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Figure 1.1. Looking back into history through redshift. The DESHIMA spectrometer is mainly interested in the reionization era of the universe.

Image taken from [1]

Abstract
In order to investigate the forming of galaxies, astronomers look back in time using (sub)-mm
observations. DESHIMA (the Deep Spectroscopic High-Redshift Mapper) is a 347 channel
superconducting spectrometer with spectral resolution  that operates in the range of 

 to  and can therefore accurately measure the frequency of spectral lines in order to
calculate redshift .

This report investigates the sensitivity of DESHIMA-like spectrometers by investigating photon noise due
to Poisson and bunching effects. It gives a broad overview of photon statistics and explains, through an
analogous model, that photon bunching occurs due to an underlying change in the probabilistics, rather
than the act of detecting itself. After that I investigate photon and quasiparticle recombination noise for
a DESHIMA-like spectrometer with Lorentzian filters and find a closed form equation for Noise Equivalent
Power per channel for a constant power spectral density arriving at the filters.

where  is  times the peak hight of the Lorentzian, the average transmission over the  of the
Lorentzian. Previously the bandwidth of the filters was assumed to be negligible, resulting in an
overestimation of the bunching. Because the photons that are impinging on the detector span a bigger
bandwidth, the bunching is a factor of  smaller than previously approximated.

This  is defined at an integration time of . For other integration times this is scalable
through:

This will however only hold while the integration time is much bigger than the coherence time .
Because of the correlation between photons arriving shorter than a coherence time apart, the scaling of
the  drops in cases when .
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Finally I propose and describe modifications to the sensitivity model DESHIMA uses. The following
features have been be improved and added:

Integrate over the entire power spectrum when calculating photon noise

I use an integral expression for photon noise found in the literature and integrate over it using a
Riemann sum to calculate the photon noise per channel. This improves accuracy, in particular in local
extrema, for example at frequencies close to the emission lines of water and oxygen, where the loading
of the side bands smooths out the  at the center frequency.

Use arbritatry filter designs loaded from a file

I design the modifications in such a way that an arbitrary filtershape can be loaded in and the sensitivity
can be calculated from it. These can include lab measurement and simulations based on the full circuit
model, both varying wildly from perfect Lorentzians. This enables a more robust estimation of the
instrument performance on sky.

Improve estimations of the quantities that express sensitivity

Finally I will transform the calculated  to quantities like the noise equivalent flux density 
to show the sensitivity of the system in an astronomical measurement. This was previously done by
approximating the  as flat over the filter channel, but I have improved on this by taking the entire
range of the filter into account for both continuum and spectral sources separately. For calculating the
sensitivity of line emissions the  can also be compared to frequency-integrated signal power at the
detector, to be calculated separately.

I compare the proposed modifications to the old model, which has previously been compared with
measurement results, and use it to validate the changes. Other than the previously mentioned factor of 

 for the bunching term and the smoothing out in local extrema, the modified simulation results are
similar to the old model. This is because the Lorentzian filters have a small bandwidth , such
that the previous narrowband approximation held for most non-extreme cases.

The figures in this thesis are interactive. That means that you can drag over an area to zoom as well as
toggle traces on and off and hover over them to inspect the data.

1. [1]D. R. Wilkins and S. J. Crass, “Institute of Astronomy,” ALMA detects the most distant oxygen ever |
Institute of Astronomy. University of Cambridge, Jun-2016 [Online]. Available at:
https://www.ast.cam.ac.uk/content/alma.detects.most.distant.oxygen.ever
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The ultimate weapon in the arsenal of a historian just might be a time machine. While historians can infer
a lot from written texts and archaeological digs, no substitute can outperform being in the past and
observing. Unfortunately for historians, a time machine has yet to be invented. Astronomers, however,
are more fortunate in this field.

Around the turn of the century, new physics was being invented to explain previous observations and
conclusions. As a result, it was understood that the speed of light was finite and moreover a constant,
independent of the speed of the observer, which Albert Einstein postulated in 1905[1]. It logically follows
that the arriving light from distant stars and galaxies is reaching us from the past.

Since light is a wave traveling through the expanding universe, it undergoes Doppler shift and therefore
cosmological objects that move away from the observer undergo a shift in the frequency of light. This is
known as redshift, because the expanding wavelength means that visible light would shift towards the
red end of the spectrum. Just 12 years after Einstein's discovery, American Astronomer Vesto Slipher [2]
discovered the redshift of distant galaxies and with it cosmological spectroscopy was born.

Figure 2.1. A part of the light spectrum. Visible light is expanded to show the different colors. Note how red light in the visible spectrum has a

longer wavelength, giving redshift its name. Image taken from [3]



Combining these effects gives us a sort of astronomical time machine: looking far out into the cosmos
means looking into the past where the universe was much younger. However, just pointing a telescope at
the night sky poses a few problems.

Cosmological formation
Understanding how stars and galaxies form out of a uniformly gaseous universe is one of the largest
areas of research in modern physical cosmology. The physical processes by which these happen might be
well understood, but the amount of possible initial values of these processes are so vast that they can
have wildly different outcomes[4]. Looking at these events occurring in the distant universe (and
therefore distant past) is therefore important to further the understanding of the forming of the universe.

Unfortunately, much of the formation of these cosmological bodies happens inside thick dust clouds
which are opaque to visible light and are therefore investigated using what is called sub-millimeter
astronomy: astronomy ranging from  to about . In frequency terms, following

this corresponds with about  to .

Figure 2.2. The Messer-16 nebula, dubbed "The Eagle", captured by the Hubble Space Telescope is an example of a dust cloud that is opaque to

visible light. Image taken from [5]

Redshift
As mentioned before, the redshift of light gives us the opportunity to calculate the relative speed and
therefore distance and age of astronomical sources. By the term "redshift", I mean the following formal

100 μm 1 mm

f =
c

λ
(2.1)

150 GHz 1500 GHz



definition [6]

where  denotes redshift and  and  denote the emitted and observed frequency of a signal
respectively. In order to calculate redshift we therefore need to know both frequencies.

