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A B S T R A C T

We present an adaptive reduced-order model for the efficient time-resolved simulation of fluid–structure
interaction problems with complex and non-linear deformations. The model is based on repeated linearizations
of the structural balance equations. Upon each linearization step, the number of unknowns is strongly decreased
by using modal reduction, which leads to a substantial gain in computational efficiency. Through adaptive
re-calibration and truncation augmentation whenever a non-dimensional deformation threshold is exceeded,
we ensure that the reduced modal basis maintains arbitrary accuracy for small and large deformations. Our
novel model is embedded into a partitioned, loosely coupled finite volume–finite element framework, in which
the structural interface motion within the Eulerian fluid solver is accounted for by a conservative cut-element
immersed-boundary method. Applications to the aeroelastic instability of a flat plate at supersonic speeds, to
an elastic panel placed within a shock tube, and to the shock induced buckling of an inflated thin semi-sphere
demonstrate the efficiency and accuracy of the method.
1. Introduction

Fluid–Structure Interaction (FSI) occurs in a broad range of ap-
plications, such as blood flow through heart valves [1], flutter of
aircraft wings [2] and shock-induced deformations of rocket nozzles
and panels [3,4]. FSI simulations involve two different branches of
computational physics: Computational Fluid Dynamics (CFD), which is
often based on an Eulerian finite-volume representation, and Computa-
tional Solid Mechanics (CSM), for which a finite-element discretization
is frequently chosen.

FSI algorithms can be divided into monolithic and partitioned meth-
ods. The monolithic approach is characterized by solving a single set
of discrete equations describing entire coupled system [5]. While this
procedure may be time-consuming, it is robust, accurate and stable.
On the other hand, a partitioned approach is frequently used to conve-
niently couple off-the-shelf CFD and CSM codes, which are extensively
validated and employ the most efficient numerical schemes for each
discipline. Partitioned methods can be further classified as strongly or
loosely coupled, where the distinction is based upon whether or not
the complete set of coupling conditions at the conjoined FSI interface
is satisfied. For similar mass density of fluid and solid, loosely coupled
methods may suffer from the artificial added-mass effect, possibly
leading to computational instabilities [2,6]. Stability can be recovered
by introducing sub-iterations [7], which however increase the compu-
tational cost significantly [8]. Badia et al. [9] obtained very promising
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results by employing a Robin-type boundary condition at the FSI inter-
face. Similarly, Banks et al. [10,11] introduced so-called Added-Mass
Partitioned algorithms to overcome the added-mass effect for incom-
pressible flow as well as for very light rigid bodies in compressible flow.
For the majority of FSI applications, such as compressible aeroelasticity,
however, a loosely coupled method is sufficient [2].

In practice, one of the main challenges is to keep the computational
cost of time-resolved FSI simulations at a reasonable level without
sacrificing the required accuracy. The present paper addresses the per-
formance of high-fidelity turbulence resolving FSI simulations with two
loosely coupled domain-specific codes, where the time step size is re-
stricted by the resolution requirements of the fluid flow. CFD solvers for
Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS)
usually employ high-order finite-volume or finite-difference methods
for the spatial discretization and explicit time marching methods, which
efficiently satisfy the high resolution requirements of the fluid flow
with excellent scalability on massively-parallel supercomputers. The
parallelization of finite-element CSM methods is less straight-forward
[12]. This leads to the curious situation that one time step for advanc-
ing the CSM problem often requires a similar run time (wall-clock time)
as one time step of the orders of magnitude more expensive (in terms
of degrees of freedom) CFD equations [4,13].

This does not mean that finite-element CSM methods are per se
inefficient; the multilevel FETI-DP method of Toivanen et al. [12],
vailable online 27 July 2021
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for example, shows excellent weak scaling properties. Finite-element
CSM solvers are, however, designed to handle stiff systems and much
larger time steps, which would be effective in a stand-alone setting,
but not when a very small time-step size is imposed by the coupled
CFD solver. Piperno et al. [14] addressed this bottleneck with a sub-
cycling approach, where the fluid solver is advanced multiple times
before the structural solution is advanced in one large time step. The
efficiency and stability of various sub-cycling methods are discussed
by Farhat et al. [15]. As an alternative, Reduced-Order Modeling (ROM)
can be used to improve the efficiency of the CSM solver [16–18]. One
of the first reported model reductions was presented by Rayleigh [19],
who employed the Mode Superposition Method (MSM) to approximate
the displacement field with a low number of free vibration modes.
The method truncates the vibration modes of the structure at low
number, i.e. 𝑁 ≪ 𝑛, where 𝑛 is the number of degrees of freedom and
𝑁 is the number of dynamically important modes. Several improve-
ments for truncated modal superpositions have been proposed since
then, one being the Static Correction Method (SCM) used by Rixen
[18], Wilson et al. [20] and Besselink et al. [21], among others. This
method accounts for the omitted modes by including the truncated
modes statically, which leads to a more adequate representation of the
modal loads. However, this method is only effective if the structure
has very low natural frequencies. Dickens et al. [22] introduced the
Modal Truncation Augmentation (MTA) method for the dynamic cor-
rection of the load representation. MTA improves the overall accuracy
compared to the SCM and is also effective for a broader frequency
range [22]. Another popular reduction method is the Craig–Bampton
Method (CBM) presented in [23] and the family of Component Mode
Synthesis (CMS), see, e.g., Qu [24]. These methods divide the global
finite-element structure into several sub-structures connected with an
appropriate interface description. The CMS method is also known as
Super Element Method in the sense that each substructure can be
considered as a single finite element.

Linear ROM approaches generally fail for non-linear problems.
Some of the earliest reported work on non-linear ROM was presented
by Morris [25]. It follows a modal superposition that incorporates
the stiffness matrix at a deformed state and was applied for frame
structures. Similarly, Remseth [26] employed a Taylor linearization
of the reduced-order finite-element equations with respect to a de-
formed state to account for non-linear effects on frame structures. The
projection on a new eigenmode basis (around a new deformed state)
generates truncation errors, which can accumulate. Nickell [27] used a
Rayleigh–Ritz analysis to derive a reduction model that includes non-
linear effects through modal derivates along with the eigenmodes and
exploits those derivates along with tangent modes to limit the need
of eigenspace updates. Alternative methods that minimize the need
to update the reduction basis have been presented by Idelsohn and
Cardona [28] &Tiso and Rixen [29]. Mignolet et al. [30] reviewed
ROMs for non-linear geometric structures based on indirect method-
ologies, where the non-linear stiffness terms are approximated by cubic
polynomials. A key aspect of the ROM effort is to properly select the
basis functions. The authors present a strategy that enriches the basis of
free vibration modes by dual modes for capturing non-linear structural
behavior. A set of non-linear static simulations with representative
loads is needed to determine the dual modes, which are calculated
based on the proper orthogonal decomposition of the series of non-
linear displacement fields. Recently, [31] presented a ROM for flexible
multi-body systems with large non-linear deflections, where the ROM
is based on a combination of the CBM and cubic polynomials of the
configuration dependent terms.

Although beyond the scope of the current paper, it should be
mentioned that there are also FSI applications where it is reasonable
to approximate the fluid problem in a reduced modal space. For exam-
ple, Lassila et al. [32] derived a ROM of their fluid solver and coupled
it to a linear elastic structural model. Bertagna and Veneziani [33]
2

presented a reduced-order FSI model for biomedical applications based
on Proper Orthogonal Decomposition (POD) of the fluid flow, and [34]
extended this concept to a monolithic POD-Galerkin method for the en-
tire FSI problem. In the current paper, however, we address challenges
that arise when non-linear gas dynamics and fluid turbulence need to
be accurately resolved in space and time by developing a ROM for the
structure that can cope with non-linear deformations.

In the following, we present and analyze an adaptive ROM (AROM)
based on adaptive re-calibration of the reduced modal basis with MTA
correction, which allows us to maintain arbitrary accuracy also in the
case of large and non-linear structural deformations. The AROM is
imbedded into the loosely coupled partitioned FSI algorithm proposed
by Pasquariello et al. [13]. We employ an established high-fidelity tur-
bulence resolving finite-volume method for solving the three-
dimensional compressible Navier–Stokes equations on block-structured
adaptive Cartesian grids (INCA, https://www.inca-cfd.com) and an un-
structured finite-element method for the discretization of the structural
domain (CalculiX, http://www.calculix.de). The time-varying fluid–
structure interface is accounted for by the cut-element based Immersed
Boundary Method (IBM) that was introduced by Örley et al. [35]
and then extended to deformable structures and compressible FSI
applications by Pasquariello et al. [13]. The CFD solver is designed to
provide (close to) ideal parallel scalability on thousands of cores [36].
Due to the small time step size imposed by the resolution requirements
of compressible fluid flows and the necessarily synchronous nature of
alternating between the CFD and CSM at each time step, the CSM
solver constitutes the critical run-time bottleneck in this framework.
The essential original contribution of this work is the development and
demonstration of a novel FSI-AROM algorithm, which is capable of
handling structures with large, non-linear deformations accurately with
high computational efficiency.

