
Delft University of Technology
Faculty of Applied Sciences

Faculty of Electrical Engineering, Mathematics and Computer
Science

Department of Mathematical Physics

Exoplanet surface mapping using
scattered light curves

by

Samuel Stuger

to obtain the degree of

BACHELOR OF SCIENCE
in

TECHNISCHE WISKUNDE
TECHNISCHE NATUURKUNDE

Amsterdam, Netherlands
August 2021

BSc thesis TECHNISCHE WISKUNDE & TECHNISCHE
NATUURKUNDE

“Exoplanet surface mapping using scattered light curves”

Samuel Stuger

Delft University of Technology

Supervisors

Dr. Paul M. Visser Dr. Aurèle J. L. Adam

Committee members

Dr. Akira Endo

Dr. Klaas P. Hart

Dr. Daphne M. Stam

A B S T R A C T

Characterizing the surfaces of Earth-like exoplanets will be an essential chal-
lenge in investigating their habitability and the possible existence of life on
the surfaces of these planets. Using the next generation of telescopes, we
will be able to observe the reflected starlight of exoplanets. However, due to
the vast distance, exoplanets will only appear as single pixels. Nonetheless,
the varying brightness of such a pixel, due to the the annual rotation of the
planet around their star and daily rotation around its axis, can provide in-
formation about the planetary surface.

In this thesis, we provide a method for reconstructing a planet’s surface map
from its reflected light curve. We are going to derive an equation for the
reflective light-curve under the assumption that the surface map is charac-
terized by four different surface types (ocean, vegetation, sand and snow), is
stationary (no clouds), and that all reflection is diffuse (Lambertian). We will
show that the transformation is a linear function of the surface map and we
will work out the transformation for arbitrary observer inclination and axial
tilt. Using this knowledge, we create mock light curve data of self-generated
planets. Afterwards, the transformation is inverted using the Moore-Penrose
pseudo-inverse and the mock data will be used to demonstrate the surface
map recovery for edge-on and face-on observations of planets with differ-
ent axial tilts. Furthermore, we also provide a method for recovering the
planet’s axial tilt from its reflected light curve.

Even when a realistic amount of photon shot noise is added to the light
curve, we are able to retrieve the planet’s surface map and axial tilt fairly
well, especially when the planet’s tilt has larger axial tilt.

v

C O N T E N T S

1 introduction 2

2 the generation of albedo maps 5

2.1 The concept of albedo . 5

2.2 The generation of albedo maps 6

2.2.1 Altitude map generation by tetrahedral subdivision . . 6

2.2.2 From altitude map to albedo map 9

3 reflected light-curve of a planet 11

3.1 The general case . 11

3.2 Analytic expression for the reflected light-curve 11

3.3 Numerical expression for the reflected light-curve 14

3.3.1 Application to generated planets 15

3.3.2 Artificial shot noise . 18

4 mapping of planetary surfaces 20

4.1 Inverting transformation matrix 20

4.1.1 Moore-Penrose pseudo-inverse 20

4.1.2 Recovering albedo maps with known axial tilt 23

4.2 Recovering axial tilt . 33

5 discussion & conclusion 37

a appendix 42

vi

L I S T O F S Y M B O L S

emax Longest edge of tetrahedron
hnew Height value of added vertex

ρ Radius of exoplanet
R Radius of orbit
I0 Power output of star
ω Orbital angular velocity
Ω Spin angular velocity

êo Unit vector from star to observer
êr Unit vector from planet to star
ês Unit vector from center of planet to planetary surface
n̂ Spin-axis of planet
% Domain on exoplanet surface that is simultaneously visible and illuminated
Ry Elemental rotation matrix about y-axis
Rz Elemental rotation matrix about z-axis
ê′s Rotated unit vector from center of planet to planetary surface

φ Longitude of the exoplanet
θ Colatitude of the exoplanet
α Equinox angle of the exoplanet
β Obliquity of the exoplanet
(α, β) Spin angular velocity
γ Observer inclination

Nave Average number of photons that reach observer
Ṅstar Average rate of photons emitted by star
dJWST Diameter of main telescope of James Webb Space Telescope
do Distance to exoplanet
tint Integration time of telescope

f Reflected light curve
f Sampled light curve
a Albedo map
a Albedo map vector in pixel basis
T Transformation matrix mapping albedo map to light curve
T+ Moore-Penrose pseudo-inverse
σmax Largest singular value
SVCR Singular Value Cutoff Ratio

1

1 I N T R O D U C T I O N

Since scientists and philosophers have started to question geocentrism in the
sixteenth century, some of the most broad-minded people have suspected
that planets might not be exclusive to our solar system. The first person
to put forward this blasphemous idea of exoplanets was Giordano Bruno,
an Italian philosopher, mathematician, poet and cosmological theorist, who
proposed that the stars were remote suns surrounded by their own planets.
However, he was way ahead of his time and, due to political and religious
reasons, his ideas fell on deaf ears with most of his contemporaries. This
started to change after Isaac Newton presented his Philosophiæ Naturalis Prin-
cipia Mathematica, where he also mentioned the existence of distant planets,
and belief in the existence of exoplanets started to grow.

Unfortunately, in spite of the growing support for the idea of distant plan-
etary systems, there was no way to actually observe them. Until in 1995,
almost four hundred year after Giordano Bruno’s death, the first exoplanet
named Dimidium was discovered by astronomers Mayor and Queloz [1995]
through its tiny gravitational pull on its star, 51 Pegasi.

Currently, more than 4000 exoplanets have been confirmed and more than
3500 candidates are waiting for verification 1. Some of these exoplanets lie in
the ”habitable zone”, close enough to their star that, assuming the presence
of an Earth-like atmosphere, water on the planet’s surface would not freeze
or boil off [Dressing and Charbonneau, 2015; Tuomi et al., 2014]. These
Earth-like planets could even contain continents and watery oceans, which
would make them promising candidates for extraterrestrial life.

Since discovering extraterrestrial life is one of the ultimate goals in the
study of exoplanets, astronomers not only seek to locate new exoplanets,
but also examine their surface environment and meteorology [Kawahara and
Fujii, 2011]. However, examining exoplanet surfaces by direct imaging is still
impossible due to the enormous distance to other planetary systems. Even
with the next generation of telescopes, which NASA and ESA are currently
designing, exoplanets will appear only as single pixels to us, much like Earth
in the Pale Blue Dot picture taken by Voyager 1 as it left the solar system
(Figure 1.1).

As the planet orbits around its star, the starlit portion of the exoplanet sur-
face that is visible to us changes much like the phases of the moon, resulting
in an annual change in the pixel’s brightness. Furthermore, if the exoplanet
surface is not homogeneous (e.g. due to the presence of continents and
oceans), daily oscillations in the pixel’s brightness will also be visible as
the exoplanet rotates about its axis and different parts of the surface with

1 https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&

config=PS

2

https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS
https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblView/nph-tblView?app=ExoTbls&config=PS

introduction 3

Figure 1.1: The Pale Blue Dot picture of Earth, taken by Voyager 1 as it left the solar
system. Like Earth in this picture, a directly observed exoplanet will
appear as a single pixel. In this thesis, we will use the pixel’s varying
brightness to retrieve the planet’s surface map.2

different reflectivities (albedos) are illuminated by the starlight. This double-
periodic light signal is called the reflected light curve of the exoplanet.

Some authors (e.g. [Cowan and Agol, 2008; Farr et al., 2018; Fan et al., 2019;
Aizawa et al., 2020; Kawahara and Masuda, 2020; Cowan and Fujii, 2021])
have started solving the problem of recovering surface maps of exoplanets
by creating mock observations of the Earth’s reflected light curve using the
albedo data of our planets that has been measured by NASA satellites (Fig-
ure 1.2). They have shown that by measuring the changes in the intensity of
the reflected light curve, it is possible to retrieve both the planet’s axial tilt
and a rough surface map, using daily variations for longitudinal resolution
and annual variations for latitudinal resolution.

Figure 1.2: Albedo map of Earth as recorded by NASA in February 2017.3

In this thesis, we attempt to expand on this method of recovering exo-
planet surfaces, named spin-orbit tomography (SOT) by Kawahara and Fujii
[2010]. However, instead of using Earth’s albedo data to produce reflected
light curve measurements, we will first generate surface maps of our own
planets. Afterwards, we will try to retrieve both the surface map (albedo

introduction 4

map) and the axial tilt of the planet for several spin-axis configurations and
observer inclinations. This will be done in order to get a better understand-
ing of the retrieval capabilities of spin-orbit tomography, as the next genera-
tion of satellites will be in high demand.

In Chapter 2 of this thesis, the method of tetrahedral subdivision will
be used to generate Earth-like planetary surfaces. Next, in Section 3.2, an
analytical expression for the reflected light curve that arises from a planet’s
albedo map will be derived. In Section 3.3, this analytical formula will be
translated into a numerical linear transformation, mapping a planets albedo
map onto its reflected light curve. Lastly, in Chapter 4, all the knowledge
acquired in the previous chapters will be used to retrieve the surface maps
of exoplanets and the problem of unknown axial tilt will be tackled.

2 T H E G E N E R AT I O N O F A L B E D O M A P S

The objective of this thesis is the retrieval of exoplanet surfaces based on their re-
flected light curves from their host star. Due to the current absence of light curve
data of exoplanets and other planets and moons in our Solar System, artificial plan-
ets and their albedo maps will be generated. Therefore, in this chapter the concept
of Bond albedo and the generation of planetary surface and albedo maps will be
discussed.

2.1 the concept of albedo

The Bond albedo of a surface is a measure of the diffuse reflection (Lam-
bertian) of the surface. It is defined as the ratio of the intensity of the total
stellar radiation that is reflected by the surface to the intensity of the total
stellar radiation that reaches the surface. Bond albedo is therefore measured
on a scale from 0, corresponding to total absorption of all incident radia-
tion, to 1, total reflection of all incident radiation. The albedo map of an
exoplanet, a, then maps any point on the surface of the exoplanet to the
interval [0, 1], according the Bond albedo of that point. Typical Bond albe-
dos of planets in the Solar System range from 0.088, for Mercury , to 0.76,
for the cloud-covered Venus [Mallama, 2017; Haus et al., 2016]. Terrestrial
Bond albedos range from 0.06, for the ocean, to 0.80, for freshly fallen snow
[NSIDC, 2020]. For the to-be-generated albedo maps a distinction will be
made between four types of surfaces: ocean, vegetation, sand and snow.
These surface types were chosen since they are all prevalent surface types
on Earth, and for their indicative ability of planetary habitability and life
or their commonness amongst other terrestrial planets in our Solar System.
Their typical albedos can be viewed in Table 2.1.

Surface Type Typical Albedo Motivation

Ocean 0.06 Indicator of habitability/life
Vegetation 0.15 Indicator of habitability/life
Sand 0.40 Common surface type
Snow 0.80 Common surface type

Table 2.1: Typical Bond albedos of four common terrestrial surface types [NSIDC,
2020; Betts and Ball, 1997; Tetzlaff, 1983].

5

2.2 the generation of albedo maps 6

Figure 2.1: Cutting a tetrahedron into two smaller tetrahedra by adding a vertex on
one of the edges.

2.2 the generation of albedo maps

For the generation of albedo maps of ’imaginary’ exoplanets, first altitude
maps of these planets will be created. These altitude maps map any pixel
on the planetary surface to a certain height value. Then, these altitude maps
will be converted into albedo maps by dividing the surface into the four
aforementioned surface types based on elevation. The altitude maps will
be generated using the method of tetrahedral subdivision, as described by
Mogensen [2010].