Emitted frequency

Quantum mechanics tells us that the electron configuration in atoms exist in quantized states. That is to
say: they can move between defined states, but not in the continuum inbetween. When an atom moves
from one configuration to a higher state energy is absorbed, when it moves to a lower state energy is
emitted. These quantized energy states give way to what is known as spectral lines, where a specific
wavelength is known to be emitted by specific atoms.

Figure 2.3. A few energy states of carbon. Note how higher energy gaps result in shorter wavelengths. Image taken from [7]

The energy gaps shown are to wide to emit photons in the submillimeter wavelength range DESHIMA
operates in, however fine structure spectral lines are in the correct wavelength gap. This is the splitting of
two similar states due to spin and relativistic effects. Another mechanism by which molecules emit
spectral lines is due to the shifting in quantized rotational states. The various states astronomical sources
split between are well known and therefore can be tracked to measure redshift.

This becomes clear when we look at the spectral flux density  of a galaxy, simulated with the Python
module galspec [8].

1 + z =
femit

fobs
(2.2)

z femit fobs
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Figure 2.4. The spectral flux density of a simulated galaxy with different redshifts. Here the spectral flux is given in units of Jansky, which is

equivalent to 10  WM Hz

From the figure it is clear that with higher  the peaks move further to the left, towards lower frequencies
and therefore longer wavelengths. If one were to look for peaks in incoming signal and measure the
wavelength at which these peaks occur, the redshift and thus age of a galaxy can be detected. Besides
these clear spikes in the flux density, the galaxy also emits broad spectrum thermal noise, originating
from the black-body emission of interstellar dust.

Observed frequency

In order to know the wavelength of these spectral lines at our detection point, we need to measure the
specific frequency of an incoming photon in a spectrometer. This can be done using a Coherent
Heterodyne receiver, except that these devices work to a bandwidth of about [9], much lower
than the spectral range we are interested in as shown above.

Traditional photon detectors, at their core, work by converting an incoming photon into a charge or
current, which means that the specific momentum, energy or frequency of the photon is lost. A way
around this is to move the incoming photons depending on their wavelength, such as what happens in
an optical prism.
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Figure 2.5. When a photon enters the prism, its angle changes depending on its wavelength. Image taken from [10]

This is how a lot of spectrometers work, but due to the long wavelengths and wide redshift range 
[11] of the signals involved in galaxy spectroscopy this approach is cumbersome. The

long wavelengths and range means that the spectrometer needs to physically large and to reduce the
noise they need to be cooled, making the entire system even larger. This means that these devices are
inherently not scalable to multiple pixels.

DESHIMA
DESHIMA, short for the Deep Spectroscopic High-Redshift Mapper, is a spectrometer developed by a
joint team of researchers from various institutions including the TU Delft and SRON that takes another
approach[11][12]. DESHIMA uses a series of bandpass filters on a superconducting chip to direct
incoming photons into bins, where they are detected by Microwave Kinetic Inductance Detectors
(MKIDs). The advantage of this approach is that the spectrometer itself is really small, taking up just a few
squared centimeters and is therefore easily scalable to  spectrometer pixels[11].

Figure 2.6. A schematic overview of the DESHIMA 2.0 chip. Image taken from [13]

DESHIMA is placed on ASTE, a ground-based sub-millimeter telescope near the ALMA site in the
Atacama Desert.

(1 + z ≈ 1 − 10)

> 100



Figure 2.7. A panoramic shot from the ASTE site in the Atacama Desert. The building on the left is NANTEN-2 whereas the building on the left

is ASTE. Image taken from [14]

Ground-based submillimeter astronomy
While the ASTE site is high up in the Atacama desert, the telescope still needs to look through some
atmosphere when doing observations. Since cosmological object of interest are often far away and
therefore very dim, they are much dimmer than the effects from the atmosphere. The atmosphere is
almost completely opaque at some frequencies DESHIMA operates in and this loads the antenna dish
because it is much hotter and therefore brighter than the astronomical source.

Below the atmospheric loading at the ASTE site is calculated by the software package deshima-
sensitivity [15] and plotted with a galaxy spectrum synthesized by galspec :

Figure 2.8. Comparing the spectral flux density of atmospheric loading to loading from an astronomical source. The former is over 3 orders of

magnitude brighter. Note how the atmospheric transmission means that for some frequencies the spectrum is barely usable.

The atmosphere is over 3 orders of magnitude brighter than the galaxy spectrum before the latter is
attenuated. After the atmospheric attenuation the difference is even bigger. Therefore modeling the
expected loading from the atmosphere and the entire chain from antenna to detector is important to be
able to do measurements and to find the signal within the noise. deshima-sensitivity [15] was
designed to do this, but takes some approximations that were deemed too reductive.
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This Project
The current version of deshima-sensitivity  does not take filter profiles into consideration when
calculating the power received on each channel. It samples the power spectral density calculated to be at
the filter's center frequency and multiplies this with the filter bandwidth, creating a crude box filter. While
this approach holds for flat power spectra, it doesn't quite hold for spectra like the one above.

In this project I will modify the existing deshima-sensitivity  package to more accurately resemble the
DESHIMA 2.0 filter profiles and therefore the spectrometer as a whole. In order to do so, I will first need
to dive into the DESHIMA system in more depth and then give an overview of photon statistics and the
associated photon noise. Finally I will model the system and compare it with previous versions of
deshima-sensitivity .
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In 2017, as part of the first light campaign, the first DESHIMA device was proven to work as expected
when mounted to the ASTE telescope[1], but was limited in scope. The chip had just 49 channels and a
spectral resolution of , with a spectral range of  to . This proof of
concept led to the development of DESHIMA 2.0 and the Science Verification Campaign[2]. With 347
channels in the range of  to  and a spectral resolution of , DESHIMA 2.0
is much more capable. Besides the obvious bandwidth and channel upgrades, the sensitivity has also
been increased four to eight fold [3]. In this thesis I will be discussing DESHIMA 2.0, but it is entirely
applicable to any DESHIMA-type spectrometer.

