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ABSTRACT: Carbon materials possess active sites and functionalities on the
surface that can attract prominent interest as solid adsorbents for diverse gas
adsorption. This study aimed to predict the optimized methane uptake, adsorption
energy (Ead), and adsorbent rediscovery through multitechniques of neural,
regression, classifier ML-DFT, and Uniform Manifold Approximation and
Projection (UMAP). Nitrogen and oxygen (N/O) functionalities and graphene,
graphene oxide (GO), and N-doped GO were applied to the methane storage
medium. Multi-ML algorithms were employed for the adsorption energy of CH4
uptake on (i) N/O functionalities such as pyridinic (N-py), carboxyl (O−II),
oxidized (N-x), hydroxyl (O-h), Nitroso (N-ni), and Amine (primary, secondary,
and tertiary). (ii) The graphene surfaces are decorated with N/O heteroatoms to
construct graphene oxide (GO) and N-doped GO. The DFT calculations were
applied by PW91 and the Dmol3 package. N/O-functionalities in the distance of
∼2.0 to 3.1 Å groups obtained Ead of approximately −2.0 to −4 eV. Further, ML models accomplished the forthcoming rediscovery
of CH4 physisorption by using the multiadsorptive features of optimized adsorbents with an R2 of 0.99. ML-derived sensitivity
analysis approach was applied to specifications such as deformation adsorption energy, N/O functionality type, and optimized
structure. CH4 adsorption specifications indicate sensitivity levels of −0.03 to 0.02 eV. The synergetic DFT/ML approaches
distinguished the modeled and rediscovered phases of CH4 adsorption on N/O functional groups and graphene structures. UMAP is
employed as a new adsorbent screening approach to play a complementary role in the ML modeling process.

■ INTRODUCTION
Methane (CH4) is one of the enchanting green fuels that
includes a high portion of natural gas resources (∼90%) with
more affordability compared with gasoline and diesel fuels.1 This
principle leads to substantial research that has been prompted by
cost-effectiveness amidst increasing global energy demands.2

The most efficient thing about CH4 is storage under pressure
>200 bar or liquefying at low temperatures within 110 K.
Methane can be substantially stored on porous sorbents under
low pressures from 35 to 65 bar at room temperature.3 Thence,
the physical adsorption of CH4 demonstrated facile potential for
energy applications, such as sequestering methane from landfill
gases,4 and capturing methane from biogas emissions,5 which
can descend greenhouse gas emissions. Moreover, the prevalent
component of biogas, CH4, becomes a potent greenhouse gas
while the organic wastes are untreated in natural conditions;6

that can be directly stored as a clean energy source for vehicles,7

and industrial applications.8 Hence, CH4 can be regarded as a
sustainable energy solution that has attracted interest in
planning the synthesis of innovative gas-adsorbent materials.
Solid adsorbents are catalysts that can provide solutions for
environmental concerns,9,10 and the rapid depletion of fossil

fuels aimed at developing alternative energy storage and
conversion systems.11

Carbon materials such as bioderived carbon,12 porous
carbon,5 activated carbon,13 and graphene14 are regarded as
important components in gas storage.15 It can be noted that
efficient storage through adsorptionmechanismsmakes it usable
on clean and renewable routes.16 Thence, the in-depth
evaluation of physisorption conditions requires understanding
control over CH4 molecules. It can prominently improve the
process efficiency in industrial catalysis and petrochemicals in
gas storage.17 The advanced carbon adsorbents have sparked
exploration into storage solutions utilizing materials like
graphite, graphene, and bundles of nanotubes through a
physisorption mechanism.18 This interaction is often charac-
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terized by weak van derWaals forces that, due to themechanism,
allow methane molecules to attach to surfaces without forming
chemical bonds.19 The functionalized carbon materials stand
out as excellent candidates for selective adsorption of multigases
such as CH4/CO2 Nitrogen/oxygen-based (N/O) function-
alities (such as pyridinic, graphitic, amine/carboxyl, carbonyl,
and hydroxyl) make the carbon surface heterogeneous by the
artificial and green-self-doping processes in the carbon matrix of
nanostructures.20 It can usefully raise adsorption enthalpy by
boosting the energy-level of the neutral graphene surface.21 N/O
functions can effectively operate as active sites for CH4
adsorption,22 which affects the surface interacts with methane
molecules, changing its chemical reactivity and attraction toward
them. The dynamics of π-electrons can create temporary
electron clouds that can stabilize methane on the functionalized
carbon surface by creating localized charges.23

As a further point of view, the functionalized porous carbon
materials have a prominent potential to be employed in gas
storage, mainly CH4, including the amine groups (amine-
primary, amine-secondary, amine-tertiary),6,24,25 nitroso (N-ni)
and onitroso (N-on),26 nitrogen-pyridinic, and pyrolytic,27

graphitic,28−30 and oxidation process.31 Nitrogen functionalities
can contribute to electronic states on carbon matric around the
Fermi level.32 These nitrogen functionalities can enhance
extended adsorption sites and the electron density on graphene
for methane as nonpolar molecule.33 Besides, the oxygen
functionalities such as carboxyl and hydroxyl can promote the
adsorption sites for the internal structure of graphene.34 In the
context of carbon-based materials functionalized with amine
groups, a previous study examined the grafting of primary to

tertiary amines onto SBA-15 to investigate their influence on
CO2/CH4 adsorption, exploring factors affecting the process.

35

At a temperature of 25 °C, the results demonstrated that
secondary and tertiary amines with an amine density of 1.6−1.7
mmol g−1 exhibited a CH4 uptake equivalent to <0.04 mmol g−1.
Conversely, the primary amines adsorbed 0.05 mmol g−1,
suggesting more vital interaction forces with CH4. In another
research, 19 graphene nanoflakes (GNFs) were evaluated, each
featuring two amines positioned at different locations on the
zigzag and armchair corners.10,24 The results demonstrate a
modification in CH4 uptake when two isolated amines were
positioned on two zigzag edges (P4-Z2Z2). Meanwhile, two
adjacent amines were placed on a corner and a zigzag edge (P1−
C1Z1). As an alternative investigation, the functional groups
showed that CH4 adsorption decreased, attributed to the decline
in C�C, −OH, C�O, and −CH2 contents in porous carbon;
in which the gas adsorption potential follows the order: C�C >
−OH > C�O > −CH2.

36 Although microporous carbon
materials can affect the nonchemical reactions of the
physisorption mechanism, the functionalities can promote the
active sites for CH4 uptake. Mahmoudian et al. indicated that
methane adsorption capacity had no notable impact despite
having ultrahigh specific surface area values exceeding (3000 m2

g−1). Thence, the appraisement of chemical specifications in the
carbon solid adsorbents and graphene is a crucial nonstructural
assessment within CH4 physisorption.

