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 A B S T R A C T

The matching radius, defined as the maximum pick-up distance within which waiting riders and idle drivers 
can be matched, is a critical variable in ride-hailing systems. Optimizing the matching radius can significantly 
enhance system performance, but determining its optimal value is challenging due to the dynamic nature 
of ride-hailing environments. The matching radius should adapt to spatial and temporal variations, as well 
as to real-time fluctuations in supply and demand. To address this challenge, this paper proposes a dual-
reply-buffer deep reinforcement learning method for dynamic matching radius optimization. By modeling the 
matching radius optimization problem as a Markov decision process, the method trains a policy network to 
adaptively adjust the matching radius in response to changing conditions in the ride-hailing system, thereby 
improving efficiency and service quality. We validate our method using real-world ride-hailing data from 
Austin, Texas. Experimental results show that the proposed method outperforms baseline approaches, achieving 
higher matching rates, shorter average pick-up distances, and better driver utilization across different scenarios.
1. Introduction

Ride-hailing services such as Uber, Lyft, and DiDi have reshaped 
urban mobility by providing a flexible and accessible alternative to 
traditional transportation. As cities worldwide pursue net-zero emis-
sions by 2050, ride-hailing has become an integral part of sustainable 
mobility strategies (Wu et al., 2022). These services reduce reliance on 
private car ownership and improve vehicle utilization, contributing to 
lower emissions and enhanced transportation efficiency.

Despite these advantages, efficient rider-driver matching remains 
challenging due to the highly dynamic and imbalanced nature of ride-
hailing markets. A key factor influencing matching efficiency is the
matching radius, which determines the maximum distance within which 
a driver can be assigned to a ride request (Xu et al., 2020). Most 
existing studies focus on refining matching algorithms or optimizing 
the timing of assignments, yet they often treat the matching radius as 
a fixed parameter rather than a decision variable (Wang & Yang, 2019). 
However, a static matching radius fails to account for real-time supply–
demand fluctuations, which play a crucial role in service quality and 
operational efficiency (Chen et al., 2025; Xu et al., 2020). When the 
matching radius is too small, ride requests may go unfulfilled due to an 
insufficient number of nearby drivers. Conversely, an excessively large 
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radius increases passenger wait times and leads to inefficient driver 
allocation. A more adaptive approach that dynamically adjusts the 
matching radius based on system conditions can improve ride-hailing 
efficiency by forming more effective and balanced matching pools.

To this end, we propose a deep reinforcement learning (DRL) 
approach for optimizing the matching radius in ride-hailing systems. 
Compared to the fixed radius strategy, the proposed method can 
promise better ride-hailing matching results by adaptively determining 
the matching radius according to the system dynamics. Specifically, we 
first formulate the matching radius optimization problem as a Markov 
Decision Process (MDP), in which the policy is parameterized as a 
neural network to learn adaptive matching radius at each decision step. 
The overall performance of the ride-hailing system is considered as 
the reward, which comprehensively concerns the matching rate, the 
average pick-up distance, and driver utilization rate. Besides the fully 
connected hidden layers, we split the input and output layers of the 
neural network to process local observations in different regions and 
calculate the respective actions (i.e., matching radii), which enhance 
the awareness of local dynamics, such as regional supply–demand 
relationships. To train the neural network, we propose a Dual-replay-
buffer Deep Deterministic Policy Gradient (D-DDPG) algorithm, which 
https://doi.org/10.1016/j.cie.2025.111296
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introduces two reply buffers to differentiate the transitions with elite 
actions from the standard ones, and thus facilitates the learning from 
the matching radii that result in superior ride-hailing performance.

This work makes three key contributions to optimizing the matching 
radius in ride-hailing systems:

• We formulate the dynamic matching radius decision as a Markov 
Decision Process (MDP) and introduce a neural network archi-
tecture that captures both local and global system dynamics, 
supporting more informed region-specific radius decisions.

• We develop a Dual-replay-buffer Deep Deterministic Policy Gradi-
ent (D-DDPG) algorithm with an elite-action replay buffer which 
enhances learning efficiency by prioritizing transitions that lead 
to superior system performance.

• We develop a realistic ride-hailing simulator calibrated with 
real-world data from Austin, Texas, and conduct extensive ex-
periments under various supply–demand scenarios. The results 
demonstrate that our approach consistently outperforms fixed-
radius baselines and achieves a favorable balance across key 
performance metrics, highlighting its robustness and adaptability 
in dynamic ride-hailing environments.

The remainder of this paper is organized as follows. Section 2 
reviews the relevant literature and highlights the research gap. Sec-
tion 3 introduces the problem formulation, followed by the proposed 
methodology for learning the optimal matching radius in Section 4. 
Section 5 presents the experimental setup and results. Finally, Sec-
tion 6 concludes the paper and outlines potential directions for future 
research.

2. Literature review

A key operational challenge for ride-hailing systems, as with any 
on-demand transportation system, is the problem of matching, find-
ing a suitable driver to serve a ride request. Significant research has 
focused on designing and analyzing matching strategies to improve 
the efficiency and performance of ride-hailing systems. According to a 
comprehensive review by Wang and Yang (2019), matching approaches 
are broadly categorized into two types: greedy matching and batched 
matching. Greedy matching algorithms, such as those proposed in Feng 
et al. (2021), Lee et al. (2004), aim to assign the nearest driver or 
the shortest-travel-time driver to each individual ride request. Although 
these methods are easy to implement and manage, they are myopic in 
the sense that they prioritize immediate individual rider satisfaction 
over efficient resource utilization across many riders, which jeopardizes 
rider satisfaction at a larger scale. As an alternative, batched matching 
strives to accommodate the needs of more riders at a time by optimiz-
ing the matching among a group of drivers and riders accumulated 
in a pre-determined batching window. To maximize the matching 
rate in a batched matching solution, Zhang et al. (2017) propose a 
combinatorial optimization model to solve the order dispatch (match-
ing) problem at Didi Chuxing. With the consideration of future rider 
demand, (Lowalekar et al., 2018) formulate a multi-stage stochastic 
optimization formulation to maximize the number of matched requests 
in a batch. To reduce the riders’ total waiting times within a batch, (Gao 
et al., 2020) propose a learning-based approach that integrates machine 
learning with a two-stage stochastic programming model to guide open 
driver rebalancing prior to the batching process. For the benefit of 
drivers, Zhan et al. (2016) propose two matching algorithms, namely 
optimal matching and trip integration, to minimize drivers’ idling 
driving time and distance across all open drivers in the system. The 
computation results show that these algorithms could find the opti-
mal strategy that minimizes the cost of empty trips and the number 
of taxis required to serve all observed trips. In addition, Gao et al. 
(2021) introduce a data-driven optimization framework for ride-hailing 
matching with the goal of maximize the number of matched riders 
2 
and drivers. More recent developments expand beyond traditional ride-
hailing systems. Guo et al. (2024) address the autonomous vehicle 
ride-hailing problem using a multi-objective optimization approach 
that incorporates interpretable demand predictions, while (Essus et al., 
2024) extend this line of work to ambulance services, developing a 
dynamic relocation policy based on real-time vehicle utilization metrics 
to improve patient survival outcomes.