The paper is structured as follows: The governing equations of the
fluid and structure and the numerical formulation are presented in Sec-
tions 2 and 3. The coupling algorithm for non-matching time-varying
interfaces is presented in Section 4. The novel FSI-AROM method is
derived in Section 5. In Section 6 we validate the FSI-AROM method
for linear and non-linear problems, and demonstrate the prediction
capabilities for flow-induced buckling of a three-dimensional thin semi-
spherical shell. A final discussion and concluding remarks are given in
Section 7.

2. Governing equations

The domain of interest 𝛺 = 𝛺𝐹 ∪𝛺𝑆 is divided into non-overlapping
fluid 𝛺𝐹 and solid 𝛺𝑆 subdomains with a conjoined interface
𝛤 = 𝛺𝐹 ∩𝛺𝑆 . The interface normal vector 𝒏𝛤 is assumed to point
into the fluid domain. In the following a brief description of the
mathematical models required for both subdomains is given. Unless
specified otherwise, we use the Einstein summation convention.

2.1. Fluid

The fluid flow within the domain 𝛺𝐹 is governed by the three-
dimensional compressible Navier–Stokes equations
𝜕𝒘
𝜕𝑡

+ ∇ ⋅𝑯 (𝒘) = 𝟎 , (1)

which describe the conservation of mass, linear momentum and total
energy. We use Cartesian coordinates where ∇ =

(

𝜕
𝜕𝑥1

, 𝜕
𝜕𝑥2

, 𝜕
𝜕𝑥3

)

. The
state vector 𝒘 and flux tensor 𝑯 (𝒘) =

[

𝑯 (1),𝑯 (2),𝑯 (3)] are given as

𝒘 =

⎡

⎢

⎢

⎢

⎢

⎢

𝜌𝐹
𝜌𝐹 𝑢1
𝜌𝐹 𝑢2
𝜌𝐹 𝑢3

⎤

⎥

⎥

⎥

⎥

⎥

, 𝑯 (𝒊) (𝒘) =

⎡

⎢

⎢

⎢

⎢

⎢

𝑢𝑖𝜌𝐹
𝑢𝑖𝜌𝐹 𝑢1 + 𝛿𝑖1𝑝 − 𝜏𝑖1
𝑢𝑖𝜌𝐹 𝑢2 + 𝛿𝑖2𝑝 − 𝜏𝑖2
𝑢𝑖𝜌𝐹 𝑢3 + 𝛿𝑖3𝑝 − 𝜏𝑖3
( )

⎤

⎥

⎥

⎥

⎥

⎥

, (2)
⎣
𝜌𝐹 𝑒𝑡 ⎦ ⎣

𝑢𝑖 𝜌𝐹 𝑒𝑡 + 𝑝 − 𝑢𝑘𝜏𝑖𝑘 + 𝑞𝑖 ⎦
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where 𝑢𝑖 is the velocity, 𝜌𝐹 the fluid density, and 𝜌𝐹 𝑒𝑡 is the total energy
density. The viscous stress tensor for a Newtonian fluid is

𝜏𝑖𝑗 = 𝜇𝐹

(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)

+ 𝜆𝐹
𝜕𝑢𝑘
𝜕𝑥𝑘

𝛿𝑖𝑗 , (3)

where the first Lamé parameter is related to the dynamic viscosity
𝜇𝐹 according to Stoke’s hypothesis: 𝜆𝐹 = −2∕3𝜇𝐹 . The heat flux is
evaluated according to Fourier’s law,

𝑞𝑖 = −𝑘 𝜕𝑇
𝜕𝑥𝑖

, (4)

with the coefficient of thermal conductivity 𝑘. We consider air as a
perfect gas with 𝛾 = 1.4 and specific gas constant of 𝑅 = 287.058 J

kg K .
he pressure 𝑝 and temperature 𝑇 are calculated from the definition of
otal energy

𝐹 𝑒𝑡 =
1

𝛾 − 1
𝑝 + 1

2
𝜌𝐹 𝑢𝑖𝑢𝑖 (5)

nd the ideal-gas equation of state

= 𝜌𝐹𝑅𝑇 . (6)

.2. Solid

The governing equations for the solid are based on the local form
f the balance of linear momentum

𝑆;0
𝜕2𝒅
𝜕𝑡2

= ∇0 ⋅ 𝑷 + �̂�0 , (7)

which describes an equilibrium between the work done by inertia, in-
ternal and external forces expressed in the underformed configuration.
The vector of displacements is denoted by 𝒅, 𝜌𝑆;0 is the material density
of the solid, ∇0 ⋅ ( ) is the material divergence operator, 𝑷 = 𝑭 ⋅𝑺 is the
first Piola–Kirchhoff stress tensor, where 𝑭 is the deformation gradient
tensor, and external material body forces are represented by �̂�0. The
second Piola–Kirchhoff stress tensor is

𝑺 = 𝜕𝛹
𝜕𝑬

. (8)

n this work, a hyperelastic Saint Venant–Kirchhoff material model is
hosen. Its associated strain energy density function 𝛹 is given as

(𝑬) = 𝜇𝑆𝑬 ∶ 𝑬 + 1
2
𝜆𝑆 (𝑬 ∶ 𝑰)2 , (9)

here 𝜆𝑆 and 𝜇𝑆 are the first and second Lamé parameter. The Green–
agrange strain tensor is defined as

= 1
2
(

𝑭 𝑇 ⋅ 𝑭 − 𝑰
)

= 1
2

⎛

⎜

⎜

⎜

⎜

⎝

𝑫 +𝑫𝑇 +

non-linear
⏞⏞⏞
𝑫𝑇 ⋅𝑫

⎞

⎟

⎟

⎟

⎟

⎠

, (10)

and 𝑫 is the displacement gradient tensor. The Cauchy stress tensor
𝝈𝑆 , also called true stress tensor, is defined as

𝝈𝑆 = 1
𝐽
𝑷 ⋅ 𝑭 𝑇 , (11)

here 𝐽 denotes the Jacobian determinant.
Boundary conditions need to be specified on 𝜕𝛺𝑆 = 𝛤𝑆,𝐷 ∪𝛤𝑆,𝑁 ∪𝛤

o make the system (7) well posed. Two different types are considered
n this work, namely Dirichlet 𝛤𝑆,𝐷 and Neumann 𝛤𝑆,𝑁 boundaries for
hich we either prescribe displacements �̂� or tractions �̂�

= �̂� on 𝛤𝑆,𝐷 and 𝑷 ⋅ 𝒏0 = �̂� on 𝛤𝑆,𝑁 . (12)

ere 𝒏0 denotes the unit normal vector in material configuration.
urther, initial conditions for displacements and velocities must be
pecified:

0 = 𝒅 (𝑡 = 0) = �̂�0 on 𝛺𝑆 and �̇�0 = �̇� (𝑡 = 0) = ̂̇𝒅0 on 𝛺𝑆 . (13)
3

2.3. Fluid–structure interface conditions

The interface between fluid and structure requires coupling condi-
tions. Tractions on 𝛤 have to be in equilibrium, that is,

𝝈𝛤
𝑆 ⋅ 𝒏𝛤 = 𝝈𝛤

𝐹 ⋅ 𝒏𝛤 . (14)

erein, 𝝈𝑆 is the Cauchy stress tensor given by Eq. (11) and

𝐹 = −𝑝𝑰 + 𝝉 (15)

enotes the fluid stress tensor comprising an inviscid and viscous
ontribution. In addition, the kinematic no-slip boundary condition

𝜕𝒅𝛤

𝜕𝑡
= 𝒖𝛤 (16)

must be satisfied, which in case of an inviscid flow reduces to matching
normal velocities on 𝛤

𝜕𝒅𝛤

𝜕𝑡
⋅ 𝒏𝛤 = 𝒖𝛤 ⋅ 𝒏𝛤 . (17)

. Numerical models

.1. Fluid

The compressible Navier–Stokes equations, Eq. (1), are discretized
ith a finite volume method based on the integral form
𝑡𝑛+1

𝑡𝑛 ∫𝛺𝑖,𝑗,𝑘∩𝛺𝐹

𝜕𝒘
𝜕𝑡

𝑑𝑉 𝑑𝑡 + ∫

𝑡𝑛+1

𝑡𝑛 ∫𝜕(𝛺𝑖,𝑗,𝑘∩𝛺𝐹
)

