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ABSTRACT: Carbon materials possess active sites and functionalities on the
surface that can attract prominent interest as solid adsorbents for diverse gas
adsorption. This study aimed to predict the optimized methane uptake, adsorption
energy (E,), and adsorbent rediscovery through multitechniques of neural,
regression, classifier ML-DFT, and Uniform Manifold Approximation and
Projection (UMAP). Nitrogen and oxygen (N/O) functionalities and graphene,
graphene oxide (GO), and N-doped GO were applied to the methane storage
medium. Multi-ML algorithms were employed for the adsorption energy of CH,
uptake on (i) N/O functionalities such as pyridinic (N-py), carboxyl (O-II),
oxidized (N-x), hydroxyl (O-h), Nitroso (N-ni), and Amine (primary, secondary,
and tertiary). (ii) The graphene surfaces are decorated with N/O heteroatoms to
construct graphene oxide (GO) and N-doped GO. The DFT calculations were
applied by PW91 and the Dmol® package. N/O-functionalities in the distance of
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~2.0 to 3.1 A groups obtained E,4 of approximately —2.0 to —4 eV. Further, ML models accomplished the forthcoming rediscovery
of CH, physisorption by using the multiadsorptive features of optimized adsorbents with an R* of 0.99. ML-derived sensitivity
analysis approach was applied to specifications such as deformation adsorption energy, N/O functionality type, and optimized
structure. CH, adsorption specifications indicate sensitivity levels of —0.03 to 0.02 eV. The synergetic DFT/ML approaches
distinguished the modeled and rediscovered phases of CH, adsorption on N/O functional groups and graphene structures. UMAP is
employed as a new adsorbent screening approach to play a complementary role in the ML modeling process.

B INTRODUCTION

fuels aimed at developing alternative energy storage and

Methane (CH,) is one of the enchanting green fuels that
includes a high portion of natural gas resources (~90%) with
more affordability compared with gasoline and diesel fuels.' This
principle leads to substantial research that has been prompted by
cost-effectiveness amidst increasing global energy demands.”
The most eflicient thing about CH, is storage under pressure
>200 bar or liquefying at low temperatures within 110 K.
Methane can be substantially stored on porous sorbents under
low pressures from 35 to 65 bar at room temperature.” Thence,
the physical adsorption of CH, demonstrated facile potential for
energy applications, such as sequestering methane from landfill
gases,4 and capturing methane from biogas emissions,” which
can descend greenhouse gas emissions. Moreover, the prevalent
component of biogas, CH,, becomes a potent greenhouse gas
while the organic wastes are untreated in natural conditions;°
that can be directly stored as a clean energy source for vehicles,”
and industrial applications.* Hence, CH, can be regarded as a
sustainable energy solution that has attracted interest in
planning the synthesis of innovative gas-adsorbent materials.
Solid adsorbents are catalysts that can provide solutions for
environmental concerns,”'” and the rapid depletion of fossil

© 2024 American Chemical Society
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conversion systems. "'

Carbon materials such as bioderived carbon,'” porous
carbon,” activated carbon,”” and graphene'* are regarded as
important components in gas storage.'” It can be noted that
efficient storage through adsorption mechanisms makes it usable
on clean and renewable routes.'® Thence, the in-depth
evaluation of physisorption conditions requires understanding
control over CH, molecules. It can prominently improve the
process efficiency in industrial catalysis and petrochemicals in
gas storage.'” The advanced carbon adsorbents have sparked
exploration into storage solutions utilizing materials like
graphite, graphene, and bundles of nanotubes through a
physisorption mechanism.'® This interaction is often charac-
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Figure 1. A review of DFT calculation and ML modeling for CH, adsorption predictions with approaches of (a) Geometry optimization and surface
interaction. Reproduced with permission from ref S1. Copyright 2020 Elsevier. (b) Electrostatic potential maps. Reproduced with permission from ref
52. Copyright 2022 American Chemical Society. (c) Electronic and orbital properties. Reproduced with permission from ref $3. Copyright 2018
Elsevier. (d) Sensitivity analysis. Reproduced with permission from ref 43. Copyright 2021 Elsevier. (e and f) Prediction, optimization, and precision
feasibility, respectively. Reproduced with permission from ref 21. Copyright 2022 American Chemical Society.

terized by weak van der Waals forces that, due to the mechanism,
allow methane molecules to attach to surfaces without forming
chemical bonds."” The functionalized carbon materials stand
out as excellent candidates for selective adsorption of multigases
such as CH,/CO, Nitrogen/oxygen-based (N/O) function-
alities (such as pyridinic, graphitic, amine/carboxyl, carbonyl,
and hydroxyl) make the carbon surface heterogeneous by the
artificial and green-self-doping processes in the carbon matrix of
nanostructures.”’ It can usefully raise adsorption enthalpy by
boosting the energy-level of the neutral graphene surface.”' N/O
functions can effectively operate as active sites for CH,
adsorption,”” which affects the surface interacts with methane
molecules, changing its chemical reactivity and attraction toward
them. The dynamics of z-electrons can create temporary
electron clouds that can stabilize methane on the functionalized
carbon surface by creating localized charges.*

As a further point of view, the functionalized porous carbon
materials have a prominent potential to be employed in gas
storage, mainly CH,, including the amine groups (amine-
primary, amine-secondary, amine-tertiary) ,7*%% nitroso (N-ni)
and onitroso (N-on),”® nitrogen-pyridinic, and pyrolytic,”’
graphitic,”® ™" and oxidation process.”’ Nitrogen functionalities
can contribute to electronic states on carbon matric around the
Fermi level.”> These nitrogen functionalities can enhance
extended adsorption sites and the electron density on graphene
for methane as nonpolar molecule.”” Besides, the oxygen
functionalities such as carboxyl and hydroxyl can promote the
adsorption sites for the internal structure of graphene.” In the
context of carbon-based materials functionalized with amine
groups, a previous study examined the grafting of primary to

18941

tertiary amines onto SBA-15 to investigate their influence on
CO,/CH, adsorption, exploring factors affecting the process.’
At a temperature of 25 °C, the results demonstrated that
secondary and tertiary amines with an amine density of 1.6—1.7
mmol g~ exhibited a CH, uptake equivalent to <0.04 mmol g™".
Conversely, the primary amines adsorbed 0.05 mmol g/,
suggesting more vital interaction forces with CH,. In another
research, 19 graphene nanoflakes (GNFs) were evaluated, each
featuring two amines positioned at different locations on the
zigzag and armchair corners.'””* The results demonstrate a
modification in CH, uptake when two isolated amines were
positioned on two zigzag edges (P4-Z2Z2). Meanwhile, two
adjacent amines were placed on a corner and a zigzag edge (P1—
C1Z1). As an alternative investigation, the functional groups
showed that CH, adsorption decreased, attributed to the decline
in C=C, —OH, C=0, and —CH, contents in porous carbon;
in which the gas adsorption potential follows the order: C=C >
-OH > C=0 > —CH,.** Although microporous carbon
materials can affect the nonchemical reactions of the
physisorption mechanism, the functionalities can promote the
active sites for CH, uptake. Mahmoudian et al. indicated that
methane adsorption capacity had no notable impact despite
having ultrahigh specific surface area values exceeding (3000 m*
g~ "). Thence, the appraisement of chemical specifications in the
carbon solid adsorbents and graphene is a crucial nonstructural
assessment within CH, physisorption.””

