
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Using Association Rules to Study the
Co-evolution of Production & Test Code

Zeeger Lubsen, Andy Zaidman, Martin Pinzger

Report TUD-SERG-2009-015

SERG

TUD-SERG-2009-015

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Paper accepted for publication in the proceedings of the 6th International Working Conference on
Mining Software Repositories (MSR 2009)

c© copyright 2009, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

Using Association Rules to Study the Co-evolution of Production & Test Code?

Zeeger Lubsen
Software Improvement Group

The Netherlands
z.lubsen@sig.nl

Andy Zaidman, Martin Pinzger
Delft University of Technology

The Netherlands
{a.e.zaidman, m.pinzger}@tudelft.nl

Abstract

Unit tests are generally acknowledged as an important
aid to produce high quality code, as they provide quick
feedback to developers on the correctness of their code.
In order to achieve high quality, well-maintained tests are
needed. Ideally, tests co-evolve with the production code to
test changes as soon as possible. In this paper, we explore
an approach based on association rule mining to determine
whether production and test code co-evolve synchronously.
Through two case studies, one with an open source and
another one with an industrial software system, we show
that our association rule mining approach allows one to as-
sess the co-evolution of product and test code in a software
project and, moreover, to uncover the distribution of pro-
grammer effort over pure coding, pure testing, or a more
test-driven-like practice.

1 Introduction

The development of high quality software systems is a
complex process; maintaining an existing system is often
no less challenging. Runeson notes that automated unit
testing1 can be an effective countermeasure for difficulties
encountered during software maintenance [5]. Also Test-
Driven Development (TDD) and test-driven refactoring [4]
can play an important role here.

The quality of the tests — and by consequence the added
value for maintenance activities — greatly depends on the
effort that the developers put into writing and maintaining
tests. Traditional test suite quality measures are typically
not good at indicating the long term quality or “test health”
of a test suite [7]. As such, we have no insight into (1)
how well test code was adapted to previous changes in the
production code, (2) the current structure of the test code,

?This work is described in more detail in the MSc thesis of Zeeger
Lubsen [3].

1xUnit Testing Frameworks: http://www.xunit.org

and (3) how easy it will be to perform maintenance on both
the production and the test code in the future.

This missing insight has motivated us to investigate the
co-evolution of production and test code. In our previous
work, we introduced the Change History View [7] to ob-
serve and perform a qualitative analysis of the co-evolution
of production and test code by mining version control data.
While change history views provide sufficient insights into
the co-evolution of production of test code they require a
fair amount of human effort to understand and interpret.

In this paper, we address this shortcoming by adding
a quantitative analysis approach to study the co-evolution
of production and test code. In particular, we investigate
whether association rule mining can be applied to study the
co-evolution of test and production code and provide an-
swers to the following research questions:

RQ1: Can association rule mining be used to find evidence
of co-evolution of production and test code?

RQ2: Following RQ1, can we find measures to assess the
extent to which product and test code co-evolves?

RQ3: Can different patterns of co-evolution be observed
in distinct settings, for example, open source versus
industrial software systems?

We address these research questions by means of two
case studies. The first case study is on Checkstyle, an open
source system that checks whether code adheres to a coding
standard. The second case study is on an industrial software
system from the Software Improvement Group (SIG)2.

2 Production and test class co-evolution

Within the realm of data mining, we have chosen to use
association rule mining, because this technique allows us to
identify instances of logical coupling between classes [8],
in particular between production and test classes. For this
paper, production code/classes refer to Java classes and test
code/classes to jUnit test classes.

2Software Improvement Group, Amsterdam, The Netherlands.
http://www.sig.nl

SERG Lubsen et al. – Using Association Rules to Study the Co-evolution of Production & Test Code

TUD-SERG-2009-015 1

The basic idea of our approach is to use association rule
mining to study the co-evolution of test and production
code. The change history of test and production classes,
in particular commit transactions, form the input to our ap-
proach. Information about commit transactions is obtained
from versioning repositories, such as, the concurrent ver-
sions systems (CVS) or Subversion (SVN).

