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Recent research efforts aimed at iteratively solving time-harmonic waves have focused 
on a broad range of techniques to accelerate convergence. In particular, for the famous 
Helmholtz equation, deflation techniques have been studied to accelerate the convergence 
of Krylov subspace methods. In this work, we extend the two-level deflation method to 
a multilevel deflation method for (heterogeneous) Helmholtz and elastic wave problems. 
By using higher-order deflation vectors, we show that up to the level where the coarse-
grid linear systems remain indefinite, the near-zero eigenvalues of the these coarse-grid 
operators remain aligned with the near-zero eigenvalues of the fine-grid operator, keeping 
the spectrum of the preconditioned system away from the origin. Combining this with the 
well-known CSLP-preconditioner, we obtain a scalable solver for the highly indefinite linear 
systems. This can be attributed to a close to wave number independent convergence and 
an optimal use of the CSLP-preconditioner on the indefinite levels. There, we approximate 
the CSLP-preconditioner, while allowing the complex shift to be small, by using inner 
Bi-CGSTAB iterations instead of a multigrid F-cycle. The proposed method shows very 
promising results for the more challenging two- and three-dimensional heterogeneous 
time-harmonic wave problems.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The Helmholtz equation has puzzled the minds of many mathematicians and numerical analysts throughout the years. 
Its wide application, ranging from seismology to medical tomography, has kept its relevance even till this day. As a 
result, many efforts have and are still being been rendered in order to obtain accurate and computationally feasible so-
lutions.

A large branch within this research has focused on developing preconditioners, such as the (Complex) Shifted Laplacian 
[1–4]. In order to apply the preconditioner, one multigrid cycle is used to approximate its inverse. The latter serves as 
an alternative to using multigrid as a stand-alone solver as the method is generally known to diverge for the Helmholtz 
equation once coarser levels are reached [5]. Some works have focused on obtaining a stand-alone multigrid solver [6–9], 
with success for either practical wavenumbers and/or one-dimensional model problems.
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A recent and promising branch of research has combined its efforts towards preconditioning techniques based on domain 
decomposition methods applied to the corresponding (shifted) problem [10]. These methods split the computational domain 
in subdomains and solve a local subproblem of smaller dimension using a direct method [11–15]. The performance of these 
preconditioners depends on the accuracy of the transmission conditions, which currently is robust for constant wave number 
model problems [16,17]. While the domain decomposition preconditioners have resulted in a reduced number of iterations 
and higher computational efficiency by exploiting parallelization strategies, the number of iterations still grows with the 
wavenumber k.

As a result, some have studied the use of deflation techniques (combined with the CSLP-preconditioner) in order to 
accelerate the convergence of the Krylov subspace method, which we will denote DEF [18–20]. Incorporating the deflation 
preconditioner has improved the convergence, but taxed the efficiency in terms of memory and computational cost. For 
a two-level deflation preconditioner, the direct solve on the second level takes up most of the computational power and 
memory. Consequently, multilevel variants of the two-level method have been proposed in order to counter this effect 
[19,21]. A multilevel extension replaces the direct solve in the two-level method by applying a similar two-level extension 
recursively combined with an outer Flexible GMRES (FGMRES) solver.

In both variants, however, the number of iterations still slowly grows with the wave number k. In this work, we build 
on our recent work from [22] where we developed and tested a two-level deflation preconditioner which rendered close 
to wavenumber independent convergence for large wavenumbers in all spatial dimensions. We will refer to this method 
as the Adapted Deflation Preconditioner (ADP), where the adaption is realized through the use of higher-order interpola-
tion polynomials. A natural question which arises is whether we can extend the wavenumber independent convergence 
to a multilevel setting, thereby combining both the gain in computational efficiency with our previous scalability re-
sults.

The structure of this paper is as follows. We start by introducing our model problems in Section 2. We then discuss 
the deflated Krylov methods and the multilevel algorithm in Section 3. We then proceed by extensively developing theory 
for the multilevel deflation operator in Section 4. We perform Rigorous Fourier Analysis (RFA) by block-diagonalizing the 
resulting operators and inspecting the spectral properties. Finally we present numerical results for benchmark problems in 
Section 5.

2. Problem description

We start by focusing on a one-dimensional mathematical model using a constant wave number k ą 0

´
d2u

dx2
´ k2 u “ δpx ´ x1

q, x P � “ r0, Ls Ă R, (1)

up0q “ 0, upLq “ 0,

where x1 denotes the location of the point source. We will refer to this model problem as MP 1-A. This simple model 
problem will allow us to develop the theory for the constant wave number case, as finding robust multilevel solvers for 
this case is still an active and current research area. To allow for more practical examples, we introduce MP 1-B as the 
model problem where Sommerfeld radiation conditions have been implemented. In this case, the boundary conditions 
become

ˆ

B

Bn
´

?
´1k

˙

upxq “ 0, x P Br0, Ls.

If we define h “ 1
n , where n is chosen according to kh “ 2π

c , where c is the number of grid points per wavelength, then 
discretization on the unit interval using second order finite differences leads to

´u j´1 ` 2u j ´ u j`1

h2
´ k2u j “ f j, j “ 1,2, . . . ,n.

Lexicographic ordering leads to the following linear system and eigenvalues for MP 1-A with indices j “ 1, 2, . . .n

Au “
1

h2
tridiagr´1 2 ´ k2h2

´ 1su “ f ,

λ̂ j
“

1

h2
p2 ´ 2 cosp jπhqq ´ k2. (2)

Similarly, we define the 2-D and 3-D versions of model problem MP 1-B as above Eq. (1). The discretization using second 
order finite differences goes accordingly for higher dimensions with the needed alterations at the boundary when using 
Sommerfeld conditions. In Section 5, we will perform numerical experiments for more heterogeneous two- and three-
dimensional model problems.
2



V. Dwarka and C. Vuik Journal of Computational Physics 469 (2022) 111327
Table 1
Upper bound to number of non-zero elements per col-
umn of A P Rnˆn, E P Rmˆm, Z P Rnˆm and Z T P

Rmˆn .

Operator Linear Quadratic

1D 2D 3D 1D 2D 3D

A 3 5 7 3 5 7
E 3 32 33 7 72 73

Z 3 32 33 5 52 53

Z T 2 22 23 3 32 33

A Z 5 52 53 9 92 93

3. Deflated Krylov methods

We start by briefly explaining the two-level deflation preconditioning technique to solve the resulting linear system. We 
then proceed by extending the two-level method recursively to a multilevel Krylov method.

3.1. Two-level deflation

For a linear system Au “ f we construct the deflation preconditioner P where the column space of Z is used as the 
deflation subspace. The aim of including a deflation preconditioner is to project the unwanted near-zero eigenvalues to zero 
such that the convergence of the underlying Krylov subspace method can be accelerated. For the two-level method, the 
preconditioner P in fact is a projection operator. As for the deflation matrix, Z can be interpreted as interpolating from the 
coarse grid to the fine grid.

P “ I ´ A Q ` Q where Q “ Z E´1 Z T and E “ Z T A Z

The inexact inversion which will be used for a multi-level approach requires the addition of an extra term Q in order to 
prevent synthetic close-to-zero eigenvalues from obstructing the convergence of the Krylov solver [23,21,24]. Without the 
addition of Q , the deflation operator is sensitive to rounding errors stemming from the inexact inversion of E . In [22], 
we used higher-order Bezier curves to construct Z . Using these higher-order polynomials, the prolongation and restriction 
operator act on a grid function as follows

Z ru2hsi “

$

&

%

1
8

´

ru2hspi´2q{2 ` 6 ru2hspiq{2 ` ru2hspi`2q{2

¯

i is even,
1
2

´

ru2hspi´1q{2 ` ru2hspi`1q{2

¯

i is odd,

,

.

-

, (3)

for i “ 1, . . . , n ́ 1 and for i “ 1, . . . , n2 . To obtain even better convergence, the CSLP-preconditioner was included, which is 
given by

M “ L ´ pβ1 `
?

´1β2qk2 I,

where pβ1, β2q P r0, 1s and L is the discretized Poisson equation. The system to be solved becomes M´1 P Au “ M´1 P f . 
By allowing higher-order interpolation schemes, the near-zero eigenspace of the fine- and coarse-grid coefficient matrix 
remains perfectly aligned. As a result, the smallest eigenvalue in magnitude of both A and E is located at the same index. 
This prevents the eigenvalues of the deflated system from shifting towards the origin. While the method provides close 
to wavenumber independent convergence in one- and two-dimensions for fairly large wavenumbers k “ 106 (1D) and k “
103 (2D), it requires the exact solve of the coarse-grid coefficient matrix E , adding to the computational complexity in 
3D.

In Algorithm 1, we present the two-level deflated FGMRES algorithm, where we use the following abbreviations: MV 
(matrix vector product), MM (matrix matrix product), ES (exact solve), VU (vector update), AS (approximate solve), DP 
(dot product). We moreover let Cit denote the number of constant iterations. The motivation for using FGMRES lies in the 
recursive process which will be applied in order to avoid having to solve the coarse-grid system on the second level exactly. 
We have split the pseudo-code into two parts. The blue section contains the part where the deflation preconditioner is 
applied. All matrix vector multiplications within the blue section are sparse. The pink section is the general GMRES-process. 
Furthermore, Table 1 contains the number of non-zero elements per column of the operators involved. These can be used 
to quantify the flops for sparse matrix-matrix and sparse matrix-vector products. Note that in the context of the multi-level 
algorithm, the number of non-zeros after the second level remains the same. We include the largest dimension-dependent 
constants for the leading order time complexity term. For example, for the 2D matrix-vector product we take 7n as the 
leading term instead of 5n. As a result, we obtain a strict upperbound for the costs involved, even for 1D and 2D problems 
and the costs in practice will be less.
3
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Algorithm 1: Two-level deflation FGMRES. (For interpretation of the colors in the algorithm(s), the reader is referred 
to the web version of this article.)

Considering Algorithm 1, the vector update x j “ r ` t is split in two parts. r contains the application of I ´ A Q to the 
vector v j and then lastly applies the preconditioner M to obtain r. The vector t contains the part where we add Q to 
I ´ A Q in order to prevent synthetic near-zero eigenvalues due to rounding errors. Analyzing the costs of Algorithm 1, 
confirms that the dominant factor is Opm2q. Furthermore, in order to mitigate the cost of the preconditioning step, one 
pCit “ 1q multigrid F-cycle is generally applied in order to approximate the solution of the system Mr “ r̃ [19]. When 
opting for this configuration, the shift β2 has to be kept large enough for multigrid to converge [5,9,4]. Another option is 
by allowing a few GMRES-iterations to approximate the preconditioner. For example in the context of using multigrid as 
a preconditioner, the standard relaxation step is replaced by 10-40 GMRES-iterations, acting as a polynomial smoother. On 
each level the unstable Jacobi and Gauss-Seidel smoother are replaced by Krylov iterations [6,25,26].

3.2. Multilevel deflation

As mentioned previously, apart from the standard computational costs associated with the FGMRES-algorithm, the largest 
additional cost comes from solving the coarse-grid system exactly, which dominates with the factor Opm2q. In order to 
circumvent this, we apply the two-level cycle recursively. Before we expand the two-level algorithm to the multi-level algo-
rithm, a few remarks are in place. In this work we deploy five changes, apart from using Bezier interpolation polynomials 
as a basis for the deflation vectors.

First, application of the CSLP-preconditioner to the Helmholtz operator shifts the spectrum towards the complex plane 
and resolves the indefiniteness. On levels where the matrix becomes negative definite, we apply a Jacobi iteration using the 
diagonal matrix of the CSLP as the preconditioner M .

