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HIGHLIGHTS

• The paper proposed a simple method to calibrate
the LFM system by determining the PSPD signal
dependency on the lateral tip displacement, which
is analogous to the constant-compliance region in
normal force calibration.

• To suppress the error owing to low contact stiffness,
an amorphous surface (silica or glass) ensuring suf-
ficiently high contact stiffness between the Si AFM
tip and sample is used.

• The lateral tip displacement during the stick-slip
on stiff, amorphous surfaces is determined by using
the feedback loop control of AFM system.
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Calibrating Lateral Displacement Sensitivity of AFM by Stick-Slip on Stiff,
Amorphous Surfaces

Liangyong Chu,1, 2, a) Marcel Bus,1 Alexander V. Korobko,1 and Nicolaas A.M. Besseling1, b)
1)Organic Materials and Interfaces, Department of Chemical Engineering, Delft University of Technology,
van der Maasweg 9, 2629 HZ Delft, The Netherlands
2)Surface Technology and Tribology, Department of Mechanics of Solids, Surfaces and Systems (MS3),
University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands

(ΩDated: 25 May 2019)

We calibrate the lateral mode AFM (LFM) by determining the position-sensitive photodetector (PSPD) signal
dependency on the lateral tip displacement, which is analogous to the constant-compliance region in normal-
force calibration. By stick-slip on stiff, amorphous surfaces (silica or glass), the lateral tip displacement
is determined accurately using the feedback loop control of AFM system. The sufficiently high contact
stiffness between the Si AFM tip and stiff, amorphous surfaces substantially reduces the error of PSPD signal
dependency on the lateral tip displacement. No damage or modification of the AFM probe is involved and
only a clean silicon or glass wafer is needed.

Keywords: AFM; lateral force; calibration; contact stiffness

I. INTRODUCTION

Precise measurement of nanoscale friction forces is
important, for both fundamental understanding and
many practical applications1–7. The effect of friction
forces has been extensively studied in the last decades,
especially in relation to lubrication8,9, micro(nano)-
electro-mechanical systems (MEMS&NEMS)10, nano-
tribology7,11–14 and earthquakes15,16. Since the 1960s,
various instruments including the surface force appara-
tus (SFA), the atomic force microscope (AFM), and the
quartz microbalance have been applied to study friction
at the micro- to the nanoscale15,17. Lateral force mode
AFM (LFM), measuring the ultra-small lateral forces
(nN to µN) between the AFM tip and the sample surface,
is the most popular method in this field15,18,19. Espe-
cially, it has become increasingly popular to understand
earthquakes at nanoscale contacts. As it has been shown
by Li et al. using LFM, the formation of interfacial chem-
ical bonds is qualitatively responsible for frictional ageing
in macroscopic rock friction experiments16. A problem
with LFM, as opposed to AFM normal force measure-
ments, is that LFM is not readily calibrated. That ham-
pers the measurement of accurate absolute values for the
lateral forces20.

For not too large lateral tip displacements ∆xt, the
lateral force Fx exerted by the tip on the sample surface,
due to a twist of the cantilever, is proportional to ∆xt

21:

Fx = −Kx∆xt. (1)

The twist of the cantilever also leads to a change of
the lateral signal of the PSPD. For not too large ∆xt,
the signal is linear in the tip displacement:

∆Ix = σx∆xt, (2)

a)Electronic mail: L.Chu@utwente.nl
b)Electronic mail: klaas.besseling@gmail.com

FIG. 1. (Color online) Schematic drawing of the LFM system
(not to scale). The actual length, width and tip height of
the probe are typically 100-400 µm, 30-60 µm, and 5-15 µm
respectively. The distance to the position-sensitive photode-
tector (PSPD) is much larger than that, whereas the lateral
displacement ∆xs of a piezo scanner and the sample mounted
on it is only 6 nm at maximum in the experiments described
in this article. As the sample travels laterally by a distance
∆xs, the tip displaces laterally by ∆xt with respect to its neu-
tral position, as it is “dragged along” by the sample. Then
the cantilever gets twisted, leading to a lateral force by the
tip upon the sample.

where σx is the sensitivity coefficient. The displaced
positions of the sample and the tip are indicated by
the dashed contours as shown in Fig. 1. In the sketch,
∆xt < ∆xs, which implies that some slip of the tip over
the sample has occurred. The slip distance is ∆xt−∆xs.
In this drawing, as with the experiments described in this
Letter, the sample is laterally displaced with respect to
the neutral tip position by a piezo scanner on which the
sample is mounted. Obviously, a setup, in which a piezo
scanner connected to its base laterally displaces the can-
tilever with respect to a stationary sample, is equivalent.

