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Abstract

A buckling analysis and imperfection sensitivity study of scaled launch-vehicle cylindrical
shells have been executed. The emphasis is on scaled cylindrical shells due to the expensive
nature of full scale launch-vehicle cylindrical shells and the size constraints of experimental
testing equipment. The work as presented in this thesis is part of a framework of a collabo-
ration with NASA Langley. The main objective was to investigate if a scaling method, which
is developed as part of this afore mentioned collaboration, results in representative scaled
cylindrical composite shells. These scaled cylindrical composite shells will be validated by
experimental tests at NASA Langley. The scaling of structures can be a challenging process,
as a scaled model which shows full scale representative behaviour is difficult to design due
to constraints such as manufacturability. The buckling of cylindrical shells is considered to
be a structural problem which is yet to be fully understood. The cylindrical shells show
a high imperfection sensitivity, but the exact influence of imperfections caused by different
manufacturing processes is a source of uncertainty.

The thesis will focus on two scaled cylindrical shells which resulted from the scaling
method, next to the full scale CTA 8.1 cylindrical shell they are based on. The CTA 8.1 is a
sandwich cylindrical shell with a honeycomb core which is designed to be representative for a
launch-vehicle structure. The first scaled cylindrical shell consists of a solid laminate and the
second scaled cylindrical shell consists of a sandwich with foam core. A scaled solid laminate
cylindrical shell is of interest, as the core thickness of a scaled sandwich cylindrical shell can
become too thin to manufacture.

The scaled solid laminate cylindrical shell was analysed in detail. Multiple elements
were compared, of which the SC8R showed the most accurate results and was computational
efficient. An imperfection sensitivity study showed that the cylindrical shell was most sensitive
to an axisymmetric modeshape imperfection, while it saw a low sensitivity to a measured
mandrel imperfection. The loading imperfection that was tested had no effect on the stiffness,
while it did lower the buckling load. The scaled solid laminate cylindrical shell did not show
failure before buckling, and is deemed to be a valid option for experimental testing purposes.

The scaled sandwich cylindrical shell was analysed with mandrel imperfections only. It
did show high strain in pre-buckling, but it did not result in material failure. Multiple element
configurations were investigated, where the S4R and SC8R elements showed accurate results
for a single element through the thickness.

A comparison was executed between the scaled cylindrical shells and the CTA 8.1 cylin-
drical shell. The first comparison used nondimensional load and displacement to evaluate
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the behaviour. The scaled solid laminate cylindrical shell shows the highest nondimensional
stiffness and buckling load. The CTA 8.1 cylindrical shell shows the second highest buckling
load, closely followed by the scaled sandwich cylindrical shell. The stiffness of the CTA 8.1
cylindrical shell and the scaled sandwich cylindrical shell are closely matched. The second
comparison makes use of strain contour plots, where similar strain patterns are seen. Al-
though differences were observed, the level of similarity that was seen between these scaled
structures and their full scale counterpart was not found in literature.
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The route I have taken to become an Aerospace Engineer might not be the most obvious, I
do however not regret any of it. My Mechanical Engineering Bachelor from a University of
Applied Sciences have lead to my practical manor of reasoning, which might have made me
a sceptic person as well. I tend to not believe technical innovations until I actually see them,
though not to the level that I would doubt the moonlanding. During my Bachelor, many op-
portunities were provided to work with companies, from which I got acquainted with different
mindsets and how much the level of precision can vary. Although this might sound obvious,
it does open your eyes when u work on an assignment for a company in the semiconductor
industry, after finishing an assignment for a foundry the week before.

During my Master of Aerospace Structures & Materials, my interest into stability problems
grew due to the stability course as given by my supervisor Prof. Bisagni. This was later
combined with courses on the analysis and design of composite structures and non-linear
modelling, this set the course for the remaining part of my Master. When I got word the
current thesis topic was available, I hurried to the faculty to accept it and sat in an office to
get acquainted with the buckling of cylindrical shells the same day. After writing this thesis,
I hope I can and have succeeded to transfer the same enthusiasm about the current topic
onto the reader, the same enthusiasm I felt that day and still do after researching it. There’s
however only one way to find out......
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Chapter 1

Introduction

Cylindrical composite shells have their main use in launch vehicles, such as the Saturn, Atlas
and Ariane, where buckling under the axial compression loadcase is a major consideration
because of the thin walled construction. Recent years has seen several research groups do
extensive research on the buckling of composite cylindrical shells, as its generally considered
to be one of the structural problems yet to be fully understood. The largest source of un-
certainty is the influence of imperfections caused by the manufacturing process of the shells,
which is a popular topic for composite materials in general as well. Cylindrical shells have
shown to be highly sensitive to these imperfections, as it can lower the buckling load by a
considerable amount, which was researched quite extensively [1]. Creating a higher under-
standing of the influence of the imperfections will enable designers to use the full potential of
composite materials. The cylindrical shells can then be designed for a limit load closer to the
buckling load, offering considerable weight reductions. Buckling is seen as one of the primary
limiting design phenomena, as the ability to carry load by the structure is highly reduced
after buckling. Besides the load carrying abilities, the large deflections afterwards can cause
further failure modes and ultimately collapse will occur.

