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Preface

This thesis marks the final step towards my Master’s degree in Biomedical Engineering at the TU Delft.
The research was carried out at the Biomedical Imaging Group Rotterdam at the Erasmus Medical
Center at the intersection of medicine, physics and deep learning.

The goal of this project was to enhance undersampled MR images acquired with an accelerated 3Dmul-
tiparametric quantitative MRI (qMRI) sequence, using partial diffusion models. The motivation behind
this work was to enable a 1.5-minute brain scan capable of providing radiologist with all the information
that currently requires 20 to 30 minutes of scanning.

The past eight months have been both challenging and exciting, and I would like to express my gratitude
to everyone who supportedme during this time. To the BIGR group as a whole, thank you for welcoming
me into your research group and inspiring me with all the amazing work you do. To the qMRI research
line in particular, thank you for all your help into understanding the foundations of qMRI and the potential
it holds for the future of MR. Then, to my daily supervisor, Shishuai, thank you for helping me navigate
the project and for always encouraging me to further improve my work. Your support, both technically
and personally, was invaluable. I also want to thank Dirk, whose technical insights and willingness to
help out at any moment made tackling challenges much more manageable. And to Juan, thank you for
your visionary enthusiasm about quantitative MRI and for reminding me of the broader impact of this
work.

I am also very thankful to my family and friends, who, even though I wasn’t always able to clearly
explain what I was working on, kept asking, listening and supporting me. And to Max, thank you for
your constant support, helping me think through problems, and for keeping me focused on the storyline
of my thesis.

A special mention goes to Rob, whose beautiful image of the Crescent Nebula is on the cover of this
thesis. This nebula, also known as the Brain Nebula, is invisible to the human eye but becomes visible
by long-exposure astrophotography and advanced image-processing. Its resemblance to the human
brain and the need for advanced post-processing to reveal it, make it a fitting metaphor for this thesis. In
MRI, the raw signal is not directly visible or interpretable either. Only through advanced reconstruction
techniques, such as partial diffusion models, we can recover meaningful, high-quality images from the
undersampled, noisy data.

Working on this thesis has been a rewarding experience. I hope this work contributes, in some small
way, to making quantitative MRI more accessible in clinical practice.

Tessel Huibregtsen
Delft, July 2025
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Summary

Quantitative Magnetic Resonance Imaging (qMRI) aims to provide objective, reproducible measure-
ments of tissue properties that could support clinical decision-making. However, its clinical adoption
is hindered by the long scan times required for the acquisition of multiple contrast-weighted images
associated with qMRI. The 3D silent Multi-Parametric Zero Echo Time (MuPa-ZTE) sequence already
reduces scan time to approximately 5.5 minutes, but this remains too long to be added on top of rou-
tine 15–20 minutes clinical brain scans during the validation phase. Therefore, further acceleration to
around 1.5 minutes is required. This is achieved by undersampling the 5.5-minute acquisition, which
significantly reduces image quality.

In this thesis, we investigate the use of partial diffusion models, a class of generative models based on
deep learning, to enhance these undersampled MR images acquired with an accelerated MuPa-ZTE
sequence. The goal is to approach the image and quantitative map quality of the current 5.5-minute
MuPa-ZTE acquisition using a 1.5-minute scan.

To this end, three variations of a partial denoising diffusion probabilistic model (DDPM) were trained
on synthetic data simulating MuPa-ZTE acquisitions. Two types of synthetic data were generated for
training: reference brain images depicting the ground truth contrasts without acquisition artifacts and
undersampled brain images that simulate the 1.5-minute acquisition. The models aimed to improve the
quality of the five contrast-weighted images associated with MuPa-ZTE, which were then used to gener-
ate proton density (PD), T1, and T2 maps through dictionary matching. The first model was trained only
on the ground truth images, without access to undersampled images, the second model incorporated
undersampled images indirectly through a learned latent representation and the third model had direct
access to both image types during training, using a concatenation-based approach. All models were
evaluated both on a synthetic test set and on in vivo data. Their outputs were qualitatively and quan-
titatively compared to synthetic 5.5-minute acquisition images to assess whether comparable image
quality could be achieved with reduced acquisition time.

Results showed that all three partial DDPM variations improved the image quality of the 1.5-minute scan,
with the concatenation-based model achieving the best overall performance. This model demonstrated
effective noise suppression and improved preservation of structural detail in the contrast-weighted im-
ages, outperforming a conventional UNet baseline and approaching the quality of the 5.5-minute ac-
quisition. The enhanced images directly translated into improved quantitative maps, with the quality of
the T1 and T2 maps in some cases even exceeding those derived from the 5.5-minute acquisition.

These findings suggest that partial diffusion models can play an important role in accelerating qMRI
with minimal decrease in image and map quality, bringing one-minute quantitative imaging closer to
clinical feasibility.
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1
Introduction

Magnetic Resonance Imaging (MRI) is a powerful, non-invasive imaging modality that provides rich
structural or functional information. It is widely used for diagnostic purposes due to its ability to provide
high-resolution, high-contrast images without ionizing radiation. Conventional MRI techniques are pri-
marily used to produce contrast-weighted images for visual assessment. However, the pixel intensities
in these images are typically qualitative and do not directly reflect underlying physical tissue properties
[1].

In contrast, quantitative MRI (qMRI) aims to estimate intrinsic tissue parameters, such as relaxation
times and proton density. These estimated tissue parameters are used to construct quantitative maps,
which reflect the underlying tissue properties. This approach provides several unique advantages. The
generated quantitative maps enable standardized comparison of data across different imaging condi-
tions and patients [2], and the objective quantitative parameters can serve as biomarkers for specific
diseases, potentially improving disease detection and monitoring [3]. Additionally, any type of contrast-
weighted image can be synthesized from the generated quantitative maps, allowing radiologists to
generate images optimized for specific diagnostic needs, without requiring extra scans.

Despite its advantages, qMRI typically requires the acquisition of multiple contrast-weighted images
under systematically varied acquisition conditions, resulting in long scan times. This hinders clinical
implementation. Reducing scan time while maintaining high-quality quantitative maps remains a sig-
nificant challenge. A prominent trend in qMRI driven by this challenge is the development of fast 3D
multi-parametric mapping techniques, which aim to efficiently estimate multiple intrinsic tissue param-
eters (such as T1, T2, and proton density) in a single scan [4]. Several innovative protocols have been
proposed to achieve this, including Magnetic Resonance Fingerprinting (MRF) [5], 3D-QALAS [6], and
Quantitative Transient-state Imaging (QTI) [7]. These techniques acquire a time series of contrast-
weighted images under varying acquisition conditions, thereby encoding information about multiple
tissue parameters in the signal evolution. Quantitative maps are then reconstructed from this signal
evolution using predefined signal models.

Zero Echo Time (ZTE) imaging has been applied to 3D multi-parametric mapping in the 3D silent Multi-
Parametric Zero TE (MuPa-ZTE) sequence, due to its unique advantages [8, 9, 10]. ZTE allows for
imaging of tissues with very short T2 relaxation times and its radial k-space acquisition scheme allows
for further scan acceleration through undersampling. In addition to its speed, the MuPa-ZTE sequence
offers the additional advantages of low acoustic noise due to limited gradient switching and motion
robustness as it avoids phase accumulation by initiating readout immediately after excitation [8]. Cur-
rently, the MuPa-ZTE sequence requires approximately 5.5 minutes to acquire high-quality whole-brain
quantitative maps. However, since MuPa-ZTE is a novel imaging protocol, it must first be validated
alongside conventional brain MRI protocols, which typically require 15-20 minutes for equivalent multi-
contrast information. During this validation phase, adding a 5.5-minute MuPa-ZTE acquisition on top
of routine clinical scans is impractical. Therefore, to facilitate clinical feasibility, the MuPa-ZTE scan
time needs to be reduced further, to approximately 1.5 minutes. Achieving this requires accelerating
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the MuPa-ZTE acquisition by at least a factor of four. However, increasing the level of acceleration in-
herently leads to more significant undersampling, which introduces image artifacts, degraded contrast,
and ultimately lower quality of the derived quantitative maps.

Recent developments in deep learning have demonstrated strong abilities in enhancing medical image
quality. Convolutional neural networks, transformer-based architectures, and generative models have
all been explored for various tasks such as image denoising, super-resolution, and artifact reduction
in MRI [11, 12, 13]. Among these approaches, generative models, and especially diffusion models,
have emerged as state-of-the-art for image synthesis and restoration [14]. Diffusion models work by
modeling the data distribution through a learned denoising process where data is gradually corrupted
with noise and then reconstructed through a series of iterative denoising steps. This enables the model
to generate high-quality images from pure noise. A specific type of diffusion models, known as partial
diffusion models [15], leverages the generative power of the diffusion model but only uses part of the
forward and reverse diffusion process. By performing denoising over a limited number of steps, greater
control over the generation process is maintained and computational complexity is reduced.

In this thesis, the use of partial diffusion models is investigated to enhance contrast-weighted images
acquired with a four times accelerated MuPa-ZTE acquisition sequence. The goal is to improve the
quality of this accelerated acquisition, such that the derived quantitative maps are of comparable quality
to those obtained from the current state-of-the-art MuPa-ZTE acquisition, lasting approximately 5.5
minutes.

1.1. Research Questions
The primary objective of this thesis is to evaluate the use of partial diffusion models for improving
the quality of contrast-weighted MR images acquired with an accelerated MuPa-ZTE sequence and
to assess whether these enhanced images lead to more accurate quantitative maps. The research
questions that will be answered specifically:

1. Can partial diffusion models improve the quality of contrast-weighted images acquired with a four
times accelerated MuPa-ZTE sequence to reach the quality of images from a non-accelerated
acquisition?

2. How do different architectural variations of the partial diffusion model affect the final image and
map quality?

3. How does a partial diffusion-based approach compare to a conventional UNet baseline in this
setting?

4. Can the proposed method lead to improved quality of quantitative maps without any further ad-
justments?

1.2. Thesis Structure
This thesis is organized into seven chapters following the standard academic reporting structure. Chap-
ter 2 provides the theoretical background required for the thesis and outlines the current state-of-the-art.
Chapter 3 explains the methodology, including the synthetic data generation, the model architecture,
the training strategies, and the evaluation metrics. Chapter 4 outlines the experimental setup used to
evaluate the different research questions. Chapter 5 presents the experimental results obtained, which
are critically analyzed and discussed in Chapter 6. Chapter 7 concludes the thesis with a summary of
the main contributions and answers to the research questions.



