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SUMMARY / SAMENVATTING

The reflections composing this thesis examine the usage and necessity of quantum the-
ory, with an emphasis on systems featuring mechanical resonators. The first chapter in-
troduces the quantum formalism, reviews the historical motivation for the quantization
of harmonic oscillators, and presents a derivation of the interaction between the electro-
magnetic field and mechanical motion in several distinct systems. The second chapter
examines the nature of physical effects such as state transfer, squeezing, entanglement,
and sideband asymmetry, and how they naturally emerge in non-quantum contexts. A
dynamical statistical theory is introduced to aid the quantum/classical comparison, and
standard measurement models are reviewed due to their strict connection to nonclas-
sicality criteria. The third chapter deals uniquely with quantum effects occurring in
systems with mechanical elements, such as phonon antibunching, parametric down-
conversion in electromechanical systems, creation and interference of macroscopic su-
perpositions in spin-cantilever systems, and collapse and revivals of mechanical motion
and mechanical state dependent transmission in membrane-in-the-middle geometries.
The fourth and last chapter discusses pervading issues with defining the classical limit,
the quantum/classical comparison and definitions of nonclassicality.

Dit proefschrift is opgebouwd uit reflecties die het gebruik en de noodzaak van kwan-
tumtheorie onderzoeken, met de nadruk op systemen met mechanische resonatoren.
Het eerste hoofdstuk introduceert het kwantumformalisme en herziet de historische
motivatie voor de kwantisering van harmonische oscillatoren. Verder wordt een aflei-
ding van de interactie tussen het elektromagnetische veld en mechanische beweging
in diverse verschillende systemen gepresenteerd. Het tweede hoofdstuk reflecteert op
de aard van fysieke fenomenen zoals toestand overdragen, squeezing, verstrengeling
en sideband-asymmetry, en hoe deze effecten zich vormen in niet-kwantum contexten.
Een dynamische statistiektheorie wordt geintroduceerd om de vergelijking tussen kwan-
tum/klassieke verschijnselen te ondersteunen. De standaardmeetmodellen worden her-
zien vanwege het strikte verband met de nonclassicality criteria. Het derde hoofdstuk
behandelt alleen kwantumeffecten die kunnen worden waargenomen in systemen met
mechanische elementen, zoals phonon antibunching, parametrische down-conversie
in elektromechanische systemen, creatie en interferentie van macroscopische super-
posities in spin-cantilever-systemen, en collapse & revivals van mechanische beweging
en mechanische toestand-afhankelijke transmissie in membrane-in-the-middle geome-
trieén. Het vierde en laatste hoofdstuk analyseert de alomtegenwoordige problemen met
de definities van het klassieke limiet en nonclassicality, net zoals de kwantum/klassieke
vergelijking.

ix






PREFACE

The hive is crammed. It is time to know ourselves. We, men of knowledge, are but for-
agers. Always struggling to find the next grain to ensure our survival. And in sunny days,
we are zealous clerks, delighted with tending the gathered honey. We live obsessed with
climbing up the tower, and our hastily life forgets that our heart craves to go down. Who
among us has still a will to tackle prominent problems? Can we still believe in "greater
questions" or do we deem what was once considered denuding the veils of nature as a
naivety of yore?

We hear the surf of publications waves. Loud, massive, swarming and unimpressive.
Only the simpleminded believe that truth or value can be measured in numbers. We
hear how every day new wonderful groundbreaking discoveries are unclogging the path
to the next technological revolution. We have no use nor need for another quantum-
teleporting-topologically-entangled computer. Nature, Science, Gucci. The anthem of
the vanity fair is too embedded in our ears. We hear the sermons of modern science
preachers... but what is this smell they exhale? Depth, passion, commitment, rigor. They
are all covered in dust. Are we also the last scientists?

The current state of Physics constrains every discussion to be dominated by linguis-
tic traits nowadays. Never before were physicists so thrilled with semantic foreplay. The
hermetic meaningless technicality, the self-referring and inconsistent definitions, the
hunger for abstractedness, chimeraconcepts breeding other chimeraconcepts. What was
once a science concerned with tangible entities has become a grammarian affair. Un-
clear? What does it mean quantum? What does it mean nonclassical? Surely such vo-
cabulary is not unknown to anyone. It is now commonplace how quantum mechanics
is a theory about the material consequences of sentimental indigestions. Vox populi
vox veritatis. "Quantum" has become more than an attribute. It is now a mantra, or
for more sensitive ears, a redundant definite article. Even past our gates, we find con
men, lunatics and mystics selling holistic snake oils and other world panaceas. Decency
has abandoned our domains. We no longer hold anything venerable, much less care for
naming taboos. We would rather face lies, but we have to content ourselves with fairy-
tales told with innocence and paternalistic affection. In our world of today, who does
still deeply believe in science?

We abdicated asceticism for this. To become friendly, proselyte, reputable. A shadow
of what we are supposed to be. We need to recall that there are no shortcuts to truth. Only
serious, devoted, sober, lucid work. We need to acknowledge that candied porridge does
not satiate us. We need to live education as scientific nurture. The futile accumulation
and parroting of encyclopedic knowledge has no room in our vaults. Entertainers no
longer amuse us and we learn nothing from human calculators. For there is only one
thing we can ultimately conceive and value as science: speleology. Everything else is a
mockery, and it should be left untouched. It is our duty, and what a repugnant one, to
dive in the mud to search for the grains of truth. And by doing so, to face the danger of
being nauseated with science.

Xi






ROOTS AND CORE OF QUANTUM
OPTICS

First Myth of Physics: Intuition. What is learned through perception, it is never digested
by the thought. At the dawn of the past century, a new age for physics began that ut-
terly changed the notions about the nature of light and matter, giving birth to a com-
pletely new exotic world. As the revolution took place, manifestos were published. Once
it ended, they metamorphosed into books. These remain mostly unread, only to occa-
sionally whisper their provocative ideas.

Since my initiation, I have encountered two types of books on Quantum Optics: the
prescriptive grammars, usually labeled as "formal", and the romantic novels, labeled as
"intuitive". The first kind spur from authors with ascetic feelings towards mathematics
alongside with a passion for etiquette, while the latter from a fear of mathematics and a
desire for naturalness and connection to the material world. What is often observed in
the first kind, is an obsession with formalism, where field quantization is introduced ad
hoc, and mathematical properties and calculations are listed and derived without any
deep discussion. The biggest danger of this sort of books, and an occasionally recurring
trend in some fields of physics, is the desire to axiomatize physics, making it believe that
the functioning of the entire universe could be derived from pure logic. The implications
of such axiomatization are twofold: the imposition of dogma, where the underlying the-
oretical principles are revealed as divine truth; and the erasing of history. In fact, could
anyone believe in any theory after witnessing its birth? Watching it crawl, gross and
rickety, out of the sludgy chaos of concepts, struggling with constantly new discovered
contradictions? No. It would be impossible.

On the other hand, against my deepest values and prejudices, I have never learned
so much from the second kind. Despite the poor logical structure, depth of analysis, and
unsubstantiated argumentation, had I not come across them, I would probably be more
gullible. To these books, I am also grateful for inciting me in the pursue of the nature of
light and matter, untainted by the urge to accept lesser truths.

The purpose of this work is to clarify several aspects regarding the quantum nature of
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light and matter. From the inclined reader, it is expected familiarity with Quantum Op-
tics, as the discussions exposed require a minimum of knowledge, and an indomitable
will to understand. In the absence of such prerequisites, the content of this thesis will
remain hermetic. For the ink that wrote it carries more than the desire to be read.

1.0.1. QUANTIZATION ABRIDGED
Consider a swinging pendulum in the presence of a gravitational field. The Hamiltonian
describing the system is

2.
S = mTQZ +mgl(1-cos(9)) =

2n1”2L2+%mg192, (L.1)
where the approximation is valid for a small angle 6 in respect to the equilibrium posi-
tion. L is the angular momentum, m is the mass of the pendulum, g the local gravita-
tional acceleration and / the pendulum’s length. Within the approximation taken, the
Hamiltonian of the system corresponds to a harmonic oscillator. Canonical quantiza-
tion [1] dictates that canonical variables must be promoted to operators obeying the
commutation relations [0, L] = i /1. This leads to the Hamiltonian 2 = hw (b b +'/2), with
the pendulum frequency o = \/g/1, 0 =0 zpr(b+b") and L=iLzpr(b' — b), where

n
20 zpp

Ozpr = and Lyzpp= (1.2)

n
2ml't/g
A classical pendulum swings with a precise amplitude and phase of motion determined
by its initial conditions. So what is quantum in the quantum harmonic oscillator? The
excitations. The energy of the resonator is proportional to integers of fiw, and these in-
tegers (the eigenvalues of the number operator b'b) correspond to the number of exci-
tations present in the resonator. Further, the amount of excitations may be not well de-
fined and when measured, the position (or angle, or angular momentum) of the pendu-
lum returns a random outcome dependent on the state of the system. This summarizes
the quantum properties of the pendulum and, as it is widely known, the classical limit
occurs when g — oo, because the position of the pendulum becomes precisely defined.
Nest-ce pas?

Not quite. How does gravity affect quantum mechanics? If the quantum uncertain-
ties associated with the position of the pendulum are to be enhanced, it is best to avoid
gravity and, as implied by 6 zpF, a nearly free fall experiment should display a massive
uncertainty. Thus, put a pendulum inside an elevator, sabotage the hoist, and watch its
quantum nature flower. Although 6 zpr increases with decreasing g, other uncertainties
associated with the energy or angular momentum diverge as g — co. Thus, by travelling
to the closest black-hole, one would recover another fully quantum limit. How is the
interplay between gravity and quantum mechanics then? Obscure.

Banters aside, contemporary General Relativity vs Quantum Mechanics quarrels shall
not be touched upon. The example above serves only to portrait the essence of quantiza-
tion trickery, even though it provides inspiration for the study of fundamental quantum
uncertainties in altered gravity environments. But how to recover the classical dynamics
then? Once the quantum leap has been taken, there is no going back. And is this quan-
tization unique? I.e. are there alternative quantization procedures, and do they lead to
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the same quantum nature for the system? Several distinct quantization methods exist,
but they all suffer from their own pathologies and lack of equivalence between them [2].
Assigning quantum operators to classical variables easily leads to contradictions in the
correspondence [3, 4], for multiparticle systems quantization can lead to a nonbosonic
nature [5, 6], and even to a different spectrum for the harmonic oscillator [6, 7]. But such
pathologies are asymptomatic.

But most importantly: why must the pendular motion be quantized? Why should
the energy of such macroscopic object only take discrete values? Where did such idea
come from? The origins of field quantization began with light, only to spread later to
other forms of oscillations, due to the analogous physical behaviour. To understand the
motivations for this quantization, one needs to look back to the conception of Quantum
Optics. Although revisiting history is frightening and dangerous because it harms the
belief of constant progress, let us nevertheless review the phenomena that triggered the
quantization of the electromagnetic field, and ultimately led to the quantization of every
harmonic oscillator.

1.1. FOUNDING PILLARS OF QUANTUM OPTICS

In this section, the original physical phenomena that led to the idea of an intrinsic dis-
crete nature for the electromagnetic field are dissected in order to recall the necessity of
quantizing light.

1.1.1. COMPTON EFFECT

Almost a century later, the Compton effect is still celebrated as a landmark proof of the
existence of the photon [8], and the reason is simplicity. Compton [9] explains the fre-
quency change of incident radiation in an absurdly simple manner by considering a sin-
gle incident photon hitting an electron at rest, and losing momentum and energy (thus
lowering its frequency) in the process. The price to pay for simplicity is leaving several
apprehensions alive. In 1923, single-photon emitters did not exist, and even if the ra-
diation beam has an arbitrarily low intensity, the radiation field still interacts with the
electron with all the photons supported by the field’s statistics simultaneously. Further,
there is no reason for the photon number to be conserved, and the electron is able to
emit any number of photons during the scattering process. The belief that the Comp-
ton effect is a manifestation of a particle nature for light is solely due to the comparison
with billiards, and to the lack of frequency shift predicted by Thomson scattering. But
like any classical field, the electromagnetic field carries energy and momentum, can ex-
change them with electrons, and scatter them. A photon-free explanation for this fre-
quency shift was obtained by analysing the scattering process via the transition from a
weakly bound state to a free electron state with momentum ik with the Klein-Gordon
equation' and a classical electromagnetic field [10, 11]. The Klein-Nishina formula as
originally derived [12] did also not employ any quantized electromagnetic field. Such
semiclassical explanations have reoccurred decades later [13, 14], and as emphasized
by [13], the success of Compton’s formula comes from the resonant form of the dipolar

I The Dirac equation was not known at the time; Klein-Gordon was the typical procedure for dealing with
relativistic particles.
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interaction, which makes the energy exchange between light and the electron peak at
hw, with 71 entering the formula through the Dirac * equation. Likewise, other scattering
phenomena (such as Bremsstrahlung) say nothing regarding the nature of radiation, and
that holds true for the following effect.

1.1.2. PHOTOELECTRIC EFFECT

Physical concepts do not have definitions, they have existence. And the living proof is
the concept of photon, as the current one hardly shares any lineage with Einstein’s orig-
inal proposal of "spatially discontinuous distributions of energy" for light [15], nor en-
tirely with Dirac’s notion of a photon [1]. At the time, the photoelectric effect posed a
puzzling problem mainly due to the lack of knowledge about the electronic structure of
matter. When a metal is irradiated, electrons are ejected from the metal if the frequency
of the incident radiation is above a characteristic threshold. For any frequency below this
threshold, no photocurrent is created, even if the light intensity is drastically increased
3. On the other hand, increasing the frequency above threshold only leads to an increase
on the number of emitted electrons but not on their average kinetic energy. Further, it
was expected to be a pronounced lag time between the irradiation and the emission,
proportional to the build up energy time, but this time difference is not observed. All
these features led to the proposal of "energy packets" for light [15] as an empirical way
to explain the phenomenon. As time passed and more knowledge over the electronic
behaviour of matter was gained, the "energy-packet" idea was dismissed in favour of a
microscopically distinct model. With the advent of the Schrodinger equation, photoe-
mission was modelled via the electronic transition from a bound state to a free electron
state [16, 17], and treating the electromagnetic field classically. Einstein’s rules for the
photoelectric effect were once more rederived [18], with this formalism where light cou-
ples to matter via the Schrodinger equation cementing the modelling paradigm for pho-
toemission [19, 20]. Despite a general understanding of the photoemission process, a full
dynamical nonperturbative explanation still remains an open problem [21], motivating
other approaches like quantum trajectories [22] and mathematical offshoots featuring
Floquet theory [23].

1.1.3. SPONTANEOUS AND STIMULATED EMISSION AND RELATED EFFECTS

When an atom in vacuum is excited, its excited state is unstable and the atom decays
spontaneously into a lower energy level emitting light with a frequency proportional to
the energy difference between the atomic states. This phenomenon is named sponta-
neous emission and it is responsible for the atomic spectral lines. Despite the ubiquity
of relaxation processes in the macroscopic world, the lack of knowledge on how to in-
troduce decay in atomic systems made spontaneous emission another puzzle. Time-
dependent perturbative QED calculations [24, 25] showed that the decay rate for a sys-
tem in an excited state is proportional to n+1 (with n the photon number), and so when
the light field is in its quantum vacuum state, decay still occurs. As this result does not
hold for a classical field, spontaneous emission became an example of how quantum

2The results have been derived with the Klein-Gordon equation but they still hold for the Dirac equation.
3Except for ultra-intense light, when two photon-absorption can occur and photocurrent can be produced
below threshold.



1.1. FOUNDING PILLARS OF QUANTUM OPTICS 5

fluctuations of the electromagnetic field induce decay [25, 26], and of the necessity of
the photon concept. However, the necessity of quantizing the electromagnetic field was
once more questioned upon the discovery that radiation reaction causes spontaneous
emission [27-30]. Incited by the QED divergence problems and the desire to test the lim-
its of semiclassical approaches, the neoclassical theory launched a review of light-matter
effects by taking the electromagnetic field in the Schrédinger equation to be classical,
and considering the electrical current in Maxwell equations to be the quantum current
foc Im(y* V). Together with the backaction of the electron’s own field, this leads to a
natural decay term for an atom in an excited state, with the same decay rate [27-30] as in
QED (the Einstein’s A coefficient). As noted by [30], it is the selected use of retarded po-
tentials that induces an "arrow of time" and enables the radiative decay. One could then
think that there are two alternative explanations for the same phenomenon, and leading
to the same results. However, the perturbative QED calculations [24, 25] only predict a
transition for short periods of time, and do not guarantee that the system will remain in
the ground state at t — +oc0. As seen from the solution of the Jaynes-Cummings Hamil-
tonian [27], if the atom begins in its excited state and light in vacuum, the system simply
experiences Rabi oscillations, but not irreversible decay. For the irreversibility of the de-
cay process to be captured, the atom has to couple to a densely packed multimode elec-
tromagnetic field reservoir [26]. But in this situation, it is the coupling to all the radiation
modes of the universe that forces the atom to decay, and the nature of the electromag-
netic field is irrelevant.

Another related phenomenon is stimulated emission, where an excited atom decays
to alower energy state in the presence of an applied electromagnetic field, and amplifies
the light in the process. Like all the preceding phenomena, the Maxwell-Schrodinger
equations explain stimulated emission as well as optical nutations [29], and these equa-
tions form the primordial theory modelling the operation of masers [31] and lasers [32].

1.1.4. BLACK-BODY RADIATION

Occasionally, one wonders how the historical succession of scientific discoveries shapes
our perception about the universe, and how that perception would differ had the break-
throughs happened in a different order. Black-body radiation was perhaps a premature
phenomenon under this light. The Planck distribution for black-body radiation is re-
garded as the first evidence supporting the existence of light quanta. Yet, Planck’s origi-
nal idea was connected to "quantum oscillators" for the cavity’s boundaries and not for
the field itself, and the other explanation, stealthy and forsaken, relies on it. In the quan-
tum statistical physics explanation of black-body radiation, light forms a non-interacting
gas, where the interaction with its surroundings plays no role in the thermal state. But it
is only through absorption and emission processes that light reaches its "thermal equi-
librium", and the Planck distribution can be obtained from a detailed balance equation
of the emission and absorption rates [30]. This can be seen from the following simpli-
fied argument of [30]: Consider a set of atoms or molecules interacting with classical
light. For dipolar couplings (E.9?), the resonant interactions occur only when there is a
frequency matching between the electromagnetic field frequency w and the phase fre-
quency €/7 of the electronic dipolar moments (see Eq.(1.5)). Thus, one can simply ap-
proximate the whole system as a set of two-level systems (with a ground state |g) and
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an excited state |e)) that couple only to their corresponding resonant electromagnetic
mode. Equilibrium is obtained by a detailed balance for the transition rates between the
ground and excited states:

0= Aegpe + Begpep(w) _Bgepgp(w); (1.3)
—— -~ _ N
spontaneous emission  stimulated emission absorption

where {pg, p.} are respectively the probabilities of finding an electron in the ground and
excited states, {Bge, Beg, Aegl the Einstein’s coefficients associated with absorption and
spontaneous and stimulated emission, and p(w) the electromagnetic energy density.
With the Fermi golden rule, the absorption rate (x p(w)|{elox|g) 12) is found to be iden-
tical to the stimulated emission rate (o p(w)l(glaxle)lz), and so B,g = Bg,. Further, in
thermal equilibrium, pg = peePé, where ¢ is the energy difference between the ground
and excited states. With the resonant condition, Eq.(1.3) becomes

Aeg 1

Jeg 1 1.4
Beg ePhw —1 (1

plw) =

which is the Bose-Einstein distribution. This illustrates how Planck’s distribution nat-
urally arises from a microscopic equilibrium between light-induced atomic transitions,
making any granularity for light superfluous.

1.1.5. 1057 MHZ

QED is not only about light, but also about its absence. Whenever a quantum field ex-
ists, even if there are no excitations present, it still interacts with the rest of the world.
Such interaction with this new type of vacuum is occasionally blamed for several phe-
nomena, among which the Lamb shift is occasionally found [26, 33]. The Lamb shift
refers to the energy difference between the 2Py, and the 25, states of the hydrogen atom
initially measured by Lamb [34], and it posed a problem to Dirac’s electron theory be-
cause the latter predicts no energy difference between the 2P, and the 25y, states. Since
experiments show that the 25, state is 1057 MHz above the 2Py, state, panic would
have been installed if not for the recollection that much more is present than just an
instantaneous point-like Coulomb potential. Quantum mechanics raised from the ra-
diative consequences of orbiting electrons interacting with their own electromagnetic
field, and so Dirac’s hydrogen spectrum could never be the final prediction, as this inter-
action was not accounted for. The interaction of the electron with its own field gives
rise to self-energy corrections to Dirac’s spectrum, which have been repeatedly eval-
uated [35]. Despite divergence issues, necessity of arbitrary cutoffs or regulators, and
new experimental deviant values [36], the interaction of the electron with its own field is
taken to be the source of the Lamb shift. Electron self-energies already occur classically
[37], they reoccur in the quantum theory for the electron, and they have no connection
to zero-point fluctuations of the electromagnetic field. In any of the self-energy calcu-
lations mentioned [35] was the electromagnetic field ever quantized, but nevertheless
enigmatic "vacuum fluctuations perturbing the position of the electron" [33] have come
to make part of the folklore supporting the existence of photons. But like other spec-
tral corrections testifying in favour of QED, they do it so by supporting Dirac’s electron
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theory rather than defending a particular nature for light. As it was formulated, Dirac’s
theory is simply a field theory for electrons.

Enough with the procession. Effect after effect, it has been clear that the photon
concept is foreign to all of these phenomena, even if they constitute its homeland. If its
genesis was a misconception, how come was it so fruitful? The answer lies in the par-
ticularities of the Schrédinger equation. A widely unnoticed fact is the existence of two
h’s: one arising from the Schrddinger (or Dirac) equation for the electron, and the other
imposed for the electromagnetic field. However, there is nothing dictating a priori that
the de Broglie’s relations should be exactly equal for both matter and light. The resilience
of the photon concept, the reason behind the apparent granularity of light where the en-
ergy of a mode is proportional to its frequency, comes from the condition for resonant
interactions between light and matter. As noted repeatedly (see for example [13]), if an
electronic transition between two states (|1),]2), with an energy difference ¢ between
them) is induced by an electromagnetic field mode of frequency w (and amplitude <)
via the dipolar interaction (in the interaction picture)

Vi=A(ID@lexp| —itt] +12)lexp|i= ] (e + sty e, (1.5)

the resonance condition occurs when € = fiw. This frequency matching condition for
light-induced electronic transitions makes the energy exchange between light and mat-
ter occur in "quanta" of fiw, and it is this resonant feature that perpetuated the idea that
light itself has a dicrete nature whose energy only exists in the form of integers of fiw.
Thus, from the perspective of the neoclassical theory, "photons" arise as a by-product
of an effective field theory of light-matter interaction, and have otherwise no real exis-
tence. But if such misconception has been objected, what else upheld the existence of
photons?

1.2. BLOSSOMING OF QUANTUM OPTICS AND DEBUT OF ITS

OFFSPRING

Truth be told, photons populated the physics folklore since their invention, and it was
the fascination with them that secured them from oblivion. But what made them survive
until today, what is in the heart of Quantum Optics, what lacked in Classical Electrody-
namics and what the neoclassical theory could not provide, is the ability to portrait un-
certainties and correlations for light. If a moment must be marked when Quantum Op-
tics is ripe enough to be deemed needed, that moment is the first* direct observation of
photon-antibunching [40]. The analysis of correlations between the intensity of a light
beam split into two detectors was already a reality [41], but only with the discovery of
anticorrelated intensities, impossible in a classical theory, could Quantum Optics have
a raison d’étre. These experimental observations were complemented with other types
of correlations , such as Bell-like tests with entangled light [42-44]. Further, the analysis
of statistical properties of light gave rise to the observation of uncertainty related effects

41t is sometimes found in the literature that the first observation of antibunching belongs to [38], but as also
noted by [39], no direct measurement of g was performed.
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such as squeezing [45, 46], where the uncertainty of an electromagnetic field quadrature
g was reduced below gzpF, at the expense of increasing the uncertainty on the other
quadrature. Additionally, exotic states of light, such as Fock states [47], and cat-states
[47, 48], were observed experimentally with tomography techniques.

And it is under this auspice that quantum theory reaches its zenith. Incited by its
forerunner’s successes, and dismissing the warnings of the neoclassical theory, the off-
spring of Quantum Optics proliferated into an initially forbidden territory: the land of
things-we-can-see-with-the-naked-eye. As victory was achieved in the microscopic realm,
there could be no reason for not attaining it in the macroscopic realm as well, since the
latter is but a congregation of microscopic realms. And so, mechanics was emphasized
in quantum mechanics, and the quest for phenomena exhibiting macroscopic quantum
behaviour began. Not simply as mere emergent phenomena, but as genuine replicas of
what was once confined to the microscopic world. For this mission, the most elemen-
tary paradigm of all played a central role: the harmonic oscillator. "All that oscillates
has a quantum nature", so is proclaimed. And mechanical resonators, sharing a com-
mon oscillatory nature with light, constitute the primary tool and icon. And with them,
Quantum Optomechanics attempts to conquer a seat for itself, in a territory where the 7,
the superposition principle for probability amplitudes, and other related weaponry of its
electrical ancestor are not immediately guaranteed. What led to the quantization of mo-
tion in mechanical resonators (like the quantization of any other form of oscillator) was
the view that if, just like light, other bodies have an oscillatory nature, the quantization
applied to light must also be applied to them. This forms essentially a speculation about
the nature of mechanical motion. As light and mechanical motion have fundamentally
different attributes, such quantized nature should not be taken for granted.

