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1 Introduction

A point cloud is 3D representation of reality consisting of a set of points and additional
information, such as color and intensity. As acquisition capabilities of instruments
improve, the availability of point clouds is growing. These are of high importance in
various applications, ranging from architecture, surveying and heritage preservation
to autonomous driving. A practical example comes from CycloMedia, where point
clouds are the backbone of an online tool for accurate urban analysis and measure-
ments. To this end, a point cloud must be augmented with semantics. Nowadays,
various deep learning methods are emerging for this task. In particular, semantic
segmentation aims to classify each point Pi of a point cloud P between K classes.

A point cloud is an unordered set of points. A deep learning architecture
that takes as input n 3D points, must be invariant to n! permutations of the input set
in data feeding order. Furthermore, a point set is invariant under certain geometrical
transformations, as rotation and translation. Consequently the deep learning archi-
tecture must have the same properties. Last in a point cloud, points interact in space
with a distance metric and neighboring points form a meaningful subset. Therefore,
the model needs to be able to capture local structures from nearby points, and the
interactions among local structures, (Qi et al., 2016). To this end, the 3D medial axis
transform (MAT) shows interesting properties.

The 3D MAT is a skeleton representation of shapes, dual to the boundary of
an object. This representation models the key properties of a shape and its topology
in an explicit way, (Peters, 2018a). Thus, the 3D MAT can be used as a shape
descriptor, to organize and structure a point cloud in meaningful subsets. The aim of
this research is to develop a methodology to integrate the properties of the 3D medial
axis transform in a point cloud semantic segmentation deep learning algorithm. One
drawback of the 3D MAT is its sensitivity to noise and to the completeness of the
input point cloud. Thus, to exploit the 3D MAT for semantic segmentation, one has
to consider the extrinsic properties of point clouds.

Point clouds represent complex urban scenes. The amount of objects that
are captured and their variability in shape and dimension increase the difficulty when
implementing a point cloud algorithm. Also, when capturing a point cloud in the urban
environment, it is almost impossible to obtain a full representation of objects, such as
buildings, due to the presence of other unwanted elements, for example artifacts or
moving objects. This means that one has to deal with lack of information. Addition-
ally, the distribution of objects in the urban environment influences the distribution
and density of captured points. In fact, closer objects would be represented by many
points; instead those far away would be scarcely represented. Last, point clouds are
made of a huge quantity of points. To process them is highly computationally and
time demanding. One has to develop strategies to reduce the data volume of the
point cloud without removing important information.
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2 Related work

2.1 Deep learning on point clouds

Deep learning algorithms are a subset of machine learning ones that mimic how
the brain works. A neural network takes an input, passes it through multiple layers
of neurons and outputs a prediction based on the combined information of all the
neurons. (Docs, 2019) The neuron is the unit of the neural network; each neuron
can take multiple inputs, applies a function to them and produces an output.

Neural networks are trained iteratively following two main alternating pro-
cesses, forward-propagation and back-propagation. In forward-propagation input
data is propagated through each layer of the network to obtain a prediction. The
aim is to learn the contribution, or weight, of each neuron in the network. In back-
propagation the quality of the prediction is quantified using a loss function and op-
timized until lower than a chosen threshold. The architecture of a neural network,
together with the number and type of layers it is made of, defines its structure and
purpose. (Docs, 2019)

Deep learning methods on point clouds are mainly used for four purposes
(Landrieu, 2019a):

– Classification: classify the point cloud among class set K.

f : P 7→ k | k ∈ K

– Partition: cluster the point cloud in C parts/object.

f : p 7→ c | p ∈ P, c ∈ C

– Semantic segmentation: classify each point of a point cloud between K classes.

f : p 7→ k | p ∈ P, k ∈ K

– Instance segmentation: cluster the point cloud into semantically characterized
objects.

f : p 7→ c | p ∈ P, c ∈ C

m : c 7→ k | c ∈ C, k ∈ K

where P = {p1, p2, ..., pn} is the set of n points of the point cloud; C = {c1, c2, ..., cm}
is the set of m objects or parts and K = {k1, k2, ..., kl} is the set of l classes. This
research will focus on semantic segmentation.

These methods can be categorized in four main classes (Thomas et al.,
2019), projection networks, point-wise Multi Layer Perceptron (MLP) networks, graph
convolution networks and point convolution networks.
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In projection networks, the input point cloud is projected into a regular grid
structure, such a 2D image or a 3D voxel. These are then used as input in the
network.

