
 
 

Delft University of Technology

Harder, better, faster, stronger
understanding and improving the tractability of large energy system models
Bröchin, Manuel; Pickering, Bryn; Tröndle, Tim; Pfenninger, Stefan

DOI
10.1186/s13705-024-00458-z
Publication date
2024
Document Version
Final published version
Published in
Energy, Sustainability and Society

Citation (APA)
Bröchin, M., Pickering, B., Tröndle, T., & Pfenninger, S. (2024). Harder, better, faster, stronger:
understanding and improving the tractability of large energy system models. Energy, Sustainability and
Society, 14(1), Article 27. https://doi.org/10.1186/s13705-024-00458-z

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1186/s13705-024-00458-z
https://doi.org/10.1186/s13705-024-00458-z


Bröchin et al. 
Energy, Sustainability and Society           (2024) 14:27  
https://doi.org/10.1186/s13705-024-00458-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Energy, Sustainability
and Society

Harder, better, faster, stronger: 
understanding and improving the tractability 
of large energy system models
Manuel Bröchin1, Bryn Pickering2, Tim Tröndle1 and Stefan Pfenninger3* 

Abstract 

Background Energy system models based on linear programming have been growing in size with the increasing 
need to model renewables with high spatial and temporal detail. Larger models lead to high computational require-
ments. Furthermore, seemingly small changes in a model can lead to drastic differences in runtime. Here, we investi-
gate measures to address this issue.

Results We review the mathematical structure of a typical energy system model, and discuss issues of sparsity, 
degeneracy and large numerical range. We introduce and test a method to automatically scale models to improve 
numerical range. We test this method as well as tweaks to model formulation and solver preferences, finding 
that adjustments can have a substantial impact on runtime. In particular, the barrier method without crossover can be 
very fast, but affects the structure of the resulting optimal solution.

Conclusions We conclude with a range of recommendations for energy system modellers: first, on large and difficult 
models, manually select the barrier method or barrier+crossover method. Second, use appropriate units that mini-
mize the model’s numerical range or apply an automatic scaling procedure like the one we introduce here to derive 
them automatically. Third, be wary of model formulations with cost-free technologies and dummy costs, as those can 
dramatically worsen the numerical properties of the model. Finally, as a last resort, know the basic solver tolerance 
settings for your chosen solver and adjust them if necessary.

Keywords Energy system models, Scaling, Linear programming, Numerical issues, Interior-point, Simplex, Benchmark

Background
Introduction
Mathematical optimisation, in particular linear program-
ming (LP), has become one of the key methods in estab-
lished and emerging energy system modelling tools used 

for planning the energy transition and assessing energy 
and climate policy options around the world [5, 6, 31, 34]. 
Renewable energy technologies need to be represented 
with a high spatio-temporal resolution and scope, to cap-
ture and account for the effect of their intermittency on 
system stability, to ensure that weather variability can be 
captured across years [37], and to exploit the balancing 
effect of geographically distant weather systems [12]. This 
has led to the development of ever larger models [15, 42, 
45]. Model size increases further when using Monte-
Carlo or scenario-based methods to deal with structural 
and parametric uncertainty [7, 10, 20, 29]. The extent 
to which ever more complex models give us additional 
insight is a discussion on its own, but the reality is that 
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many large and complex optimisation models are used in 
practice, hence improving their tractability is of immedi-
ate concern.

There is generally a limit to how much we can scale-up 
a model before combinatorial explosion makes the model 
intractable. We say a computational model, such as an 
energy system model, is tractable if it can be simulated 
or optimized within an appropriate amount of time. How 
much time is appropriate for a given problem is of course 
a subjective judgment. For the energy system models 
considered in this work, we consider runtimes of around 
5 to 10 h to be appropriate. We refer to the property of 
how much a model can be scaled-up before it becomes 
intractable as the tractability of the model. We say some 
measure improves tractability of a model if it allows us 
to solve larger instances of the model in an appropriate 
amount of time.

Reference [28] identified tractability as one key chal-
lenge for energy system optimisation models. Most often, 
to improve tractability of energy system models, tempo-
ral resolution is reduced [4, 23, 42] or time periods with 
similar features are clustered and represented only by a 
subset of ‘typical days’ [2, 24, 29]. Advancements in the 
field of time-series aggregation include pre-selection of 
‘critical’ days prior to clustering [26], identification of 
k-mediods as the most reliable aggregation algorithm 
[18, 36], and separation of storage into multiple decision 
variables, to allow information to be linked within and 
between clustered periods [9, 19]. [14] summarised these 
methods, finding that existing feature aggregation using 
k-means, k-mediods, or hierarchical clustering is still the 
‘state-of-the-art’. However, they reiterated warnings made 
in several previous studies that time-series aggregation 
alters model results, both qualitatively and quantita-
tively, and should therefore be used with caution [18, 26]. 
Recent work [35] tries to improve tractability of energy 
system models on the algorithmic layer: they develop a 
parallel algorithm that exploits the inherent structure 
of energy system models to break up the problem into 
weakly related subproblems that can then be solved 
individually.

Similar to [35], we take a step back from application-
specific methods to reduce model complexity. Instead, 
we examine how the structure of the underlying opti-
misation problem affects its tractability, and empirically 
examine a range of options to improve tractability for 
typical energy system models. We also develop and test 
a method to facilitate tractability, in which we automati-
cally scale the parameters of an energy system model. 
To do so, we draw on literature from the broader field of 
operations research [8, 16, 40]. Recently, Göke introduced 
AnyMOD.jl [11], a Julia package for creating energy sys-
tem models. AnyMOD.jl includes a scaling procedure 

similar to ours. Configurable factors are used for scaling 
each “type” of variable. These factors have default values 
but can also be set by the user. The major difference to 
our work is that we automatically derive optimal scaling 
factors for variables depending on the actual model data, 
i.e. the types of variables occurring in the model and the 
numerical ranges of these types.

The paper proceeds as follows. First, we discuss the 
mathematical properties of a typical high-resolution 
energy system model and compare the characteristics 
of the two main solution methods: simplex and barrier 
(interior point). We identify scaling of the optimisation 
problem as a particular area of concern for the perfor-
mance of these methods and introduce a method to auto-
matically scale an energy system model. We then proceed 
with a series of systematic experiments to answer the fol-
lowing questions: Which algorithm solves our models in 
the least amount of time? In what ways differ the solu-
tions provided by the different algorithms? How does 
our automatic scaling method impact solution time? 
We then discuss what general guidelines for energy sys-
tem modelling we can draw from these experiments. We 
use the open-source Calliope modelling tool [27] for our 
experiments.

Overview of the mathematical problem
A high-level view of the problem we want to solve is 
the following: As input we are given a set of locations 
together with their demand and supply of certain goods 
and their capacity limits for certain technologies. The 
supply of a location often consists of timeseries data of 
certain natural resources such as sunlight or wind. The 
demand is often for carriers such as electricity or gas and 
is also given as timeseries data. The capacity limits of a 
location constrain the maximum capacity of a certain 
technology, such as solar power, that can be allocated 
or built at this location. The locations are connected by 
a network of transmission lines. The modeller is free to 
fix the capacity of certain technologies or transmission 
lines in advance or not. The degrees-of-freedom of the 
model are then the capacity expansion and the operation 
of technologies. More concretely, as output to our model 
we get the optimal allocation of capacity per technol-
ogy and location. Moreover, we get for each timestep the 
actual production of carriers per location and technology 
plus their transmission between locations. Optimality of 
capacity expansion and operation is determined in terms 
of user-defined operation and allocation costs and is sub-
ject to a variety of additional constraints. In particular, 
the modeller can impose policies on carrier consumption 
and production such as minimum shares of renewable 
energy.
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A standard way of modelling this type of problem is 
as a linear program (LP). Many energy system models 
additionally feature discrete decisions, e.g., should a new 
power plant be built or not. Modelling discrete decisions 
requires forcing certain decision variables to take integer 
values in the solution. Ordinary LPs cannot express such 
constraints and a mixed-integer LP (MILP) formulation 
must be chosen instead. The main focus of this work is 
on understanding and improving the tractability of LPs. 
However, since MILP solvers need to solve the “relaxed” 
LP-version of their input problem repeatedly as a sub-
problem, our findings also apply to energy system models 
that are framed as MILPs.

In the following, we provide some details on the struc-
ture of LPs. Moreover, we give an overview over the two 
main classes of algorithms used to solve LPs. The goal is 
to understand their major differences in order to be able 
to trade-off their respective benefits. Moreover, we will 
understand the factors that influence the performance of 
these algorithms which allows us to better interpret the 
ensuing experiments and which provides motivation for 
our scaling approach.

LP problems and solution methods
LPs are a very general framework of mathematical opti-
mization [43]. The general form of an LP is

The linear objective function x  −→ c⊺x is to be mini-
mized by choosing suitable variable values x ∈ R

n
+ . The 

constraint matrix A ∈ R
m×n and right-hand side vector 

b ∈ R
m together constrain the choice of variables x with 

m linear constraints. A positive vector x ∈ R
n
+ is called 

feasible if it satisfies all m constraints. A set of m inde-
pendent columns of A induces a basis AB of the column 
space of A. A feasible point x can be obtained by solving 
Ax = b while setting all variables not corresponding to 
basis columns to 0. We call such a solution x a basic feasi-
ble solution of Eq. 1. Geometrically, a basic feasible solu-
tion is an extreme point (a vertex) of the feasible region.

