Energy Space Layout Designing space layout with optimised energy performance

Delft University of Technology

M.Sc. Building Technology

P5 - Sustainable Design Graduation Studio | AR3B025 Mentors: Dr. Ir. Michela Turrin | Dr.ir. Martin J. Tenpierik Supervisor: PhD. T.Du Student: Andrea Fumagalli | 4736974

• Space layout is the spatial definition of the functions.

BACKGROUND

• Space layout is the spatial definition of the functions.

• Energy Performance identifies the building consumption for heating, cooling and lighting.

BACKGROUND

• Space layout is the spatial definition of the functions.

• Energy Performance identifies the building consumption for heating, cooling and lighting.

• **Optimisation** finds the best solution.

Introduction	Computational workflow	Data Analysis	Design Proposal	Conclusion
REASON	\ Why?			
Housing	g crisis for young people.		Need for energy buildin	gy-efficient gs.
\rightarrow	Residence for young professionals			

- Performative Computational Architecture (PCA) is ٠ a computational methodology that integrates the building performances into the design process. (Sariyildiz, 2012)
 - \rightarrow It effectively improves the final results.
 - \rightarrow Gap between space layout and energy optimisation.

Conclusion

To what extent does space layout affect the energy demand of a co-living residence for young professionals in the Netherlands, with a computational method that makes the knowledge explicit and available for further projects?

Where should we locate the functions (bathroom, kitchen..)?

How deep should the rooms be?

Which dimensions should the windows have?

Intr	odu	ction
=		

Intr	odu	ction
T 11CI	o a a	CCIOIT

In	tro	bdi	icti	ion
- T I I	LI C	Juc	ICU	

In	trod	uctio	n
		0.00.0	

PCA FRAMEWORK

• 3 iterative steps

PCA FRAMEWORK

- 3 iterative steps
- 3 different programs

PCA FRAMEWORK

- 3 iterative steps
- 3 different programs
- It is based on a **digital model** with design variables

Define all possible solutions

• Spatial Parameters

Height (3-4.5m) / Depth (6-8m) / WWR (20-60%)

- Spatial Parameters
- Shading

Overhang (0-2m)

- Spatial Parameters
- Shading
- Façade insulation

POOR / BASIC / EXCELLENT (Bouwbesluit, 2012)

 $\$ Properties of the model controlled by a parameter

- Spatial Parameters
- Shading
- Façade insulation
- Thermal mass

LIGHT / MEDIUM / HIGH

Introduction
THEOGUCTOFF

- Shading
- Façade insulation
- Thermal mass
- Functions

Introduction	

• Shading

VARIABLES

Indoor Gardens improve the quality of living and the thermal comfort with passive strategies.

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion
FORM GENERATION	\ How do we place the functions?			

1. Define the **courtyard** and **minimum area** (as reference)

Minimum Area

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion
FORM GENERATION	\ How do we place the functions?	>		

- 1. Define the **courtyard** and **minimum area** (as reference)
- 2. The starting point

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion

- 1. Define the **courtyard** and **minimum area** (as reference)
- 2. The starting point
- 3. Locate the first function

- 1. Define the **courtyard** and **minimum area** (as reference)
- 2. The starting point
- 3. Locate the first function
- 4. Locate the second function successively

- 1. Define the **courtyard** and **minimum area** (as reference)
- 2. The starting point
- 3. Locate the first function
- 4. Locate the second function successively
- 5. At each corner, jump to the next 6 meters

- 1. Define the courtyard and minimum area (as reference)
- 2. The starting point
- 3. Locate the first function
- 4. Locate the second function successively
- 5. At each corner, jump to the next 6 meters
- 6. Extend the **depth** of each room (6-8 meters)

- 1. Define the **courtyard** and **minimum area** (as reference)
- 2. The starting point
- 3. Locate the first function
- 4. Locate the second function successively
- 5. At each corner, jump to the next 6 meters
- 6. Extend the depth of each room (6-8 meters)
- 7. Extrude all surfaces to the **height** of the floor

- The **courtyard** is <u>constant</u> to avoid its influence.
- Depth of each function is variable
- The function can change the **position** as <u>a variable</u>

ENERGY SIMULATION

- Define the **comfort values** for each room:
 - \rightarrow temperature, air and light
- Simulate the building consumption for heating, cooling and lighting
 - ightarrow total energy demand

\bigcirc =	\rightarrow	= 4

Comfort = Energy

ENERGY SIMULATION

- The workspace (500 lux) requires more light than the others.
- The **bedrooms** prefer cooler temperatures.
- The **bathroom** needs warmer temperatures.