While traditional approaches rely on deterministic optimization 
frameworks, the dynamic and highly evolving nature of ride-hailing 
systems necessitates more adaptive solutions. Reinforcement Learning 
(RL) has emerged as a powerful tool to address these challenges, 
offering the flexibility to model and solve dynamic decision-making 
problems in real time. Readers are referred to Liu, Jia, et al. (2022), 
Qin et al. (2022) for comprehensive reviews of RL applications in ride-
hailing systems. For instance, Jin et al. (2019) develop a hierarchical 
multi-agent RL framework to optimize fleet management and order 
dispatching across regional zones, leveraging a hierarchical structure 
to coordinate long-term benefits. Similarly, Liu, Wu, et al. (2022) 
introduce a single-agent RL model for vehicle dispatching, reallocating 
vacant vehicles to regions with higher demand. These approaches 
highlight the ability of RL to handle spatial and temporal complexities 
inherent in ride-hailing systems. Recently, an RL-based approach is 
proposed to optimize the order dispatching strategy to maximize the 
system’s revenue, considering the heterogeneity of passenger cancel-
lation behavior and driver work pattern (Wang et al., 2024). Other 
less related studies use RL for dynamic pricing, charging and reloca-
tion (Huang et al., 2022; Ke et al., 2020; Liang, 2024; Wang et al., 
2020).

Despite the advances brought by RL-based approaches, most studies 
assume fixed batching intervals and matching radii. However, both 
factors are crucial in determining the size of the matching pool, which 
significantly impacts system efficiency and overall performance (Yang 
et al., 2020). In other words, matching strategies are shaped by these 
two spatiotemporal variables. Several existing studies have focused 
on optimizing matching time intervals for ride-hailing systems. For 
example, Qin et al. (2021) present a family of policy-gradient based 
RL algorithms for the delayed matching problem and propose an actor-
critic method to optimize matching time intervals, balancing wait time 
penalties with improved matching efficiency. Ke et al. (2020) apply a 
multi-agent RL approach to dynamically determine the delayed entry 
time for each ride request, showing empirical improvements in system 
performance by balancing pick-up time, matching time, and successful 
matching rate.

In contrast, the role of the matching radius has received compar-
atively less attention, despite its critical influence on the number of 
potential matches and the balance between ride requests and available 
drivers. Most studies treat the matching radius as a fixed parame-
ter rather than a decision variable. Xu et al. (2020) investigate the 
impact of the matching radius on system efficiency and theoretically 
demonstrate that adjusting it can mitigate inefficiencies. However, 
their approach relies on static assumptions and does not propose a 
learning-based mechanism to adaptively adjust the radius in response 
to dynamic demand and supply conditions.

To bridge this gap, this work introduces an RL algorithm to au-
tomatically learn and adaptively adjust the matching radius based on 
ride-hailing system dynamics, in order to enhance resource utilization, 
and improve adaptability to fluctuating supply–demand scenarios.

3. Problem description

Batched matching in ride-hailing systems is an optimization prob-
lem that assigns available drivers to ride requests within discrete time 
intervals, referred to as batching windows. Instead of processing re-
quests individually in real time, the system accumulates them over a 
fixed batching window and executes a matching algorithm at the end 
of the time interval. Unmatched requests from one batching window are 
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Fig. 1. An illustration of different matching radii in a region, denoted as  = 𝑅1 and  = 𝑅2, respectively, where 𝑅1 < 𝑅2. The left panel shows that with a smaller matching 
radius, fewer drivers receive ride requests, potentially leading to unfulfilled demand. In contrast, the right panel demonstrates that increasing the matching radius expands the 
search area, increasing the likelihood of successful matches.
carried over to the next, where they are reconsidered alongside newly 
arriving requests. The primary objective of batched matching is to opti-
mize the performance in terms of service quality, operational efficiency, 
or economic benefits, while ensuring that feasibility constraints are 
met.

Given a fixed batching window, the effectiveness of the matching 
process depends not only on the availability of drivers and riders 
but also on spatial constraints, particularly the matching radius. The 
matching radius defines the maximum distance allowed for assigning 
a driver to a rider. Given a region and the corresponding matching 
radius , as illustrated in Fig.  1, a rider can be assigned to a driver 
if the driver is within a circular range centered at the rider, with the 
radius . Expanding the matching radius increases the likelihood of 
successful matches because more drivers and riders would be involved 
but also leads to longer pick-up distances, potentially affecting service 
quality and driver efficiency.

This trade-off between match probability and pick-up distance high-
lights the need to optimize the matching radius to balance these com-
peting factors. The following section presents an optimization frame-
work for dynamically learning the matching radius to improve overall 
system performance.

4. Methodology

In this section, we present the methodology for optimizing the 
matching radius in a ride-hailing system. We first formulate the prob-
lem as a Markov Decision Process (MDP) and then propose a deep 
reinforcement learning (DRL) approach with a dual-replay-buffer mech-
anism to improve learning efficiency and convergence.

4.1. MDP for matching radius optimization

The problem can be modeled as a Markov decision process (MDP) 
defined by a 5-tuple (𝑆,𝐴, 𝑃 𝑟, 𝑅, 𝛾), where 𝑆,𝐴, 𝑃 𝑟, 𝑅, 𝛾 are the set of 
states, the set of actions, the transition probability, the reward function 
and a discount factor, respectively. In the MDP, we divide the target 
ride-hailing area into cells (i.e., non-overlapping regions), and the 
decision-making is made by an agent for determining the matching 
radius in each cell.

4.1.1. State
The state represents the observations from the environment that can 

reflect the current system status to the agent (Sutton, 2018). In the 
context of a ride-hailing system, the state can be represented by features 
such as the number of ride requests and the distribution of idle vehicles 
across different regions. Specifically, the state comprises observations 
from all cells at time step 𝑡, which is denoted as 𝑠 ∈ 𝑆. Given the set 
𝑡

3 
of cells in the target area , the observation of cell 𝑖 at time step 𝑡 is 
denoted as 𝑜𝑖𝑡. Therefore, the state can be derived as: 

𝑠𝑡 = (𝑜1𝑡, 𝑜2𝑡,… , 𝑜𝑖𝑡,… , 𝑜
||𝑡), 𝑖 ∈ . (1)

In fact, the MDP environment encompasses all (observable and 
unobservable) entities other than the agent itself, with which the agent 
interacts to sequentially obtain states and take actions (Sutton, 2018). 
In the case of the ride-hailing system, the environment reflects the 
dynamics of the ride-hailing market, which are implemented in the 
ride-hailing simulator and detailed in Section 5.2.