A common design guideline being used for the design of cylindrical shells, is the NASA
SP-8007 [2] technical report, which originates from the 1960s and is based on experimental
tests from as far back as the 1920s. This design guideline was not meant to be used for
composite materials, which is one of the reasons why new alternatives are needed. The basic
idea of this design guideline is that the imperfections cause a load reduction, and that for a
cylindrical shell design a knockdown factor (KDF) can be calculated. This KDF consists of
the buckling load of the perfect cylindrical shell divided by the buckling load of the imperfect
cylindrical shell. This design guideline is considered to be highly conservative [3], and thus
new guidelines are needed.

The second topic of the literature review is the scaling of structures. The need for scaled
structures comes from experimental size constraints which are in most cases determined by
the size of testing equipment. Besides size constrains, testing on scaled models will also have
financial benefits compared to the testing of full scaled structures as less material is needed
and the manufacturing of smaller parts is less expensive in general. These scaled models are
used to predict the structural behaviour of the full-scale structure or system, mostly called
the prototype or full scale structure, as accurately as possible. The scaling process itself can
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be challenging, to create a scaled model which is a good representation of the full scaled
model with certain constraints such as manufacturability taken into account. Furthermore,
the general validity of results obtained from scaled model compared to full scale testing is yet
to be fully understood.

A scaling method has been developed by Uriol Balbin et al. [4] which was published in
2018. This scaling method has resulted in two scaled cylindrical shells, which are based on a
cylindrical shell designed by NASA named the CTA 8.1. The objective is to research if these
scaled cylindrical shells can be used for experimental testing while showing representative
behaviour in comparison to the full scale cylindrical shell. The work as presented in this
thesis is in a framework of a collaboration with NASA Langley. The thesis will focus on
the FE modelling of cylindrical shells, in combination with methods to compare the results
of these FE models. Firstly a preliminary analysis of a cylindrical shell will be executed to
become acquainted with the software package used, next to providing preliminary research for
the effect of type of elements and mesh properties. The cylindrical shell for the preliminary
analysis will be modelled for both an isotropic and composite material.

This is followed by the analysis of the first scaled cylindrical shell. This cylindrical shell is
constructed of a solid laminate, whereas the CTA 8.1 is constructed of a sandwich composite.
The analysis of the scaled solid laminate cylindrical shell will include a comparison of element
types, for both linear and non-linear analyses. The scaled solid laminate cylindrical shell will
furthermore be used for the analysis of different types of imperfections, in combination with
an investigation into the imperfection sensitivity to these imperfection types. The imperfec-
tions that will be modelled are: modeshape imperfection, loading imperfection and measured
imperfections. The analysis of the scaled solid laminate cylindrical shell is followed by the
analysis of the scaled sandwich cylindrical shell. This analysis will start with a element config-
uration comparison, as modelling a sandwich composite with different elements through the
thickness can be of interest. This is followed by the analysis of the scaled sandwich cylindrical
shell in combination with mandrel imperfections.

The last chapter will focus on the analysis of the CTA 8.1 cylindrical shell, with measured
imperfection, after which a comparison with the scaled cylindrical shells will follow. Different
aspects of the structural behaviour of these cylindrical shells will be compared, next to an
investigation into the relation between imperfection amplitude and knockdown factor between
the analysed cylindrical shells.



Chapter 2

Literature Review

2.1 Buckling of Cylindrical Shells
The first paragraph of this chapter will consist of the introduction of a past research group
in Europe named New Robust DESIgn Guideline for Imperfection Sensitive COmposite
Launcher Structures (DESICOS) and a current research group in the US at NASA named
Shell Buckling Knockdown Factor (SBKF) Project. The second paragraph will go in depth
about statistical methods for the inclusion of imperfections and according buckling behaviour.
The third paragraph shows the possibilities with perturbation methods, such as perturbation
loads and perturbation displacements applied to the cylindrical shell in the lateral direction.
The fourth paragraph goes in depth about methods using results of experimental tests for
the validation of FE or analytical models. The last paragraph is on the determination of
structural behaviour of shells by nondimensional parameters, which is one of the methods
used for the SBKF project.

