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A mathematical approach to epidermal wound closure:

Model Analysis and Computer Simulations

E. Javierre, F.J. Vermolen, C. Vuik and S. van der Zwaag

Abstract

A computational algorithm to study the evolution of complex wound morphologies is
developed based on a model of wound closure by cell mitosis and migration due to Adam
[2]. A detailed analysis of the model provides estimated values for the incubation and healing
times. Furthermore, a set of inequalities are defined which demarcate conditions of complete,
partial and non-healing. Numerical results show a significant delay in the healing progress
whenever diffusion of the epidermic growth factor responsible for cell mitosis is slower than
cell migration. Results for general wound morphologies show that healing is always initiated
at regions with high curvatures and that the evolution of the wound is very sensitive to the
physiological parameters.

1 Introduction

Healing of cutaneous wounds proceeds by a combination of several interdependent chemical and
mechanical processes. The healing process can be divided into three partly overlapping phases:
the inflammatory, the proliferative and the remodelling phases [8]. The inflammatory phase starts
immediately after injury and progresses during a few days. In this phase, bleeding and entry of
infectious matter is stopped, the release of growth factors is triggered and phagocytes are attracted
to clean the wound of contaminants. The proliferative phase extends in time up to a few weeks
after injury and takes care of angiogenesis (repair of the vascular network), re-epithelialization
(wound closure by mitosis and migration of epithelial cells into the wound), extracellular matrix
synthesis (tissue that provides structural support to cells) and wound contraction (reduction of
the wound area by tensile stresses). The remodelling phase lasts several months, and deals with
the replacement of the extracellular matrix with scar tissue resembling, as much as possible, the
parent (i.e. undamaged) tissue and the elimination of cells by apoptosis.

Mathematical modelling combined with computer simulations can help understanding the heal-
ing process and enlighten optimal conditions for treatments. Furthermore, models of healing mech-
anisms in nature are of inspiration in the development of materials with self-healing properties
[19]. The monographs by Britton [4] and Murray [8] are good introductions to mathematical mod-
elling of biological processes. Wound closure, by mitosis and migration of cells, has been studied
by Adam et al. [2, 3, 17] and Sherrat et al. [15] among others. Angiogenesis has been modelled
by Maggelakis [6, 7] and Gaffney et al. [5], and wound contraction by Murray [8] and Olsen et
al. [9]. It is well known that these processes are inter-connected and influence one another during
healing. However, as far as we know, they have never been coupled in a mathematical approach.
It is our intention to develop a mathematical model that considers the three sub-processes and,
by means of computer simulations, investigate their specific role in the healing process. Because
of the complexity of this problem, in this work we focus on wound closure only. We present a
simple model to track the wound evolution and give the foundations of our numerical method. In
a subsequent work we will coupled this basic model with angiogenesis.

The present paper is organized as follows. First, the chemical model of wound closure, based on
Adam’s work [2, 3], is presented in Section 2 for general geometries. In this model, wound healing
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is due to cell migration into the wound caused by a increased cellular and chemical activity in
the surroundings of the wound. Subsequently, the computational method is described in detail in
Section 3. A narrow band Level Set Method [1] is used to follow the wound edge. A standard
Galerkin Finite Element Method, with adaptive local grid refinement around the wound edge,
is implemented to compute the concentration of a generic epidermic growth factor that decides
the locations of the wound edge that move towards healing. Afterwards, analytic solutions and
conditions for complete healing are described for certain asymptotic cases in Section 4. Next, the
influence of the physiological and geometrical parameters of the model on the healing kinetics is
investigated in Section 5. Finally, the conclusions of our study are presented in Section 6. A
full list of the parameters, physiological and numerical, used in our calculations is given in the
Appendix.

2 The mathematical model for wound closure

In epidermal wounds, wound closure is entirely due to cell mitosis and migration. The mitotic
activity is mainly responsible for the thickening of the epidermis, once the continuity of the basal
membrane has been re-established. Since the thickness of the epidermis is very small compared
to the wound dimensions, we will assume here that the wound is two dimensional. Hence, we
will focus on the closure of the basal membrane by cell mitosis and migration, and disregard the
thickening step.

In order to simplify the model, we consider a generic epidermic growth factor (EGF) that
stimulates the increase of cellular activity in a layer surrounding the wound edge. The domain of
computation Ω consists of the wounded region Ωw, which is surrounded by the active layer Ωal and
the undamaged tissue Ωu in the outer part, i.e. Ω = ∪iΩi and Ωi ∩Ωj = ∅ for i, j ∈ {w, al, u} and
i 6= j. The concentration c of the EGF within Ω is determined by the following reaction-diffusion
equation

∂c

∂t
− D∆c + λc = Pχ

Ωal(t)
, (1)

which states the diffusional transport of the EGF through the epidermal tissue, its depletion or
natural decay and its production. The characteristic function χ, which only has support in Ωal(t),
is used to account for the production of the EGF since it only takes place inside the active layer.
The parameters D, λ and P respectively denote the diffusion, decay and production rates of
the EGF. At the outer boundary of the domain Ω we impose a no-flux boundary condition, i.e.
∇c · n = 0 where n denotes the normal vector.