Formulating an energy system in analogy to cost-min-
imal flow problems as an LP is straightforward: xi is the 
variable holding the amount of flow through the ith edge. 
Row j of A contains a non-zero entry at index i which is 
1 or −1 if the i-th edge is an incoming or outgoing edge 
of node j, respectively. bj is the flow-demand of node j. ci 
is the cost incurred by one unit of flow at edge i. In addi-
tion, edge capacities and many constraints that we find in 
energy system models, such as efficiencies of carrier con-
version or complex policies governing the operation of 

(1)
minimize c⊺x

s.t. Ax = b

0 ≤ x

certain plants, can either be expressed directly or approx-
imated by linear constraints.

As discussed above, energy system models consider the 
allocation of resources in time and space. Modelling time 
requires its discretisation into timesteps, which leads to 
a block-diagonal matrix structure. Moreover, there are 
often variables and constraints spanning many or all time 
steps. For instance, modelling the decision of capacity 
allocation to plants require on variable per capacity that 
spans all time steps. Similarly, enforcing global policies, 
such as a minimum share of renewable energy in the 
system, requires constraints that span all time steps. As 
a consequence, the constraint matrix A has a very par-
ticular structure, depicted in Fig. 1. This structure is often 
referred to as arrowhead structure. Specialized LP solu-
tion methods which try to exploit this structure to speed 
up the solution process are in development [32].

At the moment, the two families of algorithms most 
widely used to solve energy system models are the sim-
plex algorithms and barrier or interior-point methods, 
of which many variants exist. These two approaches are 
available both in open-source software packages such as 
Coin-OR [21] or commercial ones such as Gurobi [13]. In 
the following we sketch some important characteristics 
of both simplex and barrier methods based on the treat-
ment in [16]. Table 1 lists the main points for both meth-
ods side-by-side.1

Although the two algorithms solve the same problem, 
they operate in entirely different ways. (Primal) Simplex 

C

V

T0

T1

T2

T3

T4

∗ =

z bc

x0 bc

x1 b1

x2 b2

x3 b3

x4 b4

Fig. 1 A · x = b in block-matrix notation showing the typical 
sparsity pattern of the constraint matrix A of an energy system 
model. Variables xi are specific to timestep i and are constrained 
using parameters τi and bi . cx = bc are constraints containing 
dependencies across time steps. Parameters v and variables z model 
time-independent quantities

1 Note that primal affine scaling is not a state-of-the-art implementation of 
the barrier method. Like Klotz in [16], we describe this method because it is 
simple and allows to illustrate the major ideas of barrier methods.
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maintains and updates a basic feasible solution xi in every 
step i of the algorithm. To find xi+1 , simplex chooses one 
of the neighboring vertices of xi that improves the objec-
tive value. This jump from xi to xi+1 is performed alge-
braically by exchanging a column in the current basis 
of A. Convexity of the feasible region and linearity of 
the objective function imply that an xi which cannot be 
improved in this way is optimal. An important variant of 
the simplex method is the dual simplex method. The dual 
simplex method starts out with an optimal basic solution 
(which need not be feasible). It then performs updates to 
the basic solution that reduce infeasibilities while main-
taining optimality.

Barrier maintains an interior point x of the feasible 
region. In every step of the algorithm, barrier finds a vec-
tor along which x can be improved with respect to c, and 
takes a step along this direction without leaving the feasi-
ble region. With x becoming closer to optimal, x will also 
move towards the boundary of the feasible region until 
some implementation-dependent termination criterion is 
reached.

Simplex always returns a basic feasible solution while 
barrier in general returns an interior point of the feasible 
region. This has several implications:

First, an interior point is, strictly speaking, not an opti-
mal solution to an LP. However, the “gap” can in theory 
be made arbitrarily small. Moreover, optimality of a basic 
feasible solution can also only be determined with a cer-
tain limited precision. Thus in practice, solvers typically 
allow controlling the precision of both methods. Nei-
ther “optimal” solutions returned by simplex nor by bar-
rier are generally better, but the precision of the solution 
depends on the solver configuration.

Second, there are cases where a basic feasible solu-
tion is needed: (1) when solving a MILP problem, and 
(2) if the obtained solution is to be used to warm-start 

subsequent solver runs on the same (or a slightly differ-
ent) model.

Third, an interior solution has potentially many more 
variables away from their bounds than a basic solution. 
Since variables representing real-life quantities often have 
a lower bound of 0, this means that solutions returned by 
barrier usually have many more non-zeros than basic fea-
sible solutions; potentially these non-zeros are unrealisti-
cally small for the considered problem. A solution with 
many non-zeros may be harder to interpret and may thus 
be undesirable.

To rectify these downsides of interior solutions, a dedi-
cated crossover method can be used to find an optimal 
basic feasible solution from an optimal interior solution. 
To do this, a vertex ’close’ to the interior point solution is 
found by pushing certain variables to their bounds. Start-
ing from this vertex, simplex steps are applied until an 
optimal basic solution is found [3].

Neither of the two methods is generally faster than the 
other. Instead, the most suitable algorithm depends on 
the structure of the LP at hand [16, 41]. Two LPs of the 
same size can lead to vastly different solution times for 
both methods, simplex and barrier. This is mostly due to 
two reasons: numerical solvers can recognize and exploit 
problems with special structures and they are suscepti-
ble to numerical problems. Three aspects are particularly 
influential: sparsity (structure), degeneracy (structure), 
and the numerical range.

The first aspect impacting the solution time is spar-
sity. Energy system models typically lead to LPs that are 
highly sparse. This follows directly from the arrowhead 
structure depicted in Fig.  1: the number of zero entries 
scales quadratically in the number of time steps, whereas 
the number of nonzero entries is linear in the number of 
time steps. A typical model might consider a full year at a 
granularity of 1 h time steps, causing most entries of the 

Table 1 Comparison of major characteristics of simplex and barrier methods following [16]

Simplex methods (primal simplex) Barrier methods (primal affine scaling)

State Maintains a basis of A and a corresponding basic feasible 
solution

Maintains a non-basic (interior) point x satisfying Ax = b

Update Performs row operations on A to update the basis in each 
step (pivot operation)

Computes a vector along which the objective is improved, pro-
jects it onto the nullspace of A and updates x along this vector 
while maintaining x > 0

Main computation Main computational cost is solving m×m linear systems 
of equations for the pivot step

Main computational cost is projecting the update vector 
onto the nullspace of A. This entails inverting the m×m matrix 
ÂÂ

⊺ in every step where Â is a scaled version of A.

Termination condition Terminates if no basis update can improve the objective 
value over the current basic feasible solution

Terminates if the last update step was shorter than some 
threshold

Return value Returns a basic feasible solution Returns an interior point that is close to the boundary 
of the feasible region (we will denote this an interior solution). 
A crossover method can be added to retrieve an optimal basic 
feasible solution from an interior solution
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matrix to be zero. In general, sparsity is a desirable prop-
erty of a linear program because both simplex and barrier 
solvers have ways of profiting from sparsity in the con-
straint matrix A.

The second aspect that influences solution time is 
degeneracy. Degeneracy in the context of linear program-
ming means that multiple bases of the constraint matrix 
A lead to the same basic feasible solution. Standard min-
imum-cost flow problems are often inherently degener-
ate [1, 41]. Degeneracy can pose significant problems to 
the simplex method: because multiple bases lead to the 
same solution, simplex updates may fail to improve the 
objective and stall progress. Computational studies have 
shown that up to 90% of all pivot operations of the sim-
plex method on min-cost flow problems can be degener-
ate [1]. Barrier methods maintain an interior point of the 
feasible region and never actually encounter a basic feasi-
ble solution. Degeneracy thus matters less to the opera-
tion of barrier methods [16].

The third and final aspect is a large numerical range of 
problems, given by the absolute values of coefficients in 
the constraint matrix, the right-hand side and the objec-
tive function. Energy system models often have a very 
large numerical range. This is a consequence of two facts: 
first, the input data of energy system models correspond 
to different physical quantities (e.g., energy, area, cost). 
Choosing inappropriate combinations of units to repre-
sent these quantities will lead to large numerical ranges. 
Second, even within quantities of the same unit we might 
encounter large numerical ranges, for instance, between 
operating costs and investment costs for new genera-
tion infrastructure, or even just between the operating 
costs of very different technologies like photovoltaics and 
gas-fired power generation. A large numerical range can 
result in increased solution times and even lead to non-
convergence in extreme cases. It can furthermore lead to 
loss of precision due to round-off errors. To address these 
issues, it is possible to scale the linear problem before 
solving it.

Scaling
Choosing positive scaling factors r1, . . . , rm, s1, . . . ,

sn ∈ R+ we can scale each row i of A by ri and each col-
umn j of A by sj by multiplying A from left and right 
with the diagonal matrices R := diag(r1, . . . , rm) and 
S := diag(s1, . . . , sn).