Figure 3.1. The 49 filter channels and their transmission as measured from the original DESHIMA. Image taken from [1]

ν/Δν ≈ 380 327 GHz 377 GHz

220 GHz 440 GHz ν/Δν ≈ 500



Figure 3.2. The 347 filter channels and their transmission as measured on DESHIMA 2.0. Image taken from [2]

The Optical Chain
As mentioned, DESHIMA is installed on the ASTE radio-telescope in the Atacama desert. This means that
the light from distant galaxies travels through the atmosphere towards the dish of the telescope, where it
gets reflected to the secondary mirror. The set of primary and secondary mirror is called a Cassegrain
reflector and focuses the signal.

Figure 3.3. A schematic drawing of a Cassegrain reflector. Image taken from [4]

After the incoming signal has been focused, it passes a set of mirrors in the telescope cabin and then
passes through a window into the cryostat. At a temperature of  the light passes through a low-pass
filter, a third set of mirrors and a polarizer, until reaching the spectrometer chip at a temperature of 

.

4 K

120 mK



Figure 3.4. The optical chain of the DESHIMA 1.0 spectrometer. After passing through the Cassegrain reflector, the light hits an ellipsoidal mirror

(EM), a hyperbolic mirror (HM), a low-pass filter (LPF), two parabolic mirrors (PM), a wire grid polarizer (WG) a low pass and band pass filter

(LPF, BPF) until it hits the spectrometer. DESHIMA 2.0 has too wide a range to use the band pass filter, so it is omitted. Image taken from [1]

Every optical component has a corresponding efficiency  and transmits only a part of the incoming
signal  while also adding to that signal its own emission , in a process called a radiative
transfer[5]:

Here  is the power spectral density expressed in units of , which for the emission of the
optical component is given by Johnson-Nyquist[6]:

which depends on both temperature and frequency. Therefore the radiative transfer of the optical chain
needs to be calculated across the frequency spectrum for every component at its temperature. This
means that the total optical chain is a series of radiative transfers. For a simple two mirror system this is
the following

To simplify the calculations, efficiencies of components at the same temperature can be taken together

At ASTE, the atmosphere is around  and the cabin is . as mentioned before the cold optics
and the chip are  and  respectively. If we plot the  for the different components
along with the power a galaxy transmits to a telescope dish with a diameter of , we get the
following figure:
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Figure 3.5. Besides the PSD emitted by the chip, the optical components are much brighter than the astronomical source. Take note that the

atmosphere and the cabin are almost at the same temperature and therefore have almost the same PSD.

As is clear from the figure, the efficiency of all but the chip really matter in the range DESHIMA measures
in, which is why they need to be modeled carefully in deshima-sensitivity . In order to look at the
amount of loading these sections impart on the detector, we can look at the effective power spectral
density :

with  the efficiencies of the optical components in the part of the chain that is at the same
temperature.
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Figure 3.6. The effective loading from the various optical components. Take note that the simulated galaxy source is still not attenuated

Because of the faintness of a typical source, everything but the chip is still brighter than the source, while
the latter is not even attenuated. From the radiative transfer we have seen that with every optical
component the source loses some of its power due to the efficiency of these components, so in actuality
the source at the detector would be even less bright.

The Filterbank
After the optical chain the light is passed to a filterbank containing 347 bandpass filters, with constant
spectral resolution  and a center frequency for the  filter given by [7]:

with [3]. This expression ensures that the filter channels are spaced such that the
bandwidths of each filters are right next to each other without overlapping, since a constant spectral
resolution means the bandwidths get progressively wider as the center frequencies increase.

Due to their spatial efficiency the signal is bandpass filtered by resonators with a Lorentzian pass band[7].
In the figures below a schematic overview of a filter is given and the transmission parameters of this filter
are shown.
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Figure 3.7. a) A schematic viewing of the filter design. Port 3 is towards the detector. b) The S-parameters of the filter transmission. Here S  is

the transmission parameter from the filter input to the detector. Here the solid lines are the simulated circuit and the dots are the analytical

approximations. Note the 3dB cutoff point at the bandwidth for the S  transmission. Images taken from [7]

The transmission from the input to the detector through the filter is given by . From [7] we get an
approximation for  around the center frequency of the filter  as:

With  the imaginary unit and  the loaded quality factor. This approximation is marked with black dots
in the figure above.

In a resonant circuit the quality factor  is defined as[8]:

Therefore, the transmission  is given as:

with . This equation describes a Lorentzian with  being the half maximum at half width and 
 the peak value at . As the figure also shows the resonance is tuned such that the

bandwidth  is the same as the full width at half maximum. In other words the transmission within the
bandwidth is always greater or equal to  the peak transmission at the resonance frequency.

Situated after each of these 347 filter channels is a detector to detect the bandpassed signal.

The Detectors
DESHIMA detects photons using (Microwave) Kinetic Inductance Detectors, or (M)KID for short. These
work by exploiting the energy gap in superconductors.

Inside the superconductor electrons are coupled together in Cooper-pairs at energy levels . When
these pairs get excited, the electrons move as quasiparticles to a higher energy level  [9],
where  the gap energy of an aluminium superconductor[5].
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Therefore, if an incoming photon carries enough energy to excite a pair of these electrons, specifically
more than , it increases the number of quasiparticles. This means that the photon needs

which is perfect for the  to  range we are interested in.

Figure 3.8. When an incident photon has enough energy to overcome the energy gap, the cooper pair breaks and generates quasiparticles.

Image taken from [9]

Resonance Circuit

The cooper pairs decrease the inductance[10], so when these are broken the overall inductance
increases. In order to measure this change in inductance, the detector is designed as parallel sets of RLC
circuits, designed such that the total frequency of the resonance is in the range of [2].

Figure 3.9. RLC circuits are used to read the change in inductance. Parallel RLC circuits divide the frequency to a range that the read-out

electronics can handle. Image taken from [9]

These circuits are resonant when the reactance of the inductor and the capacitor are equal:

and therefore the resonance gets lowered by a decrease in cooper pairs.