Wound closure occurs by migration of cells inwards the wound. We define the wound edge
Γ as the advancing front of cells. We assume that cells become motile if the accumulated EGF
concentration exceeds a threshold value θ. Furthermore, cell migration may be interrupted if the
EGF concentration drops below this threshold value. Therefore, in this approach cell motility is
dose-dependent. Moreover, we assume that the rate at which the wound closes, i.e. the closure
rate, is proportional to the local curvature of the wound edge [17]. Hence, the normal velocity vn

of the wound edge Γ is given by

vn =
(

α + βκ
)

H(c − θ), (2)

where α ≥ 0 and β ≥ 0 (and α+β > 0) denote the coefficients of the migration rate, κ denotes the
local curvature of the wound edge and H represents the Heaviside function, defined as H(x) = 0
if x < 0 and H(x) = 1 if x ≥ 0. Note that under this definition of the closure rate, the normal
vector n points towards the wounded area.

Tracking the wound edge

The model, as presented here, falls within the category of moving boundary problems. The wound
edge Γ, also referred to as the front position or interface, has to be determined at each time step
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in order to identify the various parts of the domain of computation (wounded region, active layer
and outer tissue) and to solve the concentration equation (1).

In this work, we use the Level Set Method [11] to follow the evolution of the wound edge in
time. The wound edge is identified as the zero level set of a continuous function φ. At the initial
time, we define the level set function φ as follows:

φ(x, 0) =











+ dist(x, Γ(0)), if x ∈ Ωw(0),

0, if x ∈ Γ(0),

− dist(x, Γ(0)), if x ∈ Ωu(0),

where we have arbitrarily chosen φ to be positive inside the wound, and negative outside. Using
the total time-derivative of the level set function at the wound edge, we have that

0 =
d

dt
φ∣
∣

Γ

=
∂φ

∂t
+ vn||∇φ||. (3)

This equation is only valid at the wound edge, but can be extended to the whole domain of
computation if a velocity field v is determined satisfying the following conditions:

i) v(·, t) is continuous over Ω, and

ii) its normal projection, v · n, equals the closure rate vn given in (2) at the wound edge.

We will present a simple velocity extension fulfilling constrains i) and ii) in the following section.
For the time being, let us assume that such a velocity field v exists. The closure of the wound is
then obtained by advection of the wound edge by means of the so-called level set equation:

∂φ

∂t
+ v · ∇φ = 0. (4)

Note that in this framework, the normal vector n and the curvature κ can be computed from φ
as follows:

n =
∇φ

||∇φ||
, κ = ∇ · n.

The reader is referred to the books by Sethian [13] and Osher and Fedkiw [10] where a detailed
presentation of the method and a wide collection of applications are given.

Re-initialization of φ

The level set function φ is initialized as a signed distance function. This choice enables us with an
straightforward identification of the various subdomains in Ω. In particular, the wounded tissue
corresponds to the region of φ being positive, and the active layer is given by

Ωal(t) = { x ∈ Ω | 0 < −φ(x, t) < δ(x, t) },

where δ denotes the local thickness of the active layer, which may depend on the local curvature
of the wound edge [17]. To maintain the representation of the active layer accurate, the level set
function should remain a signed distance function after advection (4), at least a distance δ from
its zero level set. Normally, this property is lost if time increases, and several remedies have been
suggested for its repair. The most extended methods for this problem solve the Eikonal equation

||∇φ|| = 1, (5)

either iteratively [12, 16] or directly [14, 18]. The iterative methods are very competitive if we
wish to keep φ a distance function in a thin band, of a couple of grid nodes, around the interface.
However, the computational cost increases as the bandwidth gets larger, and eventually, the direct
methods are computationally cheaper. In our case, the bandwidth depends on the active layer
thickness, which may be large compared to the grid size. Therefore, we will use a direct method,
the Fast Marching Method [14], to solve (5).
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3 The computational approach

The solution of equation (1) is approximated by using a Finite Element Method with piecewise
linear basis functions. Further, we have to deal with a moving interface and with a sharp (dis-
continuous) change of the production of the EGF across the edges of the active layer. Tracking
the wound edge position in time with the Level Set Method allows us to deal in a straightforward
manner with wounds of a complicated geometry involving morphological changes. Supplementing
the Finite Element Method with a local refinement of the elements neighbouring the wound edge
results into a more accurate representation of the EGF concentration and into higher grid resolu-
tions for the computation of the closure rate in an efficient way.

As a background or fixed basis mesh we use a structured triangulation with linear elements,
see Figure 1 (left) and, at each time step, the elements close to the interface are refined, see Figure
1 (center), according to a criterion that is specified below. After refinement, the refined region
presents a Cartesian structure, see Figure 1 (right), where the (nonlinear) hyperbolic equations
inherited from the level set formulation can be easily solved with finite difference or finite volume
schemes.

Figure 1: Left: fixed base FE mesh with the interface position φ = 0 (solid curve) and the contours
φ = ±dist (dashed curves). The elements within these contours are to be refined. Center: refined
FE mesh. Right: the nested Cartesian grids.