Second, the multilevel preconditioner is applied to A rather than AM´1. This saves one matrix-vector product per level.
Third, while the use of the CSLP preconditioner together with a geometric multigrid method for approximate inversion 

works well for homogeneous problems, it is not suitable for heterogeneous problems with high contrasts [19,21]. As we are 
interested in heterogeneous problems and require only an approximate application of the preconditioner, we will perform 
Krylov subspace iterations to approximately invert the CSLP. As mentioned previously, this can be considered as applying a 
polynomial smoother in the context of multigrid, which damps both ends of the spectrum. We let Cit denote the constant 
for the maximum number of iterations. The number of Krylov subspace iterations as a smoother ranges from 5-40 for 
two-dimensional constant wavenumber model problems, where the stopping criterion results in the residual to be scaled 
with kh on each level [27,6,26]. In this work we use Bi-CGSTAB as the computational costs and memory do not grow with 
the number of iterations such as is the case with non-restarted GMRES. We moreover do not require convergence or set 
any tolerance dependent on the level. However, we set the maximum number of Bi-CGSTAB iterations at a constant times 

rnplqs
1
4 , where nplq denotes the problem size on level l where the linear system is still indefinite. Our motivation for doing 

so is twofold. Primarily we want to have the number of outer FGMRES iterations as small as possible while the wavenumber 
increases, as FGMRES becomes more computationally expensive when more iterations are needed. Second of all, we do not 
4
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require the residual to remain orthogonal to all previous components, we can use Bi-CGSTAB to achieve a smaller residual 
within the multilevel hierarchy without necessarily imposing that it is in fact the minimized residual.

Fourth, given that we are no longer using multigrid for the approximate inversion, the restrictions for choosing the 
complex shift can be lifted. Thus, we can take advantage of using a small shift which makes the preconditioner more 
similar to the original Helmholtz operator and keeps the property of lifting the indefiniteness at certain levels. As a result, 
we will be able to test our algorithm on heterogeneous models with highly varying contrast profiles.

Fifth, instead of allowing many iterations on each coarse level, we only allow one iteration on the coarser levels. Conse-
quently, we obtain a V-cycle, which leads to a similar V-cycle structure from multigrid when taking γ “ 1, see Fig. 1. The 
multilevel deflation algorithm is given below, where we used the number of non-zero elements from Table 1 to account for 
the dimension dependent constants for the sparse matrix-matrix and sparse matrix-vector products on subsequent levels.

Algorithm 2: Multilevel ADP implementation.
Initialization
Set Ap1q “ A, Mp1q “ M, np1q “ n
for l “ 1, 2, ...m the coarsest level do

Construct Z pl,l`1q and Z pl,l`1q T

Construct Apl`1q “ Z pl,l`1q T
Aplq Z pl,l`1q Ź MMP - 45d ¨ npl`1q

Construct Mpl`1q “ Z pl,l`1q T
Mplq Z pl,l`1q Ź MMP - 45d ¨ npl`1q

end
Iterative stage
l “ 1, up1q

0 “ 0
Solve Ap1qup1q “ bp1q using Two-level Deflated FGMRES

v̂p2q “ Z p1,2q T
vp1q Ź MVP - 5d ¨ np1q

if l ̀ 1 “ m then

Solve ṽp2q “ Ap2q´1
v̂p2q exactly

else

l “ l ̀ 1, ̃vp2q
0 “ 0

Solve Ap2q ṽp2q “ v̂p2q using Two-level Deflated FGMRES

v̂p3q “ Z p2,3q T
vp2q Ź MVP - 5d ¨ np2q

if l ̀ 1 “ m then

Solve ṽp3q “ Ap3q´1
v̂p3q exactly

else

l “ l ̀ 1, ̃vp3q
0 “ 0

Solve Ap3q ṽp3q “ v̂p3q using Two-level Deflated FGMRES

v̂p4q “ Z p3,4q T
vp3q Ź MVP - 5d ¨ np3q

.

.

.

if l ̀ 1 “ m then

Solve ṽpmq “ Apmq´1
v̂pmq exactly Ź ES - Op1q

end

tpm´1q “ Z pm´1,mq ṽpmq Ź MVP - 3d ¨ npmq

spm´1q “ Apm´1qtpm´1q Ź MVP - 7d ¨ npm´1q

r̃pm´1q “ vm´1 ´ spm´1q Ź VU - npm´1q

rpm´1q “ Mpm´1q´1
r̃pm´1q Ź AS - npm´1q

xpm´1q “ rpm´1q ` tpm´1q Ź VU - npm´1q

wpm´1q “ Apm´1qxpm´1q Ź MVP - 7d ¨ npm´1q

.

.

.
end

tp2q “ Z p2,3q ṽp3q Ź MVP - 3d ¨ np3q

sp2q “ Ap2qtp2q Ź MVP - 7d ¨ np2q

r̃p2q “ v3 ´ sp2q Ź VU - np2q

rp2q “ Mp2q´1
r̃p2q Ź AS - 21pCitnp2q

1
4 qnp2q

xp2q “ rp2q ` tp2q Ź VU - np2q

wp2q “ Ap2qxp2q Ź MVP - 7d ¨ np2q

end

tp1q “ Z p1,2q ṽp2q Ź MVP - 3d ¨ np2q

sp1q “ Ap1qtp1q Ź MVP - 7d ¨ np1q

r̃p1q “ v1 ´ sp1q Ź VU - np1q

rp1q “ Mp1q´1
r̃p1q Ź AS - 21pCitnp1q

1
4 qnp1q

xp1q “ rp1q ` tp1q Ź VU - np1q

wp1q “ Ap1qxp1q Ź MVP - 7d ¨ np1q
5
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l “ 1

l “ 2

l “ 3

l “ m

*

tp2q “ Z p2,3q ṽp3q

*

tp2q “ Z p2,3q ṽp3q

.

.

.
*

tpm´1q “ Z pm´1,mq ṽpmq

"

"

"

.

.

.

v̂p2q “ Z p1,2q T
vp1q

v̂p3q “ Z p2,3q T
vp2q

v̂pmq “ Z pm´1,mq T
vpm´1q

Direct solve Am ṽpmq “ v̂pmq

Fig. 1. V-cycle deflated FGMRES. The pink arrows represent the coarsening. The blue arrows represent the prolongation. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

A schematic representation is given in Fig. 1.
Using the above, we can formulate upper bounds in terms of FLOPs for the complete algorithm.

Theorem 3.1 (Multilevel deflation upper bound number of operations). For l “ 1, set np1q “ n and let nplq “ 2´ldn for l ą 1, where d
denotes the dimension. Assume the following holds for l ě 1

• Restriction v̂pl`1q :“ Z pl,l`1qT
v̂plq

flops ď cr5dnplq

• Prolongation tplq :“ Z pl,l`1q ṽpl`1q

flops ď cp3dnpl`1q

• Krylov Smoothing rplq :“ Mplq´1
r̃plq when l ă 3

flops ď ck7dnplq1` 1
4

• Jacobi Smoothing rplq :“ Mplq´1
r̃plq when l ě 3

flops ď c j7
dnplq

• Matrix vector product:= wplq “ Aplqxplq

flops ď cv 7dnplq

• Coarse-grid solve:= Apmq´1
v̂pmq

flops ď c0

Then

total flops ď Cd O pn1` 1
4 q,

where Cd is a constant which only depends on the dimension d.

Proof. At each level l, after we have obtained wplq , we proceed with the Arnoldi process (see pink section, Algorithm 1), 
which is already Opnlq given that the maximum number of FGMRES iterations at each level is set at one. We thus obtain 
the following upper bound of the additional costs occurred with the preconditioning step

flops ď c0 `

ˆ

cr5d
` Ck7dnplq

1
4

` cv 7d
˙

nplq
` cp3dnpl`1q,

`

ˆ

cr5d
` Ck7dnpl`1q

1
4

` cv 7d
˙

npl`1q
` cp3dnpl`2q,

` . . .
´

cr5d
` Ck7d

` cv 7d
¯

npm´1q
` cp3dnpmq,

“ c0 `

ˆ

cr5d
` Ck7dnp1q

1
4

` cv 7d
˙

np1q
` Ck7dnp2q

1
4 np2q,
6
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`

´

cr5d
` C j7

d
` cv 7d

` cp3d
¯

m´1
ÿ

l“2

2´dlnp1q
` cp3dnpmq,

ď c0 `

ˆ

cr5d
` Ck7dnp1q

1
4

` cv 7d
˙

np1q
` Ck7dnp2q

1
4 np2q,

`

´

cr5d
` C j7

d
` cv 7d

` cp3d
¯

m´1
ÿ

l“2

2´lnp1q
` cp3dnpmq,

ă c0 `

ˆ

cr5d
` Ck7dnp1q

1
4

`
1

2
Ck7dnp1q

1
4

` cv 7d
˙

np1q
` cp3dnpmq,

`
1

2

´

cr5d
` Ca7d

` cv 7d
¯

np1q,

ă C7dnp1` 1
4 q

“Opnp1` 1
4 q

q,

where we used that np1q “ n and the fact that 
řm´1

l“2 2´l ă
1
2 . The upper bound to the total computational costs is con-

structed with respect to the iterative stage and already accounts for the costs of the matrix vector multiplication in FGMRES. 
It in fact bounds the total cost of the multilevel extension of the blue section in Algorithm 1. Overall, the algorithm runs in 

Opnp1q1` 1
4 q time complexity. However, a few points need further explanation and discussion.

The construction of the coarse-grid systems on each level l requires two sparse matrix-matrix multiplications. While 
the maximum number of non-zeros along each column remains constant with respect to np1q (see Table 1), it results in a 
constant of 45d for the matrix-matrix multiplication to construct Aplą1q . While this may seem expensive, it already pays-off 
for very large and highly indefinite 2D and 3D problems, as the constant is independent of the fine-grid problem size np1q . 
We will illustrate this through our numerical experiments in Section 5.

Moreover, as mentioned previously, the multilevel preconditioner is applied to A rather than AM´1. By using the ‘First 
Deflate, then Precondition’ method, we save one extra matrix-matrix product, one matrix-vector product and one extra 
application of the preconditioning step [28].

Finally, we restrict the number of FGMRES iterations on each level to one, whereas a sequence of p8, 2, 1q and p6, 2, 2q

iterations are used [19,28,21]. For example p8, 2, 1q denotes, 8 iterations on level l “ 2, 2 iterations on l “ 3 and 1 iteration 
on all levels l ą 3. Thus, on the finest level np1q , the largest cost related to the matrix-vector product during the iterative 
stage is Op8 ̈ 3dnp1qq compared to Op7dnp1qq. While the dimension-dependent constant 7d is approximately 1.5 times larger 
than 8 ̈ 3d for d “ 3, the significant reduction in the number of outer iterations provides an advantageous leverage. l

4. Inscalability

In this section we will extend the theoretical results of the two-level ADP-scheme to a multilevel setting for MP 1-A. 
Given that the coefficient matrix remains normal, spectral analysis can be performed to assess the convergence behavior. We 
have provided a detailed summary of the literature as regards the role of the eigenvalues when the matrix is non-normal 
in [22].