And this is how we have come to Quantum Optomechanics, where the quantum na-
ture of both light and mechanical motion can be tested in systems coupling optical cav-
ities to mechanical resonators. But what effects were observed in these systems that
allude to a quantum nature? A non-exhaustive list [49, 50] includes: observation of shot
noise in position sensing [51, 52], thus reaching the standard quantum limit (SQL); push-
ing the boundary further, SQL was passed [53], leading to detection sensitivites no longer
limited by quantum fluctuations. Such feat is essentially possible because of squeezing.
Reducing the uncertainty of the resonator’s position (or of any other quadrature) is al-
ready a reality [54, 55] and it implies a manipulation of the resonator state. State manip-
ulation has also been achieved in electromechanics, where mechanical and microwave
resonators have been entangled [56], and displayed anticorrelations in the measurement
of the quadrature fields. Further, transferring the (coherent) state of microwaves to the
mechanical resonator and back has also been achieved [57], being dubbed "coherent
quantum state transfer", and later extended to the optical domain. It was also observed
in these systems that the optical (or microwave) sidebands created by the mechanical
element were asymmetric [58-62], which has been attributed to quantum fluctuations.

In the meantime, other observed effects can be included in this list, such as phonon
antibunching [63], where intensity anti-correlations were measured after swapping the
light state with the mechanical state. Additionally, claims of direct phonon Fock state
measurement [64] have also been made. The nature of (most of) these effects will be
discussed in more detail in the following chapters, but for the moment a more pertinent
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question arises: How does light couple to mechanical motion? To answer it, one needs 1
to dive in the core of Optomechanics.

1.3. QUANTUM OPTOMECHANICS

1.3.1. OPTICAL CAVITIES AND THE NATURE OF PHOTONS
The energy of the electromagnetic field stored inside an optical cavity is given by

€ - -
Jt?:f5(||E||2+02||B||2)d3r, (1.6)

where € is the electric permittivity, ¢ the speed of light, and E (B) the electric (magnetic)
field. As the fields only exist inside the cavity, the boundary conditions lead to a set of
discrete modes. In a certain sense, this is a first quantization of the electromagnetic
field, since the field cannot have arbitrary wavelenghts but only the allowed discrete set
of wavelengths. This "quantization" arises from the imposed boundary conditions and
it is essentially, geometric. But so it is with all quantizations.

From Maxwell’s equations, one obtains the dispersion relation wy = |k|c, where k
is the angular wavenumber, wy the angular frequency, and c the light speed. The ge-
ometry of the cavity will only affect the spatial distribution of the mode and it has no
consequences for the second quantization procedure. Decomposing the electric and
magnetic fields as

E(,0=—ic} |klsty e/ KT-keD é’g# -c.c., )
o ’
Bro=iy ket Mei(k.?fkct) éﬁ-ﬂ —c.c., (1.8)
ot ’

where k labels the mode, u the polarization, </ the complex amplitude of the fields, and
{é’gu, ééﬂ, k} form an orthogonal basis, one arrives at the Hamiltonian
_ Vol 7112 2
Ho=2—"2 IIkI’Is; ,I*. (1.9)
U o '

For simplicity, it is best to work with the rescaled variables g, = \/ 2€C||k||Vol-Q¢k u In
classical electrodynamics, the amplitude and phase of a field are always well-defined.
If there are uncertainties associated with the amplitude and phase of a field, then we
must endow the phase space with a probability distribution Q, so that the average energy
becomes

() = Zwkﬁamz(g(ah,agﬂ) dzam. (1.10)
Fo ’

Furthermore, the entire phase space can be covered with a countable set of concentric
rings, i.e. a set of normalized functions strongly localized around a given anullar region
in the complex plane, and decompose any function as a combination of the functions of

2
this set. This idea is illustrated in Fig.1.1 for the set of functions {% e"“'Z} .
: n
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2n 2
Figure 1.1: Decomposition of phase-space with the set of funtions {%e““' }n

So far the description was solely for a classical probability distribution. In quantum
theory, two distinct points in phase space do not correspond to disjoint events, differen-
tiating Q from a true probability distribution function. Additionally, in quantum theory,
the basic block is the probability amplitude, i.e. a square integrable complex function ¥
containing all the information about the statistical properties of the system. In classical
physics, if a field does not have a well-defined amplitude and phase, field correlations are
obtained with the sum over the probabilities of finding the field at a given configuration,
whereas in a quantum framework it is the probability amplitudes that are summed in-
stead. Building on the procedure above, any probability amplitude can be decomposed
in a basis {®,}, and factoring out the integration weight e1*" (Q = e71%|y|2), y can be

decomposed in the {(bn = ;TL} basis. It is straightforward to see that transitions be-

n!
tween the basis’ functions are accomplished via a¢,, = vVn+ 1¢ 41 and 04¢p, = vVid,-1.
With these, raising and lowering operators can be defined with the identification a' =
and a = d,. The factorization Q = e""“zq/*w is done such that v is solely a function of «,
and so the average energy for a single mode and polarization (see Eq.(1.10)) is

(F6) = wf la2e 1 y* (@) y () dPa = wf ey ady d2a + ..., (1.11)

where partial integration was used, and zero-point contributions discarded. It is now
natural to introduce an operator language. If (/) is the average energy, and if the aver-
age value of an observable @ is given by [ e™1®"y*Gy d2a (& is the operator represent-
ing the observable), then Eq.(1.11) implies that the Hamiltonian operator is # = wad, =
wa'a, which is the "second-quantized" version of the harmonic oscillator Hamiltonian.
Using the Poisson bracket and the complex coordinates (a,a*) to describe the time-
evolution of i, one arrives at

diy = —iwadey = iy, (1.12)

which corresponds to the Schrodinger equation for the harmonic oscillator. This rep-
resentation for the state v is called the Bargmann representation, and Q is called the
Husimi Q-function. Despite the resemblance of this form of quantum mechanics to a
classical statistical theory, the connection is however deceitful. This procedure does not
immediately generalize to other Hamiltonians unless additional rules are provided, such
as replacing the multiplication operation by the Moyal product.

Still, this provides the best position to understand the nature of Quantum Optics. The
function ¢, = % is commonly named "one photon", and the function ¢, is named "n



1.3. QUANTUM OPTOMECHANICS 11

photons". And it is this the nature of photons: they are simply a basis for the functions
describing uncertainties of the amplitude and phase of a field mode. Photons have as
much physical meaning as a set of coordinates. The "granularity" of the electromagnetic
field is nothing more than the discreteness of the basis covering the phase space for the
field’s complex amplitude. Thus, photons do not travel, because photons do not have an
existence in real-space. Only the electromagnetic field can propagate. Photons do not
bounce at reflecting surfaces, do not choose paths and do not behave as particles be-
cause photons do not have any existence outside the quasiprobability realm from which
they are bound to. Having clarified the quantum nature of light, let us proceed to the
coupling to a mechanical element.

1.3.2. STANDARD OPTOMECHANICS

As previously mentioned, the electromagnetic field carries momentum, and so mechan-
ical motion can be induced by the radiation pressure force. To obtain this form of light-
matter interaction, consider the case of a standard Fabry-Pérot cavity where one of the
end-mirrors of the cavity can move in a direction perpendicular to the cavity electro-
magnetic fields (see Fig. 1.2).

< Oscillating
* end-mirror
Laser input

N

Optical cavity

Figure 1.2: Standard optomechanical system composed by an optical cavity and an oscillating end-mirror.

The Hamiltonian is now

€Vor fL”“” B2, 2B
S = E|I*+c°l|Bl|*|dx, 1.13
o) (WEE+cuBIe) (1.13)

where V,; is the rest volume of the cavity, and X the displacement of the end-mirror. If
X is small in comparison to the unperturbed cavity length L, one can expand the energy
in powers of X/L. Using the mode decomposition of Egs. (1.7,1.8) for the unperturbed
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cavity, the interaction becomes

Hint = 2e¢* w;? 2 (kk1+ kk’)Re{deg,,ﬂe"'“’“"'k")” —d%,ud,;,‘ﬂe_i('k'”k,')”} :
&k

(1.14)
If like the electromagnetic field, the position and momentum of the mirror are not pre-
cisely defined, the phase-space formulation must be extended to include the motional
degrees of freedom. In a quantum framework, this is equivalent to bestow a wavefunc-
tion to the mechanical element (the moving mirror), namely a wavefunction for the cen-
tre of mass motion. In Optomechanics, this mechanical element is often a resonator,
and so one can directly use the known operator formalism for this situation, and quan-
tize this system of two interacting harmonic oscillators.

Optical frequencies are several orders of magnitude larger than any mechanical fre-
quency, and so the last terms of the interaction in Eq.(1.14) provide rather fast rotating
contributions (thus negligible). If the free spectral range is also much larger than the
mechanical frequency, then the interaction between different modes is also far from res-
onance and it can be disregarded as well. Considering a single optical mode, the fully
quantized Hamiltonian of Optomechanics becomes

Jﬁ:wCaTa+QbTb+g0aTa(b+bT). (1.15)

The static terms of the Poynting vector at x = L are proportional to the force created by
the interaction in Eq.(1.15), and it is because of it that this form of coupling is named
as "radiation pressure" interaction. However, other forms of interaction are possible.
If the free spectral range matches the mechanical frequency for any pair of modes, the
effective Hamiltonian (i.e. the Hamiltonian keeping only the resonant interactions) is
the two-mode parametric amplifier Hamiltonian

H = wla’{al + wga;ag +Qb b+ g(a{agb+ bTa;'al). (1.16)

1.3.3. ELECTROMECHANICS

Apart from the free radiation field, electrical excitations in LC circuits have also been
tainted by quantization. Since a circuit composed by a capacitor and an inductor forms
an electric harmonic oscillator, with the advent of second quantization, its nature was
promptly deemed quantum. One particular point of view is that the electric circuit pro-
duces oscillating electric and magnetic fields, not differing from the oscillating electric
and magnetic fields of light inside a cavity [65]. The quantization of LC circuits can
be done using different possible combinations of generalized coordinates, namely the
charge Q or the voltage V of the capacitor and the current I or the magnetic flux ®
through the inductor. The choices are (Q,®) or (V, I), but in order to relate properly to
the free electromagnetic field, only electric or magnetic field variables should be chosen.
For an infinitely long cylindrical inductor, the magnetic field B inside the coil is spatially
uniform, as it is the electrical field E between the plates of a parallel plate capacitor. Like
for optical cavities, the particular shape of the circuit elements is not relevant for the
quantization, and the choice is made due to the simplicity. Using the relation between
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the variables (V, @) and the electrical and magnetic fields, the Hamiltonian can be writ-
ten as

O c = EWB2+56VW,,E2, (1.17)
where V;,4 is the volume encapsulated by the inductor, N the number ofloops and V.4,
the volume between the capacitor plates. This choice of variables renders the compari-
son quite instructive and reveals that (apart from the N? factor) the stored electromag-
netic field energy is the same as for light stored inside a cavity. And so, coincidently, the
quantum excitations of the LC turn out to be of the same nature as the free radiation field

ones. Using
R n R h
B OIC a+ahy ,  B=nNyEEYLCi 4t ), (1.18)
2eVeap 2Vind

where wj is the resonant frequency of the circuit, the quantized Hamiltonian becomes
7 = hwca'a. This shows that not only do the excitations in the LC circuit have the
same nature has the optical modes in a cavity, but also that the only electromagnetic
mode possible in a LC circuit is an electromagnetic mode with null momentum (hence
the lack of several modes and polarisation, as well as the spatially uniformity of the
fields). But by only employing the electric and magnetic fields, one thing was forgotten:
electric charges and currents also participate in the motion. In this second-quantized

picture, the charge at the capacitor plates is Q =/ hngOu: (a+ a'), which does not have a
discrete spectrum of eigenvalues. Thus, although we are in possession of a fully quantum
theory, the charged particles at the capacitor never have a discrete nature. This poses a
question over the validity of this quantization, and the connection to a microscopic de-
scription in terms of electrons. L.e., there should be a regime where the discrete nature
of the electric charge plays a role, and a quantum theory for such situation should be
fundamentally different. A particular situation of interest clarifying this point would be
a LC coupled in series to a single-electron transistor such that only one electron could
hop to the capacitor.

Identically to the optical case, mechanical resonators can also be coupled to LC cir-
cuits, as depicted in Fig. 1.3. In these electromechanical systems, the coupling of the LC-
resonator to a mechanical element is achieved by enabling one of the capacitor plates
to move by using a drum as a capacitor plate. As the capacitor plate vibrates, the ca-
pacitance changes, and so does the energy and resonant frequency of the circuit. For a
parallel plate capacitor, V.4, = S(dp + x(1)), where S is the plate surface area, dy the rest
distance between the plates, and x(¢) the plate displacement. With the same quantiza-
tion procedures, this capacitive coupling leads to the Hamiltonian

Hsys=wea a+Qb'b+gola+ah? (b +b), (1.19)

where go = %x zpMm- As a side note, this interaction is exactly linearly dependent on the
displacement, in the sense that it does not matter if the displacement is large or small
in comparison to dy, the coupling is still proportional to x, contrary to standard op-
tomechanical cavities. Electromechanical systems are often seen as a different physical
realization of optomechanical systems but sharing the same physics, i.e. as 2 harmonic
oscillators that couple via "radiation pressure". This is true for most situations, but the
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— R

Figure 1.3: Schematics of an electromechanical system, where one of the capacitor’s plates is a mechanical
oscillator.

nature of the coupling mechanism is quite different. Specifically, the LC frequency is
typically much larger than all other parameters, and so within RWA (rotating wave ap-
proximation), the "radiation pressure interaction" ata(b+ bh) is the strongest form of
the interaction. However, the true form of the interaction depends directly on the elec-
tric field intensity instead of the photon number. If the cavity frequency approaches the
mechanical frequency (Q ~ 2w1c), the effective interaction is essentially an electrome-
chanical implementation of the degenerate parametric amplifier

erff:wcaTa+QbTb+g0(aabT+aTaTb). (1.20)

This represents a new and unexplored regime for electromechanics, to be discussed in
Section 3.2.

1.3.4. QUADRATIC COUPLINGS
The interaction between light (or electric excitations) and motion is strongly dependent
on the geometry of the system. So far the coupling forms presented are linear in dis-
placement, but more exotic couplings can be achieved by strategically placing the me-
chanical element. The most common strategy to achieve this is to place the resonator at
a symmetry point of the optical cavity, such as a node or an antinode (see Fig. 1.4).
At the symmetry points, the linear coupling vanishes, and the resulting interaction is
quadratic in displacement (quartic couplings have also been proposed by an additional
tilting of the membrane [66]). To illustrate how this quadratic coupling arises, con-
sider the related example of levitated nanoparticles inside an optical cavity. Any phys-
ical object is composed by a myriad of atoms and its subatomic constituents, and the
Schrédinger equation for a quantum system composed by N particles is
N (—ihV:)2
idey (R, F) = | Y (m—v{)
j=1

+ 3 V(T =) + Voxt | W (1,0 ), (1.21)

2mj 7

where V(F; — 7)) is the interparticle potential between particle j and [, while Vey; is an
external potential. Changing to the relative coordenates g, = 7, — 7,41 and to the centre
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> Oscillating membrane

=

Laser input \/ / \/ Output
e J
2

Optical cavity

Figure 1.4: Example of a membrane-in-the-middle gemoetry. Placing a dielectric membrane in a cavity node
leads to a coupling quadratic in displacement.

of mass coordinate R, the centre of mass motion decouples from the internal dynamics.
Naming ¢ the wavefunction for the centre of mass motion, and factorizing it in Eq.(1.21),
the Schrédinger equation becomes

id,p(R) = + Vert(R) | p(R), (1.22)

(ihVg)?
2M

where M is the reduced mass. It is the wavefunction ¢ that represents the state of the
nanoparticle (i.e. the centre of mass motion of the particle), and only the centre of mass
motion is of interest here. To trap the nanoparticle, the external potential is created by an
optical tweezer which creates a potential well for the particle. Treating the electromag-
netic field of the optical tweezer as a classical Gaussian beam, the electric field intensity
(in polar coordinates) is given by

ZW(;* 5 _ 2Wgkp)?

1(p,2) = ||EO||2( e Wi (1.23)

k? Wé +4z2

where Wj is the beam waist, Ej the electric field amplitude, and k the wavevector. The
interaction of the optical tweezer with the levitating nanoparticle is a dielectric interac-
tion, with the average energy

Verr) = - [ aRigR fB . dpdzereol(p, 2, (1.24)

where ¢, is the dimensionless dielectric permittivity, and B(R) the volume of the particle.
Considering a point-like particle (i.e. B(R) is small enough such that the field intensity
is almost constant throughout the nanoparticle), the average energy becomes

(Verr) = —€r€0 Vi f p@BPIRER, (1.25)
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where Vp is the particle’s volume. Note also that the x, y, z coordinates decouple and so
the motion is independent along each direction. Furthermore, Ve, ; has a potential min-
imum at the origin, and when the particle is well-trapped (i.e. the average displacement
is small in comparison to W), Eq.(1.23) can be expanded in powers of p. Considering
only a single direction (for e.g. x), the Schrédinger equation reads

K2 2Vp
T2

idp(x) = —m0i+€re‘olll_§0|l2 x| Ppx). (1.26)

0

This shows that the trapped nanoparticle behaves like a harmonic oscillator whose fre-
quency can be tuned by the laser intensity and spatial profile. Moreover, for this form of
interaction to be valid and nontrivial, the amplitude of motion must be larger than the
particle’s size. One can now use the operator language from second quantization, even
though the quantum excitations for this effective harmonic oscillator are not phonons.
This effective mechanical oscillator can be coupled to light by trapping the particle in-
side an optical cavity. If the cavity is aligned perpendicular to the tweezer, then EO.EM,, =
0 ensures that there is no direct coupling between the cavity and the optical tweezer, and
the only surviving coupling is the coupling between the cavity mode and the particle due
to its dielectric nature, namely

(V)= f dR|pR)? fB (R_)d?(l—er)eo||E"m(f)||2. (1.27)

Using the same point-like approximation (now meaning that the cavity wavelength is
large in comparison to the particle’s size; analogous to the long-wavelength/dipole ap-
proximation in cavity QED) the potential becomes

Vi (R) = (1—€.)eo VBl Ecan (R (1.28)

Quantizing the electromagnetic field inside the cavity (and considering a Fabry-Pérot as
before) leads to

hwk

(1-e€r)Vp(ag,—al )?sin’(kx), (1.29)

Vot () ==Y b

k,,uz cav

where k = %, with L the cavity length. In physical implementations, cavity frequen-
cies are at least a few THz, which is several orders of magnitude higher than any other
characteristic frequency of the system. This implies that from (a,, — az M)Z only the slow

oscillating terms (2a’a + 1) govern the interaction. For small displacements, sin®(kx)
can be expanded in powers of x, which in general renders the standard optomechanical
interaction. However, if the centre of the beam is located at a node/antinode of the cav-
ity (x = {%m, Tim+ '2)}, respectively), the linear interaction vanishes and the coupling
becomes quadratic in displacement. Taking just one cavity mode into consideration, the
resulting interaction becomes

H=wca'a+Qb'b+y@ a+'L)(b+b)?, (1.30)
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where + refers to the node/anti-node situation, and

2
Ve X
B ZzPm 3 (1.31)

Veav c? .

x=(€r—1)

Additionally, for the anti-node situation, the cavity frequency has as additional contri-
bution of y/2. Due to stability reasons, and because dielectric particles also provide a
dissipation channel for light, it is better to place the nanoparticle around a node. The
quantum effects enabled by this type of coupling will be addressed in Section 3.4.

With the knowledge of the interaction between light and motion, the analysis of the
quantum effects present in these systems can now begin. The following chapters are
the product of the research path pursued, and apart from sporadic discussions aimed at
introducing the work in a wider context (which specify what is reviewed, with references
to the relevant literature), they strictly contain independent and original work.







WHAT IS AND WHAT IS NOT
QUANTUM

The question of whether a given phenomenon has a quantum nature is essentially a lin-
guistic matter. It is the act of a new language attempting to exert its supremacy over a
preexisting one. The interest is not to endow the old language with abilities to better de-
scribe newly discovered phenomena, but to denigrate it for its aphasia. Several features
of quantum mechanics, such as squeezing and uncertainty principles, entanglement,
and correlations, are often taken to be quantum properties/effects an sich. Such views
arise from the fact that a classical formalism is often not equipped with tools allowing it
to deal with uncertainties regarding the state of the fields involved. Thus, in most situ-
ations, the quantum-classical comparison is absurd because the classical theory cannot
answer certain type of questions. In order to be able to make a proper comparison, one
has to endow a classical theory with a classical probability distribution for the compari-
son to be done properly.

2.1. CONSEQUENCES OF DYNAMICAL STATISTICAL THEORY

To construct a classical statistical field theory, the phase-space must be dressed with a
probability distribution P, and random variables must be assigned to classical degrees
of freedom. There are two possible prescriptions: the random variables evolve like the
classical degrees of freedom (i.e. for a Hamiltonian system, the time evolution is given by
the Poisson bracket {.,.}) and expected values are computed given the initial probability
distribution of the random variable; or it is the probability distribution that evolves in
time while the random variable remains static. As the two descriptions must produce
the same outcomes, i.e. for any random variable A(Q,P) ((Q, P) denote position and

19
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momentum, but the following holds for any kind of conjugate phase-space variables),
(d:AQ,P)) = f dQdPd;A(Q,P)P(Q,P) = f dQdP{A(Q,P), #}P(Q,P) =

- f dQAP A(Q, P)(~{P(Q, P), 7)) = f dQAP AQ, PYAP(Q,P), (2.1)

and so the time-evolution for the probability distribution is given by d;,P = —{P, #}.
These two possible descriptions (use of the dynamical random variables or the time-
evolving probability distribution) have a striking connection to the Heisenberg picture
and density matrix approach of quantum mechanics (respectively). Aided by this com-
parison, and because the probability distribution P provides knowledge about every
property of the system, P’ shall henceforth be designated by the "state" of the system.
Thus, P plays the classical role of quantum mechanical quasiprobability distributions
such as the Husimi, Wigner or Sudarshan functions.

In order to determine what type of phenomena can now be described with a stochas-
tic formulation, lets us consider the case of two coupled harmonic oscillators. Linearly
coupled harmonic oscillators are not only an instructive example due to its simplicity,
but they also constitute the backbone of many current physical devices probing quan-
tum mechanics at a macroscopic scale [45, 54, 55, 57]. Although physical implementa-
tions may differ (i.e. the oscillators may be not only mechanical resonators but also LC
circuits or electromagnetic modes inside an optical cavity), the nature of harmonic os-
cillators and the type of effects observed are universal, and so one can address the more
abstract general case. If the positions Q; or momenta P; of a pair of oscillators are not
precisely known and one wishes to make (statistical) predictions about the system, it is
necessary to equip classical mechanics with a probability distribution P(Qy, Q2, Py, P2) :
R?? x R?? — R representing these uncertainties. For simplicity, only the d = 1 case is
considered. Instead of working in the (Q, P) phase-space, it is also possible to work in

the complex plane instead, by making the change of variables Q = \/zerw(c +¢*) and

P =,/%%i(c* - ), or to use the rescaled coordinates g = Re{c} and p = Imf{c}. For two
linearly coupled harmonic oscillators, the Hamiltonian can be written as

7€ =w(p} +q7) + QP+ q5) + 28102, (2.2)

where w and Q are the resonators’ frequencies and g a coupling parameter. The time-
evolution for the probability distribution can be written as

0,P=—{P, 7} =x"M©O,)P, 2.3)

where xT = [q1 p1 g2 p2], 00T =[04, 0p, 04, 0p,], T represents the trans-
pose, and

0 w 0 g
-o 0 0 0

M= 0 g 0 Q (2.4)
0 0 -Q o0

To solve Eq.(2.3), it is useful to make a change of variables. Since the equation could
be brought to a quadratic form, a linear transformation y = Rx suffices (where y” =
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[u- v- us vi]). Usingthat (0y) = RT(Oy), the time-evolution becomes
o,P=y"(R"HT MR (8,)P. (2.5)

The simplest and most interesting situation occurs when w = Q, and for this case, the use
of symmetric and anti-symmetric combinations of the positions and momenta leads to

1 0 -1 O
mf iy
01 O 1
which decouples the dynamics into
4P = Q- Qu 0, ~Qv_0y +(@Q+gu.d,, - Qv |P. @7
Defining Qs = Qy/1+ £ and vy = by/1+ &, Eq.(2.7) can be written as
AP =Q_(u_0y —b_0, )P+Qy (s 0p, — by0u,)P. 2.8)

Using the coordinates accompanying the motion of the resonators instead of the static
phase-space coordinates (¢, b) immediately solves Eq.(2.8). L.e. by using (U(#), B(?)),
where

Ui (t) = urcos(Qit) — by sin(Q4 1), Bi(t) = by cos(Qqi 1) + uy sin(Qy 1), (2.9)

Eq.(2.8) becomes 0P = 0. Therefore, the coordinates {U;(t), Bj()} fully describe the
stochastic dynamics. For small coupling values (g <« Q), the time-evolution of the posi-
tions and momenta of the resonators becomes

t t
(D) = (U + Us) (1) = g1 cos(Q1) cos (%) — gosin(Q0) sin(‘%)

+p1 [% cos(Q1) sin(%) —sin(Q1) cos (g_t)] + p2 [% sin(Q¢) cos (g?t) —cos(Q1) sin(%)] ,

2
(2.10)

p1(t) = (\ /11— %Bl +4/1+ éBg)(t) = p1 cos(Q1) cos(g?t) — p2sin(Q1) sin(g?t)

+q [ sin(Q1) COS(%[) + % cos(Q1) Sin(g?t)] +4q2 [ cos(Q1) sin(g?t) + % sin(Q1) cos(g?t)] ,
(2.11)

with an analogous relation for (¢, p2) obtained by interchanging the indices 1 < 2. The
knowledge about the stochastic dynamics enables the direct comparison with the ob-
served phenomena by evaluating the evolution of the probability distribution or any ex-
pectation value of an observable. Before proceeding, one should always have in mind
that physical theories cannot be directly derived from experiment. Given an experimen-
tal observation of a certain effect, there is not necessarily a single theory describing it,
and any theoretical interpretation of an experimental observation is always an embel-
lishment of the factum brutum.
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2.1.1. STATE TRANSFER
The goal of quantum engineering is the complete control of the quantum state of a sys-
tem. If creating a particular quantum state in a given system is difficult, an alternative
method is to transfer that quantum state from one system to another. State transfer has
already been realized in optomechanics [57], where Gaussian states were transferred
from one resonator to another. Such feat has been flagged as a landmark in the list of
quantum effects in optomechanics [49], but what makes state transfer a quantum effect?
Consider the case of two resonators in an arbitrary disentangled state (i.e. the total
probability distribution representing the system factorizes in a product of two probabil-
ity distributions, each representing a single oscillator), then

[FD(qu pl; qZI pz; r= 0) = Pl(ql;plr r= 0) PZ(qZJ pZ) t:O)) (2-12)

and P(q1,p1, 92, p2, 0) =Pi(q1(0), p1(0)P2(q2(1), p2(1)), (2.13)

with (g, p;) given by Egs. (2.10,2.11). After a period of T, such that QT = 27 (n £ '/s) and
gT =2n(n' ¥'%) (with n,n’ € Z), q1(T) = g2(0), p1(T) = p»(0) and vice-versa, and the
state of the system becomes

P(q1, p1, G2, p2, t=T) =P1(q2, p2, t =0)P2(q1, p1, £ =0), (2.14)

meaning that after a time T, the probability distribution for resonator 2 is [}, and for
resonator 1is P,. Eq.(2.14) describes the effect of the state of the oscillator 1 being trans-
ferred to oscillator 2 and vice-versa. Therefore, the statistics of any measurement of res-
onator 1 will be faithfully reproduced for resonator 2. Consequently, state transfer is a
simple consequence of the interaction and it has no quantum features.