2
Theoretical Background

2.1. MRI principles
Magnetic Resonance Imaging (MRI) is based on the magnetic properties of atomic nuclei, most com-
monly those of hydrogen protons, due to their abundance in the human body. When placed in a strong
external magnetic field (B0), the magnetic moments of these hydrogen nuclei align either parallel or
anti-parallel to the magnetic field, resulting in a net magnetization (M0) along the longitudinal axis, de-
fined along the direction of B0. To generate a signal, a radio frequency (RF) pulse is applied at the
same frequency at which the magnetic moments of the hydrogen protons precess around the exter-
nal magnetic field, known as the Larmor frequency, ω0. The Larmor frequency is determined by the
gyromagnetic ratio of a proton, γ, and B0:

ω0 = γ ×B0 (2.1)

This RF pulse flips the direction of M0 away from alignment with the external magnetic field. Once
the RF pulse is turned off, M0 returns to equilibrium through two processes: longitudinal relaxation,
where the longitudinal component of the magnetization vector, Mz, recovers to its equilibrium value,
and transverse relaxation, where the transverse components, Mx and My, decay due to dephasing of
the spins in the transverse plane. These dynamics are governed by the Bloch equations which describe
the evolution of the magnetization vector M(t). At a time t after an instantaneous π/2 RF pulse (that
is, a 90° excitation pulse that tips magnetization into the transverse plane), the solution to the Bloch
equations are:

Mx(t) = M0e
−t/T∗

2 sin(ωt) (2.2)

My(t) = M0e
−t/T∗

2 cos(ωt) (2.3)

Mz(t) = M0(1− e−t/T1) (2.4)

WhereM0 is the equilibrium magnetization, ω the Larmor frequency, T ∗
2 the observed transverse relax-

ation time, and T1 the longitudinal relaxation time. T ∗
2 reflects both T2, the intrinsic spin-spin relaxation

time of a tissue, and additional dephasing effects caused by magnetic field inhomogeneities. In an
idealized situation, where the magnetic field is perfectly homogeneous, T ∗

2 is equal to T2. T1 and T2

are tissue-specific and therefore determine the dynamics of the relaxation process. This process leads
to the emission of electromagnetic signals, which are detected by the MRI receiver coils. To enable
spatial localization of the electromagnetic signals, gradient magnetic fields are applied. These gradi-
ents introduce a linearly varying magnetic field strength, which causes the Larmor frequencies of the
spins to vary linearly with position. This position-dependent variation of Larmor frequencies allows for
the selective excitation of specific slices by applying RF pulses at corresponding frequencies, thereby
encoding the signals spatially.

3
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2.1.1. Contrast-Weighted Images
To generate images with specific contrast properties, MRI relies on pulse sequences: carefully timed
combinations of RF pulses, gradient fields, and readouts. By varying the timing of these parameters,
MRI can exploit the differences in tissue-specific relaxation times to enhance contrast between different
types of tissues.

For conventional MRI, two key parameters that influence image contrast are the repetition time (TR)
and the echo time (TE). TR is the time interval between two successive excitation pulses, while TE is
the time between the excitation pulse and the signal readout. The choice of TR affects how much T1-
based recovery occurs between excitations: a long TR allows for full T1 recovery and thus reduced T1

contrast, whereas a short TR captures differences in how quickly tissues recover, enhancing T1 contrast.
In contrast, the choice of TE determines how much transverse relaxation occurs before signal readout:
a long TE allows for more pronounced differences in transverse decay, enhancing T2 contrast, while a
short TE minimizes transverse decay by acquiring the signal before substantial decay occurs.

Three commonly used contrast types in clinical MRI are T1-weighted, T2-weighted, and proton density
(PD)-weighted images. T1-weighted images highlight differences in longitudinal relaxation time (T1)
and are thus acquired using short TR, to enhance T1 contrast and short TE, to minimize T2 contrast.
Tissues with short T1, such as fat, appear bright, while fluids with a long T1, appear dark. These images
are typically used for anatomical detail and post-contrast imaging [16]. T2-weighted images focus on
the transverse relaxation time, T2, by using long TR and long TE. Tissues with a long T2, such as
fluids, appear bright which makes these images useful for detecting pathologies involving increased
fluid content, such as inflammation [17]. Lastly, PD weighted images highlight the differences in proton
density by using a long TR (to minimize T1 effects) and a short TE (to minimize T2 effects). These
images are mainly used for anatomical detail. By carefully selecting the imaging parameters, MRI can
be tailored to specific tissue characteristics, making it a powerful tool for a wide range of applications.

2.2. Quantitative MRI
As explained in the previous section, conventional MR pulse sequences are designed to encode differ-
ent qualitative contrasts in the MR images by varying scanning settings such as the timing of the RF
pulses. In contrast, quantitative MR pulse sequences are designed such that the recorded signals can
be used to infer quantitative information about the physical properties of the underlying tissue, such as
the longitudinal relaxation time (T1), the transverse relaxation time (T2), and the proton density (PD).
To do so, qMRI protocols acquire multiple images under varying acquisition conditions, which are then
fitted to a signal model that links the quantitative parameters and acquired signals.

The Bloch equations describe the evolution of the MR signal as a function of time and tissue properties
and can therefore be used to predict the signal from a specific tissue type when subjected to a known
pulse sequence. For example, in conventional quantitative T1 mapping, several images are acquired
with varying inversion recovery times, the time between an inversion pulse and the image acquisition,
to capture different stages of longitudinal recovery. The resulting signal intensities are fitted voxel-wise
to an exponential recovery curve based on the Bloch equations, to extract the T1 value for each tissue
location. Next to single parameter mapping, other sequences have also been developed that can map
multiple quantitative parameters at once, known as multi-parametric sequences. By combining the
variation of scanning parameters, multiple quantitative parameters can be estimated at once.

The advantage of qMRI lies in its ability to provide reproducible and comparable measurements across
scanners, patients, and time points. However, one important challenge is that qMRI requires the acqui-
sition of multiple images to be able to fit the signal evolution to the model, leading to prolonged scan
times.

2.2.1. Accelerated qMRI
Multiple methods have been developed to overcome the long scan times typically associated with qMRI.
A substantial class of methods to accelerate qMRI focuses on reconstruction-based approaches. As
this thesis focuses on improving the weighted images associated with quantitative MRI, we will only
elaborate on methods that use this intermediate step in the reconstruction pipeline. Methods that go
directly from k-space to quantitative maps are out of scope.
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Reconstruction-based methods aim to enhance image quality from undersampled data after acquisi-
tion. This type of method can be broadly categorized into two categories: model-based reconstruc-
tion methods and deep learning-based reconstruction methods. In model-based approaches, prior
information about the signal is used to be able to reconstruct high-quality images from undersampled
k-measurements. One widely used model-based approach is compressed sensing (CS), which ex-
ploits the inherent sparsity of MR images when transformed in different domains such as the wavelet
or Fourier domain [18]. By transforming the data to these domains, the image can be undersampled
without losing critical information. Similarly, low-rank and subspace reconstruction methods leverage
redundant information in the spatiotemporal domains of the data to enable accelerated acquisitions [19,
20]. More recently, deep learning-based methods have been developed for accelerated qMRI recon-
struction. Instead of modeling the reconstruction with physics, deep learning-based methods aim to
train a deep neural network to do this reconstruction. Most current methods combine deep learning-
based methods with model-based methods by for example integrating deep learning-based priors into
traditional iterative reconstruction frameworks [21], or by incorporating MR signal models into the train-
ing process to ensure consistency with known physical dynamics [22].

2.3. Diffusion Model
Diffusion models, a class of generative models, have shown promising results in tasks such as image
synthesis and image restoration [14]. Particularly, in this thesis, a diffusion model is used to improve
the image quality of undersampled MR images acquired with an accelerated MuPa-ZTE sequence.

Diffusion models work by first gradually transforming an image into pure Gaussian noise through a
controlled, step-by-step noising process. During training, the model learns to reverse this process
by predicting the noise added at each timestep. Once trained, the model can iteratively denoise a
Gaussian input, effectively generating new samples that resemble the original image distribution.

A widely used subclass of diffusion models is the Denoising Diffusion Probabilistic Model (DDPM),
introduced by Ho et al. [23]. DDPMs model the corruption process as a Markov chain, where the next
state (the next noisier image) only depends on the previous state (the previous image).

2.3.1. Partial Diffusion Model
A major drawback of diffusion models is the computational cost associated with training and inference.
These models require a large number of diffusion steps, typically in the range of 1000, to gradually
transform data into pure Gaussian noise and then reconstruct it. Additionally, since inference typically
starts from randomly sampled noise, there is limited control over the specific content of the output.
However, for the aim of this thesis, improving the quality of accelerated weighted MR images, it is
important to preserve and use information from the input image. Rather than generating an entirely
new image from noise, the goal is to refine an existing image while maintaining its structural content.
This motivates the use of partial diffusion models, as introduced by Zhao et al. [15].

Partial diffusion models rely on the same principles as standard DDPMs, but instead of diffusing the
input all the way to pure noise, the forward process is only run for a partial number of steps. This means
the input image is only partially noised, preserving much of its original structure. The reverse process
begins from this intermediate state, which gives the model access to existing image features, while still
benefiting from the flexibility and generative power of diffusion models.

Partial diffusion models have proven to be able to enhance the quality of qualitative contrast-weighted
MR images [24]. This thesis will explore their use in multi-channel contrast-weighted images acquired
by MuPa-ZTE and the influence on the quality of the quantitative maps generated from them.



3
Methods

This chapter describes the methodological steps taken to evaluate the use of partial diffusion models
in enhancing undersampled MuPa-ZTE MRI acquisitions. The goal is to train and evaluate a model
capable of producing high-quality contrast-weighted images from four times accelerated scans. First,
due to the limited availability of clinical data for theMuPa-ZTE sequence, synthetic data were generated.
Next, a partial diffusion model was developed to enhance the undersampled contrast-weighted MR
images. Multiple architecture variations of this model were developed to explore their influence on
the performance. The enhanced weighted images were subsequently used to construct quantitative
maps using dictionary matching. Afterwards, themodel performances were evaluated both qualitatively,
by visual inspection, and quantitatively, by computing various image quality metrics. This was done
for both the improved contrast-weighted images and the quantitative maps derived from them. Each
component of this methodology will be described in more detail in this chapter.

3.1. Synthetic Data Generation
Obtaining sufficient clinical data to train deep neural networks remains a significant challenge in qMRI.
This challenge stems from the complexity of adjusting MR sequences, the limited availability of volun-
teers, and the high cost and time associated with data acquisition. These constraints make it difficult
to acquire a large, diverse training set, necessary for effectively training a deep neural network. To
address this challenge, this work used a pipeline based on the work by Sabidussi et al. [25]. The
pipeline was used to generate synthetic data that closely resembles that of MuPa-ZTE acquisitions.
This approach allows for a virtually unlimited amount of training data to be generated, with precise
control over acquisition settings and tissue parameters, thereby facilitating the creation of a large and
diverse training set.

The synthetic data generation pipeline used consists of two main parts:

1. The generation of synthetic quantitative maps, representing the underlying tissue properties (PD,
T1 and T2) of each voxel in a brain volume.

2. The simulation of MuPa-ZTE acquisitions using a forward model to generate the five contrast-
weighted images.

3.1.1. Synthetic Quantitative Map Generation
The synthetic data generation pipeline is based on the assumption that the response of biological tissue
to a given MRI pulse sequence can be modeled when the underlying tissue properties are well-defined.
Therefore, the synthetic data generation starts by synthesizing realistic quantitative maps. To this end,
segmented brain models from the BrainWeb database [26] are used, which provide voxel-wise tissue
type labels. For each tissue class, the pipeline assigns mean PD, T1, and T2 values according to
literature-based parameters (refer to Table 3.1) [25]. To simulate biological variability, the mean pa-
rameter value for each tissue type is sampled from a Gaussian distribution: N(µt, σ

2
p), where µt is

the literature-based mean for tissue type t, and σp is the parameter-specific standard deviation. The
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standard deviations are set as follows: 0.1 arbitrary units (a.u.) for PD, 0.3 seconds for T1, and 0.01 sec-
onds for T2. Additionally, to model natural heterogeneity within tissue, voxel-wise noise is introduced,
followed by Gaussian smoothing to achieve smooth transitions between neighboring voxels. The noise
level to model natural heterogeneity within tissue is set to 0.05 a.u. for PD, 0.1 seconds for T1, and
0.01 seconds for T2.