Hence, in order to compute the solution (i.e. EGF concentration and wound edge location)
at a certain time step, we need to perform a number of steps. Globally speaking, first we have
to compute the velocity field v from the EGF concentration profile at the previous time step.
Next, the level set function has to be updated to obtain the wound edge location at the next time
step. Subsequently, φ has to be reinitialized to a distance function in order to obtain an accurate
representation of the active layer, and finally, the partial differential equation (1) is solved to find
the EGF distribution at the next time step. However, since the fixed basis mesh is adapted to the
wound edge each time step, there are a few communication steps that have to be taken carefully.
The complete algorithm is presented in Algorithm 1.

Regularizations of the characteristic and heaviside functions

Cell motility is determined by interpolation of the EGF concentration at the wound edge. The
discontinuous production term Pχ is regularized in order to diminish numerical wiggles present
at the edges of the active layer which may spoil the computation of the closure rate. Therefore,
instead of the characteristic function χ we use a regularized version χε defined as follows:

χε(φ) =























1
2

[

1 + sin
(

π
ε
(φ + ε

2 )
)

]

, if 0 < φ < ε,

1, if 0 ≤ φ ≤ −δ,
1
2

[

1 + sin
(

π
ε
(φ + δ + ε

2 )
)

]

, if −δ < φ < −δ − ε,

0, otherwise,

where ε is a parameter defined by the user to establish across how many grid cells the regularization
is applied. In our numerical computations we use ε = 1.5 ·max(∆xRef , ∆yRef ), where ∆xRef and
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Algorithm 1 Computation of the solution at time t + ∆t from the the solution at time t

Input: c, φ and refined finite element mesh at time t
Output: vn, ∆t, c, φ and refined finite element mesh at time t + ∆t

1: Extend vn over the refined Cartesian band, compute v = vnn

2: Choose time step ∆t according to v

3: Solve level set equation (4) over the refined Cartesian band
4: Re-initialize φ inside the refined Cartesian band
5: Map φ to the global coarse Cartesian grid (note that φ is not yet defined over the nodes outside

the refined Cartesian band)
6: Extend φ outside the (coarse) Cartesian band solving ||∇φ|| = 1
7: Compute the refined finite element grid according to the new position of the interface
8: Map concentration profile on the previous refined FE triangulation to the current refined FE

triangulation
9: Map φ from the nested Cartesian grids to the refined FE triangulation

10: Compute the production term over the refined FE triangulation
11: Solve concentration equation (1) over the refined FE triangulation
12: Map concentration at the refined FE triangulation to the refined Cartesian grid

∆yRef denote respectively the grid size of the refined band in the x and y directions. A similar
regularization could be adopted for the definition of the closure rate, though the standard definition
of the heaviside function has been used in our calculations.

3.1 The local grid refinement strategy

Due to the structure of the fixed basis mesh, its refinement in the vicinity of the front position is
straightforward if the level of refinement (LOR) is known element-wise.

We say that an element e is within a distance dist from the interface if one or more of its
vertices ei is within a distance dist from the interface (i.e. |φ(ei)| < dist for i ∈ {1, 2, 3}). All
elements within a distance dist from the interface are labeled with the maximum LOR, that is
2. If dist=0, elements intersected by the interface are marked with the maximum LOR. Elements
adjacent to those with maximal LOR are labeled, in principle, with a lower LOR, that is 1. How-
ever, to preserve mesh consistency, their LOR has to be increased when they are adjacent to more
than one element with maximum LOR. This step is illustrated in Figure 2. Elements further away
are labeled with zero LOR, meaning that they are not refined.

The division of the elements, according to their LOR, is based on the division of the edges.
Let us denote by refnratio the number of equally sized sub-edges that appear when the edge of
an element is refined. If the LOR of an element is 2, then all the edges are divided into refnratio
sub-edges, and the element is divided into refnratio2 sub-elements. If the LOR is 1, only the
edge in common with the neighbouring element with LOR equal to 2 is refined. Consequently, the
element is divided into refnratio sub-elements, see Figure 2.

correction refinement

LOR=2

LOR=1

LOR=0

LOR=2

LOR=2

LOR=2

LOR=2

LOR=1

Figure 2: Correction of the LOR and subsequent subdivision of the elements, with refnratio=3.
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In order to prevent excessively narrow elements, which may impair the accuracy of the results,
we will restrict ourselves to ratios of refinement, refnratio, of 2 or 3. To balance the additional
work invested in the refinement with the gain in accuracy and CPU-times, we define dist such that
the elements intersected by the interface and the elements adjacent to them receive the maximum
LOR. Hence, dist &

√

∆x2 + ∆y2, where ∆x and ∆y denote the element size of the basis mesh.
Furthermore, we shall impose a maximum displacement bound on the time stepping to prevent
that the level of refinement of the elements close to interface changes by more than one within two
consecutive time steps. As we will see below, this is ensured by a CFL condition on the advection
of the level set function.

The transition between two consecutive refined grids (i.e. two consecutive time steps) can be
implemented efficiently if the LOR of the previous mesh is stored in memory. By construction,
the LOR of an element at the new time step either does not change, or increases by one, or
reduces by one its LOR at the previous time step. If the LOR does not change, the refinement
of the element is the same as in the previous time step. If the LOR is reduced by one, the el-
ement is coarsen. Finally, if the LOR is raised by one, then the refinement of the element increases.