4.1. Multilevel mapping

In order to develop theory for the multi-level ADP-scheme from the two-level ADP-scheme, we need expressions for 
the nested or composite mappings between the fine and coarse spaces. Similar to our approach for the two-level method 
in [22], we start with the linear case and extend it to the quadratic case. In Theorem 4.1 we start by deriving analytical 
expressions for the actions of the intergrid transfer operators on eigenvectors of each respective coarse space for the linear 
case, whereas Corollary 4.1.1 contains the expressions for the quadratic case. The detailed proof for the linear case can be 
found in Appendix A. Here we provide a brief outline of the proof for the sake of completeness.

Theorem 4.1 (Multilevel prolongation and restriction (linear)). Let Zm be the nm´1 ˆ nm prolongation matrix based on linear interpo-

lation for m “ 1, 2, . . .mmax , with nm “
n

2m . If we define v j
m “ sinp2mhiπ jq, and v j1

m “ sinp2mhiπpnm ` 1 ́ jqq, where on the finest 
level we have m “ 0, then there exist constants C j

1 and C j
2 depending on h such that restriction operator maps the eigenvectors to

1
ź

l“m

Z T
l v j

0 “ C j
1 v j

m, j “ 1,2, . . . ,nm and
1

ź

l“m

Z T
l v j1

0 “ C j
2 v j

m, j “ 1,2, . . . ,nm,

where C j
1 “

`

1
2

˘m śm
l“1

`

1 ` cosp jπ2l´1hq
˘

and C j
2 “

`

1
2

˘m śm
l“1

`

cosp jπ2l´1hq ´ 1
˘

. Similarly, the prolongation operator maps 
the eigenvectors to
7
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l
ź

l“1

Zlrvmsi “ C j
1rv j

0si, for i is odd. and
l

ź

l“1

Zlrvmsi “ C j
2rv j

0si, for i is even.

Finally, if we let Bm “
śm

l“1 Zl
ś1

l“m Z T
l and B̂m “ Zm Z T

m for m “ 1, 2, . . . , mmax , then Bm has dimension n0 with nm non-zero 
eigenvalues.

Proof. The extended proof is given in Appendix A. We will briefly give an outline of the proof here. We start by defining 
the mapping operators and the respective vector spaces and their bases to which they are applied. This allows us to move 
between fine and coarse spaces. Then we continue by showing the action of the restriction operator on the basis for these 
respective vector spaces. To keep an overview of what is happening between the vector spaces on an abstract level, we use 
both the analytical operator and their matrix representations in the proof. We then repeat this for the prolongation operator. 
Once we have analytical expressions for these nested operators, we show that the kernel and range of the composite 
mapping consisting of the restriction and prolongation operator span a subspace containing the eigenvectors. We use this 
to show that the eigenvalues of Bm are related to the eigenvalues of B̂m . l

We similarly extend the multilevel operators for the higher-order deflation vectors. This is given in Corollary 4.1.1 and 
follows naturally from the linear case.

Corollary 4.1.1 (Multilevel prolongation and restriction (quadratic)). Let Zm be the nm´1 ˆ nm prolongation matrix based on rational 
Bezier curves for m “ 1, 2, . . .mmax , with nm “

n
2m . If we define v j

m “ sinp2mhiπ jq, and v j1
m “ sinp2mhiπpnm ` 1 ́ jqq, where 

on the finest level we have m “ 0. Then there exist constants C j
1 and C j

2 depending on h such that the restriction operator maps the 
eigenvectors to

1
ź

l“m

Z T
l v j

0 “ C j
1 v j

m, j “ 1,2, . . . ,nm, and
1

ź

l“m

Z T
l v j1

0 “ C j
2 v j

m, j “ 1,2, . . . ,nm,

where C j
1 “

` 1
2

˘m śm
l“1 C j

1,lh and C j
2 “

` 1
2

˘m śm
l“1 C j

2,lh . Similarly, the prolongation operator maps the eigenvectors to

l
ź

l“1

Zlrvmsi “ C j
1rv j

0si, i is odd. and
l

ź

l“1

Zlrvmsi “ C j
2rv j

0si, i is even.

Finally, if we let Bm “
śm

l“1 Zl
ś1

l“m Z T
l and B̂m “ Zm Z T

m for m “ 1, 2, . . . , mmax , then Bm has dimension n0 with nm non-zero 
eigenvalues.

Proof. The proof is exactly the same as the proof of Theorem 4.1, however we now have

C j
1,mh “

ˆ

cosp jπ2mhq ` cosp jπ2m`1hq
1

4
`

3

4

˙

,

C j
2,mh “

ˆ

cosp jπ2mhq ´ cosp jπ2m`1hq
1

4
´

3

4

˙

.

For a detailed proof of deriving C j
1,mh and C j

2,mh see [22]. The statement is obtained by substituting these coefficients into 
the proof of Theorem 4.1. l

Using this result we can approximate the location where the near-zero eigenvalues of the coarse-grid matrices are 
located. This is important as we only want to apply the smoother on levels where it is needed. We start by denoting the 
coarse grid linear systems by Em and we set E0 “ A, where A is the fine grid linear matrix. Analytical expressions for the 
location of the smallest eigenvalue are found in the following corollary.

Corollary 4.1.2 (Coarse near-zero eigenvalues). Let Zm be the nm´1 ˆnm prolongation matrix for m “ 0, 1, 2, . . .mmax , with nm “
n

2m . 
We define the symmetric coarse-grid coefficient matrix Em “

ś1
l“m Z T

l A 
śm

l“1 Zm. If we let rv j
msi “ sinp2mhiπ jq be the eigenvectors 

of Em, where for m “ 0 we have the finest level, then Dm̃: for m ą m̃ Em is negative definite. For m ď m̃ Em is indefinite.

Proof. Let �pAq denote the n0 ˆ n0 diagonal matrix containing the eigenvalues of A, then using Theorem 4.1 for each i, 
either odd or even, we have

lim
hÑ0

ˇ

ˇ

ˇ
Emrv j

msi

ˇ

ˇ

ˇ
ď lim

hÑ0

ˇ

ˇ

ˇ

ˇ

ˇ

1
ź

l“m

Z T
l �pAq

m
ź

l“1

Zlrv j
msi

ˇ

ˇ

ˇ

ˇ

ˇ

ď lim
hÑ0

ˇ

ˇ

ˇ
λ

j
ApC j

1q
2
rv j

msi

ˇ

ˇ

ˇ
ď 4m

ˇ

ˇ

ˇ
λ

j
Arv j

msi

ˇ

ˇ

ˇ
,

8
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where we used that by definition of C j
1 and C j

2, for all j we have 
ˇ

ˇ

ˇ
C j

1C j
2

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
pC j

1q2
ˇ

ˇ

ˇ
ď 4m . Note that in case of i is even, we 

would have C j
1C j

2 instead of C j
1

2
. Thus, in the limit as h goes to zero, we can bound the expression for λ j

Em
from above 

by 
ˇ

ˇ

ˇ
λ

j
Em

ˇ

ˇ

ˇ
ď 4mλ

j
A for each j. Now to find a bound for the smallest eigenvalue in magnitude of Em , we need to minimize 

the right-hand side of the upper-inequality over all indices j. This is achieved at j “ jmin, corresponding to the smallest 
eigenvalue in magnitude of A as this eigenvalue is the closest eigenvalue to zero. We thus have 

ˇ

ˇ

ˇ
λ

jmin
Em

ˇ

ˇ

ˇ
ď 4mλ

jmin
A . We now 

need to find the level m at which the matrix Em becomes negative definite. Recall that

jmin “

—

—

—

–

cos´1 p
1´k2h2

2 q

πh

fi

ffi

ffi

ffi

“

—

—

—

–

n cos´1 p
1´k2h2

2 q

π

fi

ffi

ffi

ffi

.

Therefore, to find the level m̃ which still contains index jmin, for j “ 1, 2, . . .nm , we have to find m : nm “
n

2m ą jmin. Note 
jmin is unaffected by h as h goes to zero and thus we can assess how many times jmin fits into n. Additionally, coarsening 
leads to the problem size being halved for each m, and thus need to divide by 2 as well.

Z

n

2 jmin

^

“

—

—

—

–

cos´1 p
1´k2h2

2 q

2π

ffi

ffi

ffi

fl “ m̃.

Consequently, for m ą m̃, jmin is no longer within the range of nm . Therefore, all eigenvalues of Emąm̃ for j “
1, 2, . . .nmąm̃ ď jmin must have the same sign, due to the fact that λ jmin

A is an upper bound and the only eigenvalue of 
A where a sign-change can occur. l

Corollary 4.1.2 shows that for m ď m̃, the resulting coarse-grid coefficient matrices Em are indefinite. Thus, on these 
subsequent levels, it is important that the near-zero eigenvalues are reduced and aligned in coherence with the fine-grid 
level. In order to analytically assert this, we proceed by defining the multilevel deflation operator and block-diagonalizing 
it using a similar basis as we used for the two-level ADP scheme. This will allow us to perform spectral analysis of the 
multilevel deflation operator as the latter reduces to applying the two-level ADP scheme recursively.

4.2. Block-diagonal systems

Using the matrices Zm and Z T
m to denote the prolongation and restriction operator on level m, and using the theory 

developed so far, we can construct similar analytical expressions for the eigenvalues of the preconditioner applied to the 
coefficient matrix. We will perform the analysis for MP 1-A. Taking E0 “ A, we define the n ̂ n projection operator Ph,m to 
be

Ph,m “ I ´ A Q m, where Q m “

m
ź

l“1

Zl E
´1
m

1
ź

l“m

Z T
l and Em “ Z T

m Em´1 Zm, (4)

Pm “ Im ´ Em Q m, where Q m “ Zm E´1
m Z T

m and Em “ Z T
m Em´1 Zm (5)

Note that this is equivalent to constructing P by solving Em directly on the m-th level and then prolonging the inverse back 
to the fine grid in order to proxy the effect of having an approximate inversion of E1 in the two-level method. We will refer 
to Ph,m as the global multilevel deflation preconditioner and Pm as the local level deflation preconditioner.

4.2.1. Global system block-diagonalization
In order to extend the spectral analysis of the two-level ADP-scheme to a multilevel setting, we will use the bases and 

operators defined in the first part of the proof of Theorem 4.1, see Appendix A. To assist the reading of the proofs below, 
we briefly mention the basis and its reordering. For nm “

n
2m , we rearranged the space spanned by the eigenvectors at each 

level m such that we obtain the following subspace

V j
m “ span tv j

m, vnm`1´ j
m u and V j

m`1 “ span tv j
m`1u

for j “ 1, 2, . . . , nm`1. Note that the subspace V j
m consists of two vectors and the subspace V j

m`1 consists of one vector. 
We furthermore have that both bases span Cnm and Cnm`1 respectively as we can write

Cnm “

nm`1
à

j“1

V j
m and Cnm`1 “

nm`1
à

j“1

V j
m`1,

and at each subsequent level m ̀ 1 we can always define an automorphism to re-order the basis Vm`1 to obtain Vm`1.
9
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We start with Lemma 4.2.1, which will provide the building blocks to block-diagonalize Q m by first block-diagonalizing 
Bm . This is equivalent to using the operators and expressions from Theorem 4.1 and writing them in matrix form using 
2 ̂ 2 blocks by evaluating their action on the underlying basis of eigenvectors.