28

Density functional theory (DFT) can determine an
incommutable position in the research of molecule adsorption
behavior and different adsorption energies (Ead) of adsorbents′
sites. The gas adsorption behavior is significantly affected by the

Figure 1. A review of DFT calculation and ML modeling for CH4 adsorption predictions with approaches of (a) Geometry optimization and surface
interaction. Reproduced with permission from ref 51. Copyright 2020 Elsevier. (b) Electrostatic potential maps. Reproduced with permission from ref
52. Copyright 2022 American Chemical Society. (c) Electronic and orbital properties. Reproduced with permission from ref 53. Copyright 2018
Elsevier. (d) Sensitivity analysis. Reproduced with permission from ref 43. Copyright 2021 Elsevier. (e and f) Prediction, optimization, and precision
feasibility, respectively. Reproduced with permission from ref 21. Copyright 2022 American Chemical Society.
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energy levels of their electronic structure, which are determined
by the Highest Occupied Molecular Orbital (HOMO) and
Lowest UnoccupiedMolecular Orbital (LUMO).37 The frontier
molecular orbitals in graphene-basedmaterials play a crucial role
in determining the degree of interaction between gas molecules
and the outermost layer of the adsorbent.38 The adsorption
features of CH4 physisorption to fulfill application requirements
mandate a thorough understanding of the interplay between the
HOMO−LUMO energies and the energy gap. Besides, the
molecular interactions of CH4molecules with heteroatoms (e.g.,
nitrogen and oxygen) can be helpful for graphene or N/O doped
graphene surfaces.39 In other words, the physisorption of
methane onto graphene surfaces is a multifaceted phenomenon
governed by intricate interactions between the methane
molecules and the graphene lattice,40 as well as the presence
of various functionalities sites that modify the surface proper-
ties.41 As another alternative approach, when delving into the
impact of defects on graphitic substrates, Dutta et al.30 employed
van der Waals-corrected DFT to explore the potential for
engineering the morphology of sp2 carbon substrates to enhance
gas uptake and separation, focusing specifically on CO2/CH4
binding.42

Their findings illustrated a significant disparity in the
adsorption of CO2 and CH4, particularly on folded graphene
sheets and concave curvatures, suggesting the potential utility of
this phenomenon for CH4/CO2 flow separation. The electric
field (EF) is an important factor for methane storage materials’
adsorption/desorption performance. Han et al. evaluated
oxygen-rich graphene, such as hydroxylated-/carboxylated
graphenes (GO−OH and GO−COOH, respectively), via
DFT calculation. The adsorptive properties of oxygen groups
such as−COOH and−OH improved CH4 uptake.

45 Moreover,
methane oxidation involves the incorporation of metal dopants.
A previous study highlighted the effectiveness of platinum
doping onto carbon nanoparticles, specifically with Pt loading
(at 10 wt %) as a catalyst for the selective aerobic oxidation of
methane to produce formaldehyde.46 These Pt-supported
carbon nanoparticles offer a notable advantage due to their
high platinum dispersion combined with low reactivity toward
the reaction product, formaldehyde. In another study, excep-
tional active and durable platinum−nickel hydroxide-graphene
(Pt/Ni(OH)2/rGO) ternary hybrids were successfully pre-
pared.47 These hybrids feature small-sized Pt nanocrystals
intimately integrated with highly defective Ni(OH)2 nanostruc-
tures, all supported on conductive rGO nanosheets. The
physiosorbed methane molecule on the graphene sheet has
enhanced adsorption energy with a high number of carbon
atoms, and the values are −0.184 and −0.185 eV (pristine
graphene) and −0.188 and −0.191 eV (defective graphene).48

According to Kandagal et al.,49 selective functionalization for
specific graphene surface spots significantly increases the
localized adsorption index. This suggests a potential approach
to customizing materials with increased methane storage
capacity. Seema et al.50 found that at 1 bar and 0 °C, sulfur-
doped reduced graphene oxide had a low methane adsorption
capacity of just 0.75 mmol g−1. The synthesized material showed
an adsorption capacity at low partial pressures of P/P0 = 0.2, with
an adsorption value of 1.82 mmol g−1.
In the new decade, machine learning (ML) is the most

applicable artificial intelligence (AI) tool for multidisciplinary
gaseous studies, such as CH4,

54 CO2,
55,56 and CH4/CO2

44

adsorption properties. The most recent ML and DFT
approaches in the gas adsorption fields are illustrated in Figure

1. In a stream of alternative research,Meng et al. used an artificial
neural network (ANN) model to predict the CH4 adsorption
behavior of CO2/CH4 on anthracite and bituminous coals at
different temperatures (35, 45, and 55 °C). Also, the conditional
features, such as pressure and solid carbon-based sorbent, are
ranked in absolute and actual adsorption amounts. The ANN
model obtained predictive accuracies from ∼0.98 to 0.99 of R2.
The lone pair electrons in heteroatom functionalities,
specifically nitrogen and oxygen electrons, strongly attract
attention to gas capture. Rahimi et al. applied the radial basis
function-neural network (RBF-NN) on N/O dual-doped
porous carbon materials for CO2 uptake predictions. The
RBF-NN estimated the performance of CO2 uptake based on
themicrostructural and nitrogen groups under pressures ranging
from 0.15, 0.6, and 1 bar at 298 and 273 K (room and cryogenic
temperatures). The ML algorithm achieved the lowest mean
absolute percent error <3.5% by determining the CO2 capture
with 0.97 to 0.99 of R2.21 The literature review of ML and DFT
data-driven techniques′ applications within gas adsorption is
provided in Table 1. Further, the presence of N-nitroso and
-onitroso groups introduces polar components that improve the
adsorptive feature of carbon materials by facilitating dipole−
induced dipole interactions.57 Oxygen functionalities, such as
epoxy and ether groups, affect the surface polarity. It modifies
the electronic structure of graphene carboxyl groups, which have
the ability to establish hydrogen bonds with methane molecules,
resulting in increased adsorption stability.58 Uniform Manifold
Approximation and Projection (UMAP) is a novel dimension
reduction technique that attracted significant attention for its
ability to preserve the structure of data sets and material
screening. Daun et al. applied UMAP to visualize 10% of a
random sample of thousands of hypothetical complexes.59 Also,
UMAP can be used to create a low-dimensional data source that
is suitable for clustering. Baird et al. utilized the algorithm of
DensMAP to directly achieve density estimations within the
dimensionality reduction step.60

This study aimed to use multiple ML algorithms, DFT, and
UMAP techniques for CH4 adsorption to construct DFT-based
ML workflows. DFT evaluates the comprehensive N/O
functionalities with ML models to predict the adsorption
energies for CH4 uptake. In the meantime, much experimental
research has been conducted on the effects of various
heteroatoms on the physisorption of methane, including
nitrogen.61 Also, according to the above-mentioned literature,
the ML technique is applied chiefly based on microstructural
and conditional features. Although recent data-drivenMLworks
could predict gas uptake, ML has not yet been used for the
following:

i. Single heteroatom functionalities combined with gra-
phene and GO as solid CH4 adsorbents.

ii. DFT-based ML optimizes the adsorption energies based
on the 14 N/O functionalities and three graphene
structures.

iii. Sensitivity levels of adsorptive/chemical features such as
functional group types and deformation energy CH4
uptake.

iv. Three classes of neural, regression, and classifier ML
algorithms applied for CH4 adsorption.

v. UMAP visualized the adsorbent types by screening the
data sets of adsorbents.