In order to read out the detector, a signal at the resonant frequency is fed into the superconductor.
When the resonant frequency decreases, so does the transmission and therefore an increase in power is
measured[9].
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Figure 3.10. The change in resonance frequency lowers the transmission, therefore increasing the power. This increase in power is measured.

Image taken from [9]
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Because of the inherent probability quantum mechanics entails, photons arriving at some detector follow
statistical properties. In this chapter I will discuss these Photon Statistics and the unintuitive way photons
behave when they arrive sparsely.

Photon Noise
In order to quantify the sensitivity of a DESHIMA type spectrometer, we need to know the amount of
noise that is generated by the aforementioned atmospheric and optical loading and compare this to the
signal that an observation will impart on the detector. For our purposes this noise consists of photon
noise and quasiparticle recombination noise, the first of which can be split up into two categories:
thermal noise and shot noise.

An observed astronomical object also emits random photons that reach the detector, therefore
contributing to photon noise[1]. While this won't be included in the model, as the model is designed such
that it calculates the noise when off-source, the following topics in this chapter are equally valid for
photon noise emitted and caused by the astronomical source.

Thermal Noise

In radio receivers, a big part of the noise is generated by thermal agitation of electrons. In most uses this
can be classified as white noise:the power is constant across its frequency spectrum [2], but in extremely
high frequencies or low temperatures this approximation doesn't hold. The power  transmitted by the
noise is given as Johnson-Nyquist Noise and is approximated for small bandwidths  as[3]:
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With  the power spectrum in . Plotting the normalized ( ) power spectrum supports
my earlier statements that, in most cases, thermal noise can be approximated as white

Figure 4.1. Comparing the normalized Johnson-Nyquist noise for different temperatures shows that it is white for low frequencies

Unfortunately, this white noise approximation starts to break down in atmospheric temperature for the
DESHIMA range. Once more, it is also not the only form of noise we have to deal with.

Shot noise

When the source is very dim, photons arrive one at a time. This means that we are dealing with shot
noise[1]. Here the detection rate of a photon is characterized by Poisson statistics and the famous
Poisson distribution [4]:

Hence we also call this noise Poisson noise.
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Figure 4.2. Typical Poisson curves for different parameters.

Uncertainty

From Poisson statistics we know that the uncertainty  over some number of counts or occurrences 
is equal to the square root of the number of counts, since it's an uncorrelated process [1][4]. Because our
power arrives with single photons hitting the detector, the power follows the same uncertainty

However, if we look at Johnson-Nyquist noise and approximate for lower frequencies we get[1][3]:

Hence we have found two proportionality relations for the uncertainty, which is it?

Particle-Wave duality

The seemingly paradoxical nature of this uncertainty can be explained as a caveat of the particle-wave
duality. In the wave domain the Johnson-Nyquist noise dominates, whereas in the particle domain we
get mainly Poisson noise. The general case of the uncertainty in the rate of photons arriving within a
detection time of  is[5][6]:
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with , the photon number, being the number of photons arriving per time per bandwidth. Here both
extremes are more obvious: for  we get the thermal noise from the wave domain and for 
the Poisson uncertainty falls out.

Figure 4.3. An analogy for the detection of photons in the particle and wave limit. Image taken from [1]

The photon number for a thermal blackbody radiator is given by the Bose-Einstein equation [7][6]

Which means that in the region between  and  the photon occupation number is
neither fully in the wave limit nor the particle limit.
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Figure 4.4. The photon number for different temperatures is neither fully in the wave limit nor fully in the particle limit in the DESHIMA range

In the wave domain, where the photon number is higher, photons tend to come clumped together in a
process known as photon bunching[6], which explains the increase in noise.

Photon Bunching
Quantum Electrodynamics has taught us that photons behave stochastically, so it is reasonable to
assume that photon detection also occurs randomly. While this is (obviously) true to some degree, in the
previous section I stated photons can arrive 'clumped' together at the detector in a phenomenon known
as photon bunching. This means that detecting one photon will result in a higher chance of another
photon being detected within a specified time, called the coherence time  [6]. In this chapter I will
first present an intuitive, qualitative explanation as to why photon bunching occurs. Then I will go deeper
into the mathematics and quantum mechanics of photon bunching and the specific case of the DESHIMA
system.

An analogy

To understand photon bunching, first think of photons arriving at the detector like raindrops falling on a
piece of paper. While it's raining with constant intensity, the chance of a raindrop falling on a specific
area within, say, the next second (expressed by ) is constant. In the figure below I have set 

:

Figure 4.5. Plotting occurrences and the underlying probability for a constant chance.

The raindrops fall uncorrelated: every second a new chance of  means a raindrop falling from
the sky might land in our defined area. This is how unbunched, or random, photons behave.
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Now let's assume the chance of a raindrop occurring is not constant over time, but rather varies relatively
slowly over time. This could be because of varying wind speeds or varying intensity in the rain, but
whatever the case the rain drops are no longer uncorrelated. There are moments of high intensity, where
the chance of a raindrop is high and similarly there are moments of low intensity. I have simulated this
using open simplex noise [8] in the following graph.

Figure 4.6. Plotting occurrences and the underlying probability for a varying chance.

As is clear from the graph, the raindrops are clumped together. This is the same underlying principle as
photon bunching in photons from astronomical sources. The random motion of the exciting atoms, for
example Brownian motion, means that the intensity also fluctuates over time[6]. It is therefore not the act
of detecting a photon that increases the chance of another detection, but rather an underlying change in
probability of detecting, easily explained by probabilistics.

This means that at the point where a raindrop falls or a photon gets emitted, it is still a simple stochastic
process. Should our sampling interval be much smaller than the time over which the rain varies, we'd still
see 'stochastic regions', where the probability function stays roughly constant, like in the first example.
This is illustrated in the graph below with stretched noise:
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Figure 4.7. Plotting occurrences and the underlying probability for a slowly varying chance.