𝑯(𝒘) ⋅ 𝒏 𝑑𝑆 𝑑𝑡 = 0 , (18)

here Gauss’s theorem has been applied. The integral is taken over
𝑖,𝑗,𝑘 ∩ 𝛺𝐹 , i.e., the part of a Cartesian computational cell 𝛺𝑖,𝑗,𝑘 that
elongs to the fluid domain 𝛺𝐹 , and over the time step 𝛥𝑡 = 𝑡𝑛+1 − 𝑡𝑛.
n order to account for the FSI interface within the fluid solver, which
perates on Cartesian grids, we employ the cut-element IBM of Örley
t al. [35] and Pasquariello et al. [13]. The discrete FSI interface is
omposed of several structural interface elements 𝛤 (𝑒)

𝑆 . Each structural
nterface element 𝛤 (𝑒)

𝑆 is triangulated as shown exemplarily in Fig. 1
or a quadratic hexahedral element. The resulting interface triangles
𝑡𝑟𝑖 are used as an input for the IBM algorithm. A fluid cell that is cut
y at least one interface triangle 𝛤𝑡𝑟𝑖 is referred to as a cut-cell. The
luid–solid interface within a cut-cell is composed of one or several
ut-elements 𝛤𝑒𝑙𝑒 = 𝛤𝑡𝑟𝑖 ∩ 𝛺𝑖,𝑗,𝑘, each representing one or a part of
ne interface triangle, see Fig. 1. Applying a volume average of the
onserved variables

𝒘𝑖,𝑗,𝑘 = 1
𝛼𝑖,𝑗,𝑘𝑉𝑖,𝑗,𝑘 ∫𝛺𝑖,𝑗,𝑘∩𝛺𝐹

𝒘 𝑑𝑥 𝑑𝑦 𝑑𝑧 , (19)

and considering (for demonstration purposes) a simple forward Euler
time integration scheme leads to the following discrete form of Eq. (18)

𝛼𝑛+1𝑖,𝑗,𝑘𝒘
𝑛+1
𝑖,𝑗,𝑘 = 𝛼𝑛𝑖,𝑗,𝑘𝒘

𝑛
𝑖,𝑗,𝑘 +

𝛥𝑡
𝛥𝑥𝑖

[

𝐴𝑛
𝑖−1∕2,𝑗,𝑘𝑯

(1)
𝑖−1∕2,𝑗,𝑘 − 𝐴𝑛

𝑖+1∕2,𝑗,𝑘𝑯
(1)
𝑖+1∕2,𝑗,𝑘

]

+ 𝛥𝑡
𝛥𝑦𝑗

[

𝐴𝑛
𝑖,𝑗−1∕2,𝑘𝑯

(2)
𝑖,𝑗−1∕2,𝑘 − 𝐴𝑛

𝑖,𝑗+1∕2,𝑘𝑯
(2)
𝑖,𝑗+1∕2,𝑘

]

+ 𝛥𝑡
𝛥𝑧𝑘

[

𝐴𝑛
𝑖,𝑗,𝑘−1∕2𝑯

(3)
𝑖,𝑗,𝑘−1∕2 − 𝐴𝑛

𝑖,𝑗,𝑘+1∕2𝑯
(3)
𝑖,𝑗,𝑘+1∕2

]

+ 𝛥𝑡
𝑉𝑖,𝑗,𝑘

𝝌 𝑖,𝑗,𝑘 . (20)

Herein 𝛼𝑖,𝑗,𝑘 is the fluid volume fraction of the cut-cell, 𝑉𝑖,𝑗,𝑘 = 𝛥𝑥𝑖𝛥𝑦𝑗
𝛥𝑧𝑘 is the total volume of cell 𝛺𝑖,𝑗,𝑘 and 𝐴 is the effective fluid wetted
cell-face aperture, see also Fig. 1. The face-averaged numerical fluxes
across the regular cell faces are 𝑯 (𝑖). In cut cells, the interaction term
𝝌 𝑖,𝑗,𝑘 =

∑

𝑒𝑙𝑒 𝝌𝑒𝑙𝑒 across the fluid–solid interface 𝛤𝑖,𝑗,𝑘 =
∑

𝑒𝑙𝑒 𝛤𝑒𝑙𝑒 is
added, where ∑

𝑒𝑙𝑒 denotes the sum over all cut elements associated
with the considered cut cell. The interface interaction 𝝌𝑒𝑙𝑒 includes the
fluid stresses due to pressure and viscous effects, the resulting work at
the interface, and heat transfer through the interface. For a detailed
description of the cut-element IBM please refer to [35] and [13].
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Fig. 1. Schematic triangulation of a structural interface element 𝛤 (𝑒)
𝑆 . Resulting interface triangles 𝛤𝑡𝑟𝑖 are used as an input for the cut-algorithm to compute individual cut-elements

𝑒𝑙𝑒 and cut-cell related geometric quantities.
Fig. 2. (a) Sketch of the flutter problem and main parameters. (b) FV grid used for the flutter analysis. Every 5th grid line is shown in the 𝑥 and 𝑦 direction.
Source: Figures adapted from [13].
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For the spatial reconstruction and numerical flux functions we
ither use the Adaptive Local Deconvolution Method (ALDM) by Hickel
t al. [37,38], or the 5th-order WENO (Weighted Essentially Non-
scillatory) scheme by Liu et al. [39] with the HLLC flux [40]. In order

o avoid modified interpolation stencils in the FV reconstruction near
he interface, we assign special ghost fluid states that depend on the
nterface boundary conditions to non-cut fluid cells within the solid
art of the domain [13,41]. Finally, time integration is performed with
conditionally stable, explicit third-order Runge–Kutta scheme.

.2. Solid

We cast the structural equations, Eq. (7), into their weak form by
pplying the principle of virtual work with virtual displacements 𝛿𝒅
nd subsequently integrating the balance equation over the structural
ubdomain 𝛺𝑆 . Following this procedure and applying Gauss’s theorem
ields

𝛺𝑆

(

𝜌𝑆;0�̈� ⋅ 𝛿𝒅 + 𝑺 ∶ 𝛿𝑬 − �̂�0 ⋅ 𝛿𝒅
)

𝑑𝑉0 − ∫𝛤𝑆,𝑁
�̂�0 ⋅ 𝛿𝒅 𝑑𝐴0 − 𝛿𝑊 𝛤

𝑆 = 0 ,

(21)

here 𝑑𝐴0 and 𝑑𝑉0 are infinitesimal surface and volume elements,
4

espectively, and 𝛿𝑬 is a result of the variation of the strain expression t
n Eq. (10),

𝑬 = 1
2
(

𝑭 𝑇 𝛿𝑫 + 𝛿𝑫𝑇𝑭
)

. (22)

The weak form, Eq. (21), represents the balance of virtual work 𝛿𝑊 ,
namely

𝛿𝑊𝑖𝑛𝑒𝑟𝑡𝑖𝑎 + 𝛿𝑊𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 − 𝛿𝑊𝑏𝑜𝑑𝑦𝑓𝑜𝑟𝑐𝑒𝑠 − 𝛿𝑊𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝛿𝑊 𝛤
𝑆 = 0 , (23)

here the work at the FSI interface is 𝛿𝑊 𝛤
𝑆 . We use the FEM to

iscretize the integral equation (21) in space. The structural domain 𝛺𝑆
s composed of 𝑛𝑒 solid elements 𝛺(𝑒)

𝑆 with consistent basis functions for
epresenting the displacement field. The semi-discrete form of Eq. (21)
s then obtained by assembling the contributions of all elements 𝛺(𝑒)

𝑆 ,
esulting in

�̈� + 𝒇𝑆;𝑖𝑛𝑡(𝒅) − 𝒇𝑆;𝑒𝑥𝑡 − 𝒇 𝛤
𝑆 = 𝟎 , (24)

ith the mass matrix 𝑴 , the discrete acceleration vector �̈� and the
iscrete displacement vector 𝒅. The forces are divided into internal
orces 𝒇𝑆;𝑖𝑛𝑡, external forces 𝒇𝑆;𝑒𝑥𝑡 and interface forces 𝒇 𝛤

𝑆 resulting
rom the fluid.