Perhaps, unintuitively, the original problem  2 is equiva-
lent to problem 3 which is scaled with R and S. A short 

(2)min{c⊺x | x ≥ 0,Ax = b}

(3)min{c⊺Sx | x ≥ 0,RASx = Rb}

proof for this is in the Appendix A. While being equiv-
alent, problem  2 may have better numerical proper-
ties than the original LP. In the following we consider 
the numerical range and the condition number of A as 
two factors that decide whether an LP has good or bad 
numerical properties.

The numerical range maxx∈A,b,c |x|
minx∈A,b,c |x|

 of an LP impacts the 
performance of the solution methods. The reason for this 
is that most solvers use absolute tolerances to compare 
numbers. For instance, a central parameter of the Gurobi 
solver is the feasibility tolerance τf  , set by default to 
τf = 10−6 . To check if a point x satisfies some constraint 
Aix ≤ bi , Gurobi checks whether Aix − bi ≤ τf  . If such 
computations are at the order of 1010 , then the relative 
error of 10−16 induced by floating point arithmetic is at 
the order of the tolerance τf  . In other words, feasibility 
can no longer be reliably computed. Similarly, if some 
computation is at the order of 10−6 , the result will likely 
be meaningless to Gurobi. If our model now includes 
both very large and very small numbers, it is likely that 
both types of problems appear during the solution pro-
cess. It is thus desirable to limit the numerical range in 
our model formulation. Note that this applies equally to 
both simplex and barrier methods.

A different notion is the condition number 
κ(M) := �M��M−1� of a matrix M. Intuitively, the con-
dition number of a matrix measures the effect of small 
rounding errors when solving the linear system of equa-
tions associated with the matrix: for a matrix with small 
condition number, the rounding errors will barely impact 
the solution. For a matrix with large condition number, 
the effect of the rounding error can be significant. Note 
that both simplex and barrier rely heavily on solving lin-
ear systems of equations. In the case of simplex, these 
matrices are the square submatrices of A corresponding 
to the visited bases of A. In the case of barrier, the impor-
tant matrices are ÂÂ⊺ that are inverted at each step (see 
Table 1).

Both factors, the numerical range and the condition 
number thus impact the accuracy of the computations 
performed during both simplex and barrier and both are 
affected by scaling. The relationship between numeri-
cal range and condition number, however, is complicated: 
improving one may make the other one worse. We elabo-
rate more on this in Appendix B. The accuracy of compu-
tations impacts the performance of these algorithms in 
multiple ways. First, these algorithms make decisions based 
on numerical computations. For instance, simplex chooses 
the next basic feasible solution based on some metric 
which is computed numerically. Large errors in the com-
putation of this metric may cause simplex to make a sub-
optimal choice and increase the number of steps necessary 
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to reach optimality. Second, to avoid the previous issue, 
solvers have ways to detect and deal with loss of precision. 
One way is switching to a numeric data type with higher 
precision. These types incur a higher computational cost 
for each operation and thus cause overall slowdown of the 
algorithm (a secondary impact would additionally be the 
higher memory cost of higher-precision data types, which 
in itself can be significant for very large models).

An automated scaling method
Both numerical range and condition number of a matrix 
are affected by scaling rows and columns of the matrix. 
While reducing numerical range with scaling is straightfor-
ward, reducing the condition number of all relevant matri-
ces that are encountered during simplex and barrier is not. 
In the case of simplex [8], compares many different scaling 
methods and their effect on the condition number. For cer-
tain problems, scaling can lead to an increase of the condi-
tion number averaged over all basis matrices encountered 
during a simplex run.

We have developed an automatic scaling method that 
focuses on minimizing the numerical range of the input 
data, which ignores the issue of the condition number (we 
refer to this method as “autoscaling” from here one). The 
basic idea is to group input values by type (such as area, 
cost, energy, etc.) and scale all values in one group with the 
same factor. The assumption is that values of the same type 
will often be contained within an acceptable range. This 
approach corresponds to choosing suitable units (such as 
m2 , dollars, kWh, etc.) for each type of quantity. Next, we 
discuss in more detail how we implemented this intuitive 
approach.

Most variables in Calliope are associated with some phys-
ical quantity such as energy or costs. We call this the type 
of the quantity. Values of different types can be of vastly 
different orders of magnitude. This effect is often a side 
effect representing certain types of quantities (cost, energy, 
etc.) with standard units (dollars, kWh, etc.), regardless of 
the range of their values. Note that changing the unit of a 
type of quantity is a special case of the scaling considered 
in Sect. "Scaling" with R = I and S = diag(fui) where ui for 
i ∈ [n] is the unit of the i-th decision variable.

In the context of Calliope, it is necessary to distinguish 
between base units and derived units. The sets U of base 
units and V of derived units are related as follows:

This distinction is necessary because Calliope models 
often feature combinations of base units such as cost per 
energy. Scaling energy by a factor se and cost by a factor sc 

(4)

u ∈ U =⇒ u ∈ V , u ∈ U =⇒
1

u
∈ V , u1,u2 ∈ U =⇒

u1

u2
∈ V

we necessarily need to scale cost per energy by the factor 
sc
se

 to avoid changing the semantics of the model. Associ-
ating a special base unit 1 ∈ U  with all quantities that do 
not correspond to a physical quantity allows us to repre-
sent all derived units v ∈ V  of Calliope models as a frac-
tion of base units v = ui

uj
 . Let Au the set of values in the 

model that have unit u ∈ V  . Our goal is to find scaling 
factors fu for each unit u ∈ V  that minimize

There are, however, two additional subtleties we need to 
consider. First, scaling a floating-point number with a 
power of two will be exact whereas scaling it with a dif-
ferent number will often lead to a loss of precision. Such 
a loss of precision means that the semantics of the scaled 
model is not equivalent to the semantics of the unscaled 
model and should thus be avoided (see Appendix C). Sec-
ond, minimizing the above quantity may lead to A con-
taining values of prohibitively large or small values. As 
discussed above, absolute values matter to the solver and 
they should be kept within sensible ranges (see Appendix 
C). One way to avoid very large or small values in A is 
to additionally perform a scaling of the rows after having 
scaled the columns. However, we choose to instead limit 
the allowable range of values of A after column scaling 
and thus to constrain the choice of scaling factors.

We now formulate an auxiliary optimization problem 
for finding scaling factors fu taking into account the two 
constraints from above: We wish to find scaling factors 
S = {fu | u ∈ U} ⊆ {2x|x ∈ Z} that are powers of two and 
that minimize the numeric range between different types 
of variables while avoiding to scale any variable below 
some threshold L. Note that all variables of some column 
Ai of constraint matrix A have the unit of the i-th deci-
sion variable. Thus denote by ui, vi ∈ U  for each i ∈ [n] 
the base units satisfying that all variables in column i of A 
have unit uivi  . We thus wish to solve

We can rephrase this into an integer LP by taking logs of 
the entries of A and of the scaling factors f ∈ S . That is, 
we define fu := 2gu for each u ∈ U  , and constrain gu ∈ Z 
to ensure that all scaling factors are powers of two.

(5)κ
′ :=

maxu∈U maxa∈Au fu · a

minv∈U minb∈Av
fv · b

(6)min
S⊆{2x|x∈Z}

max
0 ≤ i, j ≤ m
0 ≤ k , l ≤ n

fuk
fvk

Ai,k

ful
fvl
Aj,l

(7)

s.t.
fuk
fvk

· Ai,k ≥ L ∀k ∈ {0, . . . , n}, ∀i ∈ {0, . . . ,m}
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Note that we don’t actually need to consider all entries 
of A. It suffices to include the minimum and the maxi-
mum of value of each unit. This simplification consid-
erably reduces the amount of constraints from n2m2 to 
|U |2 which is usually very small (below 100). Moreover, 
instead of solving the actual integer LP, we can relax the 
integrality constraint of gu and round the resulting vari-
ables to the closest integer. This will give a 4-approxima-
tion of the optimal scaling factors. In practice we find 
that the integer LP is solved quite rapidly, thus we keep 
the integrality constraint in place.

Methods
We consider models generated by the Calliope modelling 
framework [27] and want to investigate (1) which algo-
rithm solves these problems in the least amount of time, 
(2) what the trade-offs when choosing between a basic 
feasible solution and an interior solution are, and (3) 
what the impact of our scaling approach on the solution 
time is. The models used for the experiments are speci-
fied in Table 2.

All models are implemented with the Calliope mod-
elling framework. We will often add a postfix to model 
names to indicate the time range, e.g., Euro_15d and 
Euro_5m refer to the Euro-Calliope model run over a 
15-day and a 5-month time range, respectively, starting 
from January 1, always at the time step resolution of 1 h. 
Note that the Bangalore model is set in a leap year while 

(8)

min r

s.t. guk − gvk + log(Ai,k)− gul + gvl − log(Aj,l) ≤ r ∀ i, j, k , l

(9)

guk − gvk ≥ log
L

Ai,k
∀k ∈ {0, . . . , n}, ∀i ∈ {0, . . . ,m}

(10)gu ∈ Z ∀u ∈ U

Euro and UK are not. Because we set the time ranges by 
date, the selected time range in the Bangalore model is 
often one day longer than in the other two models.