Lemma 4.2.1 (Block-diagonalization Bm). Let Zm be the nm´1 ˆ nm interpolation matrix with nm “
n

2m for m “ 0, 1, 2, . . . , mmax . 
Let Bm “

ś1
l“m Zl

śm
l“1 Z T

l and B̂m “ Zm Z T
m for m “ 1, 2, . . . , mmax . Defining the rearranged basis

Vm “

nm`1
à

j“1

span tv j
m,v

nm`1`1´ j
m u,

where v j
m “ rsinp jπhi2mqs

nm
i“1 , the eigenvalues of Bm are given by

λ
j
Bm

“

ˆ

1

2

˙m 1
ź

l“m

´

pr j
l q

2
` pp j

l q
2
¯

,

where r j
l “ C j

1,mh and p j
l “ C j

1,lh . Here C j
2,lh and C j

2,mh are either the linear or quadratic coefficients.

Proof. We can continue by using the results from Theorem 4.1. To keep the notation compact we let r j
m “ C j

1,mh and 
p j

m “ C j
2,mh . We start with the case where m “ 1. Using the basis V0, V 1, Z1 and Z T

1 have the block form

rZ1s
j
V 1

“

«

r j
1

p j
1

ff

, (6)

rZ T
1 s

j
V0

“

”

r j
1 p j

1

ı

, (7)

for j “ 1, 2, . . . , n1. In block-diagonal form on we can write Z1 as

»

—

—

—

—

—

—

—

—

—

—

—

—

–

r1
1

p1
1

0

r2
1

p2
1

. . .

0 rn1
1

pn1
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

To block-diagonalize B̂1, we therefore multiply the respective blocks for each j

rZ1rZ T
1 s

j
V0

s
j
V 1

“

«

r j
1

p j
1

ff

”

r j
1 p j

1

ı

“

«

pr j
1q2 pr j

1 p j
1q

pr j
1 p j

1q pp j
1q2

ff

.

Now, B̂1 has n1 non-zero eigenvalues given by the trace of each respective block and n1 zero eigenvalues, which was also 
discussed in the proof of Theorem 4.1. The non-zero eigenvalues are thus given by the 1 ̂ 1 block λ j

B̂1
“ pr j

1q2 ` pp j
1q2 for 

j “ 1, 2, . . . , n1 and B̂1 “ B1 has the block-diagonal form

rB1sV0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1
B̂1

. . .

λ
n1

B̂1

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

We now take m “ 2 and block-diagonalize B̂2. Using the same steps as above we have
10
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rZ2 Z T
2 s

j
V1

“

«

r j
2

p j
2

ff

”

r j
2 p j

2

ı

“

«

pr j
2q2 pr j

2 p j
2q

pr j
2 p j

2q pp j
2q2

ff

,

for j “ 1, 2, . . . , n2. Computing the trace of each block gives λ j

B̂2
“ pr j

2q2 ` pp j
2q2 with block-diagonal form

r�pB̂2qsV1 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1
B̂2

. . .

λ
n2

B̂2

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (8)

Note that we have n2 “
n
4 zero and non-zero eigenvalues and the dimension of B̂2 is n1 ˆ n1. This is equivalent to having 

n2 blocks of dimension 1 ̂ 1 containing the non-zero eigenvalues and n2 blocks, also with dimension 1 ̂ 1 containing the 
zero eigenvalues. We now apply Z1 to the left and Z T

1 to the right of Eq. (8), where we use the block-diagonal form of Z1

and Z T
1 given by Eq. (6) and Eq. (7) respectively. Z1 has n1 blocks of dimension 2 ̂ 1 and Z T

1 has n1 blocks of dimension 
1 ̂ 2. Thus, Z1 works on each non-zero 1 ̂ 1 block of B̂2, and then Z T

1 is applied to the resulting 2 ̂ 1 block. However, 
only the first n2 blocks of �pB̂2q contain non-zero terms as we can see from Eq. (8) and thus only the indices j “ 1, 2, . . .n2

in Z1 and Z T
1 lead to non-zero terms. Thus, for j “ 1, 2, . . . , n2 we obtain r�pB2qsV0 “ r�pZ1 B̂2 Z T

1 qsV0 , which is given by 
the following matrix representation

»

—

—

—

—

—

—

—

—

—

—

—

—

–

r1
1

p1
1

0

r2
1

p2
1

. . .

0 rn1
1

pn1
1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1
B̂2

. . .

λ
n2

B̂2

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

–

r1
1 p1

1 0
r2

1 p2
1

. . .

0 rn1
1 pn1

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Thus, at the level of each respective j-th block we have

r�pB2qs
j
V0

“

«

r j
1

p j
1

ff

λ
j

B̂2

”

r j
1 p j

1

ı

“ λ
j

B̂2

«

pr j
1q2 pr j

1 p j
1q

pr j
1 p j

1q pp j
2q2

ff

,

for j “ 1, 2, . . . , n2. Computing the trace of each respective block gives

λ
j
B2

“

´

pr j
1q

2
` pp j

1q
2
¯

pλ
j

B̂2
q “

´

pr j
1q

2
` pp j

1q
2
¯ ´

pr j
2q

2
` pp j

2q
2
¯

. (9)

Thus, we obtain the following block-diagonal form

rB2sV0 “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

λ1
B2

. . .

λ
n2
B2

0

0
0

. . .

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where λ j
B2

is given by Eq. (9). From here it is easy to see that successive application of Zm and Z T
m for m ą 2 gives

r�pBmqs
j
V0

“

«

ś1
l“m´1 r j

l
ś1

l“m´1 p j
l

ff

λ
j

B̂m

”

ś1
l“m´1 r j

l

ś1
l“m´1 p j

l

ı

,

for j “ 1, 2, . . . , nm with λ j
B “

ś1
l“m

´

pr j
l q2 ` pp j

l q2
¯

. l

m

11
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Using the results from Lemma 4.2.1, we can block-diagonalize the operator Q m , where m again denotes the level.

Theorem 4.2 (Block-diagonalization Q m). Let Zm be the nm´1 ˆnm interpolation matrix with nm “
n

2m for m “ 0, 1, 2, . . . , mmax . We 
define the coarse linear system Em “ Z T

m Em´1 Zm with E0 “ A. Let Bm “
ś1

l“m Zl
śm

l“1 Z T
l and B̂m “ Zm Z T

m for m “ 1, 2, . . . , mmax . 
Then using the basis V0 from Lemma 4.2.1, the eigenvalues of Q m are given by

r�pQ mqs
j
V0

“ r�p

m
ź

l“1

Zl E
´1
m

1
ź

l“m

Z T
l qs

j
V0

“ λ
´1
Em

j r�pBmqs
j
V0

“ λ
´1
Em

j

1
ź

l“m

´

pr j
l q

2
` pp j

l q
2
¯

,

with λ j
Em

“ pr j
mq

2
λ

j
Em´1

` pp j
mq

2
λ

j1

Em´1
for j “ 1, 2, . . . , nm and j1 “ nm´1 ` 1 ́ j.

Proof. The proof is very similar to the one for Lemma 4.2.1, details can be found in Appendix B. We give a brief outline 
of the proof here. We start by block-diagonalizing the fine grid linear system A. Consequently, we recursively multiply the 
block-diagonal version of A with the matrix containing the 2 ̂ 2 blocks representing Z1, Z2 . . . Zm and Z1

T , Z2
T . . . Zm

T

respectively to obtain Em . Finally, we rewrite Q m in terms of Bm , and use Lemma 4.2.1 to obtain the final analytical 
expressions. l

We can now easily block-diagonalize Pm as follows. We start by writing Pm in block-diagonal form using Theorem 4.2
and our rearranged basis V0

j .

r�pPmqs
j
V 0

“ rI ´ A Q ms
j
V0

“

„

1 0
0 1

j j

V0

´
λ

j
Bm

λ
j
Em

«

λ
j
A 0

0 λ
j1

A

ff j

V0

“

»

—

—

–

1 ´
λ

j
Aλ

j
Bm

λ
j
Em

λ
j
Aλ

j
Bm

λ
j
Em

λ
j1

A λ
j
Bm

λ
j
Em

1 ´
λ

j1

A λ
j
Bm

λ
j
Em

fi

ffi

ffi

fl

j

V0

Including the CSLP-preconditioner M´1 and applying the multilevel-deflation preconditioner Pm to the coefficient matrix A
finally gives the block-diagonal expressions of the preconditioned system

r�pPm M´1 Aqs
j
V0

“
λ

j
A

λ
j
M

»

—

—

–

1 ´
λ

j
Aλ

j
Bm

λ
j
Em

λ
j
Aλ

j
Bm

λ
j
Em

λ
j1

A λ
j
Bm

λ
j
Em

1 ´
λ

j1

A λ
j
Bm

λ
j
Em

fi

ffi

ffi

fl

j

V0

.

At last, we obtain the eigenvalues of Pm M´1 A for j “ 1, 2, . . . , n1 and j1 “ n0 ` 1 ́ j, by computing the trace of each 
respective block

λ j
pPm M´1 Aq “

λ
j
A

λ
j
M

¨

˝1 ´
λ

j
Aλ

j
Bm

λ
j
Em

˛

‚ `
λ

j1

A

λ
j
M

¨

˝1 ´
λ

j1

A λ
j
Bm

λ
j
Em

˛

‚ , (10)

with λ j
Bm

“
ś1

l“m

´

pr j
l q2 ` pp j

l q2
¯

.

4.3. Spectral analysis

Using these expressions, we proceed by analyzing the various operators involved in the multi-level deflation operator. 
For the purpose of this section, we choose the shift in the CSLP-preconditioner to be large (β2 “ 1) in order to emphasize 
the effect of the deflation method. In this section, we will plot the expressions from Eq. (4) and Eq. (5), which are the 
global and local multi-level deflation preconditioner respectively. The global operator is obtained by inverting Em at level 
m exactly and prolongating back to the fine grid until we obtain Ph,m . The local operator is obtained by applying two-level 
deflation locally at level m, which gives us Pm .

4.3.1. Global near-zero eigenvalues
We start with by denoting the global deflation operator by Ph,m , where m indicates the level. We will analyze the 

spectrum up to the level where the coefficient matrix becomes negative definite, which according to Corollary 4.1.2 is at m̃ “

3. Before we start with the spectral analysis, several remarks are in place. The eigenvalues of the preconditioned systems 
can be retrieved analytically in case we have Dirichlet boundary conditions. In case of Sommerfeld boundary conditions, the 
analytical eigenvalues can not be determined and we are forced to compute them numerically. For the sake of completeness, 
we will include them in the spectral analysis for the one-dimensional model problems.
12
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Fig. 2. Linear interpolation (Dirichlet). Spectrum of the global defla-
tion + CSLP preconditioned system using kh “ 0.625 or equivalently 10 
gpw. Blue uses a two-level scheme and red uses a three-level scheme.

Fig. 3. Linear interpolation (Sommerfeld). Spectrum of the global defla-
tion + CSLP preconditioned system using kh “ 0.625 or equivalently 10 
gpw. Blue uses a two-level scheme and red uses a three-level scheme.

Fig. 4. Quadratic rational Bezier (Dirichlet). Spectrum of the global 
deflation + CSLP preconditioned system using kh “ 0.625 or equiva-
lently 10 gpw. Blue uses a two-level scheme and red uses a three-level 
scheme.

Fig. 5. Quadratic rational Bezier (Sommerfeld). Spectrum of the global 
deflation + CSLP preconditioned system using kh “ 0.625 or equiva-
lently 10 gpw. Blue uses a two-level scheme and red uses a three-level 
scheme.

For k “ 1 000 we define Ph,1, Ph,2 according to Eq. (4). We use 10 grid points per wavelength (gpw) for this part of 
the analysis. Fig. 2 and Fig. 3 contain the results using linear interpolation for both Dirichlet and Sommerfeld boundary 
conditions respectively. Similarly, Fig. 4 and Fig. 5 contain the results using high-order deflation vectors.

