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Abstract

As an extension to 2D polygonal queries, the nD-polytope queries on point clouds also play a crucial role
in nD GIS applications such as the perspective view selection. This report first defines the nD-polytope
mathematically, and then develops an efficient nD-polytope querying solution by extending an index-
organized table (IOT) approach. The solution integrates four novel intersection algorithms including
CPLEX, SWEEP, SPHERE and VERTEX, each of which can be used to realize the primary filtering
for polytope querying. The performance of these algorithms is then measured and compared using an
representative nD-simplex and an nD-prism query region, respectively. It turns out that SWEEP performs
the best over all, but it may degrade significantly as dimensionality goes up. On the other hand, the
linear programming algorithm CPLEX although takes more time on intersection computation, performs
more stable. Besides, the experiments also reveal that the properties of a same geometry can change
significantly across different dimensionality, and thus optimal strategies developed in 2D/3D may not be
applicable in high dimensional spaces.

1 Introduction

With respect to range queries on point clouds, the polytope query — which is known as polygonal queries
in 2D — also plays a significant role in nD applications, e.g., perspective view selection which forms the
basis for visualizing point clouds. Besides, the scalar product queries can also be resolved by using the
polytope query to approximate [4, 6].

However, we lack efficient solutions. Researchers studying geometric algorithms mainly propose and
analyze different polytope querying algorithms theoretically [2, 8, 1] using in-memory data structures.
These algorithms are difficult to implement and may not be applicable to address big point data [4].
Based on the R-tree, a “simple” method and a clipping method are developed in [3]. However, they
discussed little about the performance in nD space, beyond testing a uniformly distributed 5D data
set from the business domain. None of the algorithms proposed distinguishes the type of intersection
(inside or touching), leading to redundant intersection computation for a branch block totally inside the
polytope.

Our recent study [7] developed an index-organized table (IOT) approach to execute nD orthogonal
window queries on points efficiently. IOT first converts each point into a one-dimensional key using a
Space Filling Curve (SFC), and then organizes and indexes these keys with a B+-tree. When querying,
IOT converts the nD query window into a set of ranges of the one-dimensional key, and then selects the
data (Figure 1a). Apparently, this strategy can be extended to more query geometries which are then
approximated and represented by a set of SFC ranges (Figure 1b).

Following this idea, this report develops novel algorithms and integrates them into IOT to solve the
nD-polytope querying problem. The performance of the integrated framework is tested and analyzed.
The rest of the paper is as follows: Section 2 revisits the IOT approach. Section 3 first defines the
nD-polytope mathematically, and then devises four different intersection algorithms that can be used
to realize polytope querying. Section 4 establishes 2 query geometries including an nD-simplex and an
nD-prism, and use them to test the performance of the algorithms. Section 5 concludes the report with
further discussion and reflection.
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[(0, 2), (5, 5)]

Key ranges:
block 1: [8, 15]

block 2: [24, 27]

block 3: [32, 39]

block 4: [48, 51]

SQL:
SELECT key FROM key table

key BETWEEN 8 AND 15
OR key BETWEEN 24 AND 27
OR key BETWEEN 32 AND 39
OR key BETWEEN 48 AND 51

WHERE

(a) Executing a window query on a uniformly dis-
tributed 2D point set based on Morton encoding (b) Searching point sets with a triangle and a circle

Figure 1: Recursively partitioning the extent of data according to SFC regions to match different query
geometries, for selecting data in IOT

2 IOT approach

This section presents the overall architecture of the approach based on [7]. This forms the basis to realize
polytope querying described in Section 3.

2.1 Nomenclature

The key terminology used to illustrate the approach is introduced below.

Dimension

Unlike general vectors in machine learning, the dimensions discussed here possess either physical or
semantic meanings that humans can perceive and interact with. In terms of data management, we
identify two types of dimensions: organizing dimensions are used to cluster and index the data such
as spatio-temporal dimensions; the other property dimensions which are not frequently used in the SQL
WHERE clause are affiliated, such as color and intensity, and they are irrelevant for data indexing. These
two types of dimensions are not fixed, and may be varied depending on applications.

Hypercube, node and range

In general, a cube refers to a 3D box with equal edge length. We extend such a geometric concept to the
nD space which then becomes the hypercube.

Figure 2 illustrates the node and the range. All 2D points to be managed have integer coordinates,
and cost 3 bits for each dimension. Thus, by interleaving X bits and Y bits, we can get a 6-bit Morton
key for each point. The right sub-figure presents Morton keys of four points inside the region [0, 2; 1,
3]. By truncating the last n bits (, n = 2), we get the same value 0010 which corresponds to the Morton
key at an upper level. By truncating once more, we derive the Morton key 00 at a higher level. In this
way, the Morton keys are formed into a hierarchy which is actually a Quadtree structure. We can easily
extend this structure to higher dimensional spaces so that a Morton node refers to the corresponding
2n-tree node embedded in the Morton hierarchy. A branch node indexes the nodes on the level below,
and represents the extent of a hypercubic region (, e.g., a block in the Quadtree). Thus, the branch node
is also a range of Morton codes starting from the lower-left corner to the upper-right. A leaf node is a
point in the data. So, the upper and lower bounds of its range both equal the Morton key.

