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Abstract

In the current grid infrastructure, the power flow reaching the limits of the grid capacity induces several
problems. A way to circumvent this issue is the introduction of flexibility in order to alleviate the impact
on the energy network. However, the estimation of the required flexibility remains a problem in the
current state of the art. In this thesis, an approach is proposed to estimate the flexibility of distribution
systems by identifying assets based on aggregated transformer measurements. Flexibility can be seen
as the ability of the system to adapt to changes coming from demand and generation. Different assets
can be available such as solar panels, and heat pumps and have their specificities. The problem
thus translates into the identification process in aggregated data. Several steps are important in the
process, such as the consumption baseline, the study of the different characteristics of the profiles,
and the number of iterations. To allow the accuracy to reach high levels and to match the standards of
distribution system operators (DSO), the process requires the minimization of squared error between
the data and the chosen profiles. Different cases are investigated and validated prior to the study of
the results. For the identification of heat pumps and solar panels, individual approaches have been
investigated in the literature. However, the combined identification of assets has not yet been studied.
A mixed identification process is proposed in this work, and the method has been tested, reaching a
high level of accuracy. Within this new framework aiming at separating the assets, options are proposed
to enhance the accuracy of the process.
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Introduction

This chapter provides the reader with a brief overview of the work covered in this thesis. In Sec. 1.1 the
section provides information on the problem as well as the context in which it is taking place. Sec. 1.2
will introduce the problem that is addressed throughout the research covered in this document. Sec. 1.3
discusses the research objectives, and presents the research gaps in the next section Sec. 1.4. Conse-
quently, Sec. 1.5 highlights the research question, as well as its sub-questions. The research approach
is then detailed in Sec. 1.6. Finally, Sec. 1.7 addresses the outline of the content of this document.

1.1. Background

The escalating concerns surrounding climate change and the imperative for decarbonization have
started a global movement toward the transition to a system based on renewable energy. Such a
tendency aims to reduce the emission of greenhouse gas(GHG) and to keep the system reliable as the
number of assets connected to the grid will increase in the power distribution facilities. The number of
renewable energy sources has consequently multiplied over the last decade. This growth raises the
problem of the limitation of capacity that can be connected to the grid. In addition to this issue comes
the integration of renewable energy into the power grid, the design of the infrastructure is therefore
questioned as it has only been built to act as a single-direction system. The introduction of variable
renewable energy resources is then provoking an influx into the power grid this adds up another di-
rection of power flow to the infrastructures. Challenges arise to balance the power flow in the grid as
the variability of these sources is high. These problems are therefore becoming an important issue as
global electricity demand rises due to electrification of different sectors such as heating and transporta-
tion. This electrification will grant different advantages in the future, such as an increase in its reliability.
Achieving a high level of electrification will lead to a decrease in the dependency of energy on other
countries. Hence, the price of electricity would be more stable as the different sources would be mainly
located in the country. Such a process would also guarantee utilities and politics a more stable eco-
nomic climate [1] as well as emitting less GHG. However, the growth of both variable renewable energy
sources (VRES) and the energy demand creates a conflict in the grid, the limit of the power that can
be transported in the grid has been reached. Such results create a phenomenon called congestion :
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Figure 1.1: Congestion in the Netherlands, Source [2]

Congestion is a phenomenon that happens when transmission and distribution infrastructures are un-
able to accommodate all desired transactions according to [3], it can also happen due to the damages
that the infrastructures may have had to go through due to previous cases of congestion. As one may
see in Fig. 1.1 the Netherlands is facing congestion in almost the entire country. The risk of congestion
rises with renewable energy integration, urging timely solutions to prevent global energy grid blackouts.
The usage of newly penetrating loads is not distributed evenly across the day which creates an over-
load in the infrastructure [4]. Hence, the imperative to reduce congestion becomes urgent, ensuring
the integration of renewable energy as well as improving the reliability of power grids to secure energy
distribution. As policies around the globe arise in favour of the development of renewable energy and
contribute to the increase of the electrification [5, 6, 7, 8], the congestion is appearing as a bottleneck
of the renewable transition. The consequences are far-reaching, leading to voltage deviations and, in
the most extreme cases, triggering grid blackouts. Such events not only pose immediate threats to grid
stability but also result in substantial additional costs for solving the problem. These current grid prob-
lems, amplified by outages and increasing demand [9], necessitate fossil fuel backup generators [10].
Therefore not aligning with the Paris Agreement as the resultant GHG emissions underscore the envi-
ronmental impact. In addition approximately 1% of global carbon dioxide (CO2) emissions in Germany
are attributed to congestion-related problems, posing a challenge to the Paris Agreement’'s emission
reduction goals. Considering the case of Germany, congestion solutions cost 2.25 billion € in 2019 [11].
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When looking at a global scale, costs related to congestion could reach 1.3 trillion, particularly affecting
developing countries [9], as their electricity demand will increase tremendously. Congestion will then
take place in society as a whole, the effect of it will not be discriminatory between companies, house-
holds, and utilities. When looking at the grid operator perspective, congestion can happen on every
scale and then create a ripple effect for an entire country or even continent. Such as in 2003 when 50
million people suffered the consequences of the outage for up to 4 days [12].

Therefore congestion events should be avoided at any cost, different ways already exist to tackle them,
and future expansions of the grid infrastructures could take place to increase the capacity of the grid.
Such measures would then not only require a tremendous amount of money to be invested to overcome
the physical boundaries but also a consequent period to be dedicated to upscale the power grid. This
solution is the most efficient, however it can only be pursued on the long term. Other mechanisms
exist to address immediately the problem of congestion such as the use of flexibility. The IEA [5]
underlines that decentralized generation combined with flexible loads and storage systems can unlock
opportunities for reducing peak demand and help to manage congestion. Numerous approaches have
been designed to manage and alleviate congestion within power grids [13]. Among these, the focus of
this thesis centres on flexibility as a prominent and effective solution.

1.2. Problem Definition

Flexibility can be defined as the capability of a power system to cope with the variability and uncertainty
that solar and wind energy introduce at different time scales, from the very short to the long term,
avoiding curtailment of power from these VRES and reliably supplying all customer energy demand [14].
This solution raises a particular interest due to its capacity to dynamically adapt to the variations of
demands as well as power generation [15, 16, 17, 8]. Flexibility can be defined then according to the
different utilities that are already existing in the grid. While it holds significant promise in addressing
congestion, its widespread implementation is not without challenges. Technical limitations, regulatory
complexities, and the need for comprehensive coordination among stakeholders present hurdles that
demand careful consideration. An in-depth exploration of these challenges is crucial to developing
strategies for their effective mitigation, thereby paving the way for the successful integration of flexibility
into power grid operations. The implementation of such solutions depends on the available information
in the grid about the different utilities that define the electrical profiles. Without a precise insight into
the grid components, the estimation of flexibility can be laborious. Flexibility can require the different
characteristics of different units [18] such as active, and reactive power. In case of a deficiency of
data, initiatives regarding the estimation of flexibility shall be done to help the distribution systems
operators and the transmission system operators (DSO-TSO) handle the congestion events. With the
increasing number of distributed energy resources (DERSs), it becomes harder and harder to locate the
production and to identify the different types of utilities in the grid. As installing smart meters in every
neighbourhood to keep track of the production and consumption of data would require massive funds,
the need to develop a method to estimate the hidden capacity of flexibility is becoming prominent.

Nevertheless, the lack of data remains and questions arise around the estimation of flexibility. How
can flexibility be estimated based on aggregated data? How can it be defined in that case? Shall we
refer to different profiles as flexibility assets? All of these questions raise the problems that the energy
transition is facing in the electrification of the grid, these problems are emerging as VRES are being
incorporated into the grid. How can the estimation of flexibility be computed? What methods exist in
this case? The estimation of flexibility is based on different methods concerning the different types of
data that are available for the DSO. However with limited information as we look into aggregated data,
which data are valuable for the estimation of flexibility? Which utilities can still be identified?

Different energy sources can be the source of flexibility, [19] refers to renewable energy sources as
a source of flexibility, wind energy and solar energy are particularly interesting as they have a peak
of production and thereby can be identified easier than other type of production. On the other side,
the assets of energy consumption can be the consumption of power of heat pumps. As heat pump
consumption has peaks it is therefore easily identified.
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1.3. Research Objective

The objective of the thesis is to develop a model capable of identifying the flexible assets within the grid.
Subsequently, this model will enable the creation of case studies based on collected data, facilitating
analysis of the results. Following this process, a sensitivity analysis will be conducted to estimate the
amount of flexibility available in the grid based on aggregated data. Leveraging the identified flexible
assets, various strategies for enhancing flexibility will be proposed with the aim of minimizing congestion
within the neighbourhood. This approach is intended to mitigate the social-economic welfare impacts
on neighbourhood scales as much as possible.

1.4. Research Gaps

In current literature, various methods are employed to estimate flexibility within power grids. These
methods include optimizing the reactive-active power of assets and delineating flexibility regions. How-
ever, existing approaches predominantly focus on identifying individual assets, as emphasized by [20].
Notably, there is a notable gap in research concerning the estimation of flexibility based solely on ag-
gregated power measurements, without detailed asset information. To effectively estimate flexibility, it
is essential to understand the characteristics of assets within the grid. As the different profiles are all
added up together, the peak and characteristics are all hindering each other. Consequently, flexibil-
ity can be assessed accordingly. However, the relationship between the growth of solar panels and
heat pumps and their impact on flexibility remains largely unexplored in the literature. To determine
the amount of flexibility available in the grid, accurate profiles for both heat pumps and solar panels
need to be established. Therefore the need to provide accurate heat pump profiles is crucial. However,
within the literature, significant deviations have been observed from the modelled behaviour and the
measurements profiles [21].

1.5. Research Questions

This thesis aims to provide an accurate estimation of the flexibility on a distribution level based on
aggregated data provided by transformer measurements. Once the flexibility is estimated, the goal will
be to provide advice for the implementation of such solutions to profit from the socio-economic welfare
of the utilities in the neighbourhood. The research question can be formulated as :

"How can the identification of assets based on aggregated transformers’ measurements provide an
estimation of the available flexibility in the distribution system?”

Following the research gaps, different sub-research questions have risen :

1. How can we estimate more accurate heat pump profiles?

2. Which data and steps are needed for disaggregating the profiles with a 90% confidence interval?
3. How can we minimize the uncertainty of the proposed method?

4. What is the correlation between the heat consumption profile and the PV production?

1.6. Research Approach

The research approach will consist of first testing the identification of the PV and HP separately to pro-
vide accurate results. Then once the requirements for moving onto the second step have been fulfilled,
a model that can combine both of the identification processes will be created. The procedure will be to
first identify assets without noise and then implement different levels of noise based on the prevalent
asset in the data. For each of the models, the first step will always be to remove the baseline con-
sumption profile from the data and then use the identification algorithms. Optimization of the squared
error is the mathematical model that has been chosen for all of the identification. The scenarios will
differ in the number of assets implemented and the different steps chosen to optimize. Then the results
will be visualized throughout a boxplot graph to assess the accuracy of the methods that have been
developed. With respect to the results, an estimation of the reduction of the peak load will be pursued
to grand insights into how much could be done by curtailing or using other DR mechanisms.
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1.7. Outline

The structure of the thesis is as follows. Chapter 2 provides background knowledge about the use
of flexibility in the context of congestion happening across the grid in the Netherlands. A literature
review is presented about the different flexibility assets and methods to identify the potential of flexibility
in the perspective to establish the framework of the thesis. The research gaps can be found at the
end of this review. Then Chapter 3 presents the different steps that have been pursued to deliver a
model that can identify the utilities. The different steps and models will be explained to legitimate the
final algorithm proposed. At the end of this chapter, the different scenarios and the KPI are detailed.
Once the model, scenarios and methods for evaluation are presented, the validation of the model can
be found in Chapter 4. Then once the validation is presented, the different scenarios are displayed
in Chapter 5. Chapter 6 provides insights into the different important parameters and a sensitivity
analysis is detailed. Finally, Chapter 7 concludes on the work that has been covered in this research
and discusses the different limitations of the model as well as future work.



[1terature review

To ensure that this thesis is viewed as a comprehensive work concerning the literature review, this
chapter will detail the important aspects of the topic which will give the keys to understanding the
current situation. The state of the art of the grid will be the starting point of this work, thereby making
congestion management the first focus of this work in Sec. 2.1. Concerning Sec. 2.1 one of the solutions
considered to tackle congestion is flexibility, the estimation of it regarding the different flows of power
with aggregated data in the grid will be detailed in Sec. 2.2. Sec. 2.3 will give insights into how this
flexibility estimation can take place as well as with the methods used to estimate the flexibility. Lastly,
the kind of data that will be required and used for the model will be developed in Sec. 2.4.

2.1. Congestion Management

To address congestion issues, various methods can be employed, including both technical and non-
technical approaches that involve market-based operations. Methods such as Generation Reschedul-
ing (GR) [22, 23, 24, 25, 26], load shedding [23, 26], Distributed Generation (DG) [27, 28, 29, 30, 19,
31], and Demand Response (DR) [29, 32, 30, 33, 34, 35] are commonly used. Among these meth-
ods, dispatching DG in territories to minimize generation costs stands out. However, implementing GR
requires several steps, including selecting generators to be rescheduled. Traditional optimization prob-
lems focus on minimizing generation and reducing load operational costs, but this approach is slow and
ineffective [22]. Load shedding involves curtailing a building’s load as quickly as possible in response
to an urgent request from the grid operator. However, it can only be applied in emergencies and is
not suitable for congestion management as a reserve capacity [29]. Distributed Generation is effective
in minimizing power losses and voltage instability but has limitations in congestion management due
to implementation challenges. Combining Flexible Alternating Current Transformer Systems (FACTS)
with DR has been identified as a reliable and efficient solution for relieving congestion [33]. Different
optimization problems have been formulated to minimize power flows in the grid. The Unified Power
Flow Controller (UPFC) is widely used for congestion management, optimizing based on location to
minimize generation costs and ease congestion [3]. Active power rescheduling, notably improving sys-
tem flexibility, is highlighted as the most effective way to remove congestion, particularly in the context
of the renewable transition [13].

2.1.1. Flexibility an answer to congestion

As the IEA has underlined the lack of flexibility [9] in the current systems, it has a direct incident on the
increase of the risk profile for transmission and distribution systems. The need to implement flexibility is
becoming rapidly a primordial issue to answer to the tremendous growth of electricity volumes produced
by renewable energy sources [9, 8, 32]. Flexibility can be defined according to [36] as "the ability of
a power system to respond to changes in electricity demand and generation”. This ability is therefore
dependent on the current state of the grid and the physical infrastructures available for the renewable
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transition. Flexibility has major advantages, it can be implemented in both demand and supply-side
technologies [37]. On-site generations can be considered as one from both sides and can alleviate
the congestion from the transmission power grid according to to [29], a significant amount of variable
renewable energy sources (VRES) however requires a broader choice of flexibility options [32].