Density functional theory (DFT) can determine an
incommutable position in the research of molecule adsorption
behavior and different adsorption energies (E,q) of adsorbents’
sites. The gas adsorption behavior is significantly affected by the

https://doi.org/10.1021/acs.iecr.4c02626
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energy levels of their electronic structure, which are determined
by the Highest Occupied Molecular Orbital (HOMO) and
Lowest Unoccupied Molecular Orbital (LUMO).?” The frontier
molecular orbitals in graphene-based materials play a crucial role
in determining the degree of interaction between gas molecules
and the outermost layer of the adsorbent.”® The adsorption
features of CH, physisorption to fulfill application requirements
mandate a thorough understanding of the interplay between the
HOMO-LUMO energies and the energy gap. Besides, the
molecular interactions of CH, molecules with heteroatoms (e.g.,
nitrogen and oxygen) can be helpful for graphene or N/O doped
graphene surfaces.” In other words, the physisorption of
methane onto graphene surfaces is a multifaceted phenomenon
governed by intricate interactions between the methane
molecules and the graphene lattice,"’ as well as the presence
of various functionalities sites that modify the surface proper-
ties."' As another alternative approach, when delving into the
impact of defects on graphitic substrates, Dutta et al.”” employed
van der Waals-corrected DFT to explore the potential for
engineering the morphology of sp” carbon substrates to enhance
gas uptake and separation, focusing specifically on CO,/CH,
binding.42

Their findings illustrated a significant disparity in the
adsorption of CO, and CH,, particularly on folded graphene
sheets and concave curvatures, suggesting the potential utility of
this phenomenon for CH,/CO, flow separation. The electric
field (EF) is an important factor for methane storage materials’
adsorption/desorption performance. Han et al. evaluated
oxygen-rich graphene, such as hydroxylated-/carboxylated
graphenes (GO—OH and GO—COOH, respectively), via
DFT calculation. The adsorptive properties of oxygen groups
such as —COOH and —OH improved CH, uptake.” Moreover,
methane oxidation involves the incorporation of metal dopants.
A previous study highlighted the effectiveness of platinum
doping onto carbon nanoparticles, specifically with Pt loading
(at 10 wt %) as a catalyst for the selective aerobic oxidation of
methane to produce formaldehyde.*® These Pt-supported
carbon nanoparticles offer a notable advantage due to their
high platinum dispersion combined with low reactivity toward
the reaction product, formaldehyde. In another study, excep-
tional active and durable platinum—nickel hydroxide-graphene
(Pt/Ni(OH),/rGO) ternary hybrids were successfully pre-
pared.”” These hybrids feature small-sized Pt nanocrystals
intimately integrated with highly defective Ni(OH), nanostruc-
tures, all supported on conductive rGO nanosheets. The
physiosorbed methane molecule on the graphene sheet has
enhanced adsorption energy with a high number of carbon
atoms, and the values are —0.184 and —0.185 eV (pristine
graphene) and —0.188 and —0.191 eV (defective graphene).48
According to Kandagal et al,* selective functionalization for
specific graphene surface spots significantly increases the
localized adsorption index. This suggests a potential approach
to customizing materials with increased methane storage
capacity. Seema et al.>® found that at 1 bar and 0 °C, sulfur-
doped reduced graphene oxide had a low methane adsorption
capacity of just 0.75 mmol g . The synthesized material showed
an adsorption capacity at low partial pressures of P/Py = 0.2, with
an adsorption value of 1.82 mmol g

In the new decade, machine learning (ML) is the most
applicable artificial intelligence (AI) tool for multidisciplinary
gaseous studies, such as CH,,”* C0,,>**® and CH,/CO,"
adsorption properties. The most recent ML and DFT
approaches in the gas adsorption fields are illustrated in Figure

1. In a stream of alternative research, Meng et al. used an artificial
neural network (ANN) model to predict the CH, adsorption
behavior of CO,/CH, on anthracite and bituminous coals at
different temperatures (35, 45, and 55 °C). Also, the conditional
features, such as pressure and solid carbon-based sorbent, are
ranked in absolute and actual adsorption amounts. The ANN
model obtained predictive accuracies from ~0.98 to 0.99 of R”.
The lone pair electrons in heteroatom functionalities,
specifically nitrogen and oxygen electrons, strongly attract
attention to gas capture. Rahimi et al. applied the radial basis
function-neural network (RBF-NN) on N/O dual-doped
porous carbon materials for CO, uptake predictions. The
RBF-NN estimated the performance of CO, uptake based on
the microstructural and nitrogen groups under pressures ranging
from 0.15, 0.6, and 1 bar at 298 and 273 K (room and cryogenic
temperatures). The ML algorithm achieved the lowest mean
absolute percent error <3.5% by determining the CO, capture
with 0.97 to 0.99 of R%~*' The literature review of ML and DFT
data-driven techniques’ applications within gas adsorption is
provided in Table 1. Further, the presence of N-nitroso and
-onitroso groups introduces polar components that improve the
adsorptive feature of carbon materials by facilitating dipole—
induced dipole interactions.”” Oxygen functionalities, such as
epoxy and ether groups, affect the surface polarity. It modifies
the electronic structure of graphene carboxyl groups, which have
the ability to establish hydrogen bonds with methane molecules,
resulting in increased adsorption stability.”® Uniform Manifold
Approximation and Projection (UMAP) is a novel dimension
reduction technique that attracted significant attention for its
ability to preserve the structure of data sets and material
screening. Daun et al. applied UMAP to visualize 10% of a
random sample of thousands of hypothetical complexes.™ Also,
UMAP can be used to create a low-dimensional data source that
is suitable for clustering. Baird et al. utilized the algorithm of
DensMAP to directly achieve density estimations within the
dimensionality reduction step.*’

This study aimed to use multiple ML algorithms, DFT, and
UMAP techniques for CH, adsorption to construct DFT-based
ML workflows. DFT evaluates the comprehensive N/O
functionalities with ML models to predict the adsorption
energies for CH, uptake. In the meantime, much experimental
research has been conducted on the effects of various
heteroatoms on the physisorption of methane, including
nitrogen.61 Also, according to the above-mentioned literature,
the ML technique is applied chiefly based on microstructural
and conditional features. Although recent data-driven ML works
could predict gas uptake, ML has not yet been used for the
following:

i. Single heteroatom functionalities combined with gra-
phene and GO as solid CH, adsorbents.

ii. DFT-based ML optimizes the adsorption energies based
on the 14 N/O functionalities and three graphene
structures.

ili. Sensitivity levels of adsorptive/chemical features such as
functional group types and deformation energy CH,
uptake.

iv. Three classes of neural, regression, and classifier ML
algorithms applied for CH, adsorption.

v. UMAP visualized the adsorbent types by screening the
data sets of adsorbents.