Due to this introduced variety in the quantitative maps, multiple unique synthetic subjects can be gener-
ated from the same underlying brain model. For training purposes, we generated four synthetic subjects
from each of 19 brain models. All brain models were resized to 181× 217× 181 voxels. One additional
brain model was used exclusively for testing, from which 10 synthetic subjects were generated to cre-
ate a diverse evaluation set. In addition, we acquired two in vivo MRI datasets with the MuPa-ZTE
sequence from two healthy volunteers for evaluation purposes. One in vivo dataset was only used for
qualitative evaluation (see Appendix A), whereas the other in vivo dataset was used for both qualitative
and quantitative evaluation.

Table 3.1: Mean Proton Densities and Relaxation Times of Various Tissues [25]

PD (a.u.) T1 (s) T2 (s)
CSF 1.0 4.0 2.0
Gray Matter 0.90 1.4 0.11
White Matter 0.80 0.78 0.08
Fat 0.92 0.42 0.07
Muscle 0.85 1.3 0.05
Muscle/Skin 0.82 1.23 0.05
Skull 0.17 0.4 0.03
Vessels 0.95 1.98 0.275
Around Fat 0.40 0.9 0.08
Dura Matter 0.50 0.9 0.07
Bone Marrow 0.75 0.58 0.05

3.1.2. 3D Silent Multi-Parametric Zero TE MRI
For this thesis, we focused on accelerating the 3D silent Multi-Parametric Zero TE (MuPa-ZTE) se-
quence [8, 9, 10]. This sequence acquires five contrast-weighted images by using an interleaved ac-
quisition scheme along a phyllotaxis-based k-space trajectory. Phyllotaxis is a radial sampling pattern
that provides uniform coverage and allows flexible undersampling as spokes can easily be removed or
added [27]. The sequence starts by acquiring a PD-weighted image, depicted in segment 1 in Figure
3.1. Next, in an interleaving manner, it acquires the remaining four contrast-weighted images with the
use of magnetization preparation sequences that encode the desired contrast in the images. The full
phyllotaxis-based k-space trajectory is split into cycles, and for each cycle, the same k-space segment
is sampled for all four contrast-weighted images, also known as echoes. The sequence then repeats
with a different k-space segment, until the entire k-space is covered for each echo. The first two cycles
sample the center of k-space, with short-radius spokes, whereas the rest of the cycles sample the outer
region of k-space, with long-radius spokes.

3.1.3. Forward Model and Synthetic Acquisition
To generate contrast-weighted images that realistically represent MuPa-ZTE acquisitions, a physics-
based forward model was used that expresses how tissue responds to the MuPa-ZTE pulse sequence,
based on its underlying tissue properties. The forward model used in this work takes the quantita-
tive maps generated from the BrainWeb brain models as input and outputs the five contrast-weighted
images, or echoes, generated in the MuPa-ZTE acquisition. For each voxel, the evolution of the mag-
netization over time is simulated through a sequence of preparation modules, ramp-up periods, and
readouts, repeated over multiple iterations until steady state is reached.

The first echo, the PD-weighted contrast image, is simulated using a simplified acquisition model which
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Figure 3.1: Magnetization evolution during the MuPa-ZTE sequence. Adapted from Wiesinger et al. [10]. First, a PD-weighted
image is acquired by sampling the entire phyllotaxis-based k-space trajectory. Next, the remaining four contrast-weighted

images, or echoes, are acquired using magnetization preparation modules (T2prep and T1prep) to encode T2 and T1 contrast,
respectively. The k-space trajectory is split into cycles, and in each cycle, the same k-space segment is sampled for all four

echoes. The sequence is repeated across cycles until the entire k-space is covered for each echo.

assumes immediate readout following excitation. This is appropriate for a Zero Echo Time (ZTE) ac-
quisition like MuPa-ZTE, where readout occurs with minimal delay after excitation. The longitudinal
magnetization, Mz, at equilibrium is computed according to the steady-state solution of the spoiled
gradient (SPGR) signal equation, using the known PD and T1 values from the generated quantitative
maps [8]:

Mz = PD · 1− e−TR/T1

1− e−TR/T1 · cos(FA0)
(3.1)

where TR is the repetition time, the time between two readouts, and FA0 the flip angle, the angle at
which the magnetization vector is tipped away from equilibrium by the RF pulse, used for Echo 0.

For the remaining four echoes (Echoes 2-5), the longitudinal magnetization of the ith readout within a
segment is modeled as [8]:

M i
z = Mprep · βi +MSPGR · (1− βi) (3.2)

where Mprep is the longitudinal magnetization immediately after the preparation module, and MSPGR

the steady-state SPGR signal given by:

MSPGR =
1− e−TR/T1

1− e−TR/T1 · cos(FA)
(3.3)

and β given by:

β = e−TR/T1 · cos(FA) (3.4)

The acquisition process is modeled by simulating the evolution of magnetization over multiple readouts
andmapping this signal into k-space using a Non-Uniform Fast Fourier Transform (NUFFT). Specifically,
for each readout, the longitudinal magnetizationM i

z is transformed into the transverse plane by applying
the flip angle:

M i
xy = M i

z · sin(FA) (3.5)

This transverse magnetization is then transformed into k-space using the forward NUFFT. This process
is repeated for each readout. The resulting k-space signals are accumulated across all readouts and
subsequently reconstructed into an image using the adjoint NUFFT operator. In the provided pipeline,
both the forward and adjoint NUFFT operations were implemented using the torchkbnufft library in
Python [28]. Finally, the image is converted to a real-valued image by keeping the real part of the
complex-valued image. In the reconstruction, k-space density compensation and simple sensitivity
maps are also included to correct for non-uniform sampling.
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The k-space density compensation is needed due to the radial sampling pattern in MuPa-ZTE, which
leads to non-uniform sampling of k-space. With this pattern, the center of k-space is sampled more
densely, and without correction, this leads to image artifacts like blurriness. The correction is done
by introducing a density compensation factor, dcompradial, for each sample, which reflects the relative
sampling density in the region of that sample. The density compensation factor for a sample at position
k(x, y, z) in a 3D radial sampling pattern is given by:

dcompradial = |k|2 (3.6)

However, in MuPa-ZTE, two types of spokes are used to cover different ranges in k-space: short-radius
spokes and long-radius spokes. The first two cycles are used for the short-radius spokes, while the
other 124 cycles are acquired with long-radius spokes, and therefore the outer region of k-space is
more densely sampled than the center of k-space, when only using dcompradial. To account for this, an
extra weighting factor is introduced based on the ratio between long-radius and short-radius spokes
and their respective lengths:

ws =
Nl

Ns
· rs
rl

· nl

ns
(3.7)

with Nl and Ns, the total number of long-radius and short-radius spokes in the acquisition, rl and rs
the radii of the long-radius and short-radius spokes, and nl and ns the number of samples on the long-
radius and short-radius spokes, respectively. The total compensation factor for k-space samples on
the short-radius spokes is then:

dcomps = dcompradial · ws (3.8)

Sensitivity maps, on the other hand, are essential in the reconstruction of multi-coil MR acquisitions.
Due to the different locations of each receiver coil relative to the subject, coil sensitivity varies spatially,
being more sensitive to nearby tissues and less sensitive to distant tissues. During reconstruction,
each coil’s density-compensated k-space data is first transformed to image space using the adjoint
NUFFT. The resulting image from each coil is then multiplied by its corresponding sensitivity map and
subsequently, these images are summed across all coils to produce the final reconstructed image.
This ensures that regions far away from a coil are suppressed in the final image and regions closer
to the coil are emphasized. In our implementation, a simplified model was used based on six coils.
The created sensitivity maps are smooth Gaussian profiles centered around each coil, with the signal
strength gradually decreasing with distance from the coil.

Together, the use of k-space density compensation and sensitivity maps ensures accurate image re-
construction despite the non-uniform sampling pattern and spatially varying coil sensitivities inherent
to the acquisition process.

3.1.4. Long-Acquisition, Short-Acquisition, and Reference Images
To train and evaluate a model on its ability to enhance the quality of accelerated MR images, we re-
quire both the contrast-weighted images from the standard, long MuPa-ZTE acquisition, and their corre-
sponding short-acquisition counterparts. The long-acquisition images are generated using the forward
model as described in Subsection 3.1.3 with the complete MuPa-ZTE k-space trajectory consisting of
126 cycles. This synthetic acquisition simulates a real scan that would take 5 minutes and 37 seconds
on the GE Healthcare Signa MR750 3.0T scanner. The additional weighting factor applied for density
compensation for this acquisition, ws, was computed to be 7.7483.

To simulate the accelerated imaging, we generate the short-acquisition images, by truncating the k-
space trajectory as well as the k-space data used to reconstruct the weighted images. The MuPa-ZTE
k-space trajectory starts with two cycles of short-radius spokes which densely sample the center of
k-space. This is followed by a repeating sequence of four structurally distinct long-radius spoke cycles,
each designed to sample different regions of the outer k-space. To preserve this structure, we truncated
the trajectory after the first 34 (= 2 + 4 · 8) cycles, which corresponds to approximately 27% of the full
acquisition and would require around 1.5 minutes to acquire.

Since truncating the k-space trajectory changes the ratio between long-radius and short-radius spokes,
the additional weighting factor for density compensation needs to be updated. The updated additional
weighting factor, ws, is computed as 7.7483 · 32

124 = 1.9996. Here, 32 and 124 represent the number
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of long-radius spokes in the short and long acquisitions, respectively. Throughout this thesis, the 5.5-
minute acquisition will be referred to as the long acquisition, and the 1.5-minute acquisition as the short
acquisition.

The benefit of synthetic data generation is that we also have access to artifact-free images that can
serve as idealized references. In this work, these reference contrast-weighted images are generated
with the same forward model (see Subsection 3.1.3), but without the transformation to k-space and
reconstruction. Instead, the magnetization is directly mapped to image space, without simulating ac-
quisition and reconstruction effects, providing a clean reference. Figure 3.2 shows a representative
slice from the reference 3D contrast-weighted volumes, alongside corresponding slices from the 3D
volumes acquired using both the long-acquisition and short-acquisition methods.

Figure 3.2: One slice of a 3D synthetically generated subject for the MuPa-ZTE acquisition. The top row shows the reference
contrast-weighted images, the middle row the long-acquisition contrast-weighted images and the bottom row the

short-acquisition contrast-weighted images. The columns show the different echoes.

3.2. Partial Diffusion Model Implementation
To enhance the quality of the short-acquisition images, a partial diffusion model was implemented.
In this section, the architecture of the partial diffusion model will be outlined, including the variations
researched in this thesis.

The specific type of diffusion model used in this thesis, the DDPM, formalizes the diffusion process as
a sequence of intermediate images, where each image is a slightly noisier version of the previous one.
At each timestep t, Gaussian noise is added according to a predefined variance schedule: β1, ..., βT ,
with T the total number of diffusion steps. Instead of simulating this noise step-by-step, DDPMs allow
for direct sampling of xt from the original clean image x0 at any timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ (3.9)

Here, ϵ ∼ N (0, I) is standard Gaussian noise, and ᾱ is the cumulative product of the noise scaling
terms up to step t:

ᾱt =

t∏
s=1

αs where αt = 1− βt (3.10)
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This formula can be used to efficiently generate noisy inputs for training. During training, the loss
function is defined as the squared Euclidean norm of the predicted noise, ϵθ(xt, t), across the entire 3D
volume, as described in [23]:

L = Et,x0,ϵ

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2] (3.11)

Therefore, the model learns to predict the noise added at each timestep.