Governments around the world are planning to expand the renewable generation capacity [6], the
European Commission plans to raise the share of renewables capacity in Europe to 42.5% by 2030
and as in the Netherlands the share of renewable energy is expected to reach 16% in 2023 whereas
in 2020 it was 14% [7]. As VRES are expanding rapidly, the variability of its production increases as
well, the investigation of the coupling of VRES and heating systems has been led in [32] to tackle these
fluctuations. Demand supply management coupled with VRE can on average reduce by 20% the costs.
Heating systems can be considered as flexible assets [38, 39, 15], and the integration of such assets
requires the coupling to thermal storage to reveal the potential of these utilities. The electrification of
the heating system throughout the excess of production from VRES can open the path to electrify the
heating [15, 29]. Thus, the need to couple on-site generations and other assets is becoming urgent
to unlock the flexibility that is yet remaining underdeveloped. This combination is not the only one,
different options also exist as investigated in [32] where the mix of the vehicle to grid(V2G) and flexible
demand is also considered. This enables several assets with considerable advantages such as reserve
power, regulation, and emergency load curtailment [15]. The option to convert power to heat throughout
district heating systems can also be interesting in the case of the power conversion to maximize the
potential of the electricity produced [32, 39].

2.1.2. How can flexibility mechanims reduce congestion ?

According to [13] the rescheduling of generation is one of the most efficient ways to handle congestion
and the most used technique for congestion management. This can be translated into the use of a
demand response process to shift load when the power is the least needed. The integration of variable
renewable energies into power grids would grant more flexibility to the grid and its actors. As mentioned
in [29] the correlation between schedulable/flexible loads and controllable local generation can improve
the coordination and energy management of power grids. Therefore, this means that certain patterns
in the grid could be used to tackle the problem of congestion. Also, the self-consumption as underlined
in [29] of the demand side users can contribute to reducing the demand on the power grid, which
would then allow more flexibility to the grid. Generation can to some extent cover partially or even fully
building loads. Thus, reducing the demand and therefore the stress on energy systems [40]. Flexibility
has been introduced as an answer to overloading by using mechanisms such as shaving peaks [41].
According to [4] the role of the prosumer in flexibility mechanisms can become an important factor of
the future energy grids in facilitating the integration of VRES.

Flexibility according to the literature seems to be a promising approach to reduce the congestion across
the energy grid. Nevertheless, the term flexibility needs to be defined and quantified using different
assets. The sources and capacities of the different potential options will detailed in the following section.

2.2. Flexibility Estimation

Flexibility within energy systems is crucial for adapting to dynamic changes in demand and optimiz-
ing available resources. According to [29], flexibility can be derived from the supply side. However,
further analysis of grid operators’ data is necessary to assess which utilities can be used to relieve
the transmission infrastructure. On the demand side, certain demand response (DR) processes can
highlight the flexibility of loads available on the network, potentially leading to the implementation of
flexibility mechanisms. Besides, this requires information on the different utilities in the grid to estimate
the available flexibility in the system. Technologies like thermal storage are often coupled with these
mechanisms to counter the latency of different profiles, enabling the heat to be used at another moment
during the day and saving the consumption of other devices [42].

The combination of end-user assets and associated facilities can lead to flexibility implementation [43].
Various mechanisms, including mid-term bilateral flexibility contracts, curtailment, flexibility bids, and
controllable resources connected to the distribution network, can be introduced [44]. However, as
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highlighted, these mechanisms are information-dependent, which is a weakness of the process. The
required information to introduce flexibility assets is not always available to the operator.

Different algorithms, such as the non-intrusive load monitoring(NILM) algorithm [45, 46, 37], can be
found in the literature to identify flexibility. These methods provide information regarding different ap-
pliances, allowing knowledge of their state. However, they have limitations because households have
different behaviours depending on the number of inhabitants, and appliances can function in various
ways. Nevertheless, specific behaviours can be identified in the mix of data, and renewable energy and
various heat mechanisms can be investigated as flexibility assets. Specific machines, often captured
through measurements of the active power they consume [18, 45], can provide flexibility once their
behaviours are identified.

Other studies take into account aggregated data to identify production profiles of solar energy [46, 47,
48]. Thus, paving the way for the identification of assets using optimization algorithms. However, these
identifications usually focus on a single type of asset and do not mix different technologies. Various
machines can be a source of flexibility, with heat pumps as end-user systems coupled with on-site gen-
eration being one method to grant more flexibility to the energy infrastructure. Flexibility can be viewed
through different prisms. Two sides can be put apart to create two categories of flexibility, either the
supply side with options such as VRE generation, energy storage and fast-response power plants, or
the demand side with schedulable/flexible load, local and controllable VRE generation.

2.2.1. How to characterize flexibility ?
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Figure 2.1: The boundaries of the flexibility region can be determined using different loads, the green line represents the load
envisioned for the future. The orange region represents the area where flexibility can be developed whereas the green area is
the area corresponding to non-available capacity shift.

Flexibility can be derived once the boundaries of the consumption of electricity have been established
as seenin Fig.2.1. To identify it in the energy grid, the first step is to establish the baseline consumption
as seen in Fig.2.2. This variable is highlighted as the inflexible energy consumption that should not
be altered [37, 49, 42, 43]. The first step when flexibility needs to be quantified is to determine the
minimum and maximum of the operating points of the system to set the boundaries in which the system
is operating. This will allow the creation of the minimum and maximum curve set points as proposed
in [37] and seen in Fig.2.1.
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Figure 2.2: The profile represents the load profile for a day, the redline represents the load profile of a neighbourhood, and the
blue line the consumption that cannot be changed

Once this is achieved, different requirements have been mentioned in [37] to estimate flexibility, be-
cause information on the different flexibility sources needs to be available to the user. Furthermore, if
DR is used to approximate the available flexibility, the identification of the assets is dependent on the
actions of the users. Moreover, the action needs to take place at an effective time to identify the asset.

The identification of individual assets can be a tedious task due to specific requirements. In the pursuit
of approximating flexibility within a system, certain information, such as the temperature set points for
heat pumps, can be highly valuable. These set-points are crucial for estimating the pattern of thermal
systems, which is essential for assessing the flexibility of heat pumps [49]. Heat pumps operate with
a temperature-dependent set-point, influencing their operational modes. As noted in [50], the energy
demand varies significantly based on the chosen set-point. Utilizing this information, it becomes possi-
ble to determine a feasible region and estimate operating points where flexibility can be implemented.
Additionally, renewable energy sources can alleviate stress on the system, potentially enabling more
flexibility, especially when coupled with other utilities, as discussed in [42].

Flexibility can be defined using various metrics [19], including ramp magnitude, ramp frequency, and
response time, to classify the data flow provided by smart meters and transformers from the grid. How-
ever, the choice of metrics and methods for defining flexibility can vary significantly depending on dif-
ferent scenarios. These metrics must be accessible to the system operator to identify various assets,
which can be challenging with aggregated data. In [43], metrics are defined based on the type of system
they are applied to, highlighting the need to define each system’s characteristics to implement flexibility
into the grid effectively. Metrics such as peak power reduction, flexibility factor, self-sufficiency, and
self-consumption are used to evaluate flexibility in the system.

For heat pumps, relevant metrics include half-hourly average peak electricity demand (GW) and maxi-
mum ramp rate (GW/half hour) [51]. Additionally, flexibility can be quantified as the number of consump-
tion hours that can be rescheduled [52]. In [18], flexibility is quantified as a function of the available
reactive and active power of a system to adapt. The methods used to identify flexibility will be detailed
in Sec. 2.3.

2.2.2. Flexibility savings

The relationship between the supply side and demand side can be investigated to couple solutions for
both sides. According to [15], synergies in energy management systems and communication could
reduce both investment and fixed costs when the end-uses are combined. Different mechanisms of
load management can then lead to the reduction of congestion throughout the use of various types
of assets. Self-consumption, as explained in [29], can be considered a type of flexibility through load
reduction. Coupled with a solution such as a heat pump system, the load can be shifted, as discussed
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in [29]. For instance, in [16], load reduction can attain 42% and 61% by managing different types of
domestic loads.

Other solutions, such as Vehicle-to-Grid (V2G) or photovoltaic (PV) systems, can be considered to
increase the self-consumption of users in the grid [53, 29, 32]. As mentioned in [29], the potential of
Power-to-Heat (P2H) for load shifting is interesting, as seen in [38], where 5.5 GW have been effectively
shifted from peak loads out of 7.3 GW available for Demand Response (DR). These mechanisms have
shown that different assets can introduce flexibility into the grid. However, Variable Renewable Energy
Sources (VRES) can also introduce more flexibility, as seen in [32], where a variable defined as the
critical excess of energy produced represents the amount of energy needed to overcome problems
created by congestion issues.
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Figure 2.3: CEEP evolution implementing flexible demand, inspired by graph in [32]

Fig.2.3 highlights that with the introduction of flexible demand using RES, the critical excess of energy
that needs to be produced can be reduced. About 50% of the demand is flexible, 40% of that flexible
demand can be accounted for the daily fluctuations and 30% for the weekly and monthly variations.
Such a study also investigates the operating cost of such a system concerning the RES integration and
the flexibility index. The flexibility can then be improved by the implementation of VRES into the energy
mix in the grid, it may also contribute to the minimization of the operating cost of energy as mentioned
in [32].

A decrease of 10% can be seen in the operating costs of the system if the share of RES can reach
100% according to [32]. These different strategies have been the source of the reduction in the power
demand but also contributed to the reduction of several costs. On a larger scale, the flexibility can be
improved by investigating the relationship between temperature-dependent loads and VRE sources.
In [17] 27-141% energy costs have been saved and with additional structures (PV, controllable loads
and energy storage) 35% of capacity cost savings. According to [15] the effect of demand-supply
management (DSM) with the use of VRE on distribution grids can reduce up to a 20-24% reduction
in generator start-up cost. As underlined by Dyson in [50] the residential demand for A/C is highly
correlated to the peak system load. It is then interesting to point out the effect that temperature control
has on congestion, in the case of global use of heat pumps and a RES penetration level of 36-47%,
savings can be done about $33 to $52 per heat pump per year as well as avoiding the congestion
problems [54].

Different options have been revealed to be consequent sources of flexibility, the challenge remains in
identifying them. Identifying the different assets can be done through the use of different variables such
as reactive, and active power. However, cases where the data are aggregated seem to be a difficult
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situation. To solve these problems the different methods and conditions for finding the solutions will be
exposed in the next section.

2.3. Identifying methods being used

When estimating flexibility, different options exist to solve such problems. In the literature, different
methods to estimate flexibility exist: the Monte-Carlo method [44, 55, 56], different optimization meth-
ods [18, 57, 49, 32, 8, 58, 48, 47, 59] and machine learning [4, 21, 60, 37, 61, 46, 45]. In the following
sections, an insight on each the different method will be given on the different pros and cons of each
method, as well as to what extent can it be used. An overview of the different methods available in the
literature can be found in Fig.2.4.

Machine

Learning ‘Opﬂmfza tion

Estimation of
flexibility methods

Monte-Carlo|

Figure 2.4: Different prism can be viewed for estimating flexibility, optimization, machine learning and Monte-Carlo.

Using the Monte-Carlo method, two ways exist such as the estimation of the feasible flexibility region
and the uncertainty evaluation for the assessment of flexibility. As for Machine learning, support vector
regression(SVR) and multiple linear regression(MLR) are considered to be good options for approxi-
mate flexibility. Other data-intensive algorithms are used such as non-intrusive load monitoring(NILM)
and intrusive load monitoring(IL). Optimization problems are also formulated through different meth-
ods such as identification, estimation of the feasible flexibility region, estimation of flexibility based on
assets and linear cost-minimizing model.

2.3.1. Optimization methods

To identify the different profiles, optimization problems can be formulated to approximate the quantities
of such assets [48, 62, 63, 47, 59]. These different articles all identify flexible assets to provide an accu-
rate estimation of the amount of solar panels. The starting point in these articles is that the aggregated
power data is formulated as follows:

Psub(t) = Pload(t) — Ppy (t)7Vt€T (21)

P,,;, stands for the power flow from the aggregated data from the transformer measurements, P4 is
the load from the consumer from the inhabitants and Ppy is the power produced from the solar panels.
Therefore, identifying the solar profiles can be tedious concerning Eq.2.1. Various techniques have
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emerged in the literature for disaggregating solar profiles from aggregated data [48, 47, 59]. Each
method has specific requirements to obtain the measurements needed for estimating the solar profile.

In [48], two methods for identifying solar profiles are presented, both based on disaggregating solar pro-
files from aggregated data. The first method uses a linear estimator applied to multiple linear regression
to minimize the square errors of the coefficients.

Ppryu(t) = keprQprau(t) + Cepsd(t) + R+ €py (L) + €10ad(t) (2.2)

Eq.2.2 is the formula to be estimated throughout the ordinary least squares (OLS). Pp,sy(t) represents
the power measurements at the phase measurements sensor units(PMU), Qpai(t) represents the
reactive power measurements from the PMU, ¢(t) is the irradiance, R is a resistive load and the two
epv (t),€L0qaqa(t) are the noise introduced by respectively solar and the load. The terms C..¢ and k. are
the terms that are optimized. In contrast, the second method uses contextually supervised generation
estimation to find optimal model coefficients that fit the signal closely.

min (1;(Y; — X;0) 4+ n:9:(Y:) + 7:hi(0:))
S.t.Yag9 = Zf:o Y (23)

Eq.2.3 refers to the process of the contextually supervised generation where Y; is an unknown signal
that combines both load and PV generation,/; refers to a function that penalizes the difference between
the reconstructed signal and the linear model, h; is to counter the overfitting behaviour of the model
and g; represents the penalty function that determines the details of the signal to enhance smoothness.
Both methods yield good results but require micro-phasor measurement units, adding constraints for
the DSO. These methods can not be applied on a neighbourhood scale as PMUs are not connected
to the distribution network. Similarly, in [47], the disaggregation of Photovoltaic (PV) generation occurs
at the neighbourhood scale. The method aims to first establish a monthly profile of solar production,
then extend it to an hourly format, and finally formulate an optimization problem. The objective is to
maximize an hourly-resolution constrained maximum likelihood estimate (MLE) procedure based on
weights allocated to each solar exemplar.

mae (S 10 (P (i). Pl a(3). GE (D)) — IX[1813
st WTGEYT <o,
Pr— (WTGE)T > 3, &%)
5<0,

Eq.2.4 corresponds to the optimization problem that is formulated in [47]. P, ,, represents the monthly
nocturnal power demand, P), , is the monthly diurnal power demand, GE corresponds to the hourly PV
generation exemplars, w a weighted vector for the solar exemplars and the term %)\HBH% is a penalty
term to maximizing the likelihood function with A being a tuning parameter and 5 a non positive vector of
elements. However, due to its customer-scale basis and the need for measurement units, this method
cannot conduct a neighborhood-wide study. A similar strategy is examined in [59], where the objective
is to minimize the sum of squared errors between the calculated and estimated solar generation.

arg L“?i;l . ZtT:O p(Lnt — Znt)2 + w(Snt — §nt)2 (2.5)
s.t. Snt > 07 Lnt > 07 Lnt - Snt = NLnt

Eq.2.5 refers to the process mentioned in [59]. L,; represents the load, Znt the estimated load, S,,;
the solar production,L,,; the estimated solar production and w,;: are some weight associated to the
estimation of both cases. A high level of accuracy is achieved, yet the presence of outliers remains
an obstacle to be overcome. Although this method appears reliable, it only breaks down one type of
asset, in this case, photovoltaic generation.

