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Abstract—An increasing number of methods for control and
analysis of power systems relies on representing power networks
as weighted undirected graphs. Unfortunately, the presence of
outliers in power system graphs may have a negative impact on
many of these methods. In addition, detecting outliers can be a
relevant task on its own. Motivated by the low number of outlier
detection algorithms focusing on weighted undirected graphs, this
paper proposes an efficient and effective method to detect loosely
connected graph clusters below a certain number of nodes. The
essence of the method lies in the efficient examination of the
spectral minimal spanning tree of the input graph. The obtained
results on several large test power networks validate the high
outlier detection performance of the proposed method and its
high computational efficiency.

Index Terms—outliers, graph outlier detection, power network
partitioning, power system analysis computing

I. INTRODUCTION

The ongoing modernisation of electric power grids caused

by the bulk integration of renewable energy sources re-

quires new adaptive control strategies capable of countering

the expected increased operational uncertainties and faster

dynamics. Owing to the inherent graph nature of electric

power networks, graph partitioning becomes an important tool

for many novel control solutions. Partitioning of large-scale

electric power networks into zones or areas is relevant for

power system operations and planning [1], zone-based voltage

control schemes [2], power system emergency control [3],

power network reduction [4] and some other applications.

Spectral clustering [5] is a family of computationally ef-

ficient methods based on the eigendecomposition of certain

graph matrices that plays a fundamental role in graph partition-

ing and cluster analysis. Despite its advantages and widespread

usage, spectral clustering has several known deficiencies, one

of which is its sensitivity to outliers [6]. This problem is

usually tackled by applying a robust post-processing method

on top of spectral clustering [3] or by removing the outliers

in advance [6]. The first option limits the set of methods

to produce the final partitioning, and severe outliers may

still be able to impair the partitioning result [7]. Thus it is

strongly recommended to filter out the severe outliers before

applying spectral clustering [6]. The relevance of graph outlier

detection in the power system context was illustrated in [3]

for the problem of generator coherency constrained graph

partitioning.

The main contribution of this paper is a computationally

efficient outlier detection method for graph data. Compared

to outlier detection in Euclidean point cloud data, there are

noticeably less methods to find outliers in graphs [8]. The

majority of existing graph outlier detection methods focuses

either on community outliers [9] (i.e., residual nodes loosely

coupled to the identified network communities), or on iden-

tifying anomalous elements in graph matrices via matrix

factorization techniques [10]. These methods are not tailored

to find outlier clusters (i.e., loosely connected groups of two

or more nodes). Additionally, many state-of-the-art outlier

detection methods have a higher time complexity than spectral

clustering [10], [11], which may result in a computational

bottleneck. Our method avoids this problem by having about

the same time complexity as spectral clustering.

The main idea of the proposed method is to embed the

graph in a low-dimensional Euclidean space and detect outlier

clusters by analysing the minimal spanning tree (MST) of the

embedded graph. The graph embedding is constructed in a

well-established manner by finding several largest eigenvectors

of the normalised adjacency matrix. The use of MST computed

for such embedded graph was previously reported in [12] for

the purpose of graph clustering. However, an output of graph

clustering may not reveal all of the outliers as they may mask

each other. That is, some outliers may look similar to the

normal data in the presence of a substantially more severe

outlier [8]. For this reason, our method searches the entire

graph for loosely connected nodes and clusters below certain

size to return a collection of such nodes and clusters together

with their severity ranking. This information can be used

for various purposes, including the robustification of graph

clustering, which is detailed in this paper.

The remainder of the paper is organised as follows. Sec-

tion II outlines the necessary theoretic background. Based on

this information, Section III introduces the used graph outlier

cluster metrics. The proposed graph outlier mining algorithm

is described in Section IV, and its performance is demonstrated

in Section V. Finally, Section VI concludes this work.
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II. SPECTRAL GRAPH EMBEDDING

For the purpose of graph clustering or outlier detection,

the network consisting of n nodes can be represented as an

edge-weighed undirected graph G represented by its adjacency

matrix A = [aij ]. The edge weights aij should correspond

to the quantities representing the similarity between the pairs

of buses in the network (e.g., branch admittance or average

power flow). The set of all nodes of the graph G is denoted

as V , while the set of its edges is denoted as E. For the rest

of the paper, we denote matrices by bold uppercase letters.