When we use Dirichlet boundary conditions and compare Fig. 2 to Fig. 4, we immediately observe that there are less 
near-zero eigenvalues on the first and second level when using higher-order deflation vectors. Especially for the first level 
(blue, moving from n to n

2 ), the difference seems to be significant.
Using Sommerfeld conditions, the conditions for Fig. 3 and Fig. 5 the conclusion is similar. The use of these boundary 

conditions for the linear interpolation case seems to be more prevalent at the first level (blue). Here, Fig. 3 shows a slightly 
different angle away from the zero, compared to Fig. 2. At the second level, there appears to be no difference. If we move 
to higher-order deflation vectors in Fig. 4 and Fig. 5 for both the Dirichlet and Sommerfeld case, the eigenvalues at the first 
level remain clustered near the point p1, 0q in the complex plane. The eigenvalues start dispersing once we move to the 
second level (red) (from n

2 to n
4 ). An important distinction is visible for the higher-order case. Using Sommerfeld conditions 

in Fig. 5 keeps the eigenvalues of Ph,2 away from zero relative to Fig. 4.
Note that for m ě 3, we have proved that the resulting coarse-grid coefficient matrix E3 is completely negative definite. 

Consequently, the problem of the near-zero eigenvalues of Emě3 resolves itself at these levels given that the location of the 
smallest eigenvalue in terms of magnitude is now fixed away from zero due to the matrix being negative-definite. Moreover, 
the further down the levels we move, the smaller the number of eigenvalues become which get projected away.

Next, we repeat the analysis for k “ 1 000, but this time we use 20 gpw. We define Ph,1, Ph,2 and Ph,3 according to 
Eq. (4). When we use Dirichlet boundary conditions, comparing Fig. 6 and Fig. 8 immediately shows that there are more 
near-zero eigenvalues when using linear interpolation. Overall, for the first and second level, the spectrum remains tightly 
13
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Fig. 6. Linear interpolation (Dirichlet). Spectrum of the global deflation 
+ CSLP preconditioned system using kh “ 0.3125 or equivalently 20 
gpw. Black uses a two-level scheme, blue uses a three-level scheme 
and red uses a four-level scheme.

Fig. 7. Linear interpolation (Sommerfeld). Spectrum of the global defla-
tion + CSLP preconditioned system using kh “ 0.3125 or equivalently 
20 gpw. Black uses a two-level scheme, blue uses a three-level scheme 
and red uses a four-level scheme.

Fig. 8. Quadratic rational Bezier (Dirichlet). Spectrum of the global de-
flation + CSLP preconditioned system using kh “ 0.3125 or equivalently 
20 gpw. Black uses a two-level scheme, blue uses a three-level scheme 
and red uses a four-level scheme.

Fig. 9. Quadratic rational Bezier (Sommerfeld). Spectrum of the global 
deflation + CSLP preconditioned system using kh “ 0.3125 or equiva-
lently 20 gpw. Black uses a two-level scheme, blue uses a three-level 
scheme and red uses a four-level scheme.

clustered when using higher-order deflation. Thus, for the linear interpolation case in Fig. 6, the first level (black) appears 
to benefit the most from using a finer grid.

Moving on to the Sommerfeld boundary conditions, comparing Fig. 7 and Fig. 9 shows a large difference in the clustering 
of the eigenvalues at the first and second level (black and blue). Using a finer grid seems to affect the first and second level, 
i.e. the spectrum of Ph,1 and Ph,2 of the higher-order case more. If we compare Fig. 7 and Fig. 3 we only observe a 
significant difference at the first level. In all cases it shows that the largest clustering gain can be achieved at the levels 
where the matrix remains highly indefinite.

4.3.2. Local deflated near-zero eigenvalues
Here we start by plotting the local near-zero eigenvalues for k “ 1 000 of P2 and P3 and compare them to Ph,2 and 

Ph,3 respectively. For this part of the analysis, we will only use the case with Dirichlet boundary conditions. So far we 
have observed that the inclusion of Dirichlet boundary conditions leads to a spectrum which appears to be less favorably
clustered compared to when we include Sommerfeld boundary conditions.

Starting with 10 gpw, for all cases irrespective of linear interpolation or higher-order deflation vectors, the eigenvalues 
of the local and global operator are similar. If we use a higher-order scheme the largest gain in terms of removing the 
near-zero eigenvalues is realized at level m ď 2. At these levels, comparing Fig. 10 and Fig. 12, we observe that we have 
less near-zero eigenvalues both globally and locally. As soon as the matrix becomes negative definite, the spectrum is fully 
determined by the spectrum of CSLP applied to the global and/or local coefficient matrix. Comparing Fig. 11 and Fig. 13
shows no difference irrespective of the underlying basis functions used to construct the deflation vectors.
14



Fig. 10. Linear interpolation pm “ 2q. Spectrum of global and local de-
flation + CSLP preconditioned system using kh “ 0.625 or equivalently 
10 gpw. Red represents the global spectrum and blue represents the 
local spectrum.

Fig. 11. Linear interpolation pm “ 3q. Spectrum of global and local de-
flation + CSLP preconditioned system using kh “ 0.625 or equivalently 
10 gpw. Red represents the global spectrum and blue represents the 
local spectrum.

Fig. 12. Quadratic rational Bezier pm “ 2q. Spectrum of global and local 
deflation + CSLP preconditioned system using kh “ 0.625 or equiva-
lently 10 gpw. Red represents the global spectrum and blue represents 
the local spectrum.

Fig. 13. Quadratic rational Bezier pm “ 3q. Spectrum of global and local 
deflation + CSLP preconditioned system using kh “ 0.625 or equiva-
lently 10 gpw. Red represents the global spectrum and blue represents 
the local spectrum.

We repeat the analysis for k “ 1 000, again using 20 gpw. For both linear interpolation and quadratic rational Bezier, the 
global and local preconditioned spectra appear similar. We again have plotted m “ 2 in Fig. 14 and Fig. 16 and m “ 3 in 
Fig. 15 and Fig. 17. Note that when using 20 gpw the resulting underlying coarse linear system does not become negative 
definite at m “ 3. Instead, the linear systems become negative definite at m ě 4. As for the levels discussed here, we clearly 
observe a significant difference in clustering at both levels, when we use higher-order deflation vectors.

At the coarsest level where the matrix is still indefinite, in this case m “ 3, we observe in Fig. 17 that the spectrum 
is slowly starting to disperse for the higher-order scheme. In terms of magnitude, it is easy to see that the near-zero 
eigenvalues in Fig. 15 are smaller. This observation supports the notion that the largest effect of using a deflation strategy 
with higher-order basis function can be realized when the matrices at the finer level are highly indefinite. These are also 
the linear systems which are the largest in terms of the problem size.

4.3.3. Local near-zero eigenvalues
Here we proceed by plotting the eigenvalues of the coarse-grid systems for levels m ď 3. We take k “ 100 as for smaller 

k, the plot containing the complete spectrum and the near-zero eigenvalues is better visible. The results are comparable 
to the ones obtained for the two-level ADP preconditioner. The near-zero eigenvalues for all levels where the coefficient 
matrices are indefinite remain aligned, see Fig. 19. Comparing this to Fig. 18 for the linear interpolation case, the near-zero 
eigenvalues start shifting as we move from m “ 0 to m “ 2. Note that at m “ 3 all eigenvalues are negative, which follows 
from Corollary 4.1.2.
V. Dwarka and C. Vuik Journal of Computational Physics 469 (2022) 111327
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Fig. 14. Linear interpolation pm “ 2q. Spectrum of global and local de-
flation + CSLP preconditioned system using kh “ 0.3125 or equivalently 
20 gpw. Red represents the global spectrum and blue represents the 
local spectrum.

Fig. 15. Linear interpolation pm “ 3q. Spectrum of global and local de-
flation + CSLP preconditioned system using kh “ 0.3125 or equivalently 
20 gpw. Red represents the global spectrum and blue represents the 
local spectrum.

Fig. 16. Quadratic rational Bezier pm “ 2q. Spectrum of global and local 
deflation + CSLP preconditioned system using kh “ 0.3125 or equiva-
lently 20 gpw. Red represents the global spectrum and blue represents 
the local spectrum.

Fig. 17. Quadratic rational Bezier pm “ 3q. Spectrum of global and local 
deflation + CSLP preconditioned system using kh “ 0.3125 or equiva-
lently 20 gpw. Red represents the global spectrum and blue represents 
the local spectrum.

Fig. 18. Linear Interpolation. Spectrum of the coarse linear systems for 
k “ 100 and m ď 3.

Fig. 19. Quadratic Rational Bezier. Spectrum of the coarse linear sys-
tems for k “ 100 and m ď 3.
16
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Table 2
Number of outer FGMRES-iterations for MP2-A. m indicates that the problem size n ą
4 ̂ 106 and has exceeded the working memory capacity. CPU time is given in seconds. 
Max. iterations for inner Bi-CGSTAB have been set at 6nplq

1
4 , for l “ 1, 2.

MP2-A kh “ 0.625 - 10 gpw kh “ 0.17 - 35 gpw

f (Hz) Iterations CPU(s) n Iterations CPU(s) n

50 8 0.22 6 561 8 0.90 40 401
100 8 0.87 25 921 8 3.75 160 801
200 9 5.66 103 041 8 22.84 641 601
400 11 29.68 410 881 9 176.45 2 563 201
800 15 341.11 1 640 961 m m m

5. Numerical experiments

In this section we will provide numerical experiments to study the convergence behavior of our multilevel preconditioner. 
All experiments are implemented sequentially on a Dell laptop using 8 GB RAM and a i7-8665U processor. An exact solve is 
performed at the coarsest level with problem size n ă 10. Moreover, we allow one FGMRES-iteration on each level to retain 
the V-cycle structure (γ “ 1) and the rule of thumb 10 grid points per wavelength, unless stated otherwise.

At levels where the matrix is indefinite, Bi-CGSTAB is used as smoother. For all other levels, we use one smoothing step 
with damped Jacobi. For constant wavenumber model problems we need more Bi-CGSTAB iterations, as for heterogeneous 
problems the grid has been resolved with respect to the largest wavenumber. Thus for smaller values, there is in fact more 
accuracy than the required 10 grid points per wavelength. In all cases the number of inner iterations is determined by 

a constant times nplq
1
4 , where nplq is the problem size of the linear system on level l, given that we do not want more 

iterations than necessary on the coarser levels. We will use the following test models and report the number of iterations.

• 2D constant wavenumber (Sommerfeld) - MP2-A
• 2D constant wavenumber (Dirichlet + Sommerfeld) - MP2-B
• 2D wedge (Sommerfeld) - MP2-C
• 2D full Marmousi (Sommerfeld) - MP2-D
• 3D sine model (Dirichlet) - MP3-A
• 3D time-harmonic Elastic Wave equation (Dirichlet + Sommerfeld) - MP3-B

If timings are reported they will include the CPU-time in seconds using Matlab 2019Rb. The timings are for indicative 
purposes, please see our detailed complexity analysis above. The timings include all costs associated with the algorithm, 
including setting up the coarse-grid linear systems through matrix-matrix multiplications.

5.1. Two-dimensional constant wavenumber model problems

We start by presenting the numerical results in Table 2 for the constant wavenumber model problem MP2-A and MP2-
B. For this subsection we will use two grid resolutions: kh “ 0.625 and kh “ 0.17, which boils down to 10 and 35 gpw 
respectively. The reason for this is that we want to investigate how the solver performs once we need to solve larger 
systems in an effort to counteract the pollution error. It is known that for the Helmholtz problem, the numerical solution 
suffers from pollution error due to numerical dispersion [29–31]. The pollution effect can not be eliminated completely. One 
way to mitigate its effect is to use finer grids, which is why we will also investigate the case where we have 35 gpw.