The contributions lie in evaluating the in-operando perform-
ance of N/O functionalities on graphene, which can significantly
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influence methane adsorption. Hence, solid adsorbent struc-
tures were established to assess the performance of CH4
physisorption. The contributions of methane storage on solid
adsorbents can be pointed out below:

• Calculate the adsorption energies of CH4 molecules on
various graphene structures such as graphene, graphene
oxide (GO), N-doped GO, and heteroatom functionali-
ties.

• Assessments of CH4 uptake′s feasibility on comprehen-
sive N/O functional groups (such as hydroxyl, carbonyl,
carboxyl, epoxy, ether; and pyridinic, pyrolytic, graphitic,
oxidized, amine primary, secondary, and tertiary, nitroso
and onitroso, respectively.)

• Synergistical DFT-based ML and UMAP approaches to
model and rediscovery of CH4 adsorption and adsorbents.

Hence, DFT-based ML was applied to 150 data sets by using
algorithms such as support vector regressor (SVR), Decision
Tree Regressor (DT), Multilayer Perceptron (MLP), and k-
nearest neighbors (KNN) for an in-depth study of CH4 uptake.
DFT-ML can usefully disclose the adsorptive behavior of
heteroatom-functionalized graphene structure interactions with
methane at the molecular level. Moreover, ML techniques
include the independent variables such as the optimized
geometries of adsorbents and N/O functional group types
(OS and FT, respectively) for predicting the energy absorption
of methane as provided in the Material and Methods section.
Further, UMAP analysis disclosed a high potential for
discovering complex materials. Although DFT-ML can enhance
the fundamental understanding of gas adsorption phenomena, it
also facilitates the systematic modification of graphene-based
adsorbents for higher gas storage and separation applications.

■ MATERIALS AND METHODS
2.1. Structures and Principle Calculations. This study

applied DFT calculations to CH4 adsorption on multiple
adsorbents and continued with ML techniques to rediscover
CH4 energy adsorption, as illustrated in Figure 2. Structures of
graphene sheets and N/O heteroatom functionalities are
designed to depict the configuration of solid adsorbents,
where each sheet has a length of 20 Å along the x and y
directions. Each single-graphene sheet and heteroatom
functionalities were performed to evaluate how active sites on
graphene oxide or N/O-dual doped graphene can affect the CH4
adsorption. Specifically, the combined molecular dynamics
simulation assisted with machine learning techniques is
established to evaluate the feasibility of multifunctional groups
and graphenes for methane adsorption. Therefore, 14 nitrogen
and oxygen functionalities and three graphene structures are
assumed to include sites in the carbon matrix, as presented in
Table 2. The nitrogen functional groups are (i). pyridinic (N-
py), (ii). pyrrolytic (N-pyr), (iii). graphitic (N-q), (iv). oxidized
(N-x), v, vi, and vii). amine primary, -secondary, and -tertiary
(N-p, N-s, and N-t), viii, and ix). nitroso (N-ni), and onitroso
(N-on). On the other hand, oxygen functional groups consist of
five functionalities: hydroxyl (O-h), carbonyl (O−II), carboxyl
(O−III), epoxy (O-x), and ether (O-eth).

2.2. DFT Calculation. A DFT calculation procedure was
employed to provide molecular-based insights into the
adsorption mechanism before the optimization process of the
ML technique. These calculations were proceeded by using the
Gaussian code in Materials Studio package 2017.62 PW91 is
considered as generalized gradient approximation (GGA)T
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functional with the low computational cost to describe the
electronic structure of heteroatoms functionalities, graphene,
graphene oxide (GO), N-doped GO. On the other hand, as this
approach merged with ML techniques, the low-cost functional
in DFT calculations which adopted to rediscover the methane
adsorption on graphene.

The geometry optimizations of CH4, N/O functional groups,
and graphene with the adsorption energy (Eads) calculations
related to the best stable geometries were accomplished based
on the B3LYP functional. The real-space cutoff was 5.0 Å. The
Eads of CH4 molecule on N-doped graphene oxide (N-GO) as
adsorbent was calculated using the following eq 1:

= ++E E E E( )ads sorbent CH4 sorbent CH4 (1)

Where Esorbent+CH4 shows the total energy of the carbon-based
sorbent/CH4 adsorbate configuration. Esorbent and ECH4
represent the energy of adsorbents such as GO and N-GO
with adsorbate (CH4 molecule), respectively. It can be noted
that the Eads value was negatively achieved, which addressed the
exothermic adsorption process. Meanwhile, the higher amounts
of Eads indicate a desirable interaction between the sorbent and
CH4 adsorbate.
The details of the DFT calculation tuning parameters are

presented in Table 3. Moreover, DFT primary calculations, as
provided in Figure 2, GGA (generalized gradient approxima-
tion) combined with the PAW technique by implementing in

Figure 2. Schematic illustration of the modeling of multiprocesses of CH4 adsorption on solid adsorbents with (a) structure design of nine/five/three
nitrogen-, oxygen functional groups, and graphene sheets (simple, oxide, and N/O-dual doped), (b) DFT calculations, and (c) achievements of DFT
by combining with five ML techniques for rediscovery of CH4 adsorption energies.

