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Earth pressure in narrow cohesive-fictional soils behind retaining walls 
rotated about the top: An analytical approach 
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A B S T R A C T   

There is currently a lack of an available design approach to estimate the earth pressure in narrow backfills behind 
retaining walls rotated about the top (RT). The considerations of some significant factors, primarily load transfer 
mechanisms (soil arching effect and horizontal shear stress in soils), failure mechanisms (shape and number of 
slip surfaces) and soil cohesion are often neglected for brevity in routine design. Such simplifications may lead to 
significant deviations from reality. This paper first uses the finite element limit analysis (FELA) technique to 
identify the underlying failure mechanisms and load transfer mechanisms. The results observed in FELA models 
indicate that active rotation of walls about the top develops one curved slip surface, which can be approximated 
by the log-spiral function. Under the soil arching effect, the upper intermediate passive zone with major principal 
stress rotation trajectory and the lower active zone with minor one can be defined. The arched differential 
element method (ADEM) is then introduced to formulate the earth pressure calculation. The results from newly 
published tests, existing analytical approaches, and FELA are compared to validate the accuracy of the proposed 
approach in both purely-frictional and cohesive-frictional soils. Parametric studies are further conducted to 
thoroughly understand the earth pressure problems, considering the effects of sensitive design variables (e.g. 
aspect ratio, soil strength parameters, and wall-soil interface friction angle). The analytical approach presented 
here would be a great extension to the design guidelines for the retaining structures with narrow backfills.   

1. Introduction 

Retaining structures unavoidably need to be constructed around 
existing structures (e.g. basement, pile groups, diaphragm walls) adja-
cent to an excavation, or rock faces to maintain the stability of backfills 
somewhere in between, forming narrow soils, as shown in Fig. 1 (Li and 
Yang, 2019; Chen et al., 2019; Xie et al., 2020; Chen et al., 2021 Lai 
et al., 2021; Lai et al., 2022a,b). The estimation of earth pressure exerted 
onto retaining walls is a traditional and still ongoing field of research, in 
particular under complex boundary conditions (Ni et al., 2018a; Ni 
et al., 2018b). Traditional Coulomb’s or Rankine’s theories (Coulomb, 
1776; Rankine, 1857) for earth pressure calculation behind rigid 
retaining walls assumed that the rupture of retained soils took place 
along one single slip surface, forming a triangular failure body. This 
assumption was based upon sufficient width of soil mass, which thus 
may not be applicable to narrow soils where complex failure mecha-
nisms characterized with trapezoid thrust wedge could occur. Moreover, 
for the anchored/strutted walls or bridge abutments where are 

embedded in the soft/weak soils and the movements at the top are 
partially limited, the rotation mode about the top (RT) is likely to be 
formed at the limit state (Fang and Ishibashi, 1986; Harrop-Williams, 
1989; Ni et al., 2017; Deng and Haigh, 2020). This mode is inconsis-
tent with the translational (T) one typically assumed by the traditional 
theories. The neglect of these factors might cause the given solution to 
deviate from the real one for retaining walls under RT mode (Terzaghi, 
1936). For this reason, the search for improved analytical approaches to 
obtain a more accurate solution remains a key goal of many geotechnical 
researchers. 

Previous experimental studies (Fang and Ishibashi, 1986; Frydman 
and Keissar, 1987; Take and Valsangkar, 2001) have reported that the 
distribution of active earth pressure against retaining structures with 
narrow soils is nonlinear along with the wall depth, resulting from the 
soil arching effect proposed by Terzaghi (1943). To obtain a more pro-
found understanding of underlying load transfer mechanisms, many 
experimental works were further carried out over the last decade 
(O’Neal et al., 2011; Yang and Tang, 2017; Rui et al., 2020). However, 
due to the increasing complexity of simulated working conditions as 
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well as the huge cost of resources, the development of experiments re-
mains relatively slow. In addition, experimental efforts paid close 
attention to cohesionless soils (granular backfills), little to cohesive- 
frictional soils that are likely encountered in some cases (Yang and 
Yin, 2004; Yang and Huang, 2011; Li and Yang, 2019; Lai et al., 2022a). 

To overcome the shortcomings mentioned above, many pieces of 
research were presented using cost-effective and powerful numerical 
tools such as finite element method (FEM) (Fang et al., 1993; Fan and 
Fang, 2010) and discrete element method (DEM) (Jiang et al., 2014). 
Recently, a novel numerical method of finite-element limit analysis 
(FELA), with the balance between accuracy and efficiency (Sloan, 2013), 
has been widely used in earth pressure problems (Chen et al., 2020; 
Krabbenhoft, 2018; Lai et al., 2022a). The current numerical works 
attempted to identify the failure mechanisms of the retaining system 
more realistically, under various movement modes including the 
translation (T), rotation about the base (RB), and the top (RT). Numer-
ical results showed that irrespective of wall movement modes, most of 
the observed slip surfaces extending from the bottom of retaining walls 
are curved ones rather than planar ones, which have been also found in 
some experimental researches (Goel and Patra, 2008; Yang and Tang, 
2017; Rui et al., 2020). In the theoretical aspect, the curved failure 
surface was generally described as the well-accepted log-spiral one (Xie 

and Leshchinsky, 2016; Xu et al. 2019; Chen et al., 2021). 
Based on the experimental and numerical results, a series of 

analytical approaches have been proposed by many researchers. Among 
them, the horizontal differential element method (HDEM) is the most 
representative as the soil arching effect could be evaluated quantita-
tively by formulating the rotation trajectories of minor/major principal 
stresses. However, HDEM often neglects the horizontal shear stress be-
tween adjacent elements for brevity. Moreover, a necessary introduction 
of the lateral stress ratio requires defining the average vertical stress 
across a given differential element instead of the real vertical stress on 
the wall-soil interface, somehow causing the error. For this purpose, Lai 
et al. (2022a) proposed an improved analytical framework using the 
arched differential element method (ADEM) to overcome such disad-
vantages and to give more accurate solutions. Nevertheless, ADEM 
proposed by Lai et al. (2022a) is suggested to use for relatively simpler 
RB mode and might be incompatible with RT mode. The lack of 
analytical approach concerning the RT mode can be attributed as: (1) 
differing from the traditional Coulomb slip surface (planar), the log- 
spiral one involved in narrow backfills under the RT mode is difficult 
to mathematically characterize (Das and Sobhan, 2013); and (2) active 
wall rotation about the top would generate highly stressed zones in 
shallow layers, causing a counterintuitive phenomenon of shallowly 

Nomenclature 

a1 − a4 Abbreviations used in the derivation process 
B Width of narrow soils behind retaining wall (m) 
b1 − b5 Abbreviations used in the derivation process 
C1 − C4 Abbreviations used in the derivation process 
c Soil cohesion (kPa) 
c1, c2 Abbreviations used in the derivation process 
E0 Young’s modulus (MPa) 
Etotal Thrust acting on rotating retaining wall (kN) 

FA1D1
x , FA′

1D′

1
x Horizontal forces on upper and lower boundaries of the 

element in upper zone (kN) 

FA1D1
z , FA′

1D′

1
z Vertical forces on upper and lower boundaries of the 

element in upper zone (kN) 
FA1A1

′

x , FD1D1
′

x
Horizontal forces on wall-soil interface involved in the 

element in upper zone (kN) 

FA1A′

1
z , FD1D′

1
z Vertical forces on wall-soil interface involved in the 

element in upper zone (kN) 

FA3D3
x , FA′

3D′

3
x Horizontal forces on upper and lower boundaries of the 

element in lower zone II(kN) 

FA3D3
z , FA′

3D′

3
z Vertical forces on upper and lower boundaries of the 

element in lower zone II(kN) 

FA3A′

3
x Horizontal forces on wall-soil interface involved in the 

element in lower zone II (kN) 

FA3A′

3
z Horizontal forces on wall-soil interface involved in the 

element in lower zone II (kN) 

FD3D′

3
x Vertical forces on slip surface involved in the element in 

lower zone II (kN) 