2.1.2. SQUEEZING

The fact that quantum mechanics naturally features uncertainties puts it in the front
line when it comes for systems requiring precision measurements. A lot of attention has
been devoted to precise position measurements, and the inevitable intrinsic quantum
uncertainties have triggered strategies to manipulate noise and reduce the imprecision
beyond the standard quantum limit.

Whether working or not in a quantum framework, uncertainties in the measurement
of a given observable are ultimately characterized by its variance. Another consequence
of the interaction in this stochastic framework is that the quadratures’ variance is no
longer constant in time. Consider that the system starts in the state

P(q1,p1, 92, p2, t =0) = G(q1) G(q2) G(p1) G(p2), (2.15)

where G(x) is a Gaussian probability distribution centred around the origin and with
variance §2. The interest now lies in what happens to one of the resonators (say res-
onator 1) after n, oscillation cycles (i.e. Qt = 27n.), and not to the evolution of the
whole system. Thus, the quantity of interest is the state of resonator 1, given by

Pl(ﬂl;Pl,t) :[quIdpz[FD(thl;quPZyt)- (216)
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Egs. (2.10-2.11), together with Eq.(2.16) lead to

Pl(thl,t= (2.17)

Znnc)~ L [_aitri+Gapising
Q 2162 252 '

where ¢ = Zn% n¢. Eq.(2.17) represents a deformed Gaussian (its level curves are ellipses)
centred around the origin, squeezed along \%2 (g1 + p1) and distended along \/ié (g1 - p1)-

This squeezing is immediately visible from the variance of the quadratures y = \/% (g1 —

p1) and z = \%(6]1 + p1), given by

£
2Q

sing),  Var(z) =52(1—%sin¢). (2.18)

Var(y) = 52(1 +
This effect of decreasing the variance of a quadrature while enlarging the variance of
the conjugate one is what is generally called squeezing. Squeezing is often considered a
nonclassical macroscopic quantum effect [45], but its nature is devoid of any quantum
properties. What is observed experimentally is an uncertainty trade between conjugate
variables (the quadratures in [45, 54, 55]), which is fully characterized by changes in the
variance as displayed in Eq.(2.18). Thus, squeezing is a simple consequence of the in-
teraction in a stochastic framework, and does not possess an intrinsic quantum nature.
Further, as far as linear couplings are concerned, the degree of squeezing is the same as
in the respective quantum theory.

2.1.3. ENTANGLEMENT

Einstein’s ghost wanders restlessly. It has become a widespread petty jest the "demon-
stration of his mistakes". He can never regain peace, but we can regain clarity. What be-
gan as an alert to certain counter-intuitive consequences of quantum mechanics, ended
up in drawing the line where Physics acquires unjustified spiritistic hues. The term "en-
tanglement" is often used to refer to the property that the outcome of the measurement
of an observable A is deterministic, once the random outcome of a previous measure-
ment of B is known (and where A and B are observables of distinct elements). But what
is the nature of entanglement?

To answer this question, consider the case where the initial state of resonator 1 is a
Gaussian distribution of width p centred around the origin, while the state of resonator
2 is a precisely defined ¢ at (g2, p2) = (X, 0). After n, resonator cycles [with ne = %), the
state of the system is

1 - p2)?+ (p1+ q2)?
P(q1, 42, 1, p2) = —6(q2 = p1 = X)8(q + po) Exp _ @z pe) * (Pt Go) ] (2.19)

0 40?
where terms of the order g/Q were disregarded. The statistical properties between the
random variables can be characterized by the Pearson correlation coefficient PCC(x, y) =
%W, where o (x) is the standard deviation and CoVar the covariance between the
2 variables. The values for PCC are displayed in Table 2.1, where it can be seen that
PCC = -1 for (q1, p2) and (g2, p1)-
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PCCxy) | q1 | g2 | p1 | p2
7 1]o0]0]|-1
A 01 ]-1]0
P1 0 -1 1 0
P T]0 0|1

Table 2.1: Covariance matrix for the state in Eq. (2.19). The entries in the antidiagonal have a negative Pearson
correlation coefficient, characteristic of anti-correlations between entangled quadratures.

The anticorrelations portrayed in Table 2.1 describe the experimental entanglement
results of [56]. The significance of this perfect linear anticorrelation is that when the sys-
tem reaches the state in Eq.(2.19), if p; is measured, the outcome will be a completely
random value. Once the measurement of p; is done, its momentum is determined, and
the position of resonator 2 is automatically fixed. Thus, if the random outcome of mea-
suring the momentum of resonator 1 (p;) is P, then the outcome of measuring the posi-
tion of resonator 2 is X + P with absolute certainty (see Eq.(2.19)). Then p; and g» fulfill
the condition to be considered entangled. The nature of entanglement between two
random variables (x, y) arises from the fact that the probability distribution P(x, y) de-
scribing the state of the system cannot be factorized into P; (x)P2(y). Thus entanglement
occurs because (x, y) are no longer independent random variables, and the physical ori-
gin for the loss of independence is the interaction between the resonators in a classical
statistical description.

From this stochastic formalism, it follows an important consequence: even if the
interaction is turned off at a given moment and the resonators are separated miles away,
as long as the state is not perturbed, the anticorrelations still persist. If the position of
resonator 1 is measured, then the momentum of resonator 2 is determined, and if the
positions of both resonators are measured, it is possible to determine the positions and
momenta of both resonators with complete precision. As the position operators of the 2
resonators commute, this set of commuting observables could determine the state of the
system precisely, which from a quantum point of view, contradicts the complementarity
between position and momentum operators.

This form of the EPR paradox has been subject to experimental tests under the fash-
ionable form of inequality violations [68—70]. These violations are based on the premise
that when the product [71] or the sum [72, 73] of the variances of entangled variables are
below the zero-point uncertainty limit, then the variables must be entangled. It is also
assumed that the entanglement criterion requires the negativity of a quasi-probability
distribution [73] (the &2 function in these cases), and because of that negativity, the mea-
sured correlations have been deemed nonclassical [68]. However, analogous inequalities
have been derived for particles undergoing Brownian motion [74], and it was shown that
a form of classical entanglement was possible for this situation.

One of the quantum inequalities between entangled quadratures reads [72]:

Var(qgi+q2) +Var(pr —p2) =2. (2.20)
For the state in Eq.(2.19),

Var(qi+q2) + Var(py — p2) =20° <2 , forp<l1. (2.21)
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Thus, not only the inequality can be violated in a classical context (thus making any
claim of nonclassicality absurd), but it can also be violated for disentangled pairs of
quadratures ({q1, g2} and {p1, p2}). The meaning of Eq.(2.20) is that the uncertainties
for q1 + g2 and p; — p, are below the zero-point uncertainty. From a classical point of
view, concepts like intrinsic quantum noise, standard quantum limit or zero-point un-
certainty are not a necessity nor a limitation, and classical states with low variance can
easily break this kind of inequalities. Inequalities derived solely from a quantum formal-
ism give plenty of room for classical violations, which make this type of experimental
violations meaningless.

There are some subtleties around the EPR paradox and its implications for physical
measurements, namely regarding locality. The assumption of locality means that if at
the time of the measurement the two subsystems no longer interact, no real change can
take place in the second system in consequence of anything that may be done to the first
system. Even if such assumption is maintained (which does not need to be the case in a
stochastic framework), the consequences for measurement correlations are null.

If the system is prepared in the state given in Eq.(2.19), performing a measurement
in one of the resonators affects the outcomes of the measurements for the other, even
if they no longer interact. This change in the outcome probability as a consequence of
the measurement does not imply that a real change has taken place in the system, only
that one has gained additional information about the system. Once the measurement is
performed, there is a refinement of information over the state of the system, hence the
correlations.

Any apparent disagreement between classical notions of locality or realism is be-
cause the EPR program was essentially intended to attack the stochastic nature of quan-
tum mechanics, but this nature is not unique to quantum mechanics. The questions re-
garding complementarity have evolved beyond the EPR paradox, and are currently anal-
ysed under the framework of Bell-like inequalities. If the Bell inequalities should be true
for any theory satisfying "the intuitively reasonable notions of reality and locality" [26],
are they still valid when these are not satisfied?

Due to practical matters, a variant of the Bell inequality shall be analysed instead
of the original one '. First, spins differ from other quantum variables in the indepen-
dence of the components. For a quantum spin, [6¥,07] # 0, but for the momentum of a
particle, [py, pyl = 0. This introduces extra degrees of freedom that require the reassess-
ment of the consequences of the perfect anti-correlation existent in the spin case. In the
spin case, if the y component is measured and the spin is in a 1 state along x, then the
measurement outcome is | or | equiprobably, and the spin is projected to the y basis
after the measurement. However, measuring the momentum of a particle along y can be
completely independent of the particle’s momentum along x.

Second, measuring spins is entirely different than measuring other physical vari-
ables. In particular, for the case of optical modes, measurements are often done via pho-
todetection, which is a destructive process. Thus, it cannot be assumed that the system
can be measured without disturbing it. This makes Bell’s 3 detectors scheme unsuitable
to analyse 2 particle correlations.

IDecent discussions of the Bell inequalities can be found in [75, 76], as well as a proposal for a test in the form
of an equality [76].
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To confirm whether Bell-like inequalities can or cannot be violated with a purely clas-
sical distribution function, consider the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity

|S| = |[E(C¥1, ﬁl) + [E(al, ,32) + [E(az,ﬁl) - [E(C(g,ﬁz” <2. (222)
The variables {a;, §;} in Eq.(2.22) correspond to the possible detection options, where
the measurement outcome is binary (+1). Although Bell-like inequalities featuring con-
tinuous variables have been proposed [77], only binary variables shall be considered due
to their widespread used in entanglement tests. Eq.(2.22) can be tested experimentally
for harmonic oscillators via homodyne measurement of quadratures, as displayed in Fig.
2.1. In this situation, the phase difference defined by the local oscillators plays the role
of the polarization angle in the usual optical experiments.

S
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Figure 2.1: Depiction of an experimental scheme to violate CHSH with quadrature measurements. A source S
emits 2 entangled optical modes, and the amplitudes of a pair of the modes’ quadratures are measured via ho-
modyne detection. The amplitudes a ; are converted to a binary outcome o/(a ;) and their product is analysed.

For binary measurement outcomes with homodyne detection, one must consider
variablessuchaso(x) =1 —2(@)(b—x) +O(x— a)) or o (x) = ©(x), where O is the Heavyside
function. The probability distribution for the entire system can be partitioned in regions
where the set {o(a;),0(f;)} takes a given value. Therefore, S =3.; ; k. 1=+1Ci,j,k,1-%1,j,k, 1>
with .#; ; 1 the integral of P over the region where {7, j, k, [} have a given value, and ¢; k1
the value of 0.0 in that region. The possible values that ¢; j ,; can take in any region
are +2, as displayed in Table 2.2.

Normalization implies }; j x 1=+1-%;,j k1 = 1, and positivity .&; j,; = 0. Thus, S €
[-2,2] and Eq.(2.22) cannot be violated classically. In quantum theory, on the other
hand, the positivity condition .%; j r; = 0 does not exist as the Wigner function (the
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c 0'(0!1)2—1 U(a1)=+1
Lkl olaz)=—-1] ola)=+1 | o(az)=-1 | olay) =+1
~ Jo(p=-1 2 2 ) 2
o(b) ==l =y =T 2 2 2 )
B o(Ba) = -1 2 2 2 2
o) =+l - =T 2 2 2 2

Table 2.2: Value of ¢; ; ¢ ; for all possible combinations of o';.

quasiprobability function responsible for the quadrature measurement outcomes) can
take negative values. If the negative regions of the Wigner function fall on the regions
where ¢; j 1 < 0 and the positive regions on ¢; j r; > 0 then, it is possible for S to be
larger than 2. It is this feature that bestows a reason to attribute a nonclassical nature to
the system whenever the Wigner function is negative.

Although the CHSH inequality has been experimentally violated, a violation with
quadrature measurements has never been reported. The alternative implementations
of the CHSH inequality tests typically rely on intensity or photocounting measurements.
This is the case of measurements with double-cascade fluorescent atoms, where entan-
gled pairs of photons are emitted [78, 79]. The violation of this sort of inequalities is
associated with the negativity of another quasiprobability distribution for the quantum
state (the &2 distribution), and this violation is only possible due to the peculiarities of
photodetection and the strict connection with another physical effect: antibunching.

Besides the CHSH inequality, other inequalities have been proposed to treat the case
of polarization correlations [80]. Although these inequalities were violated experimen-
tally [42, 43, 81], the quantum/classical comparison is dubious due to the "localised pho-
tons" [42] and non-interfering classical cascade emissions [80] seasoning.

The overall landscape of testing Bell-like inequalities with light is dominated by cas-
cade Fock states , which have peculiar properties for the usual photodetection mea-
surements. It is thus desirable to test Bell-like inequalities using other types of states and
measurements. Much of the meaning and value of these inequalities lie in the measure-
ment procedure, as only through the theoretical modelling of the measurement process
can theoretical bounds be placed. Without a theoretical frame, the significance of the
measurements is diminished. To understand the essence of the measured object and
to judge the meaning of the measured results, one always has to turn to measurement
models.

2.2. STANDARD PHOTODETECTION THEORY

With the development of Quantum Optics, the problem of matching theoretical predic-
tions to experimental measurements became prominent due to the noncommutative
properties of operators. As different operator orders produce different outcomes, order-
ing rules have been sought to reproduce the uniqueness of the experimental observa-
tions. Currently, a widespread idea is that the measurement performed by photodetec-

2In some experiments, the entangled modes are produced using a parametric amplifier. The light state is there-
fore a 2-mode squeezed state that can be approximated to a pair of entangled photons for small squeezing.
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tors must be described by normal ordered operators, but the reality is quite more com-
plicated. Albeit normal ordering has become the rule, the operator order describing the
measurement strictly depends on the detector model. In principle, any order respecting
the properties of the measured observable (such as hermiticity) is valid, making even
anti-normal ordering possible [82].

Aswith all theories, before any claim crystallizes into a postulate, a definition or a law,
it has to undergo a process of redefinitions and argumentation to transit from debatable
to defendable, and from the defendable to accepted. Let us inspect once more the roots
of photodetection theory and advance in the cycle.

Here, a more general situation is considered than in [83]. To model photodetection, it
is considered the standard picture of a system composed by N +1 energy levels, where all
levels are closely packed (i.e. separated by an arbitrarily small €) except the ground state,
which is separated from the 1% excited state by an extracting potential ®. Additionally,
the system starts in the ground state |0) , and by coupling it to the electromagnetic field, it
can make a transition to an excited state. This is meant to be a simple microscopic model
for a detector for which an electron can go from the highest occupied band/orbital (here
the ground state) to the conduction band. As the electron reaches the conduction band,
detection takes place. The interaction between the system and the electromagnetic field
has a dipolar nature, where the potential

N ; P A
Vi) =) gi(10)¢ile ™" + )0l ").E(n), (2.23)
j=1

isin the interaction picture, A; = ®+€(j—1), and {g;} are coupling parameters dependent
on the polarizability of the energy level. The transition from the ground state to the
conduction band is given by the excitation probability

N
Pere() = 3. Y1, GlUMI0, w11 = 1 - Tr(Uf (1]0)¢0|U;(1)p] (2.24)
j=1 ¢

where y; (¢) is the initial (final) state of the electromagnetic field, p density matrix, and
U(t) (Up(?)) is the time-evolution operator (in interaction picture) given by

. , , +00 t If;k
Uy(t) = (e o Vithdr'y Z(—i)”fo dt{...fo W TACAACAY (2.25)
n=0

For short time scales (or for weak-couplings g;), the state evolution can be obtained
by keeping just the lowest order terms of the Eq.(2.25) and together with Eq.(2.24), the
excitation probability reads

t pt N i P
Pexe(t) =2 f f Y. gre MU EWEW ydd i’ (2.26)
0 Jo j=1

The coupling intensity g; depends on the detailed electronic structure of the detector.
It is assumed here that |g;| does not vary significantly for each energy level and so, it is
taken to be constant (|g;| = g). With this approximation, the sum over the energy levels
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peaksat '~ 1" = ZZ, z € 7, where it attains the value N+1. As € can be arbitrarily small so
that the time-difference is outside the reach of validity, only the z = 0 term is important
in the band continuum limit (¢ — 0, N — oc). This leads to }_ ; e =1 %6(1‘/ -,
and Eq.(2.26) reduces to

2 t
Pere(t) = NTg f At (E2(1)). 2.27)
0

The integral in Eq.(2.27) acquires fast oscillating terms which are negligible in compar-
ison to the static terms. Considering a single electromagnetic mode, the integration of
these static terms leads to

Ng?E?2
Pexc(t) = % tHa'a+aa'y. (2.28)

Despite the same procedure, there are several differences between Eq.(2.28) and the
standard result. First, with the continuous band approximation, P, is proportional to
t, instead of the usual resonant > dependence [18]. This implies thatn = 2N, ng% ppl€is
a single-photon detection rate, and that the detection rate is constant in time in contrast
to the standard result. Second, another consequence of the continuous band approx-
imation is that detection does not select only light frequencies close to the extracting
potential ® as in the standard case. Third, because counter-rotating terms were kept (no
RWA was used to simplify the interaction), the detector measures symmetrically ordered
operators instead of the standard normal ordering [83]. The implication of this symmet-
ric ordering is that even in vacuum, detection can occur due to zero-point fluctuations
of the electromagnetic field. Consequently, all electromagnetic modes contribute to the
detection process regardless of their state, as their zero-point fluctuations contribute to
dark counts. Thus, the detection probability can be written as

Pexc(t) = ((a’ @) + rzpp)t, (2.29)

where 7zpr is the dark count rate from the ZPFs of all the electromagnetic field modes.
Because the number of modes contributing to the dark current is potentially infinite,
rzpr may diverge.

2.2.1. HANBURY-BROWN-TWISS AND CORRELATIONS

Field amplitudes or intensities alone cannot tell much about the properties of the light
state, and so higher order correlations of the electromagnetic field must be measured
in order to infer the statistical properties of light. In order to analyse correlations, the
probability for joint detection is considered. The question now is what is the probabil-
ity for electrons in two separate detectors to be excited to the conduction band of both
detectors simultaneously. This is given by

Pioime(®) =Y. Y 1, LPIU1)10,0,y:)1* = 1 - Tr[U] (£)]0,0)(0,0U; (£)p)
ji=z1 ¢

=Y Trul (010,10, 11U (p) = Y. TrlUL (91/,0)¢),01Ur(t)p]  (2.30)
=1 j=1
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with U; () given by Eq.(2.25), but with the potential

vitn=Y gi(10,¢, lle” ™" +17,1)0, l1e™").EV (1)
j=1,1=0

+ Yi(17,00¢j, lle” 1 +17,1(j,01e™1").E@ (1), (2.31)
i=0,l=1

Jj=0,l1=

where EV (E®) is the electric field impinging detector 1 (2). Combining Egs.(2.31),
(2.30) and (2.25) and using the same approximations as before (|y;| ~ v, |g;| ~ g, and the
quasi-continuous band approximation), lengthly but straightforward calculations lead
to

N 2 rt fn R R R N
=BV [Can [ " an@E® wBO £ B w)

+HEVREPEPEV (1)), (232)

ijoint(t) =~ (

For the Hanbury-Brown-Twiss geometry depicted in Fig. 2.2, and for a 50/50 beam-
splitter, V) and £® correspond to the reflected and transmitted light signal mixed with
the vacuum. The corresponding relations between the signal and the vacuum fields (E‘*)
and E%9 respectively), and the fields impinging detectors 1 and 2 are (for a particular
choice of phase)

ED = %(E(” +E"9) and E@ = %(E(“) - EWa9)y, (2.33)
(a) . (b)
t‘{;'iu'l
E(LO)

Figure 2.2: Depiction of the experimental scheme to measure g2 (a) or the field quadrature elfro (aI) +
e’i‘pLO(as) (b). To measure g(Z), the field E® is split into 2 detectors and the coincident detections are
recorded. For quadrature measurements, the field E () is combined with a local oscillator EL9) and the current
produced at the 2 detectors is subtracted.

Substituting Eq.(2.33) into Eq.(2.32), considering a single mode for the signal beam,
and keeping only the non-oscillating terms leads to

t2
Pjoine(t) = E{nzm(acﬂ +a'aya’y+al(aat +a' aya)

+2n rzpp<cmT + aTa) —4n2(aaT> + (d.c.)}, (2.34)
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where d.c. stands for the dark coincidences’ term, and for simplicity the single-photon
detection rate 1) was considered equal for both detectors. It is now visible in Eq.(2.34)
that for this case of a continuum detection band, without RWA, the operator order is the
symmetric version of 4 possible operators orders. Note that symmetric combinations
such as aa'a'a+ a' aaa' are not permitted. This symmetric ordering is completely dis-
tinct from the case of detection with a qubit, where normal order is the rule [83]. Further,
ZPFs contribute here not only for coincidences in the detection, but also to induce extra
coincidences in the presence of a signal. Writing Eq.(2.34) in a normal ordered way, one
obtains

t2
P joini(8) ~ {nzmTa*aa) +nm+rzpp)a’a) + (d.c.)} . (2.35)

The importance of coincidence counting is that it gives direct access to measure higher
order statistics of the electromagnetic field. However, dark counts lead to spurious co-
incidences that do not carry any information about the field. As they continue to exist
in the absence of a signal beam, they can be estimated and subtracted from the total
counts. Denoting by P the probability with the dark counts subtracted, one can define
a 2% order correlation function as the ratio between the probability of joint detections
and the probability for single detections without dark counts by
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(2.36)

Note that for the H.-B.T. geometry, the intensity reaching detector 1 is (EM)2 and so,
using Eq.(2.33), the detection probability for detector 1 becomes P ,,1 () = % tnia’ay +
2rzpr). EQ.(2.36) has additional contributions that do not occur in the normal ordered
2" order correlation
(aT at aa)
(2) _
(a'a))?

For a single-photon state, g 0. This is an extreme case of antibunching (g® < 1) and
it means that no coincident detections ever occur. Or as usually said, "a photon can only
be detected once" [40]. However, for a single-photon state in the quasi-continuous band
scenario, G® =1+ Z22E > 1, which means that the expected number of coincidence
counts is higher than the single-detection counts. In this situation, ZPFs lead to addi-
tional coincidences and to single-photon bunching, where "a photon can be detected
twice".

The difference between the quantum and classical situations is that for the latter,
ZPFs do not exist and operator order is not an issue. For a classical field of amplitude «,

(2.37)
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As the variance is always positive, gfl)‘m > 1, leading to the interpretation of antibunch-
ing as a nonclassical effect. It is important to be aware that a classical/nonclassical clas-
sification can only be meaningful within the theory describing the measurement. At-
tributing the nonclassical label to antibunching can only be done within the context of
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a detection model. But then the question raises: is there a classical model that predicts
antibunching? Despite the variety of detection models, antibunching constitutes to the
present day one of the few phenomena in Quantum Optics without a (semi)classical ex-
planation, and so being entitled to stand as "nonclassical".

Nevertheless, a classical explanation for antibunching would not be completely ab-
surd. Standard photodetection theory predicts the existence of coincidences for a classi-
cal beam even if its energy is below the threshold energy necessary to excite 2 electrons.
The contradiction between the predictions of the detection model and the basic prin-
ciple of conservation of energy may be related to the fact that standard photodetection
theory relies on time-dependent perturbation theory, and it does not describe the com-
plete time-dynamics of the photodetection process. Currently, there are photodetection
models that overcome the limitations of standard detection theory by using the machin-
ery of quantum open systems [22, 84, 85], but so far this remains an open issue.

Some additional remarks should be made concerning antibunching. First, there are
two distinct types of measurements: there are measurements with "click-detectors",
meaning that the measurement outcome is binary (detection or nothing), and mea-
surements which evaluate the correlations between the electric currents of the 2 de-
tectors [86]. Although a simple extension is possible, the outcome of this last proce-
dure is not what is usually modelled by standard photodetection theory, since the theory
only predicts the joint excitation probability, and not correlations between the electrical
currents. Second, standard photodetection theory also does not make predictions for
correlations taken at different times. It is also a widespread belief that coincidences at
different times can be described by the 2"¢ order correlation function
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but that relies on misinterpretations of Eq.(2.32). Although correlation functions at dif-
ferent times can be computed in quantum theory, there is no formal way to derive the
appropriate choice describing the real physical outcome [87], and no quantum formal-
ism for this type of problem is known. It is not even known if simple properties like
positivity for g (1) are assured for 7 # 0.