Table 2. Optimized Hyperparameters of ML Models

Nitrogen functionalities
site Symbol

Oxygen
functionalities site Symbol

Pyridinic* N-py Hydroxyl O-h
Pyrolytic N-pyr Carbonyl O−II
Graphitic N-q Carboxyl O−III
Oxidized N-x Epoxy O-x
Amine primary, secondary,
tertiary

N-p, N-s, and
N-t

Ether O-eth

Nitroso N-ni Graphene oxide GO
Onitroso N-on N/O-dual doped

graphene
N-GO
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Materials Studio.63 Moreover, the Perdew Burke Ernzerhof
(PBE) function and Hellmann−Feynman force convergence
criterion can define the exchange-correlation energy based on
the energy convergence criterion to 1 × 10 5 eV and 5 × 10 2

eVÅ−1, respectively. The deformation charge density (ρde) can
be calculated by Equation 2 as below:64

=d adsorbed state graphene gas molecules (2)

where the ρadsorbed state presents the charge density of the
configuration of graphene-absorbed gas, and the ρgraphene and
ρgas molecules are the charge density of isolated graphene and gas
molecules, respectively. The optimized Ead and HOMO−
LUMO energy gaps were evaluated along with multi-ML
techniques merged with five adsorption parameters of CH4,
which were the total energy (TE), rigid adsorption energy
(RAE), deformation energy (DE), optimized structure (OS)
and functionalities type (FT), to predict the adsorption energy
of CH4. The adsorptive independent variables, such as TE, RAE,
and DE are DFT-based features after 15 simulation runs. FT and
OS are classification variables (as non-numeric input) that
indicate the N/O functionalities and optimized graphene
structures used to predict the CH4 uptake. In the next section,
the details of the ML process for CH4 adsorption are discussed.

2.3. Machine Learning (ML) workflows. Machine
learning (ML) models comprehensively can be divided into
four categories: supervised, unsupervised-, semisupervised-, and
reinforcement learning, as illustrated in Figure 3. The
comparative abilities of each class are provided in Table 4,65

which each class includes a particular procedure and specified
area for modeling. Supervised learning utilizes a labeled data set

known as the training set (x, y). According to the existing
training set, the optimal model was obtained via training and
continued by applying the obtained mapping to unknown
independent variables to achieve the dependent ones.
Supervised learning consists of various ML algorithms such as
neural (MLP), regression (SVR, DT, and RF), and classifier-
based (KNNs) algorithms. A set of supervised ML models was
applied to predict the Eads of methane on graphene and
heteroatoms functionalities. This study applies ML approaches
such as SVR, RF, DT, MLP, and KNN, and the optimized
hyperparameters of theseMLmodels are provided (section 2.4).
All are merged with DFT calculation processes by considering
the methane adsorption energy as y or the predictive target.
Notably, the prepared data sets were systematically partitioned
into 50 to 80% ratio range to facilitate the training and testing
phases of the ML procedure. Before the ML model application,
the min-max normalizations were implemented as a preprocess-
ing step of the data sets. Furthermore, a cross-validation with 5-
fold on the training set was applied for model selection and
hyperparameter optimization.17 Afterward, the optimal model

Table 3. Tuning Parameters of the DFT Calculation for
Methane Adsorption

Parameters of DFT for CH4 Value

Convergence limit 5.0 e−4

Maximum iteration 50
Energy 2 × 10−5 Ha
Force 0.5 kcal mol−1

Displacement convergence 5 × 10−3 Å

Figure 3. Classification of machine learning models.

Table 4. Comparative ML Classes’ Predictive Performance

Class Performance

Supervised
learning

• Labeled data set using in training set (x, y).
• Optimal model is selected based on the training phase.
• Applying the trained mapping procedure on unknown
data sets.

Unsupervised
learning

• Data is unknown, and data sets are not labeled.
•Training step consist of input and output x and y that are
known/unknown.

• Data sets of samples need to be sorted based on
similarity.

Semisupervised
learning

• Structured by combining supervised- and unsupervised
learning.

• Raw data points consist of labeled/nonlabeled data to
create the pattern.

Reinforcement
learning

• Learning process based on trial and error.
• Permits learning to do the map situations based on the
environment.

• Operates by rewarding/punishing sign interaction with
the environment.
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was retrained on the entire training set, and the resultant
evaluation metrics were obtained for both the train and test sets.
The ideal training/test phases′ size selection was applied based
on the portions 70/30% of the total ∼150 data sets of CH4
adsorption in all (17 types of adsorbents such as N/O
functionalities and graphene-based structures). Although ML
techniques are feasible with a quantitative input set, qualitative
inputs can bring novelty for the ML modeling process. The two
input features of FT and OS are nonquantitative variables (as
classification ones) applied in the ML modeling process to
predict the CH4 adsorption energy.

2.4. ML Algorithms. ML algorithms work based on their
respective hyperparameters that need to be optimized to achieve
ideal targets, while the challenge is that the default settings of
hyperparameters are inadequate to ensure the ideal performance
of ML methods.66 Thus, determining the optimal hyper-
parameters is critical for ML schemes, as illustrated in Table 5.

Principally, two techniques of hyperparameter tuning can be
utilized in this study, which are explained below:

i. Trial-and-error: It is a straightforward procedure to tune
the hyperparameters of ML algorithms. Using this
approach, different hyperparameters can be manually
tested, and those presenting the ideal result, or the most
negligible error can be chosen for the ML algorithm. For
example, four vital tuning parameters in the RF model′s
structure, namely, Max depth, Min samples leaf, Max
features, and Number of estimators, were optimized using
the trial-and-error approach.56,67

ii. Random search (RS): This technique can tune the
hyperparameter so that the defined hyperparameters are
merged in any criteria or by any order. The tuning process
of four ML methods of SVR, MLP, DT, and KNNs was
conducted using the RS technique.69 In the next section,
all ML algorithms specifications are discussed and
comparatively evaluated based on their computational
neural, regression, and classifier classes.

2.4.1. Neural-Based MLP. A Multilayer Perceptron (MLP),
also referred to as MLP-neural networks (MLP-NNs), is
structured as a feed-forward neural network with one input
layer, one output layer, and multiple hidden layers.70 The
number of neurons in the input and output layers is determined
by the data set’s input and output vectors, while the hidden
layers are established through random search. MLP can model
the classification and regression for complex nonlinear relation-
ships. Although it can generalize well to unseen data, it is difficult
to interpret how they reach their decisions.71 Each layer consists
of neurons connected to neurons in the adjacent layer with
specific weights, which are often initialized randomly.72,73 Table
6 presents the comparative specifications of multineural,
regression, and classifier-based ML algorithms. All of the ML
algorithms, specifically MLP, are employed to predict the
specific feature of CH4 adsorption (Eads), in which the input

Table 5. Optimized Hyperparameters of Five ML Models68

Model name Hyperparameters

Support Vector
Regressor (SVR)

C = 100, Gamma = 0.1

Random Forest (RF)a Max depth (MD) = 21; Min samples leaf (MSL) = 1;
Max features (MF) = 0.26

Number of estimators (NE) = 175
Multilayer Perceptron
(MLP)

Hidden layers = (100, 100, 100); Activation = tanh;
Early stopping = True

Decision Tree (DT) Max depth = 20
K-Nearest Neighbors
(KNNs)

Weights = distance

aNE = 10−1000, MF = 0−20, MSL= 1, MD = 5−500.