Other optimization problems allow the estimation of flexibility using different algorithms. In [57], an opti-
mization problem is formulated to minimize congestion by optimizing an Optimal Power Flow (OPF) with
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boundaries related to congestion. Generator rescheduling is performed to keep individual line flows
within reference values at all times. The considered approach is pursued at a transmission level which
makes the method inapplicable in the case of the thesis. In [41], a multi-energy flexibility measure is
explored to maximize the daily profit of the supplier while considering load classification constraints and
energetic boundaries of devices. The study investigates the implementation of Demand-Side Manage-
ment (DSM) into the grid with load response and load recovery. However, this approach only covers
flexibility estimation for one building, making it infeasible for larger-scale implementation. Besides, it
requires information on each of the devices in households, making this approach data intensive. There-
fore, this approach is not considered.

Similarly, in [8], a linear cost-minimizing model is formulated to minimize the total cost of electricity
generation, ensuring that each region meets the demand in each time step. The study explores different
DSM techniques to identify available flexibility in the system to relieve congestion, providing relations
between different types of assets to unlock potential in the grid. However, this approach is not applicable
as it is data intensive.

Another objective of optimization problems is to directly identify flexibility area boundaries using con-
straints defining the system. Optimization is pursued on the active-reactive power exchange of the grid
operator [18, 64]. In [18], optimization is performed without exhaustively selecting angles, achieving
earlier convergence than typical optimization problems. The goal is to determine the available flexibility
region of Distributed Energy Resources (DERSs) in an active distribution with fewer steps. However, this
approach requires information about DERS’ active and reactive powers, which can only be obtained by
having meters on each DER. Conversely, in [32], optimization is conducted differently, aiming to esti-
mate the maximum flexibility available for each option without interfering with others. This approach
also requires more information about different types of assets such as reactive and active power there-
fore making it inapplicable.

2.3.2. Monte-Carlo method

Different cases of estimating flexibility throughout the Monte-Carlo method have arisen [44, 55, 56].
However, it has been revealed that the Monte-Carlo method requires more effort compared to opti-
mization or machine learning. The Monte-Carlo consists of computing a feasible region based on a
large sample of data. Such a method allows one to determine a region but the boundaries can differ
depending on the set of data. A flexibility region can then be provided to the TSO, [44] states that this
information is important to tackle events such as reverse power flows. The simulation runs a power flow
scenario and establishes an operating point in the primary substation. One important point underlined
by [44] is that the correlation of active and reactive power has a great impact on the p-q flexibility region
established. Itis already stated that Monte-Carlo has limitations due to the boundaries not being known.
In [55] the Monte Carlo method allows to determine the accuracy and variations to estimate flexibility,
and an optimization problem is formulated to establish the flexibility available in demand response and
demand flexibility programs.

2.3.3. Machine Learning methods

Machine learning has emerged as a powerful tool for solving various problems in the past decade,
improving its ability to identify relationships and process large amounts of data based on input data.
It has also shown potential in disaggregating power consumption for various utilities [21]. Several
machine learning techniques are utilized in the literature for congestion management, including Multiple
Linear Regression (MLR), Support Vector Regression (SVR), Non-Intrusive Load Monitoring (NILM),
and Interactive Learning (IL). Each of these options has specific requirements for implementation, and
preprocessing of data is essential before applying machine learning algorithms [4].

In [4], machine learning is used to identify the energy flexibility potential of residential distributed net-
works. MLR and SVR models are developed to predict daily power consumption, using three years of
data from smart meters. MLR and SVR are highly versatile and offer a high degree of customization,
providing greater interpretability. Although MLR and SVR vyield similar results, their application can
vary depending on the type of profile being processed. Furthermore, in [37], machine learning is used
to prepare data for the k-means algorithm, which is employed to estimate the flexibility area for each
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appliance. The NILM algorithm, coupled with the random forest algorithm, achieves high accuracy in
estimating flexibility in the grid. Additionally, the IL algorithm is effective for lower consumption houses,
allowing for a reduction in the sample time step to 10 minutes.

The NILM algorithm is utilized in various contexts, such as predicting and estimating power consump-
tion of devices [21]. It disaggregates power consumption by appliances, enabling the identification of
specific profiles. Different metrics have been defined for evaluating the algorithm’s performance, with
the total power change metric being the most precise. The NILM algorithm, particularly when paired
with the random forest regression model, outperforms other algorithms [21]. Various uses of the NILM
algorithm can be found in the literature, from disaggregating heat pump profiles [21] to solar profiles [45,
46, 48, 65].

While machine learning algorithms like NILM and IL are robust, they require data provided by TSOs or
DSOs to solve the problem. Besides, these high-performance methods often require a broad range of
data as input, leading to increased investment by TSOs/DSOs to determine different profiles.

Optimization Machine Learning Monte Carlo
Algorithms -Minimization of squared -MLR -Flexibility region estima-
errors -SVR tion
-MLE -NILM -Uncertainties and variabil-
-Fit of coefficients -ILM ity of variables for flexibil-
ity
Pros -Versatile -Versatile -Versatile
-Robust -Robust -Robust
-Various functions of OPT  -Various functions of ML -Handle large dataset
Cons -Constraint dependent -Broad datasets needed -Accuracy, precision prob-
-Data preprocessing -Number of inputs lem

-ML type choice

Table 2.1: Summary of the methods

From Tab.2.1 it can be noted that optimization is a good solution to estimate the flexibility of the system.
However, it will require a sensitivity analysis to have accurate and good results. As for machine learning,
it seems to be also a good solution but requires a lot of data to initialize the model and validate it. In
the case of aggregated data, it might lack some. Monte Carlo seems not to fit in the case of dealing
with aggregated data. It would be a good choice if more data were available to determine a solution.

These methods highlight the different processes available in the literature and show that different meth-
ods are preferred over others regarding the case. The optimization problem has risen to be an inter-
esting method to identify profiles based on the minimization process, yet it still needs to improve as
the accuracy is dependent on the presence of outliers value [59]. Machine Learning methods can be
interesting, but require in most cases a consequent amount of data. Such a requirement is a drag for
its implementation. The data needed for most of the cases will be displayed in Sec.2.4

The main issue with estimating the flexibility is to structure the process to achieve a high level of accu-
racy in the identification. No study has been performed where the identification of different assets takes
place. Hence, finding the different steps to be implemented while keeping a high level of accuracy will
be a challenge in the design of the protocol. Furthermore, no study has been done that pursue the goal
of identifying different assets within aggregated measurements.

2.4. Data-set

Before the methods presented in 2.3, the data used in the literature often goes through different pro-
cesses and choices before being fed into the algorithms. In the following sections, the process of the
data will be detailed as well as the methods to create the profiles required to estimate the flexibility.
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2.4.1. Process of the data

To create different profiles, it is necessary to establish the baseline consumption of local consumers
and then add various types of profiles to the data. The baseline requires data without any actions
from aggregators, and instances of data with errors are replaced using Forward-Backward Autoregres-
sion, which outperforms Linear Interpolation [49]. Different groups of houses must be defined to create
accurate baselines for various groups of individuals, such as neighbourhoods or boroughs [49]. Con-
sumption can vary based on different energy labels of buildings; for instance, in [66], the group of
houses chosen complies with a certain standard. Once the standard has been defined, deviations can
occur, such as in [49], where Demand Response (DR) mechanisms introduced by the grid operator
can affect consumption patterns. In such cases, a smoothing process can be applied if more accurate
data is needed. After establishing and processing the baseline, if necessary, different profiles can be
added, such as those of heat pumps and solar panels. The baseline can be estimated by attempting
to disaggregate solar production from grid measurements.

Data preparation can also be conducted using machine learning techniques, as shown in [37], where
higher complexity algorithms like NILM provide more detailed inputs. In the paper, the NILM algorithm
is used to determine the time of use of flexible appliances, based on event detection. When an event
exceeds the limits of usual data, it goes through the algorithm, enabling precise energy consumption
determination and identification of the operation state of each appliance, as discussed in Sec. 2.3.3.
Regarding the data that are analysed, if data are missing from the meter [66] uses linear interpolation
to fill the gaps.

2.4.2. PV profile

Solar panels can be modelled with various parameters such as orientations, tilt angles, type of solar
panels, nominal power, and module efficiency, all of which contribute to creating solar panel profiles.
The PVLIB library is commonly used for this purpose. Additionally, inverter data, as used in [66], can
provide insights into the power being fed into the grid.

To improve profiles, optimizing the gap between the modelled profile and the disaggregated one could
be beneficial for accuracy. As mentioned in [59], determining a precise baseline of consumption for the
base load is crucial for accurately assessing solar production at each instant.

2.4.3. Heat Pumps profile

To create heat pump profiles, data from heat pump meters are retrieved, as discussed in [51, 66].
In [66], measurements provide insight into the electrical household load, including voltage, current,
active power, apparent power, and reactive power, at a 10-second resolution.

In the perspective of modelling heat pumps, as described in [51], the assumption that all heat pumps run
at the same times of day as conventional heating systems is made. Additionally,[66] provides insight
into electric consumption’s active power and reactive power for heat pumps and households. The cor-
relation between seasonal changes and higher active power consumption during winter is highlighted
in [66]. Heat pumps are predominantly used during the winter months [66].

An analogy between heat pumps and boilers is noted in [51], where consumption peaks hit the same
power levels. However, the shapes of the curves for heat pumps and boilers differ significantly during
off-peak hours. Therefore, using a gas demand curve to build the heat pump consumption profile is not
recommended, or it requires additional steps to fit the heat pump profile. The model gives insight into
the usage of heat pumps for heating the domestic hot water when solar radiation is insufficient, most
of the consumption of heat pumps comes from heating the space in housing. It is also said that the
heat pump is for the moment only used as a boiler and further strategies could be developed to create
several options to use heat pump systems more efficiently.

In [67] a machine learning approach using XGBoost to estimate the heat pump profile is pursued, first
the required data needs to be selected and prepared. The data that have a significant deviation from the
rest of the data set shall be removed using the interquartile range method. Following this step, the data
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are normalized for the correlation coefficients to be computed using the Spearman coefficient that gives
insight into negative and positive correlation. To achieve better efficiency of the algorithm XGBoost is
used on linear regression and polynomial regression models, and the least squares approach is applied.
The Spearman coefficient allows to filtering of the different kinds of features to be used coupled with
the variance inflation factor (VIF). To have precise and accurate results, the VIF needs to be between
1 and 5, therefore eliminating the features that have a high correlation.

In [68] a different approach has been pursued, real data have been used to model the heat demand
from countries in Europe as well as the coefficient of performance(COP) of the heat pump. The heat-
ing demand contains data for water, space and air heating. They use the wind speed and temperature
based on daily reference temperatures and wind speed averages to model the daily demand and then
scale it. Following this approach, the building properties and occupant behaviour are utilized to esti-
mate accurate profiles for the heat demand in the buildings on site. As for the COP, the values are
computed using ambient air and soil temperatures. A different kind of heat demand is then considered
as presented below :

In addition, if further accuracy is needed, [21] indicates that to provide the most precise heat pump
profiles, the minimization of the residual sum of squares between the predicted heat pump power and
the actual power could be done.

2.4.4. Conclusion

Different methods have been found to tackle congestion and flexibility stands out as one of the most
efficient ones. Flexibility has been defined in this chapter as a quantity of energy that can be shifted to
relieve the pressure on the power distribution system. The future energy system is required to reduce
the variations in its demand. The goal is to minimize the variability in the demand. To accomplish this,
the need to identify the different flexible assets is primordial. Different machines can be the source
of flexibility, such as VRES, heat pumps and V2G. The problem is to identify the different energy re-
sources in the mix and to find the best method for the process based on the different data available
to the problem’s owner. As the different assets can mitigate each other, different questions remain
unanswered. How does a production one relate to a consumption one? Even if the identification works
for different assets, the uncertainty of the method would need to be evaluated. Then, what criteria
would be needed to answer the different constraints? What would be the inputs and constraints for the
method?

All of these parameters shall be taken into account and kept in mind while creating the methodology.
The different steps will have to address these constraints and make sure the frame for the model is
correct.



Methodology

In this section, the methodology regarding the research work about the estimation of flexibility will be
explained. The first section will display the different assumptions that were chosen. As well as the user
type that can apply the model that has been developed. Following Sec. 3.1 once the assumptions were
selected, the type of data provided to the model will be covered in Sec. 3.2. The different types of data
and processes before it can be input will be explained as well. Sec. 3.3 present the different algorithms
concerning the different goals of the model. In Chap. 4 the results of the models will be explained and
evaluated. Each of the models will be given its own set of variables to assess the accuracy of the
results.

The goal of the model that has been built in this research work is to identify flexible assets in aggregated
data provided by the power substation based on specific profiles such as solar and heat pumps. Based
on the number of assets identified in the aggregated data from the power substation level, an estimation
of the flexibility in terms of reduction peak load will be able to be pursued. Therefore, the model should
be able to handle noised data and to identify the capacity that can be considered as a flexible quantity.
The output of the model would be the capacity of solar and heat pumps that can be utilised to alleviate
load from the grid.

3.1. Assumptions

In this section, different types of assumptions have been made in this research to create a frame where
the model would be applicable. The assumptions are the following:

1. Operators: The model will be used by DSOs, which implies that they have access to the number
of people connected to the power substation, the current measurements as well as the voltage
from the different power substations at an hourly scale.

2. PV configuration: The PV configuration is not studied in this research work, the power produced
from solar is considered to be independent of the configuration.

3. Heat pump consumption: All heat pumps have the same consumption profile as considered as
conventional heating system, no demand response mechanisms can be witnessed.

4. Consumption: The trend of the consumption curve in electricity is presumed to be the same as
the one provided by the MFFBAS [69] of the AZI profile

5. Household: The households from the project are considered to be multi-family households.
6. Power Factor: The power factor is considered to be 0.95 [70]

7. Baseline noise: There is a noise baseline on top of the consumption and the production of energy
in the grid.

8. House insulation: The houses have a low level of insulation

9. Study: A study has been done for a similar neighbourhood, there are 3089 consumers and a
potential solar capacity of 2.05 [GWh], yet 194000 [kWh] has been installed
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3.2. Data inputs

Different types of data must be provided to the model to be able to determine the quantity of solar
and heat pumps available in the power substation. The different types of information required for the
model are detailed in the following subsections. In Sec.3.2.1 the steps to obtain aggregated data are
explained. Then, in Sec.3.2.2 the construction of the consumption curve is introduced. Therefore,
the profiles needed for the identification are detailed in Sec.3.2.3 and Sec.3.2.4. The weather data
are introduced in Sec.3.2.5 and finally, the process for the noise implementation is documented in
Sec.3.2.6.