4.1.2. Action
Given a state 𝑠𝑡, the agent takes an action 𝑎𝑡 ∈ 𝐴 that represents 

the matching radii for all cells. With the collection of matching radii, 
the matching between riders and drivers can be performed. A matching 
pool in a cell refers to a set of riders with available drivers within 
the matching radius. The matching radius within a cell determines the 
number of drivers in the matching pool. The larger the matching radius, 
the bigger the pool. The matching radius can vary across the cells.

Let 𝑎𝑖𝑡 denote the matching radius in cell 𝑖 at time step 𝑡. All the 
riders in the same cell share the same matching radius, while riders 
in different cells can have different matching radii. Accordingly, the 
action at time step 𝑡 can be derived as: 

𝑎𝑡 = (𝑎1𝑡, 𝑎2𝑡,… , 𝑎𝑖𝑡,… , 𝑎
||𝑡), 𝑖 ∈ . (2)

4.1.3. Reward
After the agent takes an action at each time step, the environment 

returns a reward to the agent. The goal of MDP is to maximize the 
total reward the agent receives after its sequential interactions with the 
environment. In the MDP for matching radius optimization, we define 
the reward 𝑅𝑡(𝑠𝑡, 𝑎𝑡) as a performance score for the overall ride-hailing 
system. This performance score at time step 𝑡 is a weighted sum of three 
performance indicators, i.e., matching rate 𝑟𝑚𝑟𝑡  with weight 𝑤1, average 
pick-up distance 𝑟𝑝𝑑𝑡  with weight 𝑤2, and driver utilization rate 𝑟𝑑𝑢𝑡  with 
weight 𝑤3, such that: 

𝑅𝑡(𝑠𝑡, 𝑎𝑡) = 𝑤1𝑟
𝑚𝑟
𝑡 +𝑤2𝑟

𝑝𝑑
𝑡 +𝑤3𝑟

𝑑𝑢
𝑡 , (3)

where 𝑤1, 𝑤2, 𝑤3 are optimization weights for each of the reward 
components. In this work, we conducted a series of experiments with 
different weights for sensitivity analysis (in Section 5.4.5), which was 
used to identify the suitable weights that balance different performance 
indicators.
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Fig. 2. The working flow of the D-DDPG algorithm in ride-hailing systems.
4.1.4. Policy
The policy is used to determine the dynamic matching radius at each 

time step. Based on the defined ride-hailing MDP, the objective of DRL 
is to maximize the expected total reward 𝑄𝜋 (𝑠, 𝑎) at each time step. 
Let 𝐺𝑡 denote the action value of action 𝑎𝑡 = 𝑎 under the state 𝑠𝑡 = 𝑠. 
Formally, the optimization objective in DRL can be expressed as: 
max𝑄𝜋 (𝑠, 𝑎) = E𝜋 [𝐺𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎], (4)

where 𝐺𝑡 =
∑𝑇

𝑖=𝑡 𝛾
𝑖−𝑡𝑅𝑖 is the accumulated reward from the time step 

𝑡, and 𝛾 is the discount factor. In this work, we propose a novel DRL 
algorithm to optimize the policy 𝜋 for maximizing the expected total 
reward.

4.2. Dual-replay-buffer deep deterministic policy gradient

Given the MDP formulation, we parameterize the policy using a neu-
ral network, and then propose a Dual-replay-buffer Deep Deterministic 
Policy Gradient (D-DDPG) algorithm to update the policy network.

4.2.1. Traditional DDPG
The DDPG algorithm is a model-free off-policy DRL algorithm for 

handling continuous actions (Lillicrap, 2015). It adopts two neural 
networks, i.e., the actor and critic network, to learn the policy and 
estimate the Q-function, respectively. The DDPG also adopts target 
critic and actor networks to stabilize training. It applies a soft update 
approach for the target networks, gradually adjusting their parameters 
towards the source networks. In general, the DDPG algorithm alternates 
between Q-learning and policy learning. The objective of Q-learning is 
to minimize the mean-squared Bellman error: 
𝐿(𝜔,) = E(𝑠𝑡 ,𝑎𝑡 ,𝑅𝑡 ,𝑠𝑡+1)∼

[

(

𝑄𝜔(𝑠𝑡, 𝑎𝑡) −
(

𝑅𝑡 + 𝛾(1 − 𝑑)𝑄𝜔′ (𝑠𝑡+1, 𝜇𝜃′ (𝑠𝑡+1))
))2

]

, (5)

where the critic network 𝑄𝜔 is updated using stochastic gradient de-
scent. 𝜇  and 𝑄  are target actor and critic networks, respectively. 
𝜃′ 𝜔′

4 
denotes the collected transitions (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1) in the replay buffer. 𝑑
denotes if the state 𝑠𝑡+1 in a transition is a terminal state or not. When 
𝑑 = 1, the state 𝑠𝑡+1 is terminal, and thus the agent gets no additional 
reward after this state.

The objective of policy learning is to maximize the expected total 
reward: 

𝐿′(𝜃,) = E𝑠∼
[

𝑄𝜔(𝑠, 𝜇𝜃(𝑠))
]

, (6)

where the actor network 𝜇𝜃 is updated using stochastic gradient de-
scent. After updating the actor and critic networks, the target networks 
are updated: 

𝜔′ ← 𝜏𝜔′ + (1 − 𝜏)𝜔, 𝜃′ ← 𝜏𝜃′ + (1 − 𝜏)𝜃, (7)

where 𝜏 ∈ (0, 1) is the soft update coefficient that controls the rate 
of change. This update helps stabilize training by slowly tracking the 
learned networks.

The DDPG offers several advantages, such as the high sampling 
efficiency and the suitability for continuous action spaces. To improve 
the efficiency of policy training, we extend the standard DDPG frame-
work by incorporating a dual replay buffer mechanism, referred to as 
D-DDPG. In addition to the standard replay buffer, which stores all ob-
served transitions, we introduce a second buffer that selectively stores 
transitions associated with high cumulative rewards. The rationale 
behind this design is to differentiate between standard experiences and 
those that reflect elite actions, which in our case are highly effective 
matching radius decisions. By prioritizing these high-reward transitions 
during training, the algorithm is encouraged to learn more effectively 
from successful strategies. This helps guide the policy towards high-
performing behaviors, accelerates convergence, and enhances sample 
efficiency, particularly in environments with sparse or noisy rewards. 
The designed D-DDPG is detailed in the next subsection. 
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4.2.2. Description of the D-DDPG
Following the DDPG, we employ two sets of neural networks in 

the D-DDPG algorithm, i.e., the source and target actor networks 𝜇𝜃
and 𝜇𝜃′ , along with the source and target critic networks 𝑄𝜔 and 𝑄𝜔′ . 
The actor network determines actions based on states, while the critic 
network assesses the actions by estimating their expected rewards. The 
target networks are used to stabilize the training for both actor and 
critic networks. In addition, we adopt two replay buffers in the D-
DDPG algorithm, i.e., one for storing all transitions as in traditional 
DDPG, and the other for storing transitions with high rewards, which 
further improves learning efficiency and accelerates convergence. The 
workflow of D-DDPG algorithm is illustrated in Fig.  2.