Building upon antibunching, experimental variations were performed. Higher order
correlations (87" order in the fields) were tested experimentally [44, 79], breaking addi-
tional classical bounds. The interferometric nature of the H.-B. T. geometry also led to
interference experiences with single and double-photon sources [40, 88-91]. Embedding
interferometers in the H.-B. T. geometry led to the observation of oscillations in the co-
incidence rate as a function of the interferometer pathlength [40, 90, 91]. However, the
nonclassical nature of this phenomenon is not fully clear cut, as it is thought to admit
classical explanations [90, 91]. This interferometry has also been used to combine the
double-slit experiment with the H.-B. T. geometry [88, 89], observing another kind of os-
cillation in the coincidences, but this time as a function of the position of the detectors.

All these antibunching experiments fueled the artistic view that when a photon reaches
a beam-spliter, it takes only one path, inducing certain interpretations of propagating
localised photons. Such localised photon notions motivated the combination of these
interferometry schemes with double slit geometries to supposedly create which-path ex-
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periments and test the wave-particle duality with trapped atoms [92]. The dependence
of the observed interference pattern with the polarization of the emitted light was under-
stood as light behaving as a particle or as a wave depending respectively on the absence
or presence of an interference pattern [92]. Additionally, polarization served as an indi-
cator of which atom (playing the role of the slit in the experiment) was light emitted from,
triggering the interpretation that when a photon goes through a double slit, it takes both
paths simultaneously, and only the conscious measurement forces it to choose a path,
destroying the interference pattern.

Moving past the 19" century interferometry and the cabalistic powers of conscious-

ness, there is no quantum manifestation of any sort in optical double slit experiments.
Such misinterpretations are based on misunderstandings between the quantum state
and the field’s spatial distribution, and the inability to conceive entanglement as a clas-
sical phenomenon. Quantum interpretations of photon paths are absurd because the
lack of a wavefunction in real space for photons implies that the quantum state of light
does not play any role regarding spatial properties of optical beams.

With the use of entangled light, the ladder was further climbed leading to what was
coined as quantum eraser experiments [93, 94]. These experiments engaged in the long-
standing discussions in quantum mechanics regarding the role of measurements and
complementarity by making use of which-path schemes, but do not present any valid
view on the topic. In [94], the spatial dependence of coincidences between 2 entangled
optical beams were measured, where one of the beams goes through a double slit °. If
after each slit there is a polarizer, with the polarizers oriented perpendicularly, and each
beam does not have a well-defined polarization, then the interference pattern is broken
due to the simple fact that the total intensity radiating from the 2 slits is the sum of the in-
tensities coming from each slit. As the polarizers are set perpendicular to each other, the
field amplitudes do not add and no interference occurs. When a polarizer is placed be-
tween the non-interfering beam and its detector, as the overall polarization of the system
is well-defined, the measurement of the polarization of the non-interfering beam deter-
mines the polarization of the other beam. If the polarization of the interfering beam is
determined to match one of the polarizers’ orientations, then the interference is resur-
rected. Any quantum interpretation of such effects is an act of classical transvestism.

2.2.2, LINEAR MEASUREMENTS

A photodetector is able to measure the field intensity, and the H.-B. T. geometry opened
the door to measure higher order correlations. But how to measure the field amplitudes?
Consider the same H.-B. T. geometry above, with the exception that instead of mixing
the signal with the vacuum, it is combined with an independent coherent field (a local
oscillator LO) at the beam-splitter, as shown in Fig. 2.2. For a 50/50 beam-splitter, E%°
is replaced by a nonzero average amplitude field EX?) in Egs. (2.33), and the single exci-

3 Animportant observation made in [94] is that the order of the measurements is not irrelevant for the outcome.




34 2. WHAT IS AND WHAT IS NOT QUANTUM

tation probability for the two detectors are now

Pexe1(2) = [g((alaﬁ +larol® + IaLol(é’i"’LO(aZ) + e’i‘pLO(as))) + erp] t (2.40)
Perea(t) = |7 ((alag) +lasol ~ lasole(al) +e 0 (a)) + rzpe|t,  (241)
(2.42)

where |a;pl|?> and ¢;o are respectively the intensity and phase of the local oscillator.
The difference between the outcome for the two detectors (x Pexc,1 — Pexc,2) is then
o €0 (qly + e~1910 (q,). Therefore, the field quadratures can be measured by combin-
ing a signal with a coherent field, and the measured quadrature can be selected by tuning
the phase difference between the signal and the local oscillator. Linear measurements
are a recurring tool in optics, and despite their simplicity, there are a few misunderstand-
ings and enigmas surrounding them.

2.3. SIDEBAND ASYMMETRY?*

Biased misconceptions often become dogmas provided that a blurry experimental con-
nection is found. It is thus with the quantum interpretation of sideband asymmetry.
Sideband asymmetry (SA) refers to the difference in the spectral height of the side
peaks accompanying a drive frequency. When a system is driven coherently at a fre-
quency wy and it is coupled to an oscillator (such as a mechanical resonator), the spec-
trum acquires peaks (the sidebands) at wy + Q, with Q the mechanical frequency. This
phenomenon was first observed with trapped ions [96] and neutral atoms [97], where
laser cooling unveiled motional sidebands around atomic transitions. With the emer-
gence of optomechanics, SA was observed in systems with larger mechanical elements
such as nanobeams [58, 59], LC-resonators [60], ultracold atoms [61], and membranes
[62]. In the absence of any symmetry breaking mechanism, it would be expectable for
the sidebands to be equal. However, experimental observations reveal that one side-
band is larger than the other. This imbalance has been justified by an asymmetric role
of zero-point motion (ZPM) in the computed spectrum [98, 99]. Such quantum exegesis
originates from proclaiming ex cathedra that the measurement outcome is described by

Sxx(w) =f eCUR(DR(0)) pdt = 8w+ Q) Mgy +8(w—Q) (A +1), (2.43)
R

where x is the displacement of the oscillator, and 7z, its thermal occupancy. By identify-
ing +Q with the sidebands, SA would be naturally explained by ZPM. This would imply
that the mechanical element had a truly quantum nature, regardless of its state. Thus,
by cooling the resonator sufficiently, the asymmetry would become visible, ZPM unar-
guably established, and no classical theory explaining this phenomenon could exist [58].
Furthermore, it promised an experimental paradise where temperature could be deter-
mined without any calibration [61, 62]. Following such experimental observations, the
quantum nature of SA was deemed true.

4The content of this section is part of a manuscript to be published. For a preprint see [95].
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Developments in nanomechanics fed the desire to observe quantum effects at a macro-
scopic scale, which in turn raised the question of where does the quantum realm frontier
lie. This question increased the necessity for a definition, where past a given borderline,
certain phenomena would necessarily have a fundamental quantum nature. Once it was
realised that the use of an operator formalism does not imbue a quantum nature for the
system under consideration, deeper analyses on the nature of SA took place. This led
to alternative interpretations and explanations such as interference between different
noise channels [60, 100] and laser phase noise [101]. Despite certain flaws of the new
interpretations 5 the claim of a quantum nature for SA became disputable [102].

Regarding SA, a pervasive problem plagues its interpretation: a priori definitions.
The interpretation of SA differs for different operator orders (arising from different de-
tector models [103]), and to assert that by definition, the experimental apparatus mea-
sures a particular operator order, does not force a detector to measure that specific or-
der. Theoretical interpretations should be based on the physical situation, instead of
the experimental validation being subdued to theoretical postulates. This constitutes a
problem for experimental validation, as biased premises have been the starting point.

The problem over the nature of SA can be traced back to its measurement. In contrast
to its classical counterpart, defining the power spectral density in a quantum framework
poses a problem regarding the operators’ order. Direct substitution of the fields by oper-
ators in classical formulas is dangerously arbitrary, as there is a multitude of possibilities
and not all of them have a physical meaning. The problems with defining a quantum
spectral density and the meaning of the distinct possibilities were raised before [87, 102]
but remain unsolved. The usual way to address these issues is to take a specific mea-
surement procedure into consideration.

SA can be measured using a linear detection scheme (such as homodyne or het-
erodyne detection, discussed in the previous subsection). The quantum description of
these techniques [104] typically focuses on the quadrature measurement and noise re-
sponse on the time-domain, leaving issues with the frequency domain unmentioned. A
record of the measured field quadrature X (¢) = ag(f) + al(t) is constructed in the time
domain, but it is in the frequency domain that the noise response is computed via the
quadrature variance. This poses the problem of defining the variance of X (w). As X (w) is
a complex operator, there are different possible orderings, namely (#1){(X () X)) or
#2)(X (w) (X ()T as well as any linear combination of the type A(#1) + (1 — 1) (#2), with
A €10,1]. All these possibilities produce different outcomes, but the uniqueness of the
spectrum implies that only one possibility should represent the observed spectrum.

The noise power spectral density is obtained with the Fourier transform of the av-
erage of the product between different measurement outcomes. As X(#) is hermitian,
the measurement outcome is a real number, and so is the product at different times.
However X ()X (t) is not strictly hermitian, and therefore it can have non-real values
as a possible outcome. Therefore (X (#)X(0)) cannot represent the physical measure-
ment, and so can neither Eq.(2.43). The only hermitian possibility that can represent the
measurement is the symmetric combination of X (¢) X (¢') with its hermitian conjugate.

5For a comprehensive analysis of the problems of the distinct SA interpretations see Appendix A of [95].
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Therefore, the most suitable spectral density to describe the measurement is
- 1
Sxx(®) =§<X(w)X(—w) +X(O)X@)). (2.44)

An alternative way to measure SA is with photodetection, and for this case the order-
ing issues are bypassed by choosing a detector model and establishing a link with the
measurement outcomes. The typical detector model consists of a single qubit interact-
ing briefly with the measured field via a weak dipolar coupling [83, 105]. The excitation
probability P, of a qubit in the ground state for short time-scales and coupled to a sta-
tionary random field is computed with time-dependent perturbation theory as done in
the previous Section, and it is [87]

r . !
Pore f et (X (X )dt . (2.45)
-t

By identifying the qubit energy splitting € with the frequency w, and Py, with the mea-
sured signal, Eq.(2.45) has been employed as a quantum spectral density. However, such
toy model is unable to completely model the measurement because: (1) spectrometers
are not composed of a single qubit, and a single qubit alone cannot provide the spectral
density for a wide frequency range. Models with several qubits lead to higher order cor-
relation functions [83] and higher spin states do not lead to Eq.(2.45)[26]; (2) Eq.(2.45)
is valid for short time-scales, where the transition rate is a constant given by the Fermi
golden rule. To obtain the spectral density, the system has to be monitored for extended
time-intervals, after which the validity of this result breaks down; (3) other detection
models lead to different operator orders, such as anti-normal order in photon counters
[82].

Irrespectively of the model and definitions considered, ZPM should not play a physi-
cal role in the asymmetry. Even though the measured field quadrature is associated with
the operator X, the outcome of a measurement is a scalar x, and it is with the measure-
ment record x(¢) that the spectrum is obtained. For the scalar x(t), the order issue does
not exist, the spectral density is well-defined, and there is no reason for ZPM to affect the
sidebands differently. Nevertheless, ZPM plays a role in the variance of X, and there is a
link between X (t) and the measurement outcome. As X is monitored in time, a definite
proof might rest in the theory of quantum continuous measurements. The formalism of
continuous position measurements already exists in the literature [106], as well as anal-
ogous formalisms to model photodetection [22], but no suitable application to describe
the spectral density is known. A closely related approach to describe homo- and hetero-
dyne detection featuring quantum trajectories is also available in the literature [84] but
it still relies on operator order postulates to evaluate the spectrum and not solely on the
measurement record.

For the reasons exposed, Eq.(2.44) shall be used to compute the spectrum. To exam-
ine the nature of SA, it is considered the optomechanical case where the sidebands are
measured via a signal coming from an optical (or microwave) cavity coupled to a me-
chanical resonator. From input-output relations, the signal amplitude is proportional
to the cavity field, and for linear couplings, the cavity field yields a linear relation with
the mechanical displacement. For this reason, when the cavity is driven, the coupling
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to the mechanical resonator produces sidebands around the drive frequency that con-
tain information about the mechanical motion. To compare with a typical experimental
situation, 2 cavity modes are taken into account: a cooling mode, and a read-out mode
with a frequency far away from the cooling mode. The equations of motion describing
this system are [60]

r
idtbz(Q—iz)b—Zgj(aj+a})+nb, (2.46)
j

idia;=(-n;—iL)a;—g:(b+b)+n; (2.47)
taj j 5 )% 8j Nj»

where I' is the mechanical dissipation and A j, x j, and g; are the detuning, cavity linewidth
and coupling strength for mode j. The detuning Aj = wp, j — W¢qp,j accounts for the shift
of each mode j from their respective drive reference frame, i.e. a reference frame with
frequencies displaced from the drive frequencies wy, ;. Here and onwards, the cavity fre-
quency shift produced by the static displacement of the resonator is included in @ qy,;.
Furthermore, b represents the phonon annihilation operator and a;, a. the photon an-
nihilation operators for the read-out and cooling modes. At last, {);} are the noise terms,
with the properties

i /_Kj-‘. o ) Foomy _ Kioo ) o
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where 7; is the thermal occupancy for mode j. An analogous relation holds for the me-
chanical noise. Note that the system behaves linearly as long as the interaction is weak
enough to prevent entering the amplification regime. When this regime is reached, an
instability takes place (primarily at A = Q), leading to a behaviour very different than
just the creation of sidebands. Moreover, in the strong coupling regime, hybridisation
between the cavity and the mechanics occurs, leading to additional spectral features,
such as a frequency splitting at A = —Q. As we are only concerned in addressing the SA
issue, only the case g; < x,Q2 shall be considered, and since cooling occurs at the red-
sideband, we set A, = —Q. Performing a Fourier transform in Eqs.(2.46-2.47) leads to the
linear response function of the systems. The read-out field has the form

a; () = @11, (@) + G2 [0, (o)) + g3np () + qa ()" + gsne(w) + gsine (-0,
(2.49)
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q5:](w)ZQgrgC(Ar—w—i%)(ﬂ+w+i%), 2.54)
q6=J(w)29g,gC(A,—w—i%)(ﬂ—w—i%), (2.55)

with
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In general, the read-out field does not have the same intensity at the red- and blue-
sidebands because of the backaction from the cooling and read-out modes. This can be
verified by evaluating, for example, the case with A, = 0 (corresponding to the experi-
mental situation in [62]) in the limit I < g;,% j,Q, which gives

#1, (2.57)
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q(-Q)| |A,—iB,

2
where Ay = 2(1+ Co)Q - 35 (k, £k.C;), B+ ~1<r(1+Cc)+1<C[ +C;),and Cj = = is the
cooperativity for mode j. Thus, the asymmetry does not present a method for absolute
self-calibrated thermometry.

A method to measure SA is to send a probe beam at w4, — Q and measure the red-
sideband at w,,, and then change the probe frequency to w4, +Q to measure the blue-
sideband at w4, (see Fig.2.3). This way, each sideband can be enhanced at a time (while
the other sideband is off-resonant) and measured more easily. At the enhanced red-
sideband+cavity peak, the field amplitude for the read-out mode at A, = -Q is

ar(@) = Q- (@) = R (np(@) —2iEn (@), (2.58)

while at the enhanced blue-sideband+cavity peak, the field amplitude of the probe at
A, =Qis

ar(©) = Q) = Ry (I (-0)] - 2i¢cne(-))"), (2.59)
with
(l—zk’ Cr+CC) 2i&,
Qs = , Riw : (2.60)
w+Q+iX (1+Ceff) w+Q+12(1+Ceff)
Crrp=Cc¥Cr, (2.61)

and ¢; = gj/x;, and considering the limit g; < x; < Q. With Egs. (2.44) and (2.58-2.61),
the spectral density for each enhanced sideband is found to be

2
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Figure 2.3: Different schemes to measure sideband asymmetry. The sidebands can be measured one at a time
by placing the probe red(blue)-detuned (panel a (b)). Alternatively, a single cavity mode can be probed with
2 tones, which create sidebands within the cavity linewidth (panel ¢). The sidebands can also be measured
directly with a probe tone on resonance (panel d). Cooling tones are also represented for completeness.

where X = a+a' and + correspond to the blue(+) or red(—) sidebands. As it can be seen
from Eq.(2.62), the only difference in the expression for the sidebands lies in the de-
nominator, where the interaction gives a different contribution for the linewidth of each
sideband. It is also clear that there is no zero-point contribution to the imbalance, and
that the origin of the asymmetry for the weak-coupling and resolved sideband regime
is the distinct effective optomechanical dampings for each sideband. Thus, contrary to
the standard result where the height of the sidebands is n/n + 1, we find that the height
of both sidebands is proportional to n + '/>, with n the number of thermal excitations. A
consequence of this difference is that at T = 0, the red sideband does not vanish. One
could think that at T = 0, the absence of phonons would prevent the sideband to exist.
However, as we are considering quadrature measurements instead of photon counting,
the zero-point motion of the resonator affects the measurement of its position, and al-
lows for the existence of the red sideband.

The asymmetry is quantified experimentally via the noise power I*, which is ob-
tained by integrating the area of the resonant sidebands S* over all frequencies. The
asymmetry factor ( is then

¥
= oo 2%
I~ 1-C,+C,
As backaction is not strictly quantum, Eq.(2.63) shows that the asymmetry already arises
in a classical framework. Although not explicitly visible from Eq.(2.63), the asymmetry
¢ may depend on the temperature. For real physical systems, the mechanical quality

(2.63)
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factor is temperature dependent, leading to a temperature dependent asymmetry. For
small cooperativities, the asymmetry is directly proportional to the quality factor, and if
the latter decreases linearly with temperature around a given temperature range, then
the qualitative temperature dependence of the asymmetry matches the standard result.
An alternative way to measure SA with only one cavity mode is to simultaneously
drive the system with two probe tones (see Fig. 2.3). These two tones are slightly de-
tuned by 6 from @ = w4, £ Q such that the sidebands do not overlap at w.,,. Thus, to
make the sidebands distinguishable and enhanced (so well within the cavity linewidth),
6 must obey I' <« § « «. To fully describe the experimental situation, we consider once
more a cooling tone of frequency wq, — Q — 6, with 6, > § + T so that the cooling tone
does not provide an undesired contribution to the asymmetry. In this multi-tone case,
the appearance of beats between the different tones @; is inevitable, and the linear in-
teraction of Eq.(2.47) can no longer be made time-independent. Thus, the original form
of the interaction must be considered, and the equations of motion for the system are
now [60]
id;a= (wm,, - ig)a—go(b+ bha+na)+) sje '@, (2.64)
J

r
idtb=(Q—iz)b—goa*amB(t), (2.65)

where the sum in j is over the @ frequencies {wcqy £ (Q +06),Wcqy —Q =6}, The driving
terms can be removed with the shift

al=A+Y e '%'a; , b=p+B(), (2.66)
J
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With this shift, the resonant part of the interaction is enhanced by «, and it becomes
linear in A and B. As g is negligible in comparison to the other parameters, the terms
linear in A and B suffice to account for the effects of the interaction. Disregarding the
nonlinear terms, and performing a Fourier transform at the equations of motion, we find
the cavity field to be

Aw2() =) - Y. a;Gw-0p)Aw-0,+0g) - Y, agGw-0p)(A@,-w+dy)),

p#q pq
(2.68)
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Eq.(2.68) provides a general framework for the cavity spectrum when linearly coupled
to another oscillator and driven by multiple tones. Obtaining an analytical solution for
this system is impractical, because the presence of several tones implies that all arbitrary
integer combinations of the tones’ frequencies must be evaluated. However, the higher
harmonics are off-resonant and they can be disregarded in the weak-coupling regime.
Using Eqs.(2.68-2.70), the same procedure leads to an equation analogous to Eq.(2.62),
with an effective cooperativity given by
. r? 2

Ce_ff:CCmicii(km’ (271)
where + stands for the sideband at w4, = 6. Since C,y is different for each sideband,
an imbalance occurs even if the red and blue-sideband tones have the same intensity
(C+ = C-). This difference between C;rf y and Ce‘f y is due to the 6 frequency shift from
the resonance. Identically to the multimode case, backaction leads to an asymmetry in
the spectrum.

Thus, the undisputed existence of SA is not a proof of any quantum nature for the
system. The use of a symmetric noise power spectral density shows that SA arises from
the backaction caused by the cooling and probe drives, and that no ZPM contributes to
the asymmetry. The symmetric spectral density was already employed in [60, 102], but
the asymmetry was attributed to quantum interference between the cavity noise and
the mechanical resonator’s noise. Such misinterpretation sprouts from miscalculations
5. Though only white noise was considered here, the analysis can be extended for any
type of noise. However, since only frequencies within a bandwidth of I' contribute to the
sidebands’ peaks, coloured noise is expected to be unimportant.

Although the present analysis is restricted to coupled harmonic oscillators, the same
procedure can be generalized to analyze the trapped ions and neutral atoms [96, 97]
case. The role of backaction has not yet been investigated in these systems, and a thor-
ough analysis would clarify the nature of the asymmetry for this case. Note that for the
case of trapped ions and atoms, their electronic quantum nature may lead to quantum
signatures for the output light that are not an intrinsic feature of the light field (neither
of the mechanical motion), much like in the case of Raman scattering [107].

6For the specific problems see Appendix A of [95].







WHERE TO LOOK FOR QUANTUM

The most honourable reason for the prevalence of quantum theory is what it repre-
sented. The introduction of a new paradigm, the uncommon and complex machinery,
the bizarre and exotic features. All of this provided a breath of fresh air to Physics, and it
should never be underestimated how every cultural endeavour needs a periodic stirring
in order to stay alive. And what better than a theory that questions the most basic per-
ceptions and overthrows old canons? A new theory with fertile and unexplored lands,
with seemingly endless possible avenues to pursue. Who can resist such paradisaic gar-
dens? "What is truth?" they chant. And we undress ourselves from convictions and in-
dulge in getting lost in the labyrinth.

What quantum phenomena are to be found in macroscopic mechanical systems?

3.1. PHONON ANTIBUNCHING IN STANDARD OPTOMECHANICS!

As discussed in subsection 1.3.2, light couples to mechanics in standard optomechan-
ical systems via radiation pressure. Because of the simplicity of the interaction and for
symmetry reasons (a — ae'? leaves Eq.(1.15) invariant), the system is integrable, and the
exact solution for the isolated system has already been found [109, 110]. For an isolated
system, radiation pressure simply leads to a constant force acting on the mechanical
resonator, and to a coherent displacement of the resonator depending on the photon
statistics: g p
_ —iQr 0 ¢ i

b(r) = e " (b(0) + a4 a) o4 a (CR))
Sadly, the exact solution does not bring quantum phenomena along with it. The effects
of the interaction are more prominent at half of a mechanical period, where b(t = 7/Q) =
—b(0) —2g0/ Qa'a, and if the mechanical resonator starts in the ground state, the me-
chanical state after a half period is fully determined by the cavity state. Under these

1 The content of this section is based on the published work [108].
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conditions, the mechanical second order correlation function is

=3 (3.2)

7y (bTbthb) 7 Var(n?)
g9(r=5)=" P (=) =14 s,
(D) ((2))

Q
where n, is the photon number. As the photon number distribution is always positive,
g®@ =1, and no phonon antibunching occurs. The reason behind the absence of dynam-
ical quantum effects is that the interaction changes the mechanical state in a trivial way
(it mainly displaces the state, if the initial mechanical state is a Gaussian state [110]).

In order for the interaction to produce more interesting effects, namely to be able to
observe quantum effects, the photon number should not remain constant. The best way
to do this is to drive the optical cavity with a coherent laser. The price of driving is that
the integrability of the isolated system is lost, as it relied on a constant photon number.
Including driving in the Hamiltonian leads to

H=-Na'a+Qb'b-gyatab' +b)+ &’ +a), 3.3)

where A = wp —w,. is the detuning of the laser frequency w; from the cavity frequency w,,
& is the driving strength, and a is the cavity’s photon annihilation operator in the frame
rotating with the driving frequency w;. In order to sweep away the direct influence of
the driving term, the operator shifts a = A+ a and b = B+ f are performed, with a = &/A
and B = a®g/Q. The shifted operators A, B represent the field displacements around
the coherent components a, § produced by the drive.

The effects of driving the system have been analyzed theoretically by treating the
driving as a perturbation [111]. For this weak driving regime, it was found that mechani-
cal states with sub-Poissonian statistics can be created in the single-photon strong cou-
pling regime (go bigger than the cavity linewidth), which was corroborated by numerical
simulations [112]. Other works reported similar quantum states in this regime, and sig-
nalled a connection to self-sustained oscillations [113].

However, the yet experimentally achievable regime is the multi-photon strong cou-
pling, where driving enhances the single-photon coupling by a factor of \/Nypozons. Al-
though quantum fluctuations are usually negligible in this regime, and the lineared in-
teraction usually suffices to describe the behaviour of the system, a nonlinear interac-
tion is a prerequisite for the occurrence of nontrivial quantum phenomena. The existent
theoretical description of the nonlinear system featuring strong driving is mostly classi-
cal but there has been recently a growing interest in its quantum counterpart. Nonlin-
ear corrections to optomechanically induced transparency were obtained for this regime
(through standard perturbation theory [114] and resorting to Keldysh techniques [115]).
The nonlinear interaction can also lead to parametric down-conversion between hybrid
excitations of photons and phonons, the polaritons, if the system is driven at the red
sideband [116].