3.2 The two nested Cartesian grids

Due to its structure, the nodes of the background triangulation form will be referred to as the
coarse Cartesian grid. Moreover, after refinement, the refined region resembles a refined Cartesian
band which is nested in the coarse Cartesian grid, see Figure 1 (left). We use both grids to solve
the hyperbolic equations inherited from the level set formulation.

3.2.1 The narrow band level set method

In order to update the front position we first need to compute an extension of the front velocity,
and subsequently solve the level set equation (4). This operations are carried out within the re-
fined Cartesian band.

Extension of the front velocity off the interface

The front velocity vn is only defined at the interface location, and an artificial extension of it is
required to solve the level set equation (4). As stated before, this extension should be such that
the extended velocity field is continuous. To achieve this, we advect the front velocity outwards
in the proper upwind direction, by solving

∂vn

∂τ
+ S(φ)n · ∇vn = 0, (6)

where τ denotes a fictitious time used only in the extension procedure and n denotes the normal
vector, which points towards increasing values of φ (i.e. in the direction of the gradient of φ, and
note that φ >0 inside the wound). Thus, with this equation, information is transported from the
wound edge inside the wound (when φ > 0) and outside the wound (when φ < 0). Note that at
the wound edge, the previous equation is degenerated, since S(φ) = 0, and hence the value of vn

is not altered there.

The solution of (6) is computed only inside the refined Cartesian band, as described in Al-
gorithm 2. We perform a small number of pseudo-time iterations IterMax, between 5 and 10,
since it is enough to obtain a continuous extension of vn in the band around the interface. The
normal vector n = ∇φ

/

||∇φ|| is approximated with central differences inside the band and first
order sided differences at the boundary. The local curvature κ = ∇ · n is computed analogously.

Interface advection and re-initialization of φ to a distance function

6



Algorithm 2 Extension of the front velocity onto the refined Cartesian band

Initialization of vn

1: Initialize vn=0 inside the band
2: if x is a node adjacent to the interface then

3: Compute associated interface point xf = x − φ(x)n (linear interpolation of φ)
4: Compute vn(xf ) according to (2) (use bicubic interpolation of c and κ)
5: Assign vn(xf ) to x

6: end if

Advection of vn off the interface position

1: for Iter = 1 to IterMax do

2: Solve (6) for the points not being adjacent to the interface
Time integration: Forward Euler; spatial derivatives: first order upwind discretizations

3: end for

Set v = vnn

After the advection field v = (u, v)t is defined over the band, the level set equation (4) is solved
inside the band. The time integration is carried out with the Euler forward method, whereas the
space derivatives are discretized with a first order accurate upwind scheme. The CFL stability
condition is satisfied if the time step ∆t is chosen such that

∆t ≤ ∆tCFL :=
CFL

max
(

u
∆x

+ v
∆y

) , CFL < 1. (7)

In practice, we will take ∆t = min(∆tCFL, ∆tmax), where ∆tmax is used as a default time step
during the incubation periods and prevents the use of excessively large time steps when the front
velocity is close to zero. With this choice of ∆t, the wound edge will travel over a distance smaller
than the grid size during each time step, which is consistent with the grid refinement algorithm.

Despite that the level set function φ is initialized as a distance function, the function φ̃ resulting
from the advection of the interface is no longer a distance function. Generally, its deviation after
one time step is small, and re-initialization may be evitable. However, the error accumulates, and
after several time steps re-initialization is unavoidable. In our case, we use a second order accurate
Fast Marching Method to solve the Eikonal equation ||∇φ|| = 1 inside the band. This method
proceeds as follows. First, the function φ is initialized at the nodes adjacent to the interface in
such a way that the zero level set of φ̃ is not altered. Subsequently, φ is extended away in the
downwind direction. Details of this method can be found in the work by Sethian [14].

3.2.2 Extension of φ outside the band

In order to extend φ further away, i.e. outside the refined Cartesian band, we first map it to the
coarse Cartesian band (i.e. to the nodes which lay both in the refined band and in the coarse
global grid) and subsequently we extend φ outside the band with the Fast Marching Method. As a
result, we obtain a function φ that is defined on the basis mesh, which does not alter the interface
position, and which is a distance function.

4 Asymptotic solutions

This section is devoted to study two simplified problems. In the first case, we consider the healing
process in absence of transport of the EGF, which prevents the supply of EGF to the wound site.
In the second case, we look at the healing process with instantaneous diffusion of the EGF, which
provides the wound with a suboptimal EGF distribution. By analysis of their analytic solutions,
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we will give valuable insights to the healing behaviour predicted by the model and start to discern
the role of some parameters in the model.