Table 6. Comparative Equations and Performances of ML Algorithms

ML
algorithm Equation Performance

MLP =
+

f ( )
e

1

1
• Neurons′ sizes in both input/output layers are specified based on the
input and output vectors in data sets.

+ = +W n W n a W n W n( 1) ( ) ( ( ) ( 1))E
W

+ = +U n U n a U n U n( 1) ( ) ( ( ) ( 1))E
U

• Hidden/output layers create predictions depending on the weighted
input′s neuron.

n = the training iterations′ value; a = the momentum factor; E & η = the error
and the learning rate

SVR = * +=f x K x x b( ) ( ) ( , )i
n

i i i1
• Error-insensitive zone size (ε) and the regularization parameter are
pivotal elements.

K(xi,x) = (1 + xi′x)p, p = 2, 3
K(xi, x) = exp(−γ|xi − x|2) • Gaussian kernel function is accomplished so that a trial-and-error

approach can determine the parameters.K(xi,x) = kernel function; αi, αi* = the Lagrange multipliers
RF Hoob(x) = argmax∑t = 1TI(ht(x) = y • Training set can show the trained data sets for tree ht, andHoob indicates

the OOB approximation for sample x.

= | |x I H x y( ) ( ( ) )
D x y D

oob 1
( . )

oob • The randomness-level of the RF algorithm can be controlled by the K
parameter, which is defined as k = log2d.

=I X( ) OOBerr OOBerri B t
B

t t
1

i
ˆ • Each xi variable might be scrambled by shuffle to specify the feature

relevance.
xi = transferred ith feature; OOBerrt i

ˆ
= model’s error of the shuffled OOB;

OOBerrt = noninfluenced OOB data samples
DT p(c|x) = 1D∑i = 1Dpi(c|x) • Capable of conducting out both continuous and discrete data sets.

p(c|x) = The probability of class c (when x is known) • It is highly feasible to select the optimal discriminatory features.
KNN • Easily applied to data sets with classification purposes.

= = =
yPredictive weight ( )i

n w

w t1
i j

i
n

i j
i

,

1 ,

•Different test samples can be predicted with an extended range of nearest
neighbors.

n = the number of training samples; yt i = the true value of the ith training
sample

• k nearest neighbors of test data employed to predict its class label with
the majority rule.
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layers consist of five inputs: TE, RAE, DE, OS, and N/O-FT. as
shown in Figure 4. The hidden layers are composed of neurons
denoted as S1, S2, S3, ..., and Sn, while Eads constitute the output
layer. This study’s configuration includes inputs (the data set for
CH4 adsorption on N/O functional groups and graphene), the
hidden layer, and the output (Eads).
2.4.2. Regression-Based SVR, RF, and DT. Random forest

(RF) is a classifier/regression ensemble technique that makes
predictions by collecting decisions with trees. As the word
“forest” shows, many decision trees (DT) are included in the RF
model, which is used as the ultimate decision-maker (as
illustrated in Figure 4). In the RF algorithm, the random
sampling method is regarded as bagging in which one-third of
the data sets can be excluded for training in the subtree. RF can
build multiple decision trees by preventing overfitting with large
data sets and high-dimensional spaces. Noteworthy, it may have
high computational cost with many trees with less interpret-
ability.74

Decision tree (DT) algorithm is originally rule-based and
binary-tree building technique,73,75 can find the best split that
presents the ideal prediction with low error, which is the ML
algorithm’s goal in supervised learning.76 Like other neural-
network-based ML models, it employs a supervised learning
approach grounded in statistical learning theory. DT can
introduce clear, interpretable models in fast, and low-cost
processes. This algorithm works based on the learned splits; the
predictions are unstable with different generated trees.
The primary objective of the SVR model is to identify a

function, f(x), for the training data set (x1, y1)... (xi, yi), to attain
the optimal bias (ϵ). SVR can usefully perform with small data
sets, with high resistance to the outliers′ influence. On the other
hand, it requires to be tuned by parameters such as the
regularization term (C) and gamma.77 The comparative
performances of regression-based ML algorithms are listed in
Table 6.
2.4.3. Classification-Based KNN. In our work, the KNN

algorithm is applied to obtain the correlation coefficient matrix
W; then, it obtains an ideal value of k for each test sample. Then,
we employed the selected k to conduct KNN algorithm for
different data sets with various inputs. As an instance-based
method, k-NN can predict based on the closest data points in the
feature space, which can be determined by a specified number of
k of nearest neighbors.78 Thence, KNN is feasible with small
data sets along with fast training processes with a simple decision

boundary. It requires feature scaling, such as normalization and
standardization.

2.5. Data Preprocessing. According to the different types
of data values, two standardization preprocessing techniques
data sets: i. Min-max normalization and ii. Conventional
normalization was applied before the ML modeling process.
Min-max standardization is the most common procedure that
can be employed in variables (v) included in data sets as data
preprocessing. This method scales the data to a fixed range,
typically [−1, 1], that can be defined with Equation 3 as follows:

=v
v v

v vn
min

max min (3)

where v and vn indicate the original value of the variable and
normalized independent and dependent variable values. vmin,
and vmax represent the maximum and minimum values of the
concerned variable, respectively. Conventional normalization,
well-known as Z-score normalization, can be applied to data for
standardization in the range of [0, 1]. The process of
normalization can be conducted by the linear data sets mapping
over a rigid range in which the value of v is stated as Equation
4:74

= × +v
v v

v v
r r r( )n

min

max min
max min min

(4)

rmin and rmax stand for the desired values of the transformed
variable range.

2.6. Primary Statistical Analysis. As a primary analytical
procedure, the adsorptive DFT features were evaluated through
the Pearson correlation coefficient (PCC). In other words, the
correlation coefficient index measured the linear dependence
between the input variables and the adsorption energy of CH4.
PCC evaluated the collinearity value of two variables and the
related linear correlations, which can be determined by Equation
5:

= = =

= =

v v t t

v v t t

( ) ( )
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i
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n

i i
n

i

1 1

1
2

1
2

(5)

where v and t represent the adsorption input variable and target
(or adsorption energy of CH4); meanwhile v̅, and t ̅ indicate the
mean values. Thus, eq 5 varies between −1 and 1 for the linear
conversion of two variables. Hence: ρxy = −1, 0, and 1
demonstrate that v and t have entirely negative, obscure, and

Figure 4. Schemes of (a) the MLP and (b) the RF algorithms are used to predict the CH4 adsorption mechanism.
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positive correlations, respectively. Also, the significant levels can
be calculated as shown in eq 6:

=t
N 2

1
vt

vt
2

(6)

The p-value is achieved based on degrees of freedom (N-2), and
“t” distribution. PCC can disclose the influence of inputs on the
target (output), and thus, nonsignificant linear correlations can
be deleted from the ML model process. Moreover, high
collinearity of two variables may be observed, and the sensitivity
observation can ascertain the specified impact on the target.
Thenceforth, the DFT-based variables were utilized to train and
test ML models to predict CH4 adsorption energy performance.