To be able to look for quantum effects in these systems, it is desirable to retain the
nonlinear character of the interaction while taking a strong coherent drive into account.
As the coupling gy is typically smaller than all other physical parameters (for most exper-
iments, n = go/Q ~ 1073 orless [50], though gy > Qin [117] or close to it [118]), a possible
strategy to deal with the nonlinearity is to diagonalize the Hamiltonian perturbatively in
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7. One can then perform a unitary transformation to obtain an effective Hamiltonian
Herf = UAU T for which the effective interaction is even weaker (of the order of 1?).
The Hamiltonian in Eq.(3.3) has the form # = #, —nV with

V=0|ATAB"+B) + (@aA+aAN(B+ BH|. (3.4)

It is clear from the above equation that by driving the system with a strong coherent
source, some interaction terms are enhanced by a factor of @. These enhanced terms
lead to a linear coupling between light and mechanics, and they suffice to describe the
physics of these systems as long as the driving is not strong enough to cause amplifica-
tion. Acting with the unitary transformation U = e TS (S and T are anti-Hermitian
operators) on the Hamiltonian above leads to

1
Hopy = Ho = (S 1V, S+ 1T, 7]) + olr) 3.5

where the condition [#5, S] = V was imposed in order to eliminate the first order contri-
butions of 17 (which corresponds to a Schrieffer-Wolff transformation). Choosing S and
T properly enables the diagonalization of the Hamiltonian up to n?, forcing S and T to

be

al) all
AB -
A-Q A+Q

T=coA+ciAA+c ATAA+ c3ABB+c,A'BB+csAB'B+cgBB—h.c., (3.7

A'B- ATAB-h.c., (3.6)

where h.c. stands for the Hermitian conjugate. The coefficients {c;} for the T operator
are shown in Table 3.1.

Co G c2 C3
Qa A-2Q __0%a? _ Qa0?-A% | AQa
A A-Q 2A(A2-02) A(A2-02) 2(A—2Q)(A-Q)
Cy Cs5 Ce
_ AQa _ Q%a AQa?
2(A+2Q) (A+Q) Q22 2(A%2-Q2)

Table 3.1: Coefficients of T

Despite the apparent general character of the transformation, it is seen from Tab. 3.1
that it is not possible to perform the transformation around the points A = {0, +Q, +2Q}.
The reason for the exclusion of the sidebands is that the interaction is resonant for these
particular detunings. Whenever resonant conditions are met, the interaction cannot be
treated perturbatively, and each resonant case must be assessed separately. At these de-
tunings, the spectrum is linearly dependent on the coupling and the photon and phonon
degrees of freedom hybridize. This hybridization is the essence of polaritons, and to ad-
dress the system at the sidebands, a description in terms of these quasi-particles must
be employed.
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The explicit form of the effective Hamiltonian in Eq. (3.5) is then

Forr=-8ATA+n* QAT A)* + OB'B, (3.8)
and § and Q are
2 2
s_ g A _ gA
CEAIN T OO g o9

with the multi-photon coupling g = goa. The effective Hamiltonian presented in Eq.
(3.8) reveals that the mechanical coupling leads to a Kerr nonlinearity for the photons
(the (AT A)? term), as well as mechanical and cavity frequency shifts.

Apart from the particular detunings mentioned above, the approach also does not
hold for arbitrarily high coupling values g. The validity region of the transformation can
be seen in Fig. 3.1, where it is plotted the ratio r between the disregarded higher order
terms and the lower order terms (up ton?). It is seen that the higher order terms reach the
magnitude of the lower order terms almost everywhere as g ~ Q. Therefore, the analysis
must be restricted to weak multi-photon coupling values.

gen
Q
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Figure 3.1: Ratio r between higher order terms and lower order terms as a function of detuning. The transfor-
mation is not valid at A = 0, £Q, +2Q, as well as for g > Q, since the magnitude of the disregarded higher order
terms becomes non-negligible.

With Eq. (3.8), the solutions for the operator equations of motion in the new (diag-
onalized) basis are straightforward to obtain, and the time-evolution for the operators
{An, By} = (lUAUT, UBU"} is given by

An(D) = /020D 40 0) and By (1) = e ' By(0). (3.10)

Returning to the original basis, the mechanical resonator evolves as

B(1) =E¢()B(0) + Z1 () A(0) + (0 AT 0) + Eg(t)AT(O)A(O) + 0(1]2), (3.11)
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with
Zo(p) = e 3.12)
— 8Q  _iar  (ib—2inQ(AT AO)t
:1(t)=ﬁ(e —e n )) (3.13)
+
(1) = %(e(ié—zmmm*m(om_ e—iﬂte(ié—zng(A*A)(O))t)) (3.14)
Z3() =n(1 - e '), (3.15)

After a complete mechanical cycle (f = 27/Q), E¢ = 1 and Z3 = 0. Furthermore, the ac-

tion of exp(— Zi%g(ATA) (0)¢) on a coherent state |g) is to impart a phase ¢ = —2in*Qt.
For simplicity, it is chosen 1 = 1073 such that ¢ = 0 after 10° cycles, and use this choice
from here on. If the mechanical state starts in the ground state (the physical state, not
the displaced one), it is then possible to control the state of the mechanical resonator by
tailoring it with the cavity state. This control over the mechanical state can be exploited
to observe quantum phenomena for the mechanical element, in particular phonon an-
tibunching. Consider that the cavity starts in the groundstate (no light inside the cavity),
and that the laser driving creates a coherent state for the cavity with amplitude g. The
second order correlation function for the mechanical field is then given by

1 X2 (1212 (1+21g%) + 1 X112 (1 + 61g1%)) + 2(1 X1 1> + 3| X2 |*) Re{ X1 X, ¢°}

2) 4%y —
go,)=1+
" (19X112 +1X2[2(1q12 + 1) + 2Re{ X1 X} g2})°

(3.16)

The behaviour of Eq.(3.16) with the detuning is displayed in Fig. 3.2. It is seen that for
small coherent states, it is possible for phonon antibunching to occur close to A = —Q.
As the antibunching tends to vanish with the increase of the driving amplitude, the an-
tibunching behaviour is most likely caused by the creation of a small squeezed state for
the mechanical resonator. This phonon antibunching effect can be observed by swap-
ping the mechanical and the optical states, and then perform a Hanbury-Brown Twiss
experiment as displayed in Fig. 2.2.
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Figure 3.2: Dependence of the mechanical second order correlation function with detuning for coherent states
of different amplitude g. It is seen that for small coherent cavity states (|g| < 1), it is possible for the system to
display phonon antibunching close to A = —Q. The red vertical lines mark the regions where the approach is
not valid.

3.2. CAPACITIVE COUPLING 2

As discussed in subsection 1.3.3, mechanical resonators can be coupled to LC resonators,
and when the LC frequency is half of the mechanical frequency, a new type of interac-
tion is possible in electromechanics. This is the parameter regime to be investigated in
this section. Although this condition has never been reported in any electromechanical
device, it should be feasible to attain it with current technology, since circuit electrome-
chanical realizations with GHz mechanical resonators have already been reported [119]
and with large coupling strengths[120]. Alternatively, the LC resonance frequency can
be brought down by using a large inductance or capacitance, at the expense of a weaker
coupling.

This parametric coupling already occurs in quantum optics, where it describes the
process of parametric down-conversion, but it can be also implemented in electrome-
chanics. The lowest energy levels of the degenerate parametric amplifier are known and
some exact results exist for related Hamiltonians [121], but no full diagonalization was
ever found.

3.2.1. INTEGRABILITY AND THE UNSTABLE VACUUM

The structure of quantum mechanics is linear algebra. In an ideal scenario, any physical
problem reduces to solving the eigenproblem .#|y) = ely), and with the full spectrum
and set of eigenstates, everything can be known about the system. Thus, the problem of
interest is how to diagonalize exactly the degenerate parametric amplifier Hamiltonian

szwa*a+§2b+b+g(aab*+aTaTb). (3.17)

2The content of this section is based on a project with E. Jansen.
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Eq.(3.17) reveals that the Hamiltonian is invariant under the transformations a — ae'?
and b — be*'?. This continuous symmetry is intimately connected to the conservation
of excitation number C = a'a+2b'b, as seen from the following reasoning: If C is a
conserved quantity, then it commutes with .#°, and so does any linear combinations of
powers of C. Thus, one can construct a group of unitary transformations Up = e 1PC,
whose action on a and b produces the aforementioned phase shift. On the other hand,
if T is an invertible transformation that leaves the Hamiltonian invariant, then

TAT ' =(HT+IT,HNT ' =#+T, 7T ' =7, (3.18)

which implies that T is a constant of motion ([T, #] = id;T = 0). A unitary transforma-

tion Ty belonging to a continuous 1D group can always be written as T = e""/’é, and iff
V¢ € R, Ty leaves the Hamiltonian invariant, then the group generator C is also a con-
stant of motion, as seen from the relation C = iT_y0¢p Typ.

The phase shift for the a and b fields that leaves the Hamiltonian invariant is ob-

tained respectively with @, = e~iva'agngd Dy = e 2iob'b Therefore, {U =00y = e‘i(“T“J'Zth)‘b}

is the unitary group of transformations leaving the Hamiltonian invariant, certifying that
C is a constant of motion. If a transformation T leaves the Hamiltonian invariant, and
|y) is an eigenstate of A7, then T'|y) is also an eigenstate with the same energy. Thus, the
eigenstates of C can be used as a basis to represent the eigenstates of %, and the eigen-
states can be expressed in the basis {|¢‘,,§)> =|C-2m, m)} (with m the phonon number),
where C,m e Nand C = 2m. Eq.(3.17) can be rewritten as

H=wC+(Q-20)b'b+glaab’ +a'a' b). (3.19)

The usefulness of the symmetry observation is that the interaction only acts between
states with the same C. This decomposition reduces the number of relevant degrees
of freedom, since now only m matters for the diagonalization problem. Consequently,
the Hamiltonian becomes block diagonal, and the eigenstates are grouped into "closed"
classes for each C, in the sense that if the system starts in a state inside a class with a
given C, then the state will never evolve into another state outside of its class.

The particular case of interest is the spectrum for Q = 2w. When this resonance con-
dition is fulfilled, the effects of the interaction are more prominent and cannot be treated
perturbatively, the explicit dependence on the excitation number b'b vanishes and the
free energy depends only on C. The eigenvalue problem associated with obtaining the
spectrum of Eq.(3.19) can be written as

FO1y) = Ely) < (aab' +a' a'b)ly)y = é(E—wé)m/), (3.20)

making now evident that the energy spectrum is a linear function of g. The Hamiltonian
can then be decomposed in the # subspaces (# = @cen Hc), which in the {Ic/)(,s))}

¢
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basis, 7 corresponds to a tridiagonal matrix of dimension | § | given by

[0 by O ... 0
by 0 Db
Hc=|0 b 0 . 0 |- (3.21)
big)
0 ... 0 bg 0
L 2

where by, = v/(m+1)(Com)(C—-2m—1). To illustrate the idea behind the diagonaliza-
tion procedure, consider the case C = 2. The class for C = 2 is given by states of the form
ly) = ¢ol2,0) + ¢110,1), and the eigenvalue problem becomes

0 V2
V2 0

The spectrum for C = 2 is then E = 2w+ v/2g. The procedure is identical for higher C, and
the spectrum can be obtained in this manner up to C = 17. Beyond C = 17, no analytical
expressions for the energies or the eigenstates could be found. These energy levels are
shown in Fig. 3.3, and the precise values for the energy can be found in [122]. Tridiago-
nal matrices like the one in Eq.(3.21) have been linked to the theory of finite orthogonal
polynomials [121], and the eigenvalue problem of Eq.(3.20) can be expressed in terms of
polynomial equations using the Bargmann representation, but no further progress was
accomplished.

C()] _ E-2w
C1 - g

Co
o ] . (3.22)

(b)

Figure 3.3: (a) Energy spectrum as a function of g for the even lower C’s (red C=2; blue C=4; green C=6; pur-
ple C=8). Odd C’s have the same behaviour but are shifted upwards by w; (b) Lowest energy of each class C
as a function of g (determined numerically). The observed tendency is that the absolute value of the slope
increases with C, suggesting that higher C have lower energy states.

As seen from Fig. 3.3, the aperture of the energy levels increases with C, and as the
coupling increases, level crossings occur and the lowest energy level is no longer the vac-
uum, but a state containing C excitations. Numerical determination of the spectrum for
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higher C’s suggests that for each C, the energy levels are symmetric in respect to E - wC,
and that the maximum slope of the energy levels with g increases with C. This seems to
imply that for any non-null g and for any given energy level, there exists always another
level with a lower energy. If that is the case, then the system does not have a ground
state. The inclusion of the counter-rotating terms of Eq.(1.19) only aggravates this be-
haviour [122]. If the system does not have a ground state, several important questions
arise, namely, without a ground state, the partition function as normally defined in sta-
tistical physics diverges. Thus, to what kind of distributions does the system thermalize
into?

The interest in the exact solution laid on enlightening the properties of the system.
It is clear that even for low coupling values, the vacuum is not the ground state of the
system, and so this electromechanical system, by the simple fact that it exists, and even
if there are no initial mechanical and electric excitations, will host electrical currents
and mechanical vibrations created spontaneously from the vacuum. Such vacuum in-
stabilities and superradiative transitions are already known in cavity QED, but contrary
to cavity QED, there is no clear mechanism preventing this vacuum instability for elec-
tromechanics. A possible natural prevention mechanism for the associated divergences
is the limit when the displacement is such that the capacitor plates touch each other.

Is this vacuum instability a quantum effect? No. The complete energy of the system
in terms of the fields is (see Eq.(1.19))

1V 1 2 1
=2 ind g2 | e S(dy+ ) ER + P 4 S mQ2x?, (3.23)
2 uN? 2 2m 2
and using X = x + ;2?222 , the energy can be written as
1V; 2 1 1 €s?
F=mdgr P p0?X2 4 ~eSdgE? - —— E*. (3.24)
2 uN 2m 2 2 8mQ?

From the last terms, it is clear that the free energy of the (classical) system has the shape
of an inverted E* potential, and the energy has its minimum at E — co. But in a clas-
sical system, for certain parameters and initial conditions, the system can be trapped
inside the inverted double well potential and be stable as long as there are no fluctua-
tions perturbing the system’s stability. The difference for the quantum case is that, due
to quantum fluctuations, the system can always tunnel through the double well, and the
false vacuum would inevitably meet its fate.

3.2.2. DYNAMICAL CASIMIR EFFECT IN ELECTROMECHANICS 3

The main feature of the parametric amplifier interaction is that it is able to exchange
excitations between systems with very distinct natures. In comparison to the paramet-
ric down-conversion process in quantum optics, this interaction in the context of elec-
tromechanics describes the conversion of a mechanical phonon (the harmonic mode)
created by the pump to two microwave photons (the subharmonic mode). Thus, if the
mechanical resonator is driven, the motion of the capacitor plate induces a current in

3The content of this subsection is based on the published work [123].




52 3. WHERE TO LOOK FOR QUANTUM

the LC circuit. In order to maximize this effect, the mechanical motion should be driven
at its resonant frequency. Including the resonant mechanical driving, the Hamiltonian
becomes

H=wa a+2wb'b-g (aT a'b- bTaa) +& (bTe_Zi‘”t + beZiwt) , (3.25)
where & is the driving amplitude. The explicit time dependence of the Hamiltonian can

be swept away by transforming to the rotating frame with U = exp[—-2iwt(a'a +2b'b)],
and rotating the b-field by —7/2, making the Hamiltonian (3.25)

H= ig(aTaTb—aabT)+iéa(bT—b), (3.26)

With this rotation, the deterministic parts of the resulting equations of motion are real.
Taking dissipation into account, the quantum Langevin equations (QLEs) for the Hamil-
tonian (3.26) are

K
0:a= —§a+2gaTb+inA,

r
atb:—zb—ga2+é"+in3, 3.27)

where x (I') is the LC (mechanical) decay rate and {n;} are stochastic Gaussian noise
operators. The nonlinear operator character of Eqs. (3.27) hinders the search for an
exact solution, so in order to understand the basic properties of the system, let us start
by finding the noiseless steady-state solutions to the QLEs (3.27). These are

28 E-8E: «
(@, B)ss = (O'T) and (a,f)ss = (i . C’E) : (3.28)
where &, = XL is the critical driving. As the second solution above only exists when

8
& > &, an abf)ve-threshold and a below-threshold phase can be defined. For an elec-
tromechanical system, this transition takes place when the phonon number created by
the mechanical driving reaches the value (8g/x) 2, which requires at least ~ 10* pump
phonons for current devices [50]. Below threshold, the LC field amplitude is constantly
null, whereas the mechanical amplitude increases linearly with the driving. Above thresh-
old, the mechanical amplitude saturates (a phenomenon known as pump depletion [84,
124]) and all energy pumped into the system is transfered to the LC circuit. One could
then proceed with a simple linearization around the stationary points, but because of
the phase transition character, this yields diverging results at the threshold &, [122]. A
way to overcome this problem is the use of a self-consistent linearization [126].

To do this, it is more convenient to express the QLEs (3.27) in terms of the scaled
variables 7 = %Ft, €e=818,y =TIk, u=4glx, a = V2€a, b = ub, na = vxéa and

2
np = VI&p, as well as the single photon cooperativity € = %. With this scaling, the
critical point is fixed at e, = 1, thus facilitating the comparison of solutions with different
parameters, and the evaluation of the stochastic fluctuations in the diabatic regime (I’ <
x). In terms of the scaled variables, the QLEs (3.27) are
Y0,d=—a+a'b+2iVEETly),

0:b=-b-a?+e+ivV2uip(n), (3.29)
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and where (¢ i(t)cf;(t’ )y = (; + 1)6(¢ — t'). Here and onwards, it is considered that there
are no thermal fluctuations affecting the LC (774 = 0).

In the usual quantum optical case of a fast-decaying pump mode, the system dy-
namics is typically solved through adiabatic elimination of the pump mode [124, 127].
However, in electromechanics, the pump mode (the mechanical mode) decays much
slower than the subharmonic mode (LC), making adiabatic elimination impossible. This
regime is known as the diabatic regime y « 1, and for microwave resonators, vy is rather
low (y ~ 10~% in [125]). Here, it is considered the diabatic limit v — 0. In terms of the
scaled variables, the diabatic limitis y = % — 0, implying the limit u — 0 (the highest p
for microwave resonators is ~ 10~3 and % > 1 was not yet obtained [50]).

Although adiabatic elimination is not valid in this regime, it is still possible to elimi-
nate the mechanical mode by considering the steady-state case. In this limit, the me-
chanical noise contribution ¢3 is negligible for thermal phonon numbers 7ip < p2
(which is the case for MHz resonators at mK temperatures). The second noise contri-
bution to the dynamics of the mechanical mode b comes from the fluctuations of the
coupling term: aa— (aay. These fluctuations are proportional to the quantum noise
introduced by ¢4 and scale with (¢ Af;) =y8(t — 7). Thus, in the diabatic limit, these
fluctuations vanish as well.

Writing b = Bs + 8b and keeping only terms linear in the operators leads to

Y0, G =—a+ Pesd +2iVEE, (3.30)

with fBss = € — @, and where @ss must be determined self-consistently. Solving Eq.(3.30),
one finds

32
(Cﬂgwss = ﬁss<d2>ss = a —Sﬁigs (3.31)
where S is determined by the self-consistency relation
- Pss
ﬁss =e—————%F (3.32)
(1- .Bgs

The solution to Eq. (3.32) is

(1-iv3) (2 +3(€+1)

€
ﬁsszg_

6§/e(ez+ $@-2)+iy/ (243 + 1)’ -2 (2 + 36 -2))°

1+iv3 2
_( +é\/_)3\le(€2+§(‘€—2))+i\/[62+3(‘€+1))3_52(52+g(cg—Z)) . (3.33)

Plugging Eq.(3.33) in Eq. (3.31), the self-consistent photon number is obtained. Fig. 3.4
shows the scaled mechanical amplitude s and scaled mean photon number (a'a) as
a function of €. It is seen that when € — 0, the self-consistent result tends towards the
noiseless classical solution. This happens because the fluctuations introduced by the
noise operator are suppressed, as seen from Eq. (3.30). For higher ¥, the quantum LC
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noise starts to play a significant role, and the self-consistent result deviates significantly
from the classical prediction near ¢.. The most important difference from the noiseless
classical picture is that microwave photons are still created below threshold due to zero-
point fluctuations.
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Figure 3.4: Scaled steady-state mechanical amplitude (a) and photon number (b) as function of driving. For
lower x = €71, the system exhibits a smoother transition near the threshold. When ¢ — 0, the noiseless
classical result is obtained.

Although the self-consistent linearization gives reasonable analytical results, its pre-
dictions differ qualitatively from our numerical results when both decay modes have
roughly the same timescale. In order to obtain better results, a Focker-Planck (FP) equa-
tion in the complex P-representation [128] is employed. The complex P-representation
is related to the density matrix by

p= ezlai-azl?

rRimianal pay, ap)|ay)asldar das, (3.34)
ooy

where €, ¢’ are contours in the complex plane. The coupling to the environment is car-
ried out by the inclusion of the Lindblad super-operators in the master equation, and
going from the Lindblad equation to a FP equation is a standard procedure in quantum
open systems [84, 124], resulting in

0,P(©,1) = {a,,z1 [gal —2gﬁ1a2] +0a,

K r
Eag—Zgﬁgal] +6’31 [Eﬁl +ga%+é?

r
+aﬁ2[5ﬁ2+ga§+£

+g[0%, B + 02, B2] + Tipdp, 05, P(©,0),  (3.35)

where © = (a3, a2, f1,B2). Using the same scaled variables as before, the FP equation
becomes

~ 1 ~ 1 ~ ~
aTP(G,‘L') = {;6@1 [dl —,31(1’2] + 7—/6@2 [ﬁfz —ﬁgdl] +651 [ﬁl + d% +€]

_ @€ - . . ~
+05, [P+ @B +e] + > (02,81 + 62, B | + 212 7pdy, 05, }p 6,7). (3.36)
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Eq.(3.36) is not easily solvable, and in order to make progress it must be brought to a
simpler form. As before, the mechanical mode can be eliminated in the steady-state and
the thermal noise of the mechanical oscillator can be disregarded. The validity of this
approach can be seen from the stochastic differential equations (SDEs) corresponding
to Eq. (3.36). Using the It6 rules, these are found to be [127]:

_ _ 1
a @pr—ai|  [€p1 O ]2 {a
Or |~ | =" |+ x H, 3.37
¥ T[az] 061,32—“2] [ 0  €B2] |(a 3.37)
_ _ 1
,61] €—d2—ﬁ1] 0 2/12171,3 2 (B
o |Pr| - |67 =p ) i, 3.38
) T le-az-p) lawtas 0 | 2s, (859

where ({;) =0 and ((;, (;,) = §(t—t). In the steady-state situation, the left-hand side of
Eq.(3.38) is null, and for low phonon thermal occupations (iip <« ,u’z), the mechanical
fluctuations can be disregarded, leading to the steady-state solution fss ; = € — 0255' ;- Sub-
stituting fss,; in Eq. (3.37) leads to a nonlinear stochastic equation for the microwave

field. The steady-state of the new FP equation associated with Eq. (3.37) is
0=1{0a, [@1 - (e~ a3) @] + 05, | @2 — (e~ B) &1 | + |02, (e~ &2) + 32, (e - aB) |} Ps(a, o).
(3.39)

Eq. (3.39) is equivalent to the one in [124, 127], (albeit it is derived in the adiabatic
regime), and the solution is readily found to be

(3.40)

1 a a
P =N [(e—a?) (e—a3)]?* 1exp( ! 2),

€

where 4 is a normalization constant. The photonic moments are defined as [128]
@mnam =f f dada,ayay'P(a,as), (3.41)
€ JE!

and with Eq.(3.40), they are found to be:

m+n

@mamys =N (ijk JF1 (= (Kt m), 267,671, 2), (= (k4 m),~67) 67, 2)
Ss = k' (g ) 2 ’ ’ 2 ) 2 ’ ) )

(3.42)

where » F1 (i, v, w, z) is the hypergeometric function and .4’ a normalization constant. It
is also possible to obtain an analytical expression for the steady-state mechanical ampli-
tude as it is defined in terms of the second order moment {a?)s. Fig. 3.5 shows the
steady-state photon number as function of driving for the FP approach. The FP ap-
proach predicts an "undershooting” of the semiclassical prediction just above threshold,
which becomes more pronounced as €6 increases; that is, when the coupling is large with
respect to the dissipation rates. For € = 0.01, the FP approach tends towards the noise-
less classical prediction as the fluctuations of the mechanical and LC oscillator become
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Figure 3.5: Steady-state scaled photon number as a function of driving for different values of x = ¢~!. For
x =50, the FP approach tends towards the semiclassical prediction as the fluctuations of the mechanical os-
cillator become small. For x = 12.5, the photon number "undershoots" the semiclassical prediction just above
threshold. This behaviour is not predicted in the linearized approach. For x = 0.125, the quantum fluctuations
introduced by ¢ 4 lead to a more pronounced undershooting.

negligible. For ¥ = 0.04, the undershooting is visible but it remains small. In contrast,
for € =4, the quantum fluctuations are relatively large, and the undershooting is quite
pronounced.

To check the performance of the FP approach outside the adiabatic regime, the FP
results are compared to the results of numeric simulations. These simulations are done
fork =T =1, g = 0.1 (where the system is still tractable numerically) and using QuTiP
[129]. To obtain precise results for a given observable, the dimension of the matrix repre-
senting the operator should be significantly bigger than the expected outcome of the ob-
servable’s value. Constructing a Fock-state basis containing 2N photons and N phonons
requires all matrices to have size 2N? x 2N?. We found that taking N=23 provides rea-
sonable precision while avoiding memory issues. However, for higher values of driving,
this dimension is not sufficient. In these cases, we used Shanks-extrapolation with as
input the results of N = 15,...,23 to improve the results. The chosen region of parameter
space lies neither in the adiabatic nor in the diabatic regime, so that the FP approach
can be regarded at best as a linearization. However, as ¢ = 0.04 and u = 0.4, the noise
contributions are expected to be negligible, and this linearization should be a reasonable
approximation in the steady-state.