2.2.1 Altitude map generation by tetrahedral subdivision

The method of tetrahedral subdivision is a method that is normally used for
generating pseudo-random surface maps for games and art. The method
ultimately constructs a 2D grid of values that assigns a height value to each
point on the grid, thereby creating an altitude map of the surface. By placing
the set of points on a sphere, pseudo-random altitude maps of planets can
be created.

The method of tetrahedral subdivision for generating surface maps, starts
by placing a tetrahedron around a spherically distributed set of points and
assigning a height value to each of the vertices of the tetrahedron. The height
value of a point is then computed using the following algorithm. First, an ex-
tra vertex is added to the longest edge. Hereafter, edges are created between
the added vertex and the two nonadjacent vertices, cutting the tetrahedron
into two smaller tetrahedra (Figure 2.1). Subsequently, a pseudo-random
height value is computed for the new vertex, based on vertices of the cut
edge. Next, the tetrahedron containing the point is selected and the algo-
rithm is repeated. When the desired resolution is reached, the height value
of the point is taken to be the average height value of the vertices of the fi-
nal tetrahedron. A more detailed description of the process can be found in
Algorithm 2.1 and examples of a generated planets are shown in Figure 2.2
and Figure 2.3.

2.2 the generation of albedo maps 7

(a)

(b)

Figure 2.2: An example of a surface map generated using the method of tetrahedral
subdivision as described by [Mogensen, 2010]. (a) A 3D-projection of
the altitude-grid. (b) A Mollweide projection of the grid on a sphere.

2.2 the generation of albedo maps 8

Algorithm 2.1: Tetrahedral Subdivision(p, v, s, h)
Input: A point on the unit-sphere p, array of coordinates of the

vertices of a starting tetrahedron v, an array containing their
seeds s, and an array containing their altitudes h

1 Repeat:

1. Find longest edge emax

2. Rearrange vertices so that emax is between v1 and v2

3. Create new vertex vnew with:

• vnew = (v1 + v2)/2

• snew = (s1 + s2)/2

• hnew = (h1 + h2)/2 + 0.01× random(snew)× emax
3
2

Where random produces a pseudo-random number between -1 and 1

4. If p lies inside the convex hull of {v1, vnew, v3, v4}, set v2 = vnew,
s2 = snew and h2 = hnew. Otherwise, set v1 = vnew, s1 = snew and
h1 = hnew

2 Stop if: emax is small enough
Output: (h1 + h2 + h3 + h4)/4 : The height value of p

Figure 2.3: Several examples of surface maps generated using the method of tetra-
hedral subdivision as described by [Mogensen, 2010].

2.2 the generation of albedo maps 9

Figure 2.4: An example of a composite map that is created by mirroring a planet
around the prime meridian. In Section 3.3.1 this mirrored map will in
be used to better illustrate the daily variation of reflected light curves.

Besides computational efficiency, the main advantage of the method of
tetrahedral subdivision is that, unlike most other surface map generators,
there are no discontinuities or artefacts created when projecting the map
onto a sphere. Furthermore, discontinuities between nearby points are greatly
reduced, since hnew scales with emax

3
2 and by the time that two nearby points

lie in different tetrahedra, emax is way smaller than 1. This results in a more
realistic, smoother surface. However, a direct negative consequence of this
smoother surface is that the created planets are generally simple planets
housing only a single continent. Nevertheless, surface maps that consist of
multiple continents can be created in a multitude of ways. For example, by
mirroring maps around a meridian or by adding parts of different surfaces
together. However, this can create unwanted discontinuities in the surface
map. An example of a composite map, which will later be used to better
illustrate some properties of reflected light curves, is shown in Figure 2.4.

2.2.2 From altitude map to albedo map

After an altitude map of a planet is generated, its albedo map is created
by dividing the surface pixels into the aforementioned surface types based
on the pixel’s relative elevation. All the pixels below average height are
assigned the Bond albedo value corresponding to ocean, while the other
pixels are assigned the albedo value corresponding to either vegetation, sand
or snow, in ascending order of elevation. Figure 2.5 shows the albedo maps
of the generated planets shown in figure Figure 2.3.

2.2 the generation of albedo maps 10

Figure 2.5: Several examples of albedo maps of the generated planets illustrated in
Figure 2.3 by dividing the surface pixels in four surface types: water
(blue), vegetation (green), sand (yellow) and snow (white) with Bond
albedos as in Table 2.1. The division is based on the height value of the
pixels.

3 R E F L E C T E D L I G H T- C U R V E O F A
P L A N E T

In this chapter an expression for how the reflected light curve of an exoplanet arises
from the albedo map of the exoplanet will be derived. This expression will be used
to compute and analyze multiple reflected light curves of the planets generated in
Chapter 2. In the following chapter, this knowledge shall be used to construct the
albedo map of a generated exoplanet using its reflected light curve.

3.1 the general case

The general case that shall be explored in this thesis, which can be viewed in
Figure 3.1, is a planetary system, where a lone, moonless planet with radius
ρ moves around its star in a circular orbit in the xy-plane with radius R and
angular frequency ω. Additionally, the planet rotates around its own axis
n̂ with angular frequency Ω. Furthermore, the following vectors need to be
introduced:

êr =

− cos ωt
− sin ωt

0

 ês =

cos φ sin θ

sin φ sin θ

cos θ

 êo =

sin γ

0
cos γ

 n̂ =

cos α sin β

sin α sin β

cos β


(3.1)

where the vectors êr and êo point from centre of the planet towards the
host star,the observer, respectively. The vector ês is a vector normal to the
surface, defined by fixed spherical coordinates φ and θ. Furthermore, the
axial tilt (α, β) of the exoplanet specifies the orientation of the spin-axis of
the planet n̂. and the observer inclination γ defines the viewing angle of the
observer 1. A detailed schematic illustration of the general case can be found
in Figure 3.1.

3.2 analytic expression for the reflected light-
curve

We are interested in the features of the planet’s surface, but as explained in
the introduction, we do not have the resolution to resolve features on the
surface by direct imaging. Only the total light intensity that the planet re-
flects towards us is measurable, this physical quantity is called the reflected
light curve f (t) of the exoplanet . The reflected light curve that reaches the

1 There are two cases that will primarily be studied: edge-on (γ = π
2) and face-on (γ = 0). For

edge-on observation, the observer is in the orbital plane, while for face-on observation the
observer is perpendicular to the orbital plane.

11

3.2 analytic expression for the reflected light-curve 12

(a)

(b) (c)

Figure 3.1: Schematic illustration of our planetary system. The planet is moving in
a circular orbit around its host star with angular frequency ω, starting
on the positive x-axis, while spinning around its own axis with angular
frequency Ω. The unit vectors êr and êo point from the center of the
planet towards the host star and the observer, respectively. In addition,
the unit vector ês is a vector normal to the planet surface. As mentioned
in Section 3.2, the illuminated pixels satisfy 〈êr, ês〉 ≥ 0 , and visible
pixels satisfy 〈ês, êo〉 ≥ 0. The spin axis n̂ is specified by the equinox
angle α, the angle of between the projection of n̂ onto the xy-plane and
x̂, and the obliquity β, the angle between n̂ and ẑ. (a) xy-projection of
the planetary system. (b) xy-projection of the planet. (c) xz-projection
of the planet.

3.2 analytic expression for the reflected light-curve 13

observer is the product of three terms, each describing a stage in the journey
of the light waves, from planetary incidence to observation:

f (t) = fraction of total stellar power that reaches the surface

× Bond albedo of the surface

× fraction of reflected light that reaches the observer

(3.2)

In order to derive an analytical expression for the reflected light-curve, we
need to know which domain on the planetary surface contributes to the light-
curve. In other words, which part of the surface reflects light from the host
star to the observer. First, note that precisely one hemisphere of the surface
is visible to us, namely the hemisphere containing the points on the surface
where 〈ês, êo〉 ≥ 0. Moreover, also one hemisphere of the planetary surface
is illuminated by the star, namely the hemisphere containing the points on
the surface where 〈êr, ês〉 ≥ 0. The intersection of these two hemispheres
is exactly the part of the surface that contributes to the reflected light-curve,
and is called the observable domain, denoted by %:

% = {s : 〈êr, ês〉 ≥ 0∧ 〈ês, êo〉 ≥ 0} (3.3)

If the total stellar power is I0, then at a distance R from the star the in-
tensity has dropped to I0/4πR2. The fraction of the stellar power that is
reflected by an infinitesimally small part of the surface d2Ωs is then equal to
as〈êr, ês〉d2Ωs. Here as is the Bond albedo of the surface at ês. Furthermore,
the fraction of the reflected light that reaches the observer is proportional
〈ês, êo〉d2Ωo/π. Here d2Ωo is the solid angle of the observer. Multiplying
these terms gives the contribution to the reflected light curve of a small part
of the illuminated an visible surface:

I0〈êr, ês〉〈ês, êo〉as

4πR2 d2Ωsd2Ωo (3.4)

The reflected light curve can then be found by integrating the above term
over the observable domain %. However, astronomers often only measure
the intensity of the light reflected by the planet relative to the total intensity
of the star light that reaches them I0d2Ωo/4π, thus it is customary to divide
by this term [Winn et al., 2008]. Therefore, the reflected light curve can be
computed using the following formula:

f (t) =
1

πR2

¨

%

〈êr, ês〉〈ês, êo〉asd2Ωs

=
ρ2

πR2

¨

%

〈êr, ês〉〈ês, êo〉a(φ, θ) sin θdφdθ

(3.5)

3.3 numerical expression for the reflected light-curve 14

3.3 numerical expression for the reflected light-
curve

In the previous section, we derived an an analytical expression for the re-
flected light, which allows us to compute its intensity of the reflected light
curve at any time t assuming the Bond albedo of every point on the sphere
is known. However, the maps generated in Chapter 2, provide the Bond
albedo of only a finite number of points, say Nφ × Nθ . Furthermore, real-life
light curve measurements will also yield only a finite amount data, giving
us the intensity of the reflected light curve at only a finite number of times,
say Nt. Therefore, we shall derive a numerical analog to Equation 3.5.