FD3D′

3
z Vertical forces on slip surface involved in the element in 

lower zone II (kN) 
G1 Gravity of arched differential element in upper zone (kN) 
G2 Gravity of arched differential element in lower zone II (kN) 
H Retaining wall height (m) 
H1 Height of the upper zone (m) 
H2 Height of the lower zone I (m) 
H3 Height of the lower zone II (m) 

K0 Coefficient of lateral earth pressure at rest 
Ktotal Total thrust coefficient 
lA3D3 Length of A3D3 (m) 
lD3D′

3 
Curve length of D3D3

′ (m) 
m1 − m3,mR, mz Abbreviations used in derivation process 
N Ratio of major to minor principal stresses 
p1 − p19 Optimal constant coefficients 
RA1D1 Radius of minor principal stress trajectory (m) 
RA3D3 , RA3D3

′ Radius of major principal stress trajectory (m) 
r0 Initial polar radius of the log spiral (m) 
t1 − t3 Abbreviations used in derivation process 
w1 − w3 Abbreviations used in derivation process 
zs Application point of active thrust to wall base (m) 
△z1 Vertical distance between points A1 and i (m) 
△z3 Vertical distance between points A3 and i (m) 
αf Sliding angle of slip surface (◦) 
β Correction factor of active thrust coefficient 
θ1 Angle of the log spiral at the wall toe 
θ2 Angle parameter of the log spiral equation at the stable 

wall 
θw Rotation angle of minor principal stress on wall-soil 

interface to the horizontal 
θs Rotation angle of minor principal stress on slip surface to 

the horizontal 
γ Unit weight (kPa) 
ϕ Soil friction angle (◦) 
δ Wall-soil interface friction angle (◦) 
μ Interface roughness factor 
ν Poisson’s ratio 
σ0

w,σu
w,σl1

w ,σl2
w Lateral earth pressure exerted in upper and lower zones 
(kPa) 

σ0
1, σ0

3 Major and minor principal stresses on wall-soil interface 
(kPa) 

σf , τf Normal and shear stresses on slip surface (kPa) 
σi

1 Major principal stress at arbitrary point i on the upper 
boundary of the element (kPa) 

σi
3 Minor principal stress at arbitrary point i on the upper 

boundary of the element (kPa)  
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embedded backfills entering the intermediate passive state (Deng and 
Haigh 2021). Our research group is thus expected to present an available 
analytical framework, allowing the underlying failure mechanisms and 
complex load transfer mechanisms of retaining structures under RT 
mode to be taken into account. 

This study aims to present an analytical approach to estimate the 
earth pressure in narrow cohesive-frictional soils behind rotating walls 
about the top. In what follows, the failure mechanisms and load transfer 
mechanisms of narrow cohesive-frictional soils are first interpreted by 
FELA. On this basis, we establish a calculation model composed of upper 
and lower stress zones where the rotation trajectories of major and 
minor principal stresses are distinguished. The ADEM is subsequently 
employed to derive the mathematical expressions for calculating the 
earth pressure in narrow soils. The proposed solutions are validated 
against the previous experimental data, FELA results, and existing 
analytical solutions, both in cohesionless soils and cohesive soils. A 
parametric study is further conducted to understand the change laws of 
earth pressure and resulting thrust as well as the height of the applica-
tion point. 

2. Preliminary numerical work 

FELA is an advanced numerical technique incorporating both the 
limit plastic theorem and the generalized variational principle. The 
exact solution (e.g. limit load or safety factor) can be bracketed between 

the upper bound (UB) and the lower bound (LB) solutions given by 
FELA. More details can be found in Sloan (2013). 

In this paper, a commercial FELA software, Optum G2 (Academic 
edition), was chosen to study the earth pressure problems of narrow 
backfill behind the wall under the RT mode. The software is capable of 
automatically generating finite-element mesh using adaptive mesh 
refinement in light of a specific target (generally shear dissipation band). 
The FELA solutions are obtained by multi-iterations to quickly approx-
imate the real solution. These advantages provide immense convenience 
for the investigation into complex failure mechanisms under various 
working conditions. Till now, Optum G2 has been extensively used to 
solve a variety of geotechnical problems (Ukritchon and Keawsa-
wasvong, 2016; Khatri et al., 2017; Chen et al., 2019; Lai et al., 2020; Lai 
et al., 2022a). 

2.1. Problem definition 

The active responses of the retaining system under the RT mode are 
investigated by the problem definition presented in Fig. 2 (a). Cohesive- 
frictional soils with unit weight γ, cohesion c, and friction angle ϕ are 
assumed to be homogenous and isotropic. Two vertical rigid retaining 
walls with height (H) were placed on both sides of the backfill with a 
narrow width (B). The walls are considered rough and the wall-soil 
interface friction angle is δ. A roughness factor μ of tanδ/tanϕ can be 
thus defined to characterize the degree of interface roughness, and the 

Fig. 1. Practical examples of retaining walls with narrow soils: (a) adjacent excavations; (b) excavation near pile foundations; (c) montane highway and; (d) 
excavation near basements. 
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interface adhesion is μ⋅c. A summarization of basic model parameters is 
shown in Table 1. 

2.2. Numerical model details 

In the established numerical model, the top boundary was set to be 
free while the bottom boundary was perfectly constrained. The right- 
side wall was then fully fixed; but for the left-side wall, rotation at the 
top was permitted while the horizontal and vertical displacements were 
constrained. A horizontal concentrated load multiplier of 1kN/m was 
thus imposed on the toe of the left-side wall to produce the active RT 
failure mode. 

In the process of meshing, 6-node Gauss elements were generated in 
the soil domain as well as retaining walls were modeled by weightless 
rigid plate elements, where soil-structure elements were also automat-
ically created along with the depth at the wall-soil interface. The soils 
followed an elastic, perfectly plastic Mohr-Coulomb (MC) model where 
the associated flow rule was selected under drained conditions. It is 
significant to be noted that although the associated flow rule, inherently 
employed in FELA, is somewhat unrealistic in practice, it provides 
clearer shear bands than non-associated flow rule (Tschuchnigg et al., 
2015), which is of course beneficial for the observation of the underlying 
failure mechanisms. The influences of flow rule on the estimation of 
earth pressure are worthy of further numerical investigations as the 
analytical approach presented following does not address this issue. It is, 

however, clearly out of the scope of the paper. In addition, to capture the 
potential shear bands, the initially generated mesh would be refined 
according to the energy of shear dissipation, and the number of mesh 
gradually increased from 5, 000 to 10, 000 during the iteration [Fig. 2 
(b-c)]. 

2.3. Failure mechanisms 

During the numerical simulation, four dimensionless parameters, 
including aspect ratio (H/B), normalized soil cohesion (c/γH), soil fric-
tion angle(ϕ), and roughness factor (μ) of the wall-soil interface were set 
as control variables. 

Fig. 3 illustrates the influence of the variables in turn (i.e., H/B, c/γH, 
ϕ, μ). As shown in Fig. 3a, for narrow soils, a curved failure surface 
develops from the rotating wall toe and then interacts with the stable 
wall. The height of the failure surface observed remains unchanged 
when increasing aspect ratio (backfill height). It also means that if 
reducing backfill width at a fixed backfill height, the initial rupture 
angles (sliding angles) to the horizontal (αf) theoretically are almost the 
same, as reported by Lai et al. (2022a). It is without a doubt that the 
larger soil cohesion is beneficial for keeping the stability of retaining 
systems, however, the soil cohesion seems to have a smaller effect on the 
shape of the failure surface (Fig. 3b). From Fig. 3c, we can see that both 
the total height of the failure surface and initial rupture angle αf increase 
obviously with the increase of soil friction angle. Fig. 3d indicates that 
an increase of the roughness factor of the wall-soil interface leads to the 
reduction in the initial rupture angle αf, but the height of the slip sur-
face’s height behaves oppositely. 

In all, it can be concluded from the observed failure mechanism that 
the narrow soils behind retaining walls undergoing RT mode only have 
one curved slip surface, and the variation of initial rupture αf is mainly 
governed by frictional behaviors of soils and wall-soil interfaces. This 
provides an important basis for the establishment of the following 
calculation model. 