Fig. 3.6 shows the scaled steady-state mechanical amplitude and photon number
obtained via different methods. The numerical result is shown in dotted-blue. The
dashed-red line represents the semiclassical (mean-field) solution to the steady-state
QLEs (3.27). The numerical behaviour of the system coincides roughly with the semi-
classical result but it deviates from it around the threshold. The self-consistent lineariza-
tion is shown in solid-orange, and it coincides with the semiclassical result for high and
low driving power but connects these limits smoothly (in contrast with the semiclassical
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result). However, it does not predict an overshooting of the mechanical amplitude (un-
dershooting of the photon number) in comparison to the numerical predictions. The FP
approach (dotted-black) does predict this undershooting and it is qualitatively similar
to the numeric result. Upon close inspection, it is seen that the numerical results reach
the semiclassical result for higher & somewhat faster than the FP result. This small dis-
crepancy can have two origins. Firstly, the numerical simulations become less precise
for higher values of the driving. Secondly, in the k¥ =T regime, the FP method gives a
linearized approximation of the true steady-state observables implying that the discrep-
ancy could originate in the shortcomings of the analytical method.
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Figure 3.6: (a) Scaled mechanical amplitude as function of the normalized driving. Numerical simulations
predict that the amplitude overshoots the self-consistent prediction in the intermediate driving regime;(b)
Scaled photon number as function of the normalized driving. The FP approach matches the numerics rather
well.

Fig. 3.7 shows the steady-state fluctuations of the photonic quadratures X = a' +
a and Y = i(a" - a) for the different methods. The fluctuations for the X-quadrature
display a behaviour qualitatively similar to the photon number. On the other hand, the
fluctuations for the Y-quadrature drop below 1 for nonzero driving, indicating that the
photonic state is squeezed. Above threshold, a clear discrepancy between the FP result
and the self-consistent result can be seen. This discrepancy has been reported before
[130], but has not yet been explained. The numerical result does not coincide with either
one. The cause may be the issues discussed above. We could not check if the FP method
provides accurate analytical results in the diabatic limit for the steady-state moments.

As a final note, the evolution of the stationary state of the system as a function of
driving is numerically simulated, and as shown in Fig. 3.8, the Q function for the cavity
goes from a Gaussian (squeezed) state below threshold into a mixture of coherent states
above threshold.
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Figure 3.7: Steady-state fluctuations of the scaled photonic X- and unscaled Y-quadrature as a function of
driving. The behaviour of (X?) is qualitatively similar to that of the photon number. For the Y-quadrature,
the fluctuations decrease below Y2, . with driving, indicating the presence of squeezing. A yet unexplained
discrepancy is observed between the numerical data, the self-consistent and the FP approaches.
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Figure 3.8: Q-function of the LC steady-state for different values of driving. For well-resolved density maxima,
as for & = 3.0, the centers of the maxima lie at the branches of the square root defined in Eq. 3.28.
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3.3. CREATION AND INTERFERENCE OF MECHANICAL SUPER-

POSITIONS 4

Being able to control the quantum state of a macroscopic object, namely a mechanical
resonator, is a current topic of interest because it supplies a tool to investigate funda-
mental questions in quantum mechanics. Besides testing quantum mechanics beyond
atomic scales, another reason behind it is the hope that such massive superposition
states suffer some form of collapse [131], particularly gravitationally-induced collapse
[132]. If that is to be the case, these states would allow to test the foundations and limits
of quantum mechanics, along with proposed extensions, namely the so called "collapse
models".

To create such a superposition state, or any quantum state for the matter, the macro-
scopic object must to be coupled to a quantum element, whose properties can be con-
trolled at will. A natural choice for the quantum element is a qubit, since its state can
be fully manipulated through driving pulses. Several proposals for creating macroscopic
superpositions by coupling mechanical resonators to qubits have been advanced [133-
135], and a promising choice is to use NV centres in diamond as the qubit due to their
long coherence times (a 77 of ~ 5min was achieved in [136]).

The explicit form of the interaction depends on the geometry of the system, and dif-
ferent couplings lead to different ways of manipulating the mechanical state. Here, two
forms of coupling are analyzed and compared. The first form of interaction considered
is when the spin axis and the cantilever displacement are aligned. This coupling leads
to a force acting on the resonator that is dependent of the spin state (i.e. proportional
to 0%). Therefore, if the spin is prepared in a superposition state, the coupling ensures
that the cantilever evolves into a superposition. The second interaction considered is
the case where the cantilever is aligned with the NV spin, but the motion is perpendic-
ular to the axis. Due to the reflection symmetry, the coupling strength is approximately
quadratic for small displacements. This interaction can be viewed as a spin-dependent
bending potential for the cantilever. Likewise, if the spin is prepared in a superposition
state, the cantilever will evolve into a superposition state due to the spin-state depen-
dent mechanical frequency. A scheme illustrating the geometry enabling these forms of
interaction is depicted in Fig. 3.9.

3.3.1. CREATION USING A LINEAR COUPLING
The geometry of the spin-cantilever system considered in this section is illustrated in
Fig. 3.9. Because the spin axis is parallel to the cantilever motion (i.e. to the displace-
ment of the fundamental bending mode), the coupling strength is proportional to the
mechanical displacement and to the spin state (i.e. 0%) [134]. Therefore, the Hamilto-
nian considered is

7= gaz +Qb' b+ gof b+ b, (3.43)

where € is qubit frequency, and g the coupling parameter. The reason why this type of
interaction is suitable to create mechanical superposition states is simple: go®(b + b")

4The work presented in this section is part of a joint project with Oosterkamp Lab.
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Figure 3.9: Schematics of different geometries for the cantilever+NV spin system. When the spin axis and the
cantilever displacement are aligned (panel (1)), the force acting on the resonator is proportional to o%. If the
cantilever is aligned with the NV spin, but the motion is perpendicular to the axis, this symmetry leads to an
interaction proportional to x% (panel (2)).

can be seen as a potential of the type F.%, where % = b+ b' is the displacement and F
is a force. However, F is a force dependent on the spin state, and if the spin is in a su-
perposition of 1 and |, then the force acting on the cantilever is also a "superposition
of forces" acting in opposite directions. Moreover, this Hamiltonian shares a few simi-
larities with the standard optomechanical Hamiltonian, namely the spin plays the role
of the photons in cavity optomechanics. This Hamiltonian can be diagonalized via the

transformation U = e9” ('~ Jeading to the diagonalized Hamiltonian
R T _ t € 2
Hiag =UICU" = Qb b+ 0%, (3.44)

Note that, in comparison to the standard optomechanical system, there is no additional
Kerr-like nonlinearity for the spin because for a spin '/, (64?2 = 1. Furthermore, the time-
evolution operator is given by

W) = Ut e i aiag! [ = e—inzsin(Qt)@(n(e—iQt _ Daz)e—i(gaugb*b)r, (3.45)

wheren = g/Q and 2 is the displacement (coherent state creator) operator. From Eq.(3.45),
it is clear that, apart from a spin phase shift, the dynamics is periodic (with period %”).
Though the mechanical state returns to the initial state after a full period, at the middle
of a mechanical period the state change caused by the interaction is most prominent,
and after a half-period of oscillation,

T Zn —idbo? +
W(t: 5) =P (-2ng%)e 477 (—1)P'?, (3.46)

with @(-2ng%) = e 219" (0'=b) and ¢ = Z . From Eq.(3.46), one can see that if the system
starts in the mechanical ground state and in the spin state { (]), a coherent mechanical
state is created at f = —2n (8 = 2n). On the other hand, if the spin starts in a superposi-
tion state such that the initial state is \/Lé (11> +11) ®10), after a half-period the state has
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evolved into

(e = %)) - %(e‘“ﬂ -2+l |,2m). (3.47)

Therefore, this interaction enables the creation of a superposition state whose distance
between the superposition branches is 4g/Q. Two problems now arise: first, if the sys-
tem is allowed to freely evolve in time, it will go back to the initial state and the super-
position is lost. Second, the coupling is in general much smaller than the mechanical
frequency, which means that the superposition is still within the zero-point uncertainty
and it cannot be observed. These problems can be surpassed by applying a 7—pulse on
the qubit. Assuming that the duration of a pulse is much shorter than the mechanical pe-
riod, the pulses can be regarded as instantaneous spin flips. Thus, if a z-pulse is applied
and the system evolves for another half-period, the state becomes

. 25”)> - %U Lam +11,~4m), (3.48)

where the 7 upperscript in vy is solely to mark that a 7—pulse was applied at half-period.
It is now clear that applying a 7-pulse at the middle of the oscillation period not only
prevents the system to go back to the initial state, but also increases the separation of
the superposition (which is now 8n). Thus, a possible route to create macroscopic su-
perpositions is to sent a succession of n-pulses at every mechanical half-period. If T; is
the coherence time, the maximum possible number of 7-pulses is m ~ T;Q/x and so,
the maximal separation between the branches of the superposition is limited to = gT7.
Note that to create the superposition state, it is not required for the mechanics to start
in the ground state. If for example, the initial mechanical state is a coherent state a, the
only difference in the final state is that the superposition is now centred around « in-
stead of 0. Additionally, one could also drive the mechanical resonator. Since including
a driving term (S(b'e~i®a! 4 be!®d’)) in the Hamiltonian does not break the symmetry
(0* is still a constant of motion), the diagonalization can be extended to include driving.
This amounts to make the transformation

" (¢

T Gy Gt (3.49)
However, driving only contributes to create a mechanical coherent state and to dis-
place the centre of the superposition, and it does not give rise to new effects. Further,
if a 7-pulse is applied after a half-period, each branch of the superposition is split into
two. Thus, different superposition states can be created by applying different pulse se-
quences.

In order to model the time-evolution in a realistic way, the interaction of the system
with its environment must be considered. To account for the dissipative effects of the
coupling to a thermal environment, a Fokker-Planck equation shall be employed. Be-
sides the Schrodinger representation, quantum states can also be represented by quasiprob-
ability distributions. Here and onwards, the Wigner functions

1 .
Wi i(a) = Ff Tr(ez(bf—a)—z (b_a)pj,l)dzz, (3.50)
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shall be used, where p;; is the full density matrix, (j, /) label the spin density matrix el-
ements {1, |}, and T is the trace over both the spin and mechanical degrees of freedom.
With the definition in Eq.(3.50) and the Lindblad equation, one can write a partial dif-
ferential equation representing the quantum state evolution in phase-space, much like
in the previous section. The Fokker-Planck equations describing the time-evolution en-
compassing the coupling to a thermal bath are

0 Wi . =iQ(a0q — @ 0aq) W s +ig(0q —0au) W s + %(a*aa* +a0g) Wa 4
+YWe s +Y(Nyp +15)0q00 Wi 4, (3.51)

where N, is the thermal bath population, y is the mechanical dissipation rate (y = %,
with Qy, the resonator’s quality factor), and =+ refers to {1, |} respectively. Here the effects
of spin relaxation were disregarded because the principle of creation of mechanical su-
perpositions rests on the coherence of the spin. Past the T time, the spin will be 1 (or
1), and the superposition will have vanished. Thus, the whole evolution is considered
to take place well within T;. Furthermore, the dephasing time T» only affects W, 3, and
unless a different pulse is applied (not a 7—pulse), T» does not matter for the evolution of
the mechanical superposition. Since the initial state is considered to be a Gaussian state,
it is more appropriate to look for Gaussian solutions and determine the time-evolution
of the coefficients from Eq.(3.51). The solutions found this way are

Y _ _Z
60 |a —ape th— t + ly/ (1-e iQt t)l
exp|— D(t) , (3.52)

where a is the centre of the initial Gaussian state, d is the initial broadening, and the
diffusion coefficient is

D)= (N, +1/2) QA —e ") +6ge 7. (3.53)

From this result one can see that dissipation counteracts the effects of the interaction,
and so the separation between the superposition branches must now also overcome
thermal broadening. Considering the n-pulses to be instantaneous (i.e. the duration is
much shorter than all other relevant time-scales of the system), the action of a 7—pulse
is to make the swap W;; — W, | and W| | — W; ;. If the system starts in the state \/ié (1
Y+ 1)) ®]0) and a m—pulse is applied at the middle of a mechanical period, the quantum
state after a mechanical period is

. 2
L om 1 | an(1- -0 - D)
Wi,i(tzﬁ):ﬁexp - — , (3.54)
2t Qn 27 Qn

Comparing this result with Eq.(3.48), it is possible to notice that apart from thermal
broadening, the distance between the branches is shortened by because of mechan-
ical damping. Since in general mechanical resonators have huge quahty factors, this ef-
fect is not very prominent. To create the largest mechanical superposition possible with
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this type of coupling, we must apply a 7—pulse every half-period. After n, resonator
cycles with this succession of pulses, the quantum state is

W1 = 220) ! (3.55)
e U = S exp S , :
Q n(%+%n6) 3+ oln

Therefore, the conditions for the superposition to be visible (i.e. when the separation is
larger then thermal broadening and zero-point uncertainty) are

o 8g>my(Ny+1) (separation rate overcomes thermalization rate) (3.56)

1 N N . . .
— ———— <n.<4Q, — —— (interaction overcomes broadening) (3.57)
167  256n2Qm;, 4

Using the values reported in [134] (Q=7MHz, g=115kHz, Q,, = 10°, N;j, = 300), it is possi-
ble to create a visible superposition with 9 m—pulses. Visible here means that the super-
position branches have overcome thermal broadening. Nevertheless, the superposition
can still be quite small and it might require many more pulses to produce a large su-
perposition. Sending several 7—pulses means putting a large amount of power into the
system, which might tamper with the coherence of the qubit. It is then desirable to have
an interaction that does not require a large number of pulses to produce a large super-
position.

3.3.2. CREATION USING A QUADRATIC COUPLING

Other types of coupling can be implemented by changing the geometry of the system.
If the system has a reflection symmetry along the displacement axis of the resonator
(see Fig. 3.9), then the coupling between the qubit and the resonator is quadratic in
displacement °, and the Hamiltonian modelling the system is

)
7= goZ+Qb*b+§oz(b+bT)2, (3.58)

where A stands for the new type of qubit-resonator coupling. Here we have chosen the
qubit axis to be perpendicular to the displacement axis. As the coupling is small in com-
parison to {€,Q}, it suffices to keep only the resonant interaction terms. With RWA, the
Hamiltonian becomes

A
= %az +(Q+Ad)bb. (3.59)

It is now evident that A represents the frequency difference between a fast oscillating
resonator state and the bare mechanical frequency. Thus, if the spin starts in a super-
position state of | 1) and | |), then the resonator evolves into a superposition of two
states oscillating at different frequencies (Q2 £ ). An important consequence of this fea-
ture is that it is possible to create large superposition states with small coupling values.

5For sufficiently small displacements, such that only the magnetic field curvature plays a role and the tilting of
the cantilever does not change the picture.
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If the resonator starts in a large coherent state  and the spin in a superposition state
%[2 (11> =1l |)), after a time ¢ the system evolves into the state

(D) = L(efi%qefi(mmﬁ, 1 —iel S e i@-Nig |y (3.60)
V2

Therefore, by simply letting the coupled system evolve freely in time, it is possible to
create a superposition state. Note however that one branch of the superposition is en-
tangled with the | 1) state, whereas the other branch is entangled with the | |) state. To
disentangle this superposition, one has to apply a "/> pulse. Furthermore, Eq.(3.59) states
that there is no single qubit frequency for the coupled system, but a distinct frequency
for each phonon number. What are then the effects of a "/> pulse? If we add a driving
term g(e‘i‘“d 'o* + h.c.) in Eq.(3.59) and solve the Schrédinger equation, it is possible to
see that the coupling between the spin and the resonator causes the mechanical state to
change with the applied pulse (but maintaining its statistics). This state change can be
avoided if S > 2|B|?> which means that the duration of the applied pulse must be much
shorter than T = ﬁ For A =2n x 15mHz, and an amplitude of the cantilever motion
of 10nm (and xzp)s = 0.2pm), the state change is avoided if the pulses are much shorter
than 5ns. Throughout this analysis, the pulses are considered instantaneous, and the
state change negligible.

A constraint produced by this type of coupling is that the maximal separation be-
tween branches of the superposition is 2|§]. The time necessary to achieve this separa-
tion is % (see Eq.(3.60)), and for small coupling values relaxation, thermal broadening,
decoherence and dephasing play a role before the maximum separation occurs. Thus,
the coupling to the environment must be considered in order to have a realistic pic-
ture of the time-evolution. As before, the time-evolution considering the coupling to the
environment can be evaluated by solving the Fokker-Planck equations for the Wigner
functions representing the quantum state. These are now

atWJ_r,J_r = Z(Q + /1)(0,’6“ — a*aa*)WJ_r,J_r +YWi,i
+ g(a*aa* + Q0 Wa s + 7Ny +1/2)0000 Wa o - 3.61)

1
atWLL = lQ(aGa - a*aa*)WTyl + ('y— F - l€-21/1|a|2)WTY1
2
+ Y a*o, +ad)w; +( (N, +1/f)+'&)a O W) (3.62)
> a* a) Wi, | T YUVen 2 12 aOg* Wi | .

If the mechanical resonator starts in a Gaussian state, it is best to look for a solution of
the form
Wijila) = exp(cj,l(l‘) +kj(Da+qj(Da” + gj,l(t)lalz). (3.63)

Plugging Eq.(3.63) into Eqgs.(3.61),(3.62), leads to

8+,+(0)
g2+ (N + 3] @7 =1 +ert’

8++(0)= (3.64)
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: Y
. k (O)e(l(Qi/l)—j)t
kis(D)=qt, = == (3.65)

g+ O(Ni+ (e =1+ et

(Nth + %)ki,i 0)q+,:(0)(1—e)

1
Ces(t) =i (0)log (gi,i(O)(N,;ﬁ5)(e‘”—1)+e‘”)+

(3.66)
gr-O)(hye ' —h) +hiho(1-e™*)
0= ) 3.67
ger (0 g+-(0)(e ¢t —1)—h_e St +h, (3.67)
q+,_(0)e(7i97{/2)t(h+ _ h_)
= ) 3.68
e gr-(O)(est=1)—h_ett+h, ( )
ki~ (0)e VP (b, — h_)
ke (0= : : 3.69
o gr-(0) (e st =1)—h_e Sl +h, (3.69)
1 - _(Ok, _(0)(1—e5t
C+ﬁm=C+,7(O)+(———ie+i/1+7 é)t+ q+,-(0) ey - (0)( et )
I 2 gr-(0) (et =1)—h_e*'+h,
( hy—h_ )
+log , (3.70)
g 0 (et-1)—h_e*'+h,
where

eSS \/ — 1
hy = ————"——, and {=\/y*—4A%+8iyA{Nip + 3. 3.71
: 2y(Nyy+3) +iA c=\r Y ( th 2) (3.71)

It is important to notice from Eq.(3.71) that the qubit-resonator coupling competes with
the dissipation for both the effective decay rate and frequency. If the system starts in the
state \/% (I 1Y—il|))®|B), after n. resonator cycles and for short time scales (f < y’l), the

Wigner functions that give the position of the mechanical resonator take the form

_27n, 1 —|a—,6eii"’_2‘?cm 2
W_i(t— )z 7 exp % , (3.72)
Q n(% + Q—;’:nc % + Q—ch

and ¢ = Znncé. The separation between the superpositions is now given by ~ 2¢|f|(1 -
ne

2Qm
coupling in a similar way to the linear coupling, so comparing the creation of mechani-

cal superpositions amounts to comparing 2g to wA|§|. Considering the parameters Q,, =
10°, A = 27 x45mHz, Q = 27 x3kHz, T» =100ms, Bl = 10° (this can be obtained if the am-
plitude of the cantilever motion is 20nm and xzpy; = 0.2pm), leads to 7 1|f| = 88.9kHz
which is quite close to the value for the linear coupling g presented above. Therefore,
this provides a low power alternative to create a mechanical superposition with the same
separation.

g2 0N +3) e =D +ert

). Relaxation and thermal broadening affect the superposition created by the quadratic
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3.3.3. INTERFERING MECHANICAL SUPERPOSITIONS

Once macroscopic superposition states are created, the toolbox is open. But why are su-
perposition states so important? Modelling the behaviour of an object whose position is
unknown and which can be found indistinctively at two different places can already be
done at a stochastic level (with the probability density distribution P = %(5 (x—x1)+6(x—
X2))). The difference is that at the quantum level the rule of addition of probability am-
plitudes leads to interference effects in the probability of finding the resonator at a given
place. It is this interference that holds a quantum nature, and not the states themselves.
How to produce interference between the superposition states then? Consider the su-
perposition state in Eq.(3.60). If after n, resonator cycles a "/>-pulse is applied, after the

L 2
same time interval 7 = <5, the state becomes

y@m) = (e 01pe 2, —i1p, D - 15, D - 200, ), 37
with the phases ¢ = Z”TMC and 0 = ”E)"”. It is clear that sending a "/.-pulse allows to
split each branch of the superposition into another two. By choosing the duration of
the free evolution to be equal, two of the branches merge at the same position in phase-
space, and there are now 3 possible positions for the resonator. However they are entan-
gled with different spin states. If the system evolves further in time, the superposition
branches would evolve separately, and if the state were measured at ¢ = 27, no inter-
ference would be visible. Yet, each component of the superposition of the mechanical
resonator has a different phase, and it is this phase difference that enables interference
between the superpositions of the resonator. Applying another 7/ pulse and letting the
system evolve once more for a time 7, a true which-path experiment is built. The state
for the situation described above is

—-3i0
B0 = o (160 =it e, D=2 e, e 1pel?, 1) -1 e, 1)
(3.74)

and a scheme of the protocol to obtain this state is depicted in Fig. (3.10).

This proposal corresponds to a true which-path experiment because the position of
mechanical resonator is uncertain (as each superposition branch moves in a different
direction in the rotated frame), the possible paths of the resonator take place in real
space, and interference between the possible paths enables to distinguish a quantum
from a classical scenario. For very large superposition states (2¢|f| > 1), the probabil-
ity of finding the resonator around (Be=3'?, Be~'%, Be'?, e3'¢) is ~ (1/8,5/8,1/8,1/8) re-
spectively. It is possible to see that in a fully classical system where the spin is prepared
with equal probabilities of being | 1) or | |), the position of the mechanical oscillator
would still disperse along the paths but the final probabilities would differ. As there are
3 out of 8 possible paths for the resonator to reach e’ or fe’?, a purely stochastic
evolution predicts the probability of finding the resonator at (B, Be'?, Be??, Be’¥) to be
(1/8,3/8,3/8,1/8). Hence, this difference in the final probabilities allows to distinguish a
fully classical stochastic evolution from a quantum one, as shown in Tab. 3.2.

The probability difference arises from the phase difference that each component ac-
quires during the time-evolution, resulting in destructive/constructive interference be-
tween the identical components of the superposition created by the /> pulses. It is the
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Figure 3.10: Schematics of the experimental proposal. The system starts in the state

ZUD-ilyelp,and
it evolves freely during a time 7 leading to a physical separation of the resonator’s position. At t =7, a % pulse
is applied in order to split again each of the superposition’s branches, and the system evolves for another 7
until a third g pulse is applied. After a final free evolution of 7, the position of the cantilever is measured.
The red (blue) arrows indicate that the mechanical branch is entangled to the spin { (]) component. Because
of the phase difference between the possible paths, the outcome probabilities to find the resonator around
(Be=31%, Be~i? Bei® Be39) differ from the probabilities of a purely random process.

Position | —|BIsin(3¢) | —IBIsin(p) | |Blsin(yp) | |Blsin(3¢p)
Classical 1/8 3/8 3/8 1/8
Quantum 1/8 5/8 1/8 1/8

Table 3.2: Comparison between the fully classical and the quantum outcomes for the measurement of the
cantilever’s position. A histogram of the cantilever’s position measurement outcomes enables to distinguish a
classical from a quantum scenario.

accumulated phase difference that creates the asymmetry in the quantum outcome. For
a superposition to exist, it is only required that the qubit can be found in both 1 and
| states. However, the state %(I 1 + €| |)) is different from the statistical mixture

%(I <1 1+1 1)<l D), even though both states lead to a mechanical superposition. It is
that difference that leads to the quantum asymmetry due to the interference created by
the relative phase ¢. Though it is possible to create a state with an equal probability of
being 1 or | using a /2 pulse, it is also possible to create a state with the same property
using a 37/2 pulse. The choice of pulse sequence used leads to a different phase for each
path (the ¢ in the \/% (1) + el 1))), which ultimately leads to different outcomes for the
position of the cantilever.

Once again, the effect of thermal relaxation and dephasing on the interference of the
superpositions must be considered since the the spin-cantilever coupling is weaker than
dephasing and mechanical relaxation rate, and thermal noise is quite substantial. The
full exact dynamics is cumbersome and does not render the effects of the bath immedi-
ately clear. After y~!, the resonator relaxes, and the superpositions merge and become
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broaden by thermal noise. Thus, the regime of interest is the short time scale regime
(yT < 1). The limits of a hot thermal bath (N;j, > max{1,yA~'}), and weak interaction

A < y Ny, are also considered. With Eqs.(3.63)-(3.71), after n. resonator cycles (1 = 275”6)
and for an initial state \/% (11 =1l 1)) ® By, the quantum state of system becomes
1 —2|a— BeTi??
Wii(t=1)= — ex = , (3.75)
TQRYNpT+1) 2yNgT+1

ie—(%z+ie+§)r

Wi (t=1)~ (2e-i’(/3a* +B*a) - (1L +e ) (B2 + |a|2)) ,

7@yNy 7+ 1A - %) ZW;VTm(l_e—fr)J,%(He—:r)

(3.76)

where ¢ = A1. For "/.-pulses much shorter than the mechanical period and decoherence
rate, the effect of a "/.-pulse is

1
Wiz = = (Wi + W) F Im{Wy, ), 3.77)

and

1
Wi,j — Re(Wj, ) +i | = (Wi = W- )| . (3.78)

To clarify the effects of the bath, let us analyse what happens to the system after applying
a”/. pulse. The marginal distribution of W} ; (¢ = t*) gives the probability of finding the
spin in the 1 state and the resonator at a point x in space. Considering = i|f|, the
probability is

_ _ : 2 _ : 2
1 (exp( 2(x—|Blsin¢) )+exp( 2(x+|Blsin¢) ))

\/8T @2y N7 +1) 2Nt +1 2yNyt +1

4
i exp| ZOFr AR }
) (LA -e ) +ia+em)a+e )

Px,s=1,t=1") =

e—(%zﬁ—ie-%—z)r
—Re{

\/n(zyzvmr +D(1- %L
(3.79)

The first two terms of Eq.(3.79) are Gaussian functions that represent the superposition.
They are centred at +|8|sin¢ and broadened by thermal noise by yN;;,7. The last term
is an interference term, which is also affected by dephasing (produced by the spin bath,
but also by an additional contribution from the thermal bath: the ¢ term). In order for
the interference to survive, the experiment must be performed within 71> T, 1t Ref{éy.
Apart from this temporal restriction, the interference is also suppressed for large coher-
ent states (notice the factor |B|? in Eq.(3.79)), with the amplitude dependent dephasing

given by
(hen)? 1-e*
Re{ —————|p* , with h(x)=—=. (3.80)
2XR hEr) + l+e
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Since the time interval of interest is much shorter than Re{¢}~!, h(x) can be expanded
for small x and in the limit y Ny, 7 > 1

(hEn)?