Transitions in D-DDPG. The blue part in Fig.  2 includes the com-
ponents of the ride-hailing environment. To start an MDP episode, 
the environment is reset to initialize the state, including the number 
of idle drivers and ride requests in each cell. In each step within an 
episode, the current state is fed to the actor network for obtaining an 
action. Afterward, the action is intervened by adding noise generated 
by a noise function. The intervened action is further rescaled using 
the min–max normalization to match the corresponding radius range, 
and the rescaled radius is passed to the environment for interaction. 
In the environment, the input matching radius for each cell is used to 
form a matching pool, and then the ride-hailing matching problem is 
solved as a bipartite matching problem with weighted edges of pick-up 
distance (Karp et al., 1990). The immediate reward is then calculated 
by assessing the ride-hailing system with the three performance indica-
tors, according to the reward definition in Section 4.1.3. After reward 
calculation, the environment also updates the behavior of unmatched 
riders and drivers to generate new ride requests, thereby completing a 
state transition. Given that the new state does not meet the termination 
criterion, it is provided as feedback to the agent along with the reward. 
If the termination criterion is met, it indicates that an episode ends, 
where the environment is reset to start the next episode. We apply a 
number of episodes to collect transitions in the replay buffer, which 
are used for training.

Dual replay buffers. After 𝑡th step in the D-DDPG algorithm, the 
data in the transition, i.e., (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1), is stored in the replay 
buffer, as shown in the bottom-left corner of Fig.  2. If the reward 
in the transition is higher than a given threshold, we also store the 
corresponding data in a separate replay buffer, referred to as the elite-
action buffer. We continue collecting transitions until the number of 
transitions in the replay buffer exceeds a predefined threshold, which is 
set to three times the mini-batch size for training. This indicates that the 
replay buffer has accumulated sufficient transitions to start the training. 
Hence, the neural networks are updated to learn the matching radius 
from the stored transitions.

Neural network update. We sample a mini-batch of transitions 
from both replay buffers with a uniform distribution as shown in the 
bottom-left corner of Fig.  2. The sampled transitions are passed to the 
actor and critic networks for updating their weights. In the upper half of 
Fig.  2, the source actor network is used to output actions based on the 
states in transitions. Then, we apply Adam optimizer to update weights 
in the neural networks. The weights of critic network are updated by 
the gradient: 

∇𝜔𝐿(𝜔,) = ∇𝜔
1
||

∑

(𝑠𝑡 ,𝑎𝑡 ,𝑅𝑡 ,𝑠𝑡+1)∼
(𝑄𝜔(𝑠𝑡, 𝑎𝑡) − 𝑦𝜔

′
𝑡 )2, (8)

where 𝑦𝜔′
𝑡  is an expected state–action value and defined as 𝑦𝜔′

𝑡 = 𝑅𝑡 +
𝛾(1−𝑑)𝑄𝜔′ (𝑠𝑡+1, 𝜇𝜃′ (𝑠𝑡+1)). The weights of actor network are updated to 
increase the probability of selecting actions with higher values, using 
the gradient: 

∇𝜃𝐿
′(𝜃,) = 1

||
∑

𝑠𝑡∈
∇𝜃𝜇𝜃(𝑠𝑡)∇𝑎𝑄𝜔(𝑠𝑡, 𝑎)|𝑎=𝜇𝜃 (𝑠𝑡). (9)

After updating source neural networks, the parameters of the target 
neural networks are updated according to Eq. (7). We continue the 
5 
aforementioned transition storage and network update until the max-
imum number of episodes is reached. The finally trained source actor 
network represents the optimized policy for determining the matching 
radius. The pseudocode of the D-DDPG algorithm is shown in Algorithm 
1.

Algorithm 1 D-DDPG
Require: Maximum episodes 𝐸, Maximum time steps 𝑇 , Replay buffer 

𝑅, Elite replay buffer 𝑅′

1: Initialize actor network 𝜇𝜃 , critic network 𝑄𝜔, and target networks 
𝜇𝜃′ , 𝑄𝜔′

2: Initialize replay buffers 𝑅 and 𝑅′

3: Initialize ride-hailing environment (simulator)
4: for episode = 1 to 𝐸 do
5:  Reset environment and initialize state 𝑠0
6:  Reset noise process   and set noise factor 𝑝 = episode

𝐸
7:  for 𝑡 = 0 to 𝑇 − 1 do
8:  Select action: 𝑎𝑡 = 𝑝 ⋅ 𝜇𝜃(𝑠𝑡) + (1 − 𝑝) ⋅
9:  Rescale action 𝑎𝑡 to 𝑎′𝑡 and apply it in the environment
10:  Execute ride-hailing matching based on 𝑎′𝑡 and update the 

environment
11:  Observe reward 𝑅𝑡 and transition to next state 𝑠𝑡+1
12:  Store transition (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1) in replay buffer 𝑅
13:  if 𝑅𝑡 > elite-action threshold then
14:  Store transition (𝑠𝑡, 𝑎𝑡, 𝑅𝑡, 𝑠𝑡+1) in elite replay buffer 𝑅′

15:  end if
16:  if buffer size > warm-up threshold then
17:  Sample a mini-batch from both replay buffers 𝑅 and 𝑅′

18:  Update critic network using Eq.  (8)
19:  Update actor network using Eq.  (9)
20:  Update target networks using Eq.  (7)
21:  end if
22:  if termination condition met then
23:  break
24:  end if
25:  end for
26: end for

4.2.3. Policy network structure
Fig.  3 illustrates the workflow of the policy (actor) network used 

in our D-DDPG algorithm, which is designed to optimize the cell-
level matching radius for ride-hailing systems based on the observed 
supply–demand state.

To effectively address the structure of the ride-hailing matching 
problem, we design a neural network architecture that follows a split–
merge–split structure. Taking the actor network as an example, we 
split the input layer and the first hidden layer into multiple parts of 
neurons, with each part processing the observation from a single cell. 
Specifically, each cell 𝑖 receives its local features, including the number 
of available drivers 𝑁𝑑

𝑖,𝑡 and riders 𝑁𝑟
𝑖,𝑡, as defined in Eq. (10) and 

Eq. (11). These are processed through cell-specific embedding modules 
to extract local latent features. The cell-wise embeddings are then 
aggregated and passed through a shared fully connected hidden layer. 
This aggregation allows the network to model mutual relationships 
across all cells, enabling coordinated system-level decision-making. 
The resulting comprehensive embedding is then distributed again to 
the split final hidden layers and output layers, each generating the 
matching radius 𝑟(𝑖, 𝑡) for the corresponding cell. The input and hidden 
layers use the Exponential Linear Unit (ELU) activation function to 
improve training stability and model non-linear spatial dependencies. 
The output layer adopts the Tanh activation function to normalize the 
output actions within the range [−1, 1], which are then scaled to the 
allowable radius range.
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Fig. 3. The workflow of policy network. 𝑁𝑑
𝑖,𝑡 represents the number of available drivers at time 𝑡; 𝑁 𝑟

𝑖,𝑡 represents the number of riders at time 𝑡; 𝑟(𝑖,𝑡) represents a matching radius 
in cell 𝑖 at time 𝑡.
Although the figure simplifies the architecture to a single shared 
hidden layer for clarity, the implemented model uses four fully con-
nected hidden layers with 128 neurons each. This hidden dimension 
was selected after comparing multiple configurations (64, 128, 256), 
with 128 providing the best performance across evaluation metrics. 
The same network structure and hyperparameters are used consistently 
across all experimental scenarios.