We start with MP2-A, where the results are presented in Table 2. We observe that the number of iterations slowly 
grows with the wavenumber k. For the largest wavenumber k “ 800, we need 15 iterations using 10 gpw. Once we use 
35 gpw, we obtain a wavenumber independent solver. In terms of CPU timings, the time scaling is clearly visible when we 
have wavenumber independent convergence. Here, a fourfold increase in the problem size leads to an approximate fourfold 
increase in the CPU time. As this can vary across hardware configurations, we have included the CPU time as an indication. 
For the theoretical complexity and upper bound, please see Theorem 3.1.

We proceed with the results for MP2-B, which now also includes Dirichlet boundary conditions as reported in Table 3. 
The inclusion of this condition immediately results in an increase in the number of iterations. In fact using 10 gpw, we now 
have that for k “ 800, convergence is reached in 30 iterations. This is double the number of iterations when using Sommer-
feld conditions entirely. These results are in line with our theory as we already noticed in the spectral analysis section that 
the use of Dirichlet conditions leads to a less favorable spectrum Section 4.3. At coarser levels near-zero eigenvalues start 
to appear slowly, which is why we indeed expect the number of iterations to increase slightly.

To put these results into perspective for kh “ 0.625, i.e. 10 gpw, if we were to use the industry standard configuration 
with the CSLP inverted approximately using one multigrid V-cycle, then for MP2-B and k “ 200 we would need 296 Bi-
CGSTAB iterations which take 99.96 seconds to reach convergence. For MP2-A we would need 160 iterations which takes 
approximately 40 seconds.
17
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Table 3
Number of outer FGMRES-iterations for MP2-B. m indicates that the problem size n ą
4 ̂ 106 and has exceeded the working memory capacity. CPU time is given in seconds. 
Max. iterations for inner Bi-CGSTAB have been set at 6nplq

1
4 , for l “ 1, 2.

MP2-B kh “ 0.625 - 10 gpw kh “ 0.17 - 35 gpw

f (Hz) Iterations CPU(s) n Iterations CPU(s) n

50 8 0.32 6 561 8 1.30 40 401
100 11 1.93 25 921 9 7.16 160 801
200 16 18.52 103 041 11 62.95 641 601
400 23 193.60 410 881 17 1075.77 2 563 201
800 30 891.50 1 640 961 m m m

Fig. 20. Velocity profile and numerical solution for MP2-C for f “ 60.

Without a preconditioner and if no outer FGMRES with multilevel deflation were to be used, we would need 6 188 
Bi-CGSTAB iterations with a total time of 70.98 seconds for MP2-B and 2 797 with 32.54 seconds for MP2-A. For k “ 200, 
the maximum number of inner Bi-CGSTAB iterations at the indefinite levels is set at approximately 102. While the inner 
iterations may appear to be a lot, note that, if we were to apply 9 times 102 iterations on a stand-alone basis, it is still 
less than the number of iterations of Bi-CGSTAB without any preconditioner (6 188 and 2 797 for MP2-B and MP2-A 
respectively). Moreover, both GMRES and Bi-CGSTAB used with the approximated inverse of the CSLP, require much more 
computation time. What we thus observe is that the synergy of using outer FGMRES to create the hierarchy of coarse-grid 
levels with inner Bi-CGSTAB leads to both lower computation times and lower iteration counts for highly indefinite systems.

Finally, we would like to make a brief comparison with the old deflation scheme (DEF-ML) based on linear interpolation. 
Again for k “ 200 and kh “ 0.625, the DEF-ML preconditioner requires 24 iterations and 22.25 seconds to reach convergence 
for MP2-A and 61 iterations and 93.32 seconds for MP2-B respectively. In both cases the difference with respect to the 
higher-order deflation scheme is significant (ADP scheme) as for the new method it takes 9 iterations and 5.66 seconds for 
MP2-A and 8 iterations and 22.84 seconds respectively.

5.2. Two-dimensional heterogeneous model problems

In this subsection we will provide the results to the numerical experiments for the Wedge model (MP2-C) and the 
Marmousi model (MP2-D).

5.2.1. Wedge
Starting with MP2-C, Fig. 20 illustrates the underlying geometry of the wedge and the numerical solution. We divide the 

numerical domain into four sections containing a wedge.
From Table 4 we again observe that for both velocity profiles reported, the number of iterations weakly depends on the 

frequency. Note that when cpx, yq P r500, 3 000s, the dimensionless wavenumber kpx, yq lies between and 125 and 750 for 
f “ 60. Similarly for cpx, yq P r1 000, 6 000s, we have that kpx, yq lies between 63 and 375. As a result, we need more 
grid points per wavelength when cpx, yq P r500, 3 000s to resolve all waves with a resolution of 10 gpw. Consequently, the 
problem size is larger whenever cpx, yq P r500, 3 000s.
18
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Table 4
Number of outer FGMRES-iterations for MP2B (Wedge). The largest wavenumber k is resolved using 
10 gpw. Max. iterations for inner Bi-CGSTAB have been set at 6nplq

1
4 , for l “ 1, 2.

k “
2π f 1 000

cpx,yq cpx, yq P r500,3 000s m/s cpx, yq P r1 000,6 000s m/s

f (Hz) Iterations CPU(s) n Iterations CPU(s) n

10 12 4.10 41 209 9 0.58 10 201
20 18 37.14 162 409 12 3.97 41 209
30 22 118.22 366 025 16 18.99 91 809
40 29 370.91 648 025 19 34.29 162 409
60 35 1 097.31 1 456 849 22 174.03 366 025

Table 5
Number of outer FGMRES-iterations for MP2B (Wedge). The largest wavenumber k is resolved 
using 35 gpw to account for the pollution effect. Max. iterations for inner Bi-CGSTAB have 
been set at 6nplq

1
4 , for l “ 1, 2, 3, 4.

k “
2π f 1 000

cpx,yq cpx, yq P r500,3 000s m/s cpx, yq P r1 000,6 000s m/s

f (Hz) Iterations CPU(s) n Iterations CPU(s) n

10 12 17.05 253 009 12 4.49 64 009
20 15 159.25 1 014 049 12 24.86 253 009
30 17 524.42 2 277 081 13 82.78 570 025

The fact that the underlying wavenumber is much larger in the first case, where cpx, yq P r500, 3 000s, explains why 
we need more iterations to reach convergence. Similarly, for both cases in Table 4, we observe that if the problem size is 
doubled, the computing time increases by a factor of 3.

Next, we investigate how the preconditioner performs if we refine the grid using 35 gpw instead of 10 gpw. One of the 
reasons why we investigate this is to assess the convergence behavior once we allow for pollution correction. The pollution 
error is present in numerical solutions for large wavenumbers or high-frequencies due to underlying numerical dispersion. 
The natural way to resolve this issue is by using a very fine and restrictive grid resolution. In Table 5 we report the number 
of iterations when using 35 gpw. Note that now for f “ 30 and cpx, yq P r500, 3 000s, the largest problem size is now 2 
277 081 compared to 366 025 previously. Observe that using a finer grid, also reduces the number of iterations to reach 
convergence. This can be explained from a theoretical perspective as well as we have observed from the spectral analysis 
that using finer grids leads to more levels which already have less near-zero eigenvalues, see Section 4.3. In terms of CPU 
timings, we find that while the problem size is now approximately 6 times larger, the CPU time has increased by a factor 
of 4. The same holds for when we take cpx, yq P r500, 3 000s.

5.2.2. Marmousi
Next we consider an adapted version of the original Marmousi problem developed in [18]. The original domain has been 

truncated to � “ r0, 8 192s ̂ r0, 2 048s in order to allow for efficient geometric coarsening of the discrete velocity profiles. 
This way, the problem sizes can remain powers of 2. Similar to some experiments in the literature, the coarsening keeps 
the proportions of the original velocity the same but lets cpx, yq vary between 2 587.5 ď c ď 3 325. On �, we define

´	upx, yq ´ kpx, yq
2upx, yq “ δpx ´ 4 000, yq, px, yq P �zB� Ă R2, (11)

ˆ

B

Bn
´

?
´1k

˙

upx, yq “ 0, px, yq P B�,

where n denotes the outward normal unit vector. The wave number is given by kpx, yq “ 2π f
cpx,yq

, where the frequency f is 
given in Hertz.

The results from Table 6 show that the number of iterations again weakly depends on the wave number. Here we 
experiment with using a W-cycle instead of a V-cycle to construct the multilevel hierarchy. For the Marmousi problem we 
observe that it leads to a lower number of iterations for all the reported frequencies. However, for the largest test case with 
n “ 1 878 251, while the number of iterations are lower (24 instead of 33), the computation time increases. This can be 
explained by noting that for the W-cycle, more work is performed within each level.

5.3. Three-dimensional heterogeneous model problems

In this subsection we will provide the results to the numerical experiments for the Sine model (MP3-A) and the Elastic 
wave model (MP3-B). Note that in the elastic wave equation, both force and displacement are vector quantities.
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Table 6
Number of outer FGMRES-iterations for the Marmousi problem MP2C, where f denotes the 
frequency in Hertz. The largest wavenumber has been resolved using 10 gpw. Max. iterations 
for inner Bi-CGSTAB have been set at 6nplq

1
4 , for l “ 1, 2.

n γ “ 1 γ “ 2

f (Hz) n Iterations CPU(s) Iterations CPU(s)

10 66 177 18 18.11 13 18.55
20 263 425 21 117.68 14 75.17
40 1 051 137 30 810.90 20 914.30
60 1 878 251 33 1 559.30 24 1 633.57

Fig. 21. Wave number and numerical solution for MP3B (Sine) for f “ 8.

Table 7
Number of outer FGMRES-iterations for sine-problem (MP3C), where f denotes the frequency 
in Hertz. Max. iterations for inner Bi-CGSTAB have been set at 6nplq

1
4 , for l “ 1, 2.

8π

k “ 2π f γ “ 1 γ “ 2

f (Hz) n Iterations CPU(s) Iterations CPU(s)

4 68 921 8 3.04 6 4.02
8 531 441 26 133.68 15 123.21
12 1 771 561 49 1 259.18 28 1 359.92

5.3.1. Sine model
In this model we artificially construct a variant of the Helmholtz equation with highly varying wavenumbers across the 

entire numerical domain. We therefore define the following

´	upx, y, zq ´ k̃px, y, zq
2upx, y, zq “ δpx ´

1

2
, y, zq, px, y, zq P � “ r0,1s

3
Ă R3,

k̃px, y, zq “
k2

1 ` k2
2

2
`

ˇ

ˇ

ˇ

ˇ

ˇ

k2
2 ´ k2

1

2

ˇ

ˇ

ˇ

ˇ

ˇ

sinp8πpx ` y ` zqq,k1 P N,k2 “
k1

3

upx, y, zq “ 0, px, y, zq P B�.