2.7. The Accuracy Criteria. Two performance criteria,
including R2 and Root MSE (RMSE), were used to evaluate ML
prediction accuracies for CH4 adsorption energy (Ead)
predictions, which are defined as follows:
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where Er and Ep are the actual and predicted values, and Êr shows
the average of the real values. R2 and RMSE values close to 1 and
0, respectively, indicate that the model provides accurate
predictions with reliable estimation errors.79

■ RESULTS AND DISCUSSION
3.1. DFT Calculation. 3.1.1. Nitrogen and Oxygen

Functional Groups (N/O-x) Adsorbents. Geometry optimiza-
tion was applied to N/O functional groups and graphene
structures as the primary task for the DFT calculation. PBE
function estimated rms and max force in legible ranges with
values 0 to 0.1, proving the high accuracy of the initial step of
DFT calculations. As illustrated in Figure 5, three parameters are
included in the optimization procedure: total energy, rms force,
and max force. The total energy suggests differences in the
stability and electronic properties of the nitrogen functional
groups. Typically, the total energy is influenced by the electronic
structure and the interaction between the functional groups and

Figure 5. Illustration of (a) the energy-optimized structures of nine nitrogen functionalities as adsorbents of CH4 and (b) the calculation of HOMO/
LUMO energies of CH4 adsorption on N-functional groups; pink-yellow and green-blue indicate the HOMO/LUMO (those symbols are defined as
N-pyridinic (N-py), N-pyrolytic (N-pyr), N-graphitic (N-q), N-oxidized (N-x), N-amine primary, -secondary, and -tertiary (N-p, N-s, andN-t), andN-
nitroso (N-ni) and -onitroso (N-on)).
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the graphene sheet.80 All nitrogen functional group sites,
excluding graphitic (N-q), demonstrated total energies of ∼24
eV (pyridinic, pyrolytic, graphitic, oxidized) and∼27 eV (amine
primary, -secondary, and -tertiary, nitroso, and onitroso). The
geometry optimization procedure using DFT effectively
established atoms of the molecular structures to take the most
stable carbon matrix with the lowest possible ground state
energy. Moreover, calculating the HOMO−LUMO energies
provides insights into the electronic properties and reactivity of
the nitrogen functionalities.71 The energy trend from N-py
increased from−2.65 to−2.05 eV inN-pyr, and it approximately
continued for N-x and N-q in a stable trend of −2.73 and −2.58
eV. Comparatively, two nitrogen groups, N-ni and N-on, showed
the lowest values, resulting from small HOMO−LUMO energy
gaps. Also, the oxygen functionalities demonstrated the same
values of total energies between 24 and 27 eV. The optimized
structures of oxygen functional groups and the HOMO/LUMO
energies of CH4 uptake on O-functionalities are provided in
Supporting Information (SI) Figure S1. The oxygen functional
groups demonstrated −2.21/−5.0 eV, −2.37/−5.24 eV, −2.33/
−5.16 eV, −3.59/−5.06 eV, and −3.2/−3.38 eV for LUMO−
HOMO energies. To address the CH4 adsorption, Osouleddini,
and Rastegar presented the importance of energy gap (Eg) in
infinite graphene adsorbent for CH4 uptake. Although, the
graphene sheets were expected as zero-gap semiconductors, the
results showed the behavior with high similarity to semi-
conductor-like material with an Eg of about 0.32 eV.

81

3.1.2. Graphene-Based Adsorbents (GO and N-GO). After
the initial steps in energy and geometrical optimizations (DFT),
calculations are applied to evaluate the interaction of CH4
molecules with graphene-based adsorbents. The molecular
schematics of optimized structures and HOMO/LUMO
energies of CH4 adsorption on graphene, GO, and N-doped
GO are shown in Figure S2. Graphene structures are modified
by doping oxygen and nitrogen on expanded sites on the
graphene surface. Therefore, N/O functionalities merged in a
simple graphene structure that generated graphene oxide (GO)
and N/O dual-doped graphene (N-GO) (as shown in Figure 5).
The HOMO−LUMO energy gaps for graphene, GO, and N-
GO are achieved in negligible values of 0.04, 0.071, and 0.182

eV, respectively. The energy gaps (Eg) of the following
adsorbents, including nitrogen-, oxygen functionalities, and
graphene, are illustrated in Figure 6. Eg of the nine nitrogen
functional groups, including N-py, N-pyr, N-x, N-q, N-p, and N-
s, mainly exhibited the same Eg within 2.5 eV. On the other hand,
three nitrogen functional groups of N-on, N-ni, and N-t obtained
Eg values 0.88, 1.1, and 0.82 eV. Although, four oxygen
functionalities such as O-II, O-III, O-hy, and O-ep, demon-
strated Eg values of HOMO−LUMO ∼ 2.83, 2.88, 2.83, and
1.47 eV, O-et showed 0.192 eV. The negligible differences in
HOMO−LUMO energy gaps of N-on, N-ni, N-t, and O-et
functional groups can demonstrate high stability. It can describe
the dynamism of π electrons in the aromatic systems that
facilitate the electron transfer that can affect CH4 uptake.

82

Besides, three graphene structures disclosed small HOMO−
LUMO energy gaps (Eg). These values are 0.04, 0.07, and 0.18
eV for graphene, GO, and N/O dual-doped graphene (N-GO),
respectively. The calculations of geometrical and energy-based
specifications (total energy, rms-/Max forces, HOMO−LUMO
energies, etc.) were achieved for the above-mentioned adsorbent
sites. Then, after primary analysis of DFT calculations, the CH4
molecule was applied to each adsorbent to evaluate and achieve
two significant adsorption specifications, such as optimal
adsorption energy (Ead) and distance (Dad) for CH4
physisorption.
3.1.3. CH4 Adsorption on Heteroatoms Functionalities and

Graphene-Based Adsorbents. The adsorption energy (Ead) of
nitrogen/oxygen functionalities and graphene structures
(simple, oxide, N/O-co doped) are illustrated in Figure 7. The
adsorption energies (Ead) of N-functionalities at a distance of
∼2.0 Å achieved −2.28 and −2.44 eV for N-py and N-pyr,
respectively. Also, some nitrogen functional groups between 2.7
and 3.1 Å obtained Ead of −2.0, approximately −2.3, and −3 eV
for (N-on, N-p, N-ni), (N-py, N-Q, N-s); and (N-x and N-t).
Oxygen functionalities absorbed the CH4 molecule at a

distance of 2.8 Å, and the adsorption energies achieved −3.03,
−3.1, −3.26, and −3.43 eV adsorption energies. The adsorption
of CH4 is effectively applied in graphene, GO, and N-GO; the
adsorption energies are equal to −2.43, −3.3, and −4.02 eV,
respectively, to evaluate in-depth enough the DFT calculation.