From the perspective of ride-hailing matching, the split parts of 
neurons in the neural network can effectively capture the unique 
supply–demand relationship and characteristics of each cell. The fully 
connected hidden layer can capture relationships between cells by in-
tegrating their individual embeddings. In this way, the proposed neural 
network can not only process the local observation, but also obtain the 
interdependence between cells, thereby enhancing the performance of 
the ride-hailing matching.

4.2.4. Ornstein–Uhlenbeck noise
In D-DDPG algorithm, we add random noise to the output of the ac-

tor network. This noise is used to facilitate the exploration of the action 
space for better policy learning. Common stochastic processes for gen-
erating random noise include Gaussian noise and Ornstein–Uhlenbeck 
(OU) process. Compared to Gaussian noise, the OU process describes 
a mean-reverting stochastic process, which helps the exploration of a 
wider range of actions while still maintaining stability.

The OU process is defined by 𝑑𝑋𝑡 = 𝜃(𝜇 − 𝑋𝑡)𝑑𝑡 + 𝜎𝑑𝑊𝑡, where 
𝑋𝑡 is the value of the process at time 𝑡, and 𝜃 is the rate of mean 
reversion, indicating how quickly the process returns to the mean value. 
𝜇 is the long-term mean, around which the process fluctuates. 𝜎𝑑𝑊𝑡
is the random part, where 𝜎 is the diffusion coefficient representing 
the scale of the randomness. 𝑑𝑊𝑡 denotes the increment of a standard 
Brownian motion (Wiener process). According to the definition, the OU 
random process is a time-correlated random process, which means the 
random state has correlation with the previous state. Since the action in 
D-DDPG is the matching radius at each time step, which has continuous 
effects on the temporal elements, such as supply–demand relationship 
across time steps, applying OU noise can reflect the temporal effect and 
thus benefit the policy learning.

5. Experiments

In this section, we provide experimental results on a real-world 
dataset. We first describe the implementation details, the dataset and 
the simulator, and then analyze and evaluate the proposed method from 
different perspectives.
6 
Fig. 4. Spatial distribution of ride requests in Austin.

5.1. Dataset

The dataset is developed based on the RideAustin dataset,1 a pub-
licly available real-world ride-hailing dataset. It contains detailed trip-
level information, including the locations of idle drivers, the origins 
and destinations of travel requests, start and end times of trips, service 
vehicle types, and so on. Additionally, we integrate geographic data 
from OpenStreetMap (OSM)2 to represent Austin’s road network, en-
abling the creation of a realistic simulation environment that accurately 
depicts the city’s layout. The left side of Fig.  4 presents a heat map of 
real-world demand locations, derived from the RideAustin dataset. The 
right side of Fig.  4 shows 10,000 demand points, which are randomly 
sampled from the kernel density estimation. The heat map effectively 
highlights zones of high and low demand, visually representing ar-
eas where ride requests are most and least frequent. The randomly 
sampled demand points closely replicate the spatial distribution of 
the real-world demand locations, validating the accuracy of the fitted 
distribution. In our experiments, we partition the area in Austin into 
3 × 3 cells, and employ D-DDPG to learn the policy for determining 
matching radii in each cell.

1 https://www.kaggle.com/datasets/mexwell/rideaustin-data
2 https://www.openstreetmap.org/#map=7/52.154/5.295

https://www.kaggle.com/datasets/mexwell/rideaustin-data
https://www.openstreetmap.org/#map=7/52.154/5.295
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Fig. 5. KS test for rider locations generated by the simulator.
5.2. Ride-hailing simulator

We develop a simulator for modeling the realistic ride-hailing mar-
ket and providing an interactive environment for the DRL agent to 
generate data for its learning. The simulator is built upon real-world 
operational characteristics and follows several assumptions to better 
simulate the real ride-hailing market, as follows: (1) The ride-hailing 
market is divided into equally sized cells (i.e., regions), each with 
fixed geographic boundaries, and the matching can be made across cell 
boundaries; (2) All riders within the same cell share the same matching 
radius, while the matching radius may vary between different cells; 
(3) Riders do not cancel orders after being successfully matched, and 
drivers cannot refuse orders after being assigned to riders.

To ensure that the simulator realistically represents the real-world 
ride-hailing market, we calibrate both spatial and temporal demand 
distributions using the RideAustin dataset. The spatial distributions of 
rider and driver locations are modeled using non-parametric Kernel 
Density Estimation (KDE), allowing for flexible fitting of multimodal 
and heterogeneous patterns. To validate the realism of the simulated 
data, we perform the Kolmogorov–Smirnov (KS) test to statistically 
compare the distributions of simulated and real-world data.

The null hypothesis in the KS test is that there is no significant 
difference between the distributions of the simulator-generated rider or 
driver locations and the actual RideAustin data. If the 𝑝-value exceeds 
0.05, the null hypothesis cannot be rejected, indicating that the simu-
lator output is consistent with the real-world distribution. As shown in 
Fig.  5, the KS test for the latitude and longitude of rider locations yields 
statistics of 0.029 (latitude) and 0.028 (longitude), with corresponding 
p-values of 0.097 and 0.182, respectively. For driver locations, the 
test results (shown in Fig.  6) exhibit a similar pattern, with p-values 
exceeding the 0.05 threshold. These outcomes confirm that the spatial 
distributions generated by the simulator do not significantly differ from 
the empirical RideAustin data, thus validating the simulator’s spatial 
fidelity. 

Regarding the temporal distribution of travel demand, we also apply 
the KS test to compare the hourly demand distributions generated by 
the simulator with those observed in the RideAustin data. As presented 
in Fig.  7, the test shows no significant difference, further validating the 
simulator’s effectiveness in capturing realistic demand dynamics over 
time.

Together, these validation steps confirm that the simulator provides 
a statistically sound approximation of the ride-hailing environment in 
Austin, Texas. The locations of ride requests and drivers are generated 
based on the fitted KDE models, ensuring realistic supply and demand 
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Table 1
Parameters in three supply–demand scenarios in the simulator.
 Parameters Balanced High demand High supply 
 Initial Driver Number 100 50 150  
 Initial Rider Number 100 100 100  
 Match Time Window (sec) 15 15 15  

inputs. Each cell covers a square area of 5000 m by 5000 m. In the D-
DDPG algorithm, each episode simulates one hour of operations with a 
fixed step size of 15 s, resulting in a total of 240 steps per episode. 