2.1.1 Recent Research Projects

In 2007 a new project was started at NASA named the SBKF project, with the goal of
developing a new design guideline for shell buckling. A detailed goal, history summary and
the development approach of the project was described by Hilburger [3] in 2012 which gives
good insight for why this project was needed. The design guideline currently being used dates
back to the 1960s by Peterson et al. [2] which is mostly referred to as NASA SP-8007 and is
not developed with the current composite materials in mind. The guideline was established by
using a lowerbound method in combination with experimental test data, this lowerbound was
then determined to be the KDF to be used in combination with bifurcation buckling analyses,
see Figure 2.1. As the bifurcation analyses itself does not take any imperfections into account
and thus resulted in unconservative buckling values. Furthermore, the guideline has not been
updated since the original publishing and the guideline is considered to be overly conservative,
resulting in heavy designs. There are several causes for it to be overly conservative: the extra
precision that current manufacturing methods have achieved since and the extra material
tailoring possibilities of composite materials are not taken into consideration among other
reasons. More recent research groups have also indicated that the KDFs used in the aerospace
industry are conservative, with test results supporting these claims. Although new analysis
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based KDFs are a goal for the SBKF project, it’s also meant to develop a new design method
for cylindrical composite shells which brings several new challenges. This requires more
understanding on the buckling behaviour and imperfection sensitivity of the cylindrical shells,
as this is also considered one of the reason for the previous method to consist of a lowerbound
method combined with test data. The phenomena that were seen during testing were not
always understood and even the quality of a few of the test reports is questionable although
still providing proper information. The design space of the method will first be focused
on launch-vehicles and later be expanded to a larger design space to accommodate a larger
portion of applications. The approach of the project is divided into four parts. Starting with
a study into the sensitivities of the performance to properties of the structure such as material
and type of joints. The second part consists of numerical and experimental testing with a focus
on different failure modes besides global buckling, to ensure a new less conservative method
does not cause other critical failure modes. Next is the development of new analytical methods
to determine the KDFs in combination with recommendations for structural approaches. And
as last is developing a implementation approach, which can be quite challenging as the design
process has been practically the same since the 1960s. Although the paper then goes into
more detail about the intended methods of the analytical KDFs, these details will be spared
as these research topics have been published in separate papers in the mean time and these
will be highlighted further on in the literature study.

Figure 2.1: Buckling KDF as specified by NASA SP-8007 [3].

Amore recent published paper concerning the SBKF project goes more in depth in general
and on the application of sandwich composites, which is the type of construction that will be
used in the thesis for which this literature study is intended, by Schultz et al. [5]. Sandwich
composites have a high structural efficiency combined with acceptable manufacturing cost,
therefore the priority is gaining knowledge of the behaviour of this kind of structure for both
strength and stability. As the primary load case for launch-vehicles is axial compression,
buckling is the phenomena of interest. Furthermore, the imperfection sensitivity of shell
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structures is considered to be relatively high and is therefore a popular topic of research. The
imperfection sensitivity of a sandwich composite structure, also considered a shell if it’s thin
enough, has not been researched extensively but it has gained attention in recent years as seen
in the SBKF project and others. Although manufacturing processes become more accurate,
there is no such thing as a perfect part (or cylindrical shell in this case), accounting for
imperfections will remain important. The interest lies in the method of accounting for these
imperfections, especially as it can greatly reduce costs if an extensive amount of experimental
testing is not required. As was mentioned before, the SBKF project is also focusing on analysis
based KDFs. The main reasoning, besides cost reduction compared to empirical methods, is
that a lot of the theories, and or tools, involved to develop these analytical methods have
gained considerable improvements. Examples of these theories are the available nonlinear
structural analysis tools, Abaqus for example, and the general understanding of buckling
behaviour of cylindrical shells combined with imperfection sensitivity. The paper also includes
a study to define a relationship between the KDF and the areal mass. For this study launch-
vehicle components were used from recent NASA projects. The study starts with a buckling
design sensitivity analyses of these components, for which several structural optimization
software packages are used. This is followed by a buckling imperfection sensitivity analyses
for which imperfection characteristics of certain manufacturing processes can be used, as it is
considered that a manufacturing process will create similar imperfections for different parts.
A wide variety of results are shown for design parameters as part of the optimization process.
It is therefore concluded that the areal mass can be reduced by 4 to 19 % dependent on
the type of structure by updating the design guidelines as they are used today. The last
set of results consist of the normalized buckling load compared for 3 different designs and
imperfection amount, see Figure 2.2. In general it can thus be concluded that the SBKF
project shows good prospects, with considerable weight decrease possibilities combined with
less experimental testing needed.

Figure 2.2: Normalized buckling load vs design options and imperfection amplitudes [5].
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A similar project was ongoing in Europe, from 2012 until 2015, named DESICOS. This
project was based around approximating imperfections by using a single perturbation load
approach, which is seen as a worst case scenario and could guarantee robust designs, combined
with a stochastic approach. A overview of this project and its goals were published by
Degenhardt [6]. The project went in-depth on the imperfection sensitivity of cylindrical
composite shells, where the sensitivity is influenced by a large variation of design parameters
for a composite laminate and is therefore seen as an important aspect of the research. The
loading imperfection was examined as well, as previous research showed that imperfect loading
will influence the buckling behaviour greatly. During the project real imperfections were
measured and included in the testing of several test shells. Of one specific test cylindrical
shell with a high imperfection sensitivity, 10 samples were manufactured and experimentally
tested for which the results can be seen in [7] by Degenhardt et al. From these results an
improvement of 45% was reached for the design buckling load with respect to NASA SP-8007.