2.2 Basic settings

Figure 3 presents the workflow of the IOT approach. It first encodes each nD-point to a full resolution
Morton key, interleaving the bits of all organizing dimensions. Property dimensions are attached to
the key. Such a full resolution key can be decoded directly to give the original coordinates. Then, the
approach utilizes Index-Organized Tables [9] which adopt the B+-tree to manage points. Hence, the
abstract model is a simple flat table, with each record presenting an nD-point. However, the approach
integrates the indexing structure and the data table together, which differs from previous solutions that
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Figure 2: 2D Morton hierarchy forms into a Quadtree structure: black dots are real points to be managed,
while colored dots are Morton branch nodes at different levels

separate them. In this way, the storage becomes more compact, and data retrieval using indexes becomes
more direct and efficient.

Point cloud ImportingFull resolution Morton keys
and property dimensionsEncoding B+-tree

based IOT

Query geometry

Extent of point
cloud

ImportingMorton rangesIntersection

Final accurate
result

Range table

Join Decoding
Filtering

Resultant keys
and property
dimensions

First filter Second filter

HistogramTree

Figure 3: The loading and querying procedure of the IOT approach

As to querying, the approach adopts two filters. The first filter uses the Morton hierarchy to approx-
imate the query window and derive the ranges. Take Figure 1a to illustrate: the first filter starts by
examining whether the root node (, i.e., the overall extent of the data) intersects the query window. If
they intersect, the root node will be decomposed into 4 sub-nodes and the spatial relationship between
each node and the query window will be assessed again. During the range computing process, if a node
is inside the query window, the range will be exported directly without further decomposition. Near
the query boundary, the decomposition goes on recursively until the maximum depth defined. A large
depth would cause huge number of ranges generated, slowing down the first filter. A small depth however
results in rough query result, which is also unacceptable because it moves the burden to a second filter
for an accurate answer. Consequently, we set a threshold on the maximum number of ranges to confine
the search depth. After the searching reaches this threshold, the first filter exports all ranges into a range
table, and then joins it with the IOT for selection, where the index automatically functions. A second
filtering will be conducted in a following step to complete the query.

However, a drawback of this querying process is that part of the ranges generated may actually contain
few or even no points when the data distribution is skewed. An example is the Airborne Laser Scanning
(ALS) point data, where most points lie on the ground, with few above the average height of buildings.
For one thing, this drawback implies extra time is spent on keeping refining nodes containing few points;
for another, large quantities of non-dense and empty ranges add the memory cost. We thus propose
using HistogramTree to improve the quality of ranges and thereafter the whole querying performance. As
Figure 4 shows, HistogramTree counts the points of the nodes at each level of the Morton hierarchy. If the
number exceeds the threshold of the tree, the node is partitioned. It should be noted that HistogramTree
contains neither points nor pointers to points. Thus, it is a compact structure which can be stored in a
flat table.

That is to say, the approach previously only uses the principle of the Morton hierarchy to generate
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short height;

}

Figure 4: A 2D HistogramTree example, where the threshold is 100; left: point counting, middle: pointer
structure of HistogramTree, with each node storing a Morton key and number of points, right: structure
of a HistogramTree node

Ranges

Lower Upper

... ...

Refinement
pool

Refining until
depth estimated

pop

HistogramTree
3D query window

Figure 5: Range generation using a 3D HistogramTree: wither respect to the query window, green nodes
are inside; red nodes are on the boundary; organge nodes are on the boundary but with few points; white
nodes are outside

ranges, while now it employs HistogramTree, an explicit and simplified representation of the Morton
hierarchy, together with the knowledge of data distribution to compute more effective ranges. Figure 5
presents the querying procedure. Starting from the root node, by performing intersection between the
HistogramTree and the query window iteratively, the function retrieves all relevant nodes to build the
range table. Non-overlapping nodes are abandoned. Nodes which are inside the query window are
immediately added to the range table with no further processing needed. The nodes on the boundary
with few points inside are also exported immediately. The remaining nodes intersect the boundary of the
query window and are temporarily held in a refinement pool. These can be further refined based on fixed
recursive decomposition. The process stops when the refinement pool is empty or the number of ranges
reaches the threshold. The rest of querying remains the same as before.

Apparently, this approach is smarter and more flexible than the conventional 2n-tree index which stores
pointers to point blocks: a branch node totally inside the query geometry can be processed immediately;
point distributions are considered so that partial refinement is possible; there is no block unpacking
process.