Figure 6.Comparative results of HOMO/LUMOenergy gaps for CH4 adsorption on (a) nitrogen functionality groups, (b) oxygen functionalities, and
(c) graphene, graphene oxide (GO), and N-doped GO.

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article

https://doi.org/10.1021/acs.iecr.4c02626
Ind. Eng. Chem. Res. 2024, 63, 18940−18956

18949

https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.4c02626/suppl_file/ie4c02626_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.iecr.4c02626/suppl_file/ie4c02626_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig6&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c02626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


3.2. Machine Learning Models for CH4 Adsorption
Prediction. 3.2.1. Primary Statistical Analysis. Analysis of
Variance (ANOVA) is the most well-known primary statistical
analysis used to evaluate the differences in adsorbent efficiency
in CH4 adsorption. Two critical diagnostic tools, the standard
probability plot and the standardized residuals versus fits plot
(see Figure S3). The histogram of standardized residuals versus
frequency can confirm the usual assumption of the residuals for
Ead of CH4 on adsorbents.
The independence of residuals can be examined by systematic

patterns in a standardized residual-order plot (as can be seen in
Figure S3). Then, to classify the adsorbent types, four
comparative statistical methods, such as Tukey, Sidak, Fisher,
and Bonferroni, were applied to sorting all adsorbents in groups
based on their proficiency in CH4 adsorption as shown in Figure
8. Although the mean values were mostly the same, the
classifications of these methods mainly exhibited various classes
of importance for CH4 adsorption. The Pearson correlation
coefficient (PCC) analysis is used to measure the strength and

direction of the linear relationship between all variables, as
shown in Figure 8. It is represented by PCC, denoted as r, which
ranges from −1 to +1. PCC showed a strong linear relation
between CH4 adsorption and DE, RAE, TE, FT, and OS with
0.9, 0.89, −0.47, and 0.3 eV, respectively. These statistical
methods facilitate the ML process that follows primary analysis,
and five ML techniques can be applied to rediscover the
methane adsorption energy. The following section discusses the
ML modeling process with data sizes of 70%/30% for train/test
phases, respectively, in CH4 uptake on carbon-based solid
adsorbents. The predictive accuracies of SVR, DT, MLP, and
KNN are discussed. Moreover, sensitivity levels of adsorption
features are evaluated based on the electronvolt (eV).
3.2.2. CH4 Energy Adsorption Predictions by ML Models.

After the primary statistical analysis, five ML models, including
SVR, MLP, RF, DT, and KNN, were employed to estimate CH4
energy adsorption. Four of these ML schemes that exhibited
optimal predictive performances are illustrated in Figure 9. The
predicted values of CH4 energy adsorption were compared with

Figure 7.CH4 adsorption on (a) pyridinic (N-py), pyrolytic (N-pr), graphitic (N-q), oxidized (N-x), amine primary, -secondary, and -tertiary (N-p, N-
s, and N-t), nitroso (N-ni), and onitroso (N-on); (b) hydroxyl (O-h), carbonyl (O-II), carboxyl (O-III), epoxy (O-x), and ether (O-eth); and (c)
graphene, graphene-oxide, and N/O-dual doped graphene.
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the best-fit line (well-known as a 45-degree line). This
distribution implies the satisfactory predictive performance of
ML models. According to the as-prepared data points in the
training/test stages, well-appropriate agreements have been
achieved between the actual and predicted results of Ead in CH4

adsorption in two train and test steps. MLP and RF models
achieved high accuracy with an R2 of 0.99 compared to SVR and
KNN, which obtained 0.98 and 0.93, respectively. After ML
models′ predictions, as presented in Table 7, the sensitivity
analysis (SA) displays the crucial levels of features such as total
energy, rigid adsorption energy, deformation energy, optimized
structure, and functionalities type (TE, RAE, DE, OS, and FT
respectively) based on the five ML models. The SA approach
applied in ML models indicates that SA-KNN showed high
sensitivity on FT > RAE > and DE with −0.027 to −0.026 eV.
Also, SA-SVR demonstrates the −0.033 eV significant level by
excluding the functionality types (FT) that address the N/O
functionality types for CH4 adsorption. SA-MLP/-RF showed
the importance level of features scaled between −0.025 to 0.025
eV.

3.3. Evaluation of ML Model Feasibility. Performance
assessment is critical to the validation of ML models. In this
study, ML models achieved a high fit on DFT-based predictions
for the adsorption energy of CH4 on various adsorbents. The
predictive feasibility of ML models can be evaluated by the
training size of the data set (TS) in train and test phases. As
illustrated in Table 8, different ratios applied in TS in the 50 to
80% range can ensure reliable evaluations of the ML model’s
performance. The aim of the evaluation of feasibility in ML
models was performed through two preprocessing data
standardizations (Min/Max and Z-score normalization) by
tuning TS at train and test steps.
Also, ML models exhibited an approximately close trend of

RMSE increase by descending the data set size from 80% to 50%
in the training phase. Although the RMSE comparatively
increased by lowering the volume of training size in these ML
models, they indicated that they have notable feasibility in CH4
adsorption energy prediction. Also, the feasibility of the ML
model in Z-score normalization was applied, in which SVR
showed higher predictions than other ML models that changed
from−0.07 to approximately−0.15 eV. The results presented in
this study agree with the literature. In a previous study, RBF-
DFT predicted Ead of HOMO−LUMO in a range of −15.9 to
−17.4 kJ mol−1.21 Nitrogen functionalities such as N-X and N-Q
exhibited appropriate feasibility with ML with accuracies of
∼3.5% and 0.97−0.99 for MAPE and R2, respectively.21 SVR,
RF, MLP, DT, and KNN combined with DFT to evaluate the
rediscovery possibilities in methene Ead on N/O functional
groups with RMSEs of −0.14 to −0.05 and R2 of 0.93 to 0.99.
MLP model′s results are plotted in 3D to evaluate the Ead peaks
based on the N/O functional groups and graphene structures, as
shown in Figure 10. Nitrogen and oxygen functional groups of
N-py, N-x, and O-hy performed −2 to −3 eV by nine runs for
optimizing structure. The visualization of predicted values
demonstrates the peaks of adsorption energy in DFT calculation
with an accuracy of 0.99 for R2 and ∼0.06 of RMSE. Figure 10
shows the total and deformation energies (Etotal and Edef) based
on the N/O heteroatoms functionalities, graphene, graphene
oxide (GO), and N-doped GO. The GO and N-GO
approximately showed approximately −3 to −3.2 eV for Etotal
by MLP model. On the other hand, the other N/O groups
demonstrated accurate predictive results compared to Ead. Also,
N-x achieved the lowest Edef within approximately −3 eV
compared with other adsorbents (as seen in Figure 11).
Therefore, the 3D plots indicate the overall stability of the
CH4 adsorption process; the lower values of total Eads suggest
more stable configurations. Moreover, the higher values of Edef
highlight the structural changes that occur upon adsorption.