3.2.1. Aggregated data
First of all, the aggregated data from the neighbourhood must be computed to be able to identify any
profiles. The measurement units available at the power substation level are the current as well as the
voltage level. From these measurements, we can calculate the aggregated power consumption of the
neighbourhood using Eq.3.1:

Pyuppw] = V3 x PF % Iq % Vi _1y1/1000 (3.1)

In this case, the power factor (PF) is assumed to be 0.95 as done in [70] for a neighbourhood level. In
Eq.3.1, the voltage level is 10,000 [V], the division by 1000 is for the units to be in [kW] and the current
measurement is from the mentioned study in [A]. Thanks to these different data, the aggregated profile
can be computed. A day has been chosen over the year for representing the data to be understood, this
day is the first one of the year. Some average profiles for PV and HP will be shown in their respective
sections. A 24-hour sample is proposed below of the chosen day:
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Figure 3.1: Aggregated data from the neighbourhood on 24-hour timelapse

Fig.3.1 highlights the behaviour of consumption, there is a low level of consumption during the night
and over the day the peak happens around ~ 7 pm.

3.2.2. Consumption Curve

First, the use of a consumption curve is a crucial point in the model. The starting point is that the load
from the neighbourhood from the measurements available at the substation level can be derived from
the equation 2.1. Therefore, the term P,,,4(t) can be decomposed as :

Boad(t) - Pbsl(t) + Ensd(t)7Vt€T (32)
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In Eq.3.2, the load is decomposed in two terms,e,,54(¢) that corresponds to the variations in the power
fluctuations and P, (¢) which represents the baseline of consumption, it is considered as the inflexible
part of the consumption, this part of the aggregated data is the first input of the model. To create the
baseline of consumption, data from the MFFBAS database [69] are retrieved. The values from the AZI
profile are used, they correspond to the consumption values where no inputs are considered. As the
sum of the data from the profile is equal to 2, a normalization process is applied and then the baseline
is computed :

Pbsl (t) = Nconsumer * Eavg * AZI(t) (33)

Where the nconsumer is the number of people connected to the power substation, E,,, is the average
use of energy over a year in [kWh] and AZI(t) is the normalized profile of consumption without any
input. This process allows the creation of the consumption curve.

3.2.3. Solar unit profile

To identify the solar profile along the year a solar unit profile is needed. The process for the generation of
such data begins by choosing a type of solar panel in a database of the pvlib library and then modelling
the output using the different functions available in the literature [71]. Once this has been done, the
location must be chosen, in the case of the study, it is Amsterdam. When these conditions have been
completed, we size the profile to be a 1 [kW] capacity. Then the values produced by the solar profile
need to be checked that they are positive. The unit profile can be used then as input for the model.
The code for such a process can be found in the appendix.

3.2.4. Heat pump unit profile

To generate the heat pump unit profile the process differs as no generic consumption data exist for heat
pumps. In this research, the work from [66] is used to create the profiles. First, the heat demand curve
from the neighbourhood is retrieved. Then the COP produced by [66] for the three types of heat pumps
(ASHP, GSHP and WSHP) are used to create an average COP over the year. The heat demand can be
divided by the average COP over the year to recreate the heat pump behaviour profile. The profile is
normalized in [MW/TWh], as for the model a unit model is needed. To answer this criterion an average
consumption for a heat pump is considered to be 4993 [kWh] [66], the profile is then multiplied by this
value. To take into account the variations that can take place in the consumption, a noise data baseline
can be introduced based on the standard deviation from the heat pump profiles.

3.2.5. Weather data

In the algorithms, the different processes require additional data such as the temperature of the air
from the location. These data can be found on the KMNI website [72].. These data correspond to the
temperature required to model when the heat pump is not running, or different inputs needed for the
solar model.

3.2.6. Noise implementation

The models will have to be validated with noise in the data. A noise baseline will be implemented onto
the data based on a Gaussian distribution. The noise value is based on the standard deviation value
of the HP profile.

First, the standard deviation(STD) from the data from the aggregated data is computed and then a
normal distribution is introduced based on the STD.

_(e=w)?

exp 202 (3.4)

1
p(r) = m

Eq.3.4 is used to implement the noise in the data, where p is the mean and ¢ is the value that corre-
sponds to the noise we implement. The different values of o fluctuate depending on the test. Different
cases are studied that can be summed up in the following list :

* Noise case 1: o = %34
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* Noise case 2. 0 = Z4
* Noise case 3: 0 = %2
3.3. Algorithms

In this section, the algorithms that are being used in the different parts of the model are detailed below,
Alg.1 provides insight into how the baseline of noise is computed. Alg.2 presents the process initially
developed for the single identification model, in this perspective Alg.3 determines the number of cus-
tomers connected to the power substation. Then, Alg.4 presents the method for the first optimization
method concerning the mixed identification model. Finally, Alg.5 is the second method developed for
this case. The data are in the hourly format which corresponds to a list of size 8760 for a year and the
number of iterations to produce the results is 20 iterations. A list of acronyms used in the algorithms
and in the equations is presented below :

1. BSL : Baseline

PP & NP : Positive Peak & Negative Peak
AG : Aggregated data

Nsd : Noise

Ult : Ultimate

Irr : Irradiance

I

Algorithm 1 : Noise baseline process

Require: i(no PV) = i[PAG > 0] & ’i(pv) = i[PAG < 0]
BSL < Pac(iforv))
foriin L(PV) do

BSL(i) = 3 Y0, _x41 BSL()
end for
foriin BSL do

BSLyulk : k+6] = £ "5 BSL(k)
end for

Pac = Pac — BSL

Alg.1 needs to have as input the power consumption flow from the considered area. Two lists are
needed as inputs, the list where all the indexes that correspond to negative power flow, and a similar one
but for the positive power flow. For the indices where the power is positive, the value of the aggregated
data is kept for the noise baseline, and for all of the other indices where the power flow is negative,
the values are assigned 0. The data where a zero has been assigned are then computed using a
smoothing average based on the value of the closest non-zero value. Finally, for having constant
value over specific periods a smoothing average process is applied to the data computed for the noise
baseline. The process explained in Alg.1 provides the baseline of noise for a whole year. A mean value
for 6 hours is computed to have a constant baseline over periods. Otherwise, the noise fluctuations
would be too important and then represent an asset.
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Algorithm 2 : Single asset identification

Require: Psg & Ppit & Irrpy
8760

algienN(Z (PAGJ/ - apunit,i)2 + ansd)

=1
if Asset == PV then
ierr - ITTPV ==10
foriin .., do
PPVscaled,i =0
end for
8760
Epy = Zi:ﬁ Ppvscated,i
end if
if Asset == HP then
Prpscalea = 0 Pypit
end if

Alg.2 corresponds to the identification in the case of the single asset model. The inputs needed for the
code consist of the aggregated data from the substation, the unit profile of the chosen asset, and the
irradiance data from the chosen location. Then the optimization process can take place and the output
is the integer « from the minimization of the squared error. If the asset is PV, the irradiance is used
to remove the outliers in the profile, and then the annual yield can be derived. Otherwise, for the heat
pumps the profile is derived using the integer determined by the optimization problem.

Algorithm 3 : Number of consumer check

Require: AZI & PAG & inopv = i[PpV == ]
foriini,,py do
8760
. o 2
In’yln . Z ((Psub,z ’YAZIz )
i=inopv[1]

end for

Alg.3 is used in the case there is only PV in the mix to enhance the accuracy of the model. The indices
where the PV production is 0 are retrieved. For the corresponding indices, the number of consumers
connected to the power substation is derived using a minimization process of the squared error. Then
the correct consumption profile from the neighbourhood is computed and used for the identification.
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Algorithm 4 : HP & PV identification algorithm method 1

Require: PP < maxz(Pac) & NP < abs(min(Pag)) & Pag & PViynit & HPypnit &Irrpy

if PP > NP then
Do HP identification :

for i in range(8760) do:
8760

a{giélN(Z (Pag,i — @HPyniti)* +nfnsd)

=1

end for
PHPscaled = aHPunit
Create BSLNSd = PAG — PHPscaled
Iteration for determination of baseline noise
Indices where HP,,,,;; < 0.6 & PVt == 0
BSLult[l] = max(O, BSLNde)
foriin Indices do:

k=6

BSLult = % Z?:n—k—&-l BSLult(j)
end for
PAG - PAG - PHPscaled - BSLult
Do PV identification :

for i in range(8760) do:
8760

i P [ Pvunz i 2 s
6%16111\1(2( AG, — P ti)" +NfNsd)

=1
end for
PPVscaled = ﬁPVunit
lepr = ITTPYy ==
for:ini.,, do
PPVscaled,i =0
end for
EPV = 2182610 P‘/;caled(i)
else
Do PV identification :

for i in range(8760) do:
8760

i P i PVun'L i 2 s
ﬂl,%lenN(Z( AGi — B ti)” +NfNsd)

i=1

end for
PPVscaled - 5PVunzt
lerr = ITTPYy ==
foriin ... do

PPVscaled,i =0
end for
EPV = 218;?0 PPVscaled(i)
Create BSLnsq = Pac + Ppvscaled
Iteration for determination of baseline noise
Indices where HP,,,,;+ < 0.6 & PV,,,;: == 0
BSLult[’L'] = maX(O, BSLNde)
for i in Indices do:

k=6

BSLult = % Z;'l:n,]HJ BSLult(])
end for
Psc = Pag + Ppvscaied — BS Ly
Do HP identification :

for i in range(8760) do:
8760

] P i — H Pynit i 2 s
ozr,%lé’lN(Z( AGi — O ti)” +NfNsd)

=1
end for

PHPscaled = aHPunit
end if

> It corresponds to the sample size divided by 2

> It corresponds to the sample size divided by 2
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Alg.4 corresponds to the first optimization method to identify solar energy and heat pumps. The data
inputs to this algorithm consist of aggregated data from the substation level, a PV production unit
of 1 kW, an HP unit consumption profile and irradiance data from the location. The process relies
on determining first the amplitude of the negative peak and the positive peak. This step allows the
algorithm to identify the prevalent asset in the mix. Then based on the highest absolute value, either
solar or heat pump identification happens first. Following this step, a noise baseline is computed by
subtracting the scaled asset profile from the aggregated data. To construct such a profile, the indices
where the PV production is 0 and the HP normalized profile is below 0.6 are retrieved. The positive
values from the baseline are kept. Otherwise, they are assigned a value of 0. The smoothing process
explained previously in Alg.1 is applied to provide a noise baseline for the year. It can be subtracted
from the aggregated data as well as the first scaled asset to provide the data for the second asset
identification. The identification of the second asset can take place, and the minimization of the squared
error between the remaining data and the unit profile can happen. Whether PV is the first or second
asset to be identified, the power produced is filtered using the irradiance data from the location. The
outputs of the algorithm are the number of HP units and the amount of PV energy produced over the
year.

Algorithm 5 : HP & PV identification algorithm method 2

Require: Pag & PViynit & HP, it & Irrpy
Do HP identification :

YnoPV = PPV ==0
YnoPV
ar,rcltiélN( Z (PAG,i - aHPunit,i)2 + ansd)
1=YnoPV [1]

Py pscaled = @H Pypgt
Create BSLysq = Pac — PuPscaled
Iteration for determination of baseline noise
Indices where HP,,,;; < 0.6 & PV it == 0
BSLult[Z] = max(O, BSLNSd[Z])
foriin Indices do:
k=6 > It corresponds to the sample size divided by 2
BSLult = % Z;L:n_k_‘_l BSLult(j)
end for
Pyg = Pag — Papscaled — BSLult
Do PV identification :

for i in range(8760) do:
8760

min (Z(PAG*i — BPVuniti)? + nfnsd)

B,BEN =1
end for
PPVscalsd = ﬂPVunit
lepr = ITTPV ==0

for:in <., do

PPVscaled,i =0
end for

8760
Epy = Zi:l P‘/scaled,i

Alg.5 has the same inputs as in Alg.4. The algorithm consists of first identifying the heat pump outside of
the window of influence from the solar energy by minimizing the squared error between the HP profile
and the aggregated data. This translates to when the PV production is 0. This feature is designed
to avoid any influence from other assets to hinder the identification. It is this perspective that the
minimization of the squared error is taking place. The output of the first optimization process is an
integer number of the number of heat pumps identified in the aggregated data. The profile of the
computed number of HP units is then subtracted from the mix. Once the disaggregation has been
achieved, the baseline of noise is computed with respect to the procedure previously detailed in Alg.4
and deduced from the aggregated data. Finally, the PV identification can take place. The output of the
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second optimization method is the energy produced by solar throughout the year. The outputs of the
algorithm consist of the number of HP identified and the amount of PV energy identified in the mix.

3.4. Work flow

In this section, the processes behind the identification of the quantity of PV and HP will be explained.
The first step of the model is to identify assets separately and to enhance the accuracy in each case.
Therefore, providing a solid basis for the identification process. Besides, identifying the important steps
needed for enhancing the accuracy of the PV identification and HP identification separately, allows one
to have a better insight into the advantages and disadvantages of each asset. Firstly, in Sec.3.4.1 the
identification of the solar in the mix of aggregated data will be explained in detail. Then, the heat pump
process will be introduced in Sec.3.4.2 and finally, the mixed identification is presented in Sec.3.4.3.

3.4.1. PV identification

Data Analysis and Process Optimization Process

@

= . e L

3 Filter the data Initialisation

2

b v v
) © 5
g g 2
o = Creation of the noise baseline Optimization Process ]
= © o

E

=]

g ! !

8

= Disaggregation from the data Filter outliers

Figure 3.2: PV identification process

The PV identification goes through different parts presented in the flowchart above. As shown in Fig.3.2,
the first step consists of providing the inputs to the optimization process. The inputs consist of the
following:

1. Consumption data from the power substation level
2. AZI profile

3. PV unit profile of 1 kW

4. Irradiance data

The data for the identification of PV can be seen in the following figure :
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Figure 3.3: Data for the PV identification

Fig.3.3 highlights the different curves that are being used. The red curve represents the consumption
data that are retrieved from the power substation and computed using Eq.3.1, and the green curve
corresponds to the consumption that has been scaled according to the number of customers throughout
Eq.3.5. The blue curve is the remaining data when green is subtracted from red. The negative power
flow from the blue curve is accounted as an energy production asset, in this case, it is solar energy.
However, one can see that the blue curve is suffering from a lot of variability. Such phenomenon
comes from the remaining asset connected to the power substation level and that degrades the PV
profile. These data can be accounted for as a noise baseline of consumption during the day induced
by different utilities in the neighbourhood. The AZI profile is built by checking the number of customers
connected to the power substation through a minimization of the squared difference between the data
from the substation and the AZI profile. This process can only take place outside of the PV production
hours to avoid any indirect influence as seen in Alg.3.