2.1.2 Statistical Methods

Statistical methods have a wide variety of applications within the field of engineering. There
are several steps within the design process were statistical methods have its place. It goes
from using statistics on experimental results to determine design guidelines, to using prob-
abilistic methods to determine a KDF accounting for imperfections and using Monte Carlo
simulations to determine imperfection variations.

A study by the European Space Agency (ESA) which was executed at DLR, lead to the
publication by Degenhardt et al. [7] with the focus on determining imperfection sensitivity
and possible KDFs. For the research, 10 composite cylindrical shells were manufactured ac-
cording to the same design. Measurements were executed for both thickness imperfections
and geometric imperfections, which could be used for the FE analyses later on. For the FEA,
Abaqus was used and a investigation was executed for both mesh convergence and solver
comparison after which a Newton Raphson method with artificial damping is chosen. It’s not
stated which element was used or why the Newton Raphson method was preferred above the
other possibilities available in Abaqus. When comparing the results from the experimental
tests and the numerical results, it is be seen that the numerical results show a 39 % higher
buckling load which is considerable. This is most likely caused by loading imperfections not
being taken into account as stated by the authors. A probabilistic analysis is then executed,
by the use of a Monte Carlo simulation. The results of the Monte Carlo simulation, a distri-
bution of inclination angles for the loading platform, were applied to the FE model. This once
again confirmed the sensitivity to loading imperfections, as the buckling load drops consider-
ably for small inclination angles. The main reason to include this paper, is that the test data
from the cylindrical shells is used in another project a few years later which will be shown
here after. This new project is a good indication of the progress that has been made since
the tests were actually conducted.

As a part of the DESICOS project, a stochastic analysis was published by Kepple et al.
[8] which makes use of real imperfection data. This data was gathered by a previous DLR-
ESA program, for which 8 cylindrical composite shells were manufactured and scanned for
imperfections. Furthermore, experimental test data was acquired as well by axial compres-
sion tests on these same cylindrical shells. A stochastic method was used to incorporate the
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material imperfections and thickness variations. These imperfections were approximated by
applying a variable distribution of matrix and plies to the FE model. The stochastic method
consists of several techniques: A Hough Transform for variations in the resin distribution and
imperfections in ply placement, a 2D Short Time Fourier Transform was applied to create an
estimation of the 2D matrix imperfections spectrum, a Monte Carlo analysis was executed for
the ply placement imperfections and lastly a moving average technique was used to apply the
thickness variations to the FE elements. The paper then continues with load imperfections
and how to implement them, as previous research showed that the loading imperfections can
have a considerable impact on the buckling load. There were no boundary imperfections mea-
surements taken from the aforementioned cylindrical shells, so assumptions are made based
on previous research and according to a numerical analysis of the cylindrical shells. In this
numerical analysis, a comparison was made between buckling loads for varying bending an-
gles and circumferential variation angles and the buckling load measured during the previous
DLR-ESA program. According to this comparison, a range for the bending angle could be
determined for the statistical analyses after which a Monte Carlo simulation was executed.
For the final results, the FE solver ANSYS was used. The cylindrical shells were modelled
under axial compression, for both with and without imperfections. The imperfections were
implanted by type of imperfection, and afterwards all imperfections were implanted at once
to be able to compare the impact of each type of imperfection and the combinations. The
result of the numerical analysis can be seen in Figure 2.3 and Figure 2.4. It can be seen that
the loading imperfections has the largest influence on the buckling load, with the KDF being
0.64, and also showing the largest spread. When all imperfections are included, the total
KDF would be 0.55. A comparison is then being made with the KDF according to NASA
SP-8007, which would be 0.32. The large difference could be caused by NASA SP-8007 being
conservative in general, next to the improved manufacturing methods used for the cylindrical
shells. This study thus proves that a large improvement can be achieved by this new method.

Figure 2.3: Load vs axial shortening to compare influence of imperfections [8].
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Figure 2.4: KDFs comparison per imperfection [8].