After the matching radius derived from the actor network, each cell 
serves as a matching pool, assigning riders to drivers within the region 
using the matching radius. The assignment in the matching pool is ad-
dressed as a bipartite matching problem (Karp et al., 1990). When the 
matching process is done, successfully matched drivers and demands 
are removed from the map. Unmatched demands will be checked if they 
exceed the threshold 𝛥𝑡, which represents the tolerance time defined 
as the maximum number of matching time steps. If they do, they will 
also be removed but marked as unmatched. Otherwise, they remain 
in the matching system and will be involved in the matching process 
at the next time step 𝑡 + 1. Unmatched idle drivers have two possible 
behaviors of either staying in the same cell and randomly moving 
within a distance of 300 meters (i.e., idling status), or traveling to 
the nearest adjacent cell only if they are already idle for more than 
5 min (i.e., relocating status). New riders and idle drivers entering the 
matching process at time step 𝑡 + 1 are determined by the rates 𝜆𝑟(𝑖, 𝑡)
and 𝜆𝑑 (𝑖, 𝑡), respectively. Accordingly, the number of drivers and riders 
in a cell evolves as below:

𝑁𝑑
𝑖,𝑡+1 ← 𝑁𝑑

𝑖,𝑡 − 𝑛𝑑,𝑜𝑢𝑡𝑖,𝑡 + 𝑛𝑑,𝑖𝑛𝑖,𝑡 + 𝜆𝑑 (𝑖, 𝑡)𝛥𝑡, (10)

𝑁𝑟
𝑖,𝑡+1 ← 𝑁𝑟

𝑖,𝑡 − 𝑛𝑟,𝑜𝑢𝑡𝑖,𝑡 + 𝜆𝑟(𝑖, 𝑡)𝛥𝑡, (11)

where 𝑁𝑑
𝑖,𝑡 and 𝑁𝑟

𝑖,𝑡 represent the number of drivers and riders at time 
step 𝑡 in cell 𝑖; 𝑛𝑑,𝑜𝑢𝑡𝑖,𝑡  and 𝑛𝑟,𝑜𝑢𝑡𝑖,𝑡  represent the number of drivers and riders 
who have left cell 𝑖; 𝑛𝑑,𝑖𝑛𝑖,𝑡  denote the number of drivers arriving in cell 
𝑖.

The simulation begins with an initial state, which is characterized 
by idle drivers and ride requests distributed across cells. We con-
sider three supply–demand scenarios in the simulator, i.e., balanced 
supply–demand scenario, high-demand scenario, and high-supply sce-
nario. These scenarios reflect different supply–demand relationships in 
practice, which are depicted in Table  1.



J. Gao et al. Computers & Industrial Engineering 208 (2025) 111296 
Fig. 6. KS test for rider locations generated by the simulator.
Fig. 7. KS test for rider locations generated by the simulator.
5.3. Training setup

We tune hyperparameters based on training loss and convergence. 
Regarding the optimization weights in the reward function, we con-
ducted a sensitivity analysis (detailed in Section 5.4.5) with different 
weights to find the balance between each component. The weights 𝑤1 =
0.4, 𝑤2 = 0.4, 𝑤3 = 0.2 with the best overall performance are used in 
the training process. The policy is trained in the balanced scenario (as 
shown in Table  1), where the supply number is approximately equal to 
the demand number. We train the policy on an AMD Ryzen 9 5900HX 
CPU (3.3 GHz) with 32 GB RAM and an NVIDIA GeForce RTX 3080 GPU 
with 16 GB of memory. The average computation time per episode is 
30.23 s. The total training time is 6 h and 43 min.

5.4. Experimental results

5.4.1. Comparison in the balanced scenario
Following most previous research on ride-hailing, we apply a fixed 

matching radius as a baseline to evaluate the performance of the 
learned policy for determining the matching radius (Chen et al., 2023). 
We design four baselines to showcase the advantage of the trained 
policy, i.e., FR 500 m, FR 1000 m, FR 1500 m and FR 2000 m, 
8 
Fig. 8. Comparison with the baselines in the balanced scenario.
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Fig. 9. A matching result with the learned matching radii.

which represent the fixed matching radii of 500, 1000, 1500 and 
2000 m, respectively. We evaluate the learned policy and the baseline 
approaches in three different scenarios (as shown in Table  1), each of 
which involves 30 random episodes. The performance score, i.e., the 
reward, is recorded for each method.

The balanced scenario reflects a ride-hailing operational condition 
where the demand (i.e., the number of ride requests) are generally 
equal to the supply (i.e., the number of drivers), with small fluctuations 
in the supply–demand relationship. As illustrated in Fig.  8, the learned 
policy effectively optimizes the matching radius, which attains the 
highest performance score compared to the baselines. This indicates 
that the proposed D-DDPG can learn an effective policy for determining 
favorable matching radii in different regions, leading to improved 
ride-hailing performance in Austin under the balanced scenario.

Given the learned matching radii in cells, Fig.  9 demonstrates a 
matching result between riders and drivers, which shows riders and 
drivers are reasonably matched with a large matching rate and shorter 
pick-up distance. It indicates that the policy learned by D-DDPG offers 
good matching radii, which are adaptive to varying supply–demand 
relationships in different cells.

5.4.2. Comparison in the unbalanced scenarios
We evaluate the learned policy under extreme operational condi-

tions to demonstrate its robustness and adaptability. Specifically, in 
a high-demand scenario, ride-hailing demand far exceeds available 
drivers, whereas in a high-supply scenario, drivers outnumber ride 
requests significantly.
Comparison in the high-demand scenario. The left subfigure in Fig. 
10 illustrates the results in the high-demand scenario. As shown, the 
learned policy consistently outperforms all baselines and demonstrates 
good stability. Compared to fixed radii, which exhibit significant fluctu-
ations in performance, the learned policy is able to dynamically adjust 
matching radii and maintain a more stable overall performance. The re-
sults indicate that the learned policy handles supply–demand dynamics 
more effectively, providing a more reliable ride-hailing service.
Comparison in the high-supply scenario. The results in the high-
supply scenario are plotted in the right subfigure of Fig.  10. As shown, 
the learned policy significantly outperforms the baselines by success-
fully balancing the matching rate, pick-up distance and driver utiliza-
tion rate. It indicates that the trained policy is able to manage the 
9 
Table 2
Comparison in terms of different metrics.
 Policy 𝑅𝑚 𝐷𝑝 (𝑅𝑃 ) 𝑅𝑢𝑙𝑡 𝑅  
 FR-500 0.21 458.72 (0.85) 0.67 0.558 
 FR-1000 0.61 896.67 (0.70) 0.52 0.601 
 FR-1500 0.75 1326.44 (0.56) 0.45 0.614 
 FR-2000 0.79 1678.38 (0.44) 0.27 0.546 
 Dynamic radius 0.71 993.34 (0.69) 0.63 0.670 

excess supply of drivers by producing a set of reasonable matching 
radii. This further verifies the adaptability and effectiveness of D-DDPG 
in delivering a favorable policy under the high-supply scenario.