The theoretical querying time of the IOT approach is as follows:
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T = Tpre + Tio + Tpost (1)

where Tpre is the time cost of the first filter, and mainly comprises range computation and B+-tree
traversal; Tio indicates the main I/O cost to retrieve points inside the ranges; Tpost refers to the final
decoding and filtering. Tpre is bounded by O(r logB N), where r is the number of ranges generated; B

is page capacity in the number of points; N represents the input size. Tio maximally covers O(k
′

B + r)
I/Os, where k′ equals the number of points returned by the first filter. In fact, the more accurate
expression should be O(

∑r
i=1

⌈
ki
B

⌉
), where ki represents the number of points inside a specific range, and∑r

i=1 ki = k′. Tpost is bounded by O(k′). Once parallelism is applied, Tpost becomes O(k
′

p ), given p
processors.

3 Polytope querying

A convex polytope is simply a convex hypervolume. It is defined as an nD region for which, given any
2 points within the region, every point along a straight line joining the points is also within the region.
To use the polytope practically, this section first provides the mathematical definition. Then, novel
algorithms for polytope querying based on the IOT approach are developed.

3.1 Mathematical definition

A half-space is a division of space along a hyperplane (Figure 6). Here it is defined as the set of points x
such that ω · x + β ≤ 0. Note that the inequality is not as will be found in some texts, but is used here
for compatibility with the conventions of computer representation software (3D) that the normal vector
ω is oriented so that it points to the outside of the solid object. We also here require that ω is a unit
vector (ω · ω = 1 ). A half-space can be denoted by the tuple (ω, β).

� . x + � > 0

� . x + � < 0
�

Interior of half-space

Exterior of half-space

� . x + � = 0

Hyperplane

Figure 6: The definition of a 2D half-space which can be generalised to nD

In 2D space, the term half-plane is sometimes used, and it is defined by an infinite straight line — its
only boundary. In 3D space, the half-space is defined and bounded by an infinite plane, while in higher
dimensions the half-space is defined as all points on a particular side of an (n − 1)D hyperplane. In all
cases, the dividing (n − 1)D hyperplane has the definition ω · x + β = 0. A convex polytope is defined
as the intersection of a finite set of half-spaces, where it is not necessary that the boundaries are closed
(Figure 7):

C = ∩mi=1Hi

where Hi is a set of m half-spaces.
Based on this formulation, we can simply test whether a point is in a half-space by evaluating the value

of ω ·p+β: if the value is non-positive, the point p is within the half space. Since ω and p are vectors of
length n, the operation per point costs O(n) time. Then, computing the relationship between the point
and the convex polytope, can maximally cost O(mn) time per point. However, globally traversing all the
points for selection is too costly and scales badly with the size of input. Consequently, we adopt the IOT
approach to speed up the search.
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(a) 2D convex polytopes defined by half-planes. A:
a completely bounded convex polytope, B: a convex
polytope bounded on three sides only (b) A 3D convex polytope, from [10]

Figure 7: Convex plytopes in 2D and 3D spaces

3.2 Querying algorithms

The core of the querying algorithm lies in the intersection computation between HistogramTree nodes (or
generic Morton nodes) and the convex polytope to generate ranges. Then, all algorithms join the ranges
with the IOT (Section 2.2), with a final filter performing the aforementioned point-in-polytope test.

3.2.1 Linear programming method

The rigorous linear programming method detects intersection by finding solutions for a set of equations
defined by the (n− 1)D hyperplanes of the polytope and a node. We realize this by using CPLEX which
is a tool developed by IBM to solve linear optimization problems [5]. It provides optimal solutions to
an objective function confined by a set of constraints. Using CPLEX, we can create a variable array x
(i.e., x1, x2, x3,. . . xn), and set their range according to the range of a node (, i.e., L1 ≤ x1 ≤ U1,
L2 ≤ x2 ≤ U2, . . . Ln ≤ xn ≤ Un). Then, we convert all half-spaces to constraints in the form of
ω ·x+β ≤ 0. We set the objective function of the linear model to 0, meaning that once a solution found,
the program will stop. In this way, CPLEX detects whether an intersection happens.

3.2.2 SWEEP

SWEEP first identifies the “entry” and “exit” of a node with respect to a half-space (Figure 8): imagine
if the half-space were to be moved from a great distance away, towards and across the node so that
ultimately the node is within the half-space; the entry and exit are the first and last vertices to cross
the boundary. The categorization as entry and exit is only true in relation to a single half-space, and
must be re-appraised for others. Then, based on the distance between the half-space’s boundary and the
entry or the exit, SWEEP determines if an intersection happens. Figure 9 presents the whole workflow
of SWEEP.