2.4. Arching-induced principal stress rotation 

The phenomenon of principal stress rotation is typically introduced 
to quantitatively characterize the soil arching effect of retaining struc-
tures, therein the mathematical description of the rotation trajectory 
shape of major and minor principal stresses (σ1 and σ3) is essential for 
the use of HDEM or ADEM. While for the active rotation/translation of 
retaining walls, the soil arching effect is generally characterized by 
mathematically describing the rotation trajectory of σ3. It follows that 
the bow-shaped distribution of earth pressure along with the wall depth 
would be seen (Paik and Salgado, 2003; Chen et al., 2019; Lai et al., 
2022a). That is, the point of maximum active earth pressure is located 
around the wall toe. However, this intuitionistic phenomenon does not 
well match with the experimental results under the RT mode reported by 
Deng and Haigh (2020) and Xu et al. (2022). Using centrifuge tests, 
Deng and Haigh (2020) pointed out that the shallow layer of backfills 
forms a highly-stressed zone, causing the earth pressure at the top to 
increase with the active wall movements. This is because the wall 
movement mode of RT restricts the displacement of shallowly- 
embedded soils, but promotes the collapse of deeply-embedded soils. 

To thoroughly explain this intuitionistic phenomenon, the principal 
stress rotation induced by the soil arching effect is illustrated in Fig. 4b. 
Compared to Lai et al. (2022a), the upper zone in the figure appears the 
continuous rotation trajectories of σ1, rather than those of σ3. Therefore, 
we believe that the so-called “highly-stressed zone” at the top can be 
explained by mechanisms of active trapdoor problems (e.g. tunneling 
and piping). In addition, the lower zone sketched in the figure is like the 
assemblage of upper and lower zones described by Lai et al. (2022a), 
although the shapes of failure surfaces are various (see Fig. 4a). 

It follows from Fig. 4b that the depth of transition between the upper 
and the lower zones almost corresponds to the embedded depth of the 

Fig. 2. FELA model under plane strain condition: (a) geometric configuration; 
(b) mesh generation without adaptive mesh refinement and (c) mesh generation 
with adaptive mesh refinement. 

Table 1 
Model parameters of cohesive-frictional soil adopted in FELA.  

Soil parameter Value Reference 

Unit weight [γ (kN/m3)] 18.5 Deduced from Lai et al. 
(2022a) Cohesion [c (kPa)] 5 

Friction angle [ϕ (◦)] 25 
Friction angle of wall-soil interface [δ (◦)] 15.63 
Young’s modulus [E0 (MPa)] 12 
Poisson’s ratio (ν) 0.33 
Coefficient of lateral earth pressure at rest 

(K0) 
0.43  
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trapdoor. It means that the height of upper zone may correspond to the 
critical soil arch height of determined with high complexity. It was re-
ported that the critical soil arch height is mainly determined by trapdoor 
width and soil friction angle, and the soil cohesion has a negligible effect 
(Low et al., 1994; Horgan and Sarsby, 2002; Naughton and Kempton, 
2005; Lu and Miao, 2015;). For retaining structures, the wall-soil 
interface friction factor should be of course involved for the soil arch-
ing problem. To confirm our inference, the heights of the upper zone 
(H1) in various cases obtained using FELA are summarized in Table A1 of 
Appendix A. The table clearly show the effect of soil cohesion on the 
height of the upper zone can be almost neglected, hence supporting the 
reasonability of the above inference. Due to a fact that the value of H1 is 
difficult to mechanically determine using analytical approach. Alterna-
tively, a best-fitted equation with a coefficient of determination (R2) of 
94.56%, based on the FELA results in Table A1, is presented to 
approximately calculate the height of the upper zone: 

Fig. 3. Effect of four dimensionless parameters on the failure mode of narrow soils behind rotating wall about the top: (a) aspect ratio (c/γH = 0.027, ϕ = 25◦ and μ 
= 0.6); (b) soil cohesion (H/B = 0.2, c/γH = 0.027 and μ = 0.6); (c) soil friction angle (H/B = 0.2, c/γH = 0.027 and ϕ = 25◦) and (d) roughness factor (H/B = 0.2, ϕ 
= 35◦ and μ = 0.6). 

Fig. 4. FELA observations: (a) failure mode; (b) rotation of principal stresses 
and (c) established calculation model. 

Table 2 
Optimal value of constant coefficients for closed-form 
approximation.  

Optimal parameter Value 

p1  − 1.363 
p2  1.351 
p3  12.486 
p4  0.017 
p5  3.581 
p6  0.466 
p7  0.383  
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H1 = [
(B/H)

p1 (p4 + p5tanδ + p6tanϕ)
1 + p2tanφ + p3tanδ

− (p7 − tanδ)2
]B (1) 

where p1-p7 are constant coefficients tabulated in Table 2. 
The shape of rotation trajectories of principal stresses also attracted 

the attention of many researchers. They attempted to use elliptic, cate-
nary, parabolic, or circular-arc-shaped curves to formulate rotation 
trajectories of principal stresses. Lai et al. (2022a) have demonstrated 
that the rotation trajectories of σ3 well follow the circular-arc function, 
as also seen in Fig. 4 (b). In fact, among them, the circular-arc trajectory 
is well-accepted and recommended in some literature (Handy, 1985; 
Paik and Salgado, 2003; Chen et al., 2017; Cao et al., 2020; Lai et al., 
2022a), as it can be more easily described using mathematical equa-
tions. Here we still select the circular-arc to approximate the rotation 
trajectories of σ1 or σ3. 

3. Calculation framework 

3.1. Basic assumptions 

To formulate the earth pressure in narrow backfills under the RT 
mode, a calculation model is established considering both load transfer 
mechanisms and failure mechanisms, as shown in Fig. 4c. Some basic 
assumptions are made for simplification, as follows: 

(1) The active rotation of retaining walls about the top is sufficient to 
cause the active limit state of soil and full mobilization of wall-soil 

interface strength. 
(2) The slip surface developed from the wall toe follows a log-spiral 

curve with an initial rupture angle αf between the slip surface and the 
horizontal obtained using Coulomb’s theory, as below: 

αf = arctan(

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tan2ϕ +
tanϕ

tan(ϕ + δ)

√

+ tanϕ) (2) 

(3) The rotation trajectories of both major principal stress in the 
upper zone and minor principal stress in the lower zone are assumed to 
be circular arcs. 

3.2. Derivation procedure 

3.2.1. Upper zone 
The formulations for earth pressure exerted into narrow cohesive- 

frictional soils in the upper zone under the RT mode are derived in 
this part. According to the interpreted load transfer mechanisms, arched 
differential element A1A1

′D1
′D1 with a thickness of dz [Fig. 5 (a)] is 

constructed along the rotation trajectories of major principal stresses. 
Considering FELA observations in Fig. 4 (b) and 5 (a), the rotation 

angle θw is given as. 

θw = arctan(
N − 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(N − 1)2
− 4Ntan2δ

√

2tanδ
) (3) 

where N is the coefficient obtained by the MC failure criterion, and 

Fig. 5. Calculation model in: (a) upper zone; (b) lower zone I and (c) lower zone II.  
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can be written as. 

N =
σ1 + ccotϕ
σ3 + ccotϕ

= tan2(
ϕ
2
+

π
4
) (4) 

The more detailed derivations of θw can be found in Appendix B. 
The rotation trajectory of σ1 is considered to be the circular-arc, as 

shown in Fig. 5 (a), the radius RA1D1 of the circular arc thus calculated 
using. 

RA1D1 =
B

2sinθw
(5) 

It is assumed that the minor principal stress on the boundary A1D1 
linearly increases with the height difference Δz1 between point A1 and 
the arbitrary point i. Namely, 

σi
3 = σ0

3 + γ△z1 (6) 

where σ0
3 is the minor principal stress at point A1 and σi

3 is the minor 
principal stress at arbitrary point i. 

From Fig. 5 (a), we can see. 