In contrast to Pasquariello et al. [13], who used linear FE together
ith element technology based on Enhanced Assumed Strains to avoid

ocking phenomena, we use quadratic shape functions for interpolating
he displacements on 𝛺(𝑒)

𝑆 unless stated otherwise. The final step is

o discretize Eq. (24) in time. We employ the Hilber–Hughes–Taylor
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Fig. 3. Panel flutter amplitudes recorded at 𝑥 = 0.6m. Vertical displacement for
various Mach numbers predicted by the FSI-ROM approach using 10 eigenmodes: ( )
a∞ = 1.90, ( ) Ma∞ = 2.00, ( ) Ma∞ = 2.03, ( ) Ma∞ = 2.04, ( )
a∞ = 2.05, ( ) Ma∞ = 2.06, ( ) Ma∞ = 2.07, ( ) Ma∞ = 2.08, ( )
a∞ = 2.09, ( ) Ma∞ = 2.10.

-method [42] for time integration. Due to its implicit character a
oupled set of non-linear equations needs to be solved, which is done
y the Newton–Raphson method.

. Coupling method

.1. Summary of the coupling procedure

We use an explicit loosely coupled FSI algorithm to advance the
ystem from time level 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡. The main steps are
ummarized below:

1. At time level 𝑡𝑛 the structural displacements 𝒅𝛤 ;𝑛 and velocities
�̇�𝛤 ;𝑛 at the interface are used to update the cut-cell geometry.
The triangulated interface 𝛤𝑡𝑟𝑖, see Fig. 1, is used as an input for
the cut-algorithm.

2. The fluid equations for, Eq. (20), are advanced in time from
(𝛼𝒘)𝑛 to (𝛼𝒘)𝑛+1. The interface exchange term, as well as the
ghost-cell methodology use known structural quantities at time
level 𝑡𝑛. The interpolation of the structural interface velocities to
the cut-elements is described in Section 4.2.
5

w

3. The newly computed fluid interface tractions 𝝈𝛤 ;𝑛+1
𝐹 ⋅ 𝒏𝛤 ;𝑛 are

projected to the structural interface elements as described in
Section 4.2 with the help of the shape functions of 𝛺(𝑒)

𝑆 .
4. The structural system, Eq. (24), is solved and advanced in time

with the projected fluid tractions from time level 𝑡𝑛+1 imposed
as additional Neumann boundary conditions.

5. Proceed to the next time step.

.2. Load and motion transfer

The cut-cell discretization inevitably leads to non-matching grids at
he conjoined interface 𝛤 and requires interpolation methods for the
oad transfer between both subdomains. Specifically, we search for the
iscrete force vector 𝒇𝛤

𝑆 that results from the fluid tractions acting on
he wetted structure. We follow the approach suggested by [43] and
se the shape functions of 𝛺(𝑒)

𝑆 for interpolating the fluid loads on the
djacent structural nodes. Consider a single cut-element 𝛤𝑒𝑙𝑒 as shown
n Fig. 1. The fluid forces 𝒇 𝑒𝑙𝑒

𝐹 follow directly from the pressure and
iscous contributions to the IBM interface flux 𝝌 =

∑

𝑒𝑙𝑒 𝝌𝑒𝑙𝑒 in Eq. (20).
ince the structural interface, i.e., the triangulation 𝛤𝑡𝑟𝑖, directly serves
s an input for the IBM, there is no extra need for a pairing algorithm
o associate a single face centroid 𝒙𝑐𝑒𝑙𝑒 to the closest wet structural
nterface segment 𝛤 (𝑒)

𝑆 . However, we have to determine the natural
oordinates 𝝃𝑐𝑒𝑙𝑒(𝒙

𝑐
𝑒𝑙𝑒) of this fluid point. This inverse mapping problem

s solved iteratively with a Newton–Raphson method using the Jacobian
f the shape functions. Finally, the force contribution from a single cut-
lement to an individual node of the paired structural interface segment
(𝑒)
𝑆 is given by

𝛤
𝑆,𝑘 = 𝑁𝑘(𝝃𝑐𝑒𝑙𝑒)𝒇

𝑒𝑙𝑒
𝐹 , (25)

here 𝑁𝑘 denotes the shape function of the 𝑘th structural node on
(𝑒)
𝑆 . Summing up the contributions of all cut-elements in 𝛺𝐹 leads to
he interface force vector 𝒇𝛤

𝑆 . It is easy to verify that this interpolation
uarantees a global conservation of loads over the interface by recalling
hat all shape functions at one specific location sum up to unity.

The cut-element IBM requires the velocity at the face centroid
𝑐
𝑒𝑙𝑒 for evaluating the work done at the interface. We use the same
nterpolation strategy based on the shape functions of the structural
omain
𝛤 ;𝑒𝑙𝑒 =

∑

𝑘∈𝛤 (𝑒)
𝑆

𝑁𝑘(𝝃𝑐𝑒𝑙𝑒) �̇�𝑘 , (26)

̇ (𝑒)
here 𝒅𝑘 is the velocity of the 𝑘th structural node on 𝛤𝑆 .
Fig. 4. Sensitivity of panel flutter amplitudes with respect to the number of eigenmodes at Ma∞ = 2.09: (a) Panel flutter amplitudes recorded at 𝑥 = 0.6m for ( ) 𝑁eig = 1,
( ) 𝑁eig = 3, ( ) 𝑁eig = 5, ( ) 𝑁eig = 7, ( ) 𝑁eig = 10, ( ) linear FEM. (b) 𝐿2 error of the ROM solutions shown in Fig. 4 normalized by the 𝐿2 norm of the FEM
solution.
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Fig. 5. Main parameters for elastic panel in a shock tube adapted from Pasquariello et al. [13]. The FV mesh near the panel tip is schematically shown.
Fig. 6. Density gradient magnitude |∇𝜌| for the 𝑙 = 0.05m panel at various time instances.
The motion of the structure within the fluid domain is accounted for

by updating the cut-elements (and cut-cells) after each time step based

on the triangulated interface 𝛤 [13]. Consequently the compatibility
6

𝑡𝑟𝑖
between the displacement fields of the structure and the fluid at the

FSI interface is implicitly fulfilled in a discrete sense for all structural

nodes 𝑘 ∈ 𝛤 and no further interpolation is required.
𝑆
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Fig. 7. Time evolution of panel tip displacement for (a) 𝑙 = 0.04m and (b) 𝑙 = 0.05m: ( ) present results ( ) [44], ( ) [13].
Source: Error bars denote experimental data from [45].
Fig. 8. Pressure signal recorded at 𝑥sensor (cf. Fig. 5) for the elastic panel with (a) 𝑙 = 0.04m and (b) 𝑙 = 0.05m: ( ) present results; ( ) numerical results of Sanches and
Coda [44]; ( ) numerical results of Pasquariello et al. [13]; ( ) experimental results of Giordano et al. [45].
Fig. 9. Time evolution of panel-tip displacement for (a) 𝑙 = 0.04m and (b) 𝑙 = 0.05m. ( ) non-linear FEM; ( ) linear FEM; ( ) ROM with 𝑁𝑒𝑖𝑔 = 10.
7
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Fig. 10. Long-time evolution of panel-tip displacement for 𝑙 = 0.05m: ( ) non-linear FEM; ( ) linear FEM; ( ) AROM 𝜖 = 1.7 × 10−3; ( ) AROM 𝜖 = 4.3 × 10−3 with
𝑒𝑖𝑔 = 10.
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Fig. 11. Efficiency for elastic panel in a shock tube: computational time for the AROM
ormalized with the computational time of the nonlinear FEM for different adaptation
hresholds.

. Adaptive reduced-order model

.1. Linearization and modal truncation

In this section, we propose a numerical framework for switching
etween a full FEM description and a more efficient Adaptive Reduced-
rder Model (AROM) that maintains accuracy also when a structure
ndergoes large non-linear deformations. The algorithm is based on
aylor expansion around a reference state 𝒅𝑟𝑒𝑓 . Linearizing Eq. (24)

around this reference leads to

𝑴�̈�ref + 𝒇𝑆;𝑖𝑛𝑡(𝒅ref) − 𝒇𝑆;𝑒𝑥𝑡 − 𝒇 𝛤
𝑆 +𝑴

(

�̈� − �̈�ref
)

+
𝜕𝒇𝑆;𝑖𝑛𝑡

𝜕𝒅

|

|

|

|

|𝒅ref

(

𝒅 − 𝒅ref
)

= 𝟎 . (27)

Notice that 𝒅ref can be either a given initial condition or the instan-
taneous solution at a model re-calibration step. We introduce a new
variable, 𝛿𝒅 = 𝒅 − 𝒅ref, for the deflection with respect to the reference
state 𝒅ref. Consequently, time derivatives of 𝛿𝒅 reduce to

𝛿�̇� = �̇� and 𝛿�̈� = �̈� . (28)

Rearranging Eq. (27) leads to

𝑴𝛿�̈� +𝑲
(

𝒅ref
)

𝛿𝒅 = 𝒇𝑆;𝑒𝑥𝑡 + 𝒇 𝛤
𝑆 − 𝒇𝑆;𝑖𝑛𝑡(𝒅ref) , (29)

where the tangent stiffness matrix 𝑲
(

𝒅ref
)

represents the Jacobian of
the internal forces

𝑲
(

𝒅ref
)

=
𝜕𝒇𝑆;𝑖𝑛𝑡

𝜕𝒅

|

|

|

|

. (30)
8

|𝒅ref
he initial conditions for 𝛿𝒅 are

𝒅0 = 𝒅𝑛 − 𝒅ref = 𝟎 , (31)

�̇�0 = �̇�𝑛 , (32)

�̈�0 = �̈�𝑛 , (33)

here the superscript 𝑛 denotes the (last) results obtained with the
ull FEM model, Eq. (24), before switching to AROM. Since this initial
ondition is also considered as the reference state, i.e., 𝒅𝑛 = 𝒅ref, the
nitial condition for the deflections 𝛿𝒅0 is zero.