We run all benchmarks on the Euler cluster of ETH 
Zurich. All experiments where solution times are meas-
ured are performed on the same setup: compute nodes 
with two 18-core Intel Xeon Gold 6150 processors (2.7−
3.7 GHz) with 192 GB of DDR4 memory clocked at 2666 
MHz. Each experiment was run alone on a full node, i.e. 
taking up all 36 cores, to prevent competing processes 
from other cluster users from affecting the solution time. 
Note, however, that the number of cores does not corre-
spond to the number of software threads. Except where 
explicitly noted we set the number of software threads 
for the solvers to 4. We run Gurobi Optimizer version 
9.0.0 build v9.0.0rc2 (linux64). Unless otherwise noted, 
we use the default configurations of Gurobi except for 
setting barConvTol to 10−6 , feasibilityTol to 10−5 and 
optimalityTol to 10−5.

The authors of [17] observe that the performance of 
MILP solvers is non-deterministic and is often subject to 
large variation due to seemingly unimportant changes: 
different machines, compilers, and libraries can all lead 
to vastly different performance. We observe the same 
behaviour for Gurobi’s LP solvers, mostly for the crosso-
ver phase (including final simplex cleanup). In order to 
account for this variability in our benchmarks, we per-
form each measurement several times only changing the 
random seed value of Gurobi. For each benchmark we 
indicate the number of repetitions, the average and min/
max solution times.

Solver choice  We compare the suitability of the com-
mercial Gurobi solver and the open-source Coin-OR Clp 
solver for our problems. We compare both simplex and 
barrier methods of these two solvers. Comparing pri-
mal simplex, dual simplex and the barrier method cov-
ers the most common and most successful algorithms 
for solving linear programs. The scientific consensus is 
that no algorithm clearly dominates the others, instead, 
which algorithm works best depends on the structure of 
the problem to be solved. With this comparison we thus 
want to answer the question of which algorithms works 
best for energy system models created by the Calliope 
framework.

On the other hand, there are many software packages 
other than Gurobi and Coin-OR that implement these 
algorithms. Instead of comparing all software packages 
we chose two examples that are commonly used, one 
commercial and one open-source. Other authors have 
performed more thorough solver comparison on a wide 
class of problems.2 We note that both Gurobi and Clp 

Table 2 Calliope models used in experiments

Note that the Euro model by default includes manual scaling to improve 
performance; for the experiments here we undo this manual scaling. Also, 
the Bangalore model by default contains MILP constraints in the form of 
purchasable technologies. We have removed these constraints, making these 
technologies available without up-front purchase costs
a https:// github. com/ calli ope- proje ct/ euro- calli ope
b https:// github. com/ calli ope- proje ct/ uk- calli ope
c https:// github. com/ brynp icker ing/ banga lore- calli ope

Name Model Citation

Euro 34-zone LP Euro-Calliope  modela [42]

UK 30-zone LP UK-Calliopeb [26]

Bangalore 10-zone MILP Bangalore-Calliope 
but without integrality  constraintsc

[30]

2 http:// plato. asu. edu/ guide. html.

https://github.com/calliope-project/euro-calliope
https://github.com/calliope-project/uk-calliope
https://github.com/brynpickering/bangalore-calliope
http://plato.asu.edu/guide.html
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score high in these comparisons but that there is gener-
ally a difference in solver capabilities between commer-
cial and open-source implementations. Thus, the second 
question we want to answer with this comparison is 
whether we benefit from using a commercial solver or if a 
free implementation suffices for our problems.

We compare the runtime of each of these solvers on a 
range of models. In particular, we create instances of dif-
ferent sizes of the models in Table 2 varying the time range 
between two days and six months. The shortest time frames 
are of little practical relevance but are included here to give 
a more complete picture of solver capabilities. We aim at 
configuring each solver and algorithm equivalently despite 
the inherent differences in configurability between Coin-OR 
and Gurobi’s solvers: in particular, we instruct each solver to 
use 4 threads and we set optimality and feasibility tolerances 
to 10−5 (changing from the 10−6 default in Gurobi).

Interior vs. basic solution  As discussed in Sect. "LP 
problems and solution methods", the barrier method 
run by itself returns an optimal interior point solution, 
whereas the simplex method returns an optimal basic 
solution. When using the barrier method, it is possible 
to run the crossover method to find a basic feasible solu-
tion, taking the interior solution as the initial value. We 
consider up- and downsides of using an interior solution 
as compared to obtaining a basic solution.

We consider two questions: (1) how quickly we can 
obtain both interior and basic feasible solutions, and (2) 
how “good” is either solution. To answer these questions 
we create a sequence of different models, solve them with 
both barrier and barrier+crossover and then compare the 
interior solution returned by barrier with the basic feasi-
ble solution returned by barrier+crossover. The models 
considered are all slight variations of the models listed in 
Table  2. The variations were obtained by varying costs, 
variables and constraints in several ways. The primary 
goal of the variations was not necessarily to create faith-
ful models of reality. Instead, we wanted to create a larger 
set of linear programs that structurally still correspond to 
energy system models defined by Calliope but which dif-
fer in their solution space (the shape of the polytope) and 
their cost vector from the original models. The concrete 
modifications performed are described in Appendix E. To 
answer questions (1) and (2) from above, we compare the 
interior and the basic feasible solutions with respect to the 
objective value obtained, the time it took to find the solu-
tion and the fraction of non-zero values in the solution.

When interpreting the solution to a model we are 
mostly interested in the following per:

• capacity: indicates for each location and tech-
nology the installed capacity (from now on denoted 
cap).

• carrier_production: indicates for each time 
step, location and technology, how much of a given 
carrier is produced (from now on denoted prod).

• systemwide_levelised_cost: indicates the 
total per-unit cost paid for each carrier across the 
entire energy system (from now on denoted lcoe).

Scaling  As discussed in Sects. "LP problems and solu-
tion methods" and "Scaling", energy system models often 
have large numerical ranges and it is desirable to apply 
scaling to avoid numerical issues. To diagnose numeri-
cal issues in our models we closely analyze the logs pro-
duced by the solver. This methodology is showcased 
for instance in [16]. The models we examine are often 
numerically problematic, and we investigate whether our 
autoscaling method as developed in Sect.  C can effec-
tively mitigate these problems. To do so, we benchmark 
the solution time of various models using Gurobi with 
and without autoscaling and quantify the effects of scal-
ing. Note that Gurobi internally scales the input problem 
by default (parameter ScaleFlag = −1 ). According to the 
Gurobi online forum,3 the default scaling option chooses 
between equilibration and geometric scaling. We did not 
change this setting, meaning that we compare our autos-
caling to the scaling that Gurobi performs internally. 
Apart from scaling, Gurobi features some parameters 
for tuning its algorithms for numerically difficult prob-
lems. In particular, the NumericFocus parameter will 
cause Gurobi to spend more time detecting and reacting 
to numerical issues while the Quad parameter will use a 
larger numeric type for representing all numbers in the 
problem. We left these parameters at their defaults in all 
experiments.

Results
Solver choice
In this comparison, we use the primal simplex, dual sim-
plex, and barrier method with and without crossover 
of Gurobi and Coin-OR solvers to solve energy system 
models of varying sizes. Table 3 lists the model instances 
and the runtime of each of the solution methods in sec-
onds. We group our observations in the following para-
graphs roughly by solver.

Coin-OR barrier As an important caveat we must 
note that the barrier implementation of Coin-OR is 
meant as a baseline implementation which the user is 
supposed to extend with problem specific implementa-
tions. In particular, it is stated on the Clp homepage4 

3 https:// suppo rt. gurobi. com/ hc/ en- us/ commu nity/ posts/ 15330 30903 9633- 
How- does- the- Scale Flag- option- work-.
4 https:// www. coin- or. org/ Clp/ faq. html.

https://support.gurobi.com/hc/en-us/community/posts/15330309039633-How-does-the-ScaleFlag-option-work-
https://support.gurobi.com/hc/en-us/community/posts/15330309039633-How-does-the-ScaleFlag-option-work-
https://www.coin-or.org/Clp/faq.html
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that “the sparse factorization [of barrier] requires a 
good ordering algorithm, which the user is expected to 
provide (perhaps a better factorization code as well).” 
We nevertheless use this baseline implementation for 
our comparison, and perhaps unsurprisingly, Coin-
OR’s default barrier algorithm struggles with all but the 
smallest problems (Table 3). After a certain size Coin-
OR fails to perform a single barrier iteration and either 
times out (error condition (2)) or chooses to run the 
simplex method instead of barrier (error condition (1)). 
Also for small model sizes, barrier of Coin-OR is not 
competitive with any of the other algorithms.

Primal and dual simplex Primal and dual simplex 
implementations of Gurobi and Coin-OR each seem 
to be comparable in their capabilities but Gurobi is 
generally slightly better (Table  3). Both dual simplex 
implementations solve almost the same set of prob-
lem instances, each with comparable solution times. 
Similarly, both primal simplex implementations solve 
almost the same set of problems with comparable solu-
tion times. In general, dual simplex seems to be at least 

as good as primal simplex (with some exceptions for 
Gurobi, for instance UK_181d).