In summary, through the comprehensive test under three scenarios, 
we found that the dynamic matching radius policy trained by the 
proposed D-DDPG algorithm outperforms the baselines in all scenar-
ios. This trained policy demonstrates advantageous adaptability by 
dynamically adjusting the matching radius in response to real-time 
supply–demand variations.

Notably, the relative performance of fixed-radius strategies varies 
significantly across scenarios. In the high-demand setting, larger radii 
(e.g., FR-1500 m and FR-2000 m) tend to perform better by increasing 
the likelihood of successful matches. However, in high-supply condi-
tions, where drivers are abundant, smaller radii (e.g., FR-1000 m) are 
more efficient due to reduced pickup distances and better driver utiliza-
tion. In the balanced scenario, intermediate radii such as FR-1000 m 
or FR-1500 m provide reasonable performance, but still fail to match 
the consistency and overall reward achieved by the learned policy. 
The variation reveals a core limitation of fixed matching strategies: no 
single matching radius is optimal across all scenarios. In contrast, the 
learned policy continuously adapts the radius in each cell based on local 
observations, achieving higher performance across all scenarios.

5.4.3. Comparison in terms of different metrics
Table  2 shows an average performance comparison for matching 

rate 𝑅𝑚, average pick-up distance 𝐷𝑃  and driver utilization rate 𝑅𝑢𝑙𝑡, 
respectively. For each performance metric, we average the results over 
40 random episodes in the balanced scenario. The results show that 
the trained policy can achieve a good balance between multiple per-
formance metrics and achieve the highest overall performance score. 
While the trained policy does not perform best for all performance 
metrics, it found a good balance among the three performance metrics, 
thereby favorably optimizing the ride-hailing system from different 
perspectives.

The reasons why the trained policy cannot perform best for each 
performance metric can be explained as follows. Expanding the match-
ing radius to improve the matching rate may lead to a longer pick-up 
distance and a decrease in driver utilization rate. Conversely, reducing 
the matching radius to shorten the pick-up distance may reduce the 
matching rate. The trained policy can strike the best balance between 
the conflicting optimization objectives, rather than focusing on optimiz-
ing just one of them. On the other hand, maximizing driver utilization 
rate may give priority to the nearest ride requests to reduce the number 
of unmatched drivers within the matching radius and improve driver 
utilization rate. This will make the system more similar to a nearest-
matching system rather than a batched-matching system, resulting in 
a significant increase in the average pick-up distance. Therefore, the 
results in Table  2 demonstrate that the learned policy can maintain a 
good balance between different performance metrics.

5.4.4. Long-term performance evaluation
To evaluate the long-term performance of the learned policy, we 

compare it with baselines over a 24-hour period in Austin, based on the 
real supply–demand patterns retrieved from real operating data. Fig.  11 
demonstrates that the learned policy outperforms the baselines, consis-
tently achieving the best performance. This indicates that the trained 
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Fig. 10. Comparison with the baselines in the unbalanced scenarios. Left: The high-demand scenario; Right: The high-supply scenario.
Fig. 11. Comparison with the baselines in terms of long-term performance.

policy successfully finds a balance between different performance met-
rics. This balance is achieved by adjusting the matching radius based 
on the real-time supply–demand relationship of the ride-hailing mar-
ket. The performance of the baselines is prone to fluctuations over 
time, suggesting that the performance of the fixed matching radius 
is highly unstable when confronted with different levels of supply–
demand imbalances in the ride-hailing system. In contrast, the trained 
policy demonstrates better stability, which can effectively adjust the 
matching radius based on the supply–demand relationships.

5.4.5. Sensitivity analysis
To evaluate how different optimization objectives influence the 

learned policy, we conduct a series of experiments in which the D-
DDPG model is independently trained under each of the 13 weight 
configurations listed in Table  3. Each configuration reflects a distinct 
prioritization of the three reward components: matching rate (𝑤1), 
average pick-up distance (𝑤2), and driver utilization rate (𝑤3), with 
𝑤1 + 𝑤2 + 𝑤3 = 1. This setup effectively simulates a multi-objective 
optimization process, enabling us to analyze the resulting trade-offs and 
policy behavior under varying operational goals. The 13 weight com-
binations are categorized into multi-metric and single-metric classes, 
reflecting either balanced or goal-specific optimization preferences.
10 
Specifically, the weight combinations in the multi-metric weight 
class are designed to consider more than one performance metric. For 
example, the weight combination 𝐶𝑏𝑎𝑙

1  involves the matching rate, the 
average pick-up distance, and the driver utilization rate. We applied 
this combination to train and test the policy in all the other experi-
ments. Compared to 𝐶𝑏𝑎𝑙

1 , the weight combination 𝐶𝑏𝑎𝑙
2  focuses more 

on optimizing the matching rate, and 𝐶𝑏𝑎𝑙
4  pays more attention to op-

timizing the average pick-up distance. The weight combinations 𝐶𝑏𝑎𝑙
8 to 

𝐶𝑏𝑎𝑙
10  evaluate the policies trained with two balanced weights. In the 
single-metric class, each combination fully focuses on one specific per-
formance metric in the ride-hailing system. For example, 𝐶𝑠𝑖𝑛

1  focuses 
only on the matching rate. Using the single-metric class, the applica-
bility and effectiveness of the trained policy under biased optimization 
goals are evaluated.
Result analysis. The results of sensitivity analysis are shown in Fig. 
12, which presents statistics of the matching radii in the central region 
of Austin. Specifically, we illustrate the average value range and the 
90% confidence interval for the matching radii obtained from policies 
trained with different weight combinations. All results were obtained 
in the balanced scenario, with each weight combination tested over 
40 episodes. We observe that the matching radius with multi-metric 
weights fluctuates within the range of 600–1400 m. For 𝐶𝑏𝑎𝑙

2 , there 
is an increase in the matching radius compared to that of 𝐶𝑏𝑎𝑙

1 . This 
observation is reasonable, as a larger matching radius increases the 
matching pool, thereby raising the probability of ride requests being 
matched with available drivers. In contrast, the weight combination 
𝐶𝑏𝑎𝑙
4  has a larger bias towards the average pick-up distance, thus leading 
to a significant decrease in the matching radius. Regarding 𝐶𝑏𝑎𝑙

6 , the 
fluctuation becomes higher. By comparing it with 𝐶𝑠𝑖𝑛

3 , which only 
optimizes the driver utilization rate, we observe that optimizing the 
driver utilization rate as the single metric is difficult. The results of 
𝐶𝑏𝑎𝑙
3 , 𝐶𝑏𝑎𝑙

5  and 𝐶𝑏𝑎𝑙
5  show that slight changes in weights cannot cause 

large fluctuations in the matching radius of the learned policy. Taking 
𝐶𝑏𝑎𝑙
3  as an example, when it is compared with 𝐶𝑏𝑎𝑙