The droplets appear less bunched, because the time scale in which the measurements take place is much
smaller than the time scale in which the intensity changes. The very first example I spoke about, of
raindrops falling at a constant intensity, is a situation in which this discrepancy occurs. Of course it won't
rain forever and when the rain dies down the chance of a raindrop falling is much lower than while it's
still raining. So while the droplets look purely random when it rains, they aren't over the course of the
entire day. I will call this behavior bunched (slow timescale), because the sampling time is much faster
than the coherence time, which I shall later elaborate on further.

Let's also take a look at what happens when the sampling time is much slower than the underlying
probability fluctuations.
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Figure 4.8. Plotting occurrences and the underlying probability for a quickly varying chance.

As expected, the detection rate looks much like the first detection rate with constant . Although
the underlying probability changes, it changes too fast between detections for bunching to occur.

Intermezzo: Antibunching

While this report focuses on photon bunching, the opposite also occurs in, for example, single photon
sources [9]. Now that I have discussed a framework with which to explain photon bunching, I thought it
would be remiss to leave out an explanation for antibunching.

As one would expect, in antibunching the opposite of bunching happens: detecting a raindrop would
mean that, at least for the next period of time, the chance of a raindrop falling becomes smaller. A good
allegory for this is a dripping faucet. A small flow of water exits the faucet and, due to surface tension,
pools up in a small droplet at the end. As the droplet gets bigger, the chance of it falling increases, but
once it drips down it takes all water with it and the process starts anew.
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Figure 4.9. An analogy for anti-bunching.

This behavior corresponds with antibunching behavior in single photon sources[9]. Atoms are excited
through an energy pump process. When this energy increases sufficiently they emit a photon and lose
energy, ready to get excited again[6].

Again, the detection of such single photons will display antibunching, but it is not the detection that
triggers this cool-down period, it is the emission.
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Figure 4.10. All different probability and occurrences for the discussed probabilities. These are toggleable By selecting modes in the legend.

Coherence

If the underlying probability function is unknown (and quantum mechanically it is), how would we be
able to quantify whether our detections are bunched. A possible heuristic we can use comes from signal
processing. We could take the autocorrelation of the signals and compare them. Since the
autocorrelation is the cross-correlation between the signal and a time-shifted copy, we'd likely see the
bunched signal display some sort of correlation for a delay that is around the timescale of the oscillations
in the probability function. In the figure below I have correlated the detections described above with 

 and plotted these values for different time delays .

Figure 4.11. The autocorrelation for the different photon modes.

As is clear from the graph, the bunched photons show some autocorrelation, with the longer timescale
showing longer (bigger time shifts) autocorrelation. This can be explained further by signal analysis. We
are working in the discrete domain and smaller sampling steps relative to the variation in the underlying
probability will mean more correlation.

What this shows is temporal coherence, a property of light that describes the predictability over a
timescale[1].

Bandwidth

Up until now we have only looked at raindrops as analogous detections, but when talking about photons
we need to take frequency into account. Photons obey the Heisenberg uncertainty relation where the
uncertainty in position  and momentum  must obey [1]:
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Our photons are flying at the detector, so its uncertainty in longitudinal ( , towards the detector)
position can be equated as it's uncertainty in detection time and it's momentum can be expressed as 

:

and finally we arrive at

In other words: a shorter coherence time means more accurate knowledge on where the photons are,
meaning their uncertainty in momentum and therefore bandwidth is bigger.

This relation can also be seen experimentally. In Morgan and Mandel's 1966 paper[10], the authors
explore the autocorrelation between two different light sources: a Hg  source with a very narrow
bandwidth (a) and a tungsten light bulb with a broad spectrum thermal source (b). By designing an
apparatus that counts the number of times two photon arrive within a defined time period, they show
the autocorrelation of the two light sources

Figure 4.12. The number of times per second two photons arrived after a specified time delay for a a) Hg  light source and a b) tungsten

incandescent light source. Image taken from [10]

Because the tungsten light has a wide bandwidth, it has a short coherence time and the reverse is true
for the Hg  light. Therefore, if we take the short timescale bunched photons as an analogy for the
tungsten light and the longer timescale bunched lights as analogous for the mercury light, we get
something that looks very similar.
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Figure 4.13. The autocorrelation of just the slow and short bunched timescale photons behave like the spectral and tungsten source respectively.

With a more thorough understanding of photon bunching, it is time to return to photon noise and
discuss noise-equivalent power.

Noise Equivalent power
The noise equivalent power ( ) is a way to express the sensitivity of a photon detector. It is defined
as the input signal power that results in a signal-to-noise-ratio of 1 in a 1 Hz output bandwidth. [11]. For
our purposes this means multiplying the uncertainty in photon count  with the photon energy[12]
and setting the  in eq.  to . From [7] we have an equation for the electrical (detected)
photon noise

Where  is the quantum efficiency, which for our purposes is the efficiency of the filter. Multiplying
this integral with the photon energy, we get the electrical Noise Equivalent Power added by photon noise
for a specified integration time

This integral implicitly assumes an infinite coherence time, since it integrates over infinitely small
bandwidths . Another side effect of this is that photons only bunch with photons that share the exact
same frequency. These two paradoxical conclusions make this integral therefore inherently not physical
and we will need to make some assumptions in order to work with it.

If we were to create a perfect box filter, and approximate the photon number as constant over this filter 
 falls out of the integral. Let's first define this box function
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And then set . When we assume we have a constant photon occupation number over
this range, the equation simplifies to:

Which, for  approximates as:

Taking our definition of Noise Equivalent Power , this results in a Noise Equivalent Power of:

DESHIMA

In actual measurements the photon occupation number isn't known, but we are able to deduce it from
the power spectral density[6]:

Inserting this in the equation for  we get:

If we assume the  to be flat, for a box filter the power spectrum multiplied by the bandwidth and
the efficiency is obviously the power on the detector.

rearranging we get:

Which is in agreement with [13].