A statistical analysis for KDFs was published by Takano [9] in 2012, which includes a
large amount of experimental data from a wide variety of researchers. The goal was to provide
designers with a solution for the designing of cylindrical shells, which might not be perfect but
should at least be practical. For the comparison with the different test data sets, a proposed
solution which is based on the Green-Lagrange strain theory is used. The author chose this
theory as he considers it to be the most precise compared to other linear bifurcation theories,
as it contains the lowest amount of simplifications. The first step in the determination of the
KDFs is to determine the validity of a number of experimental results. As from the comparison
between the experimental results, it can be seen that there are several outliers which are circled
in the comparison graph, see Figure 2.5. A stress analyses was executed by using the Tsai-Wu
criteria, from which was concluded that some of the experimental results contained material
failure before buckling and thus lowering the buckling load or even leading to collapse before
buckling. Furthermore, there were test samples containing residual thermal stresses due to the
curing process and test samples with improper bonds to the end plates, which were excluded
as well. With the outliers excluded, the results seem to lose the dependency on the radius over
thickness ratio which results in the assumption of no dependency on this ratio. The further
determination of the statistical KDFs, is based on determining the A and B basis values of the
buckling loads as measured during the experimental tests in combination with the buckling
loads obtained from the proposed solution. This includes steps as determining if all the data
can be seen as one sample, which was not the case, a study of the cause of variations among
others and lead to an A-basis value of 47.9% and a B-basis value of 62.6%. As can be seen in
Figure 2.5, the A and B-basis are on the conservative side, besides that the upper range of the
radius over thickness ratio is determined by a single data source which lowers the certainty of
the factors. In comparison to the widely used NASA SP-8007 design guideline, the determined
KDFs are more reliable while being less conservative. The KDFs can be further improved,
but this will require more experimental data. The statistical method is shown and explained
in detail and could thus be applied when new experimental data becomes available.



2.1 Buckling of Cylindrical Shells 9

Figure 2.5: Comparison of experimental data [9], with circles around outliers.

Imperfections can be included in the buckling analysis by a large variety of methods,
one of which is a probabilistic analysis. As a part of the DESICOS project, Bisagni and
Alfano [10] published a probabilistic analysis, for which measured imperfections are used.
The probabilistic analysis makes use of a combination of two methods, namely the Stress-
Strength Interference Method and the Latin Hypercube Method, where the probability is
considered for the cylindrical shell to endure the loading without buckling. From the anal-
ysis, a probabilistic buckling factor is determined which is dependant on the imperfections.
This buckling factor is the ratio between the buckling load of the perfect cylindrical shell,
which is determined by linear eigenvalue buckling analysis, and the imperfect cylindrical shell.
The test subject consists of a scaled sandwich composite cylindrical shell of SYLDA, which
was designed by Airbus Defence and Space. The test subject itself was manufactured dur-
ing the Desicos project for use in experimental testing and imperfection measurements, both
geometric imperfections and thickness variations, and was furthermore modelled in Abaqus,
see Figure 2.6. First the buckling load without any imperfections is determined, then the
imperfections are implanted into the model. For a worst case scenario with both geometric
imperfections and thickness variations implanted, the KDF would be 0.85. For the proba-
bilistic analysis, boundary imperfections and ply misalignment are also included. When the
worst case scenario is analysed by the probabilistic method, the probabilistic buckling factor
would be equal to 0.75. It should be noted though, that the boundary imperfections alone
would equal a probabilistic buckling factor of 0.79, which is not taken into account in the
Abaqus model. A comparison is then being made with the KDF according to NASA SP-8007,
which would be 0.57, which is considerably lower. At first sight the determined KDF would
be a large improvement, but it should be said that the geometric imperfections and thickness
variations are now defined by a single shell. The imperfections are thus not yet statistically
determined, for which a larger imperfection database is needed, which would be crucial for
this method to be used for design purposes.
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Figure 2.6: Geometric imperfections (a), Thickness variation(b) [10].

2.1.3 Perturbation Methods

The use of perturbation methods to approximate the behaviour of imperfect cylindrical shells
has been a popular research topic in the last 10 years. Several types of perturbations have been
researched and have shown considerable promise for the use in design guidelines. Perturbation
methods are based on the principle, that applying a perturbation can be seen as a worst case
scenario. For example by applying a dimple which would approximate the worst imperfection
due to manufacturing or approximate a dimple as seen in the pre-buckling phase. Some of the
possible perturbations are: radial perturbation load, radial perturbation displacement, edge
loading perturbation etc. The advantage of a perturbation method lies in less experimental
testing needed, which saves considerable expenses for the design of structures.

In a technical report published in 2013 by Cha and Schultz [11] a buckling analysis for
a composite cylindrical shell was shown. It used a different method for including initial ge-
ometric imperfections, as it approximated the influence of these imperfections by applying a
radial perturbation load, also called the Single Perturbation Load Approach (SPLA). This
method of applying a geometric imperfection was chosen as it influences the buckling load
without having a large influence on the axial stiffness of the cylindrical shell. This was shown
in a research executed by Haynie and Hilburger [12] where 3 different methods were com-
pared. The predictions are based on a FE analyses, somewhat similar to the model as used
in [13], and a closed form analyses. The results from the FE analyses consist of axial short-
ening vs load, normalized buckling load vs radial perturbation load and radial displacement
vs axial shortening. The normalized buckling load vs radial perturbation shows a bilinear
graph, where the intersection of both lines is the start of a lower bound plateau as one of the
lines has almost zero slope. Although there are results below this lower bound, in the results
shown by [13] these were local buckling events at the perturbation location instead of global
buckling. This is most likely the reason why this intersection point is deemed an indication
for the lower bound buckling load. This method does provide a new way of determining a
lower bound but it is questionable if it’s representative of geometric imperfections found in
real structures as there’s no comparison with experimental findings in this publication.