Eq. (29) is expressed in the physical space. For reduced-order mod-
ling we shrink the system of equations by the mode superposition
ethod [19,46]. In a first step, the eigenmodes of the structure are

btained by the following general eigenvalue problem of order 𝑚
(

𝒅ref
)

𝜱 = 𝑴𝜱𝜴2 , (34)

here the columns of 𝜱 =
[

𝝓1,… ,𝝓𝑚
]

are the orthonormalized
(with respect to 𝑴) eigenvectors (natural vibration modes) and 𝜴 =
𝖽𝗂𝖺𝗀

(

𝜔1,… , 𝜔𝑚
)

is a diagonal matrix listing associated eigenvalues
(natural vibration frequencies in ascending order). Note that Eq. (34) is
only exact when the sizes of 𝑲 and 𝜱 are equal. We define the following
transformation from modal to physical space

𝛿𝒅 = 𝜱𝛿𝒒 , (35)

where 𝛿𝒒 denotes the vector of perturbations expressed in generalized
coordinates, i.e. modal amplitudes. Substituting the latter expression
into Eq. (29) and left-multiplying all terms with 𝜱𝑇 leads to

𝑴𝐺
⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜱𝑇𝑴𝜱
)

𝛿�̈� +

𝑲𝐺(𝒒ref)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜱𝑇𝑲
(

𝒅ref
)

𝜱
)

𝛿𝒒

=

𝒑𝑡𝑜𝑡;𝐺
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜱𝑇 (

𝒇𝑆;𝑒𝑥𝑡 + 𝒇 𝛤
𝑆
)

−

𝒑𝑖𝑛𝑡;𝐺(𝒒ref)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜱𝑇 (

𝒇𝑆;𝑖𝑛𝑡(𝒅ref)
)

, (36)

𝑴𝐺 𝛿�̈� +𝑲𝐺 𝛿𝒒 = 𝒑𝑡𝑜𝑡;𝐺 − 𝒑𝑖𝑛𝑡;𝐺 . (37)

The size of the generalized matrices 𝑴𝐺 and 𝑲𝐺 directly depends on
the number of eigenvectors considered, i.e., including the first 𝑁𝑒𝑖𝑔
eigenmodes reduces the system to rank 𝑁𝑒𝑖𝑔 . Furthermore, the principle
of orthogonality implies that Eq. (36) can be written for the 𝑖th mode
as

𝛿�̈�𝑖 + 𝜔2
𝑖 𝛿𝒒𝑖 = 𝒑𝑖;𝑡𝑜𝑡;𝐺 − 𝒑𝑖;𝑖𝑛𝑡;𝐺 , (38)

recalling that 𝑴𝐺 is a unit matrix and 𝑲𝐺 is a diagonal matrix with
eigenfrequencies squared on the diagonal [47]. An unconditionally
stable Newmark scheme is used for time integration of the modal
equations with the following initial conditions prescribed in modal
space

0
𝛿𝒒 = 𝟎 , (39)
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Fig. 12. Buckling of a shock-loaded thin semi-spherical membrane: geometry, boundary conditions and initial conditions in the 𝑥-𝑦 plane.
Source: Adapted from Pasquariello et al. [13].
Fig. 13. Fluid mesh and triangulated structural interface for buckling of a shock-loaded thin semi-spherical membrane.
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𝛿�̇�0 = 𝜱𝑇𝑴�̇�𝑛 , (40)

�̈�0 = 𝜱𝑇𝑴�̈�𝑛 . (41)

qs. (40) and (41) are derived using the orthogonality principle, i.e.
𝑇𝑴𝜱 = 𝑰 , and the relation in Eq. (35).

.2. Modal truncation augmentation

The Modal Truncation Augmentation (MTA) method was derived
y [22] in order to improve the representation of the load vector in
odal space. The generalized loads can be computed as

𝐺 = 𝜱𝑇 𝒇𝑆;𝑡𝑜𝑡 −𝜱𝑇 𝒇𝑆;𝑖𝑛𝑡 , (42)

here 𝒇𝑆;𝑡𝑜𝑡 = 𝒇𝑆;𝑒𝑥𝑡 + 𝒇 𝛤
𝑆 is the total load vector including external

nd interface loads. We transform the generalized forces back to the
hysical domain by

̃ 𝑆 = 𝑴𝜱𝒑𝐺 , (43)

hich consequently results in a projection error that can be summa-
ized in a residual

( ) ̃
9

= 𝒇𝑆;𝑡𝑜𝑡 − 𝒇𝑆;𝑖𝑛𝑡 − 𝒇𝑆 . (44) e
he MTA method attempts to correct for the projection error by ap-
ending a pseudo eigenvector �̃� to the original modal basis 𝜱. Note
hat the pseudo eigenvector does not satisfy the eigenvalue problem
efined in Eq. (34), but it satisfies the orthogonality principle [22]. In
first step we solve for the displacements 𝒅cor due to the residual force
ector
(

𝒅ref
)

𝒅cor = 𝒓 . (45)

ollowing this, we compute

𝑲cor = 𝒅T
cor𝑲

(

𝒅ref
)

𝒅cor , (46)

cor = 𝒅T
cor𝑴𝒅cor , (47)

here 𝑲cor and 𝑴cor are the stiffness and mass matrices projected
ith respect to the displacement vector 𝒅cor. As we are considering
nly a single residual-force vector, the matrices 𝑲cor and 𝑴cor reduce
o simple scalars and the following trivial eigenvalue problem can be
ormulated

cor𝜙cor = 𝑀cor𝜙cor𝜔
2
cor , (48)

here 𝜙cor can be arbitrarily scaled. Following the work by Dickens
̃
t al. [22], the pseudo eigenvector is calculated through 𝝓 = 𝜙cor𝒅cor,
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Fig. 14. Pressure signal recorded above shock-loaded semi-spherical membrane at 𝑃 ,
cf. Fig. 12: ( ) non-linear FEM; ( ) results of Pasquariello et al. [13]; ( )
inear FEM; ( ) linear ROM; ( ) AROM 𝜖 = 1.7 × 10−3.

hich in our case reduces to �̃� = 𝒅cor. The final step is to append the
seudo eigenvector to the original eigenvector matrix 𝜱 as follows

→ �̃� =
[

𝜱, 𝒅cor
]

, (49)

and subsequently solve for the balance equation in modal space defined
in Eq. (36).

5.3. Model re-calibration

Linear ROM generally fail for problems that involve large deforma-
tions because the structural properties (stiffness matrix and internal
forces) used for constructing the ROM are valid only for small 𝛿𝒅.
around the reference configuration 𝒅ref. We solve this problem by
updating the FEM discretization once the solution deviates significantly
from the expansion point 𝒅𝑟𝑒𝑓 used for linearization. This implies that
also new set of augmented eigenmodes need to be computed. It is
worthwhile to mention that the re-calibration procedure can include
a dynamic increment or decrement of the mode number 𝑁𝑒𝑖𝑔 , for
example, based on a norm of the projection residual Eq. (44). For all
simulations throughout the current paper, however, the total number
of eigenmodes 𝑁𝑒𝑖𝑔 is kept constant.

Constructing and updating the ROM is expensive (due to the eigen-
value problem which needs to be solved) while applying it is very
cheap. Efficiency for the proposed FSI method is achieved by re-
using the reduced-order model as long as possible. We define a non-
dimensional parameter

𝜖 =
|

|

𝛿𝑑𝑚𝑎𝑥||
𝐿

, (50)

ased on the maximum absolute deflection 𝛿𝑑𝑚𝑎𝑥 with respect to the
eference frame 𝒅𝑟𝑒𝑓 , i.e. the most recent linearization state, normalized
y a characteristic length 𝐿 of the structure. The ROM is adapted
henever 𝜖 exceeds a prescribed threshold, that is, the ROM space is

ecomputed solving the eigenvalue problem and applying MTA with the
ast computed snapshot 𝒅 as new 𝒅𝑟𝑒𝑓 .