2 , the bias towards 
optimizing the average pick-up distance is slightly reduced, the average 
matching radius is slightly increased, and the confidence interval does 
not change significantly. In summary, the results indicate that the 
policy learned by our D-DDPG algorithm has good robustness and 
applicability for different weights across the performance metrics.
Average performance. We further evaluate the average performance 
of each weight combination. We train policies under each weight 
combination, and validate them over 40 episodes. We gather results 
in Table  4, where the last column is the average weighted performance 
score (i.e., the overall reward 𝑅). The results demonstrate the effec-
tiveness of the proposed D-DDPG algorithm. As shown, the learned 
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Table 3
Weight combinations in sensitivity analysis.
 Weights 𝐶𝑏𝑎𝑙

1 𝐶𝑏𝑎𝑙
2 𝐶𝑏𝑎𝑙

3 𝐶𝑏𝑎𝑙
4 𝐶𝑏𝑎𝑙

5 𝐶𝑏𝑎𝑙
6 𝐶𝑏𝑎𝑙

7 𝐶𝑏𝑎𝑙
8 𝐶𝑏𝑎𝑙

9 𝐶𝑏𝑎𝑙
10 𝐶𝑠𝑖𝑛

1 𝐶𝑠𝑖𝑛
2 𝐶𝑠𝑖𝑛

3  
 𝑤1 0.4 0.5 0.5 0.3 0.2 0.2 0.3 0.5 0.5 0.0 1.0 0.0 0.0  
 𝑤2 0.4 0.3 0.2 0.5 0.5 0.3 0.2 0.5 0.0 0.5 0.0 1.0 0.0  
 𝑤3 0.2 0.2 0.3 0.2 0.3 0.5 0.5 0.0 0.5 0.5 0.0 0.0 1.0  
Fig. 12. Average and 90% trust interval of obtained radius.
policy can consistently reach a high reward value, indicating that the 
D-DDPG algorithm can be well generalized to a variety of weight com-
binations. Among the combinations, the weight combination (0.4, 0.4, 
0.2) concurrently optimizes three performance metrics and achieves 
the highest overall score. Hence, we applied it to train and test the 
policy in all the other experiments. We note that although some weight 
combinations get higher 𝑅 values, they cannot optimize all metrics, 
leading to severely biased optimization.

The sensitivity analysis confirms that the policy can adapt to dif-
ferent optimization objectives that may exist in the ride-hailing market 
in Austin, verifying its applicability and effectiveness in a real-world 
operating environment.

6. Conclusion and future work

This paper provides a DRL solution to optimize the ride-hailing 
matching radius. We propose the MDP to formulate the matching 
radius optimization problem. On top of it, we develop a D-DDPG 
algorithm to learn the policy for determining the matching radius. We 
design different experimental scenarios of the ride-hailing market in 
Austin, and analyze the effectiveness and versatility of the proposed 
method under various supply–demand relationships. Extensive results 
show that our method effectively balances different performance in-
dicators in the ride-hailing system. From an application perspective, 
our approach offers ride-hailing platforms a scalable and adaptive tool 
for real-time operational decision-making, especially in dynamically 
changing environments. By integrating the learned policy, platforms 
can move away from static, rule-based radius settings and instead tailor 
the matching process to localized demand-supply patterns. This leads 
to reduced waiting times for passengers, higher driver utilization, and 
more efficient resource allocation.

The policy network is designed to output a dynamic matching 
radius for each cell at each decision step, enabling adaptation to 
localized supply–demand conditions. While the dimensionality of the 
11 
Table 4
Sensitivity analysis of performance metrics.
 Set 𝑅𝑚 𝑤1 𝐷𝑝 (𝑅𝑃 ) 𝑤2 𝑅𝑢𝑙𝑡 𝑤3 𝑅  
 𝐶𝑏𝑎𝑙

1 0.71 0.4 993.34 (0.69) 0.4 0.63 0.2 0.670 
 𝐶𝑏𝑎𝑙

2 0.73 0.5 1131.27 (0.62) 0.3 0.50 0.2 0.651 
 𝐶𝑏𝑎𝑙

3 0.75 0.5 1236.41 (0.59) 0.2 0.48 0.3 0.637 
 𝐶𝑏𝑎𝑙

4 0.42 0.3 638.25 (0.79) 0.5 0.65 0.2 0.651 
 𝐶𝑏𝑎𝑙

5 0.36 0.2 616.32 (0.78) 0.5 0.66 0.3 0.660 
 𝐶𝑏𝑎𝑙

6 0.57 0.2 898.96 (0.70) 0.3 0.68 0.5 0.664 
 𝐶𝑏𝑎𝑙

7 0.59 0.3 911.58 (0.69) 0.2 0.67 0.5 0.649 
 𝐶𝑏𝑎𝑙

8 0.55 0.5 901.19 (0.70) 0.5 0.59 0.0 0.626 
 𝐶𝑏𝑎𝑙

9 0.49 0.5 892.93 (0.70) 0.0 0.65 0.5 0.577 
 𝐶𝑏𝑎𝑙

10 0.18 0.0 404.33 (0.86) 0.5 0.79 0.5 0.825 
 𝐶𝑠𝑖𝑛

1 0.80 1.0 1945.31 (0.35) 0.0 0.81 0.0 0.830 
 𝐶𝑠𝑖𝑛

2 0.03 0.0 47.12 (0.98) 1.0 0.87 0.0 0.980 
 𝐶𝑠𝑖𝑛

3 0.73 0.0 1175.90 (0.55) 0.0 0.67 1.0 0.665 

action space increases with the number of cells, the neural network’s 
capacity for matrix operations allows it to handle high-dimensional out-
puts theoretically. The primary computational bottleneck currently lies 
within the simulation framework, specifically the Hungarian Matching 
Algorithm, which is used to match drivers and riders after the radii 
are determined. This process can become time-consuming with a large 
number of agents. Therefore, while our approach is applicable to 
more granular local areas, the computational cost increases due to the 
current simulation limitations. Future work will focus on optimizing 
the matching process within the simulator and exploring parallelization 
techniques to enhance scalability. Additionally, future research will 
focus on refining the spatial division of the ride-hailing service area 
to enable a more fine-grained and adaptive partitioning based on real-
world conditions. Incorporating practical considerations, such as driver 
preferences for accepting ride requests and route choices, into the 
MDP formulation will also improve the realism and robustness of the 
proposed approach. In addition, another promising direction for future 
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research is to explore Multi-Agent Reinforcement Learning (MARL) 
approaches for matching radius optimization. While our current single-
agent framework is effective and avoids communication overhead, 
MARL offers potential advantages in scalability by decomposing the 
decision space across agents. However, applying MARL in real-world 
ride-hailing systems introduces challenges such as coordination com-
plexity and communication latency. Future work will investigate how 
to mitigate these issues, potentially through decentralized learning 
schemes or communication-efficient agent coordination.
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