The first point-wise MLP network is PointNet, this algorithm uses a shared
MLP on every point followed by max-pooling on all points. (Thomas et al., 2019)
A MLP is a neural network with multiple fully-connected layers that use nonlinear
activation functions to deal with data which is not linearly separable. (WILDML,
2019) These networks are able to approximate any continuous function. A max-
pooling layer selects the maximum value from a patch of features. It helps to reduce
the dimensionality of a representation by keeping only the most salient information.
(WILDML, 2019)

After PointNet, different hierarchical architectures were developed to com-
bine local neighborhood information at different scales. An example is PointNet++.
This algorithm applies PointNet recursively on nested subsets of the input. The ar-
chitecture is composed by a a sampling layer, a grouping layer and a PointNet layer.
In the first, input points are sub-sampled; in the second points are grouped in local
regions around a set of centroids. Last, local regions of points are converted into
feature vectors of fixed length. (Qi et al., 2017)

Graph convolution networks learn the weights on graph edges instead of
points, an example is Superpoint Graph. Here, first the whole point cloud is parti-
tioned geometrically in simple shapes (superpoints). Second, the resulting super-
points are structured in a Superpoint Graph. This is an attributed directed graph
where nodes represent the superpoints, while edges represent their adjacency re-
lationship. Superpoints are assumed to be semantically homogeneous. Thus, they
are down-sampled to a maximum 100 points each. Third, a deep learning architec-
ture is implemented. It consists of PointNets for superpoints embedding and graph
convolutions for contextual segmentation. (Landrieu and Simonovsky, 2017)

Last, point convolution networks use a convolution kernel directly on the
point cloud. Convolution kernels are linear filters that combine data of local neigh-
borhoods. In point clouds, neighboring points are not uniquely defined; for each point
one has to compute them, usually through a radius search, and define their influence
based on their distance. (TERRA3D, 2019)

2.2 The 3D medial axis transform

Peters (2018a) studied the 3D MAT for geographical point clouds modeling used in
this research. The medial axis transform of an object consists of its interior and exte-
rior medial balls, see Figure 1. A medial ball is tangent to the boundary of a shape in
two or more points and it never intersects it, also every medial ball is empty. A medial
atom is a tuple of the center and radius of the same medial ball, consequently the
MAT is the set of all the medial atoms of an object, see Figure 2.
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The atom’s local geometry can quantify the local characteristics of a shape like thick-
ness and curvature, it makes the interaction between the atom and the corresponding
surface points explicit and can be used to define a local coordinate system. (Peters,
2018a) These are organized in a hierarchical structure composed by medial sheets,
manifold surfaces with boundaries, that intersect at junctions, see Figure 3.

Figure 1: An object and some of its medial balls

Figure 2: The local geometry of a medial atom

Figure 3: The structure of medial sheets and junction curves in the 3D MAT
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The fastest computation method for the 3D MAT is the shrinking ball algo-
rithm. This takes an oriented point cloud, where points are associated with their
normal vectors, as input and outputs a set of medial atoms as the MAT approxima-
tion. The output is a point cloud, called unstructured MAT, in fact its topology and
structure are not computed. The assumption is that the center of a medial ball corre-
sponding to a boundary point lies along its normal vector. The algorithm is initialized
with a large medial ball that is iteratively shrunk until it doesn’t contain other boundary
points. (Peters, 2018a)

The unstructured MAT can be segmented on the atom geometry using a
region growing algorithm, initialized on random atoms. This process can lead to two
outputs, the separation into disjoint parts, called medial clusters, or the separation
into medial sheets. Two properties of the 3D MAT are important in these processes.
First, medial balls of atoms in the same medial cluster intersect, while those belong-
ing to different ones do not. This is the cutting conditions in medial clusters. The
second property is that nearby medial atoms in a medial sheet have similar me-
dial bisectors. The medial bisector is a vector tangent to the medial sheet, which
changes greatly on junction curves. The connectivity between different parts can be
represented as an adjacency graph or a flip graph. (Peters, 2018a)

In this research, the properties of the medial atom and the possibility to
structure the 3D MAT in an abstract graph are of high importance to understand how
the 3D MAT could be best integrated in the semantic segmentation algorithm.
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3 Research questions

The main research question for this project is:

How can the properties of the 3D medial axis transform be exploited in a
deep learning algorithm for point cloud semantic segmentation?

