
Automatically Testing a Conversational Crowd Computing Platform

Orestis Kanaris1 , Sihang Qiu1 , Ujwal Gadiraju1 , Jie Yang1

1TU Delft
{o.kanaris}@student.tudelft.nl, {s.qiu-1, u.k.gadiraju, j.yang-3}@tudelft.nl

Abstract
The rise in the use of crowd computing platforms
led to the birth of Dandelion, a conversational
crowd computing platform developed at TU Delft
with the main goals being to connect students with
researchers and to allow students to report on their
well-being by using a friendly interface. Dande-
lion was tested manually up to the time of drafting
this paper; thus, the primary motivation behind this
paper is to ensure the robustness and measure the
responsiveness of Dandelion.
Robustness was exercised by utilizing a simulated
user behaving unexpectedly. The testing frame-
work then classifies the behaviour of Dandelion ac-
cording to the C.R.A.S.H. scale. The testing frame-
work is validated by altering Dandelion’s behaviour
and ensuring that the test results reflect the change.
Furthermore, a lower bound to the run time of a
task will be estimated using a Multi-Agent System
(M.A.S.) simulation on Dandelion.
Upon verifying the correctness of the robustness
test, a faulty assumption was uncovered on which
the user’s input validation was based. Further-
more, the M.A.S. simulation run estimated a lower
bound of ≈ 5.788 seconds, while revealing a lack
of user’s input validation before posting them in the
database.

Keywords— crowd computing, testing, testing conversational
agent, conversational crowd computing agent

1 Introduction
Crowd computing, according to Murray et al. [17], is defined as
the “opportunistic networks that can be used to spread computation
and collect results [...] which combine mobile devices and social
interactions to achieve large-scale distributed computation”.

The growing popularity of crowd computing platforms [10], led
to the birth —initially for research purposes— of the Dandelion1

platform, a conversational crowd computing platform developed by
a sub-team of TU Delft’s WIS team and two BSc students. Dande-
lion is used for performing questionnaires on students’ well-being,
timetable queries for TU Delft students, diary logging and more (see

1https://delftdandelion.com/

TU Delft’s Wellbeing page2 for more information). By the time this
report was drafted, Dandelion was tested chiefly by manual testing.

Manual testing, although overall effective, usually fails to iden-
tify some types of errors, since it is not feasible to exercise all of the
possible interactions; hence the developers test generally the compo-
nents that they expect to be the most error prone. While developing
the Dandelion platform we were faced with the need to have an au-
tomated test tool.

Testing is one of the most critical aspects of the software devel-
opment cycle [22; 1]. For each testing phase, there exists at least one
framework specifically developed for it. Many of these frameworks
are either open-source or available for free.

There is an apparent gap in the market for frameworks that au-
tomatically test conversational crowd computing platforms —which
was experienced first hand— but it can be also observed through the
lack of available software and research on this subject. This led the
Dandelion team to research and develop such a framework in order
to ensure the platform’s reliability.

While software testing covers many different aspects of the soft-
ware, this paper covers testing Dandelion’s Robustness and Respon-
siveness. Robustness, as defined in IEEE standard 24765 : 2010, is
the degree to which a system operates correctly under exceptional
inputs or stressful environmental conditions [16; 1]. This paper will
chiefly focus on the exceptional inputs rather than the stress test as-
pect of robustness.

The reasoning for selecting the above two aspects was the fol-
lowing: Robustness was chosen because of the necessity for such
a platform to be able to handle errors and exceptional inputs[16].
Such a scenario (users inputting wrong data) is expected when deal-
ing with a conversational agent due to the freedom a user has. The
problem is that a program that lacks robustness might very quickly
lose the trust of its users [23].

A responsive website responds to user’s behaviour and environ-
ment based on screen size, platform and orientation. It is crucial
for web pages because it ensures an optimal experience for all users
[20]. Since Dandelion is running on Telegram3, all aspects concern-
ing the interface design and the responsiveness on the user’s side
are already handled by Telegram. Therefore, to ensure optimal user
experience, Dandelion needs testing regarding its response latency.

Concluding, in the case of conversational crowd computing plat-
forms, a robust platform is resilient to any input given by the user
and a responsive platform does not exceed the accepted reply limits
of up to 30 seconds [7].