8760

mein Z ((Psupi — OPaz1.4)?) (3.5)

izinoPV [1]

Eq.3.5 corresponds to the minimisation process between the aggregated data from the substation level
and the power consumption, P, ; is the power flow from the substation and P4z ; is the power con-
sumption that is scaled using 6, the goal is to minimize the square error. The process takes place
outside of the window of solar influence, which translates to PV production being 0. The algorithm’s
outcome is the number of customers connected to the power substation, which then allows a more
accurate estimation of the consumption. After the check of the number of customers, the consumption
profile can be subtracted from the data from the power substation. The outputs of such a process are
the inputs to the Data Analysis and Process part. The baseline process can take place, first of all, the
data needs to be classified based on the condition presented in Alg.1. Using the smoothing process
introduced in Alg.1 the noise baseline can be estimated and subtracted from the data to provide an
accurate profile for the solar estimation. Once these steps have been completed the following data can
be used for PV identification :
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Figure 3.4: The graph highlights the process used in the initialization prior to the optimization to reduce the error in the results

According to Fig.3.4, the data in blue represents the overall data without any filter. The data in red
represent the data fed into Eq.3.6. A filter for the irradiance is applied to the data as seen on the red
curve. When the irradiance is 0, the data are assigned a 0 value in order to enhance the optimization
output as seen in Fig.3.2. The profile on which we can estimate the energy produced by PV can be
seen in Fig.3.4.

8760

i Puci — BPViunit,i)? sdyi 3.6

ﬂI%lenN(;( A, — B ti)” +NfNsd,i) (3.6)

Eq.3.6 refers to the method used to identify the solar energy production along the year, the term 7 f,,54.;

corresponds to a noise implementation process, Ps,;; is the power from the substation level and

PVynit,i is the power from the PV unit and 5 is the integer parameter used for the optimization. Eq.3.6
is minimised over the year to provide a fixed amount of solar panels.

To validate the model, the data from the project are used, the solar energy produced over the year is
194,000kWh. Once the algorithm identifies the number of solar panels present in the aggregated data
the computation of the annual yield can be derived in order to check how much energy is produced as
seen in Alg.2. The goal is to validate the model by having high accuracy. The validation of the model
can be found in Sec.4.2.1.
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Figure 3.5: Process for heat pump identification

The HP identification goes through different parts presented in the flowchart above. As shown in Fig.3.5,
the first step consists of providing the inputs to the optimization process. The inputs consist of the

following:

1. Consumption data from the power substation level

2. AZI profile

3. HP unit profile
4. Temperature data

In the Transformation of the data in Fig.3.5, the AZI profile is subtracted from the data from the power
substation which corresponds to the blue curve in Fig.3.6, it aims to enhance the accuracy for the heat
pump identification. Following this step, the data can be used for the identification process. A sample
of the data can be seen in the following graph :
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Figure 3.6: Data input for the heat pump identification

Fig.3.6 represents the data before and after consumption is subtracted from the aggregated data. The
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red curve represents the data from the power substation with heat pumps already implemented in it,
and the blue curve represents the remaining data once the consumption has been subtracted. In the
case of the HP identification process, the heat pump profile can already be identified by looking at the
data. It has a strong influence compared to consumption, and more specifically it has two daily peaks
that can reduce the error as one peak can still be identified if another asset mitigates the other one.
These data consist of the inputs of the Optimization process that can be seen in Fig.3.5. The data then
can go through the process of minimization of the squared error between the two curves as introduced
in Eq.3.7 and in Alg.2 :

8760
min (Z(PAG,i — &H Pypiti)* + 1fNsd,i) (3.7)

a,a€N P

Eq.3.7 refers to the identification process of the heat pumps, Ps.,;; is the power flow from the substation
level, the term ) f,,54,; corresponds to a noise implementation process, H P, ; is the power consump-
tion from the heat pump unit and « is the parameter that is used to scale the HP profile. The output of
the algorithm corresponds to the number of heat pumps estimated. Once the number of heat pumps
is estimated the Data Analysis and process can begin, by using this result a noise baseline can be
estimated. It is the result of the different domestic assets that remain in the mix, their fluctuations can
be witnessed once the heat pump profile is subtracted. After the noise baseline is estimated, a second
check of the estimation of heat pumps can be done to assess the accuracy of the method throughout
a retroactive loop. This iterative process is pursued in order to reach high accuracy, finally, the heat
pump profiles are computed and the process is over.

The goal is to validate the model by having high accuracy. The validation of the model can be found in
Sec.4.2.2.

3.4.3. PV and HP identification
Once the algorithms from the PV identification and the HP identification have reached a high level of
accuracy in the results, the following method will be investigated to identify two assets in the mix. There-
fore, the next challenge relies upon combining them to see what happens when both of the algorithms
are merged. In this case, the inputs consist in :

1. Consumption data from the power substation level
AZ| profile
HP unit profile

PV unit profile

A

Temperature data
6. Irradiance data
However, the process behind the identification is different. The data that the optimization process needs

to handle can be chaotic and less prone to an identification process. A sample of data can be found
below :



3.4. Work flow 29

5000
=
=
=
2 4000
o
E
=
7]
s
o 3000
@
=
[=]
o
2000 —— Aggregated data without consumption
—— Aggregated data

0 5 10 15 20
Hours [h]

Figure 3.7: Aggregated data for mixed identification

Fig.3.7 provides insight into the data consumption in the neighbourhood. It can be seen that identifiable
peaks for heat pumps can already be highlighted. However, in the case of a bigger capacity for solar
panels, the first peak of heat pumps can be mitigated by solar production. This is why the two different
methods for the algorithm can be found in the Alg.4 and Alg.5.

The process presented in Alg.4 highlights the mixed identification process. The starting point is to first
identify which asset is predominant in the mix, therefore identifying the maximum and the minimum over
the year. If the maximum value is higher than the minimum value then the heat pump consumption
is predominant, and the other way around. Once the prevalent asset is determined, the process of
identification of the chosen asset is pursued. Then the disaggregation of the asset is done in the mix,
allowing the noise baseline estimation to take place. In this identification process, a problem arises,
mixed identification only deals with the estimation of two assets in the power substation data. Therefore,
the other types of assets present in the neighbourhood are not taken into account, inducing errors in
the estimation of heat pumps and solar panels. Different scenarios will be tested in Ch.??, to evaluate
the impact of the different inputs to the model. Once the estimation of the noise baseline is achieved,
the data for the final identification can be prepared by subtracting the previously estimated noise from
the data. Finally, the estimation of the last asset can then take place. The optimization process relies
on the same minimization process as seen in Eq.3.6 and Eq.3.7.

A second method can be pursued to counter the mixed estimation, the procedure is similar to the
one above. However, in the case of both solar and heat pumps implemented into the mix the profile
of consumption from the heat pump can be mitigated by one from solar. Such phenomena can lead
eventually to an increase in the error in the estimation of the assets. In this perspective, the following
method is developed, the identification of the heat pumps only takes place when the PV production is 0.
The heat pump identification happens first regardless of the prevalent asset. Then the noise baseline
is estimated and subtracted from the data. Finally, the PV identification is pursued. The goal is to
compare the accuracy of the two methods and then decide which one is worth being investigated.

The accuracy of the two methods will be analysed and compared. The goal is to reach a high level of
accuracy in both methods. The validation of the two methods can be found in Sec.4.2.3



Validation of the model

This chapter will consist of three sections, Sec.4.1 will detail the KPIs used for the evaluation of the
results. Then the validation of the model will take place in Sec.4.2. The number of assets for the inputs
will be discussed in Sec.4.3. Finally, a conclusion will take place in Sec.4.4.

4.1. Evaluation of results

Different graphs and KPIs will be introduced to assess the results. The accuracy of the algorithm will
be evaluated for each of the scenarios by using boxplots. The accuracy of the results can be defined
as the proximity measurements accepted to the accepted value. In such perspective, the following
equation is used to evaluate the accuracy :

abs (Xobjective - Xresult)
Xobjective

, 4.1)

Orelative —

Eq.4.1 refers to the formula used to determine the relative error of the result. X,y;cctive represents the
value which need to be obtained and X,....,;; the value obtained using the model. The accuracy will be
evaluated through the relative error for estimating the energy produced by PV with respect to the value
of 194,000 kWh for validating the model. As for the heat pump, the accuracy will be measured through
the relative error of estimating heat pump units concerning the value of 3089 units for the validation of
the model. The goal of the model is to have the highest level of accuracy for all methods. The variation
of the relative error will be evaluated to grant more insights into the DSO’s options. Furthermore, it
should be able to handle noise in the data. For the validation of the model, the accuracy for HP should
be close to 3089 units of HP identified, as for solar it should be 194,000 kWh. The model will be run in
20 iterations to provide accurate results for each scenario.

4.2. Validation of the model

For the validation of the model, three types of validation will have to take place, the PV identification
model needs to be verified as well as the HP identification model. Finally, the validation of the mixed
identification will take place.

4.2.1. PV identification

For the solar identification process, different versions of the optimization have been investigated over
time. The different results of the different versions can be seen in the Tab.4.1. The relative error is with
respect to the goal of identifying the 194,000 kWh.

In Tab.4.1, the solar identification model is shown to be accurate up to 5% of relative error using a
minimization algorithm to find the solar energy in the aggregated data. Different processes have been
documented to show the evolution of the variations of the relative error along the introduction of the
different parts of the algorithm. The consumer check algorithm can be found in Alg.3, as for the baseline

30
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Number of Energy identified Number of Relative Error

Version Customers [kWh] solar panels [%]

Initial 3089 92,5114 80.61 52

Consumer connected check 3066 79,625.9 69.38 58
Noise baseline 3089 209,613 182.6 8.0

Baseline + Consumer check 3066 203,247 1771 4.7

Table 4.1: Evolution of the results along the different processes

it is in Alg.1. The introduction of the baseline of noise in the algorithm has proven to be efficient for
enhancing the accuracy of the estimation of solar. This step must be pursued very carefully if other
assets were to be implemented.

Energy to Mean Energy Relative Error Relative error range

Version be identified [kWh] identified from PV [kWh] [%] [%]
Noise case 1 194,500 202,870 4.6 1.36
Noise case 2 194,500 203,241 4.7 0.79
Noise case 3 194,500 203,385 4.8 0.4

Table 4.2: Evolution of the KPIs over the different cases

The accuracy has reached a threshold of 95% and for the variations of the relative error, the interval
of fluctuation is smaller than 2% of the objective value. Hence, the algorithm leads to a high level of
accuracy and as the model is run 20 iterations, the results stay within a 2% fluctuation of relative error
which leads to high levels of accuracy without many outliers. The noise implementation does not seem
to have a great impact on the results. The algorithm has led to an estimation accurate up to 95%,
therefore allowing the DSO to use this capacity as a flexibility asset.

4.2.2. HP identification

The result of the algorithm for the identification of the heat pumps is promising without several steps
to enhance the process. The implementation of heat pumps in the mix is achieved according to the
process described in Sec.3.2.4. The noise for the data is implemented using the computation of the
standard deviation from the data and then implementing a Gaussian distribution of noise based on the
value of the standard deviation. The accuracy is measured through the number of heat pump units
identified in the mix and will be compared to the number implemented being 3089. The results for the
identification of heat pumps can be found below :

Number of Mean number of Relative Error Relative error range

Version Assets implemented [u.] Assets identified [u.] [%] [%]
Noise case 1 3089 3070 0.6 0.32
Noise case 2 3089 3072 0.55 0.13
Noise case 3 3089 3075 0.45 0.1

Table 4.3: Results for the case 1

The accuracy of the identification of heat pump units is reaching a level of confidence of 99%. The
results are stationary regardless of the noise implemented as it can be seen throughout the standard
deviation of the values of the relative error. In that perspective, the algorithm for the estimation of
flexibility available to the DSO is providing accurate results.

For the estimation of one asset, the single identification model’s accuracy is excellent given that DSO
usually operates with 20% of relative error in the estimation of the available flexibility. The accuracy of
the individual models has reached both a minimum of 95% and has proven to be stable throughout the
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iterations, the flexibility quantity can be estimated with less than 5% of relative error. This allows the
DSO to identify assets in the mix and to determine how much quantity in the aggregated data can be
considered flexible. However, the model can handle only data where one type of asset is present. The
model that can identify both assets will be investigated in the next section.

4.2.3. Mixed identification

In this section, the mixed identification model will be validated through 4 different validation scenarios.
First of all, the model will have to identify first PV, then a second scenario consists of identifying HP.
Consequently, the identification of both PV and HP will be covered through the two methods that have
been proposed in Sec.3.
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Figure 4.1: Boxplots of the results for Scenario 1(model validation)

Fig.4.1 represents the result of the mixed model for the output of both PV and HP. For the identification
of HP, Fig.4.1a shows that the relative error is 0% which corresponds to no heat pumps introduced in
the mix.

Fig.4.1b shows the result for the PV identification, with 27.5% error on average. In case 1, relative
error covers a broad range of values [25.4%,30.7%], in case 3 the values are within [26.5%,28%]. A
reduction of 20% of the relative error fluctuation interval can be noticed in between each case. The in-
terquartile range between the first quartile and the third is considerably reduced as the noise decreases.
The median of the relative error decreases as the noise implemented decreases. In this case, the accu-
racy of the algorithm is reaching a minimum level of 70% with respect to the estimated goal of 194,500
kWh. Given that the method for a mixed identification process takes into account different noise levels
and different processes for the noise baseline, the identification of only one asset solar is hindered
by the process of mixed identification. Moreover, as solar energy is produced in small quantities the
identification accuracy is less performant than at a higher level of asset implemented. In such a per-
spective, the estimation of the flexibility is harder at a low level of integration of assets, the accuracy of
the model can then be considered to be dependent on the number of assets present in the grid. As for
the estimation of flexibility, the relative error is reaching 28% here and is expected to decrease with the
increased capacity of solar introduced. The accuracy for the DSO needs to be tackled at low capacities,
in this case, the accuracy will be further evaluated at a higher level of PV introduced.

The next step in the algorithm is then to identify the number of heat pumps in the mix. The following
results correspond to the scenario where only heat pumps are introduced.
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Figure 4.2: Boxplots of the results for Scenario 2(model validation)

Fig.4.2 represents the output for the scenario 2. In this case, Fig.4.2a underlines a high-accuracy
model for the identification of heat pumps in the mix. The accuracy is high given that the relative
error is ~0.3 for the identification of heat pumps. In case 1, the relative error of the estimation of
the number of heat pump units covers a range of [0%,0.75%)] and in case 3 it is [0.15%,0.53%)]. The
interquartile range between the first and third quartile is within [0.1%,0.4%] in case 1 and [0.2%,0.35%]
in case 3. The fluctuations of the results are small and accuracy is reaching high levels for the HP.
The tendency previously noticed in the PV identification case is incorrect for HP identification. As the
error in the estimation of HP units is very low, the decrease of the relative error follows a different trend
as the accuracy is above 99%. Besides, the algorithm’s accuracy respects the DSO standards which
correspond to 80%.

However in Fig.4.2b, no PV shall be identified, the introduction of noise in the data shows that PV can
be wrongly estimated if a level of noise higher than %< is implemented in the data. In case 1, the
relative error ranges between [0%,20%] and in case 2 & 3 the relative error is 0%. Conversely to solar
identification, relatively speaking the energy consumed by heat pumps over the year is much higher
than the solar ones, therefore the identification is easier. The flexibility estimation in this case contains
very low error, therefore for the identification of HP, this algorithm is performing greatly. DSO may
use the algorithm for the identification in the neighbourhoods of HP units therefore allowing accurate
estimation of the amount of flexibility to take place.