Figure 10 shows how SWEEP works with HistogramTree. Node N1 is not within the half-space H2,
and is therefore external to the polytope C, and does not need to be further processed. N2 is within
all of H1 to H4, and its range can be exported. In the case of N3, since it fulfils neither of these cases,
it must be further processed before being accepted or rejected. The case of N4 is significant, because
it partially overlaps or falls within each half-space, but in fact it does not intersect C. We refer to this
case as a False Positive Node (FPN) and will discuss later. In the process of searching the nodes from
the refinement pool, nodes at the next lower levels are processed (2n of them). These are then applied
to the same tests against C. Some sub-nodes are found to be internal, some to be on the boundary, and
the rest external.

FPNs exist at crossings of half-spaces (, e.g., N4 in Figure 10a and N42 in Figure 10b). It is a practical
proposition to ignore the problem, and allow FPNs to be processed as if they are true positive nodes.
In Figure 10, N4, after first refinement, has three of its sub-nodes eliminated, leaving only N42 whose
sub-nodes are eliminated at the next level. This appears to be a common event — that as a FPN is
decomposed into sub-nodes at one level below, those sub-nodes are largely eliminated. Together with the
second filter, points in the remaining FPNs will all be filtered out.
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Figure 8: The “sweeping” process: in (1), a half-space starts sweeping, and the node is outside; in (2),
(3) and (4), the half-space sweeps over the node, where intersection happens; in (5), the sweeping ends,
and the node is fully inside the half-space

Yes No

A half-space
A Morton node

N

Entry takes the highest
value of N at ith dimension

Entry takes the lowest
value of N at ith dimension

Exit takes the
opposite of Entry

Compute distance Dentry
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No

Fully inside
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No

Dentry 
> diagonal length 

of N ?

No overlap

Yes

No

Dentry 
> side length 

of N ?

Compute distance Dexit 

Partial overlap
Yes

No

Figure 9: The workflow of SWEEP

3.2.3 SPHERE and VERTEX

SPHERE and VERTEX are two alternatives. They also detect intersection by examining the relationship
between a node and all half-spaces.

The SPHERE algorithm first computes the centre of a node. If the centre is in the half-space, or
the Euclidean distance between the centre and the half-space is within half of the diagonal length of
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Figure 10: SWEEP selection based on the IOT approach, with white nodes outside, green nodes inside
and red nodes on the boundary

the node, then the node will be selected. ”inside” or ”partial overlap” can be decided depending on the
distance. SPHERE only needs a central point for intersection detection, which is favorable. However, as
the distance computed is an upper boundary, FPNs will be selected (N4 in Figure 11).

Half-space

N3 N4

N1

N2

Figure 11: Intersection detection using SPHERE: N1 is inside; N2 partially overlaps the half-space; N3

and N4 are falsely detected as partial overlap

The VERTEX algorithm is more straightforward, as it examines every vertex of a node to determine
whether the node intersects a half-space. If all vertices are outside, then no intersection happens. If all
the vertices are in the half-space, the node is inside. For all other cases, a partial overlap is returned.
Implementing VERTEX is simple, but the algorithm may degrade drastically in high dimensional spaces.
This is because the number of vertices of a node grows exponentially as dimensionality goes up. In
addition, false detection will also arise at crossings of half-spaces (, e.g., Figure 10a), which is the same
as SWEEP.

3.3 Theoretical complexity

Since these algorithms are all based on the IOT approach, Equation 1 still applies. However, Tpre and
Tpost become O(mnr logB N) and O(mnk′). In VERTEX, every vertex of a node has to be examined.
Thus, its Tpre is bounded by O(2nmnr logB N). Besides, all algorithms introduce FPNs except CPLEX.
So, k′ can be varied. To determine the optimal solution in terms of time cost, we should consider all
processes as a whole. An accurate first filter may cost more time, but it returns smaller k′ which alleviates
I/O and post-processing in the second filter. For this purpose, we introduce False Positive Rate (FPR)
to indicate I/O and the performance of second filter (Equation 2):

FPR =

∣∣∣∣k′ − kk

∣∣∣∣ (2)

where k is the accurate answer. Sometimes, FPR can be very large, e.g., in high dimensional spaces.
Then, the portion of data selected by the first filter is also indicative (Equation 3):

selectivity =
k′

N
(3)
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The memory cost is mainly determined by the maximum number of ranges for querying and k′.

4 Experiments and analysis

This section describes experiments to evaluate the performance of different algorithms described above.
Section 4.2 builds a generic regular nD-simplex model and an nD-prism model for testing. The nD-
simplex is the simplest nD polytope which can constitute any other nD-complexes, while the nD-prism
is devised to investigate how the number of half-spaces influences the querying efficiency exactly.

We conduct all experiments on “pakhuis” server: a HP DL380p Gen8 server with 2 × 8-core Intel
Xeon processors, E5-2690 at 2.9 GHz, 128 GB of main memory, a RHEL6 operating system. The disk
storage is a 41 TB SATA 7200 rpm in RAID6 configuration. All tests are “cold”, without any caching
processes.