The aim of this paper is to answer the following questions:

2https://www.tudelft.nl/en/covid/wellbeing#c65880
3https://telegram.org/

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

https://delftdandelion.com/
https://www.tudelft.nl/en/covid/wellbeing##c65880
https://telegram.org/


• RQ1: How to automatically test the robust-
ness of a conversational crowd computing
platform.

• RQ2: How to reliably measure the respon-
siveness of a chatbot for crowd computing.

This novel testing framework is a Multi-Agent System (M.A.S.)
which creates virtual worker(s) whose aim is to exercise the sys-
tem as a whole [2; 6] while giving helpful insight on the system’s
bottlenecks. These virtual workers communicate directly with the
system’s backend; thus being able to also stress test the API.

The framework aims to test the system’s robustness on correct
and malicious input [16]. It is of paramount importance for a system
to be robust to ensure its usability and that there will be no system
failures due to malicious or wrong inputs.

The simulation part of the research loosely builds around Sihang
Qiu et al. VirtualCrowd work [21], with main dissimilarities being
that VirtualCrowd considers the qualification of the workers before
assigning a task to them while also allowing for Python plugins to
alter the simulation’s behaviour.

Although this was the initial approach, early into the develop-
ment phase, it was discovered that such an approach isn’t feasible
due to how tightly coupled the implementation of Dandelion is to
Telegram. Simulating Dandelion’s task assignment is not feasible
due to the limited time frame that this project has. It was therefore
decided to assign the task to all simulated workers.

Paper Structure
This paper is structured as follows: Section 2 describes the approach
taken for tackling the testing challenge mentioned above and the
evaluation process of the framework. Section 3 describes the experi-
mental setup and the results gathered from the experiments. Section
4 describes the ethical implications of this project and what steps
were taken to ensure that the research is reproducible. Section 5 ex-
plains the significance of the results (presented in Section 3) in the
context of Dandelion. Finally, Sections 6 and 7 present the conclu-
sion and future improvements that may be implemented.

2 Methodology
The aim of this section is to provide the reader with an explanation
of the implementation of the software components (i.e., robustness
tester and M.A.S. simulation) and also to explain how the testing
framework will be evaluated to ensure its correctness.

2.1 Robustness
The framework will test Dandelion using a technique similar to fuzz
testing. For starters, the test will be performed using a simulated
telegram user to test the bot’s conversational aspect. The simulated
user will be governed using the python-telethon4 library.

The simulated user will initialize the conversation by typing /
start. As soon as the conversation is started, a POST request will
be sent to Dandelion, containing a predefined task of 7 questions
covering all of the answer types Dandelion allows.

By default, each question in a Dandelion task ends with a text
explaining to the user what is the expected answer type (i.e., text,
image, audio etc.). This ending text will be extracted, analyzed and
mapped to its respective class, and then the fuzzy test will generate
a random answer of an arbitrary data type and wait for the bot’s
response.

The robustness test UML can be seen in Figure 1.
The result of each test case will be categorized according to the

first letter of the C.R.A.S.H. severity scale [14; 13]. The acronym

4https://docs.telethon.dev/en/latest/

C.R.A.S.H. stands for Catastrophic Restart Abort Silent Hindering
[12]. Note that returning the correct error message (i.e: ”Please
answer with text only” or ”An image is not a valid answer”) is not
considered a failure [16].

The pipeline behind the categorization is as follows: Dandelion
entering a broken loop or raising an exception will be mapped to a
Restart. An Abort error is when the bot stops replying. A Silent
error is when a wrong input type is entered, but the bot continues
as if nothing happened and a Hindering error is when an incorrect
error code is returned. For example, a text-only answer leading to
a “Please enter an image“ prompt. Everything else is mapped to a
Correct answer. As one can notice, there is no mapping for a Catas-
trophic error; this is because the nature of Dandelion makes it very
unlikely for such an error to occur due to the libraries used for its
development. Hence it is deliberately left out.

The results will then be presented in Section 3 and explained in
Section 5.

2.2 Responsiveness
The responsiveness test aims at answering RQ2, which will provide
helpful insight into Dandelion’s lower bound duration required for
running a full task. Such a metric allows the developers to deploy
response delays with greater accuracy. Such a feature is instrumen-
tal; according to Karma Choedak, “chatbot users were more satisfied
with their interactions when chatbots deploy response delays as op-
posed to near-instant responses“, but “longer response latency in a
spontaneous online communication is considered a strong sign of
deception, and truth-tellers tend to have shorter response time lags“
[3]. To ensure such a controlled delay timeframe, there needs to be
data on the backend’s latency to adjust the reply delays [4], while
also having a good understanding of the system’s pipeline. This is
where a M.A.S. simulation is needed since it is not feasible to re-
quest thousand of users to use it.