The main goal of this research is to integrate an existing deep learning
algorithm with the 3D medial axis transform. The output should then be tested on an
internal data-set made available by CycloMedia and on a synthetic public benchmark
data-set, with similar characteristics as the first one. The following sub-questions will
also be relevant:

– How can the 3D medial axis transform be used to give context to local points
in a point cloud making the unary classification per point stronger? What infor-
mation should be added to the point cloud without introducing redundancy?

– Can the 3D medial axis transform be used to improve the accuracy of an exis-
tent deep learning method?

– How do the results on CycloMedia’s internal data-set compare with the ones
obtained on the synthetic one?

– How could this research compare to the current workflow of CycloMedia? Is it
feasible to use this procedure in the company?

3.1 Research scope

This project will focus on the augmentation of a point based deep learning architec-
ture, PointNet++, with features derived from the 3D medial axis transform. The 3D
medial axis transform will be computed as a pre-processing step. Then, the point
wise information obtained will be combined on each point of the input point cloud of
the deep learning algorithm. Thus, deep learning methods that need a regularization
of the input, such as voxelization and 2D images, are excluded from this research.

These choices derive from the preliminary analysis on the 3D medial axis
transform, which highlight point features as most promising given CycloMedia’s in-
ternal data-set. The graph properties of the 3D MAT might be further investigated in
a later state of the research if a satisfying result on the internal data-set is obtained.
In fact, the graph based approach seems to be more promising only on the Synthcity
public data-set.

Last, this project focuses on mobile based point clouds that should be ob-
tained through, or simulating, dense image matching point clouds. The reason for
these choices is twofold. First CycloMedia’s point clouds are obtained from mobile
based images; second the medial axis transform will be more complete as materials
such as glass will be represented. Specific studies on airborne point clouds are out
of scope for this research. However, the algorithm may be only tested on an airborne
public data-set in the final state of the project.
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4 Methodology

In this research I will follow the methodology illustrated in Figure 4. Following the
implementation of two deep learning algorithms and the analysis of their strengths
and weaknesses, I will integrate one of them with the 3D medial axis transform. The
outputs will be tested on two data-sets and evaluated in different moments to guar-
antee a thorough analysis of the results.

Comparison

of methods

PointNet++
Superpoint

Graph

PointNet++

3D MAT

Integrated

algorithm
Training

Testing

Synthcity

dataset

Cyclomedia’s

dataset

Evaluation

of results

Figure 4: Flowchart of methodology for semantic segmentation of point clouds with
the 3D MAT
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4.1 Preliminary steps

In order to define the scope of this thesis, three preliminary steps were conducted.
First, I completed a research assignment with the aim of getting acquainted with
deep learning methods. During this phase, I completed the online course Machine
Learning by Coursera, then I studied the theory of deep learning and how deep
learning is applied on point clouds. Last I completed a step by step coding exercise
with the aim of implementing the algorithm PointNet.

4.1.1 Adaptation of algorithms

Following the literature study, I performed an assessment of existing methods and
their characteristics. As indicated in the literature, deep learning methods on point
clouds follow different strategies to obtain per point class predictions. In this re-
search, point wise MLP methods and graph based networks seem to be compatible.
In fact, the first ones would incorporate information on the local geometry of the me-
dial atom as a point feature; the second ones could exploit the organization of the
3D MAT in medial sheets.

For these reasons, one algorithm for each category was selected. These
should be open source, widely cited and obtain near state of the art results. Fur-
thermore, they should be well structured and easy to integrate with additional code.
Following these criteria, PointNet++ and Superpoint Graph were selected. Both al-
gorithms were first tested on the data-set they were implemented for. Then, I im-
plemented two supporting functions to read and convert CycloMedia’s files. Fur-
thermore, I implemented a Parquet file format reader to proceed with testings on a
public data-set. While working on these algorithms, PointNet++ code resulted less
complicated and thus more adapt to modifications.

4.1.2 3D MAT analysis

Additionally, the visual analysis of the 3D medial axis transform was needed. Using
the software Geoflow1, the 3D MAT was computed on different subsets of Cyclo-
Media’s internal data-set. A complete 360 degrees urban scene was first used; the
same was cut in smaller point clouds and finally in single objects, see Figure 5, 6.
The outputs show that the 3D medial axis transform is not clearly structured. This
is due to the acquisition method of the point clouds that determines an incomplete
representation of objects and a fast decreasing density of points. Given these re-
sults it doesn’t seem feasible to exploit the graph structure of the 3D MAT, which
wouldn’t clearly define objects due to unwanted edge connections. However, each
street object is characterized by a well defined cone, see Figure 6.