4.1 Data sets

To get a generic testing result, we use synthetic data for these two tests. We apply uniform distribution
to create every dimension independently. Each dimension uses 12 bits to store its value, so the largest
10D Morton key will occupy 120 bits which is just below the maximum of the Oracle NUMBER type (128
bits). Thus, the value of each dimension is between 0 and 4095. This allows limited number of unique
pairs to be created in 2D. So, we only generate 104 2D points, while generate another 106, 107, 108 and
1010 points for 4D, 6D, 8D and 10D data sets, respectively. Since the data is uniformly distributed, we
built the IOT approaches without HistogramTree. With all these data sets, we are able to investigate
the querying scalability with respect to dimensionality.

4.2 The regular nD-Simplex query

In the following, we first build the simplex model for querying at different dimensionality. Then, we
perform the test and discuss the results.

4.2.1 Query geometry construction

An nD-simplex has n+ 1 vertices, from v0 to vn, where vi = (νi0, νi1, . . . , νi(n−1)). We use a unit vector
along each axis to represent a vertex so that we can get the first n vertices of the simplex (Figure 12), i.e.,
v0 = (1, 0, 0, . . .), v1 = (0, 1, 0, . . .), . . . , vn−1 = (0, 0, . . . , 1). The last vertex vn must have the same value
for every dimension to make a regular nD-simplex. Assuming vn = (ε, ε, . . .), we calculate it by solving

a quadratic equation on the length of (vi, vn), (i < n). So, there are two possible solutions, ε = 1±
√
n+1
n .

We take ε = 1+
√
n+1
n . We then compute the mean of all vertices: M = (µ, µ, . . .), where µ = 1+ε

1+n . Then,
we shift the whole simplex by moving M to the origin O. In this way, the simplex is centralized at O,
while the vertex vi = (νi0, νi1, . . . , νi(n−1)), where νii = 1 − µ for i < n; νij = −µ for i 6= j and i < n;
νnj = ε− µ for j = 0, 1, . . . , n− 1.

Afterwards, we normalize the vertices to build the normal vectors (, i.e., −→a ,
−→
b and −→c in Figure 12)

for a new set of faces. These faces constitute another nD-simplex (with dashed green boundaries). As
the simulated data (Section 4.1) are positive numbers, we shift the new simplex to the positive zone:
by shifting the first n faces (H0 to Hn−1) to pass through O (, except Hn which is opposite to O), we
could build such a “positive” regular nD-simplex for querying. The size of the simplex depends on the
position of Hn which is adjustable (Figure 12). Hence, half-spaces constituting this regular nD-simplex
are derived:

H0 :
1− µ
A

x0 +
−µ
A
x1 + · · ·+ −µ

A
xn−1 ≤ 0

H1 :
−µ
A
x0 +

1− µ
A

x1 + · · ·+ −µ
A
xn−1 ≤ 0

...

Hn :
1√
n
x0 +

1√
n
x1 + · · ·+ 1√

n
xn−1 ≤ −β
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Figure 12: The workflow to build a regular simplex testing model in 2D

where A =
√
nµ2 − 2µ+ 1, and −β is the distance from O to Hn. To maximize the simplex within the

data region, −β should be taken as large as possible. Suppose the domain is a unit hypercube with every
dimension ranging from 0 to 1. Then, the maximum simplex formulated above leads to an intersection
of Hn and Hi (i < n) on the face xi = 1. In other words, when xi = 1, we will get the same expression
based on the equation of either Hi or Hn. We just use H0 and Hn to derive

β = − 1

µ
√
n

= −
√
n

1 + 1√
n+1

However, with such a formulation, all vertices of the simplex are on the boundary faces, and there
is no room for SWEEP making false detection at the corners (Figure 10a). So, we raise β to move Hn

towards O, which creates some gap between the first n vertices and the boundaries, except the last vertex
which coincides with O. Mathematically, this means we adopt

β = R
√
n− 1

µ
√
n
,

(
0 ≤ r ≤

√
n+ 1

1 +
√
n+ 1

)
(4)

where R is a ratio indicating the residual gap we created. We call it the residual ratio. A larger R
corresponds to larger room for false detection. We multiply R by

√
n to keep the product a similar

decreasing speed as the original β, when n grows.
Based on the formulation above, we can compute the volume of the nD-simplex which indicates the

selectivity. Suppose the edge length of the simplex is s, while the height is h, i.e., −β in this case, we
could derive

−β = h = s

√
n+ 1

2n

V =
sn

n!

√
n+ 1

2n
=

(
−β
√

2n

n+ 1

)n
1

n!