△z1 = RA1D1 (sinθw − sinθ) (7) 

There are only minor principal stresses acting on A1D1. The vertical 
resulting force FA1D1

z on A1D1 can be thus calculated: 

FA1D1
z = 2

∫ π
2

π
2− θw

σi
3RA1D1 sinθdθ (8) 

Substituting Eqs. (6) and (7) into Eq. (8) leads to. 

FA1D1
z = 2σ0

3RA1D1 sinθw - γR2
A1D1

(
θw

2
+

sin2θw

4
− sin2θw) (9) 

Similarly, vertical resulting force on A1
′D1

′ can be obtained: 

FA′

1D′

1
z = 2(σ0

3 + dσ0
3)RA1D1 sinθw − γR2

A1D1
(
θw

2
+

sin2θw

4
− sin2θw) (10) 

The vertical resulting forces on lateral boundaries, A1A1
′ and D1D1

′, 
are calculated using. 

FA1A′

1
z = FD1D′

1
z = (σw + ccotϕ)tanδdz = (σ0

1 + ccotϕ)(cos2θw +
sin2θw

N
)tanδdz

(11) 

Moreover, the gravity of arched differential element A1A1
′D1

′D1 is. 

G1 = γBdz (12) 

Now we can establish the vertical mechanical equilibrium equation, 
as follows: 

FA1A′

1
z +FD1D′

1
z +FA′

1D1
′

z − FA1D1
z = G1 (13) 

Substitution of Eqs. (9), (10), (11) and (12) into Eq. (13) yields. 

dσ0
3

dz
+C1σ0

3 +C2 = 0 (14) 

where. 

C1 =
N(cos2θw + sin2θw

N )tanδ
Rsinθw

(15)  

C2 = −
γB − 2ccotϕtanδ

2Rsinθw
(16) 

Solving Eq. (14) gives. 

σ0
3 =

C2

C1
(e− C1z − 1) (17) 

Further substituting Eq. (4), Eq. (B. 1) into Eq. (17), the earth pres-
sure of narrow cohesive-frictional soils in the upper zone can be ob-
tained as. 

σu
w = N(σ0

3 + ccotϕ)(cos2θw +
sin2θw

N
) − ccotϕ (18)  

3.2.2. Lower zone 
The determination of the earth pressure in the lower zone can be 

divided into two parts, according to the force condition. The first part is 
that both sides of the rotation trajectory of minor principal stress (the 
element A2A2

′D2
′D2 in Fig. 5b) are wall-soil interfaces. Differently, the 

second part is that one side is the wall-soil interface and the other side is 
the curvilinear slip surface. It is thus necessary to calculate the total 
height of two parts, and then calculate their earth pressure, respectively. 

As described above, the equation of the log-spiral slip surface is given 
as. 

r(θ) = r0eθtanφ (19) 

where r(θ) is the polar radius of the log spiral, θ is the angle of any 
points on the slip surface within the polar coordinate system, and r0 is 
the initial polar radius of the log spiral, which can be expressed as. 

r0 =
B

eθ2tanϕcosθ2 − eθ1tanϕcosθ1
(20) 

where θ1 is the angle of the log spiral at the wall toe, θ2 is the angle 
parameter of the log spiral equation at the stable wall. The derivations of 
r0, θ1 and θ2 can be found in Appendix C. 

Thus, the height H3 of the lower zone II can be expressed as. 

H3 = r0(eθ1tanϕsinθ1 − eθ2tanϕsinθ2) (21) 

The height H2 of the lower zone I can be further given as. 

H2 = H − H1 − H3 (22) 

The force derivation in lower zone I (Fig. 5b) is like that of the upper 
zone mentioned by Lai et al. (2022a). Therefore, a detailed derivation 
can refer to Lai et al. (2022a). Note that, the magnitude of the major 
principal stress on the rotating wall between the upper and the lower 
zones should be continuous, which is adopted as the boundary condition 
for solutions. Here we can give the expression of earth pressure in lower 
zone I, as described by. 

σl1
w = (cos2θw +

sin2θw

N
)[

C4

C3
(e− C3z − 1) + Q + ccotφ)] − ccotφ (23) 

where. 

C3 =
(cos2θw + sin2θw

N )tanδ
Rcosθw

(24)  

C4 = −
γB − 2ccotϕtanδ

2Rcosθw
(25)  

Q = −
C4

C3
(e− C3H1 − 1)+

C2

C1
(e− C1H1 − 1) (26) 

The rotation angle θs of major principal stress on slip surface to the 
horizontal can be given as. 

θs =
π
4
−

ϕ
2
+α =

3π
4
+

ϕ
2
− θ (27) 

The derivation of θs is showed in Appendix A. 
According to the geometric relationships in Fig. 5 (c), we have. 

∠A3OD3 = θs − θw (28)  

∠OA3A′

3 = θw +
π
2

(29) 

Combining Eqs. (28) and (29) gives. 

∠D3A3A
′

3 =
θw + θs

2
(30) 
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Further according to the geometric relationships in Fig. 5 (c), we 
obtain. 

lA3D3 =
r(θ)cosθ − r(θ1)cosθ1

sin(θw+θs
2 )

(31) 

The radius of RA3D3 can be thus provided as. 

RA3D3 =
lA3D3

sin(∠A3OD3
2 )

(32) 

Substituting Eqs. (28) and (31) into Eq. (32) to get. 

RA3D3 =
r(θ)cosθ − r(θ1)cosθ1

2sin(θw+θs
2 )sin(θs − θw

2 )
(33) 

Similarly, the radius of σ3 rotation trajectory on the lower boundary 
and the accompanied arc length in the element A3A3

′D3
′D3 can be 

expressed as 

RA3
′D3

′ =
r(θ + dθ)cos(θ + dθ) − r(θ1)cosθ1

2sin(θw+θs
′

2 )sin(θs
′ − θw
2 )

(34) 

The major principal stress on the boundary A3D3 is assumed to lin-
early increase with the height difference Δz3 between point A3 and 
arbitrary point i (Lai et al., 2022a), which can be expressed as 

σi
1 = σ0

1 + γ△z3 (35) 

where σ0
1 is the major principal stress at point A3 and σi

1 is the major 
principal stress at arbitrary point i. And Δz3 can be expressed as 

△z3 = RA3D3 (sinθw − sinθ) (36) 

The horizontal and vertical forces on the upper boundary of arched 
differential element A3A3

′D3
′D3 can be thus determined by the integra-

tion, as follows: 

FA3D3
x =

∫ θs

θw

σi
1RA3D3 cosθdθ = σ0

1RA3D3 t1 +
1
2

γR2
A3D3

t2
1 (37)  

FA3D3
z =

∫ θs

θw

σi
1RA3D3 sinθdθ = σ0

1RA3D3 t2 + γR2
A3D3

t3 (38) 

where. 

t1 = sinθs − sinθw (39)  

t2 = cosθw − cosθs (40)  

t3 =
θs − θw

2
−

sin2θs + sin2θw

4
+ cosθssinθw (41) 

Similarly, the horizontal and vertical forces on the lower bound of 
differential element A3A3

′D3
′D3 thus can be expressed as. 

FA′

3D′

3
x = (σ0

1 + dσ0
1)(m1RA3D3 + mRt1)+

1
2

γ(t2
1R2

A3D3
+ 2mRRA3D3 t2

1

+ 2m1t1R2
A3D3

) (42)  

FA′

3D′

3
z = (σ0

1 + dσ0
1)(m2RA3D3 + mRt2)+ γ(t3R2

A3D3
+ 2mRt3RA3D3 + m3R2

A3D3
)

(43) 

where 

m1 = − cosθs (44)  

m2 = − sinθs (45)  

m3 = −
1
2
+

cos(2θs)

2
+ sinθssinθw (46)  

mR =
dRA3D3 (θ)

dθ
(47) 

ConsideringxD3 − xA3 = r(θ)cosθ − r(θ1)cosθ1, the ordinate z(θ) of A3 
can be expressed as 

z(θ) = r(θ)sinθ −
r(θ)cosθ − r(θ1)cosθ1

tan(θw+θs
2 )

− r(θ1)sinθ1 +H (48) 

Moreover, the length dz of the boundary A3A′

3 can be given as 

dz = mzdθ (49) 

where 

mz =
∂z(θ)

∂θ
(50) 

The horizontal and vertical forces acting on boundaries A3A3
′ and 

D3D3
′ can be provided as 

FD3D′

3
x = lD3D′

3
(− σf sinα + τf cosα) (51)  

FD3D′

3
z = lD3D′

3
(σf cosα + τf sinα) (52)  

FA3A′

3
x = (σ0

w + ccotϕ)dz = (σ0
1 + ccotϕ)(cos2θw +

sin2θw

N
)dz (53)  

FA3A′

3
z = (σ0

w + ccotϕ)tanδdz = (σ0
1 + ccotϕ)(cos2θw +

sin2θw

N
)tanδdz

(54) 

where σf is the normal stress on the slip surface,τf is the shear stress 
on the slip surface. 