External Temperature

OPTIMISATION

- Make use of an **algorithm** to find the best solutions for each objective:
 - \rightarrow Heating, Cooling and Lighting contemporary
- Interesting to find the **sub-optimal** solutions:
 - ightarrow to understand the principles
 - \rightarrow to help the architect in making decisions

OPTIMISATION

\ It is not just pressing a button!

It is similar to picking blueberries in the forest:

- Explore the forest in different spots
- Taste
- Go back

Conclusion

OPTIMISATION

\ It is not just pressing a button!

It is similar to picking blueberries in the forest:

- Explore the forest in different spots
- Taste
- Go back

- Train the algorithm to explore the solution space
- Analyse the samples \rightarrow draw generic insights
- Refine the algorithm to focus specifically

BEDROOMS

Major impact on cooling

→They require cooler temperatures

BEDROOMS

 \mathbf{k}

BEDROOMS

Major impact on cooling

To reduce the area exposed

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion
GUIDELINES	\ Cooling			
Aim	Avoid overeating			
Depths			Kikhan Laundy Garden_01	
Windows		Garden_03 Garden_04	Carten (2	
Sensitive Function	NE		Bathroom Workspace UvergRoot	
Energy Savings	-52%			7

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion
GUIDELINES	\ Heating			
Aim	Keep warm inside			
Depths			Katun Garden_04	
Windows			Redocers	Garden_03 Garden_02 Garden_01
Sensitive Function	S S		Batroon Votspace	
Energy Savings	-55%			

	Introduction	Digital workflow	Data Analysis	Design Proposal
GU	JIDELINES	\ Lighting		
	Aim	Improve daylight		
	Depths			Boon I
	Windows		Laudy	Garden_03
	Sensitive Function	SW		Volapace Castra (1) Salecce
	Energy Savings	-37%		

CASE STUDY

• Building case study: Solids 11, Amsterdam

ightarrowit fits the building typology

- Add design criteria
 - ightarrow visual quality
 - \rightarrow proximity
 - ightarrow functionalism
- Select 3rd Floor

(Source: www.archdaily.com/)

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion
PTIMISATION	\ The orientation are different			

Generic model

Additional criteria to include

Energy Space Layout | Andrea Fumagalli

OPTIMISATION

 \mathbf{V}

- Results are not directly applicable
- The energy-efficient principles are valid
- The **model** is flexible to adapt

 $\mathbf{\nabla}$

PROPOSAL

Schematic layout to meet both design and energy criteria:

- Gardens
- Workspaces
- Bedrooms
- Low energy demand

PROPOSAL

Schematic layout to meet both design and energy criteria:

- Gardens
- Workspaces
- Bedrooms
- Low energy demand

Sub-optimal solutions help in making decisions

PROPOSAL

External view of the 3rd floor

"To what extent does space layout design affect the energy demand of a co-living residence for young professionals in the Netherlands, within a computational method that makes the knowledge explicit and available for further projects? "

• Different functions play the leading role for different objectives.

"To what extent does space layout design affect the energy demand of a co-living residence for young professionals in the Netherlands, within a computational method that makes the knowledge explicit and available for further projects? "

- Different functions play the leading role for different objectives.
- Windows and depths of the functions should be planed to meet the energy and comfort requirements.

"To what extent does space layout design affect the energy demand of a co-living residence for young professionals in the Netherlands, within a computational method that makes the knowledge explicit and available for further projects? "

- Different functions play the leading role for different objectives.
- Windows and depths of the functions should be planed to meet the energy and comfort requirements.
- In shallow buildings, energy-optimised configurations are effective in saving energy.

"To what extent does space layout design affect the energy demand of a co-living residence for young professionals in the Netherlands, within a computational method that makes the knowledge explicit and available for further projects? "

- Different functions play the leading role for different objectives.
- Windows and depths of the functions should be planed to meet the energy and comfort requirements.
- In shallow buildings, energy-optimised configurations are effective in saving energy.
- The designer needs to translate the principles into **guidelines** or to develop a **site-specific optimisation**.