During inference, the short-acquisition image is passed through the forward diffusion process for a
predetermined number of timesteps, K, to generate the noisy input xK . The model then performs
denoising by iteratively estimating and removing the noise from xt at each timestep t, with t ranging
from K to 0. At each timestep t, the model predicts the added noise, ϵθ(xt, t). This predicted noise is
removed from the current image to obtain a denoised version xt−1, by reversing the diffusion process
defined during the forward process:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (3.12)

where z ∼ N (0, I) is random Gaussian noise, and σt is derived from the noise variance schedule used
during training:

σt =
√
βt (3.13)

This iterative procedure progressively denoises the image into a high-quality sample from the learned
data distribution.

Our implementation is based on the open-source MONAI framework [29]. This framework contains
various validated deep learning tools specifically tailored to applications in medical imaging. The main
architecture used in this thesis is MONAI’s implementation of a diffusion model [30], which is a 3D
UNet-based network designed for denoising diffusion probabilistic models (DDPMs). The network was
configured with three spatial dimensions, channel sizes of 32, 64, 64, and one residual block per level.
A linear beta schedule with 1000 timesteps was chosen, with the variance schedule linearly increasing
from βstart = 1× 10−4 to βend = 0.02, as described in the original DDPM paper [23].

To condition the model on the current diffusion timestep, a timestep embedding is integrated into the
network. The diffusion model architecture from MONAI uses a sinusoidal positional encoding to con-
vert a scalar timestep into a higher-dimensional embedding. The resulting embedding is then passed
through a small feedforward neural network, which projects the embedding into a representation that
can be used by the UNet architecture. Finally, the timestep embedding is added to the network’s resid-
ual block, which allows the model to adapt its denoising behavior based on the denoising timestep it is
at.

3.2.1. Training strategy
Themodel was trained using the reference contrast-weighted images as input data and as output target.
Due to memory constraints associated with entire 3D volumes, a dynamic patch sampling strategy was
used. During each training iteration, a batch of 32 patches of size 32× 32× 32 was sampled uniformly
across the entire image volumes from the set of 76 synthetic subjects. To manage training duration,
the total number of iterations over all epochs was fixed to 100,000. This ensured a feasible training
time, while also exposing the model to a varied dataset. The batch size and patch size were selected
based on empirical trade-offs between GPU memory limits and the need for spatial context.

For the training objective, the mean squared error (MSE) loss between the predicted noise and the
true noise was used. The model was optimized using the Adam optimizer, with a fixed learning rate of
1× 10−4.

As in partial diffusion the full 1000 set of timesteps will not be used during the reverse diffusion process,
there is also no need to train the model across all 1000 timesteps. Instead, during training, timesteps
are randomly sampled only from the range [0, 100]. This approach ensures that the training time is used
effectively to only learn the denoising steps in the range that will be used during the reverse diffusion
process.
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Training took approximately 7.5 hours on an NVIDIA A40 GPU with 48 GB of memory1. Early stopping
was not implemented, as random patch sampling provided natural regularization across epochs.

3.2.2. Reverse Diffusion With Sliding Window Approach
Once the models are trained, model performance is evaluated on the held-out test set of 10 synthetic
test subjects from the same brain model. Due to memory constraints, it is not possible to process an
entire test subject at once. To address this, a sliding window approach, developed within the BIGR
department, was used. First, the brain volume is passed through the forward diffusion process up to
a predetermined number of diffusion steps. Next, a 3D sliding window, with predefined dimensions
and a stride equal to half the window dimensions, is applied to draw patches from the input volume.
To ensure complete coverage of the volume, the input is zero-padded such that an integer number of
sliding windows fits in its dimensions. At each denoising step, the selected noised patch xp

t , is passed
to the model together with the current timestep, t, to predict the noise at this timestep. This predicted
noise, ϵθ(xp

t , t), is then used to compute the denoised output xp
t−1, according to the reverse diffusion

process as described in Equation 3.12.

Important to note is that in the standard reverse diffusion process, the random noise, z in Equation 3.12,
is sampled from a standard Gaussian distribution at each denoising step. However, to ensure consis-
tency across overlapping regions from different sliding window patches, each voxel should use the
same noise realization, regardless of the window in which it is evaluated. Therefore, at each timestep,
a single noise value is sampled per voxel across the entire brain volume. Each sliding window then re-
trieves the noise values corresponding to the voxels it contains and uses those in the reverse diffusion
process. After a denoising step at time t for each patch, all the output patches are merged. Overlap-
ping voxels are combined using a Gaussian-weighted averaging, where voxels near the edge of the
sliding window get a lower weight than voxels near the center. This helps reduce boundary artifacts.
After merging, the next round of patches is drawn from the updated volume in the same sliding window
manner and passed through the subsequent denoising step (xt−1 → xt−2). This process is repeated
until the final denoised volume at x0 is reconstructed. The approach is illustrated in Figure 3.3 for one
slice of one channel of a 3D brain volume.

3.2.3. Model Variations
In this thesis, three variations of the partial diffusion model were evaluated: an unconditional model,
a latent alignment model, and a concatenation-based conditional model. The unconditional model is
trained as described in Subsection 3.2.1, with only the reference images. The training procedure of the
unconditional DDPM is depicted in Figure 3.4.

This model serves as a baseline to assess the performance of the partial diffusion process by itself but
has two notable limitations. First, since the model is not exposed to the short-acquisition images during
training, it cannot learn features related to the specifics of this image distribution. Second, as explained
in Subsection 2.3.1, the input image is noised during inference by applying forward diffusion steps. This
inherently destroys some of the original structure information present in the short acquisition, making
it challenging for an unconditioned model to retain and reconstruct fine details without any guidance.

To address these limitations, two conditional model variations were designed, both aiming to preserve
and use the information present in the short acquisition. The latent alignment model follows the ap-
proach used in [24], where both the short-acquisition and the reference images are used during train-
ing. The goal is to train the model to map the distribution of short-acquisition images toward that of
the reference images. The idea is that the latent spaces, xt in this case, of both domains should be
aligned throughout the diffusion process. This is achieved by linearly interpolating between the short-
acquisition image xs

t and the reference image xref
t at timestep t, according to a weight, w. Specifically,

for a given diffusion timestep t, the input to the forward diffusion process is computed as:

xt = w · xs
t + (1− w) · xref

t (3.14)

wherew = t/Ktrain andKtrain is the maximum timestep used in the training process. This interpolation
ensures that earlier diffusion steps are more influenced by the reference image, while later steps are

1Specifications available at: https://www.nvidia.com/en-us/data-center/a40/

https://www.nvidia.com/en-us/data-center/a40/
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Figure 3.3: The sliding window approach used in inference. One slice of one channel is depicted for visualization purposes.
(A) First, the input image is noised through the forward diffusion process up to the predetermined number of reverse diffusion

steps, t = K. (B) The brain volume is divided into patches and a Gaussian volume of the same size is created for the
realization of the noise. (C) Each patch is passed through the trained partial DDPM, which predicts the noise on the patch,
ϵθ(x

p
K,K). Together with the realization of the noise of this patch, this predicted noise is used to perform a reverse diffusion

step (Equation 3.12), which leads to x̂p
K−1. (D) Once every patch is processed for the current timestep, all patches are merged

using Gaussian weighting. (E) This generates x̂K−1, which is again split into patches and processed in the same manner as
described in (B), (C) and (D), until t = 0.

increasingly conditioned on the short-acquisition image. The interpolated image, xin, is then treated as
the input for the forward diffusion step at timestep t, after which Gaussian noise is added according to
the DDPM noise schedule. The training process of the partial DDPM with latent alignment is depicted
in Figure 3.5.

The concatenation-based conditional model, on the other hand, addresses the limitations of an un-
conditional model by explicitly maintaining access to the original short-acquisition image throughout
the diffusion process. In this model, the short-acquisition input is concatenated channel-wise with the
noised reference image during training. This allows the model to condition its denoising predictions
not only on the progressively noised version of the reference, but also on the original short-acquisition
input. During inference, the original short-acquisition input is concatenated with its own noised version.
In this way, the model can preserve the structural information present in the original image which would
otherwise be lost during forward diffusion, while still benefiting from the power of the diffusion model.

Figure 3.4: Training procedure of the unconditional partial DDPM. At each iteration, a timestep t ∼ [0,Ktrain] and noise
ϵ ∼ N (0, I) are sampled and applied to the clean reference image, x0 to produce a noisy sample, xt. The same timestep t is
then passed to the partial DDPM along with xt to predict the added noise, ϵ̂θ(xt, t), and the model is optimized using a mean
squared error loss. Note that the figure is for illustrative purposes, in reality, the model was trained on patches due to memory

constraints.
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Figure 3.5: Training procedure of the partial DDPM with latent alignment. At each iteration, a timestep t ∼ [0,Ktrain] and
noise ϵ ∼ N (0, I) are sampled and applied to the short-acquisition image, xs

0, and the reference image, xref
0 , to produce noisy

samples xs
t and xref

t . These two noised images are linearly interpolated according to Equation 3.14. The interpolated output,
xt, together with this timestep t are used as inputs to the network. The partial DDPM is trained to predict the added noise,

ϵ̂θ(xt, t), and the model is optimized using a mean squared error loss. Note that the figure is for illustrative purposes, in reality,
the model was trained on patches due to memory constraints.

The training process of the partial DDPM with concatenation is depicted in Figure 3.6.

Figure 3.6: Training procedure of the partial DDPM with concatenation. At each iteration, a timestep t ∼ [0,Ktrain] and noise
ϵ ∼ N (0, I) are sampled and applied to the reference image, xref

0 , to produce a noisy sample, xref
t . The short-acquisition

image xs
0 is concatenated with this noisy sample xref

t and used, together with the timestep t, as input to the network. The
partial DDPM is trained to predict the added noise, ϵ̂θ(xt, t), and the model is optimized using a mean squared error loss. Note

that the figure is for illustrative purposes, in reality, the model was trained on patches due to memory constraints.

3.2.4. Baseline UNet Comparison
To provide a performance baseline and evaluate the added value of diffusion-based models, a standard
3D UNet was also implemented and evaluated qualitatively on the same test subjects. The 3D UNet
was implemented using the standard UNet framework by MONAI and adjusted such that it matched
the UNet used in the partial diffusion models as accurately as possible [29]. Three spatial dimensions,
channel sizes of 32, 64, 64 and one residual block per level were set. The training settings were also
identical, using the same patch drawing approach, a batch size of 32, learning rate of 1 · 10−4 and
a fixed number of 100,000 iterations. The model was trained to directly reconstruct a higher-quality
version of the short-acquisition images by minimizing the mean squared error between its output and
the corresponding long-acquisition reference images.

3.3. Dictionary Matching
As the ultimate goal of the MuPa-ZTE sequence is to generate high-quality quantitative maps with short
acquisition times, it is important to evaluate how the enhanced contrast-weighted images, produced
by the partial diffusion models, influence the quality of the resulting quantitative maps. To evaluate
this, a PD, T1, and T2 map were generated from the quality-enhanced echo images. The PD map is
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estimated by normalizing the PD-weighted image (Echo 0) using a high-signal average to correct for
intensity inhomogeneity caused by external factors. For the T1 and T2 maps, dictionary matching was
used to estimate the T1 and T2 values using Echo 1-4.