The curve length lD3D′

3 
can be calculated, as follow: 

lD3D′

3
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2(θ) + r′
(θ)2

√

dθ (55) 

The weight of the arched differential element A3A3
′D3

′D3 in Fig. 5 (c) 
can be calculated as. 

G2 = γ(SA3A′

3D′

3D3
− S1 + S2) (56) 

where 

S1 = SA3D3 − SΔOA3D3 = R2
A3D3

[θs − θw −
sin(θs − θw)

2
] (57)  

S2 = SA3
′D3

′ − SΔO′A3
′D3

′ = (R2
A3D3

+ 2mRRA3D3 dθ)[θs
′ − θw −

sin(θs
′ − θw)

2
]

(58)  

SAA′ D′ D =
(lA3D3 + lA′

3D′

3
)mzsin∠DAA′

2
dθ = mz[r(θ)cosθ − r(θ1)cosθ1]dθ

(59) 

Substituting Eqs. (57), (58) and (59) into Eq. (56), we obtain. 

G2= γ{mz[r(θ)cosθ − r(θ1)cosθ1]+

R2
A3D3

[cos(θs − θw) − 1] + 2mRRA3D3 [θs − θw − sin(θs − θw)]}dθ
(60) 

The mechanical components involved in the horizontal and vertical 
mechanical equilibrium equations can be written as: 

FA3A′

3
x − FA3D3

x +FA′

3D′

3
x +FD3D′

3
x = 0 (61)  

FA3A′

3
z − FA3D3

z +FA′

3D′

3
z +FD3D′

3
z − G2 = 0 (62) 

Substituting the corresponding variables into Eqs. (61) and (62), we 
have 

(a1 + a4)σ0
1dθ+ a2dσ0

1 + a3dθ+ lD3D′

3
c1σf = 0 (63)  

(b1 + b4)σ0
1dθ+ b2dσ0

1 +(b3 − b5)dθ+ lD3D′

3
c2σf = 0 (64) 
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where 

a1 = m1RA3D3 +mRt1 (65)  

a2 = t1RA3D3 (66)  

a3 = γ(t1R2
A3D3

m1 + mRt2
1RA3D3 )+ ccotϕ(cos2θw

+
1
N

sin2θw)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2(θ) + r′
(θ)2

√

ccosα (67)  

a4 = mz(cos2θw +
1
N

sin2θw) (68)  

b1 = m2RA3D3 +mRt2 (69)  

b2 = t2RA3D3 (70)  

b3 = γ(m3R2
A3D3

+ 2mRRA3D3 t3)+ ctanδcotϕ(cos2θw

+
1
N

sin2θw)+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2(θ) + r′
(θ)2

√

csinα (71)  

b4 = mztanδ(cos2θw +
1
N

sin2θw) (72)  

b5 = γ{mz[r(θ)cosθ − r(θ1)cosθ1] + R2
A3D3

[cos(θs − θw) − 1] + 2mRRA3D3 [θs

− θw − sin(θs − θw)]}

(73)  

c1 = tanϕcosα − sinα (74)  

c2 = cosα+ tanϕsinα (75) 

Substituting Eq. (63) into Eq. (64) to eliminate σf provides. 

w1σ0
1dθ+w2dσ0

1 +w3dθ = 0 (76) 

Thus, 

dσ0
1

dθ
+

w1

w2
σ0

1 +w3 = 0 (77) 

where 

w1 = (a1 + a4)c2 − (b1 + b4)c1 (78)  

w2 = a2c2 − b2c1 (79)  

w3 = a3c2 − (b3 − b5)c1 (80) 

Fig. 6. Calculation flowchart.  

D. Yang et al.                                                                                                                                                                                                                                    



Computers and Geotechnics 149 (2022) 104849

10

We can solve Eq. (77), which is a first-order differential equation for 
the major principle stress, using a finite-difference method, as written 
by: 

σ0
1(θ + Δθ) = σ0

1(θ) −
w1σ0

1 + w3

w2
Δθ (81) 

Then, according to Eq. (4), the earth pressure in narrow cohesive- 
frictional soils of the lower zone II can be expressed as 

σl2
w = (cos2θw +

sin2θw

N
)(σ0

1 + ccotϕ) − ccotϕ (82)  

3.3. Total thrust and height of application point 

To meet the requirements in engineering design, and to provide 
engineers with more intuitive parameters to evaluate the retaining wall 
ability against overturning, equations for calculating total thrust of 
narrow soil and the corresponding height of application point based on 
the proposed method are given, as below: 

Etotal =

∫ H1

0
σu

wdz+
∫ H1+H2

H1

σl1
w dz+

∫ H

H1+H2

σl2
w dz (83) 

Eq. (83) can be expressed in the dimensionless form: 

Ktotal =
2Etotal

γH2 (84) 

where Ktotal is defined as the thrust coefficient based on Coulomb’s 
earth pressure theory. 

Further calculating the moment on the wall toe, the height zs of the 
application point of earth thrust to the wall toe can be consequently 
obtained: 

zs =

∫ H1
0 σu

w(H − z)dz +
∫ H1+H2

H1
σl1

w (H− z)dz +
∫ H

H1+H2
σl2

w (H − z)dz
Etotal

(85)  

3.4. Calculation flowchart 

A calculation flowchart is given in Fig. 6, showing key steps to obtain 
the distribution of earth pressure along the wall depth, and key design 
parameters (i.e. Ktotal and zs/H) for a routine design. An in-house Python 

code (see supplementary material) is employed for running the calcu-
lation. At the first step, four dimensionless variables, i.e., H/B, c/γH, ϕ, 
and μ will be required to input in the program. Then, the height of the 
three stress zones will be determined. The subsequent calculation will be 
processed following the proposed analytical approach, which involves 
comprehensive considerations of the soil arching effect and the induced 
stress rotation, the shearing force between adjacent elements, the soil 
cohesion, as well as curved (log-spiral) slip surfaces. 

4. Comparisons and validations 

As emphasized by Lai et al. (2022a), to take an analytical approach 
into a routine geotechnical problem (e.g. retaining wall design), it 
should be comprehensively assessed using well-established and 
relatively-controllable laboratory tests or numerical simulation. More-
over, comparing traditional theories and existing analytical approaches 
are an effective means for showing the strengths of a newly presented 
approach. Here, the lateral earth pressure in both narrow cohesionless 
and cohesive soils obtained from the proposed approach will be 
compared with the data from model tests, FELA, and existing analytical 
approaches. 

4.1. Cohesionless soils 

The model tests exploring the earth pressure distribution of narrow 
cohesionless soil behind retaining walls under RT mode were conducted 
by Xu et.al (2022) and were introduced here as a benchmark to validate 
the proposed analytical approach. In model tests, a rigid wall was con-
structed to retain narrow backfills with a height of 1 m and a width of 
0.3 m, hence H/B = 3.3. Fujian standard sand was selected as backfilled 
material with a friction angle of 30.16◦ and a unit weight of 14.5 kN/m3. 
The roughness factor of the wall-soil interface was 0.507. More detailed 
parameters can refer to Xu et al. (2022). On this basis, we produce a 
FELA numerical model to obtain the upper bound (UB) and lower bound 
(LB) solutions. The results from traditional theories [e.g. Jaky’s, Ran-
kine’s, and Coulomb’s solutions] and two existing analytical approaches 
for narrow backfills under the T (Chen et al., 2017) and RT modes (Lai 
et al., 2022a) are further used for the comparison, respectively. 