So, to get the force from a certain tip displacement,
one needs to know the spring constant Kx. As for the
normal forces, the “thermal-noise method” seems a con-
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venient way to determine the spring constant22. This
method obtains the spring constant from the thermal
fluctuations of the tip displacement of a free-standing
probe. For a harmonic potential, Ux = Kx∆x2t/2, con-
sistent with Eq. 1, the mean square of the fluctuating tip
displacements at thermal equilibrium is given by

∆x2t = kBT/Kx, (3)

where T is the temperature, and kB is Boltzmann’s con-
stant. The harmonic oscillator spring constant Kx is de-
termined by both the stiffness of the cantilever and the
tip. Thus, this expression also applies when the tip stiff-
ness is comparable to the cantilever stiffness and both
springs work in the linear region23. So, when we know

∆x2t from a measurement of the tip-position fluctuations,
we also know the sought for spring constant, Kx. As rec-

ognized by Hutter et al., ∆x2t is best determined as the
integral of the resonance peak in the power spectrum
density24.

However, the problem is that we cannot directly mea-
sure ∆xt values. Rather, we measure the signal of
the position-sensitive photodetector (PSPD) (see Fig. 1)
∆Ix = Ix−Ix,0 where Ix is the PSPD lateral-signal read-
out, and Ix,0 its mean value when no external forces, e.g.
due to interactions with a sample, work on the tip.

With AFM normal-force measurements, the sensitiv-
ity coefficient is obtained from the so-called “constant-
compliance” or “contact” region of a measured depen-
dency of the PSPD signal vs. piezo-displacement20,25.
In this region, the tip displacement follows exactly that
of the piezo scanner on which the sample is mounted,
and the sensitivity coefficient is simply the slope of the
signal vs. piezo-displacement curve. For lateral-force ex-
periments, it has thus far not been possible to accurately
measure something analogous to the constant-compliance
dependency in normal-force experiments26. To obtain a
similar constant-compliance dependency in lateral force
measurement, the tip needs to stick perfectly to the sam-
ple, and the PSPD signal ∆Ix, when the sample mounted
on the scanner has a displacement of ∆xs, needs to be
determined.

Salmeron group determined the lateral sensitivity co-
efficient σx, based on the stick-slip behavior when AFM
tip slides on a muscovite mica surface26. ∆xs can be
well obtained since the lattice parameter of mica sur-
face is known. In principle, σx is derived as the slope
of the stick-slip signal, since the tip sticks to the surface
at “stick” region. They have proved that this method
leads to a big error in the results, as the contact stiffness
is lower compared to the cantilever stiffness26. Because
of a very low shear modulus and the layered structure
of mica, sufficient contact stiffness cannot be achieved
by simply increasing the normal load force9. Generally,
the contact stiffness can be increased by materials hav-
ing larger shear modulus, e.g. Si. However, the stick-
slip behavior on Si with a native silica layer is chaotic,
∆xt cannot be determined in the same way as that on
crystallized mica surface. Salmeron group reported the

LFM calibration based on the measured correlation be-
tween the lateral signal and normal load forces27. For
that, the AFM probe slides across a surface with a de-
fined slope. However, this “wedge” method requires a
surface with well-defined atomic scale slope. A number
of publications have addressed the issue of LFM calibra-
tion. Bogdanovic et al. measured the torsional spring
constant of a tipless cantilever by pushing it against a
sharp upwards pointing tip. If the tip contacts the cor-
ner of the cantilever, the torsional spring constant can
be obtained28. The accuracy is high but the method can
only be used for tipless cantilevers and additional infor-
mation about tip height is desired. Cannara et al. deter-
mined the sensitivity, by gluing a colloidal sphere to the
probe and pushing the sphere against a wall to get the
∆Ix vs. ∆x curve29. Feiler et al. twisted the cantilever
by attaching a mass at one side using a glass fibre30.
These direct ways are accurate but they require mod-
ification or damaging of the probe31. Furthermore, in
order to obtain the proportionality constant between the
force and the actual tip displacement (as in Eq. 1), addi-
tional tip-height data is needed27,32. The lateral spring
constant can also be calculated from the dimensions of
the cantilever33,34. However, the accuracy is low due to
inaccuracies of these dimensions. Sader made significant
and widely used contributions by analyzing the cantilever
resonance frequency shift in vacuum and air, only can-
tilever’s plan view dimensions are needed35,36.