The contributions lie in evaluating the in-operando perform-
ance of N/O functionalities on graphene, which can significantly

https://doi.org/10.1021/acs.iecr.4c02626
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Table 1. Recent Literature on ML Applications Using the Data-Driven Technique in Gas Adsorption

Ref

Process and Achievements

Approach

43

2

RF exhibited a higher importance level on microstructural surfaces than pore volumes with an
estimation accuracy of 0.99 R”.

surface area, etc.) and operational features (temperature and pressure) to evaluate the CO,/CH, selectivity uptake

ML models were constructed based on 1774 data points containing microstructural (micro/mesopore volume,
on porous carbon.

44

CO,/CH, adsorbed on three types of coal was analyzed using the ANN model’s temperature, pressure, and coal rank  ANN model with 15 neurons/tanh function used features such as pressure, porosity, liptinite,

and 0.05 to ~0.065 scores with 0.97—0.99 of R%.

ML-DFT model predicted CO, uptake on N/O rich functional porous carbon by the GA algorithm with RBF and RBF-DFT optimized E,q of HOMO—LUMO. E,, is achieved in a range of —15.9 to —17.4 kJ mol™".

vitrinite, and R-max ranked 0.72, 0.09,

descriptors.

21

range of

2

N-X and N-Q showed importance on gas uptake with accuracies ~3.5% of MAPE and R

0.97—0.99.
GGA and PBE functional utilized to describe electron exchange-correlation

DEFT calculation techniques at 273 and 293 K under 0.15 to 1 bar.

45

DFT calculation was employed on methane storage performance on GO, which was decorated with oxygen

functionalities such as GO-OH/-COOH/-COC.

DFT+ML calculated N/O functionalities

This

Five ML models performed highly accurate predictions with R* of 0.93 to 0.99.

groups and graphene-derived adsorbents to estimate CH, adsorption

work

ied to evaluate the feasibility of ML modeling for methene E,4 rediscovery.

energy (E,q). Five ML models were appl;

“ANN

hydroxylated, carboxylated, and epoxy-modified

Perdew—Burke—Ernzerhof (PBE); GO—OH/-COOH/-COC

Generalized gradient approximation; PBE =

Artificial neural network; GGA

= Genetic algorithm.

graphene oxide; GA

influence methane adsorption. Hence, solid adsorbent struc-
tures were established to assess the performance of CH,
physisorption. The contributions of methane storage on solid
adsorbents can be pointed out below:

e Calculate the adsorption energies of CH, molecules on
various graphene structures such as graphene, graphene
oxide (GO), N-doped GO, and heteroatom functionali-
ties.

e Assessments of CH, uptake’s feasibility on comprehen-
sive N/O functional groups (such as hydroxyl, carbonyl,
carboxyl, epoxy, ether; and pyridinic, pyrolytic, graphitic,
oxidized, amine primary, secondary, and tertiary, nitroso
and onitroso, respectively.)

o Synergistical DFT-based ML and UMAP approaches to
model and rediscovery of CH, adsorption and adsorbents.

Hence, DFT-based ML was applied to 150 data sets by using
algorithms such as support vector regressor (SVR), Decision
Tree Regressor (DT), Multilayer Perceptron (MLP), and k-
nearest neighbors (KNN) for an in-depth study of CH,, uptake.
DFT-ML can usefully disclose the adsorptive behavior of
heteroatom-functionalized graphene structure interactions with
methane at the molecular level. Moreover, ML techniques
include the independent variables such as the optimized
geometries of adsorbents and N/O functional group types
(OS and FT, respectively) for predicting the energy absorption
of methane as provided in the Material and Methods section.
Further, UMAP analysis disclosed a high potential for
discovering complex materials. Although DFT-ML can enhance
the fundamental understanding of gas adsorption phenomena, it
also facilitates the systematic modification of graphene-based
adsorbents for higher gas storage and separation applications.

B MATERIALS AND METHODS

2.1. Structures and Principle Calculations. This study
applied DFT calculations to CH, adsorption on multiple
adsorbents and continued with ML techniques to rediscover
CH, energy adsorption, as illustrated in Figure 2. Structures of
graphene sheets and N/O heteroatom functionalities are
designed to depict the configuration of solid adsorbents,
where each sheet has a length of 20 A along the x and y
directions. Each single-graphene sheet and heteroatom
functionalities were performed to evaluate how active sites on
graphene oxide or N/O-dual doped graphene can affect the CH,,
adsorption. Specifically, the combined molecular dynamics
simulation assisted with machine learning techniques is
established to evaluate the feasibility of multifunctional groups
and graphenes for methane adsorption. Therefore, 14 nitrogen
and oxygen functionalities and three graphene structures are
assumed to include sites in the carbon matrix, as presented in
Table 2. The nitrogen functional groups are (i). pyridinic (N-
py), (ii). pyrrolytic (N-pyr), (iii). graphitic (N-q), (iv). oxidized
(N-x), v, vi, and vii). amine primary, -secondary, and -tertiary
(N-p, N-s, and N-t), viii, and ix). nitroso (N-ni), and onitroso
(N-on). On the other hand, oxygen functional groups consist of
five functionalities: hydroxyl (O-h), carbonyl (O—II), carboxyl
(O-III), epoxy (O-x), and ether (O-eth).

2.2. DFT Calculation. A DFT calculation procedure was
employed to provide molecular-based insights into the
adsorption mechanism before the optimization process of the
ML technique. These calculations were proceeded bg using the
Gaussian code in Materials Studio package 2017.°> PW91 is
considered as generalized gradient approximation (GGA)

https://doi.org/10.1021/acs.iecr.4c02626
Ind. Eng. Chem. Res. 2024, 63, 18940—18956
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Figure 2. Schematic illustration of the modeling of multiprocesses of CH, adsorption on solid adsorbents with (a) structure design of nine/five/three
nitrogen-, oxygen functional groups, and graphene sheets (simple, oxide, and N/O-dual doped), (b) DFT calculations, and (c) achievements of DFT
by combining with five ML techniques for rediscovery of CH, adsorption energies.

Table 2. Optimized Hyperparameters of ML Models

Nitrogen functionalities Oxygen
site Symbol functionalities site ~ Symbol

Pyridinic* N-py Hydroxyl O-h
Pyrolytic N-pyr Carbonyl O-II
Graphitic N-q Carboxyl O-III
Oxidized N-x Epoxy O-x
Amine primary, secondary, N-p, N-s,and  Ether O-eth

tertiary N-t
Nitroso N-ni Graphene oxide GO
Onitroso N-on N/O-dual doped N-GO

graphene

functional with the low computational cost to describe the
electronic structure of heteroatoms functionalities, graphene,
graphene oxide (GO), N-doped GO. On the other hand, as this
approach merged with ML techniques, the low-cost functional
in DFT calculations which adopted to rediscover the methane
adsorption on graphene.