Fig. 7 presents the comparisons among the proposed approach, 
model tests, FELA solutions, traditional theories, and existing analytical 
approaches. It can be found that, compared with the current theoretical 
solutions, the proposed approach provides the best approximation to the 
measured values from Xu et al. (2022) and FELA solutions. A slight 
deviation from the measured values in the upper zone might be due to 
the scale effect of model tests. The accuracy of the proposed approach 
can be thus confirmed. 

Interestingly, we observe that both the measured values of normal-
ized earth pressure coefficient σw/γz and the proposed solutions in the 
upper zone are much larger than the solutions given by traditional 
theories based on the backfills with semi-infinite space at rest or the 
active state. Further comparisons with two existing analytical ap-
proaches aiming at T and RB modes are no exception. From observations 
and comparisons, the proposed solutions in the upper zone are closer to 
Rankine’s passive solutions, however, the earth pressures in the lower 
zone are mobilized towards an active state. As emphasized earlier, this 
counterintuitive phenomenon can be explained using the experimental 
work by Deng and Haigh (2020). This also confirms soils in the upper 
zone form a highly-stressed zone which enters the intermediate passive 
state with active wall rotation. The introduction of σ1 rotation trajectory 
in the proposed analytical approach more accurately quantifies the soil 
arching effect in the upper zone, differing from that in the existing 
analytical approaches (σ3 rotation trajectory). The two existing analyt-
ical approaches under the T and the RB modes are confirmed to be un-
safe for the practical design of retaining walls undergoing the RT mode. 
Therefore, we recommend using the proposed analytical approach to 
estimate the earth pressure exerted by narrow soils behind active 

Fig. 7. Comparisons among the results from the proposed approach, model 
experiment, centrifuge test FELA, and existing theoretical solutions for cohe-
sionless soils. 
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rotating walls about the top. 

4.2. Cohesive-frictional soils 

Till now, to the best of the author’s knowledge, experimental studies 
of earth pressure’s distribution are mainly focused on cohesionless soils, 
few on cohesive-frictional soils. Therefore, a FELA model is established 
here for validation. The inputted model parameters refer to Lai et al. 
(2022a). The UB and LB solutions of FELA are obtained and then 
compared in Fig. 8. The traditional theories are also introduced for 
comparisons. The figure shows that the proposed approach can perfectly 
fit numerical results for cohesive soils. It can be found that compared 
with traditional solutions, the solutions proposed in this paper have 

higher accuracy in describing the nonlinear distribution of earth pres-
sure of narrow backfills under the RT mode. Traditional solutions 
deviate greatly from real ones, which further illustrates the importance 
of this approach. The active state of the lower zone and the intermediate 
passive state of the upper zone are also clearly seen in Fig. 8. 

5. Parametric study 

A parametric study of the proposed analytical approach was carried 
out in this section. Sensitive influencing parameters, including aspect 
ratio (H/B), normalized soil cohesion (c/γH) and soil friction angle (ϕ), 
wall-soil interface roughness factor (μ), were selected for parameter 
analyses. Normalized earth pressure coefficient σw/γz, thrust coefficient 
Ktotal and height of application point of active thrust to the base zs/H, 
generally regarded as routine indicators for retaining wall design, were 
calculated under various working conditions. It should be noted that the 
objective of a parametric study is to better guide the engineering design. 
Therefore, the calculated parameters should cover the practical ranges. 
For this purpose, the aspect ratio is set from 3 to 6, the normalized soil 
cohesion (c/γH) is varied from 0 to 0.08, the soil friction angle covers 
from 5◦ to 45◦, and the wall-soil interface roughness factor was in a 
range of 0.2 to 0.8 (Lai et al. 2022a). 

5.1. Effect of aspect ratio 

The effect of aspect ratio on the distribution of the earth pressure σw/ 
γz along the normalized depth z/H is plotted in Fig. 9. Due to the division 
of various stress zones, the earth pressure in the upper zone is obviously 
higher than that in the lower zone. It also follows that the earth pressure 
σw/γz at a given z/H decreases with an increase of H/B for both the upper 
zone and the lower zone. This is due to the increase of H/B, the ratio of 
the contact friction at the wall-soil interface to the gravity of narrow 
soils increases, leading to a more remarkable soil arching effect. 
Therefore, the consideration of a narrower backfill width can yield a 
more economic design scheme. The obvious variation in σw/γz with the 
aspect ratio greatly confirms the necessity of presenting a design method 
to estimate the earth pressure exerted by narrow backfill. 

In essence, the height of the upper zone will have a significant impact 
on the distribution of earth pressure as the upper and lower zones have 
various stress states (intermediate passive and active). In light of Eq. (1), 
the height of the upper zone increases with an increase of the aspect 
ratio H/B, as seen in Fig. 9. It is of significance to understand the 

Fig. 8. Comparisons among the results from the proposed approach, FELA, and 
traditional theories for cohesive-frictional soils. 

Fig. 9. Normalized active earth pressure distribution along wall depth with 
varying aspect ratio. 

Fig. 10. Normalized active earth pressure distribution along wall depth with 
varying cohesion. 
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formation mechanism of the upper zone. Deng and Haigh (2020) 
pointed out that the active wall rotation about the top constrains the 
displacement of the shallowly-buried soil, but promotes the collapse of 
the deeply-buried soil. On this basis, decreasing backfill width at a given 
backfill height (equivalently increasing the H/B ratio), intensifies the 
constraint of narrow backfills, in particular for the upper zone. 

5.2. Effect of soil cohesion 

Although clean, coarse-grained, well-drained granular materials (e. 
g. gravels) are typically used as backfill materials, cohesive soils are 
sometimes used as backfill materials for an economic purpose (Li and 
Yang 2019; Lai et al. 2022a). Anderson (2008) reported that the earth 
pressure in cohesive soils with the cohesion of 10kpa is significantly 
lowered to 25–50% of that in cohesionless soils, the neglection of soil 
cohesion likely results in an enormous overestimation of earth pressure. 
To improve the solution in cohesive soils, this part attempts to explore 
the influence of cohesion on the earth pressure problem of narrow 

backfill under the RT mode. 
Fig. 10 presents the variation in earth pressure σw/γz along wall 

depth z/h for various soil cohesion. As shown in Fig. 10, σw/γz decreases 
when increasing the soil cohesion for a fixed wall depth. Despite the soil 
cohesion varies, the distribution law of σw/γz remains unchanged. The 
reason can be given as: (i) The soil cohesion has a negligible influence on 
the shape of slip surface, the rotation trajectory of principal stress, and 
the division of calculation zones. (ii) The proposed analytical approach, 
based on the elastic-perfectly plastic Mohr-Coulomb failure criteria, 
neglects the effect of tensile loading (Lai et al. 2022a). 

The effect of soil cohesion on the thrust coefficient Ktotal and the 
height of application point to the base zs/H are further plotted in Fig. 11 
(a) and 11 (b). It can be observed from Fig. 11(a) that increasing soil 
cohesion produces a linear reduction in Ktotal. Correspondingly, the 
reduction magnitude of Ktotal can be up to approximately 26%~42% as 
c/γH increases from 0 to 0.04, which supports the viewpoint of Anderson 
(2008). In Fig. 11 (b), completely differing from the RB mode (nonlinear 
decrease of zs/H) studied by Lai et al. (2022a), the zs/H increases in the 
shape of an inverted parabola as soil cohesion increases under the RT 
mode. This is because the reduction rate of resulting earth pressure by 
soil cohesion in the upper zone is always lower than that in the lower 
zone, essentially depending on the various stress states in the upper and 
lower zones. Therefore, the obtained zs/H is also always larger than 1/3 
suggested by Comlomb’s theory. That is, the stability of rotating walls 
about the top is underestimated in Coulomb’s theory. In conclusion, the 
considerations of calculation zone division and soil cohesion promote 
more accurate solutions. It should be pointed out that for clays with a 
higher effective cohesion, full mobilization of soil cohesion is not rec-
ommended to be used in practical design due to the strain-softening 
effect. A resulting residual soil cohesion is more reasonable on the safe 
side. 