√
n+ 1

2n
(5)

As the test is up to 10D, we substitute n = 10 and R = 0.1 to Equation 4, and then substitute the
resultant β to Equation 5 to compute V : V10 = 0.0010091. This results in a 1‰ selectivity. Then, we
compute R using Equation 6 for other data sets, to achieve the same selectivity:

R =

√
n+ 1

n
√

2

 n
√

2

1 +
√
n+ 1

−

(
n!V10

√
2n

n+ 1

) 1
n

 (6)
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where n = 2, 4, 6, 8. Table 1 shows the computed R. Table 2 presents the ratio between the distance
from the origin O to Hn and the diagonal length, i.e., − β√

n
. This ratio indicates how the simplex stretches

over the data region as dimensionality rises.

Table 1: Residual ratio for different dimensionality

2D 4D 6D 8D 10D
R 0.6044127 0.5106438 0.3701990 0.230515 0.1

Table 2: The ratio between the distance from O to Hn and the diagonal length of the simplex

2D 4D 6D 8D 10D

− β√
n

0.029562 0.180339 0.355509 0.519485 0.668337

4.2.2 Test setup

The experiment uses 106 as the maximum number of ranges for querying. This value on the one hand,
guarantees a low FPR in high dimensional spaces; on the other hand, it avoids bloating the mem-
ory. CPLEX, SWEEP, SPHERE and VERTEX are tested. We implemented two versions of CPLEX.
CPLEX#1 endeavours to distinguish between two types of intersection, i.e., inside or partial overlap,
while CPLEX#2 treats all intersections as partial overlap. This means nodes inside the simplex will
also be refined iteratively. The test uses a single thread, and records 3 indicators for evaluating the
performance:

1. Selectivity of the first filter (Equation 3).

2. Number of iterating cycles (, i.e., for-loops) to generate ranges. A cycle of CPLEX#1 and CPLEX#2
means resolving the optimal problem once (Section 3.2.1). A cycle of SWEEP, SPHERE and VER-
TEX means computing the distance from a half-space to either the enter or the exit, the center of
a node, and a vertex, respectively.

3. Time cost of the first filter and the second filter. The first filter time corresponds to Tpre in
Equation 1, while the second filter takes Tio + Tpost to accomplish.

4.2.3 Results

Tables 3 - 5 show the results. CPLEX#1 owns the lowest FPR, while SWEEP responses the fastest below
10D with CPLEX#2 fastest in 10D. The low FPR of CPLEX#1 results from its accurate intersection
computation, without any FPNs. Consequently, the second filter always receives the smallest k′ for
post-processing. However, as CPLEX#1 spends significantly more time for each iteration for computing
ranges, such advantage is insignificant until 10D (Table 5). CPLEX#2 presents analogous selectivity as
CPLEX#1, but is faster. This is because CPLEX#1 decomposes the simplex to individual half-spaces to
further compute inside or partial overlap, while ignoring this reduces about 50% computation (Table 4).
Besides, it becomes less necessary to distinguish these two intersection types when n increases, as all
nodes returned by the first filter tend to fall on the boundary (Table 6). Since the number of nodes
at each level of the Morton hierarchy increases exponentially, the final nodes selected mainly reside in
higher levels with larger sizes. So, these nodes are more likely to partially intersect the simplex. 2D is
an exception as CPLEX#2 keeps refining nodes inside the simplex, while others search to the bottom of
the Morton hierarchy.

False positive points selected by CPLEX are caused by boundary nodes intersecting the polytope,
as these nodes contains points which are actually outside the polytope. On the other hand, besides the
boundary nodes, SWEEP, SPHERE and VERTEX also select FPNs as they apply approximate intersec-
tion computation (Table 7). So, larger k′ are returned, which causes significant performance degradation
in higher dimensional spaces. This makes SWEEP lag behind CPLEX approaches after 8D. SPHERE
processes similar number of iterations as SWEEP, and is even faster in generating ranges. However, the
ranges generated contain much more false positive points, which greatly undermines SPHERE’s overall
performance. Especially in 10D, SPHERE nearly selects the whole data set. VERTEX returns the same
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Table 3: Selectivity of the first filter

2D 4D 6D 8D 10D
CPLEX#1 1‰ 1.345‰ 4.805‰ 25.03‰ 400.1‰
CPLEX#2 1‰ 1.387‰ 4.815‰ 25.03‰ 400.1‰

SWEEP 1‰ 1.364‰ 9.244‰ 164.5‰ 605.0‰
SPHERE 1‰ 1.386‰ 11.93‰ 467.1‰ 929.5‰
VERTEX 1‰ 1.364‰ 9.244‰ 164.5‰ 605.0‰

Table 4: Number of iterating cycles for computing ranges

2D 4D 6D 8D 10D
CPLEX#1 3 653 4 412 563 4 262 738 4 650 728 6 299 304
CPLEX#2 23 696 1 302 544 1 566 912 2 489 856 3 550 208

SWEEP 2 259 2 223 188 6 451 764 33 842 261 16 336 597
SPHERE 2 243 1 829 719 5 676 139 23 967 213 11 245 251
VERTEX 8 260 28 574 320 316 524 032 1 711 305 472 3 732 959 232