Multi-Agent System Simulation
A Multi-Agent System (M.A.S.) simulation will be used to simulate
the conversational flow of Dandelion while abstracting the frontend
(i.e., being decoupled from Telegram’s API). Such a simulation is
beneficial since it will provide helpful insight into the communica-
tion between simulated users and the conversational manager on a
massive scale; something that is not possible to do with Dandelion’s
actual conversational manager since the latter is coupled to the Tele-
gram API, which does not allow for simulated / test users due to the
high cost incurred. To create a user, a unique telephone number is
required, which approximately costs e10 per SIM, leading to a high
cost when the number of users is in the range of thousands.

The M.A.S. simulation UML is depicted in figure 2. The UML
shows that workers are generated according to a Poisson distribution
queue [11; 21]. This implementation ensures that workers enter the
queue (and start the task) in random intervals, thus modelling a “re-
alistic“ scenario. The total number of workers generated is accord-
ing to the total run time and the Poisson parameter that the testers
pre-set. Now assuming N simulated workers (N is in the range of
thousands) were generated, all N of them only communicate with
the Simulated Conversation Manager, which takes care of serving
each simulated user, their next question.The simulated conversation
manager communicates with the actual Dandelion backend in order
to fetch questions and save answers.

The Simulated Conversation Manager also sends the errors and a
log file of the conversations to the Test Manager, which turns them
over to the Tester to analyze them. This is for now done manually.

A feature of Dandelion that it is not supported in the simulation
is the Watchdog. In Dandelion, when a task is issued, it has a set of
rules which will then be used to match users that are “fit“ to get that
task (e.g.: study = “CSE“). Dandelion also allows for a task to be

https://github.com/qiusihang/vcrowd
https://docs.telethon.dev/en/latest/


Figure 1: UML of the robustness pipeline

scheduled for a future date a time. Both of the features mentioned
are not supported in the simulation, since it would require some sort
of re-implementation of Telegram, while the insight gained would
not be worth the trouble.

The M.A.S. simulation also serves as an infrastructure to be used
in order to estimate the increase of the duration of each task as the
number of users served increases. This result, of course, will be
a very rough estimate since the model does not consider multiple
factors, i.e., human delays, Telegram API delays, different internet
latency per user, etc. Nevertheless, it is still a valuable estimation of
the maximum number of users that Dandelion can serve simultane-
ously.

The statistics generated by the M.A.S. simulation are shown in
Table 2.

2.3 Framework Evaluation
A testing framework which is not tested is likely to produce several
False Positives / Negatives in its test results, which need to be man-
ually identified, hence defeating the framework’s purpose in the first
place. Therefore, it is paramount to ensure that the testing frame-
work produces as few false flags as possible.

The philosophy behind the reliability validation pipeline is as fol-
lows: Introduce bugs in known and tested parts of the bot and ensure
that the test results reflect this change, if compared with previous re-
sults. For example, remove the image handler from the bot when
the expected answer is an image, and ensure that the bot will log it as
belonging to C.R.A.S.H. While this approach may be naive, it will
ensure that most of the framework’s implementation is correct.

3 Experimental Setup and Results
It is paramount for an independent researcher to be able to reproduce
the experiment that led to one’s research conclusions as explained in
Section 4. The tests were performed on an HP Workstation studio
G5 with 16GB RAM and an Intel Core i7-8750H CPU @ 2.20GHz
(6 cores, 12 threads) running Ubuntu 20.04.2. The specific versions
of all libraries used can be found in the requirements.txt. The specs
are essential for replicating the M.A.S. simulation results since the

response time that the tests will indicate may vary depending on
the power of the hardware the test is run. However, knowledge of
the hardware specs is not essential for the robustness test, since the
framework already took into account potential pitfalls (i.e., connec-
tion delays, a slow server, etc.) by adding calls to the sleep function
to give enough time to the server to respond.

3.1 Evaluation of the Robustness Testing
Framework

The idea behind the evaluation of the testing framework is, as men-
tioned in Section 2.3, to introduce various errors to Dandelion and
verify that the testing framework will “notice“ them.