The discrete counterpart of the reflected light curve f (t) can be repre-
sented by a vector f ∈ RNt . Furthermore, by flattening the albedo maps gen-
erated in Chapter 2, they can be also be represented as vectors a ∈ RNφ×Nθ .
We now propose that the reflected light curve can now be calculated using
the following linear transformation:

f = Ta

f =
[

f (t1) . . . f (Nt)
]T

a =
[

a1,1 . . a1,Nθ
a2,1 . . aNφ,Nθ

]T
(3.6)

In order to see what the entries of the transformation matrix T should be, we
will work out what the light curve of a single pixel would be. As mentioned
before, the coordinate system of the planet is defined in such a way that
a given coordinate (φp, θp) points to the same pixel on the map for any
time ti. As a direct consequence of this choice, we have to rotate ês in order
for the vector to keep pointing to the same pixel in the inertial system (the
non rotating coordinate system of the host star). This will be done by first
rotating the vector Ωti radians around the z-axis to take care of daily rotation
of the planet, and then rotating the vector with β◦ around the y-axis and by
α◦ around the z-axis, because of the planet’s axial tilt. This process, often
referred to as a 3-2-3 rotation [see Goldstein, 1997, chapter 3], is illustrated
in Figure 3.2. Using the elementary rotation matrices the normal vector
pointing from the center of the planet to the pixel ê′s can be computed as:

ê′s = Rz(α)Ry(β)Rz(Ωti)ês (3.7)

Assuming that the pixel is in the observable domain at time ti, the entry
of T can be computed using the following equation:

Tti ,φp,θp = 〈êr, ê′s〉〈ê′s, êo〉 sin θp∆φ∆θ (3.8)

The next obstacle is dealing with the implicit expression of %. We know
that a pixel is in the observable domain when both 〈êr, ê′s〉 ≥ 0 and 〈ê′s, êo〉 ≥
0. If the pixel is not visible or not illuminated, the pixel does not contribute
to the reflected light curve and thus Tti ,φ,θ should to be zero. Otherwise,
its entry should be as previously described in Equation 3.8. This can be

3.3 numerical expression for the reflected light-curve 15

Figure 3.2: Schematic representation of the rotation of the planet with 3-2-3 Euler
Angles (α, β, Ωti). First rotating with Ωti around the z-axis, then rotat-
ing with β around the y-axis and lastly rotating with α around the z-axis
yields the same result as directly rotating with Ωti around the spin axis
n̂. Figure source code: [Dorian, 2017]

achieved by introducing the function g+ = (g + |g|)/2 = max{0, g}. By
implementing this function to the two inner products, the entries of T can
be found using:

Ti,j =

[
Rz(α) Ry(β)Rz(Ωti)

 cos φj sin θj
sin φj sin θj
cos θj

 ·
 − cos ωti
− sin ωti

0

+

Rz(α)Ry(β)Rz(Ωti)

 cos φ sin θj
sin φj sin θj
cos θj

 ·
 sin γ

0
cos γ

+

sin θ∆φ∆θ

(3.9)

ti = i∆t φj =

⌈
j

Nφ
· ∆φ

⌉
θj = (j mod Nθ) · ∆θ

∆φ =
2π

Nφ
∆θ =

π

Nθ

3.3.1 Application to generated planets

In the last section we derived a method to compute the reflected light-curve
of an exoplanet if the Bond albedo of a discrete number of points on the plan-
etary surface is known. In this section, we will show some examples of these

3.3 numerical expression for the reflected light-curve 16

reflected light curves, starting with the edge-on observation of the reflected
light curve of a homogeneous planet which can be seen in Figure 3.3.

When the orbital phase angle ωt is zero, the planet is positioned right
between the observer and star, so the planet reflects no light to the observer.
As the orbital phase angle increases, the intersection of the visible hemi-
sphere and illuminated hemisphere grows and more light gets reflected to
the observer. The maximum intensity is reached when the planet is directly
behind the star and the visible and illuminated hemisphere overlap com-
pletely2. Hereafter the intensity of the light curve decreases again until the
planet has finished its yearly period around the star. This process is compa-
rable to the moon cycle. However, instead of seeing a change in the shape of
the moon, a change in the intensity of the light curve can be seen.

Figure 3.3: Graph of the reflected light curve obtained from a simulation of an
edge-on observation of a homogeneous planet with axial tilt parameters
α = 0◦, β = 0◦. The light curve intensity reaches its minimum at orbital
phase angle ωt = 0 and maximum at ωt = π

When the reflected light curve of a non-homogeneous planet is simulated,
the daily variation of the light curve also becomes visible alongside the an-
nual intensity variation that was shown in Figure 3.3. The reflected light
curve of a non-homogeneous planet is shown in Figure 3.4, while Figure 3.5
displays the daily variation of the reflected light curve of the mirrored planet
first shown in Figure 2.4. In Figure 3.5b the two peaks due to the high albedo
of the two ice caps are clearly visible.

2 In real life, the planet would, of course, not be visible if it is positioned directly behind the
star, but this will be overlooked in this report.

3.3 numerical expression for the reflected light-curve 17

Figure 3.4: Graph of the reflected light curve obtained from a simulation of an edge-
on observation of a non-homogeneous planet with axial tilt parameters
α = 0◦, β = 0◦.

(a)

(b)

Figure 3.5: (a) Mollweide-projection of the planetary albedo map. (b) Graph of the
daily variation of the reflected light curve obtained from a simulation
of an edge-on observation of a non-homogeneous planet, mirrored with
axial tilt parameters α = 0◦, β = 0◦. The two daily peaks due to the two
continental ice caps is clearly visible.

3.3 numerical expression for the reflected light-curve 18

3.3.2 Artificial shot noise

Since the distance to even the closest exoplanets is at least tens of light-years,
the intensity of the measured reflected light curves of these planets will be
very low and light curve measurements will contain a considerable amount
of noise. Thus, in order to get a better grasp of how well albedo maps can
be retrieved using actual observations of reflected light curves, noise will be
added to the light curves computed in Section 3.3. However, instead of the
more commonly used Gaussian noise, the noise will be modelled using shot
noise.

Shot noise will be inherently present in the measured reflected light curve
data, as the rate that a star emits photons is not perfectly constant. Shot
noise dictates that the number of photons observed by the telescope is drawn
from a Poisson distribution with the average number of photons that reach
the observer per hour Nave as mean. Therefore, given Nave, the probability
that the k photons reach the observer in an hour is given by:

P(k observed photons in an hour) = e−Nave
(Nave)k

k!
(3.10)

Some probability mass functions of the Poisson distribution are shown in
Figure 3.6.

Figure 3.6: Graph showing the probability mass function of the Poisson distribu-
tion for different values of of the reflected light curve obtained from
a simulation of an edge-on observation of a non-homogeneous planet
with axial tilt parameters α = 0◦, β = 0◦.

In order to get an understanding of the order of magnitude of Nave, sup-
pose we have a completely white, Earth-sized exoplanet orbiting, with an
orbital radius of 1 AU, around a Sun-like star at 25 ly from the observer.
Furthermore, we will assume that the light curve is measured with the to-be-
launched James Webb Space Telescope, whose main telescope has a diameter
of dJWST = 6.5 m and can measure wavelengths from λ = 600 nm to 28.3µm.
Lastly, the integration time of the telescope is taken to be 1 hour. Now Nave

3.3 numerical expression for the reflected light-curve 19

can be computed using the following equation. The derivation is analogous
to the light curve intensity formula, Equation 3.2:

Nave = Ṅstar · tint ·
(

dJWST

4do

)2

·
(ρ

2R

)2
· 8

3
(3.11)

where Ṅstar is the rate of photons being emitted by the star with a wavelength
between λ = 600 nm and 28.3µm, calculated using the Stefan-Boltzmann
law for a star with the same radius and surface temperature as the Sun.
Furthermore, tint is the integration time, do is the distance from the observer
to the planetary system, and ρ and R are the radii of the planet and planetary
orbit, respectively. The factor 8

3 at the end of the equation is a correction
factor from a homogeneously re-emitting sphere to a Lambertian sphere at
full phase.

Entering the previously mentioned values into Equation 3.11, gives a
Nave ≈ 187 photons. This results in a signal-to-noise ratio of SNRmax =√

Nave ≈ 13.7 . Of course, shot noise is not the only source of noise, as back-
ground starlight and instrumental noise will also pollute the signal. There-
fore, the previously mentioned SNR should be treated as an upper limit.

4 M A P P I N G O F P L A N E TA R Y S U R FA C E S

In the previous chapter, a linear transformation, mapping a planet’s albedo map to
its reflected light curve was derived, assuming that the orbital period, daily period,
observer inclination and axial tilt were known. In this chapter we will try to recover
the albedo map from the planet’s reflected light curve by inverting this transforma-
tion. Furthermore, we will also try to recover the planet’s axial tilt from the reflected
light curve.

4.1 inverting transformation matrix

In Section 3.3, we saw that a linear transformation matrix T could be con-
structed, which can be used to express the planet’s reflected light curve f as
a function of the planet’s albedo map a. In matrix-vector form, the transfor-
mation was found to be f = Ta. Thus, the next logical step in the retrieval of
exo-planetary surfaces from their measured reflected light curves is finding
the inverse of the linear transformation matrix T.

However, as T does not have to be a square matrix, an inverse does not
always exist. Furthermore, even when T is chosen to be square, the inverse
of T does not have to exist, since multiple albedo maps can give rise to the
same reflected light curve 1. Luckily, a generalized version of the inverse,
the Moore-Penrose pseudo-inverse, does always exist and can be used to
find the ”best” fitting solution to Equation 3.6.

4.1.1 Moore-Penrose pseudo-inverse

Let T : RNφ×Nθ → RNt . Any albedo map vector a can be decomposed as the
sum of a vector in Row(T), say ar, and a vector in Null(T), say an. Similarly,
any reflected light curve vector f can be decomposed as the sum of a vector
in Row

(
TT) = Col(T), say fc, and a vector in Null

(
TT)2. Figure 4.1 shows

how T transforms both a and ar to fc, while an is mapped to 0. This means
that as long as Null(T) is not empty (i.e. T is not full rank), given a reflected
light curve f, we cannot determine a unique albedo map a such that f = Ta.

1 For example, consider the face-on observation of two planets with zero axial tilt with exactly
the same albedo map on the Northern hemisphere, but different albedo maps on the South-
ern hemisphere. Since the Southern hemispheres are never visible to the observer, they will
never contribute to the light curve and both light curves will be identical.

2 Since the mock light curve data in this thesis is generated using Equation 3.6, f will always
be in Col(T). However, if shot noise is added to the light curve, this does not have to be the
case.

20

4.1 inverting transformation matrix 21

Figure 4.1: Geometric interpretation of the action of the transformation matrix T
and its pseudo-inverse T+.

However, every vector fc ∈ Col(T) fc comes from one and only one vector
ar ∈ Row(T) [see Strang, 2006, section 3.1]. The inverting operator that finds
ar, is called the Moore-Penrose pseudo-inverse, denoted by T+. It is defined
such that:

T+f =

{
ar , if f ∈ Col (T)
0 , if f ∈ Null

(
TT) (4.1)

Thus, for an albedo map a, the pseudo-inverse has the following property:

T+f = T+(fc + fn) = T+fc + T+fn = ar + 0 = ar (4.2)

Therefore, the pseudo-inverse returns the best fitting solution up to addi-
tion from a vector from the null space an. Furthermore, since Row(T) is
perpendicular to Null(T), we have that for all solutions â:

‖â‖2 = ‖ar‖2 + ‖an‖2 ≥ ‖ar‖2 (4.3)

This means that the solution that found using the Moore-Penrose pseudo-
inverse ar is the also the solution with minimum Euclidean norm. A direct
consequence of this is that any pixel on the planetary surface that has never
contributed to the reflected light curve, will be mapped as a pixel with min-
imal albedo. As ocean is the surface type with minimal albedo, these pixels
will be viewed as oceanic pixels. In this thesis, the Moore-Penrose pseudo-
inverse of T will be computed using the method of singular value decompo-
sition.

Singular Value Decomposition

Singular value decomposition is an extension of eigendecompostion, stating
that we can write any matrix in the following way:

T = UΣVT

where U and V are unitary matrices, whose columns are eigenvectors of TTT

and TTT, respectively. The matrix Σ is a rectangular diagonal matrix, whose

4.1 inverting transformation matrix 22

entries (denoted by σ) are the so-called singular values of T. If T has rank
r, then also r singular values exist. A schematic depiction of singular value
decomposition is shown in Figure 4.2.

Figure 4.2: Schematic illustration of the singular value decomposition of the matrix
T with rank r. The columns of the unitary matrices U and V span the
column space and the row space of T, respectively. The matrix Σ is a
diagonal matrix, whose entries σi are the singular values of T.