2.1 Association rule mining

Formally, an association rule is a statistical description
of the co-occurrence of elements in the change history that
constitute the rule in the change history [1]:

Definition 1 Given a set of items I = I1, I2, ..., Im and
a database of transactions D = t1, t2, ..., tn where ti =
Ii1, Ii2, ..., Iik and Ijk ∈ I , an association rule is an impli-
cation of the form A⇒ B where A, B ⊂ I are sets of items
called itemsets and A ∩B = ∅.

The left-hand side of the implication is called the an-
tecedent, and the right-hand side is called the consequent of
the rule. An association rule expresses that the occurrence
of A in a transaction statistically implies the presence of B
in the same transaction with some probability.

In our approach, we consider association rules that
express a binary relation between classes, as we
are looking for relations between individual produc-
tion classes (PC) and test classes (TC). For example,
consider the SVN transaction {TC1, PC1, PC2} com-
mitting changes to the test class TC1, and the two
production classes PC1 and PC2. Computing all
pairs we get the following binary association rules:
{TC1 → PC1}, {PC1 → TC1}, {PC2 → TC1},
{TC1 → PC2}, {PC1 → PC2}, {PC2 → PC1},

For a transaction involving n classes we obtain n∗(n−1)
binary association rules. We take into account inverse asso-
ciation rules, because the inverse rules can have a different
probability, as we explain below.

2.2 Co-evolution rules

In order to analyze the testing practices for an entire sys-
tem, we need a high-level overview of the development and
testing activities of the software system. For that, we clas-
sify binary association rules according to rules that deal (1)
solely with production code, (2) solely with test code, and
(3) that deal with both production and test code. Table 1
shows this classification in detail.

While PT comprises association rules between product
and test code the sub-classes refine this set by taking the di-
rection of rules into account. The direction of rules comes
into play when calculating the interestingness of an as-
sociation rule. Furthermore, we introduce two categories

Class Association rule
TOTAL The collection of all found association rules.
PROD {ProductionClass ⇒ ProductionClass}

Rules that only associate production classes.
TEST {TestClass ⇒ TestClass}

Rules that only associate test classes.
PT Rules that associate production-test pairs, which we can

subdivide into:
P2T {TestClass ⇒ ProductionClass}. These rules express

that a change in production class implies a change in
test class with some probability.

T2P {ProductionClass ⇒ TestClass}. These rules express
that a change in test class implies a change in produc-
tion class with some probability.

MP2T Matching production to test rules; P2T rules where the
antecedent and the consequent can be matched to be-
long together as unit test and class-under-test. These
rules express that a change in production code implies
a change in test code with some probability.

MT2P The counterpart of MP2T.

Table 1. Classification of association rules.

containing rules that denote commit transactions in which
a test class has been matched to a production class. For
each commit transaction these rules are obtained by com-
paring the file names of product and test classes. For the
comparison we rely on naming convention for test classes
and use straightforward string matching. For example, a
production class Class.java is matched with the test class
ClassTest.java.

2.3 Co-evolution metrics

Typically, association rule mining is used to search for
rules that are “interesting” or “surprising”. In our case,
we seek to find a global view on the entire change history
of source files (i.e., top-level Java classes) of a software
project. As such, we are mainly interested in the total num-
ber of rules that associate production and test classes and
how “interesting”, i.e., how strong the statistical certainty
of these rules is. In the following we explore a number
of standard rule significance and interest measurements to
measure co-evolution between production and test classes
in a software system.

The metrics presented in Table 2 allow us to reason about
the significance and interest of single association rules. To
get an overall understanding of how production and test
code co-evolves in a software system we use straight for-
ward descriptive statistics with boxplots. Boxplots provide
a five-number summary of the distribution of significance
and interest metric values. The sample minimum and maxi-
mum define the range of the values, while the median desig-
nates the central tendency of the distribution. The lower and
upper quartile allow reasoning about the standard deviation
and together with the median about the skewness of metric
values.