18944

The geometry optimizations of CH,, N/O functional groups,
and graphene with the adsorption energy (E,q4) calculations
related to the best stable geometries were accomplished based
on the B3LYP functional. The real-space cutoff was 5.0 A. The
E,4 of CH, molecule on N-doped graphene oxide (N-GO) as
adsorbent was calculated using the following eq 1:

Eads = Esorbent+CH4 - (Esorbent + ECH4) (1)

Where E pene:crs Shows the total energy of the carbon-based
sorbent/CH, adsorbate configuration. E ., and Ecpy
represent the energy of adsorbents such as GO and N-GO
with adsorbate (CH, molecule), respectively. It can be noted
that the E_4 value was negatively achieved, which addressed the
exothermic adsorption process. Meanwhile, the higher amounts
of E g4 indicate a desirable interaction between the sorbent and
CH, adsorbate.

The details of the DFT calculation tuning parameters are
presented in Table 3. Moreover, DFT primary calculations, as
provided in Figure 2, GGA (generalized gradient approxima-
tion) combined with the PAW technique by implementing in
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Table 3. Tuning Parameters of the DFT Calculation for
Methane Adsorption

Parameters of DFT for CH, Value
Convergence limit 5.0e™*
Maximum iteration 50
Energy 2 %X 107° Ha
Force 0.5 keal mol™!

Displacement convergence Sx107°A

Materials Studio.> Moreover, the Perdew Burke Ernzerhof
(PBE) function and Hellmann—Feynman force convergence
criterion can define the exchange-correlation energy based on
the energy convergence criterion to 1 X 10 SeVand 5 x 102
eVA™, respectively. The deformation charge density (p4.) can
be calculated by Equation 2 as below:**

pd = padsorbed state pgraphene - pgas molecules (2)

where the p,4mbed state Presents the charge density of the
configuration of graphene-absorbed gas, and the pgphene and
Pgas molecules are the charge density of isolated graphene and gas
molecules, respectively. The optimized E,4 and HOMO-—
LUMO energy gaps were evaluated along with multi-ML
techniques merged with five adsorption parameters of CH,,
which were the total energy (TE), rigid adsorption energy
(RAE), deformation energy (DE), optimized structure (OS)
and functionalities type (FT), to predict the adsorption energy
of CH,. The adsorptive independent variables, such as TE, RAE,
and DE are DFT-based features after 15 simulation runs. FT and
OS are classification variables (as non-numeric input) that
indicate the N/O functionalities and optimized graphene
structures used to predict the CH, uptake. In the next section,
the details of the ML process for CH, adsorption are discussed.

2.3. Machine Learning (ML) workflows. Machine
learning (ML) models comprehensively can be divided into
four categories: supervised, unsupervised-, semisupervised-, and
reinforcement learning, as illustrated in Figure 3. The
comparative abilities of each class are provided in Table 4,%°
which each class includes a particular procedure and specified
area for modeling. Supervised learning utilizes a labeled data set

Table 4. Comparative ML Classes’ Predictive Performance

Class Performance
Supervised o Labeled data set using in training set (x, y).
learning ® Optimal model is selected based on the training phase.
o Applying the trained mapping procedure on unknown
data sets.
Unsupervised ® Data is unknown, and data sets are not labeled.
learning ® Training step consist of input and output x and y that are
known/unknown.
o Data sets of samples need to be sorted based on
similarity.
Semisupervised o Structured by combining supervised- and unsupervised
learning learning.
o Raw data points consist of labeled/nonlabeled data to
create the pattern.
Reinforcement ® Learning process based on trial and error.
learning ® Permits learning to do the map situations based on the

environment.

® Operates by rewarding/punishing sign interaction with
the environment.

known as the training set (%, y). According to the existing
training set, the optimal model was obtained via training and
continued by applying the obtained mapping to unknown
independent variables to achieve the dependent ones.
Supervised learning consists of various ML algorithms such as
neural (MLP), regression (SVR, DT, and RF), and classifier-
based (KNNs) algorithms. A set of supervised ML models was
applied to predict the E4 of methane on graphene and
heteroatoms functionalities. This study applies ML approaches
such as SVR, RF, DT, MLP, and KNN, and the optimized
hyperparameters of these ML models are provided (section 2.4).
All are merged with DFT calculation processes by considering
the methane adsorption energy as y or the predictive target.
Notably, the prepared data sets were systematically partitioned
into 50 to 80% ratio range to facilitate the training and testing
phases of the ML procedure. Before the ML model application,
the min-max normalizations were implemented as a preprocess-
ing step of the data sets. Furthermore, a cross-validation with 5-
fold on the training set was a;)plied for model selection and
hyperparameter optimization.'” Afterward, the optimal model
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(MLP)

Random forest (RF)

Supervised

Decision tree (DT)

Support vector regressor
(SVR)

K-nearest neighbors

(KNN)

Reinforcement

! Temporal F
| difference learning i

/E Self training algorithm ;

_____________________________ &

Semi-supervised

Semi-supervised
support vector
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Machine A
Learning
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e,
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Fig 3. The classification of machine learning models.

Figure 3. Classification of machine learning models.
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was retrained on the entire training set, and the resultant
evaluation metrics were obtained for both the train and test sets.
The ideal training/test phases’ size selection was applied based
on the portions 70/30% of the total ~150 data sets of CH,
adsorption in all (17 types of adsorbents such as N/O
functionalities and graphene-based structures). Although ML
techniques are feasible with a quantitative input set, qualitative
inputs can bring novelty for the ML modeling process. The two
input features of FT and OS are nonquantitative variables (as
classification ones) applied in the ML modeling process to
predict the CH, adsorption energy.

2.4. ML Algorithms. ML algorithms work based on their
respective hyperparameters that need to be optimized to achieve
ideal targets, while the challenge is that the default settings of
hyperparameters are inadequate to ensure the ideal performance
of ML methods.”® Thus, determining the optimal hyper-
parameters is critical for ML schemes, as illustrated in Table S.

Table 5. Optimized Hyperparameters of Five ML Models®®

Model name Hyperparameters

Support Vector C =100, Gamma = 0.1

Regressor (SVR)

Random Forest (RF)® Max depth (MD) = 21; Min samples leaf (MSL) = 1;
Max features (MF) = 0.26

Number of estimators (NE) = 175
Multilayer Perceptron  Hidden layers = (100, 100, 100); Activation = tanh;

(MLP) Early stopping = True
Decision Tree (DT)  Max depth = 20
K-Nearest Neighbors ~ Weights = distance

(KNNs)
“NE = 10—1000, MF = 0—20, MSL= 1, MD = 5-500.

Principally, two techniques of hyperparameter tuning can be
utilized in this study, which are explained below:

i. Trial-and-error: It is a straightforward procedure to tune
the hyperparameters of ML algorithms. Using this
approach, different hyperparameters can be manually
tested, and those presenting the ideal result, or the most
negligible error can be chosen for the ML algorithm. For
example, four vital tuning parameters in the RF model’s
structure, namely, Max depth, Min samples leaf, Max
features, and Number of estimators, were optimized using
the trial-and-error approach.**®’

ii. Random search (RS): This technique can tune the
hyperparameter so that the defined hyperparameters are
merged in any criteria or by any order. The tuning process
of four ML methods of SVR, MLP, DT, and KNNs was
conducted using the RS technique.69 In the next section,
all ML algorithms specifications are discussed and
comparatively evaluated based on their computational
neural, regression, and classifier classes.