In order to avoid an excessive stacking of matrix indices,

an alternative matrix indexing is occasionally used in the

algorithm pseudocodes (e.g., A[i, j] is equivalent to aij).

Given the adjacency matrix A, it is possible to compute the

transition probability matrix P of the Markov chain associated

with the graph G.

P = D
−1

A (1)

where di is the (weighted) degree of node i

di =

n∑

j=1

aij (2)

and D = diag(d1, . . . , dn) is the degree matrix. The

transition probability matrix (1) describes random walks on

the graph G, and its row sums are equal to one. The random

walk process also relates to the graph clustering structure [13].

Namely, starting in a dense and well-isolated graph cluster,

the random walk is expected to take many steps before

leaving it [5], [13]. The eigenvectors corresponding to k largest

eigenvalues of matrix P can be used to optimally embed

the nodes of graph G in a low-dimensional Euclidean space

R
k [12], [14].

As the matrix P is not symmetric, the symmetric matrix

An that is similar to P is actually used to produce the graph

embedding.

An = D
− 1

2AD
− 1

2 (3)

where D
− 1

2 = diag( 1√
d1

, . . . , 1√
dn

). While An has the

same eigenvalues as P, computing the eigendecomposition

of a symmetric matrix is more numerically efficient [6]. The

top k eigenvectors of An can be combined into the matrix

X ∈ R
k, with each of its n rows describing the k coordinates

of the corresponding node in the network. It is also common to

normalize the rows of X to have the length one [5] to produce

the row-normalized eigenvector matrix Y

Yij = Xij/(
∑k

j=1
X2

ij)
1/2 (4)

The rows of Y are used in this paper to produce the geomet-

ric graph embedding. While the eigenvectors of An are related

but not equal to the eigenvectors of P (see e.g. [5] for the

relationship), the corresponding row-normalized eigenvectors

of these two matrices are the same. The row normalization

Figure 1: Active power flow graph of the IEEE 39 bus test

system obtained by perturbing the loads around the nominal

value. The edge weights represent the active power flows in

p.u. on the 100 MVA base.

Figure 2: Row-normalized spectral embedding of the graph in

Figure 1. The 2D unit sphere is shown in red.

step projects the original node coordinates into the unit hyper-

sphere. This removes the radial variation between the points,

which results in using only the angle proximities between the

rows of Y to cluster them.

The final step is to reconstruct the structure of the graph G
from the computed geometric embedding. Effectively, a new

graph is created that has the same nodes and edges as the

original graph G, but with its edge weights being the spherical

distances between the rows of the matrix Y corresponding

to the original edge ends. The idea to construct such graph

appeared previously in [14], together with the recommendation

to use spherical distances instead of Euclidean ones. The

distance graph induced by the spectral embedding Y of the

nodes of graph G is further referred to as embedded graph.

An illustrating example is given in Figures 1–2, which

represent an active power flow graph of the IEEE 39 bus test

system (as given in the MATPOWER toolbox [15]) and its

spectral embedding with the two largest row-normalised eigen-
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vectors of (3). Figure 1 highlights the node groups {20, 34}
and {23, 24, 36} due to their relatively weak connection to the

rest of the network. Figure 2 illustrates that nodes {20, 34}
indeed form an outlier cluster that is distinctly separate from

all other nodes in the spectral embedding. Because nodes

{20, 34} are so distinctly apart from all other nodes, they are

masking the presence of a less severe weakly connected cluster

{23, 24, 36}. Thus, running an outlier detection algorithm for

Euclidean point clouds (e.g., [11]) would not necessarily detect

the cluster {23, 24, 36}, as it would become more visible only

after removal of the cluster {20, 34}. While clusters of two or

three nodes may not look as very small for a 39 bus network,

similar situations can be even more common in realistically-

sized networks.

III. OUTLIER METRICS

As the proposed method itself, the used outlier metrics are

based on spectral graph theory and its links to random walks

on graphs that were briefly touched in Section II. In addition,

single outlier nodes and outlier clusters are evaluated with two

different metrics.