Table 5: Time cost (s) (first filter ; second filter)

2D 4D 6D 8D 10D
CPLEX#1 0.52 ; 0.001 633.7 ; 0.001 616.8 ; 0.041 660 ; 5.51 845.7 ; 5 502
CPLEX#2 2.078 ; 0.001 120.4 ; 0.001 147.2 ; 0.041 250.2 ; 5.51 360.8 ; 5 502

SWEEP 0.001 ; 0.001 2.129 ; 0.001 3.078 ; 0.082 11.11 ; 31.69 3.388 ; 8 691
SPHERE 0.001 ; 0.001 2.35 ; 0.001 3.331 ; 0.103 9.518 ; 67.32 2.729 ; 11 213
VERTEX 0.001 ; 0.001 2.685 ; 0.001 7.624 ; 0.082 133.8 ; 31.69 434.9 ; 8 691

Table 6: Number of different types of node selected by the first filter (inside; boundary)

2D 4D 6D 8D 10D
CPLEX#1 323 ; 191 335 290 ; 664 711 78 778 ; 921 227 137 ; 999 941 1 ; 1 000 199
CPLEX#2 0 ; 4 357 0 ; 1 000 003 0 ; 1 000 020 0 ; 1 000 078 0 ; 1 000 200

SWEEP 323 ; 191 333 082 ; 666 930 75 139 ; 924 880 9 ; 1 000 003 1 ; 1 000 074
SPHERE 341 ; 209 367 127 ; 632 884 53 789 ; 946 230 0 ; 1 000 016 0 ; 1 000 210
VERTEX 323 ; 191 333 082 ; 666 930 75 139 ; 924 880 9 ; 1 000 003 1 ; 1 000 074

Table 7: Number of true positive nodes (TPN) and false positive nodes (FPN) selected (TPN; FPN)

2D 4D 6D 8D 10D
SWEEP 514 ; 0 660 077 ; 6 853 836 021 ; 88 859 370 333 ; 629 670 680 585 ; 319 489
SPHERE 550 ; 0 614 512 ; 18 372 779 259 ; 166 971 230 862 ; 769 154 446 376 ; 553 834

ranges as SWEEP, but takes much more iterations to accomplish due to the excessive vertex-based dis-
tance computation. An odd pattern occurs that the iterations of SWEEP and SPHERE decline from
8D to 10D. This is because the simplex’s boundary is very close to the boundaries of the data region in
10D. So, the false detection related to this half-space is constrained by the data region and causes less
overhead.

In general, the FPRs of all approaches increase drastically as dimensionality goes up, including
CPLEX. For one thing, this is because to keep the 1‰ selectivity, the simplex increasingly stretches
over the whole data region as n grows (Table 2), so that it intersects an increasing portion of nodes
at each height. For another, the maximum number of ranges for querying is set to a constant for all
data sets, while a node is decomposed into more children when n increases, which causes nodes mainly
at higher levels selected. Thus, approximating the simplex by these nodes becomes less accurate, and
introduces more false positive points.
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4.3 nD-prism query

In theory, the number of half-spaces constituting the nD-polytope affects the time cost of range generation
linearly (Section 3.3). This section uses a simple nD-prism model to verify this. Inscribed regular polygons
of a circle are used as the bottom of the nD-prism (Figure 13). To create the prism with 2f vertical
faces, we apply a rotation formulation: suppose θ = πj

f , where j = −f + 1, . . . , f . Then, we create each
half-space with

ω = (cos θ, sin θ, 0, 0, . . . , 0)

β = −
√
selectivity

π
· scale− scale

2
(cosθ + sin θ)

where scale is the length of a dimension which equals 4096 in this case. We do not create half-spaces
at the bottom of the prism, as they are implicitly defined by the data region. Based on this formulation,
we generate 8i-gonal (i ∈ [1, 8]) prisms from 2D to 10D. The hyper-volumes of these 8i-gonal prisms are
close to each other, and they approximately equal the product of selectivity 1‰ and the hyper-volume
of the data region.

Figure 13: The nD 8-gonal and 16-gonal prisms projected to 2D and 3D spaces

The test still uses the same uniform data sets from 2D to 10D, with a focus on the number of iterations
and time cost for computing ranges. The maximum number of ranges for querying is 106. The approaches
are the same as before. Figures 14 - 23 show the results.