2.4.1. Neural-Based MLP. A Multilayer Perceptron (MLP),
also referred to as MLP-neural networks (MLP-NNs), is
structured as a feed-forward neural network with one input
layer, one output layer, and multiple hidden layers.”” The
number of neurons in the input and output layers is determined
by the data set’s input and output vectors, while the hidden
layers are established through random search. MLP can model
the classification and regression for complex nonlinear relation-
ships. Although it can generalize well to unseen data, it is difficult
to interpret how they reach their decisions.”" Each layer consists
of neurons connected to neurons in the adjacent layer with
specific weights, which are often initialized randomly.”>”* Table
6 presents the comparative specifications of multineural,
regression, and classifier-based ML algorithms. All of the ML
algorithms, specifically MLP, are employed to predict the
specific feature of CH, adsorption (E,q,), in which the input

Table 6. Comparative Equations and Performances of ML Algorithms

ML
algorithm

MLP - f(g) =

1+e7¢

Equation

o
rldW

— 1% 4 a(U(n) - U(n - 1))

W+ 1) =W(n) — +a(W(n) — W(n — 1))

Un+1) =U()

Performance

o Neurons' sizes in both input/output layers are specified based on the
input and output vectors in data sets.

o Hidden/output layers create predictions depending on the weighted
input’s neuron.

n = the training iterations’ value; a = the momentum factor; E & # = the error

and the learning rate
SVR flx) = Z:‘zl (o = “i*)K(xir x) +b
K(xyx) = (1 + x{x)!, p=2,3
K(x, x) = exp(—ylx; — «*)
K(x,x) = kernel function; a;, a;* = the Lagrange multipliers
RF H(x) = argmax Yt = 11(h(x) = y

) = 5 Xy pep [H(x) # 3)

I(X) = %Zf OOBerr,; — OOBerr,

e Error-insensitive zone size (&) and the regularization parameter are
pivotal elements.

® Gaussian kernel function is accomplished so that a trial-and-error
approach can determine the parameters.

o Training set can show the trained data sets for tree h,, and H*® indicates
the OOB approximation for sample .

® The randomness-level of the RF algorithm can be controlled by the K
parameter, which is defined as k = log,d.

® Each «; variable might be scrambled by shuffle to specify the feature
relevance.

x; = transferred ith feature; OOBerr,i = model’s error of the shuffled OOB;

OOBerr, = noninfluenced OOB data samples
DT p(clx) = 1DY i = 1Dpi(clx)
p(clx) = The probability of class ¢ (when x is known)
KNN
;)

Predictive weight = an: L (Wytx)
i=1%ij

n = the number of training samples; y,* = the true value of the ith training

sample

o Capable of conducting out both continuous and discrete data sets.
o It is highly feasible to select the optimal discriminatory features.
o Easily applied to data sets with classification purposes.

o Different test samples can be predicted with an extended range of nearest

neighbors.

® k nearest neighbors of test data employed to predict its class label with
the majority rule.
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Figure 4. Schemes of (a) the MLP and (b) the RF algorithms are used to predict the CH, adsorption mechanism.

layers consist of five inputs: TE, RAE, DE, OS, and N/O-FT. as
shown in Figure 4. The hidden layers are composed of neurons
denoted as S}, S,, S, .., and S, while E_4 constitute the output
layer. This study’s configuration includes inputs (the data set for
CH, adsorption on N/O functional groups and graphene), the
hidden layer, and the output (E,g,).

2.4.2. Regression-Based SVR, RF, and DT. Random forest
(RF) is a classifier/regression ensemble technique that makes
predictions by collecting decisions with trees. As the word
“forest” shows, many decision trees (DT) are included in the RF
model, which is used as the ultimate decision-maker (as
illustrated in Figure 4). In the RF algorithm, the random
sampling method is regarded as bagging in which one-third of
the data sets can be excluded for training in the subtree. RF can
build multiple decision trees by preventing overfitting with large
data sets and high-dimensional spaces. Noteworthy, it may have
high computational cost with many trees with less interpret-
ability.”*

Decision tree (DT) algorithm is originally rule-based and
binary-tree building technique,”*’* can find the best split that
presents the ideal prediction with low error, which is the ML
algorithm’s goal in supervised learning.” Like other neural-
network-based ML models, it employs a supervised learning
approach grounded in statistical learning theory. DT can
introduce clear, interpretable models in fast, and low-cost
processes. This algorithm works based on the learned splits; the
predictions are unstable with different generated trees.

The primary objective of the SVR model is to identify a
function, f(x), for the training data set (x;, y;)... (x; y,), to attain
the optimal bias (€). SVR can usefully perform with small data
sets, with high resistance to the outliers’ influence. On the other
hand, it requires to be tuned by parameters such as the
regularization term (C) and gamma.77 The comparative
performances of regression-based ML algorithms are listed in
Table 6.

2.4.3. Classification-Based KNN. In our work, the KNN
algorithm is applied to obtain the correlation coefficient matrix
Wi then, it obtains an ideal value of k for each test sample. Then,
we employed the selected k to conduct KNN algorithm for
different data sets with various inputs. As an instance-based
method, k-NN can predict based on the closest data points in the
feature space, which can be determined by a specified number of
k of nearest neighbors.78 Thence, KNN is feasible with small
data sets along with fast training processes with a simple decision

boundary. It requires feature scaling, such as normalization and
standardization.

2.5. Data Preprocessing. According to the different types
of data values, two standardization preprocessing techniques
data sets: i. Min-max normalization and ii. Conventional
normalization was applied before the ML modeling process.
Min-max standardization is the most common procedure that
can be employed in variables (v) included in data sets as data
preprocessing. This method scales the data to a fixed range,
typically [—1, 1], that can be defined with Equation 3 as follows:

YV — Vnin
Vmax ~ Ymin (3)

where v and v, indicate the original value of the variable and
normalized independent and dependent variable values. v,
and v, represent the maximum and minimum values of the
concerned variable, respectively. Conventional normalization,
well-known as Z-score normalization, can be applied to data for
standardization in the range of [0, 1]. The process of
normalization can be conducted by the linear data sets mapping
over a rigid range in which the value of v is stated as Equation
4:

vy, =— X (rmax - rmin) * Tin
Ymax ~ Ymin (4)
fmin and 7. stand for the desired values of the transformed
variable range.