The singular value decomposition of a matrix can be used to compute its
pseudo-inverse in the following way:

T+ = VΣ+UT

where Σ+ is the pseudo-inverse of Σ, which is found by replacing every
singular value by its reciprocal and transposing the resulting matrix. In
this thesis, the pseudo-inverses of the transformation matrices are computed
using the NumPy function pinv, which uses the method of singular value
decomposition.

However, using the Moore-Penrose pseudo-inverse to calculate the best fit-
ting surface map, can lead to problems when noise is added to the reflected
light curve. During the initial construction of T, numerical rounding errors
can lead to small but non-zero entries in Σ that actually should have been
zero instead. These ”extra” singular values then lead to very big entries of
Σ+ that also should have been zero. Therefore, unlike in Equation 4.2, fn

does not get mapped to zero by T+, but to some other unwanted vector in
RNφ×Nθ , which can lead to enormous errors during the albedo map recovery.

In order to prevent this from happening, very small singular values are as-
sumed to be numerically equivalent to zero. Just enough, so that the amount
of non-zero diagonal entries of Σ is approximately equal to the ”true” rank
of the transformation matrix. This process is called matrix truncation and
will be done by setting all singular values that are smaller then SVCR× σmax

to zero, where SVCR stands for Singular Value Cutoff Ratio and σmax is the
greatest singular value.

As can be seen in Figure 4.3 and Figure 4.4, where the singular values are
displayed from largest to smallest, they form an L-shaped graph. The true
rank of T can be approximated by setting all singular values smaller than the
singular values in the elbow of the L-curve to zero [?]. For noiseless reflected
light curve, T does not have to be truncated since the original albedo map
always is a solution of Equation 3.6.

4.1 inverting transformation matrix 23

Figure 4.3: Graph of the first 100 singular values of the transformation matrix T for
an edge-on observation with axial tilt parameters α = 0◦ and β = 0◦.
The orange line represents the singular value cutoff ratio (SVCR = 1/40).

Figure 4.4: Graph of the first 100 singular values of the transformation matrix T for
an edge-on observation with axial tilt parameters α = 90◦ and β = 90◦.
The orange line represents the singular value cutoff ratio (SVCR = 1/40).

4.1.2 Recovering albedo maps with known axial tilt

Combining our knowledge of reflected light curves and the Moore-Penrose
pseudo-inverse, we can simulate the recovery of a planet’s albedo map a
when the axial tilt of the planet is known:

ar = [T(α, β)]+f = [T(α, β)]+T(α, β)a

In the simulations in this report, the resolution of the albedo map is taken
to be Nφ = 90 and Nθ = 45. Furthermore, the reflected light curve is sam-
pled 4800 times: 200 time intervals of 24 hours in the planets orbit, unless
specified otherwise.

4.1 inverting transformation matrix 24

Recovery without noise

The results of this process for noiseless light-curves are visible in Figure 4.5,
Figure 4.6, Figure 4.7, Figure 4.8 for edge-on observations, and in Figure 4.9
for face-on observations. The first figure displaying the edge-on observations
includes recoveries for four different values of β = 0◦, 30◦, 60◦, 90◦, while the
other figures displaying the edge-on observations only include recoveries for
three different values of β = 30◦, 60◦, 90◦, as the quality of the recoveries with
obliquity β = 0◦ is independent of the equinox angle α. Since the quality
of the recoveries for face-on observations is also independent of α, only one
figure displaying the recovery for face-on observations is shown, displaying
recoveries for four different values of β. Alongside the recovered albedo
maps, maps displaying linear difference between the original and recovered
map are presented. Furthermore, Figure 4.10 shows the remapping of a
planet using significantly fewer sampling points of f . Lastly, Figure 4.11

and Figure 4.12 show the mean squared error (MSE) of the recovery as a
function of the obliquity for edge-on observations and face-on observations,
respectively.

4.1 inverting transformation matrix 25

Input map

β = 0◦

β = 30◦

β = 60◦

β = 90◦

Figure 4.5: Albedo map retrievals for a noiseless, edge-on observation of a gener-
ated planet with equinox angle α = 0◦. Top: the original albedo map.
Left: the recovered albedo maps for β = 0◦, 30◦, 60◦ and 90◦. The
pixels of the recovered maps are divided into four surface types: wa-
ter (blue), vegetation (green), sand (yellow) and snow (white), based on
their Bond albedo. The surface pixels that never have been observable,
are mapped as oceanic pixels, as expected. Right: maps displaying the
linear difference between the original and reconstructed albedo maps.

4.1 inverting transformation matrix 26

Input map

β = 30◦

β = 60◦

β = 90◦

Figure 4.6: Albedo map retrievals for a noiseless, edge-on observation of a gener-
ated planet with equinox angle α = 30◦. The layout is the same as in
Figure 4.5, expect the recovery for β = 0◦ is not shown.

4.1 inverting transformation matrix 27

Input map

β = 30◦

β = 60◦

β = 90◦

Figure 4.7: Albedo map retrievals for a noiseless, edge-on observation of a gener-
ated planet with equinox angle α = 60◦. The layout is the same as in
Figure 4.6.

4.1 inverting transformation matrix 28

Input map

β = 30◦

β = 60◦

β = 90◦

Figure 4.8: Albedo map retrievals for a noiseless, edge-on observation of a gener-
ated planet with equinox angle α = 90◦. The layout is the same as in
Figure 4.6.

4.1 inverting transformation matrix 29

Input map

β = 0◦

β = 30◦

β = 60◦

β = 90◦

Figure 4.9: Albedo map retrievals for a noiseless, face-on observation of a generated
planet. The layout is the same as in Figure 4.5.

4.1 inverting transformation matrix 30

Input map

β = 0◦

β = 30◦

β = 60◦

β = 90◦

Figure 4.10: Albedo map retrievals for a noiseless, edge-on observation of a gener-
ated planet with equinox angle α = 0◦, using a reflected light curve
that was only sampled at 10 different locations in the planet’s orbit.
The layout is the same as in Figure 4.5.

4.1 inverting transformation matrix 31

Figure 4.11: The retrieval accuracy for noiseless, edge-on observations of the input
planet from Figure 4.5 as a function of the obliquity of the planet for
four different equinox angles: α = 0◦, 30◦, 60◦ and 90◦. In order to
speed up computation, an albedo map with Nφ = 30 and Nθ = 15 is
used and the reflected light curve was only sampled for 10 different
locations in the planet’s orbit. The discrete behaviour of the graph
corresponding to α = 0◦ is a direct result of the reduced resolution of
the surface maps.

Figure 4.12: The retrieval accuracy for noiseless, face-on observations of the input
planet from Figure 4.5 as a function of the obliquity of the planet for
four different equinox angles: α = 0◦, 30◦, 60◦ and 90◦. However, most
data points are not visible as the data points overlap each other. As in
Figure 4.11, albedo map and light curve resolution were reduced.

Recovery with noise

As explained in Equation 4.1.1, when shot noise is added to the light curves,
the truncation of Σ becomes essential if one still wants to accurately retrieve
the planet’s surface map. In Figure 4.13 the results of the process of remap-

4.1 inverting transformation matrix 32

ping an albedo map using a reflected light curve with added shot noise for
different truncation values are shown. Furthermore, Figure 4.14 and Fig-
ure 4.15 show the MSE of the recovery as a function of the obliquity when
shot noise is added to the reflected light curve.

Input map

SVCR = 0.5

SVCR = 0.025

SVCR = 0

Figure 4.13: Albedo map retrievals for different truncation values for an edge-on
observation of a generated planet with axial tilt α = 90◦ and β = 90◦.
Shot noise was added to the reflected light curve (SNR = 13.7). Top:
the original albedo map. Left: the recovered albedo maps for SVCR =
0.5, 0.025 and 0. The pixels of the recovered maps are divided into
four surface types: water (blue), vegetation (green), sand (yellow) and
snow (white), based on their Bond albedo. Right: maps displaying the
linear difference between the original and reconstructed albedo maps.

4.2 recovering axial tilt 33

Figure 4.14: The retrieval accuracy of edge-on observations of the input planet from
Figure 4.5 as a function of the obliquity of the planet for four different
equinox angles: α = 0◦, 30◦, 60◦ and 90◦. Shot noise was added to
the reflected light curve (SNR = 13.7) and the matrix was truncated
(SVCR = 0.025). As in Figure 4.11, albedo map and light curve resolu-
tion were reduced.

Figure 4.15: The retrieval accuracy of face-on observations of the input planet from
Figure 4.5 as a function of the obliquity of the planet for four different
equinox angles: α = 0◦, 30◦, 60◦ and 90◦. Shot noise was added to
the reflected light curve (SNR = 13.7) and the matrix was truncated
(SVCR = 0.025). As in Figure 4.11, albedo map and light curve resolu-
tion were reduced.

4.2 recovering axial tilt

So far, we have assumed that the equinox angle α and the obliquity β were
know a priori. In this section, we do not assume that the axial tilt is known,

4.2 recovering axial tilt 34

but we try to estimate the axial tilt by determining the best-fit value of α and
β. Since TT+ is the orthogonal projector onto Col(T), this will be done by
minimizing the following Euclidean distance:

‖f− T(α, β)ar(α, β)‖2 =

‖f− T(α, β)[T(α, β)]+f‖2
(4.4)

where T(α, β) and ar(α, β) are the transfer matrix and recovered albedo map,
which are computed assuming that α and β are the axial tilt parameters of
the planet.

However, if the matrix T(α, β) is full rank we run into a problem. Since
for any full rank matrix T, TT+ does not only map all column vectors of
T to themselves, but is also equal to the identity matrix. Thus for full rank
matrices, the distance defined in Equation 4.4 is always zero:

‖f− T(α, β)ar(α, β)‖2 =

‖f− T(α, β)[T(α, β)]+f‖2 =

‖f− f‖2 = 0

This problem can, however, be bypassed by truncating [T(α, β)]+, since
this reduces the rank of the matrix.

The axial tilt is then estimated by minimizing the distance mentioned in
Equation 4.4 for axial tilt parameters: α = 0◦, 5◦ . . . , 180◦ and β = 0◦, 5◦, . . . , 90◦
3. If the distance is minimized for multiple obliquities, the average of these
values is taken. In Figure 4.16 and Figure 4.18, the recovery of the obliquity
as a function of the obliquity for edge-on observations is shown for different
equinox angles (α = 0◦, 30◦, 60◦ and 90◦). Figure 4.17 and Figure 4.19 show
the same process for face-on observations. Furthermore, for Figure 4.16 and
Figure 4.17 noiseless light curves are used, while for Figure 4.18 and Fig-
ure 4.19 shot noise is added to the light curve.

3 Increasing the resolution of the axial tilt recovery grid will, of course, also increase recovery
accuracy. However, the reduced resolution was chosen to lower computation costs.

4.2 recovering axial tilt 35

Figure 4.16: Graph illustrating the recovery of the obliquity β for edge-on obser-
vations of noiseless light curves, for four different equinox angles
α = 0◦, 30◦, 60◦ and 90◦.

Figure 4.17: Graph illustrating the recovery of the obliquity β for edge-on obser-
vations of light curves with added shot noise (SNR = 13.7), for four
different equinox angles α = 0◦, 30◦, 60◦ and 90◦.

4.2 recovering axial tilt 36

Figure 4.18: Graph illustrating the recovery of the obliquity β for face-on observa-
tions of noiseless light curves, for four different equinox angles α = 0◦,
30◦, 60◦ and 90◦. However, most data points are not visible as the data
points overlap each other.

Figure 4.19: Graph illustrating the recovery of the obliquity β for face-on obser-
vations of light curves with added shot noise (SNR = 13.7), for four
different equinox angles α = 0◦, 30◦, 60◦ and 90◦.