We define tinc as the incubation time that is necessary to activate the closure of the wound.
Hence, tinc is the smallest positive time at which c(x, tinc) ≥ θ for any point x on the initial
wound edge. After this time, the healing process starts and the wound size decreases. However,
new storage or incubation periods may become necessary as healing progresses if the EGF level at
the wound edge falls below θ. Hence, we can describe the healing process as a series of healing and
incubation periods as sketched in Figure 3, where Ii

heal (i = 1, 2, . . . ) denotes the healing period
within the consecutive incubation periods Ii−1

inc and Ii
inc. By convention we denote by tiinc and

tiheal the times at which Ii
inc and Ii

heal finish respectively, which are formally defined as

tiheal := min
(

t > ti−1
inc | c(x, t) < θ for all x ∈ Γ(t)

)

, i ≥ 1,

tiinc := min
(

t > tiheal | c(x, t) ≥ θ for any x ∈ Γ(tiheal)
)

, i ≥ 1.

We extend this convention by denoting I0
inc the first or initial incubation period, t0inc = tinc and

t0heal=0. For sake of the presentation, we will refer to Ii
inc for i ≥ 1 as internal incubation periods.

1theal
tinc0 tinc1

2theal
tinc2

3theal

Ι heal1

Ιinc1 Ι heal2

Ιinc2 Ι heal3

Ιinc0

0

w
o
u
n
d
 
a
r
e
a

time

Figure 3: Schematic diagram of the healing process

4.1 No diffusional transport of the EGF

If we assume that there is no diffusional transport of the EGF from the active layer towards the
wound, i.e. D=0, then the whole production of EGF is maintained inside the active layer and no
EGF flows into the wound. Hence, during a whole incubation period Ii

inc, the EGF concentration
is given by

∂c

∂t
+ λc = Pχ

Ωal(t
i
heal

)
,

with initial condition the concentration at the beginning of the incubation period, i.e. c(x, tiheal).
Integration in time of the above equation yields:

c(x, t) = exp
(

− λ(t − tiheal)
)

c(x, tiheal) +
P

λ
χ

Ωal(t
i
heal

)
(x)
(

1 − exp
(

− λ(t − tiheal)
)

)

,

for x ∈ Ω and t ∈ Ii
inc. Moreover, since the EGF production is not diffused towards the wound

from the active layer, the concentration at the wound edge decays to zero as soon as it moves and
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hence c(x, tiheal) = 0 for all x ∈ Γ(tiheal). Therefore, the concentration at the wound edge is given
by

c(x, t) =
P

λ

(

1 − exp
(

− λ(t − tiheal)
)

)

, for x ∈ Γ(tiheal), t ∈ Ii
inc,

and the healing process will be initiated or resumed within a finite time if and only if

lim
t→∞

P

λ

(

1 − exp
(

− λ(t − tiheal)
)

)

> θ, (8)

i.e. if and only if P/λ > θ. This condition was also found by Adam in [2] using the analytic
solution of the steady-state problem, and manifests the necessity for the production inside the
active layer to overcome the depletion as the concentration reaches the threshold level θ. It is
worth noting that, in the case of no diffusion of the EGF, the thickness or shape of the active
layer does not play any role.

Finally, if the healing process can be sustained, i.e. P/λ > θ, then the initial incubation time
tinc is given by

tD=0
inc =

1

λ
log

(

1

1 − λθ
P

)

. (9)

Furthermore, as the closure of the wound is permanently interrupted to restore the EGF concen-
tration at the wound edge, healing of the wound will just not occur. The EGF concentration at
the edge of a circular wound during the first three incubation periods is plotted in Figure 4, where
the ”broken” healing behaviour of the solution can be observed.

0 20 40 60 80 100 120
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θ 

Figure 4: Time progression of the EGF concentration at the edge of a circular wound for the
case of D=0. The horizontal line indicates the upper bound for the threshold value θ in order to
initiate healing.

4.2 Instantaneous transport of the EGF

In the case of an instantaneous diffusion of the EGF, the production inside the active layer is
immediately distributed throughout the whole domain of computation and the EGF concentration
shows a flat profile over time. Hence, by integration of equation (1) over Ω, we can define an
effective production rate

Peff (t) := P
|Ωal(t)|

|Ω|
,
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where |A| denotes the area of A. With this definition, the EGF concentration is given by the
solution of

dc

dt
+ λc = Peff (t), (10)

with initial condition c(0) = 0. The definition of Peff indicates the relevance of the area of the
active layer in the healing process. For instance, if the thickness of the active layer is kept constant
during healing, then the area of Ωal decreases and hence the production sustained by it diminishes
as the wound heals. Despite that this seems adequate since the wound area decreases, it may
result into an incomplete healing of the wound as we will show below.

The exact integration of (10) is not always possible since Peff depends on the evolution of
the wound. However, it can be solved during the incubation periods, since then Peff is constant.
Hence, the EGF concentration during the ith incubation period Ii

inc is given by

c(t) =
Peff (0)

λ

(

1 − exp
(

− λt
)

)

, for i = 0,

c(t) = exp
(

− λ(t − tiheal)
)

θ +
Peff (tiheal)

λ

(

1 − exp
(

− λ(t − tiheal)
)

)

, for i ≥ 1.

Because of the continuity of c, it is easy to see that the healing process will be initiated or continued
if and only if

Peff (tiheal)

λ
> θ, for i ≥ 0, ⇐⇒

P

λ

|Ωal(t
i
heal)|

|Ω|
> θ, for i ≥ 0.