Gurobi Barrier methods Gurobi’s barrier method with 
and without crossover solves all problem instances and 
more instances than all other solvers (Table 3). Except 
for the smallest problem instances, barrier methods 
have the shortest solution times. Turning on crossover 
has an unpredictable effect on runtims: in some cases 
solution time is barely affected (e.g., UK_181d), in other 
cases the solution time triples (e.g., Bangalore_182d 
and Euro_181d).

Summarizing the above, we find that the difference 
in performance between commercial and free software 
package are quite small for the primal and dual simplex 
method but they are great for the barrier method. The 
barrier implementation of Gurobi turns out to be the 
most effective at solving our problem instances, while 
the barrier implementation of Coin-OR is the least 
effective. In the following, we will focus on the Gurobi 
software package.

Table 3 Solution times in seconds of different solvers on different model instances

Bar is barrier method, Crossover is barrier+crossover, Primal and Dual are primal and dual simplex, respectively. Each solution time is the average of two runs. Runs 
that did not terminate successfully within 4 h and with 72GB of RAM are indicated with −. In those cases, we indicate the returned error: (1) wrong algorithm, (2) 
timeout, (3) solver error. See the text for more detailed information on what these errors mean

Model Coin-OR BC Gurobi

Bar Crossover Dual Primal Bar Crossover Dual Primal

Bangalore_2d 52 54 10 9 9 10 8 9

Bangalore_3d 579 570 14 12 11 13 11 14

Bangalore_5d 6017 6019 16 19 15 18 15 18

Bangalore_11d −(2) −(2) 31 64 30 31 28 49

Bangalore_31d −(1) −(1) 115 211 79 89 80 219

Bangalore_62d −(1) −(1) 328 300 164 234 225 784

Bangalore_182d −(1) −(1) 2727 2348 588 1509 1395 −(2)

Euro_2d 70 73 68 97 63 62 67 90

Euro_3d 128 131 80 153 73 72 79 158

Euro_5d 834 837 128 360 93 96 121 401

Euro_11d −(2) −(2) 493 2668 161 175 441 1547

Euro_31d −(2) −(2) −(2) −(2) 394 485 5819 −(2)

Euro_61d −(1) −(1) −(2) −(2) 771 1526 −(2) −(2)

Euro_181d −(1) −(1) −(2) −(2) 2564 8026 −(2) −(2)

UK_2d 121 121 19 20 22 21 22 21

UK_3d 475 469 25 25 28 28 28 29

UK_5d 4054 4056 39 39 42 42 43 43

UK_11d −(2) −(2) 86 89 83 85 91 87

UK_31d −(2) −(2) 342 445 229 230 273 245

UK_61d −(3) −(3) 1026 1622 447 451 708 615

UK_181d −(3) −(3) −(2) −(2) 1400 1414 4257 2773
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To crossover or not
In the previous section, we observed that the barrier 
method of Gurobi often solves models much faster than 
simplex methods do, but that the crossover step can 
have a significant impact on the total solution time. It is 
tempting to say that disabling crossover is therefore an 
easy way to dramatically improve solution times. How-
ever, time to solution alone is not sufficient to choose a 
method because the solutions returned by barrier and 
those returned by simplex or barrier+crossover are 
inherently different. In this section, we thus compare 
the interior solutions obtained by running barrier with-
out crossover with the basic feasible solution obtained by 
running either the simplex method or barrier+crossover.

Table 4 compares solutions to various Calliope models 
that were obtained using barrier and barrier+crossover. 
Appendix E describes the differences between the mod-
els. For each model, we compare an interior with a basic 
feasible solution in terms of objective value, the time it 
took to get the solutions and the fraction on non-zero 
variables in the solutions. For comparing the objective 
value of interior and basic feasible solution, we addition-
ally list their signed relative error ε:

In this section, we consider all numbers with absolute 
value ≤ 10−10 to be zero.

(11)ε :=
interior− basic

basic

First, we note that Bangalore2_181d was not success-
fully solved by the barrier method alone. Closer investiga-
tion shows that this happens consistently for this model 
instance while it never happens for the closely related 
model Bangalore1_181d . The two models are identical 
apart from slightly different costs associated with tech-
nologies. As described in Appendix E, Bangalore2_181d 
scales the cost contribution of carbon by 0.365 compared 
to the original model and by a factor of 26 compared to 
Bangalore1_181d . Moreover, the Bangalore model asso-
ciates dummy carbon costs with all technologies, whose 
sole purpose it is to prevent the solver from allocating 
unused capacities. The use of these technologies is oth-
erwise unbounded. The combined effect of these model-
ling decisions is that Bangalore2_181d contains a set of 
unbounded variables whose cost contribution is almost 
zero (and lower than in other instances of this model). 
This formulation geometrically leads to unbounded faces 
that are almost “flat”, i.e. even distant points on the face 
have almost the same cost. It is known that unbounded 
optimal faces may lead to numerical issues for barrier 
methods [44]. Indeed, associating slightly higher costs 
to electricity_transmission in Bangalore2_181d resolves 
the issue entirely: barrier consistently solves the modi-
fied problem to optimality. This case illustrates that bar-
rier can be more susceptible to numerical issues than 
barrier+crossover. We will return to this insight in Sect. 

Table 4 Comparison of objective value, solution time and fraction of non-zeros of basic feasible (basic) and interior (inter) solutions of 
various Calliope models using barrier+crossover (basic) and barrier only (inter), respectively

ε is the relative error of the interior solution compared with the basic feasible solution. Solution time is in seconds. Non-zeros denotes the fraction of decision 
variables with absolute value > 10−10

Model Objective Time Non-zeros

Basic Inter ε Basic Inter Basic Inter

Euro1_180d 7.34e+10 7.34e+10 5e−07 4008 1869 0.27 0.62

Euro2_180d 6.06e+10 6.06e+10 1e−08 3860 2313 0.29 0.58

Euro3_180d 2.20e+10 2.20e+10 2e−10 65 63 0.42 0.6

Euro4_180d 2.19e+10 2.19e+10 5e−16 56 54 0.43 0.56

Euro5_180d 2.17e+10 2.17e+10 9e−11 57 52 0.43 0.6

Euro6_180d 2.20e+10 2.20e+10 4e−12 52 50 0.42 0.58

UK1_180d 1.24e+10 1.24e+10 3e−11 2038 2274 0.25 0.48

UK2_180d 1.70e+10 1.70e+10 6e−08 2788 2215 0.26 0.52

UK3_180d 1.27e+10 1.27e+10 2e−09 5081 4105 0.24 0.5

UK4_180d 1.29e+10 1.29e+10 3e−09 3399 2239 0.25 0.5

UK5_180d 1.98e+10 1.98e+10 1e−07 3519 2381 0.25 0.52

UK6_180d 3.11e+10 3.11e+10 2e−06 5347 3888 0.21 0.41

Bangalore1_181d 2.78e+08 2.78e+08 2e−08 3818 1360 0.33 0.84

Bangalore2_181d 1.64e+08 – – 5108 – 0.24 –
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"Discussion" where we develop guidelines for model 
formulation.

Next, we observe that the interior solution is generally 
slightly worse than the basic feasible solution. However, 
the differences are negligible in all cases. Moreover, we 
recall that a better approximation can be obtained by 
tightening the barrier convergence tolerance parameter.

Barrier+crossover always performs additional work 
compared to just barrier, thus obtaining a basic feasible 
solution takes longer than obtaining an interior solution. 
A counter-example to this intuitive rule is the UK1_180d 
where obtaining an interior solution takes longer than 
obtaining a basic feasible solution. This is most likely due 
to solution time variability as discussed in Sect. "Meth-
ods" .

As expected, we can observe that the fraction of non-
zeros is significantly higher in interior solutions: In 
many cases the interior solution contains twice as many 
non-zero decision variables as the basic feasible solu-
tion and almost all interior solutions have more than 
half of their decision variables away from their bounds. 
There are multiple reasons for this: first, there may 
be multiple optimal vertices in the polytope (due to, 
for instance, the inherent degeneracy of network-flow 
problems discussed above, or due to cost-free technolo-
gies in the model). By linearity of the problem, then, 
every linear combination of these optimal vertices is 
itself an optimal solution. While simplex will always 
return one of the optimal vertices, an interior point 
method will most likely converge to some other point 
in the optimal linear subspace. Second, interior point 
methods always return an interior point of the poly-
tope that, though close to the boundary, still has most 

variables away from their bounds. Since zero-entries in 
the solution correspond to variables at their bounds, 
an interior solution, even when close to a vertex, still 
has many more non-zero entries than a basic solution 
at this vertex. The absolute magnitude of this second 
type of non-zeros is usually small and depends on the 
parametrization of the algorithm. Heuristically, we can 
remove such unwanted non-zeros from the solution by 
rounding but note that even after rounding, our exam-
ples exhibit a much larger fraction of non-zeroes in the 
interior point solution. Table  5 breaks down the non-
zeros in the Bangalore1_181d model by decision vari-
able. Decision variables in Calliope can have multiple 
dimensions, e.g., the decision variable energy_cap is a 
vector of installed technology capacities with one entry 
for each technology and location combination. Table 5 
highlights why a basic feasible solution might be easier 
to interpret than an interior solution: the interior solu-
tion allocates many more technologies that produce 
and store electricity (energy_cap, storage_cap > 0 ). In 
addition, it schedules “facilities” to consume and pro-
duce energy on more different timesteps (carrier_prod, 
carrier_con > 0 ). Clearly, both interior and basic fea-
sible solutions achieve the necessary allocation of car-
riers at (almost) identical cost, but we find the sparse 
solution easier to interpret, because it provides a more 
minimal set of necessary technologies. The risk of an 
equivalent but less sparse solution is that we might 
conclude from it, that each of the non-zero values is 
required for optimality, rather than just being an arte-
fact of the algorithm. On the other hand, the fact that 
an interior point solution will return a linear combina-
tion of basic feasible solutions might make this solution 