An illustration of the wavenumber profile is given in Fig. 21 (a).
The results are reported in Table 7. We observe that for this highly varying wave number model problem, where the 

wave number switches rapidly from low- to high-contrast, the dependency of the iteration count on kpx, y, zq is more 
pronounced. Experimenting with the W-cycle instead of the V-cycle does lead to a lower iteration count. However, for the 
largest test case ( f “ 12), we again observe an increase in the computation time.
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Table 8
Number of outer FGMRES-iterations for the time-harmonic elastic wave equation (MP3-B), 
where f denotes the frequency in Hertz using 20 gpw. Max. iterations for inner Bi-CGSTAB 
have been set at 7nplq

1
4 , for l “ 1, 2.

k “ 2π f n γ “ 1 γ “ 2

f (Hz) Iterations CPU(s) Iterations CPU(s)

1 19 968 8 2.87 8 3.59
2 147 033 11 87.21 9 77.97
4 1 127 463 15 1 665.68 13 1 735.29

5.3.2. Elastic wave
For the time-harmonic elastic wave equation in a three-dimensional wedge we use the model from [32]. No splitting has 

been performed and the global system is solved. The results are given in Table 8. We again experiment with the V-cycle 
and the W-cycle. For the frequencies reported, the number of iterations slowly increases with the wave number. When 
comparing the computation time, once the frequency increases and the problem becomes large, the V-cycle is preferred. 
While the W-cycle leads to less iterations, it requires more computational work.

6. Conclusion

In this work we extend the two-level deflation preconditioner using higher-order deflation vectors to a multilevel defla-
tion preconditioner [22]. We provide theoretical and numerical evidence to show that up to a certain level, the coefficient 
matrices are indefinite. These levels are of paramount importance as the near-zero eigenvalues at these levels can effectively 
be removed by the multilevel deflation preconditioner. If the near-zero eigenvalues are aligned, then the eigenvalues cluster 
near the point p1, 0q in the complex plane, accelerating the convergence of the underlying Krylov solver.

After this level, the subsequent coarse coefficient matrices become negative definite. We implement Opn
1
4 q inner Bi-CGSTAB-

iterations on the indefinite levels to approximate the CSLP using the inverse of the wave number k as the shift pβ2 “ k´1q

and use damped Jacobi on the levels where the matrices are negative definite. This circumvents the difficulty of multigrid 
approximations, where the shift β2 has to be kept large. The proposed configuration leads to scalable results as we obtain 
close to wave number independent convergence in terms of a fixed number of iterations. It furthermore, extends the re-
sults for both a constant and non-constant wave number model problem, such as the two-dimensional industrial Marmousi 
model problem and the three-dimensional elastic wave equation. Additionally, sequential implementation of the method 
leads to scalable timing results for the model problems, which has been demonstrated using numerical experiments and a 
complexity analysis.
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Appendix A. Proof of Theorem 4.1

Basis and ordering
We start by defining nm “

n
2m and rearranging the space spanned by the eigenvectors at each level such that we obtain the 

following subspace

V j
m “ span tv j

m, vnm`1´ j
m u,

for j “ 1, 2, . . . , nm`1. Moreover let
21



V. Dwarka and C. Vuik Journal of Computational Physics 469 (2022) 111327
Vm`1 “

nm`1
à

j“1

span tv j
m`1u,

denote the space spanned by the eigenvectors at a coarser level m ̀ 1. Note that the basis spans Cnm and Cnm`1 as we can 
write

Cnm “

nm`1
à

j“1

V j
m and Cnm`1 “ V j

m`1,

and at each subsequent level m ̀ 1 we re-order the basis to obtain Vm`1. Thus, on each level we define the automorphism 
such that we can bring the basis of Vm in to the order of Vm

αm
πp jq : Vm Ñ Vm : j ÞÑ nm ` 1 ´ p j ´ 1q for j is even.

For m “ 0, 1, 2 . . .mmax, the linear interpolation and restriction operator maps between subsequent vector spaces

Im`1
m :Vm Ñ Vm`1, such thatV j

m ÞÑ Im`1
m V j

m

Im
m`1 : Vm`1 ÑVm, such that v j

m`1 ÞÑ Im
m`1 v j

m`1.

Restriction operator

We will now apply the corresponding matrices to the respective eigenvectors on each level, where we let Im`1
m “ Zm`1. 

We start by taking m “ 0. Using the basis of eigenvectors for V0 we have for index j

”

Z T
1 v j

0

ı

i
“

1

4
psinpp2i ´ 1qhπ jq ` 2 sinp2ihπ jq ` sinpp2i ` 1qhπ jqq ,

“
1

2
p1 ` cosp jπhqq sinp2hiπ jq,

“ C j
1,h

”

v j
1

ı

i
.

Now, for the complementary mode on level m “ 0 corresponding to index j we define j1 “ n0 ` 1 ́ j. Note that we can 
write

rv j1

0 si “ ´p´1q
j sinpihjπq, (A.1)

i “ 1,2, . . .nm,and j “ 1,2, . . .nm`1.

Applying the restriction operator to the complementary eigenvector gives

”

Z T
1 v j1

0

ı

i
“

1

4

´

cosp jπhq sinp2hiπ jq ´ p´1q
2i sinp2hiπ jq

¯

,

“
1

4
pcosp jπhq ´ 1q sinp2hiπ jq,

“ C j
2,h

”

v j
1

ı

i
.

We thus have that at level m “ 1, the fine-grid eigenvectors from level m “ 0 are mapped by the restriction operator Z T
1

according to

Z T
1 v j

0 “ C j
1,h v j

1, j “ 1,2, . . . ,n1, (A.2)

Z T
1 vn0`1´ j

0 “ C j
2,h v j

1, j “ 1,2, . . . ,n1. (A.3)

Note that v j
1 P V 1 @ j. Additionally, note that n1 vectors from V0 are mapped to zero which implies that the nullspace of Z T

1
has dimNpZ T

1 q “ n1. In order to move from m “ 1 to m “ 2, which maps V1 Ñ V 2, we apply Z T
2 . The mapping trajectory 

is given by the following diagram

I2
1 ˝I1

0 :V0
I1

0
ÑV1

I2
1

Ñ V 2, where V0
I1

0

I2
1˝I1

0

V 1 ý
α1

πp jq

V1

I2
1

V 2
22
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We obtain V0 by first applying α0
πp jq

such that we get the ordering of the basis in pairs j, j1 . The restriction operator I1
0

maps these basis vectors to V 1. Then in order to move to the second coarse space V 2, we again have to reorder the basis 
on V 1 by applying the automorphism α1

πp jq
. After permuting the elements of the basis, we can apply I2

1. Consequently, the 
range of I2

1 is V 2. This is equivalent to having a composition of the linear transformations I2
1 ˝ I1

0. Thus, in terms of the 
matrix representations, applying Z T

2 gives
”

Z T
2

”

Z T
1 v j

0

ıı

i
“ C j

1,h

´

Z T
2

”

v j
1

ı

i

¯

,

“
1

2
p1 ` cosp jπhqq

´

Z T
2 sinp2hiπ jq

¯

,

“
1

2
p1 ` cosp jπhqq

ˆ

1

4
sinpp2i ´ 1q2hπ jq ` 2 sinpp2iq2hπ jq ` sinpp2i ` 1q2hπ jq

˙

,

“

ˆ

1

2
p1 ` cosp jπhqq

˙ ˆ

1

2
p1 ` cosp jπ2hqq

˙

sinp4hiπ jq,

“ C j
1,hC j

1,2h

”

v j
2

ı

i
.

As regards the complementary modes on level m “ 1 note that α1
πp jq

: V 1 ÞÑV1 enables us to redefine j1 “ n1 ` 1 ́ j, 
where

rv j1

1 si “ ´p´1q
j sinpi2hjπq, (A.4)

i “ 1,2, . . .n1,and j “ 1,2, . . .n2.

Thus, applying the restriction operator to the complementary modes on m “ 1 gives
”

Z T
2

”

Z T
1 v j1

0

ıı

i
“ C j

2,h

´

Z T
2

”

v j
1

ı

i

¯

,

“
1

2
pcosp jπhq ´ 1q

´

Z T
2

”

v j
1

ı

i

¯

,

“
1

2
pcosp jπhq ´ 1q

ˆ

1

4

´

cosp jπhq sinp2hiπ jq ´ p´1q
2i sinp2hiπ jq

¯

˙

,

“

ˆ

1

2
pcosp jπhq ´ 1q

˙ ˆ

1

2
pcosp jπ2hq ´ 1q

˙

sinp4hiπ jq,

“ C j
2,hC j

2,2h

”

v j
2

ı

i
.

Note that v j
2 P V 2 @ j. Consequently, using Z T

1 to map from level m “ 0 to m “ 1 and Z T
2 to map from level m “ 1 to m “ 2, 

results in the fine-grid eigenvectors being mapped in a nested application according to

Z T
2

´

Z T
1 v j

0

¯

“ C j
1 v j

2, j “ 1,2, . . . ,n2,

Z T
2

´

Z T
1 vn`1´ j

0

¯

“ C j
2 v j

2, j “ 1,2, . . . ,n2, where,

C j
1 “

ˆ

1

2

˙m m
ź

l“1

´

1 ` cosp jπ2l´1hq

¯

and,

C j
2 “

ˆ

1

2

˙m m
ź

l“1

´

cosp jπ2l´1hq ´ 1
¯

.

In this case, n2 vectors from V1 are mapped to zero which implies that the nullspace of Z T
2 has dimNpZ T

2 q “ n2. Conse-
quently, in order to move to m “ 3 which maps V2 Ñ V 3, we can continue applying Z T

3 . From here, it is easy to see that 
for each subsequent level m ą 2, consecutive application of the matrices Z T

m is equivalent to the following linear mapping 
between the vector spaces Vm

Im
m´1 ˝Im´1

m´2 ˝ . . . ˝I1
0 :V0

I1
0

ÑV1
I2

1
ÑV2 . . .Vm´1

Im
m´1
Ñ Vm,

which can be represented by the following diagram
23



V. Dwarka and C. Vuik Journal of Computational Physics 469 (2022) 111327
V0
I1

0

Im
m´1˝Im´1

m´2˝...˝I1
0

V 1 ý
α1

π
V1

I2
1 V 2 ý

α2
π
V2

...
Im´1

m´2
Vm´1 ý

αm´1
π
Vm´1

Im
m´1

Vm

We thus have v j
m P Vm @ j, and in terms of the matrices, we therefore obtain

«

1
ź

l“m

Z T
l v j

0

ff

i

“

„

Z T
m Z T

m´1 . . .

„

Z T
2

1

2
p1 ` cosp jπhqq v1

jj

i
,

“

„

Z T
m Z T

m´1 . . .

„

Z T
3

1

4
p1 ` cosp jπhqq p1 ` cosp jπ2hqq v2

jj

i
,

“

ˆ

1

2

˙m m
ź

l“1

´

1 ` cosp jπ2l´1hq

¯

rvmsi “ C j
1rv j

msi,

for j “ 1, 2, . . . , nm . Similarly, for the complementary part corresponding to j1 “ nm´1 ` 1 ́ j we obtain
«

1
ź

l“m

Z T
l v j1

0

ff

i

“

ˆ

1

2

˙m m
ź

l“1

´

cosp jπ2l´1hq ´ 1
¯

rvmsi “ C j
2rv j

msi .

To conclude, we obtain

1
ź

l“m

Z T
l v j

0 “ C j
1 v j

m, j “ 1,2, . . . ,nm, (A.5)

1
ź

l“m

Z T
l v j1

0 “ C j
2 v j

m, j “ 1,2, . . . ,nm, (A.6)

where C j
1 “

` 1
2

˘m śm
l“1

`

1 ` cosp jπ2l´1hq
˘

and C j
2 “

` 1
2

˘m śm
l“1

`

cosp jπ2l´1hq ´ 1
˘

.