The SPLA method was also used in a study published by Orifici and Bisagni [14] in 2013.
This paper focused on both monolithic composite and sandwich composite construction for the
cylindrical shells. It includes both cylindrical shells with and without cutouts. The numerical
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analysis is executed in Abaqus and S4R elements were used. The analyses were executed by
applying the perturbation load with a constant loading rate, after which the perturbation
load is kept constant and a axial displacement is applied. The buckling load was considered
to be the maximum load, after which the load carrying capability lowers considerably. These
analyses lead to the results shown in Figure 2.7. Although it can be seen that the behaviour
of all test configurations is bilinear, the quasi-isotropic shows it in a more extreme matter in
comparison to the other configurations which indicates a higher imperfection sensitivity. This
behaviour of the quasi-isotropic cylindrical shell was caused by local buckling caused by the
perturbation load before final buckling. From the buckling patterns, it is concluded that the
lower perturbation loads cause normal buckling patterns as seen without perturbation loads.
However, the higher perturbation loads cause buckling modes which aren’t seen in normal
buckling behaviour and thus it can be considered unrealistic. The results from the sandwich
composite cylindrical shell showed similar behaviour compared to the monolithic constructed
cylindrical shells, but the increase in core thickness resulted in the buckling pattern consisting
of a lower amount of half waves. Furthermore influences of the cylindrical shell length were
seen which prevented the normal buckling shape, as without perturbations, to occur. An
investigation was executed to determine if material failure could happen, it showed that for
most configurations there would be no material failure when the perturbation displacements
does not exceed twice the thickness, but for sandwich constructions occurrences of both core
failure and ply failure were seen for perturbation displacements equal or larger than the
thickness. The next step was an analyses which included eigen-mode shapes as imperfections.
This lead to a similar graph as shown for the SPLA analyses, see Figure 2.8.

Figure 2.7: Normalized load vs perturbation displacement over thickness [14].

The single perturbation load approach is also a method used during the DESICOS project.
During this project, a comparison was made between the SPLA method and four other com-
mon methods by Castro et al. [15]. The other methods of the comparison consist of: linear
buckling mode-shaped imperfection (LBMI), measured geometric imperfections also called
Mid-Surface Imperfections (MSI), Axisymmetric imperfections (ASI) and Geometric Dimple-
shaped Imperfection (GDI). LBMI consist of buckling modes determined from the perfect
cylindrical shell, which are then multiplied by a scaling factor and applied to the perfect
model to create an imperfect cylindrical shell.
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Figure 2.8: Normalized load vs imperfection magnitude [14].

The GDI imperfection method, consist of applying one wavelength of a cosine in the circum-
ference direction and one wavelength of a cosine in the length direction of the cylindrical shell,
which together form a dimple. The ASI method is somewhat similar to the GDI method, but
now there is only one or multiple wavelengths in the length direction around the whole cir-
cumference. The MSI approach makes use of imperfection measurement data from a previous
research project, which are then combined with a scaling factor to create a realistic repre-
sentation of quality of the manufacturing process. The different methods were compared by
applying them to two composite cylindrical shells that are similar to cylindrical shells used in
previous research projects. The FE package Abaqus was used, in combination with Python
code to apply the imperfections in the Python API of Abaqus. A set of comparison KDFs
were determined, for which the NASA SP-8007 lowerbound guideline and a Reduced Energy
Method (REM) was used, the latter being in combination with Abaqus. It showed however,
that the REM method was dependant on the eigenmode and was unable to produce a lower-
bound KDF as intended for the comparison. A wide variety of results were plotted, mainly
end shortening vs applied load for different modes and measured imperfections for the two
test cylindrical shells. The results indicated that the SPLI and ASI methods gave lower KDFs
compared to the MSI method, with some of the GDI cases giving a higher KDF which was
dependent on the shape parameter. In general, the LBMI method gave the lowest KDFs with
the downside of this method being the large dependency on the eigenmode. The ASI turned
out to be the preferred method, as it resulted in KDFs close to the most critical LBMI. The
SPLA method was preferred over the GDI method, as it is a simple method in comparison
but it does still require further development to determine the perturbation load value to be
used.