Let the total weight of edges inside cluster C be denoted

as links(C,C) [16]

links(C,C) =
∑

i∈C,j∈C

aij , (5)

and the sum of weighted degrees of cluster C be denoted

as vol(C) [5], [16]

vol(C) =
∑

i∈C

di (6)

Then the cluster outlier score is adopted as

φ(C) = 1−
links(C,C)

vol(C)
(7)

The objective function of normalized spectral clustering

with multiple eigenvectors aims to minimise the sum of cluster

scores (7) [5]. For this reason, a cluster with a low score

value (7) is more likely to be separated. Meila and Shi [13]

introduced the probabilistic interpretation of score (7): φ(C)
describes the probability of the random walk to leave cluster

C in one step starting from its stationary distribution, if the

current walk state is in C. The possible values of (7) lie in the

range [0, 1], with lower values corresponding to more severe

outliers.

It is problematic to extend (7) to a single node cluster, as

the corresponding score value will be one even if the node

is very weakly connected to the rest of the network. This is

consistent with the probabilistic interpretation, since, starting

at any node, random walk leaves it on the next step with the

probability one. From the random walk perspective, a single

node outlier in a weighted undirected graph can be understood

as a node that is unlikely to be visited from its neighbors. The

corresponding score for node i can be introduced as

Figure 3: SpMST of the embedded graph obtained from the

spectral embedding in Figure 2, rooted at node 1.

pmax(i) = max
{j|aij �=0}

pji = max
{j|aij �=0}

aij
dj

(8)

where pij are the elements of the transition probability

matrix P (1). Score (8) can be efficiently evaluated for every

graph node, and it attains a low value for single graph nodes

that are weakly connected to any of their neighbours.

IV. MST-BASED OUTLIER MINING

The proposed outlier detection method is based on the

systematic examination of the MST of the spectral embedded

graph (further referred to as SpMST). Nodes that are similar

to each other in the original graph G should have close

coordinates in the spectral embedding, while loosely connected

clusters are placed far apart (see Figure 2 for an example). At

the same time, a long edge may be included into an MST if and

only if this edge is still the shortest one to connect a node or

group of nodes to the rest of the network [17]. These principles

play the major role in the MST-based clustering [12].

A. MST Construction

A SpMST can be initially constructed by a standard algo-

rithm, such as Prim or Kruskal [17]. After the SpMST has

been obtained, some preparations should be made to examine

it in an efficient manner [18].

First, one graph node is selected as the tree root, and the

tree is traversed from this root with the breadth first search

(BFS) algorithm [17]. The BFS algorithm is normally capable

of returning the predecessor vector, the n entries of which

contain the indices of parent nodes for each node. For example,

the fifth and ninth entries of the predecessor vector of the

SpMST shown in Figure 3 should both contain the number 8.

In our algorithm, the predecessor vector is used to orient the

SpMST edges from parent nodes to their successors. That is,

if the edges are stored as a list of 2-tuples, the first tuple entry

should be the index of the parent (or from) node.
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Algorithm 1 Obtain descendants of each node

Input: Map from nodes to their direct children child;

tree root node root.
Output: Map from nodes to all their descendants desc.

1: for i← [1, . . . , n] do

2: desc{i} ← i // Initialization

3: end for

4: desc← GETDESC(root, desc, child)
5: return desc

6: function GETDESC(node, desc, child)

7: if child[node] = ∅ then return

8: else

9: for k ← child{node} do

10: desc← GETDESC(k, desc, child)
11: desc{node} ← desc{node} ∪ desc{k}
12: end for

13: end if

14: end function

Secondly, we have modified the standard BFS algorithm

to additionally return the direct children of each node. By

its principle, the BFS algorithm starting at the top of the

tree hierarchy will not leave the current node before visiting

all its children. Therefore, additionally returning a key-value

map from each node to the list of its direct children is

straightforward with BFS.

Next, another map is created to store all the descendant

nodes of each node in the tree. This key-value map can be

created effectively by recursion as shown in Algorithm 1. With

this map, it is easy to get the number of nodes below each node

(including the node itself) as an extra vector of n elements.