Herein, we present a simple method to calibrate
lateral-force AFM. A Si wafer with high shear modu-
lus is used to ensure the high contact stiffness and neg-
ligibly small contact deformation of a substrate. The
accurate control of tip displacement is achieved with the
closed-loop X-Y control of the AFM instrument37,38, and
it works on typical commercial AFM instruments. The
method yields directly the proportionality constant be-
tween the lateral tip displacement and the lateral force as
Eq. 1 predicts, without the need for further geometrical
calculations of the tip, which would introduce additional
errors. No modifications of the probes are required.

II. RESULTS AND DISCUSSIONS

Figure 2(a) shows two typical lateral-signal traces for
the sliding of a Si AFM tip with a very low scan speed
over a small distance across a silica surface. The normal
load forces are 0 and -1 nN (a negative normal load cor-
responds to a force pulling the tip from the surface; tip-
surface contact is maintained by adhesive interactions,
the adhesive force between the tip and sample is about
2 nN, determined from the normal force distance curve).
The small (or even negative) normal loads ensure that
the tip is not damaged due to wear, as the contact stress
is lower than the yield stress of silica. This is further con-
firmed by the fact that the signal shift after 512 scans is
negligible, as shown in Fig.S2. After averaging over 512
scans, stepwise motion of the piezo scanner is reviled as
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FIG. 2. (Color online) (a) The lateral signal ∆Ix as a function of time for single scans with a range of 6.1 nm (see Supporting
Information 1). The scan frequency was set at 0.1 Hz (10 s for the trace and retrace), so the duration of a single scan, during
which ∆xs varies from 0 to 6.1 nm, is 5 s, and the average scan speed is 1.22 nm/s. 512 points are gathered in a single
scan. The feedback loop controlling the tip-sample distance was operated very slowly, in order to avoid any influence on the
lateral signals (see Supporting Information 2, Fig. S2.)39. (b) Average data of 512 scans at the same normal loads as in (a).

〈∆Ix〉(t) = N−1 ∑N
i=1 ∆Ix(t)i, where t denotes time (0 ≤ t ≤ 5 sec.), N is the total number of scans, (= 512), and i is the scan

number. The right y axis shows the tip displacement ∆xt according to Eq. 2 and σx given below.

shown in Fig. 2(b). With the current settings, the change
of 〈∆xs〉 from 0 to 6.1 nm in 5 s is achieved in 11 steps,
as shown in the blue and red lines in Fig. 2(b), num-
bered as 1-11. So, each 〈∆xs〉 step has a magnitude of
0.555 nm, and the time interval between steps is 0.455
seconds (5 seconds for 11 steps). The magnitudes of the
piezo-scanner steps and the time intervals are controlled
by the closed-loop settings of the AFM instrument. The
black step-like dashed line in Fig. 2(b) corresponds to
the ideal limit of no slip at the interface between AFM
tip and silica surface, so that the tip would move with
the sample connected to the piezo scanner (∆xt = ∆xs).
The 〈∆xt〉 axis on the right is constructed by realizing
that over the full 5 seconds the piezo displacement in-
creases from 0 to 6.1 nm (on average), and by taking
into account that for the no-slip case ∆xt = ∆xs. The
difference 〈∆xt〉−〈∆xs〉 corresponds to the distance that
the tip has on average slipped over the sample surface.
Moreover, the average scan speed is derived from the
slope of the long dashed line.