Introduction	Digital workflow	Data Analysis	Design Proposal	Conclusion
	Keen Barbart	rien_04 Betrooms		

	Master	r BT	
Torneino	Martin	Michela	Amaldi
Zii	Mamma	Delft	Tiantian
Milano	Papà Thank	Chiara	Stüttgart
Nazza	Ale	Nonni	Cugini
	Zürich		
Slopend		Bergamo	Earthy

METHODOLOGY

Performative Computational Architecture to set the process.

- support the design and extract the knowledge
- parametrisation process / exploration of solutions

Energy and comfort regulations to define the target values

- Adaptive thermal comfort model
- Illuminance rate
- Ventilation rate

Energy-efficient strategies for the variables and hypotheses.

- Orientation and WWR are influencing parameters
- Lighting strategies are conflicting with thermal strategies

- The model considers a mixed-mode building → suitable and promising for the Dutch housing situation.
- Heating, cooling and lighting activate on the basis of the comfort model → minimisation of energy implies the optimisation of comfort.
- Three-objectives optimisation allows to neglect HVAC efficiency → final energy demand is the common ground

Hierarchical Relations between the geometric attributes:

- Perimeter of courtyard (Pc) is <u>constant</u> to avoid its influence.
- Widths (w) of each function are <u>constants</u>, depending on minimum areas and depths.
- Depths (d) of each function are <u>variable</u>, but relate to an increase of area
- Positions of each function are variable
- \rightarrow Importance to the positions, than to the areas
- \rightarrow No extra constraints

C

1. Model 1 fixes the façade and changes the internal perimeter as variable

 \rightarrow It might end with shallow and long courtyards from east to west to increase the space facing south.

2. Model **2** sets a general depth from the courtyard and, then, it moves the partition walls independently to size functions.

ightarrow it expects to extend the depth in order to increase the overall compactness.

3b. The width of each function (w(i)) derives from the respective depth (d(i)), area and position of the function, whereas the courtyard is constant.

 \rightarrow The rooms would start collecting counter-clockwise from the south, leaving the remaining sides (west and north) empty.

3c. The width of each function (w(i)) derives from the respective depth (d(i)), but the courtyard changes its perimeter time by time to accommodate all rooms around.

ightarrow the functions might extend their depth to increase the compactness, resulting in small widths.

Name	Envelope	Height Floor	Thermal Mass	Orientation	Shading	Depth	Position	WWR	
BEST	Excellent	3 m	Heavy	90°	OFF	6m	variable	variable	
COMMON	Basic	3 m	Medium	0°	OFF	6m	variable	variable	
WORST	Basic 4.5 m		Light	45°	OFF	6m	variable	variable	

LIGHTING SCHEDULE

To include smaller time steps:

- The **daylight simulation** estimates the rate of artificial light needed to provide the illuminance rate every hour of the year.
- The **lighting usage**, as manual schedule, indicates how long the light is switch on in the room in every hour.
- \rightarrow It considers both smaller time steps and dimming.

h	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
Usage	0	0	0	0	0	0	0.5	1	1	0.5	0	0	0.2	0.2	0	0	0	0.2	0.5	0.5	0.2	0.2	0	0
Daylight	1	1	1	1	1	1	0.9	0.8	0.7	0.5	0.2	0	0	0	0.1	0.2	0.5	0.7	0.8	0.9	1	1	1	1
Lighting	0	0	0	0	0	0	0.45	0.8	0.7	0.25	0	0	0	0	0	0	0	0.14	0.4	0.45	0.2	0.2	0	0

ENERGY SIMULATION

Adaptive Thermal Comfort

*Peeters, Dear, Hensen, & D'haeseleer, (2009)

Energy Space Layout | Andrea Fumagalli

On the total energy demand:

- <u>Heating</u> is the most influencing factor with a strong and linear correlation → cold climate
- <u>Cooling</u> has a medium positive correlation
- <u>Lighting</u> has a low negative correlation, determining a Pareto-Front.