Iterations of range computation

Figure 14: Number of iterations of range computation in the 2D-prism query
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Figure 15: Number of iterations of range computation in the 4D-prism query

(a) Overall (b) Without VERTEX

Figure 16: Number of iterations of range computation in the 6D-prism query

(a) Overall (b) Without VERTEX

Figure 17: Number of iterations of range computation in the 8D-prism query

(a) Overall (b) Without VERTEX

Figure 18: Number of iterations of range computation in the 10D-prism query
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Time cost of range computation

Figure 19: Time cost of range computation in the 2D-prism query

(a) Overall (b) Without CPLEX#1 and CPLEX#2

Figure 20: Time cost of range computation in the 4D-prism query

(a) Overall (b) Without CPLEX#1 and CPLEX#2

Figure 21: Time cost of range computation in the 6D-prism query
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(a) Overall (b) Without CPLEX#1 and CPLEX#2

Figure 22: Time cost of range computation in the 8D-prism query

(a) Overall (b) Without CPLEX#1, CPLEX#2 and VERTEX

Figure 23: Time cost of range computation in the 10D-prism query
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These figures indicate that for all solutions, the number of half-spaces influences the time cost of
range computation linearly, although the gradients vary. CPLEX#2 holds the best scalability. The
approach spends one iteration to determine whether an intersection occur. So, the number of iteration
it takes equals the number of nodes visited during the search. As prisms are very close to each other,
nodes involved in all cases are the same, which results in nearly constant time cost. On the other hand,
CPLEX#1 decomposes the prism to individual half-spaces to further detect inside or partial overlap.
Consequently, its iteration and time cost increase. SWEEP and SPHERE hold the superiority over
others in time cost. However, because of more FPNs, SPHERE takes more iterations than SWEEP. This
gap becomes larger when the dimensionality goes high, as Figure 17 shows. In 10D, although iterations
do not vary much, the FPNs from SPHERE is much larger than that of SWEEP (Table 8). This will
greatly slow down the second filter.

Table 8: Selectivity of the first filters in the nD-prism test

2D 4D 6D 8D 10D
CPLEX#1 1‰ 1.857‰ 13.39‰ 71.29‰ 247.9‰
CPLEX#2 1‰ 1.932‰ 13.39‰ 71.29‰ 247.9‰

SWEEP 1‰ 1.857‰ 13.39‰ 71.29‰ 247.9‰
SPHERE 1‰ 1.938‰ 15.33‰ 71.29‰ 749.4‰
VERTEX 1‰ 1.857‰ 13.39‰ 71.29‰ 247.9‰

5 Discussion

The strong aspect of nD-simplex model for query tests lies in the pseudo-randomness in terms of faces’
directions. This results in diverse intersection angles between axis-parallel nodes and the simplex, which
makes the result more generic and convincing. We achieved constant selectivity for both nD-simplex and
nD-prism test, facilitating analysis of querying efficiency dependency on dimensionality and the number
of half-spaces.

As shown in Tables 3 and 5, SWEEP becomes less competitive after 8D. FPNs occur at the acute
corners where boundaries meet (Figure 10a), and this occurs increasingly frequently in higher-dimensional
simplices. The nD-simplex is effectively a worst-case for the generation of FPNs, as SWEEP do not return
any FPNs in the nD-prism test (Table 8).

The clipping method [3] on the other hand, clips the nodes intersecting each half-space. In this way,
the intersection detection becomes a joint determination from all half-spaces, and FPNs are expected to
be reduced. However, computation of the clipping position has to be improved in high dimensional spaces.
The intersection will be an nD-plane which maximally results in 2n−1 possible vertices for clipping. With
the original method, several iterations of clipping has to be performed to detect accurately whether a
node intersects the polytope, which costs significant amount of time.

Rigorous method such as CPLEX takes more time in each iteration, but it holds a more constant
performance over dimensionality thanks to accurate intersection computation. So, CPLEX remains to
be a competitive solution when dimensionality is high.

In general, all approaches suffers from the ‘the curse of dimensionality’ that the FPR becomes very
high. As different types of geometry (, e.g., triangle, cube and sphere) develop differently as dimensionality
increases (, e.g., Figure 24), using hypercubes to approximate the polytope in high dimensional spaces
may not be easy and can cause significant error. In fact, such approximating process is also a discretizing
process, as the de-facto way to discretize in 2D is to use pixels. Consequently, we need to develop
new methodologies for discretizing geometries in high dimensional spaces, rather than extending low
dimensional schemes.

Additionally, our querying framework can solve more abstract queries whose constraints on combi-
nations of different dimensions are expressible as a polytope model. For a convex curved face, a generic
method is to generate a set of tangent planes which together form a superset of the geometry for ap-
proximation. More specifically, given a convex curved face: f(x0, x1, . . . , xn−1) = 0, we first randomly
generate m points on f , from p0 to pm−1. Then, we compute the gradients at these points:

∇f(pi) =

(
∂f

∂x0
(pi),

∂f

∂x1
(pi), . . . ,

∂f

∂xn−1
(pi)

)
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Figure 24: Volumes (V) and surface areas (S) of nD-balls of radius 1. Image source: Wikipedia

where pi is one of the random points. These gradients serve as normal vectors of a set of hyperplanes
which are what we need. With this, more complicated convex geometry queries can be resolved by directly
adopting the querying framework established. Future work will further develop and verify this method.
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