The results from the evaluation runs are shown in Figure 3. Each
graph depicts a different type of test, as follows: On the top left
corner (1), the framework ran without fuzzing, basically identifying
what datatype each question expected as an answer, thus giving it.
This test proves that the framework can imitate a human; hence there
is no inherent disability. On the top right corner (2), stands the result
of running the testing framework on the Dandelion platform as is.
The framework answered 67 questions in total. The results allow the
reader to compare them with the results from the tests on a broken
Dandelion (which will be discussed in the next sentence) and realize
the capabilities of the framework in identifying errors in Dandelion.

The bottom left corner (3) depicts the results of running the fuzzy
test on a version of Dandelion which always asks for the same data
type regardless of what the question expects. This test was run to
validate the robustness of Dandelion on all data types. One can
clearly see the rise of Restart errors compared to the regular run.
Finally, in the bottom right corner (4), the testing framework tests a
version of Dandelion that simulates a broken “fuzzing“ component
(i.e., after a random amount of time, Dandelion stops working). The
spike in the Restart errors is expected in this scenario since every
run eventually will come to a halt.

It is evident from the differences between the Figures 3.3 and
3.4 —the increase in the Restart errors and the decrease in the Cor-
rect outputs, as the Dandelion platform “worsens“— that the testing
framework is sensitive to bugs on the Dandelion platform. The test
results currently do not provide a full-on error coverage and analy-



Figure 2: UML of the MAS simulation

Result Type Frequency

Correct 17
Restart 8
Silent 42

Hindering 0
Total 67

Table 1: Results of running the testing framework on Dandelion.

sis, but they provide the tester with the expected and actual input and
the error type. The tester then needs to investigate further the failure
and interpret the data.

3.2 Robustness Test
The robustness test, as explained in Section 2.1, is meant to exercise
Dandelion’s response on inputs that may not match the expected
type. The results will then be classified in an adapted C.R.A.S.H.
scale [16]. Due to the nature of Dandelion, there is no Catastrophic
nor Abort error; hence the errors can only be of type Restart, Silent
or Hindering. Correct behaviour will be classified as Correct. Note
that a Restart error will also cause the test to terminate prematurely
and restart.

The test task was run nine times, and each task contained seven
different questions, all with a different expected type. The expected
types were: MCQ, Text, Image, Open, Audio, Video, Number (Lo-
cation was not exercised due to limitations of telethon). If no restart
errors were to occur, the framework would answer 9 · 7 = 63 ques-
tions (excluding control flow operations).

Since the framework aimed at trying all types of inputs, there
was a 60% chance to input a correct type; otherwise, a random type
answer would be sent to the bot. This randomness led to few restarts;
hence the total number of questions the framework answered is 67,
with 50 out of 67 answers leading to a C.R.A.S.H. The results can
be seen in Table 1.

3.3 MAS Simulation
The MAS Simulation was created and run, as explained in Section
2.2. The current simulation implementation has no delays in answer-

Mean (µ) STD (σ) #Users

5.788294135453459 0.9262387774394841 501

Table 2: Mean and standard deviation of a MAS Simulation run

ing the questions, and the only interactions with the Dandelion API
are: user creation, fetching questions (which is done only once) and
posting answers. This implementation provides a lower bound of the
mean and standard deviation of the time needed for a whole task ex-
ecution (for a simulated user), thus giving a lower bound estimate of
the API delays. The results are shown in Table 2. The experiment’s
parameters were: maximum run time of 40000 “seconds“ and the
Poisson worker generation parameter is λ = 80.

The reason behind not running it for thousands of users, as men-
tioned in the use case, is the time required. Since no significant
additional insight would be gained, it was decided to terminate the
simulation prematurely. If one needs to estimate the run time for
thousands of users, the distribution in the API delays can be mea-
sured and added as a constant to the execution time after each epoch
and then run it for thousands of users (without storing the answers
or creating users). The result would be a rough approximation of the
actual number.

4 Responsible Research
Conducting a responsible research is of uttermost importance to sci-
ence since it promotes scientific inquiry, encourages public faith in
scientific knowledge and development for the public good, and sup-
ports a research environment that allows scientists to collaborate to-
ward common aims.

4.1 User Privacy
The Dandelion platform handles personal user data, which primarily
make a user identifiable through Telegram. Dandelion submitted a
data management plan to the TU Delft ICT, which they accepted.
Even though the framework that this paper is proposing will interact
with Dandelion, it will not have access to the data that Dandelion has
stored. The database load and performance test will be performed



Figure 3: The results from the four experiments that were performed to evaluate the effectiveness of the robustness testing framework. Each
graph depicts the results of a different experiment.

on a duplicate (fake) instance of Dandelion’s database to not affect
the existing data.