Principle: Larger savings derive from minimising the heating than the other two objectives

Influences of the functions on the demands:

- <u>On cooling</u>, the bedrooms induce a medium impact, kitchen and workspace a mild one:
 - \rightarrow low temperature requirements
 - \rightarrow high internal gains

Influences of the functions on the demands:

- <u>On lighting</u>, the bedrooms and the workspace have medium influences:
 - \rightarrow large dimensions
 - \rightarrow high illuminance level

Influences of the functions on the demands:

- <u>On heating</u>, the bathroom and the bedrooms play noticeable roles:
 - \rightarrow high temperature requirements
 - \rightarrow large dimensions

Principle: Planning the functions to meet their energy and comfort requirements.
- Excellent envelope performs better, especially on the heating demand.
- \rightarrow Reducing heat losses

- Low floor's height minimises cooling and heating, but it increases lighting.
- → Less air volume and less façade surface

- High thermal mass optimises cooling, heating and comfort.
- \rightarrow Accumulate the solar gains

Principle: high thermal properties of the envelope are necessary.

Connection between Windows / Natural ventilation / Solar gains:

 small windows reduce heat losses via natural ventilation, resulting less heating.

Principle: natural ventilation is critical to plan.

Energy Space Layout | Andrea Fumagalli

BATHROOM

relevant impact on heating

→it requires warmer temperatures

BATHROOM

BATHROOM

WORKSPACE

WORKSPACE

It affects lighting

To maximise solar radiation

Introduction	Digital workflow	Data Analysis		Design Proposal	Conclusion	
GUIDELINES	Aim	Depth	Windows	Sensitive Function	Energy Savings	
COOLING	Avoid overheating				-52%	
HEATING	Keep heat inside				-55%	
LIGHTING	Improve daylight				-37%	

SUMMARY

Scenario	Strategy	Cooling	Heating	Lighting	Energy	Cooling	Heating	Lighting	Energy	Energy
		Demand - kWh/m ²				Improvement - kWh/m²				%
Best	Poorest	7.05	45.51	3.42	55.98					
	Cooling	2.24	19.58	3.98	25.8	4.8	25.9	-0.6	30.2	53.9
	Heating	2.84	18.13	3.89	24.86	4.2	27.4	-0.5	31.1	55.6
	Lighting	7.78	22.51	3.27	33.56	-0.7	23.0	0.2	22.4	40.1
Common	Poorest	6.40	56.79	3.43	66.62					
	Cooling	2.39	26.74	4.04	33.17	3.9	31.3	-0.5	34.8	52.2
	Heating	3.54	22.64	4.13	30.31	2.9	34.2	-0.7	36.3	54.5
	Lighting	6.55	32.28	3.3	42.13	-0.1	24.5	0.1	24.5	36.8
Worst	Poorest	10.4	93.85	3.1	107.35					
	Cooling	4.13	39.46	3.68	47.27	6.3	54.4	-0.6	60.1	56.0
	Heating	6.15	34.48	3.46	44.09	4.3	59.4	-0.4	63.3	58.9
	Lighting	12.02	46.88	2.95	61.85	-1.6	47.0	0.2	45.5	42.4

SUMMARY

- The lighting strategy contradicts the cooling and partly the heating strategy, determining a **pareto-front** in between. In the Dutch climate, higher savings derive from minimising the heating than the others.
- It is possible to meet **BENG 1 requirement.** However, it is necessary first to ensure high thermal properties of the envelope and then to optimise the space layout.
- High window-to-wall ratios do not lead always to lower heating demand.
- Functions are the **driving factors** of the envelope, more than its shape.
- The most influencing functions are the bathroom and the bedrooms, followed by the workspace. They change their variables to meet their requirements.
- Planning **natural ventilation** is challenging and essential.
- High dependency on schedules.

PROPOSAL

FURTHER IMPROVEMENTS

• Difference with steady-state thermal comfort

ightarrow to evaluate pros and cons

FURTHER IMPROVEMENTS

- Difference with steady-state thermal comfort
- ightarrow to evaluate pros and cons
- Include the efficiency of the **building systems**
- \rightarrow to evaluate the compromises with different HAVCs

FURTHER IMPROVEMENTS

- Difference with steady-state thermal comfort
- \rightarrow to evaluate pros and cons
- Include the efficiency of the building systems
 → to evaluate the compromises with different HAVCs
- Consider the current needs of professional practice
 → new Pareto-Front between electricity and thermal

loads