B. Outlier Identification with Fundamental Cutsets

Since a spanning tree contains the minimal number of

edges to interconnect the vertices of the graph, removing

an edge from any spanning tree (including MST) induces

two connected components. The set of edges that is needed

to produce the same connected components in the initial

graph is called fundamental cutset. Since any spanning tree

interconnects the n graph nodes with n− 1 edges, a spanning

tree defines n− 1 fundamental cutsets in the graph [19].

A classical spanning tree clustering algorithm (e.g. [12],

[20]) would disconnect the k−1 longest edges of the MST to

produce k clusters, thus making use of the k− 1 fundamental

cuts induced by those MST edges. Since our set goal is not

to partition the graph into k clusters, but to detect loosely

connected subgraphs below certain size, we are going to

examine all n−1 fundamental cuts of the SpMST. The outline

of our implementation is shown in Algorithm 2.

The SpMST is provided to Algorithm 2 as an (n− 1)× 3
matrix, the first two columns of which contain the from

and to nodes of each directed SpMST edge, while the third

column contains the edge length. Due to the availability of

precomputed descendant nodes for any node, the cardinalities

Algorithm 2 Outlier mining with fundamental cutsets

Input: SpMST as matrix [f ; t; w]; map to nodes’ descen-

dants desc; vector of numbers of descendants of each

node nd; adjacency matrix A; vector of weighted degrees

of each node d; limit on cluster cardinality s∗; limit on

outlier score φ∗.

Output: Set of outlier clusters S; outlier scores.

1: for k ← [1, . . . , n− 1] do

2: if (nd[tk] < s∗) ∨ (n− nd[tk] < s∗) then

3: if nd[tk] < s∗ then

4: clu← desc{tk} // cluster nodes

5: siz ← nd[tk] // cluster size

6: else

7: clu← V \ desc{tk}
8: siz ← n− nd[tk]
9: end if

10: Compute vol (6) for nodes in clu using vector d.

11: φest ← A[fk, tk]/vol // Lower bound on φ

12: if φest < φ∗ then // this spares some computations

13: Compute links (5) for the nodes in clu.

14: φ← 1− links/vol // as (7)

15: if φ < φ∗ then

16: S ← S ∪ clu // score (7) is also stored

17: end if

18: end if

19: end if

20: end for

21: return S, outlier scores.

of connected components of each fundamental cut can be

found in constant time. Then the algorithm simply checks if

one of the components satisfies the cluster size criterion and,

if it does, the algorithm further computes its outlier score. As

the sought clusters are small, the set difference operation will

only be computed a few times to return the limited number

of valid outlier candidates containing the SpMST root node.

Components that are smaller than the predefined size s∗ and

posses a low enough outlier score are saved as outlier clusters.

C. Outlier Identification with Single-Link Clustering

Section IV-B contained an example of divisive clustering on

MST, as each iteration of Algorithm 2 divided the whole tree

into two parts and evaluated them. However, some clusters

with relatively high scores (7) can only be discovered by

removing more than one long edge in the SpMST. This may

also depend on the number of used eigenvectors (e.g., a cluster

may become detectable with Algorithm 2 if more eigenvectors

of (3) are considered). Nevertheless, introducing an additional

bottom up (or agglomerative) clustering mechanism makes

outlier mining more robust in general.

The agglomerative outlier mining uses the known analogy

between single-link hierarchical clustering and the Kruskal

algorithm for MST [20]. Algorithm 3 is largely similar to the

Kruskal algorithm using the union-find data structure (as given
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Algorithm 3 Outlier mining with single-link clustering

Input: SpMST as matrix [f ; t; w]; adjacency matrix A;

vector of weighted degrees of each node d; limit on cluster

cardinality s∗; limit on outlier score φ∗.

Output: Set of outlier clusters S; outlier scores.

1: Reorder the column vectors f , t and w in the increasing

order of values of SpMST edge weights w.