2.6. Primary Statistical Analysis. As a primary analytical
procedure, the adsorptive DFT features were evaluated through
the Pearson correlation coefficient (PCC). In other words, the
correlation coefficient index measured the linear dependence
between the input variables and the adsorption energy of CH,.
PCC evaluated the collinearity value of two variables and the
related linear correlations, which can be determined by Equation
S:

o TG TELG-D)
NG YN U BN YN U 8 s)

where v and t represent the adsorption input variable and target
(or adsorption energy of CH,); meanwhile 7, and ¥ indicate the
mean values. Thus, eq 5 varies between —1 and 1 for the linear
conversion of two variables. Hence: p,, = —1, 0, and 1
demonstrate that v and t have entirely negative, obscure, and
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nitroso (N-ni) and -onitroso (N-on))

positive correlations, respectively. Also, the significant levels can
be calculated as shown in eq 6:

S:b
Tﬁ

|
IS

1 =p, (6)

The p-value is achieved based on degrees of freedom (N-2), and
“t” distribution. PCC can disclose the influence of inputs on the
target (output), and thus, nonsignificant linear correlations can
be deleted from the ML model process. Moreover, high
collinearity of two variables may be observed, and the sensitivity
observation can ascertain the specified impact on the target.
Thenceforth, the DFT-based variables were utilized to train and
test ML models to predict CH, adsorption energy performance.

2.7. The Accuracy Criteria. Two performance criteria,
including R* and Root MSE (RMSE), were used to evaluate ML
prediction accuracies for CH, adsorption energy (E,;)
predictions, which are defined as follows:

N N
1 1 (7)

N

M IE - EF|/(N-1)

r=1 (8)
where E, and E,, are the actual and predicted values, and Er shows
the average of the real values. R* and RMSE values close to 1 and
0, respectively, indicate that the model provides accurate
predictions with reliable estimation errors.””

RMSE =

B RESULTS AND DISCUSSION

3.1. DFT Calculation. 3.7.1. Nitrogen and Oxygen
Functional Groups (N/O-x) Adsorbents. Geometry optimiza-
tion was applied to N/O functional groups and graphene
structures as the primary task for the DFT calculation. PBE
function estimated rms and max force in legible ranges with
values 0 to 0.1, proving the high accuracy of the initial step of
DEFT calculations. As illustrated in Figure S, three parameters are
included in the optimization procedure: total energy, rms force,
and max force. The total energy suggests differences in the
stability and electronic properties of the nitrogen functional
groups. Typically, the total energy is influenced by the electronic
structure and the interaction between the functional groups and
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Figure 6. Comparative results of HOMO/LUMO energy gaps for CH, adsorption on (a) nitrogen functionality groups, (b) oxygen functionalities, and

(c) graphene, graphene oxide (GO), and N-doped GO.

the graphene sheet.”” All nitrogen functional group sites,

excluding graphitic (N-q), demonstrated total energies of ~24
eV (pyridinic, pyrolytic, graphitic, oxidized) and ~27 eV (amine
primary, -secondary, and -tertiary, nitroso, and onitroso). The
geometry optimization procedure using DFT effectively
established atoms of the molecular structures to take the most
stable carbon matrix with the lowest possible ground state
energy. Moreover, calculating the HOMO—-LUMO energies
provides insights into the electronic properties and reactivity of
the nitrogen functionalities.”' The energy trend from N-py
increased from —2.65 to —2.05 eV in N-pyr, and it approximately
continued for N-x and N-q in a stable trend of —2.73 and —2.58
eV. Comparatively, two nitrogen groups, N-ni and N-on, showed
the lowest values, resulting from small HOMO—LUMO energy
gaps. Also, the oxygen functionalities demonstrated the same
values of total energies between 24 and 27 eV. The optimized
structures of oxygen functional groups and the HOMO/LUMO
energies of CH, uptake on O-functionalities are provided in
Supporting Information (SI) Figure S1. The oxygen functional
groups demonstrated —2.21/—5.0 eV, —2.37/—5.24 eV, —2.33/
—5.16 eV, —3.59/—5.06 eV, and —3.2/—3.38 eV for LUMO—
HOMO energies. To address the CH,, adsorption, Osouleddini,
and Rastegar presented the importance of energy gap (E,) in
infinite graphene adsorbent for CH, uptake. Although, the
graphene sheets were expected as zero-gap semiconductors, the
results showed the behavior with high similarity to semi-
conductor-like material with an E, of about 0.32 eV."'

3.1.2. Graphene-Based Adsor?)ents (GO and N-GO). After
the initial steps in energy and geometrical optimizations (DFT),
calculations are applied to evaluate the interaction of CH,
molecules with graphene-based adsorbents. The molecular
schematics of optimized structures and HOMO/LUMO
energies of CH, adsorption on graphene, GO, and N-doped
GO are shown in Figure S2. Graphene structures are modified
by doping oxygen and nitrogen on expanded sites on the
graphene surface. Therefore, N/O functionalities merged in a
simple graphene structure that generated graphene oxide (GO)
and N/O dual-doped graphene (N-GO) (as shown in Figure S).
The HOMO—LUMO energy gaps for graphene, GO, and N-
GO are achieved in negligible values of 0.04, 0.071, and 0.182

18949

eV, respectively. The energy gaps (E,) of the following
adsorbents, including nitrogen-, oxygen functionalities, and
graphene, are illustrated in Figure 6. E; of the nine nitrogen
functional groups, including N-py, N-pyr, N-x, N-q, N-p, and N-
s, mainly exhibited the same E, within 2.5 eV. On the other hand,
three nitrogen functional groups of N-on, N-ni, and N-t obtained
E, values 0.88, 1.1, and 0.82 eV. Although, four oxygen
functionalities such as O-II, O-III, O-hy, and O-ep, demon-
strated E; values of HOMO—-LUMO ~ 2.83, 2.88, 2.83, and
1.47 eV, O-et showed 0.192 eV. The negligible differences in
HOMO-LUMO energy gaps of N-on, N-ni, N-t, and O-et
functional groups can demonstrate high stability. It can describe
the dynamism of 7z electrons in the aromatic systems that
facilitate the electron transfer that can affect CH, uptake.®

Besides, three graphene structures disclosed small HOMO—
LUMO energy gaps (E,). These values are 0.04, 0.07, and 0.18
eV for graphene, GO, and N/O dual-doped graphene (N-GO),
respectively. The calculations of geometrical and energy-based
specifications (total energy, rms-/Max forces, HOMO—-LUMO
energies, etc.) were achieved for the above-mentioned adsorbent
sites. Then, after primary analysis of DFT calculations, the CH,,
molecule was applied to each adsorbent to evaluate and achieve
two significant adsorption specifications, such as optimal
adsorption energy (E,q) and distance (D,q) for CH,
physisorption.

3.1.3. CH, Adsorption on Heteroatoms Functionalities and
Graphene-Based Adsorbents. The adsorption energy (E,q) of
nitrogen/oxygen functionalities and graphene structures
(simple, oxide, N/O-co doped) are illustrated in Figure 7. The
adsorption energies (E,;) of N-functionalities at a distance of
~2.0 A achieved —2.28 and —2.44 eV for N-py and N-pyr,
respectively. Also, some nitrogen functional groups between 2.7
and 3.1 A obtained E g of —2.0, approximately —2.3, and —3 eV
for (N-on, N-p, N-ni), (N-py, N-Q, N-s); and (N-x and N-t).