Lubsen et al. – Using Association Rules to Study the Co-evolution of Production & Test Code SERG

2 TUD-SERG-2009-015

Metric Probability Implementation Interpretation
support(A ⇒ B) P (A, B)n count The fraction of commits in which the itemset {A, B} appears in the change

history. Abbreviated as: s(A ⇒ B).
confidence(A ⇒ B) P (B|A)

s(A,B)
s(A)

The ratio of the number of transactions that contain classes {A ∪ B} to the
number of transactions that contain class A. This measure is not symmetrical.

interest(A ⇒ B) P (A,B)
P (A)P (B)

s(A,B)n
s(A)s(B)

Measures the correlation between the two classes A and B, i.e., how many times
more often class A and B are contained in a commit transaction then expected
if they were statistically independent. This measure is symmetrical.

conviction(A ⇒ B) P (A)P (¬B)
P (A,¬B)

s(A)n− s(A)s(B)
n

s(A)−s(A,B)
Is a measure of the implication that whenever class A is committed class B is
also committed. This measure is not symmetrical.

Table 2. Metrics for individual association rules.

These metric-values help us in interpreting the interest-
ingness of the association rule classes that we have defined
in Section 2.2. If a rule appears in almost all commits, its
support is close to 100%. While this is unlikely to hap-
pen for all commits, finding outliers that exhibit a support
close to 100% is interesting, e.g., as they indicate a pos-
sible bad design choice if two classes have been changed
together that often. The confidence-metric is tightly related
to the concept of co-evolution. It represents the certainty
with which one can expect, for example, when the product
class is changed that also the test class is changed. Con-
fidence values higher than 0.5 give a clear indication of
co-evolution between classes. The interest becomes higher
when the rule frequently holds. As for conviction, high-
quality rules (those that hold 100% of the time) have a value
of∞, while the less interesting rules have a value that ap-
proaches 1 (rules from completely unrelated items have a
metric-value of 1) [2].

Co-evolution of production and test classes is indicated
by rules in PT and its subclasses with significant support,
high confidence, interest, and conviction. Separate evo-
lution of product and test classes is indicated by rules in
PROD and TEST with significant support, high confidence,
interest, and conviction. If the majority of PROD, TEST,
and PT rules has low support, we conclude that there is no
structural co-evolution between classes.

In addition to the association rule interest measures, we
introduce several metrics to measure the extent to which
product classes are covered by test classes. The set of met-
rics is described in Table 3.

These coverage metrics allow us to get an insight into
the testing strategy. More precisely, a high ratio of PCC
and TCC indicates that many production class and test class
pairs are changed together. On the other hand, high ratios of
mPCC and mTCC indicate that the co-change is structural.

3 Preliminary results

We tried out our approach using two software systems:
Checkstyle, an open source coding standard checker, and an
industrial software system provided to us by the Software

Metric Description
PCC Production class coverage. The average number

of test classes that are changed per changed pro-
duction code class. This number is calculated by

|P2T |
#productionclasses

.
MPCC Matching production class coverage. The percent-

age of production classes that co-evolve with their
matched unit test class. This number is calculated by

|mP2T |
#productionclasses

.
TCC Test class coverage. The average number of produc-

tion code classes that are changed per changed unit test
class. This number is calculated by |T2P |

#testclasses
.

MTCC Matching test class coverage. The percentage of
test classes that co-evolve with its matched produc-
tion class-under-test. This number is calculated by
|mT2P |

#testclasses
.

Table 3. Product-test class coverage metrics.

Improvement Group (SIG).

Checkstyle. For Checkstyle we saw that actual software
development and testing are mainly two separate activities,
which is mainly evidenced through the rule ratios. How-
ever, a possible complication that we came across when in-
terpreting the results was the fact that there are some large
commits of (mainly) production code, which dominate the
rule ratios to a large extent, thereby perturbing the interpre-
tation. These very large commits originate from automated
code beautification operations (using Checkstyle).

During our interpretation, we also observed large differ-
ences between mT2P and mP2T rules when studying the
confidence and conviction rules. In particular, we saw that
the statistical evidence for mT2P rules was stronger than
for mP2T rules. Closer inspection revealed this to be due
to commits containing a larger number of production code
classes than test code classes, thereby influencing the prob-
abilities behind confidence and conviction.

Considering the average number of production and test
classes that are changed together, we can say that in gen-
eral not many production and test classes are co-evolved as
evidenced by the very low PCC and TCC values. This is

SERG Lubsen et al. – Using Association Rules to Study the Co-evolution of Production & Test Code

TUD-SERG-2009-015 3

further underlined by the low mPCC and mTCC values.