As both the PV identification and the HP identification have reached sufficient levels to be tested to-
gether the next step consists in testing them with similar conditions as scenarios 3 and 4. The results
for the validation of the method 1 can be found below :
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Figure 4.3: Boxplots of the results for Scenario 3(model validation)

For method 1, Fig.4.3 presents the results for both heat pump and pv identification. Fig.4.3a shows that
the relative error for the heat pump is as low as [0.05%,0.8%] for the heat pump with little fluctuations
in the relative error achieved. In case 1 the relative error is within [0.05%,0.8%] and the interquartile
range is [0.3%,0.55%]. For case 3 the relative error ranges in [0.2%,0.7%] and the interquartile interval
in [0.4%,0.6%]. The fluctuations here are once more small and the accuracy of the HP identification is
above 99%, the estimation of the available flexibility in the mix can be performed with a high level of
confidence.

As for the PV identification, Fig.4.3b highlights that the accuracy of the PV identification is highly de-
pendent on the implementation of noise. The relative error interval is first within [10%,100%] in case 1
and then [18%,62%] in case 3. The interquartile range is in case 1 [20%,77.5%] and case 3 [30%,44%].
As for the noise influence when looking at this scenario, the decrease in between each case does not
follow the linear relation seen in the case where the model needed to identify one asset. There is first
a decrease in the relative error of the PV identification of 10% and then of 50%. Compared to the
case where there was no HP in the mix, the noise influence on the results worsened. PV identification
is much harder than in Sec.4.2.1 as HP mitigate and introduces more errors in the data. Given that
PV is present in small quantities, the identification is tedious. The estimation of the available flexibility
for the DSO is difficult at a low level of integration of RES and with another asset to be identified, the
noise is becoming an important problem. In such cases, the algorithm is confronted with the limit of the
identification process and the interdependency between the quantity of assets to be identified. In the
case of a large number of heat pumps and a small amount of PV to be identified, the prevalent asset
identification error can lead to a massive loss of accuracy as well as an increase in the spread of the
obtained values for the other asset identification.

The PV identification can struggle to identify the solar energy produced over the year. The overall
energy consumed by the heat pumps is much larger than the power produced by the solar. Hence, the
identification of the units in small quantities remains a problem. The error for the solar identification is
increasing as the heat pump identification is also taking place.

The results for the method 2 can be found below :
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Figure 4.4: Boxplots of the results for Scenario 4(model validation)

For method 2, Fig.4.4 presents the HP and PV identification results. Fig.4.4a shows that the accuracy
for the heat pump is as high as [99.75%,99.8%)] regardless of the noise. In case 1 the relative error is
within [0%,1.1%] and the interquartile range is [0.3%,0.82%)]. For case 3 the relative error ranges in
[0.08%,0.4%] and the interquartile interval in [0.18%,0.28%].

As for the PV identification, Fig.4.4b highlights that the accuracy of the PV identification is highly depen-
dent on the implementation of noise. Besides, in the results, method 2 proves to have better results
than method 1 for identifying solar panels. The relative error interval is first within [5%,90%] in case 1
and then [10%,55%] in case 3. The interquartile range is in case 1 [27%,60%)] and case 3 [20%,42%].
The median of the relative error in the PV estimation is lower than in method 1. This suggests that
method 2 enables the identifying process to be improved. As for the noise, a decrease of 20% of the
relative error can be noticed between cases 1 and 2, similar phenomenon is seen between cases 2
and 3. Hence, with this method, the noise relation is linear with the decrease of the relative error of the
guess of the PV.

Therefore, the results obtained using method 2 decrease the relative error in the PV identification.
However, the accuracy is not reaching as high levels as one would expect, the reason lies in the
number of assets considered for the solar identification. If a higher level of assets were present in the
data for energy production, the algorithm’s accuracy would increase. As for the DSO, the estimation of
PV is tedious when a small number of assets are implemented. The estimation of the heat pumps in
the case of 3089 units has been successful regardless of the scenarios. The accuracy of the algorithm
for the HP identification reached a minimum of 99% regardless of the noise introduced in the data. The
results do not show signs of fluctuations in the estimation as the range of fluctuations in the relative
error is below 1%. As for PV, the identification has proven to be harder than expected with relative error
in the energy produced reaching 100%. However, at lower levels of noise implemented, the median of
the relative error seemed to be stable with a value of ~ 30%. The values for the relative error fluctuating
over a large range indicates that the identification process at a low level of PV penetration is not stable
as the range for the relative error covers a range of A% = 90%. This underlines the error that can be
obtained when using this model with a low number of PV panels in the aggregated data. When looking
at the DSO perspective, taking into account that they operate with around 20% of relative error in their
models, the HP identification is quite promising. The relative error in the HP identification is below 1%,
the one for PV is harder to deal with. The result for the PV identification can be considered accurate
with respect to the DSO’s norms as at a small number of assets the identification is tedious. More
information regarding the limitations of the model is presented in Chap.7.1
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4.3. Implementation of assets

The number of assets that are implemented has a great influence on the level of accuracy. As can be
seen with the number of heat pumps implemented in the following graph :

20.0

—— Relative ermor in the estimation of Heat pumps

17.5

15.0

12.5

10.0

7.5

Relative error [%]

5.0

2.5

0.0

0 500 1000 1500 2000 2500 3000
Number of heat pumps [u.]

Figure 4.5: Accuracy of the identification based on the number of assets implemented

Fig.4.5 represents the relative error of the identification based on the number of assets implemented.
It can be seen that below a number of 300 units, the relative error grows rapidly and reaches the limit
of 20 % around 50 units implemented. This behaviour applies to any type of asset considered to be
connected to the power substation. Therefore, the highest number implemented in the grid, the highest
the accuracy of the model. As a small number of assets allow the range of the relative error to spread,
the accuracy of the model is expected to be enhanced using a larger number of assets.

4.4. Conclusion

Overall, the model is performing well and accurately. The relative errors in the case of PV fluctuate
tremendously, hence the accuracy is then degraded by the wide range of relative error values at a low
PV penetration. However, one problem arises in the case of the model validation. As a small number
of solar panels are present in the data, the identification with the mixed process is tedious and cannot
reach a level of accuracy as high as for the individual identification. Such a problem can be considered
as a usual problem that DSOs encounter when identifying assets in small quantities, the peak and the
characteristics are then more prone to be mitigated by variations and other assets that proportionally
have a bigger influence than on the heat pump. The identification at a low level of penetration of assets
is tedious and requires different approaches. In this perspective, the accuracy of the PV identification
can be considered sufficient. One would expect a decrease in the relative error if larger PV penetration
were considered.



Scenarios analysis & results

This master thesis research work is pursued in the frame of a study on a neighbourhood. Scenarios
corresponding to the different options that have been considered in the project will be tested. The
value used for the solar corresponds to the maximum capacity that can be implemented in the study.
As for the number of heat pumps, it has been decided based on the number of households. Different
scenarios will be investigated to assess the model and evaluate the different cases. Depending on
the different results, a sensitivity analysis will follow to discuss the different results and evaluate the
proposed approaches in Chap.6. The different scenarios are the following:

» Scenario 1: Solar implemented (Annual energy yield of 2.05GWh)

» Scenario 2: Heat pump implemented (3089 units)

» Scenario 3: Solar and Heat pump implemented using method 1 (2.05 GWh and 3089 units)
» Scenario 4: Solar and Heat pump implemented using method 2 (2.05 GWh and 3089 units)

» Scenario 5: Solar and Heat pumps implemented using method 2 for the prevalent periods of the
assets (2.05GWh and 3089 units)

» Scenario 6: Solar and Heat pumps implemented using method 2 with different numbers of itera-
tions (2.05GWh and 3089 units)

The flexibility estimation will take place using the output of the model. The flexibility of the heat pumps
is quantified in terms of the peak load reduction using curtailing or DR mechanisms. As for PV, the
mitigation of the peak load is evaluated under the assumption, that solar energy can be used to alleviate
the load at the effective time of the peak load. Therefore, decreasing the power demand when it is most
needed.

5.1. Scenariol

In this scenario, the basic case is developed where the PV generation is considered to be the only asset
connected to the grid. Therefore, the model should identify the PV energy generated over the year using
the Alg.4. The accuracy is evaluated through the relative error of the amount of yearly energy produced
by PV compared to the value of 2,05 GWh. The range of accuracy values will be evaluated to gain more
insights into the flexibility estimation. In this scenario, the PV identification cannot be mitigated by other
types of assets. The quantity of solar implemented in the data corresponds to 2.05GWh solar energy
produced over the year. Solar production does not fluctuate as much as the heat pump, therefore no
noise has been implemented into the solar production. The data at the beginning of the algorithm have
a peak of production as seen in the following figure :
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Fig.5.1 represents the data over a day from the substation level. It can be seen that the solar capacity
from the neighbourhood implemented is prevalent compared to any trend. Once the optimization has

been pursued we have the following boxplots :
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Figure 5.2: Boxplots for the results of Scenario 1

Fig.5.2 presents the results from the PV identification and the HP identification. The results show the
relative error of the estimation of the HP units in Fig5.2a and of the PV yearly energy produced in
Fig5.2b. Fig.5.2a highlights that the optimization has a very low error in the estimation of the number
of HP units. It identifies at most one heat pump in the mix in the worst result. The relative error interval
is first within [0.0025%,0.035%] in case 1 and no relative error is witnessed. The HP identification can
be considered very accurate in this case as the relative error is below 1% and the values are proved

to be reproducible along the iterations, therefore proving also that the algorithm is precise.

As for Fig.5.2b a trend can be noticed concerning the noise implemented in the data set. The accu-
racy of the PV identification is in the interval of [94%,94.7%)]. The relative error interval is first within
[4.78%,6.2%] in case 1 and then [5.4%,5.8%] in case 3. The interquartile range is in case 1[5.3%,5.9%]
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and case 3 [5.5%,5.7%]. There is a decrease of 50% of the interval between cases 1&2 and then a
decrease of 50% again for the range of the relative error between cases 2&3. The reduction of relative
error is linear as noticed in Chap.4 proving that the linearity is conserved regardless of the number of
assets. Moreover, there is very little error in the estimation of PV.

From the DSQO’s perspective, the results for the PV estimation are much more accurate in the case of
a large quantity of PV panels implemented. As the range of the relative error values is not spread as
in the Validation Scenario 1, the accuracy is enhanced thanks to the stronger profile of the asset in the
aggregated data from the power substation. Hence the flexibility estimation can be pursued without
large values of relative error. The high accuracy of the model allows the DSO to have an accurate
estimation of the available flexibility helping with the reduction of the load on the power substation. The
amount of flexibility that can be used consists of a range of [2%,157%)] of the aggregated data’s peak
load that can be mitigated, on average 90% of the peak load could be alleviated using solar energy.
Such an assumption requires a battery to be used to mitigate the peaks in consumption. Otherwise,
the solar could be curtailed to avoid congestion in the grid.

5.2. Scenario 2

In this scenario, the HP units are considered to be the only asset in the grid. Therefore, the model
should identify the HP energy consumed over the year using this model. In this perspective, the HP
identification cannot be mitigated by other types of assets. 3089 units are being implemented in the
data from the substation. The method to identify is the one presented in Alg.4. The goal is to identify
the amount of HP and PV implemented into the mix, the accuracy is measured through the relative
error concerning the number implemented. The range of accuracy values will be evaluated to gain
more insights into the flexibility estimation. As heat pump behaviour can change from one household
to another, a noise variation is introduced in the consumption data from the HP using the methodology
introduced in Sec.3.2.6. The different values correspond to a proportional number to the standard
deviation computed from the HP consumption data. You can see below the graph where the asset
needs to be identified :
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Figure 5.3: Data used for the HP identification

Therefore, the heat pumps can be identified in the mix and no solar should be observed in the mix. The
results for the different noises implemented can be seen below :
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Figure 5.4: Boxplots for the results of Scenario 2

Fig.5.4a presents the results for the identification of HP in three different cases. It can be seen that the
relative error is below 1% regardless of the noise in Fig.5.4a. The relative error interval is first within
[0%,0.75%] in case 1 and case 3 in [0.15%,0.52%)]. The interquartile range is in case 1 [0.1%,0.4%]
and case 3 [0.2%,0.35%]. Therefore the identification of heat pumps is achieved with great accuracy
reaching a level of 99%. Moreover, the range in which the relative error values are contained is narrow
which underlines a high level of accuracy. Such results allow the DSO to use flexibility measures to
alleviate load from the power substation level with very little error.

Fig.5.4b represents the relative error for the identification of solar in the mix. The relative error grows
in this case with the increase in the noise implementation. As no solar is in the mix, the noise can be
responsible for the false guess of solar. The relative error interval is first within [0%,2%] in case 1 and
then 0% in case 3. Further increases in the relative error are expected if the noise is increased. The
error of the pv identification in the foreseen cases shows relative errors within the DSO error margins.
Hence, in this scenario, the DSO would be able to use this model as it can be considered accurate with
an error below 2%.

The identification of only heat pumps in this scenario is achieved with high accuracy as the spread of
the values is narrow and the relative error is low. However, the noise in the data can introduce errors
in the identification of PV. The DSO with this model can alleviate an amount of [5.9%,97.65 %] of the
peak load from HP units, on average 76.7% of the HP peak load can be curtailed.

5.3. Scenario 3

In this scenario, both of the assets are implemented in the mix in the quantity previously used Sec.5.1
and Sec.5.2. The problem in this case is that the different profiles can mitigate each other. Therefore the
different methods and order of steps are important. The identification will follow the procedure proposed
in method 1, which corresponds to the method introduced in Alg.4. The optimization process is pursued
over the whole year without distinction to specific periods. The goal is to identify both assets with high
levels of accuracy. The accuracy will be evaluated through the relative error taking as objectives 3089
HP units and for solar 2.05 GWh. It will also investigate the spread and the interval of the relative error.
The data profile used for the mixed identification can be seen below :
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Fig.5.5 represents the profiles for the first day of the year. The results for the identification of the two
assets in the profiles are presented below :
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Figure 5.6: Boxplots for the results of Scenario 3

Fig.5.6a shows the result for the estimation of heat pumps in the mix, it can be noticed that the rela-
tive error decreases as the noise witnesses the same trend. The accuracy for the algorithm ranges
in the interval [97.3%,97.8%)]. The relative error interval is first within [1.25%,3.25%] in case 1 and
[2.30%,2.55%)] in case 3. The interquartile range is [2.1%,2.7%] in case 1 and [2.4%,2.5%] in case
3. The reduction of the spread between cases 1&2 corresponds to a reduction of 80% of the interval
size and between cases 2&3 a reduction of 50%. This underlines that with multiple assets connected
the linear relationship of the noise is not respected. The interquartile range of case 1 seems to cover
the total relative error of case 3. It underlines that the guesses within the interquartile range of case 1
are rather correct than the ones outside of the interquartile range. This can help the DSO estimate the
available flexibility with better accuracy. The accuracy is greatly improved, as the spread of the values
is considerably reduced with the decrease of noise in the data. The accuracy of the HP identification is
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quite high and can help the DSO estimate the number of HP units with little relative error. Hence such
results can allow accurate alleviation of the load on the substation level.