Dictionary matching is a model-based parameter estimation technique commonly used in quantitative
MRI [31]. In dictionary matching, a large set of signal evolutions are simulated for a range of possible
tissue properties using a signal model of the acquisition sequence. The dictionary matching implemen-
tation used in this work relies on the forward model described in Subsection 3.1.3 for this purpose.
All signal evolutions are saved as dictionary entries, each representing the expected signal intensities
across the last four echo times for a specific combination of tissue properties.

During the matching process, the observed signal evolution at each voxel is iteratively compared to the
entries in the dictionary. The candidate T1 and T2 values are updated over a fixed number of iterations,
converging to the dictionary entry that gives the closest match. This dictionary entry is selected and
its corresponding tissue properties, T1 and T2 are assigned to the voxel. Finally, this allows for the
mapping of PD, T1, and T2 values for the entire brain volume.

3.4. Model Evaluation
All three model types were evaluated qualitatively as well as quantitatively, both on different synthetic
test subjects as well as on an in vivo subject. The qualitative assessment was done by visual inspec-
tion of the output contrast-weighted images and the corresponding quantitative maps. This evaluation
focused on identifying visual improvements, such as sharper details, reduced noise, and preservation
of structural features.

The quantitative assessment was done by calculating five commonly used image quality metrics for the
contrast-weighted images, as well as the derived quantitative maps: Mean Absolute Error (MAE), Root
Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure
(SSIM), and High Frequency Error Norm (HFEN). Each metric focuses on different aspects of image
quality. A brief description of these metrics is provided below. To ensure the evaluation focused solely
on the relevant part of the image, all metrics were computed only within the brain region, using a brain
mask to set all background voxels to zero prior to evaluation.

MAEmeasures the average absolute difference between the predicted and reference images across all
pixels. It is a simple and interpretable metric, but it does not account for spatial structure or perceptual
quality [32].

RMSE, on the other hand, calculates the root of the average squared differences between the predicted
and reference image. It places more emphasis on large errors than MAE, due to the squaring operation,
making it more sensitive to outliers [32]. Like MAE, RMSE remains a pixel-wise measure and it does
not account for spatial structure or perceptual quality.

PSNR is a logarithmicmeasure (in decibels (dB)) that compares themaximal signal value with the power
of the noise. It is a commonly used metric in image quality quantification, but it still lacks sensitivity to
perceptual quality and spatial structure.

SSIM, on the other hand, is designed specifically to match human visual perception of image quality
[33]. Therefore, it takes into account luminance, contrast, and spatial structure rather than pixel-wise
error metrics. This makes it useful to assess perceptual image quality.

Lastly, HFEN measures the difference in high-frequency content between the predicted and reference
images by applying a high-pass filter before computing the error [34]. This metric is sensitive to struc-
tural detail loss and blurring and thus very relevant in the context of this thesis.

MAE, RMSE, and HFEN are error-based metrics, where lower values indicate better performance, with
zero being the ideal. PSNR and SSIM, on the other hand, are similarity-based metrics, where higher
values are preferred. PSNR has a theoretical upper bound of infinity as it divides by the mean squared
error, but values typically range between 20-50 dB, while SSIM ranges from 0 to 1, with 1 indicating
perfect similarity.



4
Experimental Setup

In this chapter we describe the experimental setup used to evaluate the proposed partial diffusion
model. The aim was to assess three different architecture variants of the partial DDPM, as introduced
in Chapter 3, under consistent and controlled conditions.

The goal of the experiments was to compare the ability of each partial DDPM to enhance undersampled
contrast-weighted images acquired by 4x accelerated MuPa-ZTE. A secondary objective was to eval-
uate whether these enhanced contrast-weighted images naturally led to improved quantitative maps.
In addition, we investigated how the number of denoising steps in the reverse denoising process influ-
ences the performance of each model.

4.1. Training
Three model architectures were compared, the unconditional partial DDPM, which was trained using
only the reference images, the partial DDPM with latent alignment, which was trained using an inter-
polation between the latent representations of the undersampled and reference image as a function
of the timestep during forward diffusion, and the partial DDPM with concatenation, which was trained
using the reference image, but with the undersampled image concatenated channel-wise.

Each model was trained using the same 76 synthetic subjects, identical hyperparameters (learning rate,
batch size, number of epochs), and the same partial diffusion noise scheduler. The specifics of these
settings are described in Chapter 3.

4.2. Evaluation
The evaluation consisted of two parts: the synthetic evaluation and the in vivo evaluation. For the
synthetic evaluation, the held-out test brain model was used and for the in vivo evaluation the MuPa-
ZTE acquisition of a volunteer was used. Both evaluations consisted of a qualitative and a quantitative
component. The quantitative evaluationmetrics included themean absolute error (MAE), the root mean
squared error (RMSE), the high frequency error norm (HFEN), the peak signal-to-noise ratio (PSNR),
and the structural similarity index measure (SSIM). These are defined and discussed in Section 3.4.

4.2.1. Synthetic Evaluation
Ten synthetic test subjects were generated from the held-out brain model that was not used during
training. The undersampled images of each synthetic subject were enhanced using all three model
architectures. To assess the effect of the number of reverse diffusion steps, inference was performed
at 11 different numbers of diffusion steps, denoted as K:

K ∈ {5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} (4.1)

At eachK, enhanced contrast-weighted images were generated from the undersampled images for all
10 subjects. During inference, the 3D sliding window approach was used, as discussed in 3.2.2, with a
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sliding window size of 32x32x32 and a stride of 16x16x16. These outputs were assessed qualitatively
based on visual inspection of the accuracy of the anatomical structures, the noise suppression, and
the sharpness of boundaries. Quantitative image quality metrics were computed voxel-wise within the
brain mask, comparing the enhanced contrast-weighted images with the reference synthetic images.
For comparison, these metrics were also computed for the original undersampled image and the fully
sampled images.

For each model, the optimal number of reverse diffusion stepsK was selected as the smallest value at
which the model’s performance remained within 1% of its performance maximum, across all evaluation
metrics, in order to minimize inference time while maintaining high image quality. For this purpose,
image quality metrics were first averaged across all echoes for each subject. Afterward, these per-
subject averages were combined by computing the mean across subjects, resulting in a single mean
value per metric per K. The optimal K was selected based on these values.

Using the optimal K, enhanced contrast-weighted images of all 10 subjects were generated. These
were used to generate quantitative PD, T1, and T2 maps for each model, using the dictionary matching
approach as described in Section 3.3. The resulting maps were compared qualitatively and quanti-
tatively to the synthetic reference maps, in the same manner as for the enhanced contrast-weighted
images.

4.2.2. In Vivo Evaluation
To assess generalizability to real-world data, the three models were evaluated on two in vivo subjects.
This subject underwent a long MuPa-ZTE acquisition. However, as the original scan parameters were
not recorded in full detail, the acquisition protocol did not exactly match the one used in the forward
model for generating the training data. Specifically, the total number of cycles in the k-space trajectory
was 102 (instead of the 126 used in training). This data was truncated in a similar manner as for the
synthetic data, where the first 27 cycles (∼ 26%) were kept to generate the five contrast-weighted
echoes acquired with a 4x accelerated, short MuPa-ZTE acquisition.

These short-acquisition images were used as input to themodels, where eachmodel used its previously
determined optimalK. The resulting enhanced short-acquisition images were assessed qualitatively in
the same manner as the enhanced synthetic contrast-weighted images. However, unlike the synthetic
data, no ground truth contrast-weighted images are available for the in vivo subject. To be able to do a
meaningful quantitative evaluation, an additional long MuPa-ZTE acquisition was acquired of the same
subject during the same scanning session. This second long acquisition was used as the reference for
all quantitative evaluations. The original long acquisition, from which the short-acquisition input was
derived, could not serve as a valid reference, as it inherently shares noise characteristics and potential
artifacts with the short-acquisition input. Using an independently acquired full MuPa-ZTE scan as the
reference minimizes bias and allows for a more objective assessment of the model’s ability to enhance
short-acquisition contrast-weighted images. The image quality metrics were also computed for the
short-acquisition image with respect to this reference long acquisition and for the first long acquisition
with respect to the reference long acquisition. No image registration was applied, as the scans were
acquired consecutively in the same session, and no significant subject motion was expected between
acquisitions.

Next, the five enhanced short-acquisition contrast-weighted images of the in vivo subject were used to
generate PD, T1, and T2 maps. These maps were again evaluated both qualitatively and quantitatively
in the same manner as the quantitative maps generated from the synthetic contrast-weighted images
but with respect to the reference long MuPa-ZTE acquisition.

In addition to the primary in vivo evaluation, a second in vivo dataset was available from a subject who
underwent a single long MuPa-ZTE acquisition with the same acquisition parameters as those used
for training the models. As no additional reference scan was available for this subject, only qualita-
tive evaluation was possible. This dataset was therefore not included in the main analysis but was
used to further visually assess the model’s performance on unseen real-world data. The resulting en-
hanced contrast-weighted images and corresponding quantitative maps are included in Appendix A for
completeness.



5
Results

In this chapter we present the results of the experimental evaluation of three variations of the partial
DDPM. The results are organized into two main sections: the results on the synthetic dataset and
the results on the in vivo dataset. Each section contains both qualitative and quantitative evaluations.
Two types of comparisons were carried out between the short-acquisition data and their enhanced
counterparts. The first comparison is done in the contrast-weighted image domain, while the other
comparison is done in the quantitative map domain.

5.1. Results on Synthetic Dataset
5.1.1. Influence of partial diffusion steps in inference
Figure 5.1 shows that all three models are capable of improving all five evaluated metrics compared to
the short-acquisition input images for specific values of K. The unconditional partial DDPM and latent
alignment variant produce similar results across the evaluated K values, with optimal performance at
K = 10. Beyond this point, the performance deteriorates. In contrast, the concatenation-based partial
DDPM exhibits consistent improvement in metrics as K increases, although the rate of improvement
levels off after K = 50. The optimal K was identified as the smallest number of reverse diffusion steps
that achieved performance within 1% of the maximum performance, in order to minimize inference
time while maintaining high image quality. Based on this criterion, the optimal value for K was deter-
mined to be 10 for both the unconditional partial DDPM and the latent alignment variant, and 50 for the
concatenation-based model.

5.1.2. Contrast-Weighted Images Comparison
In the following experiments, we useK = 10 for the unconditional partial DDPMand the latent alignment
variant, andK = 50 for the concatenation-based model. First, the enhanced contrast-weighted images
were compared visually across the models. A representative slice of the 3D brain volume of one of the
test subjects, enhanced with each of the three models, is visualized in Figure 5.2 for visual assessment.

To further facilitate visual comparison, Figure 5.3 presents pixel-wise difference images computed be-
tween the reference and all other images for the same subject and slice as presented in Figure 5.2.
Figure 5.2 shows that all three partial DDPM variants reduce noise across all echoes, compared
to the short-acquisition input. The outputs of the unconditional partial DDPM and the latent align-
ment variant still demonstrate some residual noise compared to the long-acquisition echoes, whereas
the concatenation-based model produces outputs with minimal visible noise compared to the long-
acquisition and reference images. The UNet output appears notably more blurred compared to the
partial DDPM outputs. Figure 5.3 further highlights that the concatenation model achieves the lowest
residual error among the three DDPM variants. However, its output still contains slightly more deviation
from the reference image than the long acquisition. Interestingly, all models demonstrate the greatest
improvement for Echo 2, which shows the least amount of residual error in the outputs.
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Figure 5.1: Boxplots of five image quality metrics (A-E) computed across 11 different reverse diffusion step counts for three
different models, evaluated on 10 synthetic test brain volumes. All metrics are calculated with respect to the reference image
and are computed using a brain mask. Timestep zero corresponds to the short-acquisition input images. The dashed line

indicates the mean metric value for the long-acquisition images, also with respect to the reference image. Subplots show: (A)
MAE, (B) RMSE, (C) HFEN, (D) PSNR, and (E) SSIM.