The efficiency and accuracy of the resulting Adaptive ROM (AROM)
epends on the threshold value. The limit case 𝜖 = ∞ corresponds to
sing the same ROM throughout the simulation, which minimizes the
omputational cost but will give inaccurate results if non-linear effects
re significant, while 𝜖 = 0 corresponds to updating the ROM at each
ime step. In the latter limit case, the AROM solution is essentially
dentical to the full nonlinear FEM solution, because the projection onto
he ROM basis is lossless thanks to the augmentation mode and the
ame time marching scheme is used for AROM and FEM. This would
e a very inefficient way of computing the FEM solution; however, it
s of theoretical interest as it proves convergence of the method.
10

C

. Validation of the FSI-AROM algorithm

We analyze the accuracy and efficiency of the algorithm for three
pplication examples. The first problem considers a purely linear struc-
ure and hence the update threshold is set to 𝜖 = ∞, which implies that
he ROM model is built only once at the beginning of the simulation,
sing the initial condition as reference state 𝒅ref for the linearization.
he second and third example include large deformations and we
earch for a suitable problem independent threshold 𝜖 for triggering
pdates of 𝒅ref and re-calibration of the modal basis. For all cases,
e report typical computation run times on a workstation (Intel XEON
5-2650).

.1. Supersonic panel flutter

The first example is the aeroelastic instability of a thin plate exposed
o a supersonic inviscid flow. This FSI test problem is often considered
n literature [13,44,48]. Dowell [49] has derived the critical flutter
peed using linear stability theory and found that limit cycle oscillations
ccur at the critical Mach number of Ma∞;crit = 2.0. The computational
etup together with its main parameters is sketched in Fig. 2(a). The
anel of length 𝑙 = 0.5m and thickness 𝑏 = 0.00135m is fixed at
oth ends and symmetry-type boundary conditions are applied at the
ront and back sides in the spanwise direction. We discretize the panel
ith 196 quadratic hexahedral elements in the streamwise direction
nd two elements along its thickness. Since we are dealing with a two-
imensional problem, we use one element across the span. The plate
as a Young’s modulus of 𝐸𝑆 = 77.28GPa, a Poisson’s ratio of 𝜈𝑆 = 0.33
nd a density of 𝜌𝑆;0 = 2710 kg∕m3. The pressure of the free-stream
s set to 𝑝∞ = 28 kPa and the fluid density is 𝜌𝐹 ;∞ = 0.339 kg∕m3.
or the fluid domain a grid-converged resolution with a total number
f 16,500 cells is used [13]. The grid is uniform with a cell size of
𝑥 = 4.25×10−3 m and 𝛥𝑦 = 4.8×10−4 m in proximity to the panel, see
ig. 2(b). A cavity with a height of ℎ = 2.2 × 10−2 m is defined below
he panel to account for its motion within the IBM framework. Slip-wall
oundary conditions apply except for the inflow and outflow patch. As
he flow is supersonic, we prescribe all flow variables at the inflow and
se linear extrapolation at the outflow boundary. We use ALDM for
he flux discretization and a CFL number of 0.6 for the Runge–Kutta
ime-integration method. The upper panel surface is coupled to the fluid
hile a constant pressure of 𝑝∞ is applied at the bottom side within the

avity. The cavity pressure is reduced by 0.1% the first 4ms to provide
n initial perturbation.

Main results for the flutter analysis are presented in Fig. 3 in terms
f panel deflections evaluated at the streamwise position 𝑥 = 0.6m.
e show results obtained by the FSI-ROM approach including the

irst 10 structural eigenmodes for a Mach number range of 1.9 ≤
a∞ ≤ 2.1. Flutter onset is predicted to occur at a critical Mach

umber of Ma∞;crit = 2.08, with an error of 4.0% with respect to linear
tability theory [49]. Almost identical results can be found in the work
f Pasquariello et al. [13] who found a critical speed of Ma∞;crit = 2.09,
nd in the work of Sanches and Coda [44] who predicted flutter onset at
a∞;crit = 2.05. Fig. 4 shows the influence of the number of eigenmodes,
𝑒𝑖𝑔 , used in the modal database on the flutter prediction at Ma∞ =
.09. The corresponding 𝐿2 error (integrated over the interval 𝑡 =
…100ms) is shown in Fig. 3(b). We observe monotonic convergence

owards the FSI-FEM solution. The ROMs with 7 and 10 eigenmodes
redict the structural response with a negligible error of 0.46% and
.07%, respectively.

The reduced-order model significantly improves computational per-
ormance of the FSI simulation. Solving the structural problem with the
lassical FEM approach costs about 77% of the total simulation time
wall-clock time). The ROM reduces the time required for the structural
roblem to almost zero, which leads to a more than fourfold speedup in
his case, see Table 1. We note that as a side-effect also the performance
f the CFD solver improves when the ROM is used. This is probably due
o the much smaller memory requirements of the ROM, which leads to a
ore efficient use of the CPU cache for the memory bandwidth limited

FD solver.
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Fig. 15. Selected eigenmodes of the semi-spherical membrane. The mode number and natural frequency is indicated above each sub-figure. The color scale ranges from dark-blue
to bright-yellow and represents the magnitude of the deflection mode.
Table 1
Computation run time of the supersonic panel flutter case for FSI-FEM and FSI-ROM
with 𝑁𝑒𝑖𝑔 = 10.

Total wall-clock time [s] CFD solver [s] CSM solver [s]

FSI-FEM 1900 440 1460 (77% of total)
FSI-ROM 420 (22% of FSI-FEM) 417 3.5 (0.8% of total)

6.2. Elastic panel in a shock tube

Next, we study the impact of a shock wave on an elastic panel. This
case is based on an experiment of Giordano et al. [45], and was later
numerically investigated by Sanches and Coda [44] and Pasquariello
et al. [13]. The setup is shown in Fig. 5. A right-moving Ma = 1.21
shock wave hits the rigid base plate and the elastic panel mounted
11
on top of it. The shock then propagates through the opening between
the tip of the panel and the upper shock-tube wall and afterwards
reflects back and forth between the end of the shock tube and the
backside of the panel. We consider two cases, a panel with the length
𝑙 = 0.04m and one with 𝑙 = 0.05m. In both cases, the panel has
a thickness of 𝑏 = 0.001m. The lower end of the panel is fixed at
the rigid base plate and symmetry-type boundary conditions apply in
spanwise direction. The air is initially (pre-shock state) at rest and has
a density of 𝜌𝐹 ;𝑅 = 1.189 kg∕m3 and a static pressure of 𝑝𝑅 = 100 kPa.
The post-shock conditions are 𝜌𝐹 ;𝐿 = 1.616 kg∕m3, 𝑝𝐿 = 154 kPa and
𝑢𝐿 = 109.68m∕s. The panel is made of steel and has a Young’s modulus
of 𝐸𝑆 = 220GPa, a density of 𝜌𝑆;0 = 7600 kg∕m3 and a Poisson’s ratio of
𝜈𝑆 = 0.33. It is discretized using 55 × 2 quadratic hexahedral elements.
The air flow is considered inviscid and compressible. We use ALDM for
the flux discretization and a CFL number of 0.6 for time integration.
The fluid domain is discretized with 123,400 cells with grid refinement
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Fig. 16. RMS node displacements for shock-induced buckling of thin semi-spherical membrane: (a) ( ) non-linear FEM; ( ) results of Pasquariello et al. [13]; ( ) linear
FEM; ( ) ROM with 𝑁eig = 100. (b) ( ) non-linear FEM; AROM with 𝜖 = 1.7 × 10−3 and ( ) 𝑁eig = 12, ( ) 𝑁eig = 25, ( ) 𝑁eig = 50, ( ) 𝑁eig = 75, ( )
𝑁eig = 100.
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around the panel, see Fig. 5. The inflow condition is based on Riemann
invariants [50], and the remaining boundary patches mimic a slip-wall
condition. The motion of the panel is mostly affected by its 1st bending
mode, but in the following analyses we enrich the reduced model with
the first 10 eigenmodes to ensure convergence.