Accurate nanometer-scale displacement of the scanner
is achieved by the closed-loop X-Y control of the AFM
instrument, based on an independent capacitive position
sensor37,38, as used in most commercial AFM systems.
The feedback from the position sensor ensures the con-
troller to reach and maintain a position set-point during
the scanning. At very low scan speeds with closed-loop
X-Y control, the piezo scanner in fact moves on average
in a stepwise fashion, in which after fixed time intervals
the target position of the piezo scanner changes to a new
value, while the control loop tries to realize the target po-
sition. The noise in Fig. 2(a) is due to noise of the sample
position owing to this control system. All the instrumen-
tal noises including noises from the positioning control
system, the environmental vibrations, and voltage fluc-

tuations do not influence the stick-slip experiment, thus
their average values over scans are considered to be fixed.
The scan rate here is much lower than the scan rate which
is common with small-scale scanning and imaging. For
typical nanoscale mapping, much higher scan speeds (e.g.
60 Hz for a 10 nm scan) are needed to get a high linear
position control40.

We see in Fig. 2(a) that, apart from the fluctuations,
the lateral signal initially increases linearly, and levels off
later on. For a -1 nN normal load this leveling off becomes
noticeable beyond about 2 seconds. For a zero normal
load, leveling off occurs later and is less pronounced. It
is appealing to infer that initially the lateral force Fx does
not exceed the static friction force, so that the signal cor-
responds to the tip displacement ∆xt following the sam-
ple displacement, which equals ∆xs. This would mean
that this part of the trace is analogous to the constant-
compliance region in a normal-force analysis. Hence, in
principle, the sensitivity σx = ∆Ix/∆xt can be obtained
from the initial slope of these traces, taking into account
that the ∆xs increases from 0 to 6.1 nm over 5 seconds.
However, due to the fluctuations, which are of the same
order of magnitude as the trend-like change of ∆Ix, the
relative error would be substantial. Not using the control
loop reduces the fluctuation, but leads to an unaccept-
able uncertainty in the lateral position.

For the cases shown in Fig. 2, the virtually vertical
steps of the averaged signal 〈∆Ix〉 all have the same mag-
nitude, indicating that during the steps no slip occurs41.
Hence, the change of the tip’s average displacement upon
a step, ∆〈∆xt〉, equals the change of the average piezo-
scanner displacement ∆〈∆xs〉 upon a step. In this way,
the accurate control of the tip’s average displacement is
achieved on an amorphous surface. We want to point
out that this approach is different from determining the
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lateral displacement from the stick-slip on surfaces with
well-defined periodic structure26.

During the time intervals between the steps we ob-
serve either a virtually constant signal, or some decay of
the signal. These decays are negligible for the first in-
tervals, but become more pronounced as the signal and
hence the lateral force increases. Furthermore, these de-
cays are more pronounced for the -1 nN normal load than
for the zero normal load. The decay is obviously due to
slip of the tip over the sample surface, upon which 〈∆xt〉
and hence 〈∆Ix〉 decreases. In fact, these decay curves
are averages over many stick-slip type events occurring in
the separate scans of which Fig. 2(b) shows the average
∆Ix. These traces contain force relaxation information
on nano-frictional behavior and will be published in de-
tails elsewhere.
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FIG. 3. (Color online) ∆〈∆Ix〉 (the change of 〈∆Ix〉 cor-
responding to a single step of length) versus normal load
force data on silica surface using probes with different stiff-
ness. Load forces ranging from minimum, corresponding to
the jump-out force and maximum, corresponding to the max-
imum linear response range of the PSPD (see Supporting In-
formation 3) are used. FnK

−1
n σ−1

n is the normalized normal
load force, corresponding to the output of the PSPD20. The
error is calculated from the data of each step. For the glass
surface, ∆〈∆Ix〉 versus normal load force is shown in Sup-
porting Information 6.

As reported by Salmeron’s group, the calibration of
Lateral Force fails when the contact and cantilever stiff-
nesses are comparable. The deformation of the substrate
at contact leads to a big error of the lateral sensitiv-
ity26. This problem cannot be solved by simply increas-
ing the normal load force, due to the layered structure
of mica. Egberts reported a similar lateral calibration
as function of normal load on potassium bromide (KBr)
surface, probably because the insufficient stiffness of the
substrate42. Herein, we demonstrated that this prob-
lem can be avoided with using the amorphous stiff sil-
ica surface. Fig. 3 shows ∆〈∆Ix〉 of the first step (the
change of 〈∆Ix〉 corresponding to a single step of length)
versus the normal load force. Two probes with differ-
ent stiffness are used. The soft probe is a commercial
LFM probe with the normal spring constant of 0.2 N/m