The framework will have no interaction with actual humans since
the users for the MAS are simulated outside of Telegram.

Moving on, one might wonder, what about the robustness test dis-
cussed in Section 2.1 which will be performed by taking control of
a Telegram account? The Telegram account will be “brand new“
meaning that it will be created with the sole purpose of being used
for the test and deactivated after. There is a SIM currently available
just for this purpose. Once again, no users are involved in this pro-
cess, so to the best of my knowledge, the research yields no user
privacy concerns.

4.2 Research Reproducibility
According to Goodman et al., a U.S National Science Foundation
(NSF) subcommittee on replicability in science said: ”reproducibil-
ity refers to the ability of a researcher to duplicate the results of a
prior study using the same materials as were used by the original
investigator [...] reproducibility is a minimum necessary condition
for a finding to be believable and informative” [9].

Evaluating Software Testing Techniques (STT) rely on many dif-

ferent concepts, sometimes even outside of the scope of computer
science. According to Francisco G. De Oliveira, “to achieve repro-
ducibility in software testing, there should be a compendium (i.e.
a package) named Reproducible Software Testing Research Com-
pendium (RSTRC), containing all of the elements described and
needed to re-execute the experiment“ [19]. Each study parameter
belongs to one of the following four categories: operationalization,
protocol, population and experimenter. Together they cover the gen-
eral configuration of an experiment, as discussed by Gómez et al.
[18].

• Operationalization: Aspects that describe the process
of transforming a concept into its materialization. In this
case: The contents of Section 2 and the contents of the
README.md5 explain the testing conditions when writing
this paper and also how to run the tests (i.e., file structure, run-
ner file etc.) to evaluate Dandelion.

• Protocol: Set of materials, equipment, forms and procedures
used. In this case: The Python scripts for the tests which can

5https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-45/
rp-group-45-okanaris/-/blob/master/README.md

https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-45/rp-group-45-okanaris/-/blob/master/README.md
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-45/rp-group-45-okanaris/-/blob/master/README.md


be found in this repository6.

• Population: The objects and subjects used. In this case: The
Dandelion7 conversational crowd computing agent.

• Experimenter: The people involved in the experiment. In
this case: The writer of this paper.

Based on the upon items, I am confident that the necessary tools
are provided for anyone to replicate the testing experiment and pro-
duce very similar results.

Running the test and generating exactly the same results —even
though it is possible — would take some time due to the randomness
of the framework.

5 Discussion
This section is about the interpretations of the results shown in Sec-
tion 3.

Improved Testing Coverage of Dandelion
As it was already mentioned in Section 1, the development team
mostly tested Dandelion’s user interface manually. Early in the de-
velopment cycle came the need to validate the data type of a user’s
input — the telegram-bot-library provides a handler for each data
type accepted in the Telegram app. The validation of a user’s input
was based on the bold assumption that by only adding the respective
data handler of the data type that the user is expected to input, ev-
ery reply of a different data type will be rejected by Telegram itself.
Dandelion has a big “switch statement“ that checks what data type
the user is expected to input for questioni and adds the respective
handler to the question. Hence for example, if the question expected
an image as a reply, but the user inputs a video, the conversation
manager would accept it and eventually commit it in the MongoDB
database labelling it with the expected data type which is different
from the actual one.

Note that Dandelion uses mongoengine 8, a python Object Doc-
ument Mapping (ODM) that, among others, attempts to “enforce
a schema“ to a MongoDB database. The current implementation
matched the datatype that the object was labelled with, with the
respective mongoengine type, upon retrieval from the database.
But since they were mislabeled, mongoengine will throw —an
unhandled— TypeError, which lead to a Restart in the C.R.A.S.H.
scale.

This discovery is very important since a single answer of a wrong
type would deem the answers document of that particular task (all
the answers from all users who participated in that task) impossi-
ble to automatically retrieve, with the method currently in place. To
retrieve them, one would have to manually go through the whole an-
swers document, spot the problematic entry and delete it. It might
not sound very hard if the mistake is obvious (i.e., a text file is la-
belled as a video). Still, it is time-consuming to identify the file
type, especially if they are stored in the Telegram server (one needs
to download and go through all of the files).