We start our analysis with results obtained by the non-linear FEM
approach. In Fig. 6 we show contours of the density gradient magnitude
|∇𝜌| at different times. Note that at 𝑡 = 0μs the shock wave has already
hit the panel, which is the same definition as used by [45]. At 𝑡 = 140 μs
the shock has passed through the small gap between the tip and the
upper wall. A reflected shock due to the collision with the panel is also
seen. Subsequently, the vortex generated at the panel’s tip grows and
moves downstream, followed by a shedding of small-scale vortices after
𝑡 = 560 μs. The initial shock wave is reflected at the shock tube’s end
and then interacts with the main vortex, which results in a complex
flow field at 𝑡 > 840 μs.

The panel-tip displacement history is plotted in Fig. 7(a) and
Fig. 7(b) for the 0.04 m and 0.05 m panel length case, respectively.
We compare our results to experimental data of Giordano et al. [45]
and with numerical data from Sanches and Coda [44] and Pasquariello
et al. [13]. All numerical simulations predict very similar oscillations
of the panel, both in frequency and amplitude. For the shorter panel,
all numerical and experimental results are in very good agreement,
whereas the numerical results for the 𝑙 = 0.05m panel deviate from the
experimental data in amplitude and frequency, see Fig. 7(b). According
to Giordano et al. [45], this might be due to a lack of damping in the
structural model, although this should not affect the first oscillation
period, or due to the stresses induced on the base, which are larger
for the long panel and may provoke small deformations in this region,
which consequently influence the motion of the panel. The experiment
conducted with the shorter panel implies lower stresses and thus
smaller deformations of the base. Fig. 8 shows the pressure signal
recorded at 𝑥sensor (see also Fig. 5) for both cases. Again, all results
agree for the shorter panel, while larger systematic deviations between
simulations and experiment can be observed for the 𝑙 = 0.05m panel.
Note that a continuous drop of the experimental pressure is observed
for 𝑡 > 2ms due to the reflected expansion waves within the shock
tube. This phenomenon is not taken into account in the numerical
simulations.

In the following we will evaluate the new reduced-order model.
igs. 9(a) and 9(b) show the time evolution of the tip displacement
or the short and long panel obtained with non-linear FEM, linear FEM
nd the ROM (𝑁𝑒𝑖𝑔 = 10) approach. Deviations between linear FEM
nd linear ROM are negligible with a maximum error of approximately
12

.01%. With respect to the short panel, see Fig. 9(a), all three structural
Table 2
Computation run time for the elastic panel in a shock tube case using FSI-NLFEM and
FSI-AROM with 𝜖 = 1.7 × 10−3.

Total wall-clock time [s] CFD solver [s] CSM solver [s]

FSI-NLFEM 23200 15930 7270 (31% of total)
FSI-AROM 15637 (67% of FSI-NLFEM) 15615 22.1 (0.1% of total)

models predict very similar displacements. Larger deviations between
the non-linear and linear models can be observed for the long panel.
We will therefore only consider the case with 𝑙 = 0.05m for the AROM
simulations. Fig. 10 shows the long-time evolution of the panel-tip
displacement. Results obtained with the linear FEM show increased
deviations from the non-linear FEM reference results with longer inte-
gration times. Integrated over the interval 𝑡 = 0…8ms, the linear FEM
panel-tip displacement accumulates an 𝐿2 error of 8.33% with respect
to the non-linear FEM. AROM with a threshold value of 𝜖 = 4.3 × 10−3

(based on the reference length 𝐿 = 𝑙) predicts the panel-tip deflection
with a lower 𝐿2 error of 3.82%. AROM results for 𝜖 = 1.7 × 10−3 are
lmost identical to the non-linear FEM reference, with an 𝐿2 error of
nly 0.58% at a very small fraction of the FEM cost.

Table 2 shows the division of the wall-clock computation time
etween the CFD solver and the CSM solver for both the non-linear FEM
FSI-NLFEM) and the adaptive ROM (FSI-AROM) with an adaptation
hreshold of 𝜖 = 1.7 × 10−3. The FEM solver is responsible for about
1% of the total wall-clock time, whereas the proposed AROM with the
ighest update frequency (lowest adaptation threshold of 𝜖 = 1.7×10−3)
onsumes only a negligible amount (0.14%) of the computation time. In
ig. 11, the computational cost of the AROM with different thresholds
s compared with the cost of a non-linear FEM simulation. As expected,
he performance gain can be even larger if the threshold is relaxed.

.3. Buckling of a shock-loaded thin semi-spherical membrane

The final application example is a three-dimensional FSI simulation
f a thin shock-loaded membrane undergoing buckling [13]. It can be
een as an extension of the previous FSI cases to three-dimensional
roblems with complex structural behavior. Dynamic buckling is a non-
inear structural phenomenon and highly sensitive with respect to any
ind of imperfections, including grid resolution and modeling param-
ters [51]. This implies that tiny spatial variations in the loading of
he structure may excite different buckling modes, which becomes even
ore evident for FSI problems, where the loads themselves are sensitive

o the shape of the deformed body. Pasquariello et al. [13] found
hat the occurring buckling mode can be affected by the structural
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Fig. 17. RMS node displacements for shock-induced buckling (left column) and associated relative errors (right column) with respect to the non-linear FEM solution for
a) - (b) 𝑁eig = 50, (c) - (d) 𝑁eig = 75, and (e) - (f) 𝑁eig = 100: ( ) non-linear FEM; ( ) 𝜖 = 17 × 10−3; ( ) AROM 𝜖 = 13 × 10−3; ( ) AROM 𝜖 = 8.6 × 10−3; ( )

AROM 𝜖 = 4.3 × 10−3; ( ) AROM 𝜖 = 1.7 × 10−3.
esolution, while the sensitivity with respect to the fluid grid plays a
inor role for the present test case.

The geometry and other setup details are shown in Fig. 12. The thin
emi-spherical structure is hit by a right-running Ma = 1.21 shock wave,
hich is initialized at 𝑥 = −0.05m at 𝑡 = 0 s. The shock propagates

hrough the domain until it reflects back again at the end wall located
t 𝑥 = 0.2m. The initial pre-shock and post-shock conditions are the
ame as for the two-dimensional shock tube case, see Section 6.2.
13
The membrane has a thickness of 𝑏 = 0.001m, an inner radius of
𝑟𝑖 = 0.029m, a Young’s modulus of 𝐸S = 0.07GPa, a Poisson’s ratio
of 𝜈𝑆 = 0.35 and a density of 𝜌𝑆;0 = 1000 kg∕m3. The reference length
𝐿 = 2𝑟𝑖 is used for the non-dimensional threshold 𝜖. The membrane is
discretized with 768 tri-linear hexahedral elements with two element
layers in the thickness direction. Nodes belonging to the bottom of the
semi-sphere have been fixed in all three directions. The inner volume
of the sphere is pressurized at the nominal pre-shock value 𝑝 in
𝑅
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Fig. 18. Deformation magnitude contours at two time-instances predicted by full non-
linear FEM (left column) and AROM with 𝜖 = 4.3 × 10−3 and 𝑁𝑒𝑖𝑔 = 75 (right column).
A scale factor of 350 has been applied for all contours.

order to keep the membrane inflated in the absence of the shock. The
fluid domain is discretized with 616,000 FV cells. We use uniformly
distributed cells with a size of 0.001 m in all three directions close to the
coupling interface. The fluid solver uses a 5th-order WENO scheme with
HLLC flux function and a CFL number of 0.6 for time integration. The
FV mesh for the fluid solver and the triangulated structural interface
𝛤𝑆 is shown in Fig. 13. With exception of the inflow patch, where
we impose the post-shock state, slip-wall conditions are used at all
remaining boundaries.

Fig. 14 depicts the pressure signal recorded at monitoring point 𝑃
above the semi-sphere, see Fig. 12. The pressure signal has two distinct
jumps, which indicate when the shock wave passes the sensor the first
time (𝑡 = 0.12ms) and the second time (𝑡 = 1.22ms) after reflection
at the end wall. The pressure signal is in excellent agreement with
the data provided by Pasquariello et al. [13]. The sensor location is
above the membrane and thus the pressure signal is not very sensitive
to the motion of the structural interface. Contrary to the previous FSI
examples, which were two-dimensional cases where a few number of
eigenmodes sufficed, the current three-dimensional case is expected to
require many more eigenmodes for capturing the local buckling of the
structure. This is better understood by considering Fig. 15, where we
show selected eigenmodes of the semi-sphere. Low-frequency modes
represent a global motion of the structure and higher-frequency modes
involve local deformations that are equally important for the present
case.