5.1. Results on Synthetic Dataset 20

Figure 5.2: Contrast-weighted images for a synthetic test subject (single slice shown). The first column displays the five
short-acquisition input echoes provided to all models. The second column displays the corresponding long-acquisition echoes,
while the last column shows the reference echoes. The third, fourth, and fifth columns show the output of the unconditional
partial DDPM, the latent alignment variant, and the concatenation-based model, respectively. The sixth column displays the

output of a basic UNet. The rows display the five echoes associated with the MuPa-ZTE acquisition.
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Figure 5.3: Difference images for the same synthetic test subject as presented in Figure 5.2 (single slice shown). Each column
presents the pixel-wise difference between the reference images and the images from the corresponding acquisition or model

indicated in the column title.

Figure 5.4 and 5.5 show two zoomed-in patches from the same synthetic brain model as depicted in
Figure 5.2, to highlight the differences in detail preservation and noise reduction across the models. In
Figure 5.4, red arrows indicate a thin light grey structure with clear boundaries in the reference image.
These boundaries are blurred in the short-acquisition image due to noise but are restored in the result
of the concatenation-based partial DDPM. The unconditional partial DDPM and the latent alignment
variant also recover the structure, but it remains noisy. The UNet output is more blurred compared
to the outputs of the partial DDPMs and the reference image. Light blue arrows in Figure 5.4 point
to white matter regions that are noticeably denoised in the concatenation-based partial DDPM when
compared to the short-acquisition input image. While the results of the unconditional partial DDPM
and the latent alignment variant also show some denoising, this is less pronounced compared to the
concatenation-based model. The UNet output also shows less noise but has a mean intensity shift in
this white matter region.

In Figure 5.5, red arrows indicate a boundary region between two tissue types. While this boundary ap-
pears relatively straight in the reference image, it is noticeably degraded in the short-acquisition image.
The UNet model reduces the noise but produces a very blurred boundary. In contrast, both the un-
conditional partial DDPM and the latent alignment variant show improved sharpness, yet the boundary
remains irregular. The concatenation-based partial DDPM, on the other hand, successfully recovers a
sharp, straight boundary that closely resembles that of the reference image.
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Figure 5.4: Visual comparison of the three models on a 40x48 patch from one of the synthetic test subjects. The first column
shows the context of the patch. The rows and other columns are arranged in the same order as in Figure 5.2. Red arrows

indicate a thin, light grey structure whose boundary sharpness varies across the models. Blue arrows indicate a white matter
region where noise levels vary across the models.

In addition to the qualitative assessment, we analyzed the mean image quality metrics for each model
using their respective selected K values. All three model variations were able to achieve lower MAE,
RMSE and HFEN and higher PSNR and SSIM compared to the short-acquisition input images (MAE:
0.02, RMSE: 0.034, HFEN: 10.4, PSNR: 27.2, SSIM: 0.84), see Figure 5.1. Out of the three model
variations, the concatenation-based partial DDPM achieved lower mean values for MAE (0.012), RMSE
(0.024) and HFEN (6.5), and higher mean values for PSNR (30.4) and SSIM (0.91) compared to the
unconditional and latent alignment variants which achieved MAE of 0.015, RMSE of 0.029, HFEN of
8.8, PSNR of 28.7, and SSIM of 0.88. The concatenation-based model achieved MAE and RMSE
mean values similar to the long acquisition (MAE: 0.012, RMSE: 0.021).
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Figure 5.5: Visual comparison of the three models on a 40x48 patch from one of the synthetic test subjects. The first column
shows the context of the patch. The rows and other columns are arranged in the same order as in Figure 5.2. Red arrows

indicate a straight tissue boundary, which is differently recovered across the models.

5.1.3. Quantitative Maps Comparison
Next to the contrast-weighted image comparison, the quantitative maps reconstructed from the en-
hanced contrast-weighted images were also compared. Figure 5.6 presents a single slice from the 3D
quantitative maps generated using the outputs of each of the three models, for one test subject. Figure
5.7 shows the corresponding difference images between the reference maps and the maps indicated
by the column titles. The resulting T1 and T2 maps from all three models show reduced noise compared
to the short-acquisition maps. This improvement is especially notable in the T2 maps, where tissue con-
trast is also visibly enhanced. The unconditional partial DDPM and the latent alignment variant lead to
PD and T1 maps that resemble their long-acquisition counterparts. Their T2 maps even appear slightly
less noisy than the long-acquisition T2 map, which is supported by the reduced residual error visible in
Figure 5.7. The concatenation-based partial DDPM very closely resembles the reference maps, espe-
cially for T1 and T2. This is supported by the lowest residual error visible for both the T1 and T2 maps in
Figure 5.7. The structures in the PD map are visually similar, however a slight global intensity shift is
observed. This shift is also visible in the long-acquisition PDmap. Figure 5.7 shows this global intensity
shift as an overall negative residual error without much structure visible.

The quantitative maps were also analyzed quantitatively across the different models. The image quality
metrics for the T1, T2, and PD maps are shown in Figures 5.8-5.10, respectively. Figure 5.8 shows that
all three models improve the image quality metrics for the T1 maps compared to the short-acquisition
T1 maps in the synthetic test subjects. Notably, the concatenation-based partial DDPM outperforms
the long-acquisition images across all metrics. Similarly, Figure 5.9 demonstrates that all three models
improve the metrics for the T2 maps compared to the short-acquisition T2 maps. In this case, all three
models achieve metrics exceeding that of the long-acquisition images, except for the SSIM of the
unconditional partial DDPM and the latent alignment variant. In contrast, Figure 5.10 shows a different
trend for the PD maps. While the concatenation-based partial DDPM improves all metrics relative to
the short-acquisition maps, the other two models only improve the MAE, RMSE, and PSNR but not the
HFEN and SSIM. Notably, none of the models improve the metrics for the PD maps beyond that of the
long-acquisition image (MAE: 0.03, RMSE: 0.052, HFEN: 9.0, PSNR: 27.7, SSIM: 0.94).



5.1. Results on Synthetic Dataset 24

Figure 5.6: Single slice of the PD, T1, and T2 quantitative maps of a synthetic test subject reconstructed from the
short-acquisition contrast-weighted images, long-acquisition contrast-weighted images, the result of the unconditional partial
DDPM, the result of the partial DDPM with latent alignment, the result of the concatenation-based partial DDPM, the result of
the UNet, and the reference contrast-weighted images. The background was manually set to zero for all quantitative maps. T1

and T2 maps are in milliseconds, and PD is in arbitrary units.

Figure 5.7: Difference images of the same slice and synthetic test subject as in Figure 5.6, showing the PD, T1, and T2

quantitative maps. Each column presents the pixel-wise difference between the reference map and the map generated using
the images from the corresponding acquisition or model indicated in the column title. T1 and T2 maps are in milliseconds, and

PD is in arbitrary units.
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Figure 5.8: Boxplots of five image quality metrics (A–E) for T1 maps of ten test subjects reconstructed from the
short-acquisition contrast-weighted images, the result of the unconditional partial DDPM, the result of the partial DDPM with
latent alignment, and the result of the concatenation-based partial DDPM. A dashed line marks the mean for long-acquisition
maps. Metrics are computed relative to the reference image while using a brain mask. Subplots show: (A) MAE, (B) RMSE, (C)

HFEN, (D) PSNR, and (E) SSIM.
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Figure 5.9: Boxplots of five image quality metrics (A–E) for T2 maps of ten test subjects reconstructed from the
short-acquisition contrast-weighted images, the result of the unconditional partial DDPM, the result of the partial DDPM with
latent alignment, and the result of the concatenation-based partial DDPM. The mean metric value for long-acquisition maps is
depicted as a dashed line. Metrics are computed relative to the reference image while using a brain mask. Subplots show: (A)

MAE, (B) RMSE, (C) HFEN, (D) PSNR, and (E) SSIM.
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Figure 5.10: Boxplots of five image quality metrics (A–E) for PD maps of ten test subjects reconstructed from the
short-acquisition contrast-weighted images, the result of the unconditional partial DDPM, the result of the partial DDPM with
latent alignment, and the result of the concatenation-based partial DDPM. The mean metric value for long-acquisition maps is
depicted as a dashed line. Metrics are computed relative to the reference image while using a brain mask. Subplots show: (A)

MAE, (B) RMSE, (C) HFEN, (D) PSNR, and (E) SSIM.
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5.2. Results on In Vivo Dataset
5.2.1. Contrast-Weighted Images Comparison
The performance of the models was also evaluated on an in vivo subject. In Figure 5.11, a repre-
sentative slice for the short-acquisition in vivo contrast-weighted images, the long-acquisition contrast-
weighted image, from which the short-acquisition images were created, the outputs of the three models,
and the UNet output is displayed. As a reference image, an additionally acquired long-acquisition of
the same volunteer is displayed.

Figure 5.11: Contrast-weighted images for the in vivo subject (single slice shown). The first column displays the five
short-acquisition input echoes provided to all models. The second column displays the corresponding long-acquisition echoes,
while the last column shows the reference long-acquisition echoes. The third, fourth, and fifth columns show the output of the
unconditional partial DDPM, the latent alignment variant, and the concatenation-based model, respectively. The sixth column

displays the output of a basic UNet.

Figure 5.11 shows less noise in the resulting brain models of all three partial DDPM variants compared
to the short-acquisition input echoes. The background in the partial DDPM outputs is almost completely
denoised, even compared to both the long-acquisition and reference long-acquisition reference echoes.
However, the brain structures in Echoes 4 and 5 are less sharp in the partial DDPM outputs than in
the long-acquisition and the reference long-acquisition images. The UNet model output has less noise
compared to the short-acquisition input, but significantly more noise than the partial DDPM outputs.
Figure 5.12 further supports these observations by demonstrating the reduced residual error in the
outputs of the partial DDPM models compared to the short-acquisition input. Similar to the results on
the synthetic dataset, the model outputs show the least residual error in Echo 2 compared to the other
echoes.

Image quality metrics were computed for these outputs with respect to the reference long-acquisition
images. As before, calculations were performed within a brain mask. Table 5.1 displays the mean
values across the five echoes for one in vivo subject. For comparison, the same metrics were also
computed for the short- and long-acquisition in vivo images relative to the same reference. Table
5.1 shows that all image quality metrics improve for all three partial DDPMs compared to the short-
acquisition input data. Additionally, all partial DDPM metrics are similar to those of the long-acquisition
image. Interestingly, all three partial DDPMs achieve similar metrics.
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Figure 5.12: Difference images for the in vivo subject in Figure 5.11 (single slice shown). Each column presents the pixel-wise
difference between the reference long-acquisition images and the images from the corresponding acquisition or model

indicated in the column title.