Table 5 Fraction of non-zero elements in the decision variables of the interior and basic feasible solutions of the Bangalore1_181d

Length is the number of entries of the decision variable, the fraction of non-zero elements for the basic feasible solution and the interior solution are indicated as 
basic and inter, respectively

Non-zeros

Variable Length Basic Inter Explanation

energy_cap 166 0.53 0.93 Allocated energy capacity of each technology and location

carrier_prod 628992 0.31 0.89 Production of a carrier per location, technology and timestep

carrier_con 567840 0.37 1.0 Consumption of a carrier per location, technology and timestep

cost 288 0.46 0.92 Cost of each cost class per location and technology

resource_area 11 1.0 1.0 The area allocated for each technology per location

storage_cap 13 0.92 1.0 The storage capacity allocated of each storage technology per location

storage 56784 0.62 1.0 The energy stored per storage technology, location and timestep

resource_con 48048 0.51 0.51 The resource consumption per technology, location and timestep

resource_cap 11 1.0 1.0 The resource consumption capacity allocated per location and technology

carrier_export 56784 0.0 0.58 The exported amount of a carrier per location, technology and timestep

cost_var 314496 0.33 0.47 The variable cost per cost class, technology, location and timestep

cost_invest 288 0.42 0.88 The investment cost per cost class, location and technology
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more realistic: instead of a minimal set of technologies 
the solution might suggest a more diverse setup.

As discussed in Sect. "Methods", the most central vari-
ables of Calliope energy system models are the installed 
technology capacities (cap) and the energy “production” 
amounts (prod), in addition to the cost parameters which 
directly and indirectly control these two variables. Fig-
ure 2 shows prod of the interior and basic feasible solu-
tion of the Bangalore1_181d model side-by-side. More 
precisely, it shows the production at “facilities” summed 
up over all time steps. Figure  2 suggests an intuitive 
interpretation for the differences between the interior 
and basic feasible solution: In the interior solution, more 
electricity is produced centrally at location F and then 
distributed to many other locations using electricity 
lines. These other locations, in turn, produce less energy 
themselves.

Automatically improving scaling
The major indicators of numerical problems we find 
across all three examined models are: 

1. Crossover makes very slow progress and sometimes 
needs to be restarted.

2. Simplex makes only very slow progress on the objec-
tive value or jumps wildly in the solution space.

3. Barrier returns a sub-optimal objective.
4. The solver detects numerical issues and tries to coun-

teract them by: switching to higher precision, drop-
ping variables from the current basis, tightening 
Markowitz tolerance.

(1) and (2) often occur for the Euro model. (3) is common 
for the Bangalore model. We conclude that these models 
exhibit numerical issues that need to be addressed. The 
UK model, on the other hand, seldom shows any of these 
issues.

Figure  3 shows the average solution time of the Euro 
model for different time frames. Runs that did not suc-
cessfully converge were not included in the average 
solution time but instead, their number is indicated in 
brackets. We find that our autoscaling approach reduces 
the average solution time of barrier+crossover in all 
cases we considered. For model sizes of at least 0.75 · 107 , 
the average runtime with autoscaling is always at least 
2x faster than without autoscaling and in many cases 3x 
to 4x faster. We notice that autoscaling not only reduces 
average solution time, but also leads to more regular 

Fig. 2 Carrier production prod in the Bangalore1_181d model as computed by barrier+crossover and barrier alone, respectively. Top: Electricity 
supply from the national grid per location, aggregated over time. Bottom: Carrier production of technologies inside the system, aggregated 
over time and locations. Terminology: A-K are the demand nodes in the network (office buildings with demand for electricity and cooling). Apart 
from the demand nodes, there is one energy center (EC) as centralized energy and cooling distributor. Technologies in the lower plot are: Air 
conditioning (AC), step down transformer (transformer), cold water exchanger (exchanger), Combined Cooling, Heat & Power (CCHP), as well 
as transmission technologies between buildings and to and from the energy center: thermal energy pipelines (thermal_pipes and thermal_EC_
pipes) for cooling, electricity lines (electricity_lines and electricity_EC_lines) for electricity
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solution time behaviour and reduces the number of times 
the algorithm does not converge. However, there are 
two large outliers in the scaled solution times that did 
not converge in time. This behaviour seems surprising 
because in both cases the remaining four runs termi-
nated quickly and with similar solution time. We recall 
that only the random seed changes within a set of 5 runs 
of the same model instance. We will discuss this issue of 
extreme outlier behaviour of solution times below.

Figure  4 shows the effect of autoscaling on Euro_6m, 
UK_12m and Bangalore_6m. We solve each model using 
Gurobi’s barrier+crossover method both with, and with-
out autoscaling enabled. The average solution time per 
model with and without autoscaling is indicated by the 
height of each bar. In the Euro_6m model the solution 
time improves by about 3x when applying autoscaling. 
In Bangalore there is still a noticeable improvement of 
solution time after scaling. In the UK model the solu-
tion time is hardly affected. This supports our hypoth-
esis that the UK model is generally well formulated 
already and does not cause numerical issues. Looking 
at the numerical range before and after scaling of the 
three model instances in Table 6 shows that the original 
Euro_6m model has a numerical range close to 16 orders 
of magnitude. As discussed in Sect. "Scaling"  this may 
very well be the cause of grave numerical issues. Moreo-
ver, scaling achieves a significant reduction in the range 
of the Euro_6m model. The other two model instances, 

however, have a more moderate numerical range and 
scaling achieves a much smaller improvement of the 
numerical range which explains the solution time for 
solving these problems is less affected. Gurobi recom-
mends numerical ranges of at most 109 , further support-
ing these conclusions.

In Fig. 4, we report the fraction of the solution time 
spent in each phase of the solution algorithm (to be 
precise, the different sections of each bar represent 
the fraction between the average of the corresponding 
phase and the average of the total solution time). The 
Checkscale phase is not part of the solving but it cor-
responds to the fraction of code where we check and 
report the numerical range of the model. In the case 
where autoscaling is enabled, it also includes the time 
to compute the optimal scaling factors and to perform 
the scaling of the model. We note that the contribution 
of autoscaling to the solution time of the algorithm is 
negligible. The Preprocess phase corresponds to the 

Fig. 3 Average absolute solution time for the Euro model for time frames between 1 and 12 months both with and without autoscaling and using 
barrier+crossover. Average was taken over 5 runs, the vertical bars show the max and min solution time. Runs taking more than 20 h were aborted 
and not considered in either average or errorbars. The number of aborted runs per instance is indicated in brackets next to the average solution 
time

Table 6 Improvement of κ ′ by scaling

Model κ
′ Before scaling κ

′ After scaling

Euro_6m 3.7 · 1015 3.3 · 108

UK_12m 3.4 · 1011 7.7 · 107

Bangalore_6m 5.1 · 1010 3.1 · 109
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solver-internal preprocessing. Barrier corresponds to 
the execution of the barrier algorithm. We split the 
crossover phase into two parts and plot them sepa-
rately: crossover, where a basic point (a vertex) close 
to the interior solution is found, and simplex, where 
this basic point is re-optimized using simplex steps. 
Interestingly, for the Euro and Bangalore models dif-
ferent phases of the algorithm are affected by scal-
ing: Euro_6m gains most in the crossover phase 
(red) whereas for Bangalore_6m the crossover phase 
with scaling takes even longer than without scaling. 
Bangalore_6m instead gains most in the simplex phase 
(cyan). The results also suggest that the barrier method 
is generally least sensitive to scaling: whereas crossover 
and simplex phases often speed up noticeably, autoscal-
ing usually shows only very minor improvement.

An important insight is that every phase of the algo-
rithm can encounter numerical difficulties and that 
the exact nature of the problems leading to deterio-
rating solution time is subtle. In particular, a measure 
that improves the solution time of some phase may 
badly affect the solution time of another phase. Find-
ing a scaling that always works and never deteriorates 

solution time proved to be a major difficulty in design-
ing a suitable autoscaling approach.

Performance variability caused by scaling
While scaling often reduces average time to solve a spe-
cific model using the barrier+crossover method, we 
observed in the previous section that it does not elimi-
nate the risk of non-convergence or extremely long 
solution times for solving certain models (consider for 
instance the outlier behaviour in Fig. 3). In particular, we 
regularly observe that the final simplex phase does not 
converge. As described above, there are two different fla-
vours of this: either simplex just stops making progress or 
it jumps wildly in the solution space. The latter seems to 
be a strategy Gurobi applies to deal with stalling progress 
in the simplex solver.

