of candidate polyhedra, and formulate surface
reconstruction as a binary labelling problem framed in anMRF, where candidate selection is essentially neural-
guided by the implicit field. This hybrid strategy takes advantage of high-quality primitives generated by
RANSAC and the expression capacity of the deep neural network, allowing faithful reconstruction from point
clouds of various architectural styles. Since real-world point clouds on buildings—whether captured by LiDAR

or produced with MVS from images—lack the bottom view, we leverage the global shape prior learnt from the
synthetic Helsinki no-bottom point clouds and further evaluate on real-world photogrammetric Shenzhen
point clouds. Experimental results demonstrate that the learnt implicit fields can generalise reasonably well
from synthetic scans to real-world measurements.

• How to guarantee the reconstructed surface is compact and watertight?

We propose adaptive space partitioning for producing a cell complex with candidate polyhedra. The surface
of the building is then obtained between every pair of inside polyhedron and outside polyhedron whose
confidence is inferred by the neural network. Since the generated complex is a valid polyhedral embedding,
the surface is guaranteed to be watertight. The output geometry can still be non-manifold, which we argue is
desired for representing real-world buildings of non-manifoldness.
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With our adaptive strategy that minimises the intersections while respecting the spatial layout, redundant
candidate polyhedra resulting in unnecessary complexity can be avoided. Compared with exhaustive parti-
tioning, our adaptive strategy drastically reduces the computations for cell complex creation, yet generating
much fewer polyhedra which in turn speeds up the follow-up occupancy inference and surface extraction
procedures. In addition, a complexity regularisation is imposed in formulation of the MRF, by the area of
facets. Therefore a compact and watertight B-rep of the building’s surface can be obtained.

• To what extent does the proposed method generalise across different point clouds?

As observed from the experimental results, our method can be applied to different point clouds with various
characteristics, across architectural styles, sensor’s viewpoints, and even from synthetic scans to real-world
measurements off-the-shelf. This strong generalisation comes from two aspects of our hybrid strategy. The
one is that high-quality explicit geometry can be constructed regardless of the high-level shape information
that is often data-dependent. The other one is the aggregation of local and global information in the implicit
function, which allows both general shape priors and detailed geometry to be expressed, enforcing the neural
network to learn robust local features in the point cloud.

The trained deep implicit field inevitably fits more to the training data, and possibly deviates from other point
clouds with completely unseen characteristics. For instance, For instance, Helsinki no-bottom and Shenzhen
both lack measurements on their grounds; therefore the learnt SDF from the former applies to the latter. Di-
rectly using the implicit function trained onHelsinki full-view data for evaluation onHelsinki no-bottom data
would fail completely, because their shape priors fundamentally differ from each other.

• How sensitive is the method regarding contaminated (e.g., noisy) and incomplete point clouds?

As observed from the experimental results, our method is robust to noise and incomplete point clouds within
a reasonable range. The robustness of occupancy estimation stems from the training data in which artefacts
are intentionally coined to enhance the robustness of the neural network. The robustness of explicit geometry
comes from several steps towards generating a high-quality candidate set of polyhedra, including incorpora-
tion of the point cloud’s AABB, planar primitive refinement, voting representatives and the complexity term
in the MRF formulation for surface extraction.

• What are the (dis)advantages of the proposed method compared with state-of-the-art methods in terms
of geometry accuracy and topology validity?

We extensively compare our method with Poisson reconstruction [Kazhdan et al., 2006] and Points2Surf [Er-
ler et al., 2020] for smooth surface reconstruction, with PolyFit [Nan and Wonka, 2017], Manhattan recon-
struction [Li et al., 2016b], 2.5D Dual Contouring [Zhou and Neumann, 2010] for piecewise-planar surface
reconstruction, with QEM [Garland and Heckbert, 1997], SAMD [Salinas et al., 2015] and VSA [Cohen-Steiner
et al., 2004] for surface approximation. Our method can produce 3D building models that are more compact
than all other methods. Among these methods in comparison, only PolyFit can generate succinct building
models as close to ours. However, our method has a significant advantage over PolyFit in terms of compact-
ness and computational efficiency. Specifically, the graph-cut solver in our MRF formulation is at least one
more magnitude more efficient than the integer programming solver employed by PolyFit. This underpins
the scalability of our method and allows reconstructions of complex building models.