2: for i← [1, . . . , n] do

3: comp{i} ← i // each node is in its own component

4: siz[i]← 1 // each component has size one

5: end for

6: pred← [1, . . . , n] // each component is its own parent

7: for k ← [1, . . . , n− 1] do

8: c1← GETROOT(fk, pred) // component id of node fk

9: c2← GETROOT(tk, pred) // component id of node tk

10: if siz[c1] + siz[c2] < s∗ then

11: if siz[c1] < siz[c2] then

12: pred[c1]← c2 // Set c2 as parent of c1

13: siz[c2]← siz[c2] + siz[c1] // update sizes

14: comp{c2} ← comp{c2} ∪ comp{c1}
15: comp{c1} ← ∅
16: clu← comp{c2} // the component to test

17: else

18: The same operations as in the true branch,

but with setting c1 as the parent of c2.
19: end if

20: Compute φ (7) for the nodes in clu.

21: if φ < φ∗ then

22: S ← S ∪ clu // score (7) is also stored

23: end if

24: end if

25: end for

26: return S, outlier scores.

27: function GETROOT(node, pred) // Get component’s id

28: while node �= pred[node] do

29: node← pred[node]
30: end while

31: return node
32: end function

in [17]) and is included here for the completeness and clarity

of presentation.

As Algorithm 3 operates on the already constructed MST

without any loops, it does not need to check if the two nodes

are already in the same component. Instead, the cardinality of

the resulting connected component is checked, and if a too

large component results from adding the next edge, this edge

is skipped. As in the original Kruskal algorithm, the edges

are added between the graph nodes in the order of increase

of their length. Thus, the union-find data structure, which is

minimally represented by the component predecessor vector

pred, component size vector siz, and the GETROOT function,

is only used to keep track of the connected components

resulting by sequentially adding the SpMST edges between

Algorithm 4 Resolve cluster intersections

Input: Vector of cluster outlier scores ϕ (7); map to node

indices of each cluster clu; vector of cluster cardinalities

siz; initial number of clusters nou.

Output: Set of clusters S with resolved node overlaps.

1: Reorder the clusters clu and their sizes siz in the increas-

ing order of the cluster outlier scores ϕ (7).

// Transform the node indices of each cluster into the cluster

indicator row vectors combined into the matrix Tnou×n.

2: for i← [1, . . . , nou], j ← [1, . . . , n] do

3: if j ∈ clu{i} then Tij = 1
4: end if

5: end for

6: Set the status of each cluster indicator row of T to true.

7: current← 1
8: while status of some row of T is true do

9: Find clusters with indicator rows containing any, but

not all ones in the non-zero columns of the current

row. These clusters partially intersect with the current

one.
10: Find clusters with indicator rows containing all ones in

the non-zero columns of the current row and having

the same entry in siz as the current cluster. These

clusters are the duplicates of the current one.
11: Mark clusters discovered with the above two state-

ments for the deletion. Set the corresponding rows of

T to zero and the status of these rows to false.
12: Set the current row of T to zero and its status to false.

13: current ← index of the topmost indicator row with

the true status.
14: end while

15: return S as the set of clusters in clu not marked for the

deletion, and (optionally) their scores.

the nodes. The additional variable comp is used to keep track

of the current nodes in each connected component. It is

shown in Algorithm 3 as a map from the component’s id

to the component’s node indices, but this may be not the

most efficient data structure. Finally, Algorithm 3 evaluates

the outlier score of each newly obtained connected component

and saves the component if the score is below the threshold.

D. Aggregation of Results

It is common in large-scale networks to detect several outlier

clusters that overlap with each other, and especially if the

limits on outlier score (7) and outlier size were set rather large.

While this situation occurs naturally (e.g., the same tightly

clustered core group of nodes can be isolated with several

cutsets of varying quality), it is often desirable to meaningfully

resolve the cluster intersections. Thus Algorithm 4 is proposed.

Algorithm 4 aims to remove clusters that partially overlap

with a cluster having a lower score (7). This is done because

combining two non-fully overlapping clusters would induce a

new cluster, the properties of which (e.g., the size) are hard to

control. However, Algorithm 4 would keep a less severe outlier

cluster if it fully includes a more severe one, as the union of
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such clusters will still result in a valid cluster, with the smaller

cluster being automatically integrated into the larger one. This

integration step can be done by retrieving the edges running

inside of each of the relevant clusters and using this set of

edges to find the subgraphs induced by these edges (e.g., with

a connected components algorithm).

The two steps (Algorithm 2 and Algorithm 3) of the outlier

mining process usually detect many identical clusters. Thus,

Algorithm 4 is especially relevant in the context of combining

the results of multiple outlier detection techniques.