In Fig.5.6b the estimation of PV energy covers a broad range of relative errors. However, the error
in the estimation of PV can reach up to 27.5%. The accuracy for the algorithm ranges in the interval
[72.5%,90%)]. The relative error interval is first within [10%,28%] in case 1 and then [14%,19%] in
case 3. The interquartile range is in case 1 [15%,23%] and case 3 [16.5%,18%)]. As observed for
HP, the interquartile range of case 1 covers the total relative error of case 3. However, in Case 1 in
Fig.5.6b the relative error is above 20% of relative error for the estimation of the energy produced by
PV. Therefore, using the full range would not be accurate for the DSO. Only keeping the values within
the interquartile range of large levels of noise would then grant more accuracy to the estimation of the
asset in the mix. Such a phenomenon allows the DSO to get rid of errors in the case of a high level
of noise implemented in the data, allowing the relative error of case 1 to be reduced. The DSO, which
usually works with about 20% of relative error in their estimation of flexibility, would be able to use the
results in most of the cases. Under the assumption that the relative error outside of the interquartile
range only consists of the wrong estimations, the PV estimation would be more accurate for case 1.
Therefore the DSO could use only the interquartile range in cases of higher levels of noise.

With such results [5.7%,95.5%] of the aggregated data’s peak load could be curtailed from HP, trans-
lating into an average of 75% of the peak load reduction. As for PV, the peak load can be mitigated
by [0.25%,129%] and on average a reduction of 30% of the peak load can be witnessed if a battery is
considered or with curtailment mechanisms.

Method 1 has been proven to work in the conditions proposed in the methodology in Sec.3. However
as seen in this section, certain conditions can pose a serious threat to the accuracy of the algorithm.
Different methods will be investigated in the following sections.

5.4. Scenario 4

In this scenario, both of the assets are implemented in the mix in the quantity previously used Sec.5.1
and Sec.5.2. The problem in this case is that the different profiles can mitigate each other. Therefore
the different methods and order of steps are important. As opposed to method 1, the heat pump
identification is done by filtering the sample where solar is produced. The identification will follow the
procedure proposed in method 2, which corresponds to the method introduced in Alg.5. The accuracy
will be evaluated as previously done in Sec.5.3. The optimization takes place for the whole year similarly
to previously in Sec.5.3. The goal is to identify the two assets using different time lapses for their
identification.
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Figure 5.7: Boxplots for the results of Scenario 4

Fig.5.7a represents the accuracy for the HP identification using method 2. It can be seen that the
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accuracy is higher with a lower level of noise. The accuracy is in the range of [99.3%,99.9%]. The
relative error interval is first within [0.05%,1.15%] in case 1 and [0.1%,0.45%]in case 3. The interquartile
range is [0.22%,0.62%] in case 1 and [0.2%,0.35%)] in case 3. As the level of noise decreases, the
values are less and less spread. The level of accuracy is then excellent and therefore is enhanced
compared to the previous results of the accuracy from method 1. It can be seen in the figure that the
relative error has diminished compared to Fig.5.6a, therefore method 2 is highlighting better accuracy
than previously. The accuracy is improved and enhances the estimation of the flexibility from the DSO.

Fig.5.7b shows the relative error in the asset estimation as well as the accuracy levels for the PV
identification. It can be noticed that the noise implementation impacts these values. The accuracy in
the solar estimation is within [87.5%,96%)]. The relative error interval is first within [2.5%,16%] in case
1 and [7.5%,11%]in case 3. The interquartile range is [4.5%,12%] in case 1 and [8%,10%] in case 3.
Method 2 reduces the relative error of the estimation of PV by an average of 8% compared to method
1, therefore improving the accuracy of the model. Considering an 8% difference in the guess of solar,
the DSO would be able to use 164 MWh that was previously not used. An interesting behaviour can
be noticed, the median of the interquartile range seems to be increasing along the cases. Such a
phenomenon can come from the overestimation at a higher level of noise of the number of heat pumps,
therefore leading to an increase in the peak power of the solar peak. The PV identification is very
sensitive to such parameters as there is only one daily peak of solar energy. As the following scenarios
all use this method, similar behaviour can be noticed. With this improvement, the DSO is allowed to
provide more flexibility to the grid and ease the congestion on the grid. As the relative error is below
20% regardless of the case, the DSO can use method 2 to estimate the available flexibility. If the range
of only the interquartile range is used for estimating the available capacity the accuracy reaches at least
87.5%.

With such results [5.9%,97.6%] of the aggregated data’s peak load could be curtailed from HP, trans-
lating into an average of 76.7% of the peak load reduction. As for PV, the peak load can be mitigated
by [0.25%,135%] and on average a reduction of 32% of the peak load can be witnessed if a battery is
considered or with curtailment mechanisms.

The method proposed in this section proves to be efficient and accurate. Compared to the previous
method the relative error in the estimation of both assets has decreased leading to an increase in the
accuracy. The flexibility estimations have gained accuracy compared to method 1. The interquartile
range of case 1 contains the total range of the relative error of case 3. Therefore by estimating the
interquartile range of case 1, the relative error can be reduced as method 2 has highlighted that the
errors outside of the interquartile range of case 1 do not account for the relative error in case 3. The
DSO can then only take the interquartile range of case 1 to determine the amount of available flexibility
for the cases with high levels of noise.

5.5. Scenario 5

As opposed to Sec.5.3 and Sec.5.4, the goal of this identification process is to identify the period where
solar and heat pumps are prevalent assets to evaluate with a higher level of accuracy the assets. In
this scenario, the period of the chosen asset will cover 6 months. The accuracy will be evaluated as
previously done in Sec.5.3. The same quantity of solar and heat pumps are used. The goal is to
optimize where the assets are predominant, as shown below:
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Figure 5.8: Daily Averages of Heat Pump Consumption and Solar Production

Fig.5.8 highlights the trend that can be seen from solar production and heat pump consumption. There-
fore a specific period can be used for the identification of both assets. One corresponds to 6 months
where solar is the predominant one and the other way around. The goal is to identify the two assets us-
ing different time lapses for the optimization. The amount of PV panels is identified during the summer
when its influence is the most important, and the HP units are identified in the winter.
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Figure 5.9: Boxplots for the results of Scenario 5

Fig.5.9a represents the relative error for the HP identification using method 2 for the identification pro-
cess. It can be seen that the accuracy is higher with a lower level of noise. The accuracy is in the range
of [99.3%,99%]. The relative error interval is first within [0%,0.75%] in case 1 and [0.1%,0.38%]in case
3. The interquartile range is [0.18%,0.43%] in case 1 and [0.2%,0.35%] in case 3. The accuracy im-
proves as the relative error interval narrows. The method of the prevalent period does not impact the
relative error of the HP identification. The accuracy of the HP estimation is high and allows the DSO to
determine accurately the amount of available flexibility.

Fig.5.9b shows the accuracy levels for the PV identification. The accuracy in the solar estimation is
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within [87.5%,95%)]. The relative error interval is first within [0%,26%] in case 1 and [10%,15%)] in case
3. The interquartile range is [4.5%,16%] in case 1 and [12%,13.5%] in case 3. By using method 2 with
a specific period, it can be seen that the relative error ranges outside of the 20% range. Therefore this
scenario is less accurate for the estimation of PV in the aggregated data, as only half of the data from
the year is used, it could be interesting to pursue the identification on the same period over years if
data were available. Few conditions make this method tedious to implement as it requires to know if
additional PV has been installed and if data are available from different years. However, in this case,
the DSO can use the algorithm in the case of a low level of noise to keep the accuracy above 80%.

By using this method, [5.9%,97.6%] of the aggregated data’s peak load could be curtailed from HP,
translating into an average of 76.7% of the peak load reduction. As for PV, the peak load can be
mitigated by [0.25%,129.5%] and on average a reduction of 30.5% of the peak load can be witnessed
if a battery is considered or with curtailment mechanisms.

In this scenario, the use of a specific period for the identification of the assets has proven to be less
accurate than method 2 using the data of the entire year. The flexibility estimation has been hindered
and therefore is not advised to be used by the DSO. Method 2 as seen in Sec.5.4 is the best one yet,
the number of iterations of the model will be studied in the next section.

5.6. Scenario 6

In this scenario, the goal is to evaluate the accuracy as the number of iterations increases. Three
different steps will be investigated, for 10,30 and 50 iterations of the algorithms using method 2 as
seen in Sec.5.4. The accuracy of the algorithm is assessed throughout the number of iterations that
the algorithm is going through. The accuracy will be evaluated as previously done in Sec.5.3. The first
set of results is the outcome of 10 iterations, then 30 iterations and finally 50 iterations.
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Figure 5.10: Boxplots for the results of 10 iterations in Scenario 6
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Figure 5.11: Boxplots for the results of 30 iterations in Scenario 6
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Figure 5.12: Boxplots for the results of 50 iterations in Scenario 6

The accuracy seems to be improving over the different iterations for HP in Fig.5.10a, Fig.5.11a and
Fig.5.12a. However, the most impressive evolution can be found in the PV identification results. Over
the evolution that can be witnessed from Fig.5.10b, Fig.5.11b and Fig.5.12b, the accuracy from cases
1 and 2 is increasing notably. For 10 iterations in Case 1, the median for the accuracy is 12.5% of
error and the interval covers a range of error of [9%,14%]. After 50 iterations, Case 1 has a median
of 9.5% of error and an interval for the relative error of [7%, 12.5%]. Whereas for case 3 the accuracy
is increased over the iterations but with smaller variations, for 10 iterations the relative error is within
[6%,11.5%] and after 50 iterations it is in [7%,11.5]. Using the interquartile range of case 1 to determine
the total range of error reduces drastically the relative error for the PV identification.

For the DSO, the number of iterations can only improve the identification’s accuracy and therefore
enhance the flexibility estimation. With this method, the DSO can provide accurate results and allows to
minimize the relative error in their guess. The flexibility estimation can lead to alleviating [5.9%,97.6%)]
of the aggregated data’s peak load from HP, translating into an average of 76.7% of the peak load
reduction. As for PV, the peak load can be mitigated by [0.25%,133%] and on average a reduction of
31.5% of the peak load can be witnessed if a battery is considered or with curtailment mechanisms.




Sensitivity analysis

In this chapter, the different scenarios are evaluated and the important aspects of the optimization
problems are discussed. The different subsections analyse the individual asset identification method
in Sec.6.1 and then the two asset identification methods in Sec.6.2. Finally, in Sec.6.3 the different
parameters are all compared to produce a conclusion from the model framework.

6.1. Individual asset identification

In Sec.5.1 and Sec.5.2, the assets are identified individually. The outcome for PV identification is
accurate, the interval of the values of the relative error narrows as the level of noise decreases across
cases. Such results correspond to the projections on which the estimation of assets is highly dependent
on noise implementation. The median of the results is closer to the lower boundary as the noise is
decreased. The interquartile range is also highly dependent on the noise implemented in the value.
However, in the case of solar, the noise arises from the variability of consumption. Therefore, if stable
consumption is observed, the accuracy of solar identification will only increase. Almost no heat pumps
are identified during the identification of PV panels. To determine the full range of relative error, it
has been seen that in the case of a low level of noise, the relative error full range corresponds to the
interquartile range of a higher level of noise. Hence, DSO can use specifically the interquartile range
at high levels of noise to estimate the flexibility. It will enhance the accuracy of the estimation.

In the other case, where heat pumps are the only asset present in the data, the accuracy is excellent,
resulting in very little error from the algorithm. However, with noise implementation in the data, over-
estimation in the case of HP can lead to errors in the identification of PV. The error remains low, but a
higher level of noise could lead to a false estimation of solar. Therefore leading the DSO to errors that
would hinder their flexibility mechanisms.

Overall, the accuracy of both PV and HP reach a confidence interval of at least 94%, which is excellent
for a system operator, given that a DSO can operate with errors up to 20%. The accuracy criterion
is highly dependent on the number of assets implemented into the mix, as seen in Chap.4 where the
PV identification can reach an error of 100% in the worst-case scenario. The spread of the values is
tremendously reduced as the number of assets is increased, the accuracy is then enhanced and the
estimation more robust.

The next section digs into the results of mixed identification concerning the different scenarios.

6.2. Multiple asset identification

In Sec.5.3, Sec.5.4,Sec.5.5 and Sec.5.6, the assets are identified within the aggregated data. The
outcome of the mixed identification using the first method in Sec.5.3 provides accurate results for the
heat pumps with less than 2.75% error. However, an error of 2.75% can induce a wrong estimation
in the solar profile. As the average consumption of heat pumps over a year is 4493 kWh [66], the low
percentage of error can lead to a significant error in fitting the solar profile. To address this, method
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2 was developed to reduce the error in solar estimation. As highlighted in Fig.5.6b, the relative error
can reach up to 28%. By implementing method 2, the accuracy for solar improved by almost 10%
on average, as seen in Fig.5.7b. Although the accuracy of the heat pump estimation improved by
only 2% (Fig.5.7a), it led to a major improvement in solar identification. The identification of assets
in the mix depends on when an asset can be identified. Identifying the specificities of the different
profiles such as the number of peaks, amplitude and peak time allows the identification to gain accuracy.
The criteria that allowed the identification of PV to reduce the relative error was to identify the heat
pump consumption independently of the solar influence. The error arose from the peak of solar energy
production mitigating the first peak of heat pump consumption. Therefore, the minimization process
had to deal with a mismatch between the two peaks, resulting in a decreased number of heat pump
units. Identifying assets in aggregated data must consider the specific profiles to improve the accuracy
of the developed method.

To enhance the model’s accuracy, the period during which the identification process takes place was
investigated. Throughout Scenario 5, the method aimed to take a specific time slot where the assets
would be prevalent, as seen in Fig.5.8. The solar energy curve is higher than the heat pump consump-
tion curve from approximately the 100th day until the 280th day. Therefore, the identification process
for solar occurs during this period, while the heat pump identification process takes place during the
complementary period. The results in Fig.5.9 show better accuracy than those in Fig.5.6. However,
the process in Scenario 4 remains better than that in Scenario 5. In Scenario 5, the accuracy is on
average between [86%, 90%], while for Scenario 4, it is between [91%, 92.5%]. Choosing a specific
period for identifying the different assets yields accurate results, but the period may need to be more
specific to provide even more accurate results. Another aspect of the period method can be the number
of samples available to the DSO, for this research work the data for one year were considered. If data
from several years are available to the DSO and the PV installation has not been modified over the
years, the accuracy can eventually improve and unlock better flexibility estimation.

As the previous paragraph investigates the dependency on the chosen period, this section explores
the influence of the number of iterations on the spread of the relative error values. Since the method
proposed in Scenario 4 is the most efficient, the number of iterations was investigated using its algorithm.
In the results of Scenario 6, the number of iterations proves to be an important factor in increasing both
the accuracy of the median and one of the relative error values. In Sec.5.6, the accuracy for a high
level of noise improves with 50 iterations. Therefore, considering the high level of noise in the data, the
algorithm requires more iterations to achieve the same level of accuracy as achieved with a low level
of noise. The algorithm performs well with a low level of noise with fewer iterations, while a higher level
of noise requires more iterations to achieve the same performance. The spread of the relative error
values was evaluated throughout the evolution of the interquartile range and the relative error along
the different scenarios. The boundaries of the interquartile range are being narrowed as the number of
iterations is increasing.