As a learning-based approach, features that contribute to the SDF estimation are automatically extracted by
the neural network from the point cloud, unlike PolyFit whose optimisation goal is hardcoded with crafted
weights distributed for model-fitting, coverage and complexity. Therefore, the effectiveness of our approach
heavily depends on the training data. In addition, though we notice the manifold constraint can possibly lead
to unfaithful reconstructions, manifoldness remains critical for specific applications that our method falls
short of.
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6.2 Contributions

6.2 Contributions

In this thesis, we propose a novel framework for 3D building model reconstruction from point clouds. The promi-
nent contributions of this work are summarised as follows:

(i) We propose a learning-based framework for compact building model reconstruction. To the best of our
knowledge, this is the first work where a deep implicit field is explored for building reconstruction. Our
method shows significant performance and quality advantage over state-of-the-art methods for urban build-
ing reconstruction, especially for complex building models. In addition, our method remains generic for the
reconstruction of arbitrary objects besides buildings.

(ii) We design an adaptive space partitioning solution for generating a cell complex of candidate polyhedra. Com-
pared with the exhaustive baseline, our adaptive strategy can efficiently partition the space, minimising re-
dundant polyhedra that hinder the follow-up SDF inference and surface extraction.

(iii) We formulate the surface extraction as an MRF optimization problem where an efficient graph-cut solver ex-
tracts the building’s surface with complexity regularisation. Our solver is far more efficient than the integer
programming solver used in state-of-the-art methods.

(iv) We provide alongwith the thesis an open synthetic building point cloud dataset for cultivating learning-based
applications in the built environment.

6.3 Future work

We expect the following future work as an extension of the research done within this thesis:

• End-to-end neural network architecture. The current pipeline comprises explicitly constructed geometry
and the learnt implicit function. The former is independent of the neural network that facilitates the latter. It
is possible to further incorporate the cell complex generation into the network architecture, therefore making
the network training end-to-end. The crux of this incorporation is to dynamically adapt the number of prim-
itives for each shape, where a sequence-to-sequence architecture such as a recurrent neural network (RNN)
can be employed for variable-length output. Appendix C presents alternative neural network formulations
for SDF learning, as well as additional experimental results.

• Self-adaptive λ value. A high λ value weighting the complexity term results in shrinking of the surface,
therefore the value has to be carefully chosen. Although in the experiments an empirical λ value of 0.001
balances the fidelity and complexity of most buildings, a self-adaptive λ value can possibly produce higher-
quality reconstruction by automatically adapt the complexity to the input point cloud.

• Interactive reconstruction. The use of graph-cut solver enables fast editing of segments [Boykov and Funka-
Lea, 2006] by efficiently recomputing the optimal solution that satisfies additional constraints. Therefore, user
interactions can be integrated in the loop to adjust the reconstruction accordingly.

• Generic shape reconstruction with 3D Delaunay triangulation. By substituting our adaptive space par-
titioning with 3D Delaunay triangulation, our method is expected to handle generic shape reconstruction
with non-uniformity provided by Delaunay tessellation. Appendix B describes this alternative cell complex
formulation.

• More primitive types. This thesis targets the ubiquitous piecewise-planar structure that dominates the ge-
ometry of urban buildings. There are other types of primitives that constitute real-world buildings and can be
parameterised as well, e.g., sphere, cylinder, torus. A proper assembly withmore primitive typesmay result in
more realistic and accurate 3D building models. This requires a more generic space partitioning mechanism
other than BSP.
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• Complex scenes. Restricted by the available datasets, only LoD2 building models are addressed in this thesis.
However, the proposed method—as proved feasible on free-form objects—should apply to reconstructions
of other LoD off the shelf. Moreover, we target watertight building models instead of urban scenes without
closed boundaries. To adapt to non-watertight scenes the cell complex no longer applies as a candidate set.
Nevertheless, this requires corresponding datasets for future performance evaluation.

• Stronger generalisation to real-world data. As a learning-based approach, the features that contribute to
an accurate occupancy estimation are automatically learnt from the training data. Therefore, our method
inevitably fits more to the training data, which may not fully reflect the characteristics of unseen buildings.
In our experimental setup, the neural network is trained only on synthetic buildings, without augmentation
from any real-world measurements. Though exhibiting reasonable generalisation capability, when dealing
with real-world scans, our method is not as robust as non-learning methods such as PolyFit. We ascribe this
to the lack of real-world variants in our training data. Therefore, the generalisation capability can possibly be
enhanced by training on real-world point clouds.

Moreover, we expect an enormous potential of deep implicit fields in the context of urbanmodelling, where this the-
sis serves only as a promising starting point. Aside from stand-alone buildings, multiple objects and their relations
in the urban environment can be described by deep implicit fields. With various information from geographic infor-
mation system (GIS), not only geometry but semantics can be incorporated to enrich the implicit field, contributing
to higher-dimensional modelling of the urban environment.
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A Reproducibility self-assessment

A.1 Marks for each of the criteria

Figure A.1: Reproducibility criteria to be assessed.