An intuitive explanation for why scaling might induce 
this behaviour is given by [8] and briefly discussed in 
Sect. "Scaling": while scaling can improve the average 
condition number, it can increase the condition num-
ber of certain bases in the matrix. [8] gives an illustrative 
example where scaling increases the condition num-
ber of all relevant bases in an LP by an arbitrarily large 

Fig. 4 Normalized solution time of barrier+crossover for three models with autoscaling (left bar) and without autoscaling (right bar). The solution 
time is broken down into the Checkscale phase, where we inspect the numerical range of the model and apply autoscaling if enabled, and the four 
main phases of the algorithm. Each bar is the average of the solution times of 10 experiments. Absolute solution time in seconds is indicated 
above the bars of the unscaled models. Error bars were omitted to improve readability
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amount. As the bases encountered during simplex are 
subject to randomness, this may explain why scaling 
in some cases leads to very long solution times or even 
non-convergence.

In the following, we want to quantify this effect. Prag-
matically, to judge if autoscaling is still useful we want to 
answer the following questions 

1. What is the average time it takes to solve a given 
model?

2. How often will we encounter outlier cases with very 
long solution time?

We have seen above that scaling can effectively improve 
average solution time of a model in a previous paragraph. 
In order to address the second question we perform the 
following experiment: We consider the Euro_6m model, 
which exhibits the outlier behaviour discussed above, and 
run it 100 times with scaling and 100 times without scal-
ing. We then evaluate the empirical distribution function 
of these solution times.

Figure 5 shows the histogram of runtimes of both the 
scaled and the unscaled data. The runtimes at the right 
end correspond to timeout runs. While the runtimes of 
the scaled model have a 40% lower mean than the ones 
from the unscaled model, their variance is 25% higher. 

While the number of runs that don’t converge within the 
set time is the same with and without autoscaling, a dis-
tribution fitted to the scaled solution times would have a 
heavier tail than a distribution fitted to the unscaled solu-
tion times.

Discussion
We find that barrier is generally superior to simplex for 
the kinds of models investigated here, and barrier alone 
is faster than barrier+crossover, as the latter performs 
strictly additional work. The difference in solution time, 
however, is unpredictable and can be either large or 
barely noticeable, depending on the model instance. Bar-
rier also sometimes fails to converge. In particular, while 
degeneracy per se is no problem for barrier, the specific 
case of unbounded (large) optimal surfaces may lead to 
non-convergence of barrier. Such cases can potentially 
be remedied if crossover is run after barrier. However, we 
find it difficult to answer the question of whether or not 
running crossover is worth the additional effort in find-
ing a basic feasible solution. Interior solutions inherently 
have a larger number of non-zero values in their decision 
variables as compared to a basic feasible solution. This 
may negatively affect the interpretability of results. For 
instance, the interior solution of one Bangalore model 
produced more electricity in a centralized location and 

Fig. 5 Histogram with 30 bins showing runtimes of 100 runs of each, the scaled and unscaled Euro_6m model
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distributed it via transmission links compared to the 
basic feasible solution. Investing in the additional effort 
of crossover must likely be decided on a case-by-case and 
model-by-model basis, and underscores once again the 
general problem with relying on a single, “optimal” result 
[7, 20, 25].

To enable the use of crossover without excessive solu-
tion times, we find that model scaling can be helpful; our 
autoscaling approach often reduces the average solution 
time of barrier+crossover significantly. This reduction 
generally happens in the crossover and simplex phases. 
From this, we extrapolate that autoscaling has a neg-
ligible effect on the solution time of barrier alone but 
that it improves the average solution time of the sim-
plex method. We find that autoscaling helps to prevent 
numerical problems in the solver. In particular, solution 
times for the numerically challenging Euro and Banga-
lore models were improved drastically while the numeri-
cally well-behaved UK model did not benefit much from 
autoscaling. We also find that autoscaling increases the 
probability of solution time outliers: We see more excep-
tionally long solution times when using autoscaling. This 
problem requires further investigation in future work. 
However, as the autoscaling yields almost always shorter 
solution times and higher convergence rates than our 
unscaled base cases, autoscaling seems to be a no-regret 
solution in terms of solution time for barrier+crossover.

A separate issue which is not easily addressed with 
scaling is the problem of cost-free technologies. The 
model Bangalore2_181d consistently failed to converge 
on a solution using the barrier method (Table 4). For this 
model, we found that two small modifications to the orig-
inal model formulation each lead to successful optimiza-
tion by barrier: increasing costs for the installed capacity 
of electricity transmission technologies by 2 orders of 
magnitude, and upper-bounding the energy capacity of 
electricity transmission. Both measures counteract the 
numerical problems caused by unbounded optimal faces, 
each in a different way, supporting our hypothesis that 
these problems are due to unbounded optimal faces. It is 
thus advisable to avoid model formulations with free and 
unbounded technologies. There are, however, cases in 
the real world where some technologies are virtually free 
to operate or are free to install given the system scope. 
Electricity transmission is one example: their operation 
cost can be considered negligible compared to the cost 
of installation, and sizing them might be outside the 
scope of the problem altogether. In these cases it seems 
unavoidable to resort to dummy costs, but the modeller 
should be aware that it is non-trivial to set these dummy 
costs in a way that represents the real world whilst also 
being high enough to avoid unbounded optimal faces.

If updates to the algorithm, model scaling, and cost-
free technologies do not enable model tractability, adjust-
ing solver tolerances may still help. Since solver authors 
made certain assumptions about the input models they 
will need to solve when setting tolerances, they may not 
be optimally set for the numerical range or required 
accuracy of energy system models. We have found that 
choosing the right value for tolerances is hard and usu-
ally the underlying problem is not solved by modify-
ing tolerances, thus it is only advisable to do so on rare 
occasions. Three key tolerances are Feasibility, Opti-
mality and Barrier-Convergence5. They all control how 
tightly some inequality must be fulfilled. Tightening 
Optimality and Barrier-Convergence tolerances will 
lead to a better objective value in the solution returned 
by simplex/barrier+crossover methods and barrier 
methods, respectively. However, tightening these toler-
ances too much may lead to longer solution times and 
(in the case of barrier) to non-convergence. The Feasi-
bility tolerance controls how strictly constraints need to 
be satisfied for a solution to be feasible. Loosening these 
tolerances may lead to faster convergence of simplex and 
barrier+crossover methods. However, this usually does 
not magically resolve all difficulties with numerically 
challenging problems. It also requires careful experimen-
tation to ensure results do not violate physical proper-
ties of the system being described (e.g., negative stored 
energy). Solvers often feature parameters to tune theirs 
algorithms for numerically challenging problems. Exam-
ples are the NumericFocus and Quad parameter of 
Gurobi. NumericFocus will cause Gurobi to spend more 
time detecting and reacting to numerical issues while the 
Quad parameter will use a larger numeric type for repre-
senting all numbers in the problem. Both options trade 
performance for numerical stability.

Conclusions
In the context of the results discussed above, we can for-
mulate the following guidelines to improve the computa-
tional performance of typical energy system optimisation 
models:

• On large and difficult models, manually select the 
barrier method or barrier+crossover method. Prefer 
the latter if you suspect your model formulation to be 
numerically unstable or if you want a minimal solu-
tion in terms of technology allocations.

5 When using crossover, there is also the Markowitz tolerance, described in 
more detail in Appendix D, but we found no evidence that it improved per-
formance in our benchmarks.
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• Use appropriate units that minimize the model’s 
numerical range or apply an automatic scaling pro-
cedure like the one we introduce here to derive them 
automatically.

• Be wary of model formulations with cost-free tech-
nologies and dummy costs, as those can dramatically 
worsen the numerical properties of the model and 
thus increase solution time

• Know the basic solver tolerance settings for your 
chosen solver and adjust them if necessary; however, 
this should usually be the very last resort.

Ultimately, more systematic work to understand the 
properties of energy system models could help them 
provide better decision support, for example by mak-
ing it possible to rapidly explore large numbers of 
scenarios or alternative solutions even in models 
that depict the system with high spatial and tempo-
ral detail. Promising avenues are custom solvers that 
exploit these model properties [33], or even solvers 
that exploit the fact that a single optimal solution is 
not necessarily useful; a range of near-optimal solu-
tions, for example extracted from an interior-point 
algorithm, could be just as relevant for real-world 
applications [7, 20, 25]. To complement this, more 
systematic work is needed on the difference between 
basic feasible and interior solutions and the impli-
cations of these differences for the resulting energy 
system designs. While black-box solvers like the ones 
examined here are continuing to be developed and 
becoming more powerful, the energy modelling com-
munity could reap many practical benefits if such work 
can improve solution times by multiples or even orders 
of magnitude, as some of our explorations here sug-
gests may be possible. Finally, of course, optimisation 
is not always the appropriate method. For example, 
some problems may be better solved with simulation 
approaches. Yet it is clear that large linear optimisation 
models will continue to play a role for the foreseeable 
future, so improving their tractability is a useful effort.