Oxygen functionalities absorbed the CH, molecule at a
distance of 2.8 A, and the adsorption energies achieved —3.03,
—3.1, —3.26, and —3.43 eV adsorption energies. The adsorption
of CH, is effectively applied in graphene, GO, and N-GO; the
adsorption energies are equal to —2.43, —3.3, and —4.02 eV,
respectively, to evaluate in-depth enough the DFT calculation.
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graphene, graphene-oxide, and N/O-dual doped graphene.

3.2. Machine Learning Models for CH4 Adsorption
Prediction. 3.2.1. Primary Statistical Analysis. Analysis of
Variance (ANOVA) is the most well-known primary statistical
analysis used to evaluate the differences in adsorbent efficiency
in CH, adsorption. Two critical diagnostic tools, the standard
probability plot and the standardized residuals versus fits plot
(see Figure S3). The histogram of standardized residuals versus
frequency can confirm the usual assumption of the residuals for
E,q of CH, on adsorbents.

The independence of residuals can be examined by systematic
patterns in a standardized residual-order plot (as can be seen in
Figure S3). Then, to classify the adsorbent types, four
comparative statistical methods, such as Tukey, Sidak, Fisher,
and Bonferroni, were applied to sorting all adsorbents in groups
based on their proficiency in CH, adsorption as shown in Figure
8. Although the mean values were mostly the same, the
classifications of these methods mainly exhibited various classes
of importance for CH, adsorption. The Pearson correlation
coefficient (PCC) analysis is used to measure the strength and

direction of the linear relationship between all variables, as
shown in Figure 8. It is represented by PCC, denoted as r, which
ranges from —1 to +1. PCC showed a strong linear relation
between CH, adsorption and DE, RAE, TE, FT, and OS with
0.9, 0.89, —0.47, and 0.3 eV, respectively. These statistical
methods facilitate the ML process that follows primary analysis,
and five ML techniques can be applied to rediscover the
methane adsorption energy. The following section discusses the
ML modeling process with data sizes of 70%/30% for train/test
phases, respectively, in CH, uptake on carbon-based solid
adsorbents. The predictive accuracies of SVR, DT, MLP, and
KNN are discussed. Moreover, sensitivity levels of adsorption
features are evaluated based on the electronvolt (eV).

3.2.2. CH, Energy Adsorption Predictions by ML Models.
After the primary statistical analysis, five ML models, including
SVR, MLP, RF, DT, and KNN, were employed to estimate CH,,
energy adsorption. Four of these ML schemes that exhibited
optimal predictive performances are illustrated in Figure 9. The
predicted values of CH, energy adsorption were compared with
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the best-fit line (well-known as a 45-degree line). This
distribution implies the satisfactory predictive performance of
ML models. According to the as-prepared data points in the
training/test stages, well-appropriate agreements have been
achieved between the actual and predicted results of E,y in CH,,

adsorption in two train and test steps. MLP and RF models
achieved high accuracy with an R* of 0.99 compared to SVR and
KNN, which obtained 0.98 and 0.93, respectively. After ML
models’ predictions, as presented in Table 7, the sensitivity
analysis (SA) displays the crucial levels of features such as total
energy, rigid adsorption energy, deformation energy, optimized
structure, and functionalities type (TE, RAE, DE, OS, and FT
respectively) based on the five ML models. The SA approach
applied in ML models indicates that SA-KNN showed high
sensitivity on FT > RAE > and DE with —0.027 to —0.026 eV.
Also, SA-SVR demonstrates the —0.033 eV significant level by
excluding the functionality types (FT) that address the N/O
functionality types for CH, adsorption. SA-MLP/-RF showed
the importance level of features scaled between —0.025 to 0.025
eV.

3.3. Evaluation of ML Model Feasibility. Performance
assessment is critical to the validation of ML models. In this
study, ML models achieved a high fit on DFT-based predictions
for the adsorption energy of CH, on various adsorbents. The
predictive feasibility of ML models can be evaluated by the
training size of the data set (TS) in train and test phases. As
illustrated in Table 8, different ratios applied in TS in the 50 to
80% range can ensure reliable evaluations of the ML model’s
performance. The aim of the evaluation of feasibility in ML
models was performed through two preprocessing data
standardizations (Min/Max and Z-score normalization) by
tuning T'S at train and test steps.

Also, ML models exhibited an approximately close trend of
RMSE increase by descending the data set size from 80% to 50%
in the training phase. Although the RMSE comparatively
increased by lowering the volume of training size in these ML
models, they indicated that they have notable feasibility in CH,
adsorption energy prediction. Also, the feasibility of the ML
model in Z-score normalization was applied, in which SVR
showed higher predictions than other ML models that changed
from —0.07 to approximately —0.15 eV. The results presented in
this study agree with the literature. In a previous study, RBF-
DEFT predicted E 4 of HOMO—LUMO in a range of —15.9 to
—17.4kJ mol™".*" Nitrogen functionalities such as N-X and N-Q
exhibited appropriate feasibility with ML with accuracies of
~3.5% and 0.97—0.99 for MAPE and R?, res.pectively.21 SVR,
RE, MLP, DT, and KNN combined with DFT to evaluate the
rediscovery possibilities in methene E,4 on N/O functional
groups with RMSEs of —0.14 to —0.05 and R* of 0.93 to 0.99.
MLP model's results are plotted in 3D to evaluate the E 4 peaks
based on the N/O functional groups and graphene structures, as
shown in Figure 10. Nitrogen and oxygen functional groups of
N-py, N-x, and O-hy performed —2 to —3 eV by nine runs for
optimizing structure. The visualization of predicted values
demonstrates the peaks of adsorption energy in DFT calculation
with an accuracy of 0.99 for R* and ~0.06 of RMSE. Figure 10
shows the total and deformation energies (Eq and Eg.) based
on the N/O heteroatoms functionalities, graphene, graphene
oxide (GO), and N-doped GO. The GO and N-GO
approximately showed approximately —3 to —3.2 eV for E
by MLP model. On the other hand, the other N/O groups
demonstrated accurate predictive results compared to E,4. Also,
N-x achieved the lowest Ey; within approximately —3 eV
compared with other adsorbents (as seen in Figure 11).
Therefore, the 3D plots indicate the overall stability of the
CH, adsorption process; the lower values of total E, 4, suggest
more stable configurations. Moreover, the higher values of E4¢
highlight the structural changes that occur upon adsorption.
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Table 7. ML Model’S Prediction Accuracies and Sensitivity Analysis

Prediction Sensitivity Levels
ML model Accuracy (R?) TE RAE DE 0s FT
SVR 0.989 —0.0121 —0.02 0.0286 —0.0241 —0.0331
DT 0.968 —0.021 0.001 —0.015 0.0179 —0.009
MLP 0.998 —0.0168 0.0188 0.0141 —0.0147 —0.019S
RF 0.986 0.0098 0.0259 —0.0035 —0.0246 0.0014
KNN 0.931 0.005 —0.0261 —0.0261 0.0181 —0.0277