In 2017 a paper was published by Wagner et al. [16] which consist of both development
and validation of KDFs, with a claim that the load capability of cylindrical shells can be up to
40% more efficient compared to previous methods. The development stage will consist of com-
parisons between methods to determine KDFs, which are Single Perturbation Displacement
Approach (SPDA) and Single Boundary Perturbation Approach (SBPA), see Figure 2.9, with
the methods being applied to 3 different composite cylindrical shells. SPDA approximates
the influence of geometric imperfections and the SBPA method combines geometric imper-
fections with loading imperfections. The SBPA method consists of applying a local loading
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imperfection with a certain height and width, which induces a single dimple as the geometric
imperfection and local bending, and thus combines two imperfections with one adjustment to
the model. The SPDA method is executed by creating a single dimple, by applying a radial
displacement to a node. These methods are based around the concept, that the buckling
load is dependent on the forming of a single dimple just before the cylindrical shell buckles.
There is also an interaction to consider, between the forming of this single dimple and pre-
buckling patterns. For the FE analyses the software package Abaqus was used, where the
models consisted of S4R elements. For the analyses with the SBPA method, different FEA
were executed using different heights of the loading imperfection. This resulted in a bound-
ary perturbation height which consequently results in a minimum local buckling load, which
would correspond to results of experimental tests as validated by previous research. The
buckling load was then determined for this perturbation height, which resulted in the KDFs
as seen in Figure 2.10. It can be seen that the experimental testing results are considerably
higher compared to the SBPA results, which is caused by the accurate manufacturing of the
test cylindrical shells according to the authors. The next step would be to apply the SPDA
method. The radial displacement for which the buckling load is considered representative for
a imperfect cylindrical shell was determined by gradually increasing the displacement, until
a maximum perturbation force is reached as seen in Figure 2.9. The corresponding buckling
loads and KDFs can be seen in Figure 2.11. It is seen that for cylindrical shell C1, the SPDA
buckling load is higher compared to the empirical results and the method is thus unconserva-
tive for this specific cylindrical shell as this is not the case for cylindrical shell C2 and C3. A
comparison was also being made with results from previous research using the SPLA method,
which is conservative in comparison. For the determination of the KDF design guideline, the
SBPA method is used, as it is seen as more robust. One of the test specimens, named C3,
showed the highest buckling loads for both perfect and imperfect state. As this specimen
used a quasi-isotropic layup, it is considered by the authors that cylindrical shells for launch-
vehicles should only be constructed of quasi-isotropic laminates. As previous research showed
that the KDFs for isotropic and quasi-isotropic cylindrical shells are similar, determination of
the knockdown guideline is focused on isotropic cylindrical shells. A large amount of isotropic
shells were modelled in combination with the SBPA method. The resulting KDFs were then
fitted with power laws. The end result are two sets of equations, the first set calculates the
KDF which only accounts for geometric imperfections and the second set accounts for both
geometric imperfections and loading imperfections. One of the comparisons between the KDF
accounting for both imperfections (designated TH) and previous experimental results can be
seen in Figure 2.12. It can be seen that the method is capable of showing great results, but it
does limit the tailorability of the composite material, which is ultimately one of the benefits
of a composite material in the first place.
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Figure 2.9: Comparison of perturbation methods [16].

Figure 2.10: SBPA buckling load (left) and KDF (right) comparison [16].

Figure 2.11: SPDA buckling load (left) and KDF (right) comparison [16].
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Figure 2.12: Comparison between TH KDFs and experimental results [16].

2.1.4 Experimental Validation

The main reason behind the increasing popularity of FE methods comes down to the costs
of experimental tests. These tests are very expensive and are therefore executed as least as
possible. The experimental tests are thus mainly for validating purposes, instead of a general
design tool. Research into approximations of experimental results, by simulating or approx-
imating the real life circumstances and imperfections in the widest sense, has been a field
that gained popularity partially because of the wide development of FE methods for which
the possibilities can seem endless. The inclusion of all types of imperfections and other influ-
ences on the behaviour of test samples, from the effects of the experimental setup to material
and manufacturing imperfections, have increased the accuracy and realistic behaviour of the
theoretical methods. Furthermore, experimental tests are a wealthy resource for the deter-
mination of the behaviour of structures in general, to validate design guidelines of common
structures and research behaviour of new types of structures.