Generation-Recombination Noise
Besides photon noise (both Poisson and bunching), another type of noise adds to our :
recombination noise. This is a type of noise that occurs in superconductor-based pair-breaking photon
detectors. As mentioned before, incoming photons generate quasiparticles in the detector, which later
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recombine in a Cooper pair [14]. For our purposes we will take the noise equivalent power of
recombination noise  as given by [13]:

Even though the amount of quasiparticles generated is proportional to the incoming power, the
recombination noise happens randomly and is therefore an uncorrelated process. This means we can add
the  and  together by quadrature addition, creating a total noise equivalent power given
by:

Finally, quasiparticles also generate randomly without any incoming photons, eg when the detector is
kept in total darkness[15]. This is called Generation-Recombination noise and is negligible compared to
the photon noise and photon-induced recombination noise as can be seen in the figure below:

Figure 4.14. The noise induced by spontaneous Generation and recombination of quasiparticles is negligible compared to photon noise. Image

taken from [15]

Because this effect is negligible, it won't be included in the model.
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The original deshima-sensitivity  code follows the following flowchart



Figure 5.1. A flowchart showing the design of the old version of the model.

The optical chain described in the flowchart consists of serial transmission calculations from 1 medium to
another. This entire chain of stacked transformations of the spectral input power can be regarded as a
single affine transformation of the input and is independent of the bandwith or amount of frequency
bins. It will remain unchanged throughout the proposed modifications.

The power impinging on a detector for a specific filter bin is calculated by taking the spectral flux density
at the center frequency  and multiplying this with the bandwith . This matches the model of the
previous described box filter, assuming the flux density  is flat over the entire bandwith. This is not
the case however, as we shall see.

Filter distribution

νc Δν

psd



1 filter channel has so far been approximated as a perfect box integral, which is physically inaccurate. As
we have seen, the actual filter shapes are more closely described by a Lorentzian curve

Where  is the half-width at half maximum (HWHM) value, for DESHIMA given as

with  the spectral resolution. As we have seen previously our box filters were defined by an
efficiency constant labeled . Together with the bandwidth, this describes the transmission of the box
filter. If we define the full width at half maximum for the Lorentzian as the bandwidth of the Lorentzian,
we would like to define the  parameter such that the area of this  is exactly the same as the
area of the box filter.

Meaning our filters are given by

For atmospheric loading, which as you might recall is the main source of the noise, the channel is of
course loaded over the entire filter spectrum: both in and out band. For a constant  this means that
the corresponding box approximation can simply be widened so as to enclose the same area as the full
band of the filter. For a Lorentzian this is as simple as widening the effective bandwidth with a constant:

Meaning that the full band effective bandwidth is exactly twice the in band effective bandwidth.
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Figure 5.2. The different sections of the Lorentzian filter. The box approximation and the corresponding part of the Lorentzian have the same

area.

Noise Equivalent Power

Redoing the calculation of the noise equivalent power for a flat , but with proper Lorentzian filters 
 this time, results in:

where an approximation is used for the first term, assuming . Because the calculations are done
for a constant , the filter gets loaded across the full band, meaning the effective bandwidth 

. Putting this in the equation for the  yields:

Which means the second term, the bunching term, is a factor of  smaller than is the case for narrow-
bandwidth approximation described in [1] and used in [2]. This can be explained because the full
Lorentzian has a non-negligible width and therefore the approximation of  from [1] doesn't
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hold. In other words the photons impinging on the detector span a bigger bandwidth than previously
approximated and therefore bunch less.

Non-flat Power Spectrum Densities
We know the  is proportional to the  impinging on the detector, and we have also seen that
the atmospheric loading is a much bigger contribution to the spectral flux density than any astronomical
source. Let's take a look at how this atmospheric loading varies over the bin width. In the figures below
the actual target frequency channels from DESHIMA 2.0 are taken and compared to the atmospheric
model measured at ASTE, taken from deshima-sensitivity .

Figure 5.3. A non-flat power spectral density overlayed over box filters. The out of band loading is not calculated.

For the channels where the atmospheric loading is reasonably constant over the bandwidth this
approximation is fine, however when the spectral flux density peaks to twice it's local background level
the box filters are obviously a poor approximation for reality. The atmospheric loading is averaged over
the bandwidth before being multiplied with it in the current version of deshima-sensitivity , in
essence integrating it over the box filter. However, this crude approximation clearly fails when looking at
the actual Lorentzian filters.
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Figure 5.4. A non flat power spectral density overlayed over Lorentzian filters. Here filters are loaded out of band.

The peak at  is obviously loading channel 131 and 132, but due to the wide profile of a
Lorentzian even 130 and 133 are receiving energy from the peak in flux density.

The total power impinged on the detector can be approximated by calculating the spectral power
arriving at the detector not just at the center frequencies of the bins , but by expanding the number of
frequencies calculated to some amount of integration bins and calculating the spectral power at these
frequencies. For an integration frequency  and a channel , the effective power loading by that
frequency on that channel is given by:

with  the bandwidth for that frequency. The total power impinged on a filter channel  is then
given by:

To make this more visual, take a look at the figure below
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Figure 5.5. A stem plot of the power spectral density overlayed over binned Lorentzian filters.

The calculated flux spectrum arriving at the filter will be calculated as is done in the current version of the
deshima-sensitivity  package, but using a finer frequency resolution. This spectrum will then arrive at

the filter, where for each channel a weighted sum will be taken over all integration bins, resulting in a
total power impinged on the detector.

Noise Equivalent Power
As seen, the photon noise equivalent power for a single DESHIMA channel is given by[1]:

Again taking the filter efficiency  and  constant over a single integration frequency, and
multiplying  with the bandwidth to get the power impinged by an integration bin on the channel 

 we can easily take the Riemann sum of this integral as

The recombination noise  is given by

Which results in a total  of
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Photon Bunching

But what about photon bunching? I have shown that the coherence time and the bandwidth are inversely
proportional. By decreasing the size of the integration bins we have also decreased the bandwidth and
therefore increased the coherence time.

Now the  is simply defined at , but in measurements the integration time can vary. The 
 is scaled accordingly:

Even though DESHIMA 2.0 samples at a minimum integration frequency of  which results in a
integration time of , it still integrates periods orders of magnitude longer than the
coherence time [3], meaning that the non-stochastic effects of photon bunching still don't come into
play and we can define the noise as described previosuly.