Prolongation operator
The restriction operator was defined as the transpose of Im

m`1, and thus we have that the matrix representation of the 
prolongation operator is given by Zm . For the prolongation operator, we again start with m “ 1 and take the basis V 1 as the 
prolongation operator works on a coarse-grid eigenvector on level m and maps it to a fine-grid counterpart on level m ́ 1. 
We distinguish two cases; i is odd and i is even. We start with the first case

rZ1 v j
1si “

1

4

ˆ

sinp
pi ´ 1q2hπ j

2
q ` sinp

pi ` 1q2hπ j

2
q

˙

,

“
1

4
psinppi ´ 1qhπ jq ` sinppi ` 1qhπ jqq ,

“
1

2
cosp jπhq sinpihπ jq, (A.7)

for j “ 1, 2, . . . , n1. If i is even, we obtain

rZ1 v j
1si “

1

2
sinp

2hiπ j

2
q “

1

2
sinphiπ jq “

1

2
rv j

0si . (A.8)

Using Eq. (A.4), if we define j1 “ nm´1 ` 1 ́ j, we can write Eq. (A.8) as

rZ1 v j
1si “ sinphiπ jq “ ´p´1q

i sinp jπhiq “ rv j1

0 si, (A.9)

if i = odd. Thus, if i is odd, combining Eq. (A.4) and Eq. (A.9), gives

rZ1 v j
1si “

1

2
rv j1

0 si `
1

2
cosp jπhqrv j

0si “ C j
1,hrv j

0, v j1

0 si,

for j “ 1, 2, . . . , n1. Similarly, if i is even, we obtain

rZ1 v j
1si “ ´

1

2
rv j1

0 si `
1

2
cosp jπhqrv j

0si “ C j
2,hrv j

0, v j1

0 si,
24
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for j “ 1, 2, . . . , n1. Note that rv j
0, v

j1

0 si is an element of V0 and the coarse-grid eigenvectors are mapped by the interpola-
tion operator Z1 according to

I0
1 : V 1

I0
1

ÑV0.

Also note that RpZ1q Ă V 0, and we have V 0 “NpZ T
1 q 

À

RpZ1q. We now take m “ 2, using the basis V 2. From the above, it 
follows that

rZ2 v j
2si “

1

2
rv j1

1 si `
1

2
cosp jπ2hqrv j

1si “ C j
1,2hrv j

1, v j1

1 si, i is odd (A.10)

rZ2 v j
2si “ ´

1

2
rv j1

1 si `
1

2
cosp jπ2hqrv j

1si “ C j
2,2hrv j

1, v j1

1 si, i is even, (A.11)

for j “ 1, 2, . . . , n2 and j1 “ n1 ` 1 ́ 1. As the v j
1’s are the eigenvectors on level m “ 1, we can rewrite the complementary 

indices j1 in terms of j again by using

rv j1

1 si “ ´p´1q
i sinpi2hjπq, (A.12)

i “ 1,2, . . .n1,and j “ 1,2, . . .n2.

Substituting Eq. (A.12) into Eq. (A.10) and Eq. (A.11) gives

rZ2 v j
2si “

1

2
rv j

1si `
1

2
cosp jπ2hqrv j

1si “ C j
1,2hrv j

1si, i is odd (A.13)

rZ2 v j
2si “ ´

1

2
rv j

1si `
1

2
cosp jπ2hqrv j

1si “ C j
2,2hrv j

1si, i is even, (A.14)

and RpZ2q Ă V 1, and we have V 1 “ NpZ T
2 q 

À

RpZ2q. Moving from m “ 1 to m “ 0 by left-multiplying Eq. (A.13) and 
Eq. (A.14) with Z1 is now straightforward as we get the coefficient C j

1,h and C j
2,h times rZ1 v j

1si from above. This corresponds 
to a composition of the linear transformations where at V1 we reorder the basis to V 1 using Eq. (A.12)

I0
1 ˝I1

2 : V 2
I1

2
ÑV1

I0
1

ÑV0, where V 2
I1

2

I0
1˝I1

2

V1 ýV 1

I0
1

V0

.

From here it is easy to see that for m ą 2 successive application gives
«

l
ź

l“1

Zl vm

ff

i

“

„

Z1 Z2 . . .
1

2

`

1 ` cosp jπ2mhq
˘

”

Zm´1 v j
m´1

ı

j

i
,

“

„

Z1 Z2 . . .
1

4

`

1 ` cosp jπ2mhq
˘

´

1 ` cosp jπ2m´1hq

¯ ”

Zm´2 v j
m´2

ı

j

i
,

“

ˆ

1

2

˙m 1
ź

l“m

´

1 ` cosp jπ2lhq

¯

rv j
0si “ C j

1rv j
0si, for i is odd. (A.15)

Finally, if i is even we get 
”

śl
l“1 Zl vm

ı

i
“

` 1
2

˘m ś1
l“m

`

cosp jπ2lhq ´ 1
˘

rv j
0si “ C j

2rv j
0si and RpZm`1q Ă Vm , and we have 

Vm “NpZ T
m`1q 

À

RpZm`1q.

Composite mapping subspaces

Let us now take Bm “
śm´1

l“1 Zl
ś1

l“m´1 Z T
l , and B̂m “ Zm Z T

m . We furthermore let

t f m :V0 Ñ Vm : Im
m´1 ˝Im´1

m´2 ˝ . . . ˝I1
0, and

f m : Vm ÑV0, and

gm :Vm´1 ÑVm´1 : Im´1
m ˝Im

m´1

where t f m is the transpose of the linear map f m . Note that gm is a automorphism. We can define

hm :V0 ÑV0 : f m
˝

t f m, f m
P Vm,
25
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to denote the composite linear mapping along the m-vectors spaces. Here t f m maps elements of V0 to Vm and we can 
write hm : f m´1 ˝

`

gm ˝ t f m´1
˘

. This gives

ker gm
“ tv j1

0 PV0, : t f m´1 v j
0 “ 0u Ă Vm´1, and

Im gm
“ tv j

0 PV0 : t f m´1 v j
0 ‰ 0u “ Vm´1{ker gm

Ă Vm´1,

where j1 are the complementary indices corresponding to n0 ` 1 ́ j. But then by definition and the fact that gm is an 
automorphism, t f m´1 v j

0 must be an eigenvector of gm . Given that we can write Vm´1 “ ker gm À

Im gm , the rank-nullity 
theorem furthermore tells us that dimpVm´1q “ dimpker gmq ̀ dimpIm gmq “ nm ` nm “ nm´1. Thus, gm must have nm zero 
eigenvalues and nm non-zero eigenvalues as the kernel of gm is non-trivial. This leads to

pgm
˝

t f m´1
qv j

0 “ gm
p

t f m´1 v j
0q,

“ λpgm
qp

t f m´1 v j
0q “ λpgm

qv j
m´1,

where λpgmq denotes the scalar eigenvalue corresponding to gm . Applying f m´1, finally gives

f m´1
˝ pgm

˝
t f m´1

qv j
0 “ f m´1

´

gm
p

t f m´1
¯

v j
0q,

“ λpgm
q f m´1

p
t f m´1 v j

0q “ λpgm
qλphm´1

qv j
m´1.

Eigendecomposition of Bm

If Bm´1 and B̂m are the matrix representations of hm´1 and gm respectively, then dimpker gmq “ dimpNpB̂mqq “ nm , and 
dimpIm gmq “ dimpRpB̂mqq “ nm , and thus B̂m has only nm non-zero eigenvalues. But then Bm must also have nm non-zero 
eigenvalues as well.

Appendix B. Proof of Theorem 4.2

Proof. On the basis V0 defined with respect to the finest level m “ 0, we can block-diagonalize the coefficient matrix A in 
terms of a total of n1 blocks with size 2 ̂ 2. If we define the complementary index j1 “ nm ` 1 ́ j “ n0 ` 1 ́ j, then each 
j-th respective block has the form

r�pAqs
j
V0

“

«

λ
j
A 0

0 λ
j1

A

ff

,

for j “ 1, 2, . . . , n1. Moving to m “ 1, we now start using V1 as E1 resides in the coarse-space. After applying Z T
1 and Z1, 

we obtain, for j “ 1, 2, . . .n1, the 1 ̂ 1 block

r�pE1qs
j
V1

“

”

Z T
1 A0 Z1

ı j

V1
“

”

r j
1 p j

1

ı

«

λ
j
A 0

0 λ
j1

A

ff «

r j
1

p j
1

ff

“ pr j
1q

2
λ

j
A ` pp j

1q
2
λ

j1

A .

Thus, if we define λ j
E1

“ pr j
1q

2
λ

j
A ` pp j

1q
2
λ

j1

A for j “ 1, 2, . . . , n1, then E1 has block-diagonal form.

r�pE1qsV 1 “

»

—

—

—

—

—

—

–

λ1
E1

0

λ2
E1

. . .

0 λ
n1
E1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that E1 has no zero eigenvalues and dimension n1 ˆ n1. Consequently, we have a total of n1 blocks with size 1 ̂ 1
corresponding to each index j at level m “ 1. To apply Z T

2 and Z2 to E1, we now need the 2 ̂ 2 blocks. We can apply 
the permutation matrix corresponding to απ with respect to V 1 such that we get the ordered basis V1. On this basis the 
block-diagonal form of E1 is form

r�pE1qsV1 “

»

—

—

—

—

—

—

—

—

—

—

—

–

λ1
E1

0

0 λ11

E1

0

. . .

0
λ

n2
E1

0

0 λ
n1

2
E1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,
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for j “ 1, 2, . . .n2. Now, applying the block-diagonal form of Z T
2 and Z2 to r�pE1qsV1 gives

»

—

—

—

—

—

—

–

r1
2 p1

2 0
r2

2 p2
2

. . .

0 rn2
2 pn2

2

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

–

λ1
E1

0

0 λ11

E1

0

. . .

0
λ

n2
E1

0

0 λ
n1

2
E1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

–

r1
2

p1
2

0

r2
2

p2
2

. . .

0 rn2
2

pn2
2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Note that r�pE1qsV1 has size pn1 ˆ n1q and Z T
2 has size pn2 ˆ n1q. Thus, for j “ 1, 2, . . . , n2 and j1 “ n1 ` 1 ́ j, each 

respective j-th block leads to the p1 ̂ 1q block containing

r�pE2qs
j
V1

“

”

r j
2 p j

2

ı

«

λ
j
E1

0

0 λ
j1

E1

ff «

r j
2

p j
2

ff

“ pr j
2q

2λ
j
E1

` pp j
2q

2λ
j1

E1
.

From here it is easy to see that for m ą 2, application of Z T
m and Zm recursively gives a j-th p1 ̂ 1q block with λ j

Em
“

pr j
mq

2
λ

j
Em´1

` pp j
mq

2
λ

j1

Em´1
for j “ 1, 2, . . . , nm and j1 “ nm´1 ` 1 ́ j, where each j-th block has the form

r�pEmqs
j
Vm

“

«

λ
j
Em

0

0 λ
j1

Em

ff

.

We can now combine Lemma 4.2.1 and the previous expression for the eigenvalues of Em to block-diagonalize Q m . We can 
now use the result from Lemma 4.2.1. This gives

r�pQ mqs
j
V0

“ r�p

m
ź

l“1

Zl E
´1
m

1
ź

l“m

Z T
l qs

j
V0

“ λ
´1
Em

j r�pBmqs
j
V0

“ λ
´1
Em

j

1
ź

l“m

´

pr j
l q

2
` pp j

l q
2
¯

,

for j “ 1, 2, . . . , nm . l
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