5.3. Effect of soil friction angle 

Fig. 12 gives the distribution of σw/γz along z/H for various soil 
friction angles ϕ. It can be found that an increase of ϕ results in a notable 
increment of σw/γz in the upper zone and a corresponding reduction in 
the lower zone, respectively. This phenomenon can be explained by a 
fact that the higher the soil friction angle, the stronger the soil arching 
effect. The height of the upper zone increases with increasing ϕ to 
transfer more vertical loading by the arching, resulting in the larger 
earth pressure exerted onto the upper wall (see Fig. 12). In light of the 
two-stages-arching theorem proposed by Handy (1985), under a fixed 
vertical loading, the more loads the upper zone transfers, the less the 

Fig. 11. Effect of normalized soil cohesion under various aspect ratios on: (a) thrust coefficient and (b) normalized height of application point of thrust to wall base.  

Fig. 12. Normalized earth pressure distribution along wall depth with varying 
soil friction angle. 
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earth pressure exerted by the lower zone. In nature, it is consistent with 
the variations of passive and active earth pressure coefficients. When ϕ 
= 5◦, the values of σw/γz in both the upper and lower zones are close to 
1.0, corresponding to a hydrostatic pressure coefficient, which demon-
strates the accuracy of the proposed analytical approach in illustrating 
the influence of ϕ on the earth pressure problem. 

The variations in Ktotal and zs/H with ϕ under various H/B are plotted 
in Fig. 13 (a) and Fig. 13 (b), respectively. Differing from T (Chen et al., 
2017) and RB modes (Lai et al., 2022a), the changing law of Ktotal with ϕ 
under RT mode is not monotonic, which is related to the discrepancy in 
the rotation trajectories of principal stress for various wall movement 
modes. Fig. 13 (a) shows that the resulting earth pressure (normalized 
thrust coefficient) first increases to a threshold, then decreases with an 
increase in ϕ. Accordingly, highly frictional materials are recommended 
here to use as backfills. It follows from Fig. 13 (b) that, the application 
point of the thrust moves up as ϕ increases due to the underlying load 
transfer mechanisms, indicating that the higher ϕ yields the better sta-
bility of retaining structures under RT mode. The account of strain- 
softening effect also should be taken into the choice of the backfilling 

materials in practice. Dense sands with a higher friction angle tend to be 
softening as the shear strains increase. For the short-term analyses, the 
strain-softening effect mainly occurs on the slip surface, especially near 
the wall toe, which leads to an increase in the earth pressure in the lower 
zone II. For the long-term one, the whole backfill domain may undergo 
the strain-softening, thus the residual ϕ is suggested to be employed 
towards a conservative design. 

5.4. Effect of wall-soil interface roughness factor 

The interface friction force of retaining structures is an essential 
factor to mobilize the soil arching effect, hence having a significant in-
fluence on the distribution of the earth pressure. A roughness factor μ =
tanδ/tanϕ, known as the reduction coefficient of wall-soil interface 
strength, is introduced here for a quantitative evaluation of the effect of 
wall-soil interface friction angle δ. It should be noted that the soil fric-
tion angle ϕ is set as 35◦, therefore, we only require varying angle δ. 

Fig. 14 illustrates the distribution of σw/γH along z/H for various 
roughness factors μ. As shown in Fig. 14, as μ increases, the height of the 
upper zone increases and a reduction in σw/γH can be found in both 
upper and lower zones, meaning that increasing μ strengthens the soil 
arching effect. On the one hand, the increase of μ intensifies the re-
striction on the displacement of shallow soils, which facilitates the soils 
to approach the passive state. On the other hand, from the two-stages- 
arching theorem (Handy, 1985), the friction force provided from wall- 
soil interfaces transfers more gravity of backfills, hence reducing the 
earth pressure in both upper and lower zones for a given lateral earth 
pressure coefficient. 

Fig. 15 (a) and 15 (b) plot the variations in Ktotal and zs/H with μ 
under various H/B, respectively. As illustrated in Fig. 15 (a), for H/B 
varying from 3 to 5, Ktotal first increases to a threshold and then de-
creases with an increase of μ. However, when H/B = 6, Ktotal decreases 
with increasing μ. Such a strange phenomenon is due to the compre-
hensive effects of wall-soil interface friction and the variation of the 
upper zone. That is, although the more gravity is resisted by the interface 
for the larger μ, the height of the upper intermediate passive zone (the 
larger earth pressure exerted) increases according to Eq. (1). It again 
follows from Fig. 14, regardless of the change in heights of various 
zones, increasing angle δ will reduce the magnitude of σw/γH and has a 
more significant influence on the upper zone. Accordingly, in Fig. 15(b), 
we can observe a reduction in zs/H with an increase of μ. We can infer 
from Fig. 15 (a) and 15(b) that the retaining structures with smooth 
interfaces and/or lower H/B tend to be more stable, and a comprehen-
sive assessment into Ktotal and zs/H is suggested to be made for μ greater 

Fig. 13. Effect of soil friction angle under various aspect ratios on: (a) thrust coefficient and (b) normalized height of application point of thrust to wall base.  

Fig. 14. Normalized active earth pressure distribution along wall depth with 
varying wall-soil interface roughness factor. 
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than 0.4. 

6. Limitations 

The results have confirmed that the developed arched differential 
element method considering the intermediate passive zone well pre-
dicted the earth pressures of the narrow backfills under RT mode. There 
are, however, still somewhat imperfect due to a gap between practical 
conditions and the assumptions made. On the one hand, the consider-
ation of the intermediate passive zone better characterizes the stress 
condition of shallow soils, resulting in the more reliable earth pressure 
distribution. On the other hand, due to the complexity involved, the 
determination of the height of the upper zone still relies on an empirical 
equation, which should be deduced based on a sound mechanical prin-
cipal in the future. 

Simplifying the rotation trajectory of principal stresses in backfill 
zone has some influences on the calculated results. It was postulated in 
this paper that the wall-soil interface strength is fully mobilized to derive 
the rotation angle of the principal stress on the wall-soil interface. 

However, for an actively rotating wall, the strength of the wall-soil 
interface is likely being only partially mobilized in practice. That is, 
the mobilization of the soil arching effect relevant to the frictional 
behavior of wall-soil interface may be somewhat overestimated in the 
proposed approach. As indicated in Fig. 7 and Fig. 8, too optimistic 
estimation of the mobilization of the wall-soil interface strength leads to 
a lower value of earth pressure under the soil arching effect. Addition-
ally, the neglect of transition zone between the upper zone with rotation 
trajectory of σ1 and lower zone with one of σ3 results in a rapid jumping 
of earth pressure curve nearby. From the FELA results, there exhibits a 
gradually changing process in the rotation angles of principle stresses in 
the so-called transition zone. Towards a more precise estimation, more 
efforts are required to quantify the change laws of rotation angles of the 
principal stresses more accurately, in particular for the transition zones. 

7. Conclusions 

An improved arch differential element method, proposed by Lai et al. 
(2022a), comprehensively considering the effect of shear stress between 

Fig. 15. Effect of wall-soil interface roughness factor under various aspect ratios on: (a) active thrust coefficient and (b) normalized height of application point of 
active thrust to wall base. 

Table A1 
Normalized height (H1/B) of the upper zone obtained from Optum G2.  