Table A.1 presents the marks under the criteria for reproducible research described in Figure A.1.

Category Criteria Mark
Available Open Permanent

Input data 3 3 7 2
Preprocessing 3 3 3 3
Method, analysis, processing 3 3 3 3
Computational environment 3 3 3 3
Results 3 3 7 2

Table A.1: Reproducibility evaluation
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A Reproducibility self-assessment

A.2 Self-reflection

The research is considered reproducible in every criterion. The simulated data are openly available while the real-
world point clouds in Shenzhen are available upon request to the authors of Li andWu [2021]. All source codes con-
cerning preprocessing,method, analysis andprocessing are openly available athttps://github.com/chenzhaiyu/
points2poly1, with adaptive space partitioning maintained independently as a submodule at https://github.
com/chenzhaiyu/absp. The computational environment employed in this research is open-sourced. The results
are available while not open for clutter concerns.

1Available upon submission of this thesis.
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B Alternative cell complex formulation

3D Delaunay triangulation also provides the possibility of partitioning a 3D space into a cell complex of tetrahe-
dron (Figure B.1). Compared with hyperplane arrangement, it faithfully respects the distribution of the raw point
cloud without distilling higher-level shape information. To mitigate this, farthest point sampling as proposed by
Moenning and Dodgson [2003] can be used to select points of high importance to the global shape. Hyperplane
arrangement and Delaunay triangulation complement each other, targeting shapes of piecewise planarity and gen-
eralising to general objects (such as the Stanford bunny in Figure 5.22), respectively.

Figure B.1: Cell complex (tetrahedra) constructed with 3D Delaunay triangulation. Figure from https://doc.
cgal.org/latest/Triangulation_3/index.html.

(a) Plane arrangement (b) Classified (c) Surface

Figure B.2: Surface extraction from a cell complex generated via hyperplane arrangement

(a) Tetrahedra (b) Classified (c) Surface

Figure B.3: Surface extraction from a cell complex generated via 3D Delaunay triangulation
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C Alternative deep implicit field formulations

TheX-Conv proposed by Li et al. [2018]may be employed for encoding point clouds, followed by anMLP producing
the feature vector. Given any query point, its coordinates are concatenated with the encoded shape features, feeding
to the implicit decoder [Chen and Zhang, 2019; Park et al., 2019], which learns whether the query point is inside or
outside the shape, as illustrated in Figure C.1.

Point Cloud

X-Conv

MLP

Feature codeSampled point
coordinates X

Concatenate

MLP

SDF

Figure C.1: Network architecture of implicit shape indicator

Based on BSP-Net [Chen et al., 2020], we propose an alternative neural network architecture for implicit field learn-
ing, as illustrated in Figure C.2. The original BSP-Net takes as input either voxels or images. By substituting the
encoder with X-Conv operators [Li et al., 2018], the adapted neural network learns to reconstruct piecewise-planar
objects from point clouds. Specifically, the X-Conv operators followed by an MLP produce the canonical parame-
ters of p planes Pp×4. These plane parameters are multiplied with the homogeneous coordinates of n sampled points
Xn×4 to yield the signed distance from each sampled point to each plane Dn×p. Then a learnable binary matrix Tp×c
selectively form convexes Cn×c from Dn×p. At the last layer, the convexes are merged into one shape Sn×1.

Figure C.3 presents the LoD2 building reconstruction results on the AHN1 dataset with candidate cell complexes
generated by hyperplane arrangement. Arguably, LoD2 reconstruction limits the capability of the learnt implicit

1https://www.ahn.nl/

71

https://www.ahn.nl/


C Alternative deep implicit field formulations

Point Cloud

X-Conv

MLP

Plane parameters PSampled point
coordinates X

Signed distance DBinary matrix T

Convexes C

Pooling

Shape S

Figure C.2: Adapted BSP-Net for shape reconstruction from point clouds

indicator function due to a lack of correspondence between the sparse aerial point clouds and the inaccurate ground
truth surfaces provided by PolyFit [Nan andWonka, 2017]. Nevertheless, the reconstructed surfaces are comparable
with the ground truth ones.

Figure C.4 presents the reconstruction results on a collection of ShapeNet2 point clouds. Benefiting from the self-
supervised learning scheme, piecewise-planar surfaces can be generated even though the input point cloud does not
fulfil the assumption, e.g., the point clouds of the lamps and that of the car exhibit little planarity, but the piecewise-
planar surfaces can be reconstructed with reasonable geometric fidelity.

2https://shapenet.org/
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Figure C.3: Building reconstruction from AHN point clouds. Points rendered based on height.
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Figure C.4: Reconstruction from ShapeNet point clouds
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