SIG software system. In our industrial case study we ob-
served that the SIG developers are following a development
and testing strategy that resembles that of a test-driven de-
velopment strategy. The first indication is given by the fact
that the rule class ratios are fairly evenly distributed over
PROD, TEST and PT.

Another important indicator for test-driven development
are the rule coverage ratios for the SIG software system.
Here we saw that for each production class that has been
changed, also a significant number of test classes has been
changed (and vice versa). This phenomenon is also struc-
tural, as also matched production and test class pairs have
been changed together.

4 Conclusion and future work

In this paper we have made the following contributions:
• An approach using association rule mining to study the

co-evolution of production and test code in a system
using transactions obtained from version control.
• A set of co-evolution metrics including standard in-

terest and strength association rule mining metrics to
assess the extent to which product and test classes
evolve.
• An evaluation with two case studies, one performed

with the open source software project Checkstyle, and
another one performed with an industrial software sys-
tem provided by the Software Improvement Group. In
both case studies, the findings have been evaluated and
validated with the findings of our previous research
and the original developers/maintainers of the software
systems under study.

The two case studies that we performed have shown a
greatly differing testing approach. In the case of Check-
style, we saw a very mixed picture at first, since we ob-
served that most of the commits are dominated by changes
to production code. This is (1) due to the development
style, where testing is mainly done in phases outside of
regular development (this is true during the early develop-
ment of Checkstyle), but also (2) due to a small number
of large commits of production code that perturbs the rule
classification (these large commits are due to code beauti-
fication). Our industrial case study, on the other hand, has
shown a test-driven development approach to testing, evi-
denced by a large number of commits that contained both
additions/changes to production and test code.

The analysis techniques that we have explored in this
work prove to be useful for (retrospective) assessment of
the unit test suite. A weak point of our approach, however,
is the fact that changes to the testing practices over small

periods of time will not yield noticeable differences in the
results, as our technique summarizes the entire history.

Future work. We have identified a number of ideas to
build upon this research.
• The use of an inter-transactional association rule min-

ing algorithm, which allows to widen our analysis from
a single commit to a window of commits that were
made in a short amount of time [6].
• Traversing the change history with a sliding window,

so that time-intervals can be studied more in depth, de-
tails become more clear and trends can be identified.

Acknowledgments. We would like to thank the Software
Improvement Group for their support during this research
and Bas Cornelissen and Bart Van Rompaey for proofread-
ing this paper. Funding for this research came from the
NWO Jacquard Reconstructor project and from the Centre
for Dependable ICT Systems (CeDICT).

References

[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associ-
ation rules between sets of items in large databases. In Pro-
ceedings of the ACM SIGMOD International Conference on
Management of Data, pages 207–216. ACM, 1993.

[2] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic
itemset counting and implication rules for market basket data.
In Proc. of the International Conference on Management of
Data (SIGMOD), pages 255–264. ACM, 1997.

[3] Z. Lubsen. Studying co-evolution of production and test code
using association rule mining. Master’s thesis, Software En-
gineering Research Group, Delft University of Technology,
2008.

[4] L. Moonen, A. van Deursen, A. Zaidman, and M. Bruntink.
Software Evolution, chapter The interplay between software
testing and software evolution, pages 173–202. Springer,
2008.

[5] P. Runeson. A survey of unit testing practices. IEEE Software,
23(4):22–29, 2006.

[6] A. K. H. Tung, H. Lu, J. Han, and L. Feng. Breaking the
barrier of transactions: Mining inter-transaction association
rules. In Proc. of the Int’l Conference on Knowledge Discov-
ery and Data Mining (KDD), pages 297–300. ACM, 1999.

[7] A. Zaidman, B. van Rompaey, S. Demeyer, and A. van
Deursen. Mining software repositories to study co-evolution
of production and test code. In Proc. Int’l Conf. on Software
Testing, Verification and Validation (ICST), pages 220–229.
IEEE, 2008.

[8] T. Zimmermann, P. Weißgerber, S. Diehl, and A. Zeller. Min-
ing version histories to guide software changes. In Int’l
Conf. on Software Engineering (ICSE), pages 563–572. IEEE,
2004.

Lubsen et al. – Using Association Rules to Study the Co-evolution of Production & Test Code SERG

4 TUD-SERG-2009-015

TUD-SERG-2009-015
ISSN 1872-5392 SERG