H/B ϕ (◦) μ = 0.2 μ = 0.4 μ = 0.6 μ = 0.8 μ = 1.0   

c/γH = 0 c/γH = 0.08 c/γH = 0 c/γH = 0.08 c/γH = 0 c/γH = 0.08 c/γH = 0 c/γH = 0.08 c/γH = 0 c/γH = 0.08 

3 5  0.10  0.10  0.20  0.20  0.40  0.40  0.50  0.50  0.50  0.50 
15  0.25  0.25  0.50  0.50  0.60  0.60  0.75  0.75  0.90  0.90 
25  0.20  0.20  0.50  0.50  0.70  0.70  0.70  0.70  1.25  1.25 
35  0.20  0.20  0.60  0.60  0.80  0.80  1.10  1.10  1.20  1.20 
45  0.25  0.25  0.50  0.50  0.60  0.60  1.20  1.20  1.10  1.10 

4 5  0.15  0.15  0.50  0.50  0.60  0.60  0.75  0.75  0.90  0.90 
15  0.50  0.50  0.75  0.75  1.10  1.10  1.25  1.25  1.40  1.40 
25  0.50  0.50  0.75  0.75  1.10  1.10  2.00  2.00  1.65  1.65 
35  0.50  0.50  0.75  0.75  0.90  0.90  1.40  1.40  1.75  1.75 
45  0.50  0.50  0.77  0.77  1.00  1.00  1.50  1.50  1.50  1.50 

5 5  0.20  0.20  0.70  0.70  0.90  0.90  1.10  1.10  1.25  1.25 
15  0.75  0.75  1.10  1.10  1.50  1.50  1.75  1.75  2.10  2.10 
25  0.75  0.75  1.20  1.20  1.70  1.70  2.00  2.00  2.25  2.25 
35  0.75  0.75  1.10  1.10  1.60  1.60  2.00  2.00  2.25  2.25 
45  0.50  0.50  1.00  1.00  1.50  1.50  1.90  1.90  2.00  2.00 

6 5  0.55  0.55  0.90  0.90  1.20  1.20  1.50  1.50  1.75  1.75 
15  0.80  0.80  1.50  1.50  2.00  2.00  2.40  2.40  2.70  2.70 
25  1.00  1.00  1.50  1.50  2.20  2.20  2.60  2.60  3.00  3.00 
35  1.00  1.00  1.70  1.70  2.10  2.10  2.50  2.50  3.00  3.00 
45  0.80  0.80  1.25  1.25  1.90  1.90  2.20  2.20  2.50  2.50  
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adjacent horizontal elements and the soil arching effect (rotation of 
principal stress), was successfully extended, and employed to estimate 
the earth pressure exerted by narrow backfills behind retaining struc-
tures under the RT mode. Before that, the failure mechanisms of the 
retaining system were interpreted by a novel FELA technique. Based on 
FELA results, two stress zones, including the upper and the lower zones, 
were divided in light of the rotation trajectories of principal stresses. 
Moreover, to search for a more accurate solution, the traditional 
(planar) Coulomb slip surface was replaced by a more realistic log-spiral 
slip surface, and the effect of soil cohesion was also considered for 
cohesive-frictional backfills for an economic purpose. 

In-house python codes were then executed to obtain solutions to the 
proposed analytical approach. The comparisons among the results from 
recently published tests, FELA, existing analytical approaches, 

traditional theories, and the proposed solutions were carried out for 
validation. To understand the earth pressure problem in-depth, several 
key parameters (e.g. H/B, c/γH, ϕ, and μ) were selected for parametric 
studies to investigate the associated effects on σw/γz, K and zs/H. 

Based on the aforementioned analyses, the following conclusions can 
be drawn:  

(1) The active rotation about the top of walls with narrow backfills 
develops only one curved slip surface, which is mathematically 
closer to be the log-spiral instead of a traditional Coulomb surface 
(planar). As the wall rotates, the backfills’ stress redistributes, the 
upper intermediate passive zone with major principal stress 
rotation and lower active zone with minor one can be observed 
under the soil arching effect. Herein, the height of the upper zone 

Fig. B1. Mohr circles of stresses at: (a) the wall and (b) the slip surface.  
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correlates positively with H/B, ϕ, and μ; but c/γH has a neglectful 
influence on it.  

(2) For narrow cohesive-frictional backfills under the RT mode, the 
earth pressure in the upper zone is obviously higher than that in 
the lower zone in a specific case. Decreasing H/B and μ, and/or 
increasing c/γH can produce a reduction in the earth pressure in 
both the upper and the lower zones at a given depth. An increase 
of ϕ results in a notable increment of σw/γz in the upper zone, 
nevertheless a reduction in the lower zone.  

(3) Under the drained condition, for a given H/B, highly frictional 
and/or cohesive materials are recommended to use as backfills 
because they are beneficial for reducing the earth thrust. The H/B 
and μ have a comprehensive effect on the thrust, showing that for 
H/B = 3～5, K first increases to a threshold and then decreases 
with an increase of μ. However, when H/B = 6, K decreases with 
increasing μ.  

(4) The obtained zs/H under the RT mode is always larger than 1/3 
suggested by Comlomb’s theory which underestimates the sta-
bility of rotating walls about the top. For a fixed H/B, the larger c/ 
γH and ϕ, as well as the lower μ will move up the height of the 
application point, which is beneficial for maintaining the stability 
of retaining structures with narrow backfills. 
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Appendix A. . Numerical estimation of height of upper zone 

100 groups of normalized heights (H1/B) of upper zone in narrow backfills changing the aspect ratio (H/B = 3, 4, 5 and 6), soil friction angle (ϕ = 5, 
15, 25, 35 and 45◦) and wall-soil interface roughness factor (μ = 0.2, 0.4, 0.6, 0.8 and 1.0) are obtained using FELA. The results are illustrated in 
Table A1. 

Appendix B. . Derivation of the rotation angle of principal stress 

Fig. B1 (a) describes the stress state of several points distributed on an arched differential element using a Mohr circle placed on the coordinate 
system. 

For points A1, A2, and A3 at the arched soil-layer element in Fig. 5 (a), 5 (b), and 5 (c), respectively, we have. 

σw + ccotϕ = (σ1 + ccotϕ)cos2θw +(σ3 + ccotϕ)sin2θw (B1) 

where σw is the horizontal earth pressure, and θw is the rotation angle of major principle stress σ1. 
According to geometrical relations of the Mohr’s circle [Fig. 5 (a)], we have. 

[(σw + ccotϕ) − (σ3 + ccotϕ)]tanθw = (σw + ccotϕ)tanδ (B2) 

Substituting Eq. (B.1) into Eq. (B.2), we obtain. 

tanθw =
N + tan2θw

N − 1
tanδ (B3) 

Solving Eq. (B. 3) to get. 

θw = arctan(
N − 1 ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(N − 1)2
− 4Ntan2δ

√

2tanδ
) (B4) 

The points on the slip surface are at the limit state, where the Mohr circles are tangent to the Mohr-Coulomb failure line (see Fig. B1-b). Therefore, 
the rotation angle θs of the major principal stress at the slip surface can be expressed as. 

θs =
π
4
−

ϕ
2
+α =

3π
4
+

ϕ
2
− θ (B5)  

Appendix C. . Formulation of the log-spiral slip surface 

A log-spiral function is employed to approximate the curved slip surface, which can be derived using the variational limit equilibrium method (Das 
and Sobhan, 2013). The equation of the log-spiral slip surface is given as. 

r(θ) = r0eθtanφ (C1) 

According to the geometric relationships given in Fig. 5 (c), the following equations can be obtained: 

θ1 =
π
2
− αf +ϕ (C2) 
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α =
π
2
+ϕ − θ (C3) 

where α is an angle between the tangent line at any point on the slip surface and the horizontal. 
From MC failure criterion [Fig. 5 (b)], the rotation angle θs of major principal stress at the slip surface is given as. 

θs = α+
π
4
−

ϕ
2

(C4) 

In light of the observed results in Fig. 4 (b), we give. 

θw = arctan(
N − 1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(N − 1)2
− 4Ntan2δ

√

2tanδ
) (C5) 

θs at the intersection point between the stationary wall and the slip surface can be calculated by the limit equilibrium state of the wall-soil interface, 
as below: 

θs = π − θw (C6) 

Substituting Eqs. (C 0.2) and (B. 3) into (C. 6), we obtain. 

θ2 =
φ
2
−

π
4
+ θw (C7) 

Further according to the geometric relationship in Fig. 5 (c), we have. 

r0 =
B

eθ2tanϕcosθ2 − eθ1tanϕcosθ1
(C8)  

Appendix D. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.compgeo.2022.104849. 
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