R\ Ry 1
25 by + 5

1BI? = —4A%| B2y Nyt (3.81)

The separation between the peaks is given by Ar|f| and the thermal broadening of the

peaks in this limit is y/yN,,7. For the superposition to be visible, the separation has to
be larger than the broadening, but if that condition is satisfied, the interference vanishes
because Eq.(3.81) becomes bigger than one. Therefore, for the interference effects to
survive, the experiment must also take place before (}/Nth)’l. Even for times smaller
than (yN,;,) "}, the interference suppression caused by the coupling to the environment
is present. In the limit y N, T < 1, this is

h(é1)? 16 -
Re N"r— B ~ ——A%|BIPy* N2, 4. (3.82)
2X0 per)+ 1 3
For the interference to be visible, the above results show the number of oscillation cy-
cles (or the amplitude of motion) allowed between the pulses is limited by 2 parameters:

¢ = 27 A|BI/Q, the separation per cycle in natural units, and p = N;;/Qm, the thermal
broadening per cycle. These limits are

4
L, v3 } ) (3.83)

N

The lower limit for n, comes from the condition that the separation must be larger than
the position uncertainty, whereas the upper limit corresponds to the decoherence and
interference suppression times. The latter is determined from Eq.(3.82) and corresponds
to the point where the interference is suppressed by thermal noise. From the limits
above, it is clear that p should be small and ¢ large. p is naturally small for a cold envi-
ronment (so that the resonator is close to the ground state), but the mechanical quality
factor can be increased to compensate for the rate at which thermal phonons affect the
cantilever. It may be worth noticing that increasing the mechanical frequency might be
advantageous because for a fixed temperature (and coupling to the environment), Q,,
increases while N;j, decreases. On the other hand, increasing the frequency decreases ¢,
which implies that more cycles are needed to separate the superpositions. Nevertheless,
increasing ¢ can be done by driving the cantilever harder.

Consider the following feasible experimental values: Q,, = 10°, A = 27 x 45mHz,
Q =271 x 3 kHz, T, =100ms, |B| = 10° (this value can be obtained if the amplitude of
the cantilever motion is 20nm and xzpy; = 0.2pm), and let the resonator evolve freely
during 5 cycles between each /> pulse. Note that the mechanical resonator may not start
in a pure coherent state, but in a Gaussian state with a broadening §. In the absence
of a better choice for the broadening, ¢ is taken to be the detection uncertainty (= 760
phonons). The additional broadening modifies Eq.(3.83) to

<N,<<max{p
26-0 ° {9

452 NERE)
<nc<y\/=1/—. (3.84)
46¢-p 8V o¢
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The result of evaluating the probability of finding the resonator at a position X af-
ter the described pulse sequence is displayed on Fig. 3.11, for different bath occupan-
cies and for the parameters above. It is seen that the interference between the paths
vanishes for hot thermal baths (INV;,=7500), leading to the classical prediction. Only for
lower temperature baths (N;;,=7.5), itis possible to observe a deviation from the classical
distribution.

oy (a) 35 (b)
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Figure 3.11: (a) Probability of finding the cantilever at a position X (in natural units) for several bath temper-
atures and for Q, = 105, A =27m x45mHz, Q = 27 x 3 kHz, T» =100ms, and |B| = 105, 5 cycles between the
/. pulses, and an uncertainty of 760 phonons for the initial mechanical state. At T=0K, the expected 1-5-1-
1 distribution appears, whereas at N;;,=7500 the 1-3-3-1 distribution prevails. A deviation from the classical
1-3-3-1 distribution can be observed at N;;,=7.5, though the difference is rather small; (b) Ratio between the
probabilities (1, represented by dots) of finding the resonator at X = —|f|sin¢ and X = |f|sin¢ as a function of
Ny, for the same parameters. The continuous line marks the stochastic situation where no asymmetry exists.
Note that at N;,=0, 1 < 5 mainly because of residual interference suppression.

Fig. 3.11 also shows how the asymmetric quantum distribution tends to the classical
one as the temperature increases. As the asymmetry is only present in the peaks located
at X = —|Blsing and X = |B|sin¢, and because the probability distribution is a set of
Gaussian functions, the ratio n between the peak at X = —|f|sin¢g and the one at X =
|Blsing suffices to fully quantify the asymmetry. In the ideal case {T>,Q} — co, n =5
while for the classical situation 1 = 1. It is visible from Fig. 3.11 that, for these parameter
values, the asymmetry may be too small to be detected if N,y > 10,.

To enhance the asymmetry, the resonator should be relatively closed to the ground
state, or alternatively its quality factor should be increased such that the cantilever does
not suffer so much with thermal decoherence. As seen in Fig. 3.12, this allows the obser-
vation of the asymmetry before the interference suppression settles in. However this in-
crease in the quality factor has to compensate for the absence of further cooling, mean-
ing for the above parameters an increase of 103 in the quality factor.

Another possibility mentioned is to increasing the mechanical frequency in order to
decrease the broadening rate. For a given temperature, if the mechanical frequency in-
creases, the number of thermal phonons decreases, which is beneficial. The problem
with higher mechanical frequencies is that it requires more cycles to get the same degree
of separation. One can see from Eq.(3.81), that the interference suppression grows with
n, so it is desirable to have the least number of cycles possible. Thus, for the super-
position to be visible while increasing (2, one must have a better detection resolution.
Considering the case of quantum limited sensitivity, and preparing the mechanical res-
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Figure 3.12: Probability of finding the cantilever at a position X (in natural units) for A = 27 x 45mHz,
T» =100ms, and (a)Q;; = 108, Q =2nx3kHz, and |f| = 105, 5 cycles between the /> pulses, and for several
bath temperatures and an uncertainty of 760 phonons for the initial mechanical state. Due to the high qual-
ity factor Q, the asymmetry exists even at N,;, = 7500. Cooling one order of magnitude leads to a completely
resolved asymmetry; (b) Q;; = 107, Q = 27 x 30 kHz, a pure coherent state with || = 5 x 104, and 10 cycles
between the /> pulses. For this higher mechanical frequency, a strong asymmetry is visible for Nj, = 750.

onator in a pure coherent state with |§| = 5 x 10%, it is also seen in Fig. 3.12 that after
10 resonator cycles (and for Q,, = 107 and identical remaining physical parameters), the
superposition is fully resolved.

Note that for this type of interference experiment, the quantum behaviour stems
from the qubit, and not from the mechanical resonator.

3.4. QUANTUM EFFECTS IN MIM ©

The Membrane-In-the-Middle (MIM) geometry is a prime example of how symmetry
is intertwined with the interaction between light and motion. As discussed in subsec-
tion 1.3.4, by placing a membrane at an optical node or anti-node, a quadratic coupling
can be achieved. The interest around the quadratic coupling is due to proposals to use
this type of interaction to directly observe mechanical quanta [138, 139]. Quadratic cou-
plings have recently been implemented in MIM setups [140-145], ultracold atoms [146]
and levitating dielectric particles [147]. Due to the direct dependence on the phonon
number, this type of coupling is particularly suited to observe quantum jumps of the
phonon number [138, 139], as well as to characterize the phonon statistics by a direct
measurement of the cavity spectrum [139]. Other features enabled by this type of cou-
pling are antibunching [148], and squeezing [149-151].

As the quadratic coupling strength is much weaker than the standard radiation pres-
sure coupling, a stronger laser drive is required to enhance the interaction. The strong
coupling regime has not yet been achieved for this type of coupling, and the majority of
the studied effects for the driven system case rely only on linearized dynamics [152-154],
or resonant interactions [138] together with adiabatic elimination [148, 149]. However,
for an undriven cavity, an exact diagonalization for this quadratic coupling is possible.
This undriven case has many interesting effects such as squeezing [150, 151], collapse
and revivals of mechanical motion [150] and state engineering, such as the creation of

6The content of this section is based on a project with R. Slooter and it has been submitted for publication. A
preprint can be found in [137].
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star shaped Wigner function [151] (similar to the states created by the 3-photon down-
conversion process).

3.4.1. [SOLATED DYNAMICS
The Hamiltonian modelling this optomechanical system (as discussed in subsection 1.3.4)
is

1
Jf:wcaTmeng(a*m5)(b*+b)2. (3.85)

As the interaction preserves the photon number, Eq. (3.85) represents a quadratic form
for the phonon operators, whose eigenfrequencies and eigenstates depend on the pho-
ton number. Thus, Eq.(3.85) can be diagonalized via a photon number dependent squeez-
ing operator

st S A2
S(F(a'a) =) ez In){nl, (3.86)

n=0

where |n) refers to the photon Fock state. Using the short-hand notation § = g(a'a + %)
and choosing r(n) to be real, the action of the squeezing operator defined in Eq.(3.86) on
Eq.(3.85) leads to

5 1
Hp =wea'a+ (Qcosh?) + 276 | (b'b+ 5)- (3.87)

The Hamiltonian in Eq.(3.87) is obtained by imposing that the terms containing bb and
b'b' vanish, which implies

(Q+2y)sinh(27) + 2} cosh(27) =0, (3.88)

and determines the squeezing parameters to be (cf. [151])

1 4 1/
r(n) = —Zlog(l + %) . (3.89)
Combining Egs.(3.87) and (3.89) leads to (cf. [150])
vt 2 TN T
Hp=weaa+/Q? +4gQ(ata+ /2)(19 b+§). (3.90)

Eq. (3.90) describes two harmonic oscillators whose frequencies depend on the quan-
tum state of the other, making this system a paradigm for state sensitive quantum dy-
namics. With this transformation, it is possible to evaluate exactly the time-evolution of
the quantum state for arbitrary coupling strengths, as well as any physical observable,
via the time-evolution operator W (¢) = STt a)e rtS(#(a a)) (a disentangled form
for W can be found in [151]). The time-evolution of the displacement is

x(0) = Wb+ bHW(t) = cos (@) x(0) + % sin(@1)p(0), (3.91)

where @ = \/(22 +4gQ(ata+ %), x=b+b',and p = i(b'—b). As ® depends on the photon
number, x(¢) displays a different frequency for each |n), with a relative height dependent
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of [{n|y) |2, where |y) is the cavity state. Thus, measuring the resonator’s spectral density
provides a direct way to determine the photon statistics in the optical domain.

A direct consequence of this photon number sensitivity for the mechanical motion
is that these frequencies interfere, leading to collapse and revivals. When this interfer-
ence occurs, the resonator’s mean displacement quickly drops to 0 (the collapse), only to
reappear again at a latter time (the revival) [150]. This behaviour is displayed in Fig. 3.13
for the initial coherent states | = 2,a = 6), where (@) is the phonon (photon) state.
In general, the mechanical motion is not periodic because of the incommensurability of
the frequencies (see Eq.(3.90)). Consequently, each revival is smaller and broader than
the previous one, and after several revivals, these start to overlap and interfere with each
other. From that moment on, the motion exhibits a seemingly chaotic behaviour. The
collapse and revival times can be estimated using well-known techniques from cavity
QED [155-157]. For large coherent photon states (Ja|? > 1), the Poissonian distribution
can be approximated by a Gaussian distribution, and in the single-photon weak cou-
pling regime, ® can be expanded in powers of g. Replacing the sum in the Fock basis
by an integral via the Poisson summation formula, the mechanical displacement can be
expressed as an oscillation, whose amplitude is modulated by Gaussian envelops of the
form

1t—mT, 2
M) )’ (3.92)

(x(1)) = 2B cos(@q t +27m|al* m)exp (——(
m 2 Tcoll

where « is the initial cavity coherent state, the initial phonon coherent state § was taken
to be real, and @, = v/Q? +4glal>Q. The collapse and revival times (T.,;; and Tyey,
respectively) are given by

T/ Q% +4glal?Q

Trey =21|a| Teo11 =
rev || coll gQ

(3.93)

In contrast to cavity QED [155-157], the revival time in these optomechanical systems
depends on the average photon number, whereas for high photon numbers (4g|a|?> >
Q), the collapse time becomes independent of the mean photon number (T}, ~ 1/gQ).
This collapse and revival behaviour is not restricted to the displacement, and it is visible
for any mechanical observable as long as 27|a| > 1. Namely, the displacement variance

for a thermal phonon state and a coherent state a for the cavity is

Q+2glal? _p-lal? +Z°° lal?  2gn
Q+4glal? n! Q+4gn

n=0

(X2 (D) = 21y, +1) cosa,t)|, (3.94)

where n;, is the average phonon number of the thermal state. As seen from Fig. 3.13 and
Eq.(3.94), the interaction creates squeezing, but for an initial coherent cavity state, the
non-oscillating quadrature uncertainty can never be reduced to less than a half of the
thermal uncertainty. Nevertheless, at the peak of each revival, the minimum uncertainty
has no lower bound. Further, Fig. 3.13 shows that the appearance of collapse and revivals
is notrestricted to coherent states, and that the temporal envelope is characteristic of the
cavity state. Particularly, for a vacuum squeezed photon state | ), the shape of the revival
is elongated due to the superposition of the revival’s echoes [157], with an envelope that
changes in time.
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Figure 3.13: (a) Expected mechanical displacement for the initial coherent states |8 = 2,a = 6), and coupling
g =0.01Q. The mechanical displacement rapidly decays to 0 (the collapse event) and after = 78 periods, the
oscillation reappears (the revival). The revivals become smaller and broader with time, until interference be-
tween successive revivals occurs.(b) Collapse and revival behaviour of the displacement variance for an initial
thermal state of the resonator, and for the cavity states |a = 2) and |r = 0.8), where a and r denote coherent
and vacuum squeezed states, respectively. The shape of the revivals is characteristic of the cavity state, and for
a squeezed state, the revival’s envelope changes with time.

As hinted in Eq.(3.94), the resonator experiences squeezing, and so the quantum
state does not remain static. The time-evolution of the mechanical state for the initial
phonon state |0) and cavity Fock state |100) is displayed in Fig. 3.14, where the Husimi
Q-function for the resonator was computed using QuTiP [129]. For an initial cavity Fock
state, the mechanical state is periodically squeezed, with the period determined by the
effective phonon frequency in Eq.(3.91). Note that this feature solely depends on the
initial cavity (Fock) state. The reason for this effect comes from the original form of the
interaction (Eq.(3.85)), which comprises a photon-number dependent mechanical fre-
quency, and squeezing interaction.
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Figure 3.14: Time-evolution of Q-function of the mechanical state for g = 0.01€, an initial cavity Fock state
N =100, and mechanical ground-state, after ('/s,'/2,°/1,1) effective mechanical periods (panels (a),(b),(c), and
(d), respectively). The interaction produces a periodic squeezing of the resonator.
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Besides squeezed states, which have already been discussed in the literature [151],
other quantum states can be created, depending on the initial cavity state. For a coherent
cavity state |a = v/40) (and initial mechanical Fock state |n = 2)), the mechanical state
evolves into a superposition state after several periods (Fig. 3.15, panels (c,d)). The state
undergoes rapid changes even within a period. As seen in Fig. 3.15, the state goes from a
superposition-like state (panel (d)) to a state resembling a superposition of four coherent
states (panel(e)), and afterwards to a seemingly distorted Fock state (panel (f)).

l " (c)
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Figure 3.15: Time-evolution of Q-function of the mechanical state for g = 0.01€, an initial phonon Fock state
n =2, and cavity coherent state a = V40, after (0,1'/2,130,260,260'/:,261) effective mechanical periods (panels
(a),(b),(c),(d),(e) and (f), respectively). After 1'/- periods, the Fock state (a) suffers a quadrature squeezing (b).
Several periods later, the state evolves into a superposition-like state (c). The mechanical state undergoes rapid
transformations within a period. This is seen from the superposition state (d) evolving to a state resembling a
superposition of four coherent states (e), and afterwards to a seemingly distorted Fock state (f).

Note that even though the existence of two peaks in the Q function is insufficient to
claim that the resonator is in a superposition state, it is clear from panel (d) of Fig. 3.15
that the quantum state is not a statistical mixture of coherent states. For the statistical
mixture of coherent states p = %(I iBY(ipl+1—iBy{—ipl), the Q function is

] ‘ ‘
Quixt(@) = (e"“"ﬁ'2 + e"““ﬁ'z), (3.95)
T

which has two separate peaks like the aforementioned figure, but it is also Gaussian dis-
tributed along the line Im{a} = p = 0. On the other hand, panel (d) of Fig. 3.15 displays
a small deep around the origin and it has two maxima along the p = 0 line, and so the
state cannot be a simple statistical mixture. The overall quantum state is quite complex
because the mechanical state is entangled with the light state, but since no dissipation
nor noise are present, this state is expected to display quantum correlations.

3.4.2. ZERO-POINT ENERGY EFFECTS
The analysis above considered only the coupling between one optical mode and the res-
onator. However, even if there are no photons for a given cavity mode, Eq.(3.90) shows
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that this mode still plays a role due to the zero-point energy (ZPE). Due to conservation
of the photon number, the multi-mode case can be easily approached for an arbitrary
number of modes. With the substitution g(a’ra +1h) =3 i&j (a; aj+'/2), the transforma-
tion in Eq.(3.86) can be generalized to diagonalize the multi-mode Hamiltonian.

Even though g is small for most physical implementations of quadratic coupling,
the contribution of several cavity modes enhances the mechanical frequency shift pro-
duced by ZPE. A simple way to measure this frequency shift is to place the membrane
at a high symmetry point of the cavity (such as the centre of the cavity, where all optical
modes couple quadratically to the membrane) and measure its frequency Qcep¢re, and
then shift the membrane to a point of low symmetry (such as close to one of the end
mirrors) and measure the frequency Q.4 at this position. Note that the cavity should
not be driven to prevent undesired contributions. Although it is not possible to mon-
itor the membrane’s position if the optics couples quadratically to the mechanics, the
mechanical frequency can still be determined by a laser probe out of axes and indepen-
dent of the cavity system, or by a mechanical probe. In the multi-mode single-photon
weak-coupling regime, ZPE is responsible for the frequency difference

Qend = Qecentre =2 Z 8= G. (3.96)

j,even

It is possible to implement this proposal with the existing technology [140, 141, 143],
and it represents an alternative to force or displacement measurements of ZPE. In order
for this scheme to be feasible, the frequency difference G must surpass the mechanical
linewidth I', which does not require achieving the single-photon strong coupling regime.
So far, G has never been determined, and the enhancement produced by all the even cav-
ity modes is yet unknown. Apart from relatively high values for cold atoms implemen-
tations [146], the quadratic coupling for a single mode is in general quite small (~ 5uHz
[143]). Although mechanical linewidths on the order of a few uHz exist [158], such small
frequency differences may be difficult to detect. However, G is expected to increase by
a few orders of magnitude with the use of low frequency resonators (g o< xZZ s X Q™h,
and at least by another 2 orders of magnitude with the use of highly reflective mem-
branes [159]. The combination of these improvements may bring the quadratic single-
photon coupling to the Hz regime, where it can surpass existent mechanical linewidths,
and ensure the feasibility of this proposal.

Note that despite the connection to ZPE, the nature of this frequency shift is not
clear-cut. Asremarked by [160], the fundamental interaction of the electromagnetic field
with matter does not have ZPE terms, and so ZPE cannot have a direct physical effect.
ZPE-like phenomena are known to arise as an asymptotic limit of detailed microscopic
models [160, 161], and it may be the case for this frequency shift.

3.4.3. DRIVEN CAVITY

Physical systems experience dissipation and noise, and the cavity decay rate x can easily
surpass the effective interaction strength g|a|?. This implies that after the short time-
scale of k!, most photons will have leaked out of the cavity and no longer interact with
the mechanical resonator. To ensure a steady photon number, the cavity must be driven.
As both driving and dissipation break the conservation of photon number present in the



3.4. QUANTUM EFFECTS IN MIM 77

isolated system case, it is difficult to obtain an exact solution for this situation. However,
for weak driving (i.e. |a|*> < Q/g, with |a/? the intracavity photon number created by the
probe laser), one can disregard the off-resonant interaction term atabb+b'bhH invoking
RWA. With this approximation, the effective Hamiltonian in the drive reference frame is

SO = —AaTa+QbTb+ié”(a—aT)+2gaTabTb, 3.97)

where A = wy — w. — g is the detuning and & the driving strength. Within RWA, the in-
teraction preserves the phonon number, and so the mechanical state can be identified
by probing the cavity without any backaction. To take the effects of dissipation into ac-
count, we use the Fokker-Planck equation for the Husimi functions Q,(a) = % (n,alpln, ay,
where 7 refers to a phonon Fock state, and a to a photon coherent state. Using the stan-
dard master equation techniques [84], the Fokker-Planck equation for the system is

0:Q,=i(-A+2gn)(ady — a*aa*)Qn —&(0q+0q+)Qn
K
+xQy + > (@0q+a*0q*)Qpn +%K0q0qQy . (3.98)

Since the timescale k! is quite short, the interest lies not in the dynamics, but in the
stationary properties. Additionally, we assume that the resonator is in a stationary state.
This can be achieved by waiting until the steady-state is reached and optically probe
the resonator afterwards. Even if the resonator is not in a steady-state, it can still be
assumed that the mechanical state is stationary if the mechanical thermalization rate
T'71;p, is much smaller than the inverse of the measurement time. The stationary solution
of Eq. (3.98) is

Quss = ~ex (—|a——g |2) (3.99)
mss = 7 €XP £ i(a-2gm| )’ '

which leads to the intracavity field amplitude

2 Epn

(a)ss fa’;Qn,ssd o ; g—i(A—Zgn) , (3.100)
where p,, is the probability to find the mechanical resonator in the Fock state |n). A
consequence of the interaction is that the phonon statistics leaves a signature on the
cavity field. Eq. (3.100) features a set of peaks, each corresponding to a specific phonon
number, and with a relative height of p,,. Therefore, the phonon statistics can be directly
determined via the field amplitude, and measured by the cavity transmission |t]%. The
transmission is defined as the ratio between the coherent output power and the coherent

input power
2

2

(Gourt? Kela) , (3.101)

(@in) 28

where «, is the decay rate through the output mirror (taken to be = x onwards). If the
single-photon strong coupling is reached (4g > «), each of the Fock peaks in the trans-
mission is well-resolved and the phonon distribution can be immediately identified (see
Fig. 3.16). Despite this regime being far from being achieved experimentally, there are
still interesting features outside this regime. Particularly, one can still characterize the

|t]? =




78 3. WHERE TO LOOK FOR QUANTUM

0.015 {a} | uaE [b] X colierent
. \H\ ey A R—

0.010
0.005 |

] 20 40 60 80 100 120 140 -2 T ] 1 2 3 !
A A
" T

Figure 3.16: (a) Cavity transmission for g = 4k and a coherent mechanical state with |$|> = 10. In the single-
photon strong coupling regime, the relative height of the n’ h peak corresponds to the probability to find the
mechanical resonator in a Fock state |n); (b) Comparison of the cavity transmission for a mechanical thermal
state (thick yellow line) and for a coherent state (dashed blue line), with g = 0.01x and with an average of 50
phonons for both states. In this regime, the quantum state is not fully resolved, but the transmission lineshape
still exhibits distinctive features characteristic of the mechanical state.

state without the peaks being fully resolved. In the strong coupling regime (defined here
as 4gnyp > «, with 715, the average phonon number), the transmission exhibits a line-
shape characteristic of the mechanical state, as shown in Fig. 3.16.

Even if the average phonon number is the same, the transmission for a coherent state
differs substantially from the transmission for a thermal state. The coherent state dis-
tribution for large average phonon number resembles a Gaussian, which is directly re-
flected in the transmission profile (note the deviation from A = 0), whereas for a thermal
state, we see that there is a strong asymmetry in the transmission. This asymmetry is a
consequence of the Boltzmann exponential trend, and it can be used to determine the
temperature of the resonator. For a thermal state, p,, = n%h( 7_17}:11
(3.100,3.101), the transmission becomes

n+1 .
) , and using Egs.

2
Ke

T X2 +4A2

|t]? (3.102)

’

Ki+2A  ki+2A g 0\
2 1(,— 1- )
4g

4g T ig+1

where 2 F)(a,b,c,z) is the Hypergeometric function. This transmission thermometry

provides a simple method to determine the resonator temperature with the use of Eq.(3.102).

The transmission asymmetry is in principle visible with a slight improvement on the
state-of-the-art setups since for g ~ 100uHz and for kHz resonators at room tempera-
ture, the multi-phonon strong coupling regime can be achieved for cavity linewidths up
to the MHz range. Although we are mostly concerned about the properties of the me-
chanical resonator, the latter can also be used to change the cavity properties. As the
area below the transmission lineshape is independent of the quantum state, and higher
fip lead to broader and smaller transmission profiles, the mechanical element can be
employed as a switch controlling the light intensity exiting the cavity.