Hence, in the case of instantaneous transport of the EGF, the healing process will start if and
only if

P

λ
> θ

|Ω|

|Ωal(0)|
, (11)

which, for fixed decay rate λ and threshold concentration θ, provides a lower bound for the
production rate P as function of the active layer and the animal sizes. Thus, if the conditions for
the initiation of the healing process hold, the initial incubation time is given by

tD→∞
inc =

1

λ
log

(

1

1 − λθ
P

|Ω|
|Ωal(0)|

)

. (12)

Note furthermore that initiation of the healing process is much more demanding in the case of fast
diffusion processes, as can be seen by comparison of equations (8) and (11), since it is reasonable
to expect that |Ω|/|Ωal(0)| ≫ 1. On the other hand, stoppage of wound closure after initiation is
due to an insufficient EGF production, and hence c′(tiheal) <0 at the stopping times tiheal (i ≥ 1).
Therefore, once the healing process is stopped, it can never be resumed.

The analytic expression of the EGF concentration during healing can be obtained for certain
definitions of the active layer and the mitotic rate. In the remaining of this section we consider
the healing response of a circular wound of radius r0 in a circular domain of computation of radius
Rc and an active layer of constant thickness δ. In this case, the area of the active layer is given by

|Ωal(t)| = πδ(2r(t) + δ),

where r(t) denotes the wound radius at time t. If in addition we take β=0, then

r(t) = r0 − α
(

t − tinc

)

,

and

c(t) = θ exp
(

−λ(t−tinc)
)

+
Pδ

R2
cλ

2

{

λ
(

2r(t)+δ
)

+2α−exp
(

−λ(t−tinc)
)

(

λ(2r0+δ)+2α
)

}

, (13)

10



during the first healing period, i.e. t ∈ I1
heal. The complete healing of the wound occurs if and

only if there is a time theal > tinc such that r(theal)=0 and c(thea) > θ. It is easy to see, after
simple algebraic manipulations, that this condition is equivalent to

θ <
Pδ

R2
cλ

2

2α + λδ − exp
(

− λr0

α

)

(

2α + λ(2r0 + δ)
)

1 − exp
(

− λr0

α

) ,

which establishes the healing success as a function of the physiological parameters of the model.
Table 1 summarizes the healing response for several values of θ and α.

θ α healing

≤
P

λ

δ2

R2
c

any complete

∈
(P

λ

δ2

R2
c

,
P

λ

δ(r0 + δ)

R2
c

] large complete
small incomplete

∈
(P

λ

δ(r0 + δ)

R2
c

,
P

λ

δ(2r0 + δ)

R2
c

]

any incomplete

>
P

λ

δ(2r0 + δ)

R2
c

any not initiated

Table 1: Description of the healing response as function of the physiological parameters of the
model.

For the cases in which the healing is not complete, the wound radius at the stopping time can
be computed from equation (13), since then there is a time tstop > tinc such that c(tstop) = θ and
rstop := r0 − α(tstop − tinc), which yields

θ =
Pδ

R2
cλ

2

2α + λ
(

2rstop + δ
)

− exp
(

− λ
r0−rstop

α

)

(

2α + λ
(

2r0 + δ
)

)

1 − exp
(

− λ
r0−rstop

α

) .

The healing behaviour of a circular wound in the case of instantaneous diffusion of the EGF is
shown in Figure 5. The EGF concentration during time is plotted in Figure 5(a) for two different
values of θ, of which the smallest gives complete healing of the wound whereas the largest yields
incomplete healing. The healing response and wound radius at stop for a wide range of closure
rates is presented in Figure 5(b), where the reduction of rstop towards successful healing (i.e.
rstop = 0) by the increase of the migration rate can be observed.

Healing time

If healing is complete (see Table 1), then it proceeds directly after incubation without internal
incubation times. Hence, the wound evolution after initiation is the same as if the threshold
condition upon cell motility is disregarded or θ is set equal to zero. Therefore,

tD→∞
heal = tD→∞

inc + tθ=0
heal.

Computation of tθ=0
heal for general wound morphologies only requires the solution of (4) with vn =

α + βκ, which is much easier than the solution of the complete problem. Furthermore, tθ=0
heal is

known for simple wound morphologies [17].
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Figure 5: Healing of a circular wound with instantaneous diffusion of the EGF.

5 Analysis of healing kinetics

The specific role of diffusion and cell migration rates in the healing behaviour described by equa-
tions (1), (2) and (4) are discussed here. Results for a circular wound under various physiological
conditions will show the strong interdependence between these processes and their impact on the
healing kinetics.

5.1 The role of diffusion in the healing kinetics

The diffusion term in (1) is responsible for the supply of the necessary EGF to the wound in
order to sustain its healing. We have seen in Section 4 that in absence of diffusion, the incubation
time tinc is minimal but healing is not obtained in a finite time. On the other hand, if diffusion
is instantaneous, the incubation time is exponentially increased by the ratio of the domain of
computation and the active layer areas, i.e. |Ω|/|Ωal(0)|. Furthermore, in the case of successful
healing, it proceeds directly after incubation.