But this scaling doesn't hold indefinitely. I conjecture that at some point the incoming photons are
sampled at such a short sampling interval that they become correlated, as we have seen previously. In
order to investigate this, let's define 3 bunched signal using open simplex noise[4] as done before along
with an uncorrelated signal, where the underlying probability doesn't change, as in the first example of
the previous section.
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Figure 5.6. The autocorrelation of three different bunched signals, with coherence times at roughly 10, 20 and 50 steps along with a totally

uncorrelated signal.

Here the signals are generated such that they have a coherence time  of roughly 10, 20 and 50 steps.
By sampling these signals at sampling intervals much longer than the coherence time  we
get the same inverse square root relation as we have derived for the . However when the sampling
time nears the coherence time this relation no longer holds. Since detections shorter than a coherence
time apart are correlated the overall uncertainty drops.

Figure 5.7. When the sampling time drops below the coherence time the inverse square root relation doesn't hold any longer.

This result shows the difference between the stochastic and the non-stochastic effects of photon
bunching. It is the reason why we can model the bunching term as white noise as long as the integration
time  stays clear of the coherence time.

The Filter Matrix
From eq  we can see that we need a two dimensional function  to go from a one
dimensional  to a power spectrum for each filter channel. We do this programmatically by
calculating a matrix that takes in a vector containing the  at each integration frequency and use that
to calculate the power loading by this  on each channel.

Shown in the figure below is a visualization of how this filter matrix might look like.
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Figure 5.8. A visual interpretation of the filter matrix. Only 20 channels are shown.

With this framework in place it is easy to swap out the generated filter with another, more realistic model
of the filters. The figure below shows a simulated filter transmission curve for the DESHIMA 2.0 chip.

Figure 5.9. A simulated filter profile of the DESHIMA 2.0 spectrometer

As you can see, the filters aren't all equally efficient and wide, nor are they perfectly Lorentzian. In the
figure below all 346 bins and the corresponding values of  are plotted, with the size corresponding to
the transmission.
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Figure 5.10. The variations of this simulated filter are clear in this plot. The size corresponds to the transmission. Hover over and the χ

parameter of the fit is shown for each channel.

While using a perfect Lorentzian approximation for the filter profiles for each channel is better than the
center frequency sampling that is done now, it might be more advantageous to be able to use simulated
or measured profiles. The filter matrix will therefore, depending on the users choice, be either generated
via Lorentzian curves or loaded in via a file.

Transforming the calculated noise
Once the  has been calculated, it needs to be compared to a source in order to calculate the signal
to noise. This can be done by generating various signals that are fed through the entire optical chain
again and compare the power these impart on the detectors to the  we calculated. Another, crude
but nevertheless convenient estimation can be acquired by transforming the noise back into more usable
and define the sensitivity of the instrument that way. This model will focus on the latter.

We calculate the source coupling through a quantity named the Noise Equivalent (Source) Flux . The
 is defined as the flux a source needs to impinge on the detector for it to equal the  in

strength and is therefore our sensitivity: a source with a flux lower than the  will be hidden in the
noise of the measurement data during an integration time of . Take note that the  is defined for
an integration time of , rather than  as is the case for the . The  is given by:

with  the area of the telescope,  the aggregate efficiency from the source up to and including the
window of the cryostat chamber DESHIMA is housed in and  the instrument efficiency: the
aggregate of all the efficiencies within the cryostat. The first two remain unchanged throughout the
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modifications discussed in this chapter, however  is dependent on the filter efficiency and is
therefore modified.

Since the calculation of the  as in  collapses the noise equivalent power down to a
single value per channel, we can't use the efficiency as calculated for the integration bins to go back
through the system in order to calculate the source coupling. Instead there are two different
approximations we can take to calculate the source coupling: an in-band and a full band approximation

In-band Source Coupling

The in-band approximation is used for spectral sources. A spectral source is defined as an object that
transmits only within the bandwidth of a single filter channel, where we define the bandwidth as the 

Figure 5.11. A spectral source is defined as a source that fully fits within the bandwidth of a channel. Shown here for a Lorentzian filter

In order to get a single value of an efficiency, let's say , over the full in-band bandwidth, I take a
weighted average over the  where the weights are given by the filter efficiency .

This ensures that the efficiency per channel is normalized such that I can use the box-filter approximation
on our way back through the system.
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Figure 5.12. Because spectral sources fit within the bandwidth of a single channel, the box-approximation holds very well.

Full-band Source Coupling

Besides spectral sources, astronomical objects also radiate a continuous spectrum, through blackbody
radiation:

Figure 5.13. The continuum of blackbody radiation loads the entire channel. Because it varies so slowly over the channel, it can be assumed as

constant over a channel and the box filter approximation holds too.
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Because this continuum source is as near as makes no difference constant over the frequency bin, we can
model it's transmission by another box-filter, with double the bandwidth of the spectral case, as I have
derived previously.

In this case, the efficiencies are calculated using another weighted average, weighted over the full band
this time

The Final Model
Using these two approximations, the NEP can be transformed back through the system and to the sky
again as the . In order to transform the  to a flux density, we simply divide by the effective
bandwidth for either the line or spectral case and get the noise equivalent flux density .

This means that the total model looks like this:

=ηinst,j
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0
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Figure 5.14. The updated model. Noteworthy changes are the filter and the parallel line and spectral source paths.
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To verify the changes made to the model, let's compare it to the old model.

Impinged Power
The new model calculates the  of the th channel as a Riemann sum approximation of

whereas the old model approximated this integral as a square filter with width .
Therefore the new model takes in a much wider range of the  and is thus expected to be higher in
local minima and lower in local maxima of the .
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Figure 6.1. The old and new power per channel, overlayed over the Power spectral density. The left y-axis shows power while the right y-axis

shows the PSD. The simulated filters are hidden by default.

The figure above behaves exactly as expected.

Noise Equivalent Power
The  is calculated using the Riemann sum of the following integral

where the three separate terms are the Poisson term, the bunching term and the recombination term
respectively. Plotting this integral yields the following result:

Figure 6.2. The old and new Noise Equivalent Power per channel, overlayed over the Power spectral density. The left y-axis shows the NEP while

the right y-axis shows the PSD. The simulated filters are hidden by default.