This mechanical state dependent cavity transmission behaviour (in particular the
behaviour represented in panel (a) of Fig. 3.16) is much similar to the microwave spectral
features found in circuit QED [162], and it is what makes MIM cavities the most promis-
ing optomechanical setup to observe the quantization of mechanical degrees of free-
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dom, in a situation devoid of other potential quantum influences such as electronic ex-
citations. Note however that the observation of a quantized behaviour is not necessarily
a proof of a quantum nature (see [163]), and that a proper quantum-classical discussion
must always have an unbiased comparison with possible non-quantum explanations.







HOW TO DISTINGUISH

Concerning the ontological repercussions of Quantum Theory, all its patriarchs have
judged alike: it is nonsensical. Was it their pragmatism that led the neophytes to de-
fend it so hardly? Since its birth, Quantum Theory has been a foreign and exotic land,
sprouting with predictions and physical consequences that stood in direct contradiction
with the everyday experience. To withstand the clash with the contemporary institu-
tionalized theories, and to solidify its legitimacy, Quantum Theory had to define a fron-
tier past which its singular features would vanish, and its position would be conceded
to Classical Physics. The program to define a quantum-to-classical transition border-
line was not particularly successful, and it was mostly abandoned with the subsequent
quantum hegemony. For too long lingered such matters in slumber, and most attempts
to address such problems were seen as theological speculations. The current trend on
quantum systems with macroscopic mechanical elements has revived the interest, but
this time with an agenda for reclaiming additional vital space for Quantum Theory.

The loose thoughts composing this last chapter are not intended to solve the quantum-
to-classical transition problem, but to advert to recurring issues of presumed solutions
to this problem, as well as other issues in distinguishing and defining whether an object
has a quantum nature or not.

4.1. DISTINGUISHING QUANTUM FROM CLASSICAL

In the previous chapters, a thorough discussion on the nature of diverse phenomena was
carried out. Several of them were shown to have a classical nature, while others were
deemed quantum due to the absence of a classical explanation. But how is it possible to
know in general if a given phenomenon has a truly quantum nature or not?

In subsection 3.4.1, it was shown that collapse and revivals of mechanical motion can
occur in the MIM geometry. This effect arises due to the discreteness of the Fock basis,
which strongly suggests a quantum nature. It is commonly stated without proof that the
collapse event is a purely stochastic feature while the revivals are a true manifestation
of a quantum nature [164]. To analyse this assertion, consider the case of an optical

81
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cavity with a nonlinear medium inside (a Kerr medium). The Hamiltonian describing
the system is
#=wa'a+Ka'a aa, (4.1)

where K is the Kerr nonlinearity parameter. The time-evolution is given by
i t
a(t) = e @r2Ka Dl g (). 4.2)

For a coherent state f8 (8 € R for simplicity), the average field quadrature (a+ a') evolves
in time as

(a+ah(®= Zﬁexp( — B2 - cos(ZKt))) cos (wt +182 sin(ZKt)) (4.3)

This leads to the standard collapse and revivals behaviour presented before, with the
single exception that if w/K is an integer, the system is periodic and there is no break-
down of the revivals. To compare the quantum behaviour with the classical one, it is
considered the case where the electromagnetic field has a stochastic nature (i.e. the op-
tical mode has an associated probability distribution for the amplitude and phase of the
respective classical field) with a time-evolution analogous to Eq.(4.4), i.e.

a(t) = e (@+2KIaP1 g ) (4.4)

where « is the complex amplitude of the field. As the Wigner (or Q) function for a coher-

ent state is a Gaussian function, the classical probability distribution representing the
a2

state of the field is also chosen to be a Gaussian: P(a) = (276%)'ex p( - %) With this

choice, the time-evolution of the average electric field is governed by

2 24282
(a+a*)(t):f(a+a*)ﬂ1’(a)d2a= 2p X ( 8KIpI" "0 )x

(1+16K2254)2 C1+16K21254

X

2K|BI*t . 2K|BI*t
(1-16K“t°6 )cos(wt+1+16 2t254) 8Ktd sm(a)t+1+16 2t254)]' (4.5)

When 6 — 0, the system behaves simply as a harmonic resonator of frequency w+2K|S|?.
However, provided that there is a nonnull uncertainty in the field, Eq.(4.5) reveals that
(a+a*) — 0as t — +oo. In particular, for § = |f| (an uncertainty reminiscent of the
Poissonian distribution), Eq.(4.5) simplifies to

2¢°
2pexp (~1ii)
(1 +4(p2)2

2 @ . 4
[(1—4(,0 )cos(a)t+ 1+4(p2) —4<psm(wt+ T‘W)Z)]’

(4.6)

(a+a®) (1) =

where ¢ = 2K|B/?t. The resulting behaviour for |8]? = 10, @ = 100K and for a quantum
coherent state and classical Gaussian state is shown in Fig.4.1. In this classical case, the
field oscillations decay with a Gaussian envelope (see Eq.(4.6)), never to reemerge again.
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Figure 4.1: Time evolution (in number of cycles) of the field amplitude (a + a*) for Iﬁl2 =10 and K = 0.01w.
For a coherent quantum state (a), there is a periodic revival of the oscillations, whereas for a classical Gaussian
state of variance |B|> (b), after the initial collapse, no revival ever occurs. Note also that the collapse for the
classical case takes place considerably before the quantum case.

This example provides a simple distinctive difference between the quantum and clas-
sical frameworks. However, this relied on the choice of a particular probability distribu-
tion. Could there be a probability distribution P such that revivals occur in a classical
situation? To answer this question, consider the long time behaviour of the field quadra-
tureE=a+a”*

(E(1) = Re{fdzaap(a’a*)e—il(lalzt}

2n +00
:Re{f do drr?eliKr ‘P(r,gb)} @.7)
0 0

where the change of variables ae™*“’ — @ and the polar coordinates a = re’? were used.

Writing f(r) = J; 27 el P(r, ¢)d¢ and integrating by parts leads to

1 +00 ik
tho dre ™®7 Or(rf(r))}. 4.8)

Further, the field amplitude decays with time since

(E(1)) :Re{2

|<E(t)>|_—U dre iKr'ty, (rf(n)
+oo
—iKr?t —iKr?t

2Kt (U dre fni+ drre 0,f(r) )

1 +00
s?( 2Kt(|arf|(0)+f dr|d? f(r)| ))

1 ¢

where
=10, f] @ +Y_10f1(x;) with {x;:0%f(x;) =0}. (4.10)

Thus, for any "well-behaved" probability distribution (¢ finite), the average field ampli-
tude decays with at least ¢! as ¢ — co. In a quantum picture, the system can be periodic,
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and as Eq.(4.9) predicts an amplitude decay for a classical probability function, the two
situations are never alike. Note that it was not proven that revivals cannot occur classi-
cally, but only that the field amplitude must always decay in time. The only implication
is the impossibility of periodic revivals for well-behaved distributions. The possibility
of decaying revivals in a classical picture is still open. It is also tempting to believe that
the existence of periodical revivals provides a signature of a purely quantum nature. But
it is not the case. To be able to display a revival, the decay induced by the uncertainties
must be overcome, which is accomplished if the probability distribution breaks the good
behaviour condition assumed above. If the distribution is composed by a set of § peaks,
the field amplitude is shielded from the decay induced by uncertainty in phase space. In
particular, computing the average field quadrature (E) for the probability distribution

+00 2n
Pa,a®) = e Y Iﬁ’%a(a -Vms(a* -vn) 4.11)
n=0 :
leads to . o
(E@y=e "y %\/ﬁcos((w +2Kn)1). @.12)
n=0 .

The time-evolution of Eq.(4.12) is displayed in Fig. 4.2 for the same parameters as
the previous cases (w = 100K and | ﬁl2 = 10). It is clear from the figure that it is possi-
ble for revivals to occur with a classical probability distribution (in this case the one in
Eq.(4.11)), and for the collapse and revivals times to be (at least approximately) the same
as their quantum counterparts.

<a+a >
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Figure 4.2: Time-evolution of the average electric field as given in Eq.(4.12) for K = 0.01w and | ﬁlz =10. Itis
visible from the plot that not only collapse and revivals occur in a classical framework, but they also have the
same characteristic times as the quantum ones displayed in Fig. 4.1.

It is thus possible for revivals to exist in a classical framework provided that the cho-
sen distribution mimics the discreteness of a quantum basis. What is not possible is to
match all statistical properties of the system for both quantum and classical frameworks.
Although Eq.(4.12) is able to provide a classical description of revivals, its prediction dif-
fers from the quantum case (Eq.(4.3)). The differences between the two situations be-
come slightly more prominent as one evaluates higher order moments. Namely, for the
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quantum case, (E?) is given by

(%) guant (1) = 2ﬁ2+1+2ﬁ2exp(—|ﬁ|2(1—cos(41<t))) cos (2(w+K) t+p sin(41<r)) | (4.13)
while for the classical case with revivals

(E®) crass (D) = 282 + 2ﬁ2exp( — 18120 - cos(4Kt))) cos (Z(w +2K)t+ sin(4Kt)) . (4.14)

The qualitative behaviour is the same for both scenarios, but there a few quantitative
differences. Specifically, zero-point fluctuations give an additional contribution to (E?,
and the classical and quantum cases differ in the frequency of the fast oscillating com-
ponent (2(w + 2K) and 2(w + K) respectively). This frequency difference comes from the
commutation relations between exp(-2iK atar) and a, and it provides a way to distin-
guish between the classical and quantum scenarios since K can be determined from
the revival time 7,., = 7K~!. The difference between the classical and quantum de-
scriptions can also be found in the equations governing the (quasi)probability distri-
bution describing the state of the system. In the quantum case, for the &2 distribu-
tion for example, there are additional terms stemming from the nonlinearity (such as
K (azaé — (a*)zag*)?}’) which produce a different time-evolution. Such differences can
only arise when there is a form of nonlinearity present, and it is the only way for the
classical and quantum cases to be distinguishable.

Another reason behind the overall differences between the classical and quantum
predictions is that for revivals to occur in a classical framework, the probability distribu-
tion must be a set of Js like the one in Eq.(4.11). For this distribution, the measurement
outcome of the field amplitude is a discrete set of values associated with each sharp peak
in phase space. For the quantum framework, the Wigner function for a coherent state is
a Gaussian function in phase space, implying that the probability distribution for the
measurement of the field amplitude is also a Gaussian. Thus, even if the occurrence of
revivals is possible to mimic in a classical framework, it is impossible to match all physi-
cal outcomes and higher order correlations with the quantum scenario.

An interesting property of the collapse and revivals effects is that their qualitative
behaviour (Gaussian shaped revival, static behaviour of the dynamical revival between
the collapse and the revival events) is the same independently of the specific form of
the nonlinearity used to create them. If a harmonic oscillator starts in a coherent state,
the collapse and revivals are all alike whether the oscillator is coupled to another os-
cillator (the cavity and the mechanical element in the MIM geometry), to an atomic 2-
level system (the standard textbook situation [26]) or to itself via a nonlinear medium
(as discussed above). The universality of this effect, allied with its unique quantum fea-
tures, provides a sturdy reference point to test whether a system does have a quantum
nature. There have been several claims of observation of collapse and revivals in very
distinct systems [164—167], but the observed behaviour not only differs among the ex-
perimental observations, it is also qualitatively different from the theoretical prediction.
The primary obstacle preventing the observation of this effect is that for the majority of
physical implementations, the relaxation rate of the system is much larger than the cou-
pling rate (the revival time is of the order of g~!, whereas the cavity photon lifetime is
of x ! « g’l). Thus, light will leak out of the cavity before the revival occurs, unless the
resonantly strong coupling regime is achieved.
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What the preceding analysis tells is that to determine whether the nature of a given
phenomenon is quantum or not, one must always test if there is a probability distribu-
tion P that can describe the measured outcomes, and look for correlations that cannot
have a classical counterpart.

4.2. DEQUANTIZATION ISSUES AND THE CLASSICAL LIMIT

Due to the longstanding and successful tradition of classical physics to model the ma-
jority of everyday phenomena, the presupposed ubiquity of quantum mechanics implies
the existence of a limit where the predictions of classical physics can be derived from a
quantum framework. But what is that limit?

The previous example of light propagating in a nonlinear medium provides a good
starting point to analyse the so-called quantum-to-classical transition. A common state-
ment is that quantum mechanics reduces to classical physics in the limit of high average
particle number. The average particle number in the quantum situation of light propa-
gation in a Kerr medium (as in Eq.(4.3)) is given by I,BIZ, but the limit |B] — +o0

. ¥ n
lim (a+a')(t) =0, fort#—, (4.15)
|Bl—o0 K

does not correspond to an oscillation with an amplitude dependent frequency. It does
match the limit | 3| — +oo of its stochastic version (for example Eq.(4.5)) presque partout
simply because when there is a finite amount of uncertainty, the field experiences an
amplitude dependent decay. But even for this situation, the quantum limit is

- ty(p= ") 2
lim (a+a )(t— K)—Zﬁcos( (4.16)

|Bl—00

27mw)

whereas its stochastic counterpart is still 0. And apart from these particular points, the
general qualitative behaviour of both situations is not altered with the limit || — +oo.
Moreover, if there is a limit where both situations match at all times, that limit is | ] — 0.
In this opposite limit, the quantum and the classical scenarios (namely Egs.(4.3) and
(4.6) respectively ) merge into

. Aa+a)®)
\klll—I}OT =cos(wt). (4.17)

However, this limit describes a simple harmonic oscillation, which does not portrait any
of the interaction effects. The view that |$|> — oo constitutes the classical limit implies
that | 8| — 0 should be the full quantum limit, but Eq. (4.17) does not display any quan-
tum behaviour of any kind nor it is different from a purely classical harmonic oscillator.
This reverse limit is actually closer to the classical case, which makes the hypothesis of
a high particle number to be the classical limit nonsensical. The flaws of considering
|12 — oo the classical limit are not restricted to this particular situation. A similar rea-
soning applies to other remarkably distinct situations, such as for example antibunching
of Fock states with a high excitation number, and bunching of thermal states with a low
excitation number.
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Another common statement is that quantum mechanics reduces to classical me-
chanics in the limit 7z — 0. However, directly computing the limit 77 — 0 gives null re-
sults for any physical observable. For a simple harmonic oscillator, the average energy

€ = hon, the average momentum p = / h%i(a’r — a), as well as any other observable
scale with 7% (with a > 0), which makes them all vanish in the limit # — 0. One could
think, that the limit should be understood in the sense of the expected values in terms of
their zero-point uncertainties, i.e. the limit of the ratio between the physical observable
and its zero-point fluctuation value. But what is then the limit of Eq.(4.3)? The Kerr non-
linearity arises from the propagation of electromagnetic fields in nonlinear media. The
quantization of such nonlinearity implies that K o Eé pp X h?. Thus, under this rea-
soning, the classical limit of Eq.(4.3) should occur when K — 0. However, K — 0 makes
(a+a')(t) in Eq.(4.3) a simple oscillation of frequency w, which is not the purely classical
case nor the resultin Eq.(4.5). This problem occurs for any type of nonlinearity, since the
quantization rules imply that any nonlinearity vanishes when 7 — 0.

Alatent problem when taking the limit #Z — 0 and comparing to the classical situation
is what objects are exactly being compared. The above comparison, much like most
similar comparisons, assumes that the mapping between quantum and classical objects
(operators and canonical variables, the Poisson bracket and the commutator) remains
unchanged with 7i. However, the subtleties and pathologies of the different quantization
schemes suggest that the mapping might have an intricate dependence on 7 [2]. As this
mapping problem remains unsolved, not much can be further added.

If 1 — +o0 and 71 — 0 do not provide good criteria for defining a classical limit, where
else to look for a classical limit? As mentioned in Chapter 2, it is possible to construct
inequalities that cannot be violated in a classical context. The reason why they can be
violated in a quantum context is because there is no true probability distribution repre-
senting the state of the system. Namely, there must be a quasiprobability function rep-
resenting the system with regions (of non-null measure) where the function is negative.
It is then tempting to define a nonclassicality criterion based on these negative regions,
and the classical limit via some metric between the quasiprobability distribution and
some positive probabilistic state.

Apart from the possible arbitrariness associated with the choices of metric and prob-
ability functions involved, it must be clarified first why is a negative quasiprobability
distribution a good indicator of a quantum nature. Before establishing a classical limit,
it must first be established what is intrinsically quantum. The critical question over what
is nonclassical must then be revisited.

4.3. ISSUES WITH DEFINING THE QUANTUM FRONTIER

As discussed in subsection 2.2.1, the standard photodetection model places a classical
boundary for the second order correlation function: g? > 1. In this detection model, n-
folded coincidences, i.e. coincidence detections between 2n detectors, are proportional
to the normal ordered product ((a")?”a?"). The quasiprobability distribution describing
normal ordered statistics is the Z2-distribution. If the coincidence detection has a n-
folded correlation function

@n _ ((aT)ZnaZIl)

1, 4.18
((ah)am)? (@19
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then a classical bound is broken. This can be confirmed by replacing the operators (a, a’)
by their scalar counterparts (@, a*) and realize that the variance of |@|*” must be negative
if gﬁle < 1. This inequality violation implies that 2 must have negative regions, which
is impossible for a classical probability distribution.

The act of judging whether something is nonclassical or not is often done by finding
negative regions in quasiprobability distributions (although it has also been proposed
that finding the zeros of the Q function is an equivalent path [168]). Building upon these
negativity foundations, hierarchies for the "intensity" of nonclassicality have been pro-
posed [168, 169]. However, defining & < 0 (or any other function for that matter) as
a nonclassicality criterion is problematic because not all quasiprobability distributions
with negative regions display nonclassical behaviour. To see that, consider the Didsi
mixture [170]

+00
p=>. 27"In)nl. (4.19)
n=1

The 22-distribution representing this state is
2 _jap
Pa)=—e -0(a). (4.20)
b/

Although £ < 0 at the origin, the classical bound is never violated because

en _ 2"2n)!

)2 >1,Vn>0. (4.21)
n!

Therefore, no antibunching of any sort ever occurs. Obviously this reasoning is restricted
to a particular type of measurements. There are other types of measurements that can
be performed, which have different classical bounds. However, the g(z) bound is the
one specific to normal ordered operators, whose statistics are described by the £ dis-
tribution. Consequently, there is no equivalence between antibunching and a negative
22 distribution. There could still be other classical bounds that could be violated with a
negative & distribution, but for such situations, 22 would not be a preferred quasiprob-
ability distribution. For a given quantum state, there are multiple quasiprobability dis-
tributions representing it, and the negativity of a particular quasiprobability distribution
function cannot fully account for the overall nonclassical features.

A stricter criterion for nonclassicality is the negativity of the Wigner function, since
the Wigner function is related to the 22-function by

W(a) = % f PP 2P’ g2, (4.22)

Because the convoluting Gaussian is always positive, W (a) can only be negative if & is
negative as well. Using the negativity of W as a nonclassical criterion is a popular choice
since the Wigner function can easily be inferred experimentally with quantum tomogtra-
phy techniques [167, 171, 172]. Although the state can be uniquely reconstructed from
its marginal distributions, such uniqueness for systems with continuous variables (like
bosonic systems) requires an infinite amount of precise measurements. In practice, the
finite amount of possible measurements along with errors or uncertainties for the mea-
surements, break this uniqueness and requires inversion strategies like maximization of
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a likelihood function. This in turn can lead to unphysical outcomes such as an unnor-
malized Wigner function or density matrix (or probability distribution) as well as nega-
tive probabilities for the system to be found in a given state v [167, 173]. However, dis-
covering a negative Wigner function as a result is usually not seen as pathological. The
problem is in the significance of these negativities since negative probabilities already
occur in classical reconstruction algorithms as a defect of the algorithm’s convergence.
As a side note, the negative regions of the overall Wigner functions are usually in a small
region centred around the origin, which inspires to look for a connection between anti-
bunching and other nonclassical phenomena relying on negative Wigner functions.

As the marginal distributions of W are the probability distributions for the quadra-
tures, W is often seen as the quantum counterpart of a classical probability distribution
in phase-space. Under this view, the existence of negative regions for W is a sign of a
nonclassical nature. It is then said that W cannot represent a true probability distri-
bution because of its negative regions. But independently of W being positive or not,
W can never be seen as a probability distribution. And the same applies to all other
quasiprobability distributions. As discussed in Section 4.1, a Gaussian probability dis-
tribution does not lead to revivals, whereas a Gaussian Wigner function does. Moreover,
although the marginal distributions of W represent the probability distribution of the
quadratures, other types of marginals, such as Z(r) = f dOrW (r,0), do not represent
probability distributions of any sort.

The Wigner function for the state in Eq.(4.19) is

2
W(a) = 3—«3‘2'0"2 @2e31%” _3), (4.23)
T

which is negative close to the origin. One might now be tempted to look for an effect
or test where this negativity would lead to a fully nonclassical behaviour. In subsec-
tion 2.1.3, a classical bound was demonstrated for the CHSH inequality for quadrature
measurements, but this and other Bell-like inequalities rely on systems with two inde-
pendent degrees of freedom, and so they cannot be addressed. One could then think of
a test involving measurements of position and momentum. Because they are conjugate
variables, quantum theory states that the state of the system is not defined for partic-
ular values of (g, p). As a consequence, it is not possible to predict within a quantum
framework what would be the outcome of simultaneous measurements of (x, p).

However, it is still physically possible to simultaneously measure both quadratures.
For the LC circuit case, placing a voltmeter in parallel with the capacitor and an amme-
ter in series enables the simultaneous measurement of (g, p). Suppose now that for this
situation, one measures simultaneously (g, p) and is able to repeat the measurement
many times for the same state (whether by being in a stationary state or by reinitializing
the state before each new measurement). How to describe the average outcome for this
situation? Is it (gp), (pq), %(q p+ pq), or something else? An alternative to simultane-
ous measurements would be conditional measurements. However, as the conditional
Wigner function does not represent a conditional probability distribution, and because
of the collapse postulate, it is not clear how the negativity of the Wigner function plays
role in these type of measurements.

Apart from the issue that a negative Wigner function may not violate any classical
bound, the negativity of the Wigner function is generally not a a necessary nor sufficient
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condition for nonclassicality [174]. It is possible to observe antibunching with fully pos-
itive Gaussian states [175], and it is also possible for Bell-like inequalities to be violated
with positive Wigner functions [176-178]. Therefore, the negativity of the Wigner func-
tion as a criterion for nonclassicality should be abandoned.

The reason why the negativity of quasiprobability distributions fails to be a consis-
tent criterion for nonclassicality is because no quasiprobability distribution can ever
represent a true probability distribution due to the inequivalence between quantum me-
chanics and a classical stochastic process. As shown in [179], contradictions arise when
attempting to model quantum mechanics in such a way. Specifically, symmetric combi-
nations of positive-valued operators can lead to negative correlations [179], impossible
to mimic in any classical theory. It is nevertheless quite instructive to see what phe-
nomena can be reproduced from classical approaches, and the best way to fully under-
stand quantum theory is to find what is not characteristically quantum. An interesting
related attempt is the reproduction of certain effects in Gaussian quantum mechanics
with probability distributions with the restrictions on the minimum of uncertainty for
the variables and on the precise knowledge of the value of conjugate variables [180].

The lesson to learn from all of this, is that rules of thumb to discern quantum from
classical situations are an act of intellectual sloth. To be able to distinguish a truly quan-
tum from a possibly classical situation, one must always consider the physical system
together with the measurements being performed on it, and attempt to model the out-
comes with the widest possible classical formalisms. Only when no classical model de-
scribes the measured observations, and if quantum theory is able to do so, then one can
speak of a truly nonclassical quantum effect. And by following such procedure, quantum
theory will progressively lose its mysteries, and its nature will become comprehensible.
Because deep down, it is just a trick.



EPILOGUE

It takes time, but a lot of time, until a wrong idea fades away from the collective mind
of a community. And in Physics, the land of step-by-step, it took several centuries for
the most basic physical phenomena to be fully understood. We no longer learn from
history, but if we did, we would recall that the current ardor and frenzy surrounding
the “fundamental physics” of today are not unique to our time. And if we made use of
history of science beyond the erection of an Olympus, we would also recall that from
all the fundamental theories of the past, none still stands as such. Because what truly
hampers the advance of science is not skepticism nor criticism, but the unshaken belief
in idols, in canons and in theories themselves.

Ingenuity is something that we can no longer wear. Quantum Theory is already an
institution in itself. It has gained widespread appeal and it has conquered its own posi-
tion, thus ensuring eternal existence. Besides its premature indoctrination, its strength
resides in its unity. The nature and mechanisms behind phenomena such as supercon-
ductivity or nuclear binding are completely distinct from each other as well as from any
quantum optics’ effect. Nevertheless, the successes of one are perceived as a general
achievement of Quantum Theory. As long as this cohesion persists, sloppy theories and
distorted physical notions can safely subsist under the roof of a great foundation.

Science, as an institution that zeals for owning the monopoly of veritas aeterna, should
have as primary interest the constant reassessment and validation of its laws, as well as
the excommunication of any metaphysical and paranormal dissents. Otherwise we will
find that the promised golden eggs are actually made from pyrite. And instead of engag-
ing in the ideological warfare of scientific speculations, we should simply return to the
factual touchstones.

Just like men have ages, so do theories, and there is always a time when these be-
come obsolete or recognised as ludicrous. What is the caterpillar to the butterfly but the
reminder of an ignominious origin? Despite giving birth to important scientific fields
and having been practiced by men of science, astrology and alchemy are now seen as
a distant shameful relative by their offspring. And the same must be the present to the
future. The wise men of tomorrow will diagnose our contemporary beliefs and percep-
tions about the Universe as a primitive desire for the supernatural, as a cunning tool for
intellectual exhibitionism, as ideological zealotry, as simply, human. The path that goes
from the caterpillar to the cocoon is already traversed, but there is still something very
larval in us. And only with such recognition, can Physics cleanse itself from the current
mysticisms. Because after each zenith, there is always a sunset.
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