The incubation and healing times for a wide range of diffusion rates D are plotted in Figure
6(a). The incubation time continuously increases as the diffusion rate increases, as the EGF is
sent far from the interface delaying its accumulation. Furthermore, the results for the incubation
times as D → 0 and D → ∞ agree perfectly with the asymptotic values given in (9) and (12)
respectively. Besides that, we observe that the healing time increases exponentially as the diffusion
rate decreases, since then the closure of the wound is faster than the EGF diffusion into the wound.
This implies, numerically, more and longer internal incubation times, and physiologically the im-
possibility to sustain the healing process. As D increases, the healing time reduces until it reaches
its minimum. This minimal healing time is obtained when the diffusion and the closure rates are
balanced. We denote by Dcrit the critical diffusion rate that gives the minimal healing time. We
observe that the difference between the healing and the incubation times remains constant for
diffusion rates above Dcrit, and the time consumed between incubation and healing agrees with
the healing time of the wound with θ=0. This means that if D > Dcrit, then the healing progress
is not delayed by internal incubation times and therefore the increase of the healing time is entirely
due to the increase of the incubation time. Furthermore, in these cases the closure of the wound
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is slower than the diffusion of the EGF into the wound.

As a consequence of the behaviour of the healing time with respect to the diffusion rate, there
exist pairs of diffusion rates that result in the same healing time. The evolution of the wound
radius for one of these pair is presented in Figure 6(b). As is to be expected, the healing at the
lower diffusion rate is initiated earlier. However, for the higher diffusion rate, the evolution of the
wound radius after initiation is the same as for θ=0, whereas it is delayed for the lower diffusion
rate.
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Figure 6: Influence of the diffusion term in the healing behaviour.

5.2 The role of the closure rate in the healing kinetics

In the previous section we have seen that the healing process is optimal, in the sense that it is
not delayed, if the wound closure is slower than the diffusion of the EGF into the wound. In this
section, we will measure the delay of the healing process due to the closure rate.

The delay in the healing process can be measured by

tdelay =
(

theal − tinc

)

− tθ=0
heal, (14)

which primarily depends on the threshold condition θ and on the migration rate parameters α and
β. Furthermore, we can define a delay or retardation factor as follows:

fdelay :=
tθ=0
heal

theal − tinc

, (15)

which equals 1 if there is no delay and is smaller than 1 if there is some delay. Hence, the healing
kinetics for any threshold condition θ >0 can be expressed as a delay of the healing kinetics for
θ=0, since theal = tinc + tθ=0

heal/fdelay. The delay factor for a circular wound as a function of θ and
α is presented in Figure 7 for two different diffusion rates. The contribution to the closure rate
of the wound curvature β is disregarded in this test, i.e. β=0. The results show that for either
low migration rates or θ values no delay is obtained. However, there is an exponential decrease
of the delay factor as α and θ increase, since then the diffusion term is not capable of sustain
the necessary flux of EGF into the wound. Furthermore, comparison of the results for the two
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different diffusion rates evidences that larger diffusivities mitigates the delayed kinetics for a wider
range of θ and α. This agrees with the results obtained in the previous section.
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Figure 7: Isocurves of the delay factor fdelay as a function of the closure rate α and the threshold
concentration θ for two diffusion rates. The contribution of the curvature to the closure rate has
been disregarded, i.e. β=0. Hence, the healing time for θ=0 is given by tθ=0

heal = r0

α
.

5.3 The effect of wound geometry on healing kinetics

The role in the healing kinetics of wound morphology is investigated in this section. To this end,
we start with the healing of an elliptical wound of area 0.78540 cm2 with various elongations. In
this simulation, we neglect the mechanical forces acting on the tissue. Due to the symmetry of
the problem, we solve only one quarter of the ellipse. The incubation times for various wound
elongations and θ values are presented in Figure 8(a). As can be seen from the results, the incu-
bation time is reduced by the elongation of the wound, although this effect is only significant for
large values of θ. This is a consequence of the diffusion term, which aids the accumulation of the
EGF at the regions of high curvature. As is to be expected, we observe an exponential increase of
the incubation time with θ. The isocurves of the healing time for various wound elongations and
θ values are plotted in Figure 8(b). Similarly to the incubation time, the healing time increases
with θ and decreases with the wound elongation. However, the increase of the healing time with
θ is merely linear, since the EGF accumulation inside the wound reduces the retardation of the
healing kinetics.

Finally, we consider the healing of a wound with a more complicated geometry, which initial
shape is a four-legged starfish, for various values of θ and β. The initial wound edge is given by
the zero level set of the function φ = max(φs, φc), where φs denotes the distance function whose
zero level set is the curve

x = (a + b cos
(

2nlegsπϕ
)

cos
(

2πs
)

, y = (a + b cos
(

2nlegsπϕ
)

sin
(

2πs
)

where ϕ ∈ [0, 1] and nlegs denotes the number of legs of the starfish, four in this case, and φc

denotes the distance function whose zero level set is the circle of radius a − 4
6b and centered at

the origin. By construction, φs and φc must be chosen positive at the origin, in order to have φ
positive inside the wound.
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Figure 8: Influence on the healing behaviour of the wound morphology and θ. In all the cases, the
initial area of the wound is the same.