Table 5.1: Mean Image Quality Metrics across Echoes for Contrast-Weighted Images of an In Vivo Subject, Computed with
Respect to the Reference Long Acquisition

Short Acq. Unconditional Latent Alignment Concatenation Long Acq.
MAE 0.039 0.028 0.028 0.029 0.028
RMSE 0.065 0.048 0.047 0.048 0.047
HFEN 21.6 16.2 16.1 16.8 16.7
PSNR 27.07 29.76 29.85 29.63 29.80
SSIM 0.62 0.71 0.71 0.70 0.72

5.2.2. Quantitative Maps Comparison
Similar to the synthetic evaluation, quantitative maps were reconstructed from the enhanced contrast-
weighted images of the in vivo subject. Figure 5.13 demonstrates that all three partial DDPMs produce
quantitative maps with more clearly defined edges than the short-acquisition maps. Figure 5.14 shows
the corresponding difference images between the reference maps and the corresponding maps indi-
cated by the column titles. Especially for the T2 maps, the brain structures are barely visible in the
short-acquisition T2 map but are successfully recovered in all three models. The enhanced T2 maps
show substantially improved tissue contrast and structural definition, approaching the quality of the ref-
erence long-acquisition. However, the enhanced T2 maps seem to not properly recover the CSF layer
between the brain and the skull for all three models. Figure 5.14 shows that there is a large positive
residual error in the CSF layer for all three models.

For the T1 maps, all partial DDPM variants show reduced noise compared to the short-acquisition input
and remain in the same intensity scaling as the long-acquisition map. However, they show a consistent
negative bias relative to the reference long-acquisition map, and the model outputs also appear noisier
than the long-acquisition T1 map. Interestingly, out of the three models, the concatenation-based model
shows the highest noise levels within the brain tissue, with some edge blurring visible.
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ThePDmaps aremore difficult to evaluate visually, as the long-acquisition and reference long-acquisition
PD maps do not show the same contrast. The difference images in Figure 5.14 show that the residual
error decreases for all three models, but more residual error is left compared to the long-acquisition
maps.

In contrast to the partial DDPM outputs, the UNet results show significantly higher noise levels across
all parameter maps and also contain a pronounced mean intensity shift in the T1 map compared to the
reference long-acquisition map.

Figure 5.13: Single slice of the PD, T1, and T2 maps for an in vivo subject reconstructed from the short-acquisition
contrast-weighted images, long-acquisition contrast-weighted images, the result of the unconditional partial DDPM, the result of

the partial DDPM with latent alignment, the result of the concatenation-based partial DDPM, the result of the UNet, and a
reference long acquisition. Gaussian smoothing was applied to all images using σ = 0.9. T1 and T2 maps are in milliseconds,

and PD is in arbitrary units.

For each quantitativemap, image quality metrics were computed individually with respect to the relevant
reference long-acquisition map. The metrics for the PD, T1, and T2 maps are presented in Table 5.2.
The metrics were calculated using a brain mask. All three models demonstrate improved image quality
metrics across all three quantitative maps compared to the short-acquisition maps. The T1 and PDmap
metrics achieved by the models are comparable to those of the long-acquisition maps, while the T2 map
metrics are slightly improved from those of the long-acquisition map. All three models achieve very
similar performance across the different quantitative maps. It is also worth noting that all image quality
metrics indicate a substantially larger mismatch between the maps and the reference long-acquisition
maps compared to the results obtained for the synthetic dataset, even for the short-acquisition and first
long-acquisition in vivo maps.
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Figure 5.14: Difference images of the same slice of the in vivo subject as in Figure 5.6, showing the PD, T1, and T2

quantitative maps. Each column presents the pixel-wise difference between the reference long-acquisition map and the map
generated using the images from the corresponding acquisition or model indicated in the column title. T1 and T2 maps are in

milliseconds, and PD is in arbitrary units.

Table 5.2: Mean Image Quality Metrics for PD, T1 and T2 Maps of an In Vivo Subject, Computed with Respect to the
Reference Long Acquisition

Short Acq. Unconditional Latent Align. Concatenation Long Acq.

PD

MAE 0.160 0.103 0.102 0.102 0.104
RMSE 0.264 0.171 0.169 0.169 0.173
HFEN 84.1 59.9 59.0 61.9 58.1
PSNR 23.91 27.67 27.79 27.76 27.60
SSIM 0.54 0.64 0.65 0.65 0.66

T1

MAE 0.499 0.360 0.357 0.374 0.362
RMSE 0.941 0.745 0.746 0.765 0.752
HFEN 305.8 243.2 242.8 264.5 241.6
PSNR 12.57 14.60 14.59 14.36 14.52
SSIM 0.48 0.56 0.56 0.54 0.57

T2

MAE 0.116 0.065 0.064 0.068 0.073
RMSE 0.297 0.209 0.208 0.218 0.225
HFEN 91.6 65.6 65.4 75.5 71.0
PSNR 10.55 13.61 13.64 13.24 12.95
SSIM 0.37 0.46 0.45 0.46 0.44



6
Discussion

In this chapter, we interpret the findings presented in Chapter 5 and evaluate their implications for ac-
celerated quantitative MRI. This thesis investigated three partial DDPM variants for enhancing contrast-
weighted images acquired with a four times accelerated MuPa-ZTE sequence, to enable 1.5-minute
quantitative MRI acquisitions while maintaining image quality. Additionally, this thesis investigated
whether these enhanced contrast-weighted images directly translate to improved quantitative maps.
The concatenation-based partial DDPM consistently achieved the highest performance across the syn-
thetic dataset. While the unconditional and latent alignment variants also improved the short-acquisition
images, they underperformed relative to the concatenation-based model. Importantly, all three models
successfully transferred to in vivo data, although the inter-model comparison was more challenging due
to the lack of a ground truth. The enhanced contrast-weighted images directly translated to improved
quantitative maps, with T1 and T2 maps showing even more relative enhancement than the contrast-
weighted images they were generated from. PD maps are also enhanced from their short-acquisition
counterparts, but to a lesser extent than T1 and T2 maps. This thesis demonstrates that partial DDPMs
could enable significant acceleration of the MuPa-ZTE sequence, potentially reducing acquisition times
to one minute, while preserving image quality. In this discussion, we explore these research findings
within the broader context of accelerated MRI, address the limitations, and identify promising directions
for further research.

6.1. Interpretation of Results
6.1.1. Effect of the number of reverse diffusion steps
The ablation study on the number of reverse diffusion steps,K, showed that both the unconditional and
latent alignment variants achieve their best performance at a relatively low number of diffusion steps
(K = 10). This outcome can be explained by looking at the nature of the diffusion process. With a large
number of steps, the short-acquisition input image undergoes extensive forward diffusion, progressively
degrading the available prior information. Consequently, the model starts with a heavily degraded input,
which makes it challenging to recover the correct high-quality output. However, to effectively leverage
the power of a diffusion model, a sufficient number of steps is required. This introduces a trade-off
between preserving prior information while also exploiting maximum denoising capacity. Based on this
balance, we selected K = 10 as the optimal value for these two models. The concatenation-based
partial DDPM does not suffer from this limitation, as it maintains direct access to the original, undiffused
input image through its architecture. By concatenating the untouched input with the diffused images, it
benefits from both the available prior information of the original data as well as the denoising capacity
of the diffusion process. This explains why its performance continued to improve with increasing K.
However, the rate of performance improvement plateaued beyond a certain point, likely because ad-
ditional denoising steps offer limited additional performance once most of the recoverable information
has already been reconstructed. As an increased number of reverse diffusion steps leads to increased
computational complexity, a trade-off has to be made between maximum performance and minimized
inference time. To address this, the value forK that resulted in performance within 1% of the maximum
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performance for all evaluated metrics was selected. For the concatenation-based model this occurred
at K = 50.

6.1.2. Model Performance on Synthetic Data
The experiments on synthetic contrast-weighted images demonstrated that the concatenation-based
partial DDPM outperformed both the unconditional and latent alignment variant across all evaluated
metrics. This model’s direct access to the original multi-echo input through concatenation enhances
detail preservation and reduces high-frequency noise. In contrast, the unconditional and latent align-
ment variants improved upon the short-acquisition input but consistently underperformed relative to
the concatenation-based model. However, the unconditional and latent alignment models did perform
similarly to each other, with differences <1% across all metrics. This similarity in performance suggests
that the linear latent space alignment approach does not provide meaningful benefits compared to the
unconditional partial DDPM. The underlying issue might be the fundamental mismatch between the
training objective and the desired transformation. The loss function used in training the models opti-
mizes the noise prediction for both the short-acquisition and reference images, rather than explicitly
learning the mapping between their respective data distributions. This could restrict the model’s ability
to properly benefit from including the short-acquisition input data in the training process. While previous
work showed modest improvements with latent alignment, these improvements were limited to a small
value for K and were not observed in our experiments even at comparable K values, potentially due
to the different undersampling patterns employed [24]. Further research could explore whether modi-
fying the loss function to explicitly penalize a distribution mismatch, allows for learning the relationship
between the short-acquisition and reference data better.

6.1.3. Model Performance on In Vivo Data
The experiments on in vivo contrast-weighted images demonstrated that all three partial DDPM variants
improved the quality of the short-acquisition MuPa-ZTE images, achieving image quality metrics that
closely approached those of a long acquisition. These results provide initial evidence that the model
performance generalizes to in vivo data, although further validation across a diverse set of in vivo
subjects is required. A critical limitation of the in vivo evaluation is the lack of a ground truth. The
reference long acquisition inherently contains noise and reconstruction artifacts that prevent absolute
performancemeasurements. Consequently, the calculated metrics for the in vivo data primarily indicate
relative improvement over the short-acquisition input, rather than absolute reconstruction accuracy.

The challenge of establishing a reliable ground truth is illustrated by the relatively low inter-acquisition
similarity between the two long in vivo acquisitions (SSIM: 0.72), compared to the similarity observed
in synthetic data (SSIM: 0.93 between the long-acquisition and reference images). This discrepancy
suggests either a significant noise component or some subtle motion between the acquisitions and
further emphasizes the limitations of using one imperfect acquisition as a reference for another. Nev-
ertheless, the observed improvements are not limited to quantitative metrics: they are also evident in
the visual inspection of the contrast-weighted images of both the primary in vivo dataset (Figure 5.11)
and the secondary in vivo dataset (Appendix A), giving qualitative support for the relative enhancement
achieved by the partial DDPMs. Notably, the models demonstrated robustness to acquisition param-
eter variations, as the primary in vivo dataset used fewer k-space cycles (27 vs 34 in training) for the
short-acquisition images, yet still achieved image quality similar to the long-acquisition images. This
suggests that the partial DDPMs have learned generalizable features of the MuPa-ZTE sequence. For
the unconditional partial DDPM, this demonstrates its robustness to increased undersampling factors,
while for the latent alignment and concatenation-based variants, it shows successful generalization
beyond the specific undersampling factor they were trained on.

Another important insight from the in vivo results is that models trained exclusively on synthetic data suc-
cessfully transferred to real acquisitions. This demonstrates the effectiveness of synthetic MuPa-ZTE
data in capturing the underlying signal properties of necessary for generalization to real acquisitions.
The use of synthetic datasets provides significant practical advantages for model development. Syn-
thetic datasets can consist of virtually unlimited and controllable training samples. This can be used
to systematically improve model performance and robustness without the need for extensive in vivo
data collection. For instance, if the MuPa-ZTE acquisition parameters are modified, generating new
synthetic data that reflect these changes and retraining the model accordingly, is a straightforward, fast,
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procedure that can be completed within days. In contrast, acquiring a sufficient number of in vivo scans
with a new protocol for retraining would require months of patient recruitment and scanning.