Another discovery was that Dandelion sent some data types (i.e.,
Location and Number) to the user with the wrong prompt; specifi-
cally, it asked the user to input text rather than a Number or a Loca-
tion. Such an error is not as severe as the one mentioned above since
the user can identify the expected data type by themselves. But it
may cause errors in the case of: “Please input your age. This ques-
tion must be answered with Text only“. In this example, the user can

6https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-45/
rp-group-45-okanaris

7https://delftdandelion.com/
8http://mongoengine.org/

understand that the question expects them to input a number (since
age is a number), but they may input it in a textual form (e.g.: “sev-
enteen“) rather than a numerical form (e.g., 17) which is the one
that the question expects to process, eventually leading to the same
TypeError as the one mentioned above.

After these discoveries, the development team will have to go
back to the drawing board and decide on how to correctly ensure that
the user inputs the correct data type and, most importantly, prompt
the user to do so once they inputted an answer of the wrong type —
the lack of correct prompts is evident from a large number of Silent
errors.

Findings from Running the Simulation
The experiment run of the M.A.S. simulation gave a lower bound of
≈ 5.788 seconds for running the simulation. Having this number is
useful since, having this in mind, delays can be added to the answer
sending mechanism of Dandelion in such a way as to simulate the
time it would take humans to respond to a message [8] while also
not exceeding the reply threshold of 30 seconds [7].

Furthermore, during the simulation implementation, it was dis-
covered that the answer saving API is not robust against wrong in-
put. The reason for this is that during the development of Dandelion,
it was thought that the only calls to the API would come from the
Dandelion frontend, where the format was hard-coded. This imple-
mentation makes the API vulnerable to attacks since a wrong format
causes the server to shut down due to a JSON Exception, which the
developer team needs to review.

6 Conclusions
This paper proposes a method of testing conversational crowd com-
puting platforms in terms of the platform’s robustness by execut-
ing a fuzzy test and classifying the results on the C.R.A.S.H. scale
while also gathering an estimate of the platform API’s responsive-
ness (data that are useful in order to accurately simulate the time
that a human takes to reply) using a Multi-Agent-System (M.A.S.)
simulation.

The testing framework was used to test TU Delft’s Dandelion
platform, a conversational crowd computing platform used to con-
nect students with researchers while also allowing students to report
their well-being status; Dandelion was manually tested up to now.

The robustness test reported vital vulnerabilities, most notably, a
lack of validation of the input type. The M.A.S. simulation, apart
from estimating a lower bound of ≈ 5.788 seconds for a simulated
task of 4 questions, also identified a significant lack of input sanitiz-
ing in the API used for answer saving. The framework was verified
by introducing errors in Dandelion and verifying that the results of
the framework were significantly different than the ones from when
Dandelion was unaltered.

7 Future Work and Recommendations
The framework described in the previous sections is a simulation-
based MAS testing tool that aims to the backend of Dandelion while
also testing its conversation manager for any C.R.A.S.H. While it is
very helpful to know what inputs causes what, there is no particular
knowledge on what happens with the rest of the users as soon as a
C.R.A.S.H. happens. Hence in a future iteration of this framework
—assuming that Telegram finally allows for test users, or bots test-
ing bots — there should be a simulation to ensure that there are no
cascading failures, if for some reason dandelion crashes for one of
the users. This can also be done by leveraging some workers from an
existing crowd computing platform, for example, Amazon Mechan-
ical Turk9. The workers would be asked to “break“ the platform and

9https://www.mturk.com/

https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-45/rp-group-45-okanaris
https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-45/rp-group-45-okanaris
https://delftdandelion.com/
http://mongoengine.org/
https://www.mturk.com/


report their findings [15]. The results and improvements that will
come from these tests will improve the usability and the user expe-
rience a lot, since it is very frustrating as a user for a program to just
suddenly break down without knowing why.

Furthermore, as mentioned in RQ2, this simulation framework
only aims to generate answers that are just good enough for the sim-
ulation purposes. The Dandelion platform, only validates the data
type of an answer, not the contents, a random input of a correct
data type is currently a valid answer. This means approach will not
be usable by intelligent platforms that expect that the input adheres
to some pre-set rules. This design choice was decided due to the
strict timeframe of the research project and can be addressed by im-
plementing an intelligent input generation mechanism. A proposed
technique is to use an auto-regressive language model [5] for exam-
ple, one of OpenAI’s gpt algorithm.