The initial wound together with the morphology when 30, 60 and 90 % of the initial area is
healed are presented in Figure 9. This morphology, although hardly found in practice, illustrates
nicely several aspects of the model. First, that the contribution of the curvature to the migration
rate may induce a retreat of the wound edge in the concave regions, see Figures 9(d), 9(g), 9(h)
and 9(i). Second, that larger values of θ results into longer lag periods for the concave parts of the
wound. However, once initiated, the healing of the concave areas is more easily sustained because
of soft-impingement effects. And last, that during healing the wound may evolve into several (five
in this case) disjoint smaller wounds that heal as isolated islands. We have obtained this behaviour
for small values of β or large values of θ, see Figures 9(a), 9(b), 9(c), 9(e), 9(f), 9(h) and 9(i). The
irregular shapes at 30% of the wound healed in Figures 9(h) and 9(i) are numerical artifacts due
to the size of the time step during incubation periods, 30 seconds, and the complex combination
of effects (healing at some parts, growth at others) going on simultaneously at those instants of
time.

6 Conclusions

Closure of epidermal wound by cell mitosis and migration is modelled here as a moving inter-
face problem, in which the interface is identified with the advancing front of cells. The level set
method is implemented in order to keep track of the wound edge, which allows us to consider com-
plex wound morphologies in a simple manner. The computational method is supplemented with a
local grid refinement strategy that enhances the accuracy and efficiency of the complete algorithm.

The physiological analysis carried out in this work enlightens the treatment strategy. It has
been proved that unilateral treatmens might lead to unsatisfactory results, since enhancing only
the closure rate might lead to longer healing times, whereas enhancing only the diffusion rate might
lead to incomplete healing. In addition, taking the closure rate dose-dependent with respect to the
EGF concentration results into an effective delay of the healing process, which is more pronounced
for high migration rates or large θ values. The morphological analysis of wound healing has shown
that healing is much faster for elongated wounds, even without considering any mechanical effects
to healing. Furthermore, the undesired retreat of the wound edge at localized areas (the concave
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(a) α=1, β=0, θ=0 (b) α=1, β=0, θ=10−4 (c) α=1, β=0, θ=10−3

(d) α=1, β=0.05, θ=0 (e) α=1, β=0.05, θ=10−4 (f) α=1, β=0.05, θ=10−3

(g) α=1, β=0.1, θ=0 (h) α=1, β=0.1, θ=10−4 (i) α=1, β=0.1, θ=10−3

Figure 9: Effect of physiological parameters on the morphology of the wound during healing.

areas of the wound) can be avoided by strict control of the closure rate.
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Appendix: Data set of the numerical tests

Of the physiological parameters of the model, only D = 5× 10−7 cm2/s [2] and λ = 1.6× 10−51/s
[15] have been estimated. The authors are not aware of valid estimates for the other parameters,
and hence these will be treated as fitting parameters in the calculations. In order to simplify the
analysis, we fix P =5·10−7 [c]/s (in which [c] denotes the applied unit of the EGF concentration)
and δ=0.1 cm throughout our calculations. The other parameters will be taken depending, on the
analysis purposes, as summarized below.

Figure Figure Figure
4 5(a) 5(b)

circular circular circular
Geometry r0=0.5 r0=0.5 r0=0.5

(cm)

θ ([c]) 2.5·10−2 5·10−4 ∈ [3 · 10−5, 7 · 10−3]
10−3

10−9, 10−7, 5·10−7

α (cm/s) 10−5 10−5 10−6, 2·10−6, 3·10−6

4·10−6, 5·10−6, 7·10−6

β (cm2/s) 2.1·10−7 2.1·10−7 0

Ω [0,1.5] [0,1.5] [0,1.5]

Table 2: Physiological parameters for the asymptotic solutions presented in Figures 4 and 5.
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Figure Figure Figure Figure
6 7 8 9

circular circular elliptical starfish

Geometry r0=0.5 r0=0.5 a =
√

0.25/AR a=0.25
(cm) b = a/AR b=0.225

AR=1,. . . ,5

θ ([c]) 8·10−4 ∈ [0, 10−3] ∈ [0, 3 · 10−3] ∈ [0, 3 · 10−3]

α (cm/s) 10−5 ∈ [10−5, 10−4] 10−5 1

β (cm2/s) 2.1·10−7 0 2.1·10−7 0, 0.05, 0.1

Ω
[0, Lx] × [0, Ly]

[0,1.5] [0,1.5] Lx = 0.5 + a [-1,1]x[-1,1]
Ly = 0.5 + b

AR, nx, ny
1, 24, 24

# internal 2, 29, 20 nx, ny
nodes 499 499 3, 33, 19 50, 50

4, 37, 18
5, 39, 17

refnratio 3 3 3 3

ε (cm) 1.5·10−3 1.5·10−3 ≈1.33·10−2 1.31·10−2

∆tmax (s) 5 5 30 30

CFL 0.15 0.15 0.15 0.45

Table 3: Physiological and numerical parameters used in the calculation of the results presented
in Figures 6-9.
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