E. Algorithm Summary

After introducing all the necessary procedures, the proposed

outlier mining algorithm can be summarized as follows:

1) Select k as the dimension of spectral embedding and

find the first k eigenvectors of the matrix An (3).

2) Normalize the rows of the eigenvector matrix according

to (4) and construct the embedded graph using the sets V
and E of the original graph G and the spherical distances

between the points in the spectral embedding [14].

3) Construct the SpMST as described in Section IV-A.

4) Use Algorithms 2 and 3 to detect the outlier cluster

candidates.

5) Aggregate the results as described in Section IV-D and

Algorithm 4.

6) Evaluate score (8) for every graph node to get the

ranking of loosely connected single graph nodes.

7) Process the obtained clusters and single graph nodes as

required by the application.

The first and last steps in the above list still require some

clarification. Selecting a larger value of k is important if the

method is needed to be more sensitive (i.e., to discover less

pronounced small clusters). For detecting severe outliers (e.g.,

with score (7) below 0.01), setting of k to 3 or 4 should

be enough for most cases. In what about the last step, this

paper considers removing graph outliers in advance to prevent

their separation by a spectral graph partitioning algorithm. We

achieve this by merging each outlier cluster into a single node.

As discussed in Section III, spectral clustering tends to avoid

the separation of single nodes. To further avoid the separation

of single node outliers (including the newly formed merged

nodes), they are merged with a neighbour node to which

they have the strongest connection. The results in Section V

illustrate that this approach is quite efficient. In general, the

processing of the returned outliers can be different for a

different application.

V. TEST RESULTS

To test the detection performance of the proposed graph out-

lier mining method, we have applied it as a pre-processing step

for the partitioning of randomly generated active power flow

graphs of four networks from the MATPOWER toolbox [15],

[21] ranging from 300 to 2869 nodes. In addition, we have

tested the computational performance of the proposed method

on the MATPOWER networks of up to 13659 nodes.

A. Sampled Random Power Flows

To generate a large number of tests, 150 random power

flows were generated for each number of clusters for each net-

work. The larger test networks case1354pegase, case2383wp

and case2869pegase were partitioned into k = 2, . . . , 12
clusters, while the smaller network case300 was partitioned

into k = 2, . . . , 8 clusters. To generate the random power

flows, the power demand of each load was modelled as a

uniformly distributed random variable with the range of ±50%
of the nominal power [7].

The baseline clustering algorithm was chosen to be the

hierarchical spectral clustering method (HSC) [14] with the

average linkage criterion. Using hierarchical clustering on

the spectral embedded graph was shown to produce high-

quality clusters, while ensuring each cluster to be a connected

subgraph [14]. However, hierarchical clustering is generally

known to be sensitive to outliers if the number of clusters

is given as input [6], which was confirmed by our tests on

randomly generated power flow graphs. Therefore, the goal

of this case study is to show the ability of the proposed

outlier detection method to prevent highly unbalanced graph

partitioning by detecting and handling the small clusters before

applying a graph partitioning algorithm.

For this case study, we have counted the occurrences of

clusters that are smaller than 10% of the average cluster size

(i.e., lower than round(0.1n/k) for k being the number of

clusters) and tried to prevent such occurrences with our graph

outlier detection method. To achieve this goal, it was necessary

to increase the outlier cluster threshold φ∗ as the number of

clusters was increased. Bi-partitioning the network aims to

select the two most pronounced clusters. However, the clusters

that are not distinct enough for the bi-partitioning may become

important if a larger number of clusters is requested, which

explains the need to increase φ∗ for the growing k. We have

used the heuristic expression φ∗ = 0.02 log
2
(k) for the cluster

outlier score threshold. For the case2383wp test network,

reduction of too many clusters has caused the network to

become over-constrained, which resulted in frequent small

clusters with high values of score (7) (the values of 0.1–0.5 or

larger reflect poor clusters). For this reason, the value of φ∗

for the case2383wp test network was constrained not to exceed

0.03. For the case2869pegase network, the value of φ∗ was

set to 0.02 because it was acceptable not to set it to a higher

value. For the single node outliers, we have selected to keep

the top 7% of the single node outlier candidates returned by

Algorithm 2 instead of trying to guess a good absolute value

for p∗max. The number of eigenvectors to build the embedded

graph and its SpMST was chosen to be equal to the requested

number of partitions k because of the requirement to detect

quite subtle small clusters for the higher values of k.