Appendices

Proof of equivalence between scaled and unscaled 
LP
Let us denote by R and S two diagonal matrices

(12)R = diag(r1, . . . , rn), S = diag(s1, . . . , sn)

with ri, si > 0 . Furthermore, let A ∈ R
m×n , b ∈ R

m 
and c ∈ R

n . Let’s consider the three polyhe-
dra P := {x | Ax ≤ b} , P′′ := {x | RAx ≤ Rb} and 
P′ := {x |RASx ≤ Rb} . then the following two LPs are 
equivalent

To see this note that P = P′′ because R is invertible and 
that for each x ∈ R

n holds x ∈ P′ ⇔ Sx ∈ P′′ . �

Condition number and numerical range
As discussed in Sect. "Scaling", both condition number 
κ(A) and the numerical range of A influence how well 
simplex and barrier can solve the LP with constraint 
matrix A. We can affect both notions by row and column 
scaling. Consider the matrix

which has arbitrarily large condition number and numer-
ical range 1

ε
 . Scaling the second row of 14 with 1

ε
 yields 

the identity matrix which has both condition number and 
numerical range of 1.

On first sight, it may seem as though minimizing 
numerical range will always also reduce the condition 
number. The next example illustrates that this relation-
ship does not hold in general. consider the matrix

Note that if ε = 1 the numerical range of the matrix is 
1, as small as it can get. At the same time, the matrix is 
singular, i.e., its condition number is ∞ . Making ε go to 
0 will continually increase the numerical range while 
decreasing the condition number of the matrix. It fol-
lows, that we cannot in general optimize both the condi-
tion number and the numerical range simultaneously.

A second problem with improving the condition num-
ber of LPs is that it’s not possible to improve the condi-
tion number of all bases simultaneously: improving the 
condition number of one basis may adversely affect the 
condition number of another basis. Since it is unknown 
a priori which bases of A will be visited in the course of 
the simplex algorithm it is possible that a scaling method 
has a negative effect on the bases actually encountered 
during simplex. Elble and Sahinidis [8] investigates the 
effects of many mainstream scaling methods on the con-
dition number in a large set of practical linear programs.

(13)min{c⊺x | x ∈ P}, min{c⊺Sx | x ∈ P′}

(14)
[

1 0
0 ε

]

(15)
[

1 ε

ε 1

]
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Scaling method
In the following we elaborate on the two main constraints 
we face when choosing scaling factors.

Scaling factors that tamper with the precision of input 
values will corrupt the model  In order to see the signifi-
cance of numerical precision, consider the following 
example: Consider the inequality 0.1x ≤ 100 . If we scale 
this inequality by 13 we get the inequality 1

30x ≤ 100
3  . In 

mathematics, the second inequality is equivalent to the 
first one, but in floating point arithmetic it is not. Let us 
assume for simplicity that we work in a decimal floating 
point system with 5 decimal digits precision, then the 
second inequality becomes 0.03333x ≤ 33.33333 . Note 
that 100 was scaled by 0.3333333 and that 0.1 was scaled 
only by 0.3333. The inequality is thus no longer equiva-
lent to the original inequality; in fact, the second inequal-
ity now reduces to x ≤ 1000.0999 . Note that the relative 
error 1000.0999−1000

1000  is exactly 0.33333330.3333 − 1 . The relative 
error thus increases with the numerical range of the ine-
quality. This loss of precision can be avoided if all scaling 
factors are chosen to be powers of 2.

Optimal scaling factors may lead to prohibitively large 
or small values  Gurobi recommends that all values in a 
model be between 10−3 and 106.6 The absolute size of val-
ues matters to the solver because it internally uses abso-
lute tolerances to compare values. In particular, having 
input values smaller than the solvers tolerances means 
that the solver can no longer distinguish between legiti-
mate values and values arising from round-off errors [16]. 
Ensuring that absolute values stay above a certain thresh-
old sometimes limits how much κ ′ can be decreased. 
Consider the following example:

Let u and v be the two base units in our model and let’s 
assume that the derived units in our model all have the 
form u, v or uv . Assume the values in our model have the 
ranges as shown in Table 7.

Here, κ ′ = 105 cannot be decreased any further. Assume 
that we want to ensure that all values in our model have 

absolute value at least 0.01. To achieve this, we need to 
choose scaling factors fv ≥ 10 and fu ≥ 10 · fv . Thus after 
scaling it holds that κ ′ ≥ 10·fv ·50

fv ·0.001
= 5 · 105 which is larger 

than the original κ ′ . There is thus a trade-off between min-
imizing κ ′ and ensuring that the values have a sensible 
absolute size.

Markowitz tolerance
In computing the LU factorization of a matrix, the 
Markowitz tolerance controls which elements are suf-
ficiently large to be used as pivots. An LU factorization 
of the constraint matrix A is computed at several differ-
ent stages of the algorithm: during the simplex algorithm 
in order to recompute the current basis [22, 38, 39] and 
during crossover in order to construct a valid basis from 
scratch [3]. Choosing a large Markowitz tolerance means 
that many potential pivots are disregarded in order to 
ensure a numerically stable basis. When solving certain 
numerically challenging models, the crossover method 
will often need to restart with an updated value of the 
Markowitz tolerance. One might expect that setting a 
more conservative value for the Markowitz tolerance in 
the first place will prevent this but we could not consist-
ently verify this in our benchmarks.

Model variations in experiments
In this section, we describe the model variations we used 
in "To crossover or not". Table 8 shows the input param-
eters which vary in the explored variations of the Euro 
model, while Tables 9 and 10 show the respective param-
eter variations for the UK and Bangalore models.

Euro model

Battery cost controls the cost per energy capacity and the 
cost per storage capacity of batteries.

Zones varies the number of countries in the model. 
While the baseline model consists of 34 European coun-
tries, each making up one zone of the model, the varia-
tions consist of 20 countries and 1 country (Germany), 
respectively.

CO2 caps limits the total amount of co2 produced in 
each location. The bound ranges from 1.2 Mt in Cyprus 
to 184 Mt in Germany.

Renewable shares requires a certain share of the total 
electricity consumption of each country to exceed a 
minimum value. This value varies per country and ranges 
from 11% in Luxembourg to 78% in Portugal.

Hydro reservoir controls whether the hydro reservoir 
technology can be used to store energy (yes) or not (no).

Table 7 Example range of values in a model to demonstrate 
the inability to reduce κ ′ if absolute values are to stay within a 
recommended range

Unit Min Max

u 1 50

v 0.001 100
u

v
0.001 100

6 https:// www. gurobi. com/ docum entat ion/9. 0/ refman/ num_ advan ced_ 
user_ scali ng. html.

https://www.gurobi.com/documentation/9.0/refman/num_advanced_user_scaling.html
https://www.gurobi.com/documentation/9.0/refman/num_advanced_user_scaling.html
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Data source describes what source was used in the 
model to control the resource constraints of renewables. 
The original model contains csv timeseries for each of 
wind, pv and hydro. In average, these values were simply 
averaged over the whole timerange.

UK model

Battery cost controls the cost per energy capacity and the 
cost per storage capacity of batteries.

Imports sets the high-voltage energy import per zone. 
The value shown in the table is aggregated over all zones.

A Renewables share of X% forces the combined electricity 
production of wind_onshore, wind_offshore, pv_rooftop, 
pv_utility_scale and hydro to make up at least X% of the 
total electricity.

New Nuclear allows for 17.3 GW additional energy pro-
duced by nuclear technology.

Bangalore model

Cost of carbon is the factor of the cost of emitted carbon in 
the objective function.
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Table 8 Parameter variations in the different explored variants of the Euro model

Model Battery cost Zones CO2 caps Renewable shares Hydro reservoir Data source

Euro_180d 135€/kW, 315€/kWh 34 Yes Yes No Original

Euro1_180d 135€/kW, 315€/kWh 20 No No Yes Averaged

Euro2_180d 135€/kW, 315€/kWh 20 Yes Yes No Original

Euro3_180d 135€/kW, 315€/kWh 1 Yes Yes No Original

Euro4_180d 68€/kW, 158€/kWh 1 Yes Yes No Original

Euro5_180d 34€/kW, 79€/kWh 1 Yes Yes No Original

Euro6_180d 135€/kW, 315€/kWh 1 No Yes No Original

Table 9 Parameter variations in the different explored variants of 
the UK model

Model Battery cost Imports Renewables 
share

New Nuclear

UK_180d 140£/kW,109£/
kWh

12.75 GW 0% No

UK1_180d 140£/kW,109£/
kWh

12.75 GW 0% No

UK2_180d 300£/kW,200£/
kWh

0 GW 80% No

UK3_180d 75£/kW,50£/kWh 25.5 GW 40% Yes

UK4_180d 150£/kW,100£/
kWh

12.75 GW 50% No

UK5_180d 75£/kW,50£/kWh 0 GW 90% No

UK6_180d 75£/kW,50£/kWh 0 GW 100% No

Table 10 Parameter variations in the different explored variants 
of the Bangalore model

Model Cost of carbon

Bangalore_181d 1

Bangalore1_181d 9.49

Bangalore2_181d 0.365

https://arxiv.org/abs/2211.12299
https://arxiv.org/abs/2211.12299
https://github.com/calliope-project/calliope
https://github.com/calliope-project/calliope
https://github.com/brmanuel/calliope
https://github.com/brmanuel/calliope-models
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