Table 8. ML Models Feasibility Evaluation by Tuning Training Size (TS) Based on the RMSE Criteria

80%/20% 70%/30% 60%/40% 50%/50%
Preprocess Method of Data (RMSE) ML model (E,q) Train Test Train Test Train Test Train Test
Min/Max SVR —0.0627 —0.0570 —0.0846 —0.0847 —0.1579 —0.1285 —0.1974 -0.2016
RF —0.0788 —0.0606 —0.0963 —0.0840 —0.1367 —0.1177 —0.2037 —-0.2159
MLP —0.0529 —0.0502 —0.1025 —0.0921 —0.1477 —0.1292 —0.1986 —0.1778
DT —0.0954 —0.0729 —0.1324 —0.1740 —0.1536 —0.2096 —0.2109 —0.2233
KNN —0.1362 —0.1549 —0.1505 —-0.1746 —0.1617 —0.1495 —0.1911 —0.2673
Z-score normalization SVR —0.0713 —0.0945 —0.0962 —0.1091 —0.1131 —0.1354 —0.1442 —0.1512
RF —0.0513 —0.0609 —0.0642 —0.078S —0.0913 —0.1120 —0.1598 —0.1839
MLP —0.133 —0.1148 —0.1219 —0.1214 —0.1406 —0.1044 —0.2019 —0.2108
DT —0.091 —0.0787 —0.1120 —0.1089 —0.1851 —0.1721 —0.2266 —0.2683
KNN —0.1018 —0.1329 —0.1370 —0.1564 —0.1472 —0.1597 —0.3421 —0.3290
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Figure 10. 3D plots of MLP-predicted CH, adsorptive properties for (a) adsorption energy, (b) total energy, and (c) deformation energy (based on
the optimized structures, N/O and graphene adsorbents, and three adsorption energies of the CH, molecule).

Finally, all energy criteria in the CH, uptake process are nitrogen- and oxygen-containing groups and graphene as
effectively affected by the type and number of optimized adsorbents.

18952 https://doi.org/10.1021/acs.iecr.4c02626
Ind. Eng. Chem. Res. 2024, 63, 18940—18956


https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig10&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.iecr.4c02626?fig=fig10&ref=pdf
pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.4c02626?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Industrial & Engineering Chemistry Research pubs.acs.org/IECR Article
19- Adsorbent Clusters = %, 1
[+
. . @ @ Y
. s $ g2 <§%§§§;;
. ¢ 46 o 2 ¢ S J)’ LA
10- o et D Ten 3t 4% Y ]
[ ] - —_
‘1..'. wg, - . :t:. o % & B8 Graphene, GO, N-doped
P ee s - > A Nl © GO
8 e p ¢ 6,0t e o |EEEEE .- -----
- o0 o [ 8 L] i o
o o o Tyl ‘l' i e T, uge °‘:' ety
s s W *2eety ¢ L) ae®ee ': . <R Y‘““ﬁ‘
) "osd & 2 : Ly : ¢ . . = “Tbﬂ ¢ If}f 5
6% " To 30, %0 . & o . e oA g Sl
O IR P Tl ® ot _gov ‘w ot 2| pyridinic (N-py), Pyrrolytic (N-pyr)
e n o o s Toee i *g 2 Graphitic (N-q), iv), Oxidized (N,
A A L o ” e z raphitic (N-q), iv), Oxidized (N-x),
4 2 L ., ® 2 ° g Amine primary, -secondary,
F g e % s o Lo’ aee L I© | -tertiary (N-p, N-s, and N-t),
9. T et ¥ o - e £ Nitroso (N-ni), and Onitorso (N-on).
" 4 @ ’ “ * . g o
L4 . o
2 L..» T e o, % S
!'-' . . wele? ee™ ol M £
‘ o . - ® e o . I
cg Y . . i [T o ® o
L4 o
0+ e . o Jetle o° 2 B
. %o e R Gme e Hydroxyl (O-h), Carbonyt (O-I),
e, ~ o, ° Carboxy! (O-1I), Epoxy (O-x),
Ether (O-eth)
2 T T T T e
-2 0 2 4 5] 8 10 12

Latent variable

Figure 11. UMAP histography illustrating the clusters and structure of data sets of E 4 of CH, adsorption on N/O functional groups and graphene

structures.

3.4. Adsorbent Screening and Future Outlook. After
DFT and supervised ML models, the Uniform Manifold
Approximation and Projection (UMAP) technique can provide
new insights into the gas adsorption field. The UMAP method
was employed to visualize CH, uptake by screening and
clustering the adsorbent types of N/O functionalities and
graphene-based structures. UMAP discloses the numerical gaps
and space in the data sets. As shown in Figure 11, UMAP
illustrates the structure of data sets and adsorbent clusters based
on the heteroatom functionalities and graphene structures.
Although the adsorbents are limited to graphene and N/O
functional groups, UMAP facilitated the disentanglement of the
adsorbent structures, enabling a clearer visualization of the
relationships between the heteroatom functional groups and
graphene-based structures in terms of CH, uptake. Hence, by
combining UMAP with ML models, large data sets can be
explored for advanced adsorbent material, which can lead to the
discovery of new materials with optimal properties for CH,
adsorption. Also, UMAP can reduce the dimensionality of
complex data sets to identify patterns and relationships by
enhancing the predictive accuracies of ML models for material
design.*> Moreover, adsorbents tailored to specific conditions
and requirements can be designed using predictive models
enhanced by UMAP. This can lead to creating materials
optimized for particular applications, such as natural gas storage
or environmental remediation.**

B CONCLUSION

This study’s methane physisorption performance was synergisti-
cally modeled and rediscovered by DFT and multi-ML
techniques, respectively. Multiple graphene structures and
nitrogen/oxygen functional groups such as pyridinic, pyrolytic,
nitroso, epoxy (O-x), ether (O-eth), etc. were employed for CH,
uptake. N/O functional groups demonstrated —2.21/—5.0 eV
for the LUMO—HOMO energies. Also, energy gaps for
graphene, graphene oxide, and N-GO are achieved at negligible
values of 0.04, 0.071, and 0.182 eV, respectively. The adsorption
energies (E,4) of N/O-functionalities in the distance of ~2.0 to
3.1 A groups obtained E,q of approximately —2.0 to —4. eV
adsorption energies. Five ML schemes comparatively performed
highly accurate prediction and rediscovery of CH, physisorption
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by utilizing the multiadsorptive features of optimized adsorbents
with an R? of 0.99. Also, the sensitivity analysis was applied to
five adsorption features based on the optimized structure of N/
O functionalities and graphene structures. The sensitivity levels
of input features were determined from —0.03 to 0.02 eV.
UMAP rediscovered and screened the functionalities of
graphene as CH, adsorbents. As a further outlook, multi-ML/
DFT/and UMAP techniques can be employed as a predictive
route to estimate gas physisorption storage for advanced solid
adsorbents such as MZXene and polymer/carbon-based
composites.
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