The same trials were conducted on different public benchmark data-sets.

1https://github.com/geoflow3d/geoflow
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Figure 5: Urban scan CycloMedia data-set, oriented point cloud

Figure 6: Urban scan CycloMedia data-set, 3D MAT

These data-sets should be similar to the internal one, thus only the ones obtained
from mobile laser scanners were chosen. First, the experiments were conducted with
the Paris Lille 3D data-set. (Roynard et al., 2017) This is not obtained though dense
image matching, thus objects present holes in correspondence of glass, resulting in
an incomplete 3D MAT. For this reason, the trials were performed again of a synthetic
data-set (Griffiths and Boehm, 2019), Figure 7 to 9. In this case, the 3D medial axis
transform is rather complete and could provide useful information for the scope of the
research. In these images, the 3D medial axis transform is segmented and colored
on an angle based threshold.
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Figure 7: Urban scan SynthCity data-set, oriented point cloud

Figure 8: Urban scan SynthCity data-set, 3D MAT

4.2 Evaluation

The preliminary steps conducted so far highlight PointNet++ as the most promising
algorithm given the datasets. This choice doesn’t exclude further studies on the
integration of the graph properties of the 3D MAT in a deep learning algorithm, in
the final phase of this thesis. These could be used is a pre-segmentation step and
tested on the Synthcity data-set.
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Figure 9: Car SynthCity data-set, oriented point cloud and 3D MAT

To quantify the outputs of the algorithm on the two datasets, the use of the
same evaluation metrics throughout the project is of high importance. This step must
be performed on the original algorithm and on the modified one to make sure that the
comparison is accurate. The library Kaolin2 provides evaluation metrics to be used in
this phase, the IoU and the F-score metrics. Both are measures of a test’s accuracy.
The Intersection over Union (IoU) computes the size of the intersection of two sets
over their union. The F-score is the harmonic mean between the test’s precision and
recall. Precision refers to the proportion of positive identifications that were actually
correct, while recall is the proportion of actual positives that were correctly identified.

4.3 Integration of algorithm

In this phase, the algorithm PointNet++ will be augmented with point features de-
rived from the 3D medial axis transform. The 3D MAT will be computed as a pre-
processing step. Then, the point wise information obtained will be combined on
each point of the input point cloud of the deep learning algorithm. masbcpp (Peters,
2018b) and skel3d (Peters, 2018c) are two software packages that compute the 3D
MAT. With masbcpp one can compute the unstructured 3D MAT. The package is im-
plemented in C++, thus it will be used as a library in Python with the aid of the Boost
library3 or of pybind114 . skel3d is used work with the unstructured 3D MAT, e.g. to
calculate the properties of the medial geometry (Peters, 2018a); this software pack-
age is implemented in Python. Both packages will be added in the existing structure
of the PointNet++ algorithm to derive integrated features in an automated workflow.

2https://github.com/NVIDIAGameWorks/kaolin
3https://www.boost.org/
4https://github.com/pybind/pybind11
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Information derived from the 3D MAT could be used in multiple ways. First,
one could directly use the coordinates of the 3D MAT as features. In fact, each point
in the surface point cloud is associated with exactly two medial atoms, if the 3D MAT
is computed with the ball shrinking algorithm, (Peters, 2018a). Furthermore, one
could derive useful information from the radius of the medial ball, the medial bisector
and the separation angle, as these elements describe the thickness and curvature
of an object.

In a later phase of the research, skel3d might be used to obtain the struc-
tured 3D MAT, in order to perform segmentation on the medial sheets. In this way,
their connectivity could be exploited to pre-segment the input point cloud into simple
shapes, as in Superpoint Graph. The information on the edge relations could be
then integrated with the point wise ones. This implementation would be tested on
the SynthCity data-set.

4.4 Assessment of results

Last, the assessment of the results has to be performed. First, the integrated algo-
rithm has to be compared with the original one for both datasets, using the above
evaluation metrics. Second, the quality of the output has to be evaluated in terms
of segmentation accuracy. This step is fundamental to understand whether this
methodology could be integrated with CycloMedia’s one. Last, the comparison of
the workflow with the current one performed by CycloMedia, in terms of time and
computational effort needs to be performed.
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5 Time planning

In order to meet the research objectives a number of activities are needed, listed in
Table 1 and in Figure 10.