5 D I S C U S S I O N & C O N C L U S I O N

In this paper, we have developed an alternative approach to spin-orbit to-
mography: a method of reconstructing the two- dimensional planetary sur-
face using the daily and yearly variation of the scattered starlight that gets
reflected by exoplanets. Applying our method to mock light curve data, we
have demonstrated that our method works for self-generated surface maps
consisting of four surface types: ocean, vegetation, sand and snow. Even
when shot noise is added to the light curve (SNR ≈ 14), a detailed sur-
face map can be retrieved, which accurately contains the planet’s continents
and oceans. Furthermore, we also found that the planet’s axial tilt can be
estimated using this method.

However, one should keep in mind that several simplifying assumption
were made: cloudless surface, Lambertian reflection. Also, only shot noise
was taken into account, which is only a lower bound to the noise that is
present during actual light curve measurement. Not omitting clouds, other
types of reflection and other sources of noise may significantly reduce the
retrieval quality.

Furthermore, it should be noted that even though we have only consid-
ered edge-on and face-on observations, our code works for other observer
inclinations as well.

recovery of planetary surfaces

The accuracy of the map retrieved using our approach to spin-orbit tomog-
raphy, depends primarily on two factors: the number of observations and
planet’s axial tilt.

The first one should be obvious, as more observations of the planet’s
reflected light curve should lead to more information about the planetary
surface and thus better retrieval. However, as the number of observations
surpasses the number of recovered surface pixels, the MSE does not seem
to decrease much further. This diminished increase in retrieval accuracy
can probably be attributed to the fact that the maximum rank of the trans-
formation matrix is capped off above by both the number of observations
and the number of surface pixels. Thus, the rank of the matrix, and with
it the amount of extractable information, will probably not increase much
further after the number of observations has become greater than the num-
ber of reconstructed surface pixels. This means that after one has acquired
light curve data, one should adjust the resolution of the recovery such that
the transformation matrix is (approximately) square. Since for optimal re-
trieval quality, one wants to have high resolution (to retrieve as many sur-
face features as possible), while keeping the MSE small (to make sure that

37

discussion & conclusion 38

the retrieved surface features are actually present), which is achieved for
(approximately) square transformation matrices.

The retrieval quality also seems to strongly depend on the axial tilt of the
planet. For some equinox angles α and obliquities β, the singular values
seem to converge significantly faster than for others. Indicating that the
ranks of these transformations, and thus the maximum attainable recovery
qualities, are significantly lower than others.

Differences in retrieval quality for different spin-axis configurations can
also directly be seen when looking at the mean squared errors of the recov-
ered surface maps. For both edge-on and face-on observations, the retrieval
quality seems to increase as the obliquity of the exoplanet increases. How-
ever, for edge-on observations of planets with very small equinox angles, the
retrieval quality diminishes again after the obliquity surpasses β ≈ 45◦.

The reduced surface retrieval quality of exoplanets with smaller obliquity
for edge-on observation can be attributed to the reduced accuracy in the
retrieval of latitudinal surface features, which is the result of a lack of sea-
sonal variation in the reflected light curve of the planet. The obliquity of an
exoplanet causes different latitudinal regions to be illuminated at different
locations in the planet’s orbit. This results in seasonal differences in the light
curve intensity based on latitudinal differences in the albedo map, and thus
allowing retrieval of latitudinal surface features.

When no noise is present, an obliquity of β = 5◦ produces sufficient sea-
sonal variation for maximizing retrieval quality. However, when shot noise
is added, the retrieval quality is not yet maximized for β = 5◦, and it keeps
increasing as the obliquity increases. This can be explained by the increase
in seasonal variation of the reflected light curve as the obliquity of a planet
increases. Therefore, when a planet has greater obliquity, less of the varia-
tion gets obscured by noise. In the special case when the planet has no axial
tilt (β = 0), no seasonal variation is present, thus no latitudinal distinction
can be made and the recovered surface map is perfectly symmetrical around
the equator.

The reduced retrieval quality for edge-on observations of planets with
small equinox angle but greater obliquity and for face-on observations with
smaller obliquity can be attributed to another phenomenon. In both cases,
significant parts of the planetary surface are never visible to the observer
during the planet’s orbit and thus never contribute to the reflected light
curve. Hence, no information about these surface pixels is known and they
cannot be accurately retrieved. In this thesis, these parts of the planetary
surface are mapped as ocean, as the Moore-Penrose pseudo-inverse always
returns the best fitting solution with minimum norm and oceanic pixels have
minimum albedo.

recovery of axial tilt

Unlike the orbital and rotation period of the planet, the axial tilt of the planet
is often not known a priori. However, all three parameters need to be known
for the computation of the (right) transformation matrix. Therefore, we have

discussion & conclusion 39

also tried to retrieve the axial tilt of the planet. This was done by minimizing
the following distance on a discretized grid of values for α and β:

‖f− T(α, β)[T(α, β)]+f‖2

The process was generally very successful. For both edge-on and face-on
observations, the recovered obliquity was almost always equal to the obliq-
uity value on the grid that was closest to the true obliquity of the exoplanet.
However, analogous to the retrieval quality, the axial tilt recovery was less
accurate when the exoplanet had small obliquity.

recommendations

Some recommendations for future research are:

• Include a time-dependent surface map (e.g. clouds and seasonal changes)

• Include other types of reflection (e.g. non-Lambertian reflection of
water)

• Include more types of noise (e.g. a layer of Gaussian noise due to
instrumental noise and background noise from other celestial bodies)

• Adjust spin-orbit tomography for other inhomogeneous surfaces (e.g.
adding more surface types found on earth, or adjusting the method for
exoplanets that are not Earth-like)

• Try an equal-area pixelization scheme of the surface map instead of
equirectangular pixelization scheme that we have used in this thesis
(e.g. HEALPix pixelization)

• Since Earth-like exoplanets will probably have reasonably thick atmo-
spheres, research the effects of Rayleigh scattering on the retrieval qual-
ity

B I B L I O G R A P H Y

Aizawa, M., Kawahara, H., and Fan, S. (2020). Global mapping of an exo-
earth using sparse modeling. The Astrophysical Journal, 896(1):22.

Betts, A. K. and Ball, J. H. (1997). Albedo over the boreal forest. Journal of
Geophysical Research: Atmospheres, 102(D24):901–28.

Cowan, N. B. and Agol, E. (2008). Inverting phase functions to map exoplan-
ets. The Astrophysical Journal, 678(2).

Cowan, N. B. and Fujii, Y. (2021). Mapping exoplanets. Handbook of Exoplan-
ets, page 1–18.

Dorian (2017). Représentation des angles d’euler
avec tikz. https://blog.dorian-depriester.fr/latex/tikz/

representation-des-angles-deuler-avec-tikz. Last accessed on 31-07-2021.

Dressing, C. D. and Charbonneau, D. (2015). The occurrence of poten-
tially habitable planets orbiting m dwarfs estimated from the fullkepler-
dataset and an empirical measurement of the detection sensitivity. The
Astrophysical Journal, 807(1):45.

Fan, S., Li, C., Li, J., Bartlett, S., Jiang, J. H., Natraj, V., Crisp, D., and Yung,
Y. L. (2019). Earth as an exoplanet: A two-dimensional alien map. The
Astrophysical Journal, 882(1).

Farr, B., Farr, W. M., Cowan, N. B., Haggard, H. M., and Robinson, T. (2018).
exocartographer: A bayesian framework for mapping exoplanets in re-
flected light. The Astronomical Journal, 156(4):146.

Goldstein, H. (1997). Classical mechanics. Addison-Wesley.

Haus, R., Kappel, D., Tellmann, S., Arnold, G., Piccioni, G., Drossart, P.,
and Häusler, B. (2016). Radiative energy balance of venus based on
improved models of the middle and lower atmosphere. Icarus, 272:178–
205.

Kawahara, H. and Fujii, Y. (2010). Global mapping of earth-like exoplanets
from scattered light curves. The Astrophysical Journal, 720(2):1333–1350.

Kawahara, H. and Fujii, Y. (2011). Mapping clouds and terrain of earth-
like planets from photometric variability: Demonstration with planets
in face-on orbits. The Astrophysical Journal, 739(2).

Kawahara, H. and Masuda, K. (2020). Bayesian dynamic mapping of an exo-
earth from photometric variability. The Astrophysical Journal, 900(1):48.

Mallama, A. (2017). The spherical bolometric albedo of planet mercury.

Mayor, M. and Queloz, D. (1995). A jupiter-mass companion to a solar-type
star. Nature, 378(6555):355–359.

40

https://blog.dorian-depriester.fr/latex/tikz/representation-des-angles-deuler-avec-tikz
https://blog.dorian-depriester.fr/latex/tikz/representation-des-angles-deuler-avec-tikz

BIBLIOGRAPHY 41

Mogensen, T. (2010). Planet map generation by tetrahedral subdivision. In
Pnueli, A., Virbitskaite, I., and Voronkov, A., editors, Perspectives of
Systems Informatics, Lecture notes in computer science, pages 306–318,
Switzerland. Springer. 7th International Andrei Ershov Memorial Con-
ference on Perspectives of System Informatics, PSI 2009 ; Conference
date: 15-06-2009 Through 19-06-2009.

NSIDC (2020). Thermodynamics: Albedo. https://nsidc.org/cryosphere/

seaice/processes/albedo.html. Last accessed on 31-07-2021.

Strang, G. (2006). Linear algebra and its applications. Thomson.

Tetzlaff, G. (1983). Albedo of the Sahara. Satellite Meas. of Radiation Budget
Parameters.

Tuomi, M., Jones, H. R. A., Barnes, J. R., Anglada-Escudé, G., and
Jenkins, J. S. (2014). Bayesian search for low-mass planets around
nearby m dwarfs – estimates for occurrence rate based on global de-
tectability statistics. Monthly Notices of the Royal Astronomical Society,
441(2):1545–1569.

Winn, J. N., Holman, M. J., Torres, G., Mccullough, P., Johns-Krull, C.,
Latham, D. W., Shporer, A., Mazeh, T., Garcia-Melendo, E., Foote,
C., and et al. (2008). The transit light curve project. ix. evidence
for a smaller radius of the exoplanet xo-3b. The Astrophysical Journal,
683(2):1076–1084.

https://nsidc.org/cryosphere/seaice/processes/albedo.html
https://nsidc.org/cryosphere/seaice/processes/albedo.html

A A P P E N D I X

code for surface map generation

1 import matp lo t l i b . pyplot as p l t

2 import numpy as np

3 import random

4 from m p l ˙ t o o l k i t s . mplot3d import Axes3D

5 from sc ipy . s p a t i a l import Delaunay , ConvexHull

6 from matp lo t l i b import cm

7 from matp lo t l i b . c o l o r s import ListedColormap ,

LinearSegmentedColormap

8

9

10

11

12 de f c r e a t e ˙ s p h e r e 1 (r , r e s) :

13 ’ ’ ’

14 c r e a t e s po in t s on a sphere in the form :

15 [[x1 . y1 . z1 .]

16

17 [xn . yn . zn .]]