6.1.4. Quantitative Maps Enhancement
To test whether the models are useful clinically, the next objective was to determine whether the
contrast-weighted image enhancements translated into enhanced quantitative parameter maps directly,
the primary output of the MuPa-ZTE sequence. For synthetic test data, the concatenation-based model
recovers T1 and T2 maps that closely resemble the reference maps. Remarkably, even the underper-
forming models in contrast-weighted image enhancement, the unconditional partial DDPM, and latent
alignment variant, achieve image quality metrics comparable to those of the long-acquisition maps for
the T1 maps, and even exceed the long-acquisition metrics for the T2 maps.

The increased performance in quantitative mapping, exceeding the improvement observed in contrast-
weighted images, likely stems from the fact that the model enhances all five echoes simultaneously.
By processing echoes jointly, the model can exploit temporal correlations in the signal evolution, which
forms the basis for T1 and T2 parameter estimation. Specifically, the model might improve the temporal
consistency of the signal evolution across the echoes more than it improves the image quality of the
individual echoes, resulting in more accurate parameter maps even though individual echoes show
less enhancement.

The PD maps, however, showed consistently lower image quality across the three models compared
to the long-acquisition reference. PD maps reflect the underlying proton density scaling factor that
determines voxel-wise signal magnitude, and therefore depend significantly on preserving absolute
signal intensities. While the models successfully reconstruct the temporal signal evolution, necessary
for T1 and T2 estimation, the absolute intensity scaling required for the PD maps seems to be altered.
This limitation suggests that for accurate PD mapping, additional constraints or normalization might be
required to ensure accurate intensity scaling across voxels.

The in vivo quantitative maps demonstrate that contrast-weighted image enhancement also translates
to improved parameter estimation in real clinical data. However, the absence of a ground truth severely
limits a thorough quantitative evaluation of the performances. Unlike synthetic data where the ground
truth is known, in vivo validation can only show relative improvements over short-acquisition inputs.
The observed tissue contrast differences in PD maps between model variants emphasize the need for
further validation across additional in vivo subjects.

6.1.5. Comparison against UNet baseline
In comparison to the partial DDPMs, the basic UNet baseline produces visibly more blurred output
contrast-weighted images for both the synthetic images as the in vivo subject, a known limitation of
convolutional neural networks (CNN) trained with a mean squared error (MSE) loss. Single-pass CNNs
tend to oversmooth fine structures due to local averaging effects and the MSE loss function does not
penalize this blurring. The partial DDPM does not suffer from this limitation, as the iterative denoising
process allows for progressive refinement of image details. Additionally, the loss function in the par-
tial DDPM is focused on predicting the noise, rather than the output image directly. This allows the
model to recover high-frequency information over multiple steps, preserving sharper edges and small
details. These results demonstrate the improved capability of partial DDPMs compared to standard
UNet architectures for enhancing undersampled MuPa-ZTE images.

6.2. Limitations
While the results presented in this thesis demonstrate the potential of partial DDPMs for enhancing
MuPa-ZTE contrast-weighted images and their corresponding quantitative maps, several limitations
should be acknowledged to contextualize these findings and guide future research.

One of the main limitations of this thesis is the limited number of test data available. The synthetic
test set, while varied in T1, T2, and PD values, was limited to ten subjects with identical brain anatomy
derived from a single brain model. This lack of variation in test subject anatomy prevents the thorough
evaluation of the model across different brain morphologies that could be encountered in clinic. There-
fore, it is unclear how the models would perform on scans from patients with significantly different brain
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structures, such as lesions or large brain tumors.

One in vivo subject was used to test the generalizability of the model to data outside of the training
data distribution. Although this provided promising results, a more thorough evaluation on multiple in
vivo subjects is necessary. One subject does not allow for any statistical assessment of performance
variability and thus limits the confidence in the reported overall performance.

Another limitation of this thesis is the simplifications incorporated in the synthetic data generation. Most
importantly, the current pipeline assumes each voxel contains a single tissue type. In reality, however,
voxels often contain a mixture of tissue types, particularly at tissue boundaries. The current approach
ignores these partial volume effects, even though they can significantly influence the signal evolution
captured. Therefore, the partial DDPMs are never exposed to such effects in training and are likely to
underperform in regions where these effects are very prominent. Additionally, the synthetic data does
not fully capture the complexities of real MRI artifacts includingB0 inhomogeneities, RF field variation or
patient motion. This could limit model robustness when these effects become very pronounced during
acquisition.

Lastly, in training, a patch-based approach was applied to avoid memory constraints. However, this
approach limits the model’s access to global anatomical context, which might affect performance in
larger structural variations as seen in abnormal brain structures. The current patch size restricts the
field of view available to the network and therefore limits the amount of information the model can use
to improve the quality of the image. This could be problematic for patients with atypical anatomy.

6.3. Clinical Impact
This thesis has shown that using partial DDPMs allows for significantly enhancing the quality of un-
dersampled contrast-weighted images and more importantly the quality of the quantitative maps that
follow from them. In the broader context, this implies that partial DDPMs could lead to multiparametric
quantitative MR acquisitions being performed in 1.5 minutes or less, while still producing high-quality
quantitative maps. Such a reduction in scan time would have a significant impact in both clinical and
research settings. Faster scans would increase patient comfort and allow for shorter waiting lists for
MRI appointments. Additionally, these high-quality quantitative maps acquired in 1.5 minutes could be
used to detect biomarkers for specific diseases and could allow for more precise disease monitoring.
As accurate quantitative maps are only dependent on tissue properties, they facilitate standardized
comparisons across scanners and patients, improving the reproducibility and reliability of longitudinal
studies. Lastly, once the quantitative maps are acquired, any type of conventional contrast-weighted
image can be synthetically generated using the appropriate forward models. This could allow radiolo-
gists to tailor the image contrasts to specific diagnostic needs without requiring additional scan time,
allowing for more flexible and personal workflows.

6.4. Future Work
To achieve the full potential of partial DDPMs, the current models should be validated on more in vivo
data, including pathologies, to properly evaluate performance in a clinical setting. Additionally, the
models should be validated on a phantom with known T1 and T2 values, to assess the accuracy of the
quantitative maps reconstructed from the enhanced contrast-weighted images.

To further improve the current models, we propose two directions of further research: increasing patch
size in training and exploring alternative ways to incorporate data consistency. First, increasing the
patch size could provide the model with a larger spatial context, potentially improving reconstruction
quality. Although a larger patch size would require a smaller batch size due to memory constraints, this
trade-off might be worthwhile if it leads to improved performance. Secondly, the current best performing
model, the concatenation-based partial DDPM, incorporates data consistency in a relatively limited way.
Future work could explore alternative approaches that enforce the data consistency more strongly to
ensure the enhanced images adhere to the measured data, while still benefiting from the generative
power of the partial DDPM.

Another potential advantage of diffusion models, not explored in this thesis, is their inherent stochas-
ticity, which allows for generating multiple outputs from the same input. This property could be used to
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estimate model uncertainty, which could inform radiologist on the reliability of the output and therefore
support them in clinical decision-making. Additionally, generating multiple outputs and averaging them
could improve performance by reducing stochastic variance in the final result.

Next to these validations and improvements, the current performance of the model suggests that even
higher undersampling factors might be feasible. Future work should train models on progressively
undersampled synthetic images to establish the limits of partial DDPM reconstruction. Specifically,
it should determine the maximum undersampling factor beyond which partial DDPMs can no longer
reliably recover long-acquisition contrast-weighted image quality.



7
Conclusion

This thesis investigated the potential of partial diffusion models to enhance contrast-weighted images
acquired with a four times undersampled MuPa-ZTE sequence and addressed four key research ques-
tions.

First, we investigated whether partial diffusion models can improve the image quality of the contrast-
weighted images acquired by the 1.5-minute MuPa-ZTE acquisition to reach that of the non-accelerated
acquisition images. The results demonstrated that all three partial DDPM variations are able to im-
prove the quality of the short-acquisition images and that it is possible to reach the quality of the non-
accelerated acquisition images using a partial DDPM.

Secondly, the influence of the different partial DDPM variations was assessed. The concatenation-
based partial DDPM outperformed unconditional and latent alignment variations consistently across
quality measures for the synthetic test set on the contrast-weighted images. This showed that direct
access to undiffused input data is beneficial for model performance. Inter-model comparisons for the
in vivo data were not possible due to the absence of a ground truth. Here, all three models showed
similar performance.

Thirdly, we compared themodels to a baseline UNet model. Our qualitative evaluations showed that the
partial DDPMs outperformed the UNet model. The models were particularly superior in preserving fine
details and sharp edges. The iterative denoising process in the partial DDPMs thus enables superior
high-frequency information recovery.

Lastly, we evaluated the quality of the quantitative PD, T1, and T2 maps generated from the enhanced
contrast-weighted images. The results showed that enhanced contrast-weighted images directly trans-
lated into improved T1 and T2 maps, with the improvement in the maps exceeding that observed in
the individual input images. This suggests that joint enhancement across contrasts better restores the
signal evolution, amplifying the performance in the quantitative mapping domain beyond what is seen
in the image domain alone. PD maps showed more limited, but still measurable improvement.

This thesis demonstrates that partial diffusion models can significantly enhance the quality of contrast-
weighted images acquired with a four times undersampled MuPa-ZTE sequence while preserving im-
age quality. The concatenation-based partial DDPM showed the highest performance across the image
quality metrics. These findings suggest that partial DDPMs could be a promising solution for achieving
one-minute quantitative MRI acquisitions, which could have a substantial impact on patient comfort and
clinical efficiency.

By demonstrating that high-quality 3D multiparametric quantitative brain MRI could be achieved in 1.5
minutes, this work brings the vision of clinical quantitative MRI one step closer.
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A
Extra Qualitative In Vivo Evaluation

An extra in vivo acquisition was available for qualitative evaluation. This acquisition used the exact
same parameters as used in the forward model for generating the synthetic data. Figure A.1 shows
the contrast-weighted images enhanced with the three different models for this extra in vivo dataset.
Here, it is also clear that all three models are able to improve the image quality of the short-acquisition
images and that the outputs resemble the long-acquisition images. The baseline UNet shows a less
noisy, but blurred version of the short-acquisition images.

Figure A.1: Contrast-weighted images for an extra in vivo subject (single slice shown). The first column displays the five
short-acquisition input echoes provided to all models and the second column displays the corresponding long-acquisition

echoes. The third, fourth and fifth column show the output of the unconditional partial DDPM, the latent alignment variant and
the concatenation-based model, respectively. The sixth column displays the output of a basic UNet. The rows display the five

echoes associated with the MuPa-ZTE acquisition.
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In Figure A.2 the quantitative maps generated from the contrast-weighted images in Figure A.1 are
displayed. All three models decrease the amount of noise compared to the short-acquisition maps and
also improve the contrast between the different tissues. The three models show similar results and the
outputs resemble the long-acquisition maps. The outputs generated from the images enhanced with
the baseline UNet also show improved quality compared to the short-acquisition maps, but both the T1

and T2 maps show a bias compared to the long-acquisition maps.

Figure A.2: Single slice of the PD, T1 and T2 maps for an extra in vivo subject reconstructed from (1) short-acquisition
contrast-weighted images, (2) long-acquisition contrast-weighted images, (3), the result of the unconditional partial DDPM, (4)
the result of the partial DDPM with latent alignment, (5) the result of the concatenation-based partial DDPM and (6) the result of
the UNet. Gaussian smoothing was applied to all images using σ = 0.9. T1 and T2 maps are in milliseconds, PD is in arbitrary

units.
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