As we can see, and as is expected, the new model has a lower . Plotting the three separate terms,
we get the following:

NEP
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Figure 6.3. The three terms of the NEP plotted. Toggle in the legend to compare different terms.

As is clear from the figure, the terms behave as expected, with the new model 'smoothing' over the local
extrema in the Poisson and recombination term, but leaving them otherwise unchanged. The bunching
term is however smaller in the new model.

The Bunching Term

As we have seen the old approximation overestimated the bunching term by a factor of . For a
constant  The bunching term is given by

Whereas the old model this was given by

We can verify this in the following figure, where I have divided the old model by the new model. From
our calculations, this should be on average 
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Figure 6.4. The ratio between the old and new bunching terms. A constant line of half π is plotted as indication.

Simulated filterbank

In order to compare the simulated filterbank to the new and old models, it is more advantageous to look
at the . Recall that the  is the  divided by the total instrument efficiency:
comparing an 'unnormalized'  is deceiving, since a lower noise equivalent power does not
necessarily mean a higher signal to noise ratio.
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Figure 6.5. The instrument NEP of the old, new and newly simulated filters. The left y-axis shows the instrument NEP while the right y-axis

shows the PSD.

Since the ideal filter model is generated with parameters which are the target for DESHIMA, the
simulated filters behave almost without exception worse than the perfect Lorentzian filters. The outliers
have very low transmissions, meaning that in order to improve the sensitivity the transmission needs to
increase.

Noise Equivalent Flux Density
As described in the previous chapter, another modification to the model is the calculation of the ,
both for a spectral and a continuum source, with the latter being twice the former.

Let's take a look at  first.

The Continuum Case

Figure 6.6. The different Noise Equivalent Flux Density for the continuum case. The left y-axis shows power while the right y-axis shows the PSD.

Because of the limited sampling range of the old model, the value of  is (very close to) zero for
channels where the atmospheric transmission is very close to zero. Because the new model takes the
wide filters into account, this effect is lowered somewhat, since these channels are still loaded through
the fringes of the Lorentzian when the atmosphere is opaque in the center.
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Figure 6.7. The different atmospheric transmissions over the full filter band.

The Spectral Case

For the spectral case this difference is resolved, as spectral sources by definition don't load the fringes of
a filter channel. This means that the atmospheric transmission isn't smoothed at its extrema.

Figure 6.8. The different atmospheric transmissions over just the bandwidth of the filters.
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This in turn means that the  also approaches infinity at places where the atmospheric
transmission approaches zero.

Figure 6.9. The different Noise Equivalent Flux Density for the spectral case. The left y-axis shows power while the right y-axis shows the PSD.
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The future of this research
Bibliography

In the previous chapters I have first explained photon bunching and photon statistics qualitatively and
then explored its impact on the DESHIMA spectrometer quantitatively. I have shown a model for the
probabilistics behind photon bunching, showing that it is not the detection itself that triggers bunching,
but rather a change in the underlying photon probability. I have also discussed the coherence time,
defined as the timescale below which the non-stochastic effects of photon bunching take hold. The
coherence time is related to the bandwidth by

After exploring photon statistics, I discussed photon noise induced by both Poisson statistics and photon
bunching. The total noise equivalent power induced by photon noise is given by[1]:

Whereas the approximation given by [1] and used previously in calculating the sensitivity of the
DESHIMA system[2] is found by approximating a very narrow bandwidth ( ) and then
approximating the integral by

this approximation overestimates the photon bunching effects for a filter  with a Lorentzian shape. I
have shown that, in the case of a Lorentzian filter and a flat , eq.  collapses to

with  the  of the filter. This factor of  is explained by the width of the Lorentzian filter.
Previously the bandwidth of the filters was assumed to be negligible, resulting in an overestimation of
the bunching. Because the photons that are impinging on the detector span a bigger bandwidth they
bunch less.

The definition for the noise equivalent power  means that it is defined at an integration time
of . For different integration times the  is defined as:

However, this assumes that the integration time is much bigger than the coherence time of the detected
photons . Due to correlation of photons within the coherence time the  drops when the
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integration time approaches and subceeds the coherence time.

Besides this algebraic result for a Lorentzian filter I have also modified the existing deshima-
sensitivity [3] model to calculate the integral in eq.  not just for mathematical filters, but for
arbitrary filter shapes loaded in via a file. This allows researchers to compare the sensitivity of various
designs in software.

To verify the changes to the model I have compared it with the old model and confirmed that in the case
of perfect Lorentzian filter the latter overestimated the bunching noise by a factor of  , even on
average for a non-flat . Other than this, the changes affect the power and noise in local extrema of
the , where the old model didn't integrate over the full range of the filter and therefore took the 

 as a flat spectrum locally.

The future of this research
Because the model now more closely resembles the physics that is occurring inside the filter section of a
DESHIMA spectrometer, it can be used to compare different filter designs in the deshima-sensitivity
package itself. This is an important tool to compare filter topologies differing from Lorentzian shapes.
Paired with methods to accurately describe the coupling of a source to the detector it can be used to
very accurately calculate the signal to noise ratio of a specific filter profile, aiding in the experimental
design of different filter profiles. Such research is in progress and as such the model will immediately be
put to use.

The improved accuracy of the approximation in the bunching term for a Lorentzian filter can prove useful
when designing the DESHIMA spectrometer, as it gives a more physically rigorous target of the
maximum sensitivity the DESHIMA spectrometer can strive towards.

Finally, this thesis gives a thorough overview of photon statistics in astronomical measurement and of
photon bunching in particular and as such can be a great teaching tool. My thesis supervisor, dr. Akira
Endo, has been very interested in using this as teaching material for courses he gives on the subject and I
am looking forward to helping other students understand photon statistics and photon bunching better.
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The model
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The model
The model can be found on my personal Github. An up to date version, that may have been changed
since writing this report can be found at the deshima-sensitivity github and can be used via the python
package installer pip install deshima-sensitivity .
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