18 ’ ’ ’

19 phi = np . l i n s p a c e (0 , 2*np . pi , 2* r e s)

20 theta = np . l i n s p a c e (0 , np . pi , r e s)

21

22 theta , phi = np . meshgrid (theta , phi)

23

24 t h e t a ˙ f l a t = np . ndarray . f l a t t e n (theta , order = ’C ’)

25 p h i ˙ f l a t = np . ndarray . f l a t t e n (phi , order = ’C ’)

26

27 r ˙ p r e = r *np . s i n (t h e t a ˙ f l a t)

28 x = np . cos (p h i ˙ f l a t) * r ˙ p r e

29 y = np . s i n (p h i ˙ f l a t) * r ˙ p r e

30 z = r *np . cos (t h e t a ˙ f l a t)

31

32 coo rd ina t e s = np . vstack ((x , y , z)) . t ranspose ()

33

34 re turn coord inate s , theta , phi

35

36

37

38

39 de f p n t ˙ i n ˙ c v e x ˙ h u l l (hu l l , pnt) :

40 ’ ’ ’

41 Checks i f ‘ pnt ‘ i s i n s i d e the convex h u l l .

42 ’ ’ ’

43 new˙hu l l = ConvexHull (np . concatenate ((h u l l . po ints , [pnt])))

44 i f np . a r r a y ˙ e q u a l (new˙hu l l . v e r t i c e s , h u l l . v e r t i c e s) :

45 re turn True

46 e l s e :

42

appendix 43

47 re turn Fal se

48

49

50

51 de f he ight (p , v e r t i c e s , seeds , a l t i t u d e s) :

52 max˙dist = 0

53 ’ ’ ’

54 f i n d i n g s h o r t e s t edge

55 ’ ’ ’

56 f o r i in range (3) :

57 f o r j in range (i+1 , 4) :

58 d i s t = np . l i n a l g . norm(v e r t i c e s [i] - v e r t i c e s [j])

59 i f d i s t ¿ max˙d ist :

60 max˙dist = d i s t

61 f u r t h e s t = np . array ([i , j])

62

63 ’ ’ ’

64 r e o r d e r i n g everyth ing

65 ’ ’ ’

66 v e r t i c e s [[0 , f u r t h e s t [0]]] = v e r t i c e s [[f u r t h e s t [0] , 0]]

67 v e r t i c e s [[1 , f u r t h e s t [1]]] = v e r t i c e s [[f u r t h e s t [1] , 1]]

68

69 s eeds [[0 , f u r t h e s t [0]]] = seeds [[f u r t h e s t [0] , 0]]

70 s eeds [[1 , f u r t h e s t [1]]] = seeds [[f u r t h e s t [1] , 1]]

71

72 a l t i t u d e s [[0 , f u r t h e s t [0]]] = a l t i t u d e s [[f u r t h e s t [0] , 0]]

73 a l t i t u d e s [[1 , f u r t h e s t [1]]] = a l t i t u d e s [[f u r t h e s t [1] , 1]]

74

75 ’ ’ ’

76 c r e a t i n g new edge

77 new a l t i t u d e = average a l t i t u d e + random (- 0 , 0 5 ; 0 ,05) * s q r t (

d i s t ance)

78 ’ ’ ’

79 v˙new = (v e r t i c e s [0]+ v e r t i c e s [1]) /2

80 s ˙new = (seeds [0]+ seeds [1]) /2

81 random . seed (s˙new)

82 a˙new = (a l t i t u d e s [0]+ a l t i t u d e s [1]) /2 + 0 .01* (random . random ()

- 0 . 5) * max˙d is t **1 .5

83

84

85 ’ ’ ’

86 f i n d i n g in which tetrahedon our po int p i s

87 ’ ’ ’

88 t e t r a = np . copy (v e r t i c e s)

89 t e t r a [1] = v˙new

90 h u l l = ConvexHull (t e t r a)

91

92 i f p n t ˙ i n ˙ c v e x ˙ h u l l (hu l l , p) :

93 v e r t i c e s [1] = v˙new

94 s eeds [1] = s˙new

95 a l t i t u d e s [1] = a˙new

96 e l s e :

97 v e r t i c e s [0] = v˙new

98 s eeds [0] = s˙new

99 a l t i t u d e s [0] = a˙new

100

101 ’ ’ ’

102 stop i f r e s o l u t i o n i s g rea t enough

103 ’ ’ ’

104 i f max˙d ist ¡ 0 . 0 0 1 :

appendix 44

105 re turn np . sum(a l t i t u d e s) /4

106 e l s e :

107

108

109 he ight (p , v e r t i c e s , seeds , a l t i t u d e s)

110 re turn np . sum(a l t i t u d e s) /4

111

112

113

114

115 ’ ’ ’

116 i n i t i a l i z e sphere and f i n a l a l t i t u d e s vec to r

117 ’ ’ ’

118 r e s = 45

119 sphere , theta , phi = c r e a t e ˙ s p h e r e 1 (1 , r e s)

120 a l t s = np . z e ro s (l en (sphere [: , 0]))

121 #a l t s 2 = a l t s . copy ()

122 #a l t s 3 = a l t s . copy ()

123 #a l t s 4 = a l t s . copy ()

124 #a l t s 5 = a l t s . copy ()

125 #a l t s 6 = a l t s . copy ()

126 albedo˙map = np . z e ro s (l en (sphere [: , 0]))

127 #albedo˙map2 = albedo˙map . copy ()

128 #albedo˙map3 = albedo˙map . copy ()

129 #albedo˙map4 = albedo˙map . copy ()

130 #albedo˙map5 = albedo˙map . copy ()

131 #albedo˙map6 = albedo˙map . copy ()

132

133 albedo˙map˙comp = albedo˙map . copy ()

134 ’ ’ ’

135 i n i t i a l i z e v e r t i c e s , s eeds and a l t i t u d e s (sea l e v e l)

136 ’ ’ ’

137

138

139 ’ ’ ’

140 c a l c u l a t e a l t i t u d e f o r every po int on sphere

141 ’ ’ ’

142 f o r i in range (l en (sphere [: , 0])) :

143 v e r t i c e s ˙ = np . array ([[- 2 , 2 . 1 , 2 . 2] , [2 , - 2 . 1 , 2 . 2] ,

[2 , 2 . 1 , - 2 . 2] , [- 2 . 3 , - 2 . 4 , - 2 . 5]])

144

145 s e e d s ˙ , a l t i t u d e s ˙ = np . array ([8 . 3 e5 , 2 . 5 e5 , 3 .65 e5 , 7 . 4 e5]) ,

np . array ([0 . , 0 . , 0 . , 0 .])

146 point = sphere [i , :]

147 a l t = he ight (point , v e r t i c e s ˙ , s e ed s ˙ , a l t i t u d e s ˙)

148 a l t s [i] = a l t

149

150 # v e r t i c e s ˙ = np . array ([[- 2 , 2 . 1 , 2 . 2] , [2 , - 2 . 1 , 2 . 2] ,

[2 , 2 . 1 , - 2 . 2] , [- 2 . 3 , - 2 . 4 , - 2 . 5]])

151 # s e e d s ˙ , a l t i t u d e s ˙ = np . array ([6 . 5 e6 , 2 . 8 e6 , 3 . 6 e6 , 7 . 3 e6]) ,

np . array ([0 . , 0 . , 0 . , 0 .])

152 # point = sphere [i , :]

153 # a l t 2 = he ight (point , v e r t i c e s ˙ , s e ed s ˙ , a l t i t u d e s ˙)

154 # a l t s 2 [i] = a l t 2

155 #

156 # v e r t i c e s ˙ = np . array ([[- 2 , 2 . 1 , 2 . 2] , [2 , - 2 . 1 , 2 . 2] ,

[2 , 2 . 1 , - 2 . 2] , [- 2 . 3 , - 2 . 4 , - 2 . 5]])

157 # s e e d s ˙ , a l t i t u d e s ˙ = np . array ([6 . 7 e7 , 4 . 5 e7 , 9 . 8 e7 , 3 . 1 e7]) ,

np . array ([0 . , 0 . , 0 . , 0 .])

158 # point = sphere [i , :]

appendix 45

159 # a l t 3 = he ight (point , v e r t i c e s ˙ , s e ed s ˙ , a l t i t u d e s ˙)

160 # a l t s 3 [i] = a l t 3

161 #

162 # v e r t i c e s ˙ = np . array ([[- 2 , 2 . 1 , 2 . 2] , [2 , - 2 . 1 , 2 . 2] ,

[2 , 2 . 1 , - 2 . 2] , [- 2 . 3 , - 2 . 4 , - 2 . 5]])

163 # s e e d s ˙ , a l t i t u d e s ˙ = np . array ([7 . 9 e5 , 1 . 3 e5 , 0 . 6 e5 , 4 . 2 e5]) ,

np . array ([0 . , 0 , 0 . , 0 .])

164 # point = sphere [i , :]

165 # a l t 4 = he ight (point , v e r t i c e s ˙ , s e ed s ˙ , a l t i t u d e s ˙)

166 # a l t s 4 [i] = a l t 4

167 #

168 # v e r t i c e s ˙ = np . array ([[- 2 , 2 . 1 , 2 . 2] , [2 , - 2 . 1 , 2 . 2] ,

[2 , 2 . 1 , - 2 . 2] , [- 2 . 3 , - 2 . 4 , - 2 . 5]])

169 # s e e d s ˙ , a l t i t u d e s ˙ = np . array ([2 . 7 e6 , 1 . 6 e6 , 5 . 3 e6 , 0 . 4 e6]) ,

np . array ([0 . , 0 . 5 , - 0 . 25 , - 0 . 2 5])

170 # point = sphere [i , :]

171 # a l t 5 = he ight (point , v e r t i c e s ˙ , s e ed s ˙ , a l t i t u d e s ˙)

172 # a l t s 5 [i] = a l t 5

173 #

174 # v e r t i c e s ˙ = np . array ([[- 2 , 2 . 1 , 2 . 2] , [2 , - 2 . 1 , 2 . 2] ,

[2 , 2 . 1 , - 2 . 2] , [- 2 . 3 , - 2 . 4 , - 2 . 5]])

175 # s e e d s ˙ , a l t i t u d e s ˙ = np . array ([7 . 5 e7 , 4 . 2 e7 , 0 . 8 e7 , 3 . 6 e7]) ,

np . array ([0 . , 0 . , 0 . , 0 .])