Figure 8. Illustration presents (a) the mean comparison results of CH4
energy adsorption by four statistical methods on all N/O functionalities
and graphene-based adsorbents (by using four statistical methods of
Tukey, Sidak, Fisher, and Bonferroni); and (b) Pearson correlation on
variables in CH4 adsorption process.

Figure 9. Predictive performance of ML models in CH4 adsorption on
adsorbent types (graphene, GO, N-GO), nitrogen/oxygen functional
groups; (b) sensitivity analysis of adsorption characteristics; and (c) the
correlation CH4 adsorption features.
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Finally, all energy criteria in the CH4 uptake process are
effectively affected by the type and number of optimized

nitrogen- and oxygen-containing groups and graphene as
adsorbents.

Table 7. ML Model’S Prediction Accuracies and Sensitivity Analysis

Prediction Sensitivity Levels

ML model Accuracy (R2) TE RAE DE OS FT

SVR 0.989 −0.0121 −0.02 0.0286 −0.0241 −0.0331
DT 0.968 −0.021 0.001 −0.015 0.0179 −0.009
MLP 0.998 −0.0168 0.0188 0.0141 −0.0147 −0.0195
RF 0.986 0.0098 0.0259 −0.0035 −0.0246 0.0014
KNN 0.931 0.005 −0.0261 −0.0261 0.0181 −0.0277

Table 8. ML Models Feasibility Evaluation by Tuning Training Size (TS) Based on the RMSE Criteria

80%/20% 70%/30% 60%/40% 50%/50%

Preprocess Method of Data (RMSE) ML model (Ead) Train Test Train Test Train Test Train Test

Min/Max SVR −0.0627 −0.0570 −0.0846 −0.0847 −0.1579 −0.1285 −0.1974 −0.2016
RF −0.0788 −0.0606 −0.0963 −0.0840 −0.1367 −0.1177 −0.2037 −0.2159
MLP −0.0529 −0.0502 −0.1025 −0.0921 −0.1477 −0.1292 −0.1986 −0.1778
DT −0.0954 −0.0729 −0.1324 −0.1740 −0.1536 −0.2096 −0.2109 −0.2233
KNN −0.1362 −0.1549 −0.1505 −0.1746 −0.1617 −0.1495 −0.1911 −0.2673

Z-score normalization SVR −0.0713 −0.0945 −0.0962 −0.1091 −0.1131 −0.1354 −0.1442 −0.1512
RF −0.0513 −0.0609 −0.0642 −0.0785 −0.0913 −0.1120 −0.1598 −0.1839
MLP −0.133 −0.1148 −0.1219 −0.1214 −0.1406 −0.1044 −0.2019 −0.2108
DT −0.091 −0.0787 −0.1120 −0.1089 −0.1851 −0.1721 −0.2266 −0.2683
KNN −0.1018 −0.1329 −0.1370 −0.1564 −0.1472 −0.1597 −0.3421 −0.3290

Figure 10. 3D plots of MLP-predicted CH4 adsorptive properties for (a) adsorption energy, (b) total energy, and (c) deformation energy (based on
the optimized structures, N/O and graphene adsorbents, and three adsorption energies of the CH4 molecule).
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3.4. Adsorbent Screening and Future Outlook. After
DFT and supervised ML models, the Uniform Manifold
Approximation and Projection (UMAP) technique can provide
new insights into the gas adsorption field. The UMAP method
was employed to visualize CH4 uptake by screening and
clustering the adsorbent types of N/O functionalities and
graphene-based structures. UMAP discloses the numerical gaps
and space in the data sets. As shown in Figure 11, UMAP
illustrates the structure of data sets and adsorbent clusters based
on the heteroatom functionalities and graphene structures.
Although the adsorbents are limited to graphene and N/O
functional groups, UMAP facilitated the disentanglement of the
adsorbent structures, enabling a clearer visualization of the
relationships between the heteroatom functional groups and
graphene-based structures in terms of CH4 uptake. Hence, by
combining UMAP with ML models, large data sets can be
explored for advanced adsorbent material, which can lead to the
discovery of new materials with optimal properties for CH4
adsorption. Also, UMAP can reduce the dimensionality of
complex data sets to identify patterns and relationships by
enhancing the predictive accuracies of ML models for material
design.83 Moreover, adsorbents tailored to specific conditions
and requirements can be designed using predictive models
enhanced by UMAP. This can lead to creating materials
optimized for particular applications, such as natural gas storage
or environmental remediation.84

■ CONCLUSION
This study’s methane physisorption performance was synergisti-
cally modeled and rediscovered by DFT and multi-ML
techniques, respectively. Multiple graphene structures and
nitrogen/oxygen functional groups such as pyridinic, pyrolytic,
nitroso, epoxy (O-x), ether (O-eth), etc. were employed for CH4
uptake. N/O functional groups demonstrated −2.21/−5.0 eV
for the LUMO−HOMO energies. Also, energy gaps for
graphene, graphene oxide, and N-GO are achieved at negligible
values of 0.04, 0.071, and 0.182 eV, respectively. The adsorption
energies (Ead) of N/O-functionalities in the distance of ∼2.0 to
3.1 Å groups obtained Ead of approximately −2.0 to −4. eV
adsorption energies. FiveML schemes comparatively performed
highly accurate prediction and rediscovery of CH4 physisorption

by utilizing the multiadsorptive features of optimized adsorbents
with an R2 of 0.99. Also, the sensitivity analysis was applied to
five adsorption features based on the optimized structure of N/
O functionalities and graphene structures. The sensitivity levels
of input features were determined from −0.03 to 0.02 eV.
UMAP rediscovered and screened the functionalities of
graphene as CH4 adsorbents. As a further outlook, multi-ML/
DFT/and UMAP techniques can be employed as a predictive
route to estimate gas physisorption storage for advanced solid
adsorbents such as MXene and polymer/carbon-based
composites.
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