As Figure 4 shows, the described pre-processing caused

the HSC method [14] to much less frequently return clusters

below 10% of the average cluster size. While there still were a

few occurrences of clusters below the specified size threshold,

those could be avoided by tuning the parameter φ∗ specifically
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Figure 4: Occurrences of clusters below 10% of the average cluster size for the partitioning of randomly generated power flow

graphs with an outlier-sensitive method, with (blue) and without (gray) pre-processing of potential small clusters.

TABLE I: Total numbers of small cluster occurrences

Network HSC HSC∗ k-means k-means∗

case300 253 0 13 0

case1354pegase 755 3 116 0

case2383wp 668 1 10 1

case2869pegase 231 2 1 0

for these test cases. Thus, it can be concluded that the proposed

graph outlier detection method is able to reliably estimate the

outlier clusters for a given graph (otherwise those clusters

would be returned by the graph partitioning method). We

have also considered the spectral partitioning with the k-

means algorithm [5] as an additional partitioning method.

The aggregated results for the HSC method and spectral k-

means are given in Table I, with the ∗ superscript denoting

the versions of the methods with outlier pre-processing.

B. Computational Performance

In order to test the computational performance of the

proposed graph outlier detection method, we have executed

it on the six MATPOWER networks ranging from 300 to

13659 nodes. For each network, the number of eigenvectors

was varied from three to eight, while the upper cluster size

limit was set to round(0.1n/5) and the threshold of score (7)

was set to 0.03. For this case study, the algorithm was run

on the active power flow graphs obtained from the nominal

loading profile of each network. All results were obtained on

MATLAB R2017a (64-bit) on a PC with an Intel R© Xeon R©

E5 3.70 GHz CPU and 16 Gb of RAM on a single core.
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0.5

1
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2
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Figure 5: Execution time of the SpMST-based graph outlier

detection method for the varying number of network nodes

and dimension of spectral embedding.

Surprisingly, choosing a low value for the number of

eigenvectors k may result in longer running times. This can

be explained by the complex convergence mechanisms of

eigenvalue solvers for sparse matrices (e.g., of the Lanczos

algorithm [5]). Nevertheless, the execution times in Figure 5

justify the practicality of the proposed graph outlier detection

method at least for the networks of several thousands of nodes.

The main computational requirement of the SpMST graph

outlier detection method is in computing several largest eigen-

values and eigenvectors of the graph matrix An (3). This

procedure is reported to be tractable for sparse graphs of at

least tens of thousands of nodes [6]. In practice, computing the

eigenvectors took around 50—70% of the total execution time

for each network using the highly optimized eigenvalue solver
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available in MATLAB. Such disproportion in the computation

time can also be explained by the efficient algorithmic design

of the SpMST-based outlier mining described in Section IV.

The disparity between the eigenvector computation time and

the SpMST processing time could be even larger if the latter

component were also implemented in a high-performance

compiled language instead of the current MATLAB-based

implementation.

VI. CONCLUSION

This paper has proposed a method for efficient detection of

weakly connected small clusters in power network graphs and

general similarity graphs. Such clusters can be considered as

outliers in many contexts, including graph clustering, which

is the application studied in this paper.

The SpMST graph outlier detection method is based on em-

bedding of the input graph into a low-dimensional Euclidean

space by the methods of spectral graph theory. The MST of

this graph is examined with the efficient top-down and bottom-

up graph clustering algorithms to reveal the weakly connected

parts of the graph below certain size. As the final step, the

revealed outlier candidates are systematically aggregated. The

test results demonstrate the good performance of the proposed

method in filtering out the graph outliers as well as its high

computational speed.

The proposed algorithm can be useful as a preprocessing

or analytic tool for similarity graphs of large-scale power

networks. Example applications involving similarity graphs

include definition of control zones, clustering of contingencies,

power network reduction and others. Various additional criteria

besides the maximal cluster size could be added to detect more

specific cluster types.
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