In Fig. 16(a), we compare linear and non-linear FEM results for the
average root mean square (RMS) deflection to illustrate the necessity
of employing non-linear structural analysis for the current FSI example.
While the linear FSI-ROM (enriched with 𝑁eig = 100 eigenmodes)
perfectly matches the linear FEM results, we observe significant devi-
ations from the non-linear FEM reference data. Such non-linear effects
can be represented by our adaptive model: Fig. 16(b) shows results
obtained with our AROM with 𝜖 = 1.7 × 10−3 and different numbers of
eigenmodes 𝑁𝑒𝑖𝑔 = {12, 25, 50, 75, 100}. We observe clear convergence
to the non-linear FEM reference with increasing number of eigenmodes.
When certain buckling events during an unsteady simulation are not
accurately resolved, the overall average deflection will ultimately dif-
fer. This becomes substantial when the system is enriched with an
14
insufficient number of eigenmodes. 𝑁eig = 50 eigenmodes reasonably
cover the frequency space with global and local deflection modes and
the displacement history predicted by AROM closely matches the non-
linear FEM results. In addition, results obtained by Pasquariello et al.
[13] are shown in Fig. 16(a). We observe deviations from our non-
linear FEM solution especially after the membrane collapses, i.e., after
𝑡 ≥ 1.2ms, which is not unexpected as multi-mode buckling is highly
sensitive to numerical details [51].

Next we study the effect of the threshold value 𝜖 for updating the
AROM. In Fig. 17, the time-evolution of the RMS displacements are
shown for various tolerances in the left column, and relative errors with
respect to the non-linear FEM reference solution are shown in the right
column. For the error plots we blank the initial part, where very small
reference displacements values would lead to ambiguously high relative
errors. The cases with 𝜖 = 17 × 10−3 and 𝜖 = 13 × 10−3 have maximum
errors above 25% and 10%, respectively, with the largest errors with
𝑁eig = 50 eigenmodes. For the highest update frequency for AROM,
i.e., the smallest threshold of 𝜖 = 1.7 × 10−3, 𝑁eig = 50 modes lead
to a maximum error of 5.5% occurring at approximately 𝑡 = 1.5ms.
Extending the modal base to 𝑁eig = 75 and 𝑁eig = 100 eigenmodes,
while keeping the same threshold, further reduces the maximum error
down to 1.6% (at 𝑡 = 1.5ms) and 0.7% (at 𝑡 = 1.2ms), respectively. In
general, a threshold of 𝜖 = 8.6×10−3 results in acceptable errors of less
than 5.0% when considering 𝑁eig = 75 or 𝑁eig = 100 eigenmodes.

Fig. 18 shows a qualitative comparison between AROM and non-
linear FEM results for the deformation at two time instances. The
depicted AROM results were obtained with an update threshold of
𝜖 = 4.3 × 10−3 and 𝑁eig = 75 eigenmodes. The top row shows the
deformation at 𝑡 = 1.2ms, just before the shock wave hits the structure
for the second time. We clearly identify a compression of the windward
side initiated by the initial shock passage. At 𝑡 = 1.5ms (bottom row),
the shock has passed the sphere a second time and high-order (local)
buckling becomes significant. We observe excellent agreement between
the non-linear FEM and AROM results.

We compare the computational cost 𝑇𝚂;𝙰𝚁𝙾𝙼 of the various AROM
simulations normalized with the cost of the non-linear FEM case 𝑇𝚂;𝙽𝙻𝙵𝙴𝙼
in Fig. 19(a). In general, the performance gain depends on the number
of modes included in the ROM database and the update frequency
of AROM, i.e., the threshold 𝜖. Choosing the lowest threshold (𝜖 =
1.7 × 10−3) considered in this example saves approximately 50% (with
𝑁eig = 100 eigenmodes), 70% (with 𝑁eig = 75 eigenmodes) and
80% (with 𝑁eig = 50 eigenmodes) with respect to non-linear FEM.
The symbols in Fig. 19(b) exemplarily depict the update instances of
AROM for 𝑁eig = 75 eigenmodes when using different thresholds. The
threshold and eigenmode-number dependence of the computational
cost stems mostly from the eigenvalue solver. We solve the eigenvalue
problem using a shift-invert method, which is very efficient for finding
the lowest eigenvalues, while it results in strongly increased compu-
tational cost when searching for relatively high eigenvalues [52]. The
computational costs are provided in Table 3 for the case with 𝑁eig =
75 at selected thresholds. Again, it is evident that the AROM is very
efficient compared to the conventional non-linear FEM method. AROM
can reduce the total simulation time by a factor of 2 without noticeably
compromising the accuracy of the FSI simulation (𝜖 = 4.3 × 10−3).

7. Conclusions

We proposed a computationally efficient and accurate Adaptive
Reduced-Order Model (AROM) for non-linear aeroelasticity simulations
that require a time-resolved representation of the fluid flow and struc-
tural dynamics. The model significantly reduces the computational cost
of the structural-dynamics solver through augmented modal trunca-
tion of a non-linear finite-element model linearized around a loaded
and deformed base state. Adaptive re-calibration and truncation aug-
mentation are performed before non-linear effects significantly affect
the structural properties like the stiffness matrix and internal forces.
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Table 3
Computation time for the membrane buckling using FSI-NLFEM and FSI-AROM with 𝑁eig = 75 at various
thresholds.

Total wall-clock time [s] CFD solver [s] CSM solver [s]

FSI-NLFEM 5802 2932 2870 (49% of total)
FSI-AROM 𝜖 = 1.7 × 10−3 3521 (60% of FSI-NLFEM) 2923 598.2 (17% of total)
FSI-AROM 𝜖 = 4.3 × 10−3 3143 (54% of FSI-NLFEM) 2894 249.2 (7.9% of total)
FSI-AROM 𝜖 = 8.6 × 10−3 2891 (49% of FSI-NLFEM) 2783 107.6 (3.7% of total)
FSI-AROM 𝜖 = 13 × 10−3 2828 (49% of FSI-NLFEM) 2777 51.39 (1.8% of total)
FSI-AROM 𝜖 = 17 × 10−3 2821 (49% of FSI-NLFEM) 2785 32.52 (1.2% of total)
Fig. 19. (a) Relative time-cost of the structural part as a function of 𝜖. ( ) AROM with 𝑁eig = 50, ( ) AROM with 𝑁eig = 75, ( ) AROM with 𝑁eig = 100. (b) RMS
ode displacements for FSI-AROM with 𝑁eig = 75 and ( ) 𝜖 = 17 × 10−3, ( ) 𝜖 = 13 × 10−3, ( ) 𝜖 = 8.6 × 10−3, ( ) 𝜖 = 4.3 × 10−3, ( ) 𝜖 = 1.7 × 10−3. Every mark

represents the instance of an AROM update and the almost invisible black line ( ) is the FSI-NLFEM reference.
d

his ensures that AROM can maintain the accuracy of the baseline
on-linear finite-element model for small and large deformations.

The accuracy of the AROM is controlled by a non-dimensional
isplacement-based parameter that triggers a re-calibration step. Con-
tructing and updating the modal basis is expensive due to the eigen-
alue problem that needs to be solved. Efficiency is achieved by re-
sing the modal basis as long as possible. With very small threshold
alues, the AROM is adapted very frequently and the computational
esults as well as the computational cost converge to a space and time
esolved non-linear finite-element simulation. A too large threshold,
n the other hand, leads to an essentially linear model and possibly
naccurate results. We performed sensitivity studies for several test
ases and found that a non-dimensional threshold value of about 4 ×
0−3 leads to the best balance between computational efficiency and
ccuracy for all cases. For future applications, we recommend to use
n update threshold criterion based on the maximum strain, which can
e determined a-priori for a given material.

The proposed method can be used with any partitioned Fluid–
tructure Interaction (FSI) solver framework; the algorithm is indepen-
ent of the baseline discretizations of fluid and structure. Our loosely
oupled FSI implementation employs an unstructured finite-element
iscretization of the structural domain and a finite-volume method for
olving the three-dimensional compressible Navier–Stokes equations on
lock-Cartesian grids with a cut-element immersed-boundary method
or representing the moving interface between fluid and solid. Using
his FSI solver framework, the accuracy and efficiency of the AROM
ave been demonstrated and quantified for two- and three-dimensional
SI problems: We have shown that the model is accurate and very effi-
ient for predicting the onset of flutter in supersonic flows. The AROM
pproach can by construction yield predictions with any required ac-
uracy for shock-loaded structures undergoing large deformations, for
hich classical linear ROM would fail. The AROM also correctly re-
roduced the multi-modal buckling of a thin semi-spherical membrane
15

ith the same accuracy as the non-linear finite-element method and
at significantly reduced computational cost. FSI simulations with the
AROM maintain the excellent parallel scalability of the CFD solver
by reducing the run-time requirements of the structural problem to a
minimum, without noticeably compromising accuracy.
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