Another improvement is to add some missing functionality to the
Telethon library. For example, it is currently not possible to send
location or polls, something that limits the testing capabilities since
it cannot be tested how the bot handles these particular inputs.

Finally, the bugs discovered need to be fixed and then retest Dan-
delion to ensure its robustness.

References
[1] Iso/iec/ieee international standard - systems and software en-

gineering – vocabulary. ISO/IEC/IEEE 24765:2010(E), 2010.

[2] G Caire, M Cossentino, A Negri, A Poggi, and P Turci. Multi-
Agent Systems Implementation and Testing.

[3] Karma Choedak. The effect of chatbots response latency on
users’ trust, May 2020.

[4] ImTheDeveloper DEV Community. Optimising your telegram
bot response times, Oct 2019.

[5] Robert Dale. Gpt-3: What’s it good for? Natural Language
Engineering, 27(1):113–118, 2021.

[6] Scott A. Deloach, Mark F. Wood, and Clint H. Sparkman. Mul-
tiagent systems engineering. International Journal of Software
Engineering and Knowledge Engineering, 11(03):231–258,
2001.

[7] Facebook. Responsiveness requirements - messenger platform.

[8] Ulrich Gnewuch, Stefan Morana, Marc Adams, and Alexander
Maedche. Faster is not always better: Understanding the ef-
fect of dynamic response delays in human-chatbot interaction.
Research Papers, 113, 2018.

[9] Steven N. Goodman, Daniele Fanelli, and John P. A. Ioannidis.
What does research reproducibility mean? Science Transla-
tional Medicine, 8(341):341ps12–341ps12, 2016.

[10] Vimi Grewal-Carr, Greg Howard, Carl Bates, and Harvey
Lewis. The three bilion enterprise crowdsourcing and the
growing fragmentation of work, 2016.

[11] Leif Gustafsson. Poisson simulation as an extension of contin-
uous system simulation for the modeling of queuing systems.
SIMULATION, 79(9):528–541, 2003.

[12] P. Koopman and J. Devale. The exception handling effective-
ness of posix operating systems. IEEE Transactions on Soft-
ware Engineering, 26(9):837–848, 2000.

[13] Philip Koopman, Kobey Devale, and John Devale. Interface
robustness testing: Experience and lessons learned from the
ballista project. Dependability Benchmarking for Computer
Systems, page 201–226.

[14] N.P. Kropp, P.J. Koopman, and D.P. Siewiorek. Automated
robustness testing of off-the-shelf software components. 1998.

[15] Di Liu, Randolph G. Bias, Matthew Lease, and Rebecca
Kuipers. Crowdsourcing for usability testing. Proceedings of
the American Society for Information Science and Technology,
49(1):1–10, 2012.

[16] Zoltán Micskei, Henrique Madeira, Alberto Avritzer, István
Majzik, Marco Vieira, and Nuno Antunes. Robustness Test-
ing Techniques and Tools, page 323–339. 2012.

[17] Derek G. Murray, Eiko Yoneki, Jon Crowcroft, and Steven
Hand. The case for crowd computing. 2010.

[18] S. Vegas O. S. Gómez, N. Juristo. Understanding replication
of experiments in software engineering: A classification. In-
formation and Software Technology, 56(8):1033, 2014.

[19] Francisco G. De Oliveira Neto, Richard Torkar, and Patricia
D. L. Machado. An Initiative to Improve Reproducibility and
Empirical Evaluation of Software Testing Techniques. 2015.

[20] Rachel Andrew Peter LePage. Responsive web design basics.
[21] Sihang Qiu, Alessandro Bozzon, and Geert-Jan Houben. Virtu-

alcrowd: A simulation platform for microtask crowdsourcing
campaigns.

[22] Azeem Uddin and Abhineet Anand. Importance of software
testing in the process of software development. pages 2321–
0613, 01 2019.

[23] J. Voas. Untested software threatens infrastructures. IEEE
Software, 16(2):89–90, 1999.


	Introduction
	Paper Structure

	Methodology 
	Robustness
	Responsiveness
	Multi-Agent System Simulation

	Framework Evaluation

	Experimental Setup and Results
	Evaluation of the Robustness Testing Framework
	Robustness Test
	MAS Simulation

	Responsible Research
	User Privacy
	Research Reproducibility

	Discussion
	Conclusions
	Future Work and Recommendations