The next section will combine the different findings from the previous chapters, to provide analysis on
the overall process.

6.3. Comparisons and reflection

When looking at the results, the KPI has seen an increase along the different scenarios. The first
step that improved the performance was to introduce a specific time to optimize the algorithm. Such
a process can be helpful in various conditions, prior to the implementation of the right period in the
optimization process, an analysis of the different characteristics of the assets is essential. For the solar
profile, different parameters are important, first of all, the irradiance at the moment of power produced
can be used as a filter to increase the accuracy of the algorithm. Furthermore, no positive influx in the
profile can be possible therefore different conditions are lining up. As for the heat pumps, two peaks
exist in the profile. The problem lies in the combination of assets, to identify behaviours there is a need
to have windows where no influence of the other asset is degrading the profile. Once these conditions
are fulfilled, different parameters such as the period of identification and the number of iterations can
be investigated.

For the period on which the identification takes place, the optimization has limited samples. The KPI is
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better than in method 1 but is still lagging behind the results of method 2. One reason for this could be
the lack of data available for the optimization to take place. The optimization took place over 6 months
with an hourly resolution. Further investigation with the same period over several years could eventually
improve the results. However, this process would require the DSO to have data from the past years.
The different data required for the optimization would make this option tedious to accomplish.

As for the number of iterations, the accuracy of the results is increasing consequently when a higher
number of iterations is pursued. However, for low levels of noise such as in Case 3, the results are not
improving after 20 iterations. Hence the number of iterations shall be considered higher in the case of
a high level of noise in the data. Such a process would guarantee the validity of the result for the DSO.

From the evolution of the median and the interquartile range, it can be noticed that scenarios 4 and 6
work the best for the results. The interquartile range in scenarios 4 and 6 is already highlighting the
area of relative error in which the relative error in case 3 is located. Given the trend, the results then
can be estimated from the interquartile range at a higher level of noise. The same trend can be noticed
with case 2, most of the results in case 3 belong to the interquartile of case 2. In addition, the results
that scenario 6 brings are that after a certain number of iterations, the results converge to a certain
range. In that case, the interquartile range becomes more precise for solar.

Another important factor in the model is the proportion of the different assets compared to the consump-
tion profile that can be derived from the MFFBAS profile. In Chap.4 the PV profile can be considered
hindered by the consumption profile, whereas in Chap.5 the PV is much more important. It can be seen
that the relative error is decreased and allows the identification to be more accurate. Reduced HP and
PV implementation amounts would result in a significant loss of accuracy in asset identification. The
consumption profile would then be proportionally more important than at higher levels of assets imple-
mented. At a low number of assets, the accuracy is dropping rapidly. DSOs should then be careful of
the use of the model in the case of a small number of assets connected to the grid.

6.4. Conclusion

In this chapter, the first section has validated the model which allowed the scenarios to be explored. Sev-
eral scenarios have been tested and have highlighted in which cases the best accuracy was achieved.
The accuracy is evaluated throughout the range of the values covered by the relative error and by the
median of the different cases. A table with the results can be found below :

Median PV[%] | Interval PV[%] | Median HP[%] | Interval HP[%]
Scenario1 | 5.55 14 0.02 0.030
Scenario2 | 0 2 0.03 0.75
Scenario 3 | 20 17.5 3.32 2.9
Scenario4 | 9 14 0.4 1.1
Scenario5 | 10 25 0.3 0.78
Scenario6 | 9 17 04 1.3

Table 6.1: Table for the result of Case 1

Median PV[%] | Interval PV[%] | Median HP[%] | Interval HP[%]
Scenario1 | 6.7 0.7 0.03 0.030
Scenario2 | 0 0 0.03 0.8
Scenario3 | 18 11.25 34 0.5
Scenario4 | 8.5 12.5 0.2 0.65
Scenario5 | 13.5 10 0.18 0.78
Scenario6 | 10 10 0.3 0.55

Table 6.2: Table for the result of Case 2
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Median PV[%] | Interval PV[%] | Median HP[%] | Interval HP[%]

Scenario1 | 5.6 04 0.03 0

Scenario2 | 0 0 0.3 0.34

Scenario 3 | 17 5 3.45 0.3

Scenario4 | 9 4 0.15 0.4

Scenario5 | 12.5 5 0.3 0.3

Scenario6 | 9 5 0.25 04

Table 6.3: Table for the result of Case 3

High levels of accuracy have been witnessed in the case of a high number of iterations and specificity
in the period of optimization. The best results have been obtained in scenarios 4 and 6 for the mixed
identification model. In the case of one asset implemented, scenarios 1 and 2 provided as well high-
level performances.



Conclusion & Discussions

In this chapter, the limitations of the model built along this thesis will be detailed in Sec.7.1. Then the
recommendations for future work will be proposed in Sec.7.2. Sec.7.3 will propose different advice and
considerations regarding the problem’s owner perspective being the DSO. Finally, a reflection will take
place in Sec.7.4.

7.1. Limitations

The model that has been built in this work has different problems and limitations regarding its use. The
different issues with the model are addressed regarding the scale on which it can be applied. Then
the limits of the models are detailed with respect to the type of asset that can be used. Furthermore,
the sample size of the data is discussed. Following, the limits of the method used for identification are
exposed and then address the problem of the number of assets.

Even though the model was tested in the case of identification for solar and heat pumps, with promising
results, the different assumptions may differ in the case of different demand response mechanisms.
Hence the results would highly fluctuate in such cases. The consumption curve that was considered
can fluctuate depending on the different types of houses and insulation labels. Therefore such a model
can only be applied to residential neighbourhoods, as the consumption from commercial buildings has
not been investigated. The model has not been tested with different profiles of consumption, and any
options out of the frame defined for the optimization case have not been investigated.

The assets that can be used in the developed model are solar panels and heat pumps. Different
assets such as wind turbines, and EVs have different profiles that require in-depth analysis and can
be investigated in the future. The different specificities of the profiles of solar and heat pumps are
key in the development of the algorithm. If different assets were to be considered in the future, their
characteristics would need to be studied. The heat pump profiles were considered to always have the
same pattern regardless of the different houses and commercial buildings. As for the solar profile, the
configuration of the solar has not been investigated concerning the profile of energy production. As for
the time resolution, it has only been coded for an hourly resolution. Most of the code is not versatile for
the use of the different time steps. The different options will be further explained in Sec.7.2.

The method for the optimization process was always done separately, one asset after the other. Dif-
ferent optimization methods would be interesting to consider to solve such problems. Furthermore,
no other type of algorithm has been compared to this method. Therefore paving the way for different
options detailed in Sec.7.2.

The method that has been used for mixed identification is seen to have lower performance when a small
number of assets are implemented. The accuracy can drop drastically, such events are however to be
expected. When the number of assets diminishes, the profile from the selected asset becomes smaller
and has less power amplitude. Therefore, it makes the identification tougher than at a high level of
assets implemented where the characteristics are clearly distinct. The mixed process of identification
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is struggling to take into account these differences.

7.2. Recommendations and future work

In the future, different upgrades for the model can be considered. Different assets interesting to incor-
porate in the model are proposed. Then the different sample sizes that are worth being investigated
are detailed. Finally, the different options for identifying flexibility are displayed.

Optimization has been the chosen method in the above research work. However, as many assets are
to be considered in future work, it would be interesting to work on an equivalent model using machine
learning. Machine learning can handle more complex data using several inputs for each type of asset.
It is a promising approach to solving the problem that can deal with multiple inputs, yet the accuracy
would have to be compared to the developed model.

In this model, the hourly format of the data was investigated as the variations on an hourly format would
be less visible than on a smaller scale. The question remains on a smaller scale whether the method
proposed above would still work, given that the different peaks of utilities would not be invisible anymore.
Different works have been pursued in the literature identifying assets individually on small sample size,
investigating such options would be interesting in the future. Methods have been considered as well in
this research work such as simultaneous optimization of the two assets, which could be interesting in
case of smaller intervals.

Besides, it would be interesting to make the model more versatile. In the future, different assets will be
eventually considered flexible utilities, in that perspective, it would be interesting to create a function
that would track and identify the key aspects of the considered profile and that would make constraints
around it. Second, it would be interesting to allow the model to work with different types of resolution
(hourly, daily, 15-minute intervals etc). The different assets would then need to be in the correct format
and not interpolated. For solar and heat pumps the curves would need to have a higher level of detail
if smaller time intervals were to be considered.

Future work shall consider methods to identify the assets even when low numbers of them are present
in the data. Different methods shall be investigated to make the identification more robust. Machine
learning can be considered to reduce uncertainty in the identification process.

7.3. DSO's perspective recommendations

From the DSO perspective, this model can help to estimate the capacity of the assets present in the
grid. Such work can then lead to a reduction of the congestion in the area covered by the operator.
Different advantages can be found in the short-term, and long-term for the DSO.

In the short term, the load could be consequently reduced during peak hours and the heat pump con-
sumption could be shifted when there is solar energy produced. Hence the load would be decreased
when power is needed the most. DSO could then electrify the heating and would not have an additional
weight on the grid. By combining the two assets the electrification of the heating could be mitigated us-
ing solar energy. In terms of energy produced by solar to mitigate the peak consumption of HP, a ratio
between the amount of solar and heat units shall be found. Given the previous results for an average
heat pump consumption of 4493kWh, 4 solar panels of capacity 1TkW would be needed to compensate
for the energy consumption.

In the long term, knowing how many solar panels are present in the grid would be a major contribution
to the grid operator. By forecasting how much power can be produced, the load on the system operator
would be reduced. Therefore, allowing more reserve capacity to be available in the case of a surge
of power in the grid. By estimating the number of heat pumps, the peak consumption along the year
would be determined much clearer allowing the DSO to be more prepared for higher demand for power.
Furthermore, combining assets contributes to reducing the energy demand of a neighbourhood, reduc-
ing the losses as well, leading to optimizing the efficiency of the overall grid. Throughout the use of
storage, the energy produced during the summer that has not been used could be stored as a reserve
capacity. Therefore by knowing the number of solar panels producing energy in the neighbourhood,
the decrease in the load can help the DSO to forecast the demand more precisely. Throughout the use
of storage, the fluctuations could then be mitigated to have a load as constant as possible.
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Furthermore, having a constant load implies that the need for backup generators will be reduced. The
emission of GHG can then be mitigated, yet solutions shall be found to store the energy. Moreover, by
stabilizing the energy demand the energy price will be more constant, hence creating less costs for the
people living in the neighbourhood. Thus allowing more incentives for people to invest in VRES. Such
a process will only foster a better climate for people to adopt behaviours prone to facilitate the energy
transition.

7.4. Reflection and contribution

This work contributes to the research on the estimation of flexibility. The creation of a model that can
identify the different assets available in the grid grants system operators more tools to evaluate the
state of the grid, and how to cope with it. It also reduces the cost that can create the smart metering
of a neighbourhood. The development of such a model proves that identifying assets in the data from
the transformer level can help with the estimation of flexibility. However, this work is limited to the
identification of both solar and heat pump units. Considering the number of flexibility sources endless,
the challenge remains in identifying them. The development of the model contributes to paving the way
for future models aiming to identify multiple flexible options. Nevertheless, the more options included
in the grid the more complex the problem will become. Such paradox shall be kept in mind when
developing a similar model.

7.5. Conclusion

This research work aims to estimate the flexibility in distribution systems by identifying the assets. Flex-
ibility can play an important role in the future by diminishing the load that DSOs have to manage. It can
help operators deal with congestion management as well as make the most out of the VRES, there-
fore helping with the integration of RES in the power grid. However, the identification of these assets
remains a struggle among many. The literature review provided different options to estimate the flex-
ibility using different measurements. Most of the work that has been yet pursued, is using active and
reactive power for the identification or profiles of consumption or production. However, none of the
work investigated the case of different assets to be identified. In most cases, the contribution of assets
was estimated individually to grant the best accuracy. In this study, a model that can identify different
assets has been developed. To the knowledge of the author, this model is one of the first that can
identify two different assets in aggregated transformer measurement profiles.

The main research question of this thesis is :

”How can the identification of assets based on transformers’ measurements provide an
estimation of the available flexibility in the distribution system?”

To address this problem, four different sub-research questions were developed and are answered below
to build up the solution to the main research question.

First sub-research question:
"How can the estimation of heat pump profiles be more accurate ?”

Accurate heat pump profiles have been derived using the evolution of COP of HP over the years. The
CORP is taken from a study [66], the study provides the coefficient of heat pumps for different types
of households and countries. Three different types of COP have been chosen, ASHP, GSHP and
WSHP with a multi-family house use. Throughout the use of these, the heat pump consumption profile
has been derived from the heat demand profile. Temperature profiles are used to provide information
on when the heat pumps shall be consuming energy. The consumption profile of heat pumps was
determined using such an approach.

Second sub-research question:
"Which data and steps are needed for disaggregating the profiles with a 90% confidence interval?”

Different steps are required to be followed to disaggregate profiles with a high level of accuracy. First of
all, the consumption curve shall be subtracted from the data issued from the substation level. Then, the
identified assets shall be studied to understand their characteristics. Based on these specificities, the
identification process is adapted to them for instance with the peaks in heat pump profiles. Depending
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on the asset needed to be identified, different steps shall be taken to prepare the data for the identifi-
cation process. For solar, the disaggregation of the noise baseline is key to reaching a high level of
accuracy. As for heat pumps, the identification period is the lever that shall be used. Then once done,
the identification of assets can take place.

Third sub-research question:
"How can the uncertainty of the proposed method be minimized?”

Different levers have been efficient in the minimization of the relative error. A factor that has proven
to be effective is the number of iterations, if the provided data are suffering from variability, a larger
number of iterations can help identify the interquartile range for large levels of noise. In the case of
a high level of noise, the interquartile range of relative error corresponds to the total relative error
range at a smaller level of noise. Hence, a certain level of accuracy can be achieved by identifying the
specificities of the profiles and using a high number of iterations. Therefore, the identification of assets
based on transformer measurements can provide an estimation of flexibility with an accuracy of less
than 1% for HP and less than 12.5% of error for PV with 75% of values with a relative error below 10%.

Fourth sub-research question:
"What is the correlation between the heat consumption profile and the PV production ?”

First of all the impact that heat pump identification has on the identification of solar can highly decrease
the accuracy of the optimization. To address such a problem, the identification of the number of heat
pumps is taking place outside of the window of influence from the solar energy profile. This step has
allowed a gain of 10% of accuracy on average. This has proven to be an important lever to enhance
the process throughout Alg.5. An ideal ratio to minimize the error would need to be found to grant more
insights into the KPI of the optimization.

Having answered the different sub-research questions, asset identification through optimisation can
take place and proves to be an accurate and precise method for the estimation of flexibility based on
transformer measurement profiles. By identifying the different assets, the flexibility can be determined
based on the energy identified from these assets. Therefore, this energy through either the use of
external storage or by consuming the energy produced by PV could be a way to shift the behaviour of
the heat pump. The estimation of flexibility throughout the use of optimization has reached accuracy
levels of 90% and can be used to alleviate the load on the power infrastructures. This would allow to
reduce the congestion on the substation level and allow more flexibility for the DSO.
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