(determined by the thermal noise method). The stiff
probe is a standard tapping mode probe with the nor-
mal spring constant 4.7 N/m (determined by the ther-
mal noise method). As shown in Fig. 3, for the soft
LFM probe, the step size ∆〈∆Ix〉 keeps constant with
the increase of the load force. This indicates the contact
stiffness is much larger than the spring constant of the
probe and the contact deformation is negligible with re-
spect to ∆xs in the whole load force range. For the stiff
probe, the step size ∆〈∆Ix〉 increases sharply and levels
off with the increasing load force. In this case, the con-
tact stiffness at smaller normal load force is comparable
to the stiffness of cantilever and the contact deformation
cannot be neglected. Irrelevantly the stiffness, the step-
size becomes constant for large normal load forces, indi-
cating that using silica surface sufficient contact stiffness
between tip and sample is ensured. Thus, for the stiff
cantilever calibration, the change of 〈∆Ix〉 correspond-
ing to a single step of length versus normal load force
data needs to be checked as shown in Fig. 3.Following
the increase of the normal load, the step size ∆〈∆Ix〉
firstly increases sharply and we get the accurate lateral
displacement sensitivity when ∆〈∆Ix〉 levels off.

As ∆〈∆xt〉 = ∆〈∆xs〉 for the vertical steps of the av-
eraged signal we can readily calculate the sensitivity co-
efficient. First we determine the change of 〈∆Ix〉 corre-
sponding to a single step of length ∆〈∆xs〉 = 0.555 nm.
By taking the average over all steps in the measure-
ment, we find that the signal change for a single step
is ∆〈∆Ix〉 = 0.051 ± 0.002 nA. The error is calculated
as the standard deviation over these 11 steps. So we
calculate the lateral sensitivity coefficient realizing that
σx = ∆〈∆Ix〉/∆〈∆xs〉 = (0.051 ± 0.002) nA/0.555 nm
= 0.092± 0.004 A/m.

The “no-slip trace” in Fig. 2(b) (black short-dashed
line) was constructed using this same ∆〈∆Ix〉 value of
0.051 nA per step. The difference between this con-
structed no-slip trace and an experimental trace yields
the distance that the tip has slipped over the sur-
face (averaged over all scan repeats): 〈xt〉 − 〈xs〉 =
σx (〈∆Ix〉exp − 〈∆Ix〉noslip).

Knowing the lateral sensitivity, the lateral spring con-
stant of the probe, as defined by Eq. 1, can be read-
ily determined, e.g. using the thermal-noise method
as mentioned above. For the present case, for the free
standing probe (not interacting with any sample), at

room temperature (T = 299.0 K), ∆x2t is determined as
(3.2 ± 0.1) · 10−21 m2 (see Supporting Information 4)22.

With Eq. 3 we obtain Kx = kBT/∆x2t = 1.29±0.04 N/m,
which does not depend on the alignment. The error is cal-
culated as εσx∂Kx/∂σx, where εσx is the standard devia-
tion of the sensitivity coefficient σx. Thus, Fx = Kx/σx ·
∆Ix = kBT/∆I2x · σx∆Ix = (14.2± 0.6)∆Ix, the error of

the coefficient Kx/σx is determined as kBT/∆I2xεσx
. Ap-

parently, as shown in Supporting Information 7, Kx only
depends on the probe and temperature, being insensitive
to the experimental AFM system.
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III. CONCLUSION

In conclusion, we have developed the simple method to
calibrate the LFM system by determining the PSPD sig-
nal dependency on the lateral tip displacement, which is
analogous to the constant-compliance region in normal-
force calibration. To suppress the error owing to low
contact stiffness, an amorphous surface (silica or glass)
ensuring sufficiently high contact stiffness between the Si
AFM tip and sample is used. The lateral tip displace-
ment is determined by stick-slip on stiff, amorphous sur-
faces using the feedback loop control of AFM system. In
our LFM calibration method, only a clean silicon or glass
wafer is required, and it works on conventional commer-
cial AFM.

SUPPLEMENTARY MATERIAL

Supplementary material associated with this article
can be found, in the online version.
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