176 # point = sphere [i , :]

177 # a l t 6 = he ight (point , v e r t i c e s ˙ , s e ed s ˙ , a l t i t u d e s ˙)

178 # a l t s 6 [i] = a l t 6

179 # pr in t (i)

180

181

182 ’ ’ ’

183 c a l c u l a t e albedo map

184 ’ ’ ’

185

186

187 ave = np . sum(a l t s) / l en (a l t s)

188 a l t s = a l t s - ave

189 max˙alt = max(a l t s)

190 min ˙a l t = min (a l t s)

191

192 a l t ˙ g r i d 1 = a l t s . reshape ((res , 2* r e s) , order = ’F ’)

193 a l t ˙ g r i d 1 ˙ = np . copy (a l t ˙ g r i d 1)

194

195 a l t s 1 = np . ndarray . f l a t t e n (a l t ˙ g r i d 1 ˙ , order = ’F ’)

196

197

198 f o r i in range (l en (sphere [: , 0])) :

199 i f a l t s 1 [i] ¿= 0 .8* max˙a lt :

200 albedo˙map [i] = 0 .8 #snow

201 e l i f a l t s 1 [i] ¡ 0 . 0 :

202 albedo˙map [i] = 0 .06 #ocean

203 e l i f (a l t s 1 [i] ¿= 0 .4* max˙a lt and a l t s 1 [i] ¡ 0 .8* max˙a lt) :

204 albedo˙map [i] = 0 .4 #s o i l

205 e l i f (a l t s 1 [i] ¿= 0 .0 and a l t s 1 [i] ¡ 0 .4* max˙a lt) :

206 albedo˙map [i] = 0 .15 #f o r e s t

207

208 ’ ’ ’

209 c r e a t e cor re spond ing meshgrid

210 ’ ’ ’

211 a l t ˙ g r i d = a l t s 1 . reshape ((res , 2* r e s) , order = ’F ’)

212 a lbedo ˙map˙gr id = albedo˙map . reshape ((res , 2* r e s) , order = ’F ’)

appendix 46

213

214 n e w ˙ g i s t ˙ e a r t h = cm. get˙cmap (’ g i s t ˙ e a r t h ’ , 4096)

215 newcolors = np . vstack ((n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 , 0 . 35 , 256)) ,

n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 4 5 , 1 , 256))))

216 newcmp = ListedColormap (newcolors)

217 a l b e d o ˙ c o l o r s = np . vstack ((n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 1 5 , 0 . 22 ,

100)) , n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 4 5 , 0 . 55 , 200)) ,

n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 7 , 0 . 8 , 300)) , n e w ˙ g i s t ˙ e a r t h (np .

l i n s p a c e (0 . 9 5 , 1 , 400))))

218 albedo˙cmp = ListedColormap (a l b e d o ˙ c o l o r s)

219 a l b e d o ˙ c o l o r s 1 = np . vstack ((n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 1 5 , 0 . 22 ,

140)) , n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 4 5 , 0 . 55 , 180)) ,

n e w ˙ g i s t ˙ e a r t h (np . l i n s p a c e (0 . 7 , 0 . 8 , 280)) , n e w ˙ g i s t ˙ e a r t h (np .

l i n s p a c e (0 . 9 5 , 1 , 400))))

220 albedo˙cmp1 = ListedColormap (a l b e d o ˙ c o l o r s 1)

221 l on = np . l i n s p a c e (- np . pi , np . pi , 2* r e s)

222 l a t = np . l i n s p a c e (- np . p i / 2 . , np . p i /2 , r e s)

223 Lon , Lat = np . meshgrid (lon , l a t)

224

225

226 f i g 1 = p l t . f i g u r e (1 , f i g s i z e =(20 , 9))

227 ax1 = f i g 1 . add ˙ subp lot (111 , p r o j e c t i o n=’ mol lweide ’)

228 im1 = ax1 . pcolormesh (Lon , Lat , np . f l i p u d (a l t ˙ g r i d) , cmap= newcmp)

229 p l t . c o l o rba r (im1 , shr ink =0.75 , aspect =40)

230 f i g 1 . show ()

code for creating mock light curve data and albedo
map recovery

1

2

3 import matp lo t l i b . pyplot as p l t

4 import math

5 import numpy as np

6

7

8

9 ’ ’ ’

10 Parameters

11 ’ ’ ’

12 r e s = 45

13 rho = 6.371 e6

14 R = 1.496 e11

15 alpha = 60/180*np . p i

16 beta = 60/180*np . p i

17

18 day = 24

19 year = 365*day

20 omega˙day = 2*np . p i /day

21 omega˙year = 2*np . p i / year

22

23

24 d e l t a ˙ t = 1

25 d e l t a ˙ p h i = np . p i / r e s

26 d e l t a ˙ t h e t a = np . p i / r e s

27 delta˙Omega = d e l t a ˙ p h i * d e l t a ˙ t h e t a

appendix 47

28

29 hours = np . arange (0 , 24)

30 t ime ˙a r ray = hours . copy ()

31

32 N˙ave = 187

33

34 f o r i in range (1 , 200) :

35 t ime ˙a r ray = np . append (t ime ˙array , hours + i * year /200)

36

37 t i m e ˙ r e s = len (t ime ˙a r ray)

38

39 ’ ’ ’

40 Albedo -map

41 ’ ’ ’

42 A = np . ones (2* r e s **2)

43 time = np . l i n s p a c e (0 , 1 , round (year / d e l t a ˙ t)) *365

44

45

46 ’ ’ ’

47 Euler r o t a t i o n matr i ce s

48 ’ ’ ’

49 de f p o s i t i v e (arg) :

50 re turn (arg + abs (arg)) /2

51

52 de f y ˙ r o t a t i o n (ang le) :

53 Y = np . array ([[np . cos (ang le) , 0 , np . s i n (ang le)] , [0 , 1 , 0] , [- np

. s i n (ang le) , 0 , np . cos (ang le)]])

54 re turn Y

55

56 de f z ˙ r o t a t i o n (ang le) :

57 Z = np . array ([[np . cos (ang le) , -np . s i n (ang le) , 0] , [np . s i n (ang le

) , np . cos (ang le) , 0] , [0 , 0 , 1]])

58 re turn Z

59

60

61

62 R˙equinox = z ˙ r o t a t i o n (alpha)

63 R ˙ t i l t = y ˙ r o t a t i o n (beta)

64 R˙ax i a l = np . matmul (R˙equinox , R ˙ t i l t)

65

66 ’ ’ ’

67 I n i t i a l i z e t rans f romat ion matr i ce s (edge - on , face - on)

68 ’ ’ ’

69 T = np . z e r o s ((t ime ˙ r e s , 2* r e s **2))

70

71 T1 = T. copy ()

72

73 ’ ’ ’

74 Observer

75 ’ ’ ’

76 o ˙vec = np . array ([1 , 0 , 0])

77 o ˙ v e c ˙ 1 = np . array ([0 , 0 , 1])

78

79

80 ’ ’ ’

81 Compute matrix e lements

82 ’ ’ ’

83 f o r i in range (l en (t ime ˙a r ray)) :

84 t = t ime ˙a r ray [i]

appendix 48

85 r ˙ v e c = np . array ([- np . cos (omega˙year * t) , -np . s i n (omega˙year * t)

, 0])

86 R˙da i l y = z ˙ r o t a t i o n (omega˙day* t)

87 d a i l y ˙ r o t a t i o n = np . matmul (R˙ax ia l , R ˙da i l y)

88

89 f o r j in range (2* r e s **2) :

90 phi = math . f l o o r (j / r e s) * d e l t a ˙ p h i

91 theta = (j % r e s) * d e l t a ˙ t h e t a

92

93 s ˙ v e c = np . array ([np . cos (phi) *np . s i n (theta) , np . s i n (phi) *

np . s i n (theta) , np . cos (theta)])

94 s ˙ v e c ˙ r o t a t e d = np . matmul (d a i l y ˙ r o t a t i o n , s ˙ v e c)

95

96 r ˙ s = np . dot (r ˙ vec , s ˙ v e c ˙ r o t a t e d)

97 s ˙ o = np . dot (s ˙ v e c ˙ r o t a t e d , o ˙ v e c)

98 s ˙ o ˙ 1 = np . dot (s ˙ v e c ˙ r o t a t e d , o ˙ v e c ˙ 1)

99

100

101 i l l um ina t ed = p o s i t i v e (r ˙ s)

102 v i s i b l e = p o s i t i v e (s ˙ o)

103 v i s i b l e ˙ 1 = p o s i t i v e (s ˙ o ˙ 1)

104

105 T[i] [j] = i l l um ina t ed * v i s i b l e *np . s i n (theta) * delta˙Omega

106 T1 [i] [j] = i l l um ina t ed * v i s i b l e ˙ 1 *np . s i n (theta) * delta˙Omega

107

108

109

110 ’ ’ ’

111 Compute l i g h t curves

112 ’ ’ ’

113 f ˙ c u r v e ˙ e d g e = np . matmul (T, albedo˙map) * rho **2/(R**2*np . p i)

114 f ˙ c u r v e ˙ f a c e = np . matmul (T1 , albedo˙map) * rho **2/(R**2*np . p i)

115

116

117 n o i s e ˙ p o i s s o n = np . random . po i s son (N˙ave , t i m e ˙ r e s) /N˙ave

118 n o i s e ˙ g a u s s = np . random . normal (0 , 1 , t i m e ˙ r e s)

119

120 #f ˙ c u r v e ˙ e d g e ˙ n o i s y = f ˙ c u r v e ˙ e d g e + n o i s e ˙ g a u s s *max(f ˙ c u r v e ˙ e d g e

) /100

121 #f ˙ c u r v e ˙ f a c e ˙ n o i s y = f ˙ c u r v e ˙ f a c e + n o i s e ˙ g a u s s *max(f ˙ c u r v e ˙ f a c e)

/100

122

123 f ˙ c u r v e ˙ e d g e ˙ n o i s y = np . mult ip ly (f ˙ c u r v e ˙ e d g e , n o i s e ˙ p o i s s o n)

124 f ˙ c u r v e ˙ f a c e ˙ n o i s y = np . mult ip ly (f ˙ c u r v e ˙ f a c e , n o i s e ˙ p o i s s o n)

125

126 ’ ’ ’

127 Save t r a n s f e r matr i ce s f o r l a t e r use

128 ’ ’ ’

129 #np . savez ˙compressed (’ A l b e d o ˙ a 9 0 ˙ b 9 0 ˙ 2 0 d ˙ r e s ˙ 1 5 . npz ’ , edge = T,

f a c e = T1)

130

131

132 ’ ’ ’

133 Compute and save SVD

134 ’ ’ ’

135 SVD˙edge = np . l i n a l g . svd (T, compute˙uv= False)

136 SVD˙face = np . l i n a l g . svd (T1 , compute˙uv= False)

137

138

139 ’ ’ ’

appendix 49

140 Compute i n v e r s e t r a n s f e r matrix

141 ’ ’ ’

142 T˙p inv ˙edge = np . l i n a l g . pinv (T, rcond = 0 .025)

143 T ˙ p i n v ˙ f a c e = np . l i n a l g . pinv (T1 , rcond = 0 .025)

144 A˙edge = np . matmul (T˙pinv˙edge , f ˙ c u r v e ˙ e d g e)

145 A˙ face = np . matmul (T ˙p inv ˙ f a ce , f ˙ c u r v e ˙ f a c e ˙)

146

147 #

148 e d g e ˙ f a c t o r = 0 . 8 / (max(A˙edge) - min (A˙edge))

149 f a c e ˙ f a c t o r = 0 . 8 / (max(A˙ face) - min (A˙ face))

150

151

152 A˙edge ˙ s c a l ed = (np . matmul (T˙pinv˙edge , f ˙ c u r v e ˙ e d g e) -min (A˙edge))

* e d g e ˙ f a c t o r

153 A ˙ f a c e ˙ s c a l e d = (np . matmul (T ˙p inv ˙ f a ce , f ˙ c u r v e ˙ f a c e) -min (A˙ face))

* f a c e ˙ f a c t o r

154

155 r e c o n s t u c t ˙ A ˙ g r i d ˙ e d g e ˙ s c a l e d = A˙edge ˙ s c a l ed . reshape ((res , 2* r e s)

, order = ’F ’)

156 r e c o n s t u c t ˙ A ˙ g r i d ˙ f a c e ˙ s c a l e d = A ˙ f a c e ˙ s c a l e d . reshape ((res , 2* r e s)

, order = ’F ’)

157

158 e d g e ˙ d i f f ˙ g r i d = np . abs (a lbedo ˙map˙gr id -

r e c o n s t u c t ˙ A ˙ g r i d ˙ e d g e ˙ s c a l e d)

159 f a c e ˙ d i f f ˙ g r i d = np . abs (a lbedo ˙map˙gr id -

r e c o n s t u c t ˙ A ˙ g r i d ˙ f a c e ˙ s c a l e d)

160

161 t h e t a ˙ a r r a y ˙ p l u s = np . l i n s p a c e (0 , np . pi , r e s) + 1/2* d e l t a ˙ t h e t a