Date Activity

11-11-19 P1: progress review of graduation plan
Literature review
3D medial axis transform analysis
PointNet++ implementation
Superpoint Graph implementation

16-01-20 P2: formal assessment of graduation plan
Choice and implementation of evaluation metrics
3D medial axis transform integration
Assessment of results

Week 11-12 P3: colloquium midterm
Algorithm improvements
Assessment of results
Finalization of report

Week 21-22 P4: formal process assessment
Thesis finalization
Presentation

Week 27-28 P5: public presentation and final assessment

Table 1: Milestones calendar

5.1 Planned meetings

During this master thesis, I will be meeting with my TU Delft supervisors, Ravi Peters
and Weixiao Gao, once every other week. Furthermore I will be meeting with my
company supervisors, Bas Boom and Arjen Swart once per week.
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6 Tools and datasets

6.1 Tools

For this project, three categories of tools are needed: point clouds processing and
visualization tools, medial axis transform tools and programming tools. In particular,
CloudCompare5 and Lastools6 are used to visualize, analyze, convert and export
point clouds. Geoflow7 is used to compute and analyze the 3D medial axis transform
for the chosen data-sets. Python is the programming language for the project used
in the Pycharm development platform.

The main packages needed are: PyTorch8, Laspy9, Numpy10, Kaolin11 and
Parquet12. PyTorch is used for deep learning tasks, Laspy to import and export las
and laz files and Numpy is used to store and manipulate numbers’ arrays. Kaolin
is a deep learning library aiming to accelerate deep learning research; it provides
functionalities to process various 3D formats. (Jatavallabhula et al., 2019) In this
research, it will be needed to evaluate the output of the algorithm at the different
stages of the project. Additionally format specific readers are needed, such as H5
reader to inspect the intermediate outputs of the deep learning process. Two open
source algorithms are used, these are the PyTorch implementation of Pointnet++
(Wijmans, 2018) and Superpoint Graph (Landrieu and Simonovsky, 2017).

6.2 Data-sets

The methodology is tested on two data-sets.

– CycloMedia’s internal data-set consists of 500 mobile laser scanner point clouds
with color information. Each point cloud represents an urban scene and is
made of around 3 million points; Figure 11 shows one example. Each point
cloud is obtained with dense image matching of panoramic images from one
car position. This peculiarity determines the fast decreasing density of points;
Figure 12 displays the number of neighbors of each point in a logarithmic scale,
where the maximum is 7160 neighbors in the red area and the minimum in 1
in the blue areas. Figure 13 shows the resulting histogram. This data-set is
available in .laz format and it is segmented in 82 classes.

5https://www.danielgm.net/cc
6https://rapidlasso.com/lastools
7https://github.com/geoflow3d/geoflow
8https://pytorch.org
9https://pypi.org/project/laspy

10https://numpy.org
11https://github.com/NVIDIAGameWorks/kaolin
12https://pypi.org/project/parquet
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Figure 11: CycloMedia’s dataset - rgb information

Figure 12: CycloMedia’s dataset - density of points by number of neighbors, r = 0.2

Figure 13: CycloMedia’s dataset - density parameters
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– SynthCity is synthetic mobile laser scanner point cloud with color information,
simulating a Velodyne scanner. It is composed of nine geographical areas,
eight for training and one for testing; these are in .parquet format. The number
of points ranges from 15 million to 52 million, for a total of 368 million points.
Figure 14 shows a cropped area from the data-set. For the same area, the
number of neighbors of each point was computed through CloudCompare, see
Figure 15, the resulting histogram can be seen in Figure 16. Compared to
CycloMedia’s data-set, the maximum number of neighbors is smaller, given
a search radius of 0.2. However, the density of points is more stable in the
whole area, which is a desirable property. The point cloud is segmented in
nine semantic classes: road, pavement, ground, natural ground, tree, building,
pole-like, street furniture, car. (Griffiths and Boehm, 2019)

Figure 14: SynthCity dataset - rgb information

Figure 15: SynthCity dataset - density of points by number of neighbors, r = 0.2
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Figure 16: SynthCity dataset - density parameters

The open source data-set is needed to compare the results with the ones
obtained with other deep learning methodologies. This data-set is chosen because
it provides a complete representation of objects regardless of their material. This is
a desirable property when working with the 3D medial axis transform, which conse-
quently results more complete.
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