162 the ta ˙ a r r ay ˙m in = np . l i n s p a c e (0 , np . pi , r e s) - 1/2* d e l t a ˙ t h e t a

163

164 t h e t a ˙ a r r a y ˙ p l u s [res - 1] = np . p i

165 the ta ˙ a r r ay ˙m in [0] = 0

166

167 t h e t a ˙ m a t r i x ˙ p l u s = np . t i l e (t h e t a ˙ a r r a y ˙ p l u s , (2* res , 1)) .

t ranspose ()

168 the ta ˙matr ix ˙min = np . t i l e (the ta ˙ a r r ay ˙m in , (2* res , 1)) .

t ranspose ()

169

170 s u r f ˙ m a t r i x = d e l t a ˙ p h i *(np . cos (the ta ˙matr ix ˙min) - np . cos (

t h e t a ˙ m a t r i x ˙ p l u s)) /(4*np . p i)

171

172 e d g e ˙ e r r o r = np . sum(np . mult ip ly (np . square (e d g e ˙ d i f f ˙ g r i d) ,

s u r f ˙ m a t r i x))

173 f a c e ˙ e r r o r = np . sum(np . mult ip ly (np . square (f a c e ˙ d i f f ˙ g r i d) ,

s u r f ˙ m a t r i x))

174

175 pr in t (e d g e ˙ e r r o r)

176 pr in t (f a c e ˙ e r r o r)

177

178

179

180 A˙edge ˙no i sy = np . matmul (T˙pinv˙edge , f ˙ c u r v e ˙ e d g e ˙ n o i s y)

181 A ˙ f a c e ˙ n o i s y = np . matmul (T ˙p inv ˙ f a ce , f ˙ c u r v e ˙ f a c e ˙ n o i s y)

182

183

184 e d g e ˙ f a c t o r ˙ n o i s y = 0 . 8 / (max(A˙edge ˙no i sy) - min (A˙edge ˙no i sy))

185 f a c e ˙ f a c t o r ˙ n o i s y = 0 . 8 / (max(A ˙ f a c e ˙ n o i s y) - min (A ˙ f a c e ˙ n o i s y))

186

187

188 A ˙ e d g e ˙ s c a l e d ˙ n o i s y = (A˙edge ˙no i sy) * e d g e ˙ f a c t o r ˙ n o i s y

appendix 50

189 A ˙ f a c e ˙ s c a l e d ˙ n o i s y = (A ˙ f a c e ˙ n o i s y) * f a c e ˙ f a c t o r ˙ n o i s y

190

191 r e c o n s t u c t ˙ A ˙ g r i d ˙ e d g e ˙ s c a l e d ˙ n o i s y = A ˙ e d g e ˙ s c a l e d ˙ n o i s y . reshape

((res , 2* r e s) , order = ’F ’)

192 r e c o n s t u c t ˙ A ˙ g r i d ˙ f a c e ˙ s c a l e d ˙ n o i s y = A ˙ f a c e ˙ s c a l e d ˙ n o i s y . reshape

((res , 2* r e s) , order = ’F ’)

193

194 e d g e ˙ d i f f ˙ g r i d ˙ n o i s y = np . abs (a lbedo ˙map ˙gr id -

r e c o n s t u c t ˙ A ˙ g r i d ˙ e d g e ˙ s c a l e d ˙ n o i s y)

195 f a c e ˙ d i f f ˙ g r i d ˙ n o i s y = np . abs (a lbedo ˙map ˙gr id -

r e c o n s t u c t ˙ A ˙ g r i d ˙ f a c e ˙ s c a l e d ˙ n o i s y)

196

197

198 e d g e ˙ e r r o r ˙ n o i s y = np . sum(np . mult ip ly (np . square (

e d g e ˙ d i f f ˙ g r i d ˙ n o i s y) , s u r f ˙ m a t r i x))

199 f a c e ˙ e r r o r ˙ n o i s y = np . sum(np . mult ip ly (np . square (

f a c e ˙ d i f f ˙ g r i d ˙ n o i s y) , s u r f ˙ m a t r i x))

200

201 pr in t (e d g e ˙ e r r o r ˙ n o i s y)

202 pr in t (f a c e ˙ e r r o r ˙ n o i s y)

code for recovering axial tilt

1 import matp lo t l i b . pyplot as p l t

2 import math

3 import numpy as np

4

5 ’ ’ ’

6 Parameters

7 ’ ’ ’

8 r e s = 15

9 rho = 6.371 e6

10 R = 1.496 e11

11 r e s ˙ a l p h a = 37

12 r e s ˙ b e t a = 19

13

14 alpha = np . l i n s p a c e (0/4*np . pi , 2/2*np . pi , r e s ˙ a l p h a)

15 beta = np . l i n s p a c e (0/4*np . pi , 1/2*np . pi , r e s ˙ b e t a)

16

17 day = 24

18 year = 365*day

19 omega˙day = 2*np . p i /day

20 omega˙year = 2*np . p i / year

21

22 d e l t a ˙ t = 1

23 d e l t a ˙ p h i = np . p i / r e s

24 d e l t a ˙ t h e t a = np . p i / r e s

25 delta˙Omega = d e l t a ˙ p h i * d e l t a ˙ t h e t a

26

27 hours = np . arange (0 , 24)

28 t ime ˙a r ray = hours . copy ()

29

30 f o r i in range (1 , 20) :

31 t ime ˙a r ray = np . append (t ime ˙array , hours + i * year /20)

32

33 t i m e ˙ r e s = len (t ime ˙a r ray)

34

appendix 51

35 ’ ’ ’

36 Albedo -map

37 ’ ’ ’

38 A = np . z e ro s ((2* r e s **2 , r e s ˙ a l p h a * r e s ˙ b e t a))

39 f ˙ a r r a y s = np . z e ro s ((480 , r e s ˙ a l p h a * r e s ˙ b e t a))

40 time = np . l i n s p a c e (0 , 1 , round (year / d e l t a ˙ t)) *365

41

42 ’ ’ ’

43 Euler r o t a t i o n matr i ce s

44 ’ ’ ’

45 de f p o s i t i v e (arg) :

46 re turn (arg + abs (arg)) /2

47

48 de f y ˙ r o t a t i o n (ang le) :

49 Y = np . array ([[np . cos (ang le) , 0 , np . s i n (ang le)] , [0 , 1 , 0] , [- np

. s i n (ang le) , 0 , np . cos (ang le)]])

50 re turn Y

51

52 de f z ˙ r o t a t i o n (ang le) :

53 Z = np . array ([[np . cos (ang le) , -np . s i n (ang le) , 0] , [np . s i n (ang le

) , np . cos (ang le) , 0] , [0 , 0 , 1]])

54 re turn Z

55

56 ’ ’ ’

57 I n i t i a l i z e t rans f romat ion matr i ce s (edge - on , face - on)

58 ’ ’ ’

59

60 T = np . z e r o s ((t ime ˙ r e s , 2* r e s **2 , r e s ˙ a l p h a * r e s ˙ b e t a))

61 T˙pinv = np . z e ro s ((2* r e s **2 , t ime ˙ r e s , r e s ˙ a l p h a * r e s ˙ b e t a))

62

63 ’ ’ ’

64 Observer

65 ’ ’ ’

66 o ˙vec = np . array ([0 , 0 , 1])

67

68 ’ ’ ’

69 Compute matrix e lements

70 ’ ’ ’

71 f o r k in range (r e s ˙ a l p h a) :

72 R˙equinox = z ˙ r o t a t i o n (alpha [k])

73

74 f o r l in range (r e s ˙ b e t a) :

75 R ˙ t i l t = y ˙ r o t a t i o n (beta [l])

76 R˙ax i a l = np . matmul (R˙equinox , R ˙ t i l t)

77

78 f o r i in range (l en (t ime ˙a r ray)) :

79 t = t ime ˙a r ray [i]

80 r ˙ v e c = np . array ([- np . cos (omega˙year * t) , -np . s i n (

omega˙year * t) , 0])

81 R˙da i l y = z ˙ r o t a t i o n (omega˙day* t)

82 d a i l y ˙ r o t a t i o n = np . matmul (R˙ax ia l , R ˙da i l y)

83

84 f o r j in range (2* r e s **2) :

85 phi = math . f l o o r (j / r e s) * d e l t a ˙ p h i

86 theta = (j % r e s) * d e l t a ˙ t h e t a

87

88 s ˙ v e c = np . array ([np . cos (phi) *np . s i n (theta) , np .

s i n (phi) *np . s i n (theta) , np . cos (theta)])

89 s ˙ v e c ˙ r o t a t e d = np . matmul (d a i l y ˙ r o t a t i o n , s ˙ v e c)

90

appendix 52

91 r ˙ s = np . dot (r ˙ vec , s ˙ v e c ˙ r o t a t e d)

92 s ˙ o = np . dot (s ˙ v e c ˙ r o t a t e d , o ˙ ve c)

93

94 i l l um ina t ed = p o s i t i v e (r ˙ s)

95 v i s i b l e = p o s i t i v e (s ˙ o)

96

97

98 T[i] [j] [k* r e s ˙ b e t a+l] = i l l um ina t ed * v i s i b l e *np . s i n

(theta) * delta˙Omega

99

100 T˙ = T[: , : , k* r e s ˙ b e t a+l]

101 T˙p inv ˙ = np . l i n a l g . pinv (T˙ , rcond = 0 . 0 1)

102 T˙pinv [: , : , k* r e s ˙ b e t a+l] = T˙p inv ˙

103 A˙ = np . matmul (T˙pinv˙ , f ˙ c u r v e ˙ e d g e)

104 A[: , k* r e s ˙ b e t a+l] =A˙

105 f ˙ a r r a y s [: , k* r e s ˙ b e t a+l] = np . matmul (T˙ , A˙) * rho **2/(R

**2*np . p i)

106 pr in t (k* r e s ˙ b e t a+l)

107

108 f ˙ c u r v e ˙ m a t r i x = np . t i l e (f ˙ c u r v e ˙ e d g e , (r e s ˙ a l p h a * r e s ˙ b e t a , 1)) .

t ranspose ()

109 f ˙ d i f f = np . square (f ˙ c u r v e ˙ m a t r i x - f ˙ a r r a y s)

110 s q u a r e ˙ d i f f = np . sum(f ˙ d i f f , a x i s = 0)

111 minima = np . where (s q u a r e ˙ d i f f == s q u a r e ˙ d i f f . min ()) [0]

112

113 a lpha ˙ = np . f l o o r (minima/ r e s ˙ b e t a) . astype (i n t)

114 b e t a ˙ = minima%r e s ˙ b e t a

115

116 pr in t (’ alpha =’ , np . degree s (alpha [a lpha ˙]))

117 pr in t (’ beta =’ , np . degree s (beta [b e t a ˙]))

	1 Introduction
	2 The Generation Of Albedo Maps
	2.1 The concept of albedo
	2.2 The generation of albedo maps
	2.2.1 Altitude map generation by tetrahedral subdivision
	2.2.2 From altitude map to albedo map

	3 Reflected Light-Curve Of A Planet
	3.1 The general case
	3.2 Analytic expression for the reflected light-curve
	3.3 Numerical expression for the reflected light-curve
	3.3.1 Application to generated planets
	3.3.2 Artificial shot noise

	4 Mapping Of Planetary surfaces
	4.1 Inverting transformation matrix
	4.1.1 Moore-Penrose pseudo-inverse
	4.1.2 Recovering albedo maps with known axial tilt

	4.2 Recovering axial tilt

	5 Discussion & Conclusion
	A Appendix