The inclusion of measured imperfections for numerical analyses is not necessarily a new
method. In 2000 a combined experimental and numerical effort for the buckling and post-
buckling of cylindrical shells was published by Bisagni [1]. The numerical analyses makes use
of three different types, linear eigenvalue buckling analysis, nonlinear Riks method and dy-
namic analyses. Furthermore, two cylindrical shells were modelled to determine the influence
of the imperfections and the sensitivity to these imperfections per cylindrical shell was exam-
ined. The two cylindrical shells consist of different layup but are further geometrically equal.
The numerical analyses were executed by using Abaqus in combination with the conventional
shell element S4R, which is still a popular combination for the FE modelling of cylindrical
shells currently. The buckling load resulting from the linear eigenvalue analysis turns out to
be highly dependent on the mesh, which requires a mesh convergence study to reach accurate
results, but is in good agreement with the analytical solution. The nonlinear analysis, which
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uses a modified Riks method as available in Abaqus, also shows good agreement. The dynamic
analyses in combination with the expliecit method is computational more efficient compared
to implicit, while still showing good agreement with the analytical solution. Especially when
it is considered that the buckling load of a cylindrical shell is highly sensitive to imperfections,
an error of 3-4% is more then adequate. The analyses of imperfection starts off with imper-
fections which are based on the linear buckling modes in combination with a variable for the
amplitude, with the first FE model utilising an axisymmetrical mode. Varying this imperfec-
tion amplitude results in imperfection vs buckling load curves, from which is concluded that
the reduction of the buckling load for the same amplitude differs between cylindrical shells
with different layups. This is already an indication of the imperfection sensitivity, as seen
before in this literature study. Furthermore, both nonlinear methods, the Riks method and
dynamic analysis, show good agreement with the dynamic analyses showing higher buckling
loads in general. For a second comparison a different buckling mode is used as imperfection,
now considering a diamond shape buckling mode. It turns out that the cylindrical shell which
shows a diamond shape while buckled, shows equal behaviour for both imperfection shapes,
while the cylindrical shell showing an axisymmetric shape while buckling shows more critical
behaviour for the axisymmetric imperfection shape. This effect of the imperfection shape, is
clearly visible for high imperfection amplitudes, but becomes obsolete for lower amplitudes.
The final FE model incorporates the measured imperfections, for which the imperfections of a
zone in the centre of the cylindrical shell is used. The imperfections between this zone and the
edge, is linearly interpolated from the measured imperfection to zero imperfection at the edge.
Boundary imperfections or loading imperfections were not taken into account. However, it
has been concluded by more recent research to be of considerable influence. When the results
of the measured imperfection FE model are compared to the experimental results, it is seen
that the FE model shows higher buckling loads in the range of 15-20%. It is mentioned by the
author that this difference, could also be explained by the thermal expansion of the mandrel
which is used for the manufacturing process, which can cause reduction in bending stiffness
as the fibers tend to concentrate towards the inside, while not affecting membrane stiffness.
When comparing the Riks method to the Dynamic analyses, the Riks method shows equal
behaviour as analytical solutions, when the Dynamic analyses follows the behaviour which is
comparable to the experimental test, see Figure 2.13. This also leads to the Dynamic analyses
being able to capture the different buckling shapes past the first buckling mode.

Although the previously mentioned SBKF project started in 2007, there was already
extensive research going on in the years prior. In 2004 a paper was published by Hilburger
and Starnes [17] which focuses on the effect of imperfections on the buckling behaviour of
cylindrical shells. The publication consists of both experimental work and numerical analysis.
The numerical models include a wide variety of imperfections, stated as traditional and non
traditional imperfections. These consist of geometric imperfections, thickness variations, ply
placement imperfections, edge imperfections with loading imperfections and at last the effect
of elastic boundary conditions. The analyses include both a nonlinear static analysis and
a nonlinear transient analysis, in combination with a analyses for material failure. The FE
software package of choice was STAGS, in which the 410 quadrilateral element was used.
It is noted that the implantation of the imperfections could lead to some side effects. As
the thickness variations are applied in steps, dependent on the spacing between integration
points, which can lead to larger imperfections than was intended.
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Figure 2.13: Comparison between experimental and numerical load vs displacement for dynamic
analyses [1].

Furthermore, the combination of the mesh size and spacing between integration points can
lead to problems with the ply imperfections, causing an artificial increase in bending stiffness.
Ultimately it does indicate that the implementation of imperfections into a FE model is not
straight forward and should be handled with care. As the side effects can result in an increase
of the buckling load, causing an error compared to experimental results. Although STAGS
will not be used for the thesis this literature study is intended for, the detailed explanation
of the imperfection implementation can still be of great value as the procedure to implement
imperfections isn’t always shown in details in other papers. The test samples for this study
consisted of six cylindrical shells, all varying in layup with three samples consisting of an 8 ply
layup with a radius over thickness ratio of 200 and the other three consisting of a 16 ply layup
with a radius over thickness ratio of 100. The laminates used for the test samples consisted of
both quasi-isotropic layups and orthotropic layups. The buckling load of the 8 ply cylindrical
shells determined by the numerical model, showed an error ranging from 8 to 18% compared
to the experimental test results. Further failure predictions of the numerical model showed
good correspondence with what was observed during testing. The numerical model of the
16 ply cylindrical shell resulted in a buckling load ranging from 17 to 18% higher compared
to the experimental testing for 2 of the test samples, while one test sample collapsed at a
load 44% lower compared to the predicted buckling load of the numerical model. The early
collapse of the cylindrical shell was most likely caused by a material failure, induced by a ply
gap imperfection. This ply gap can lead to considerable stress concentrations and thus exceed
the material allowables at low loads. The error between the numerical model and the testing
results is most likely caused by variations in shell properties, such as fiber volume fraction
and the accuracy of the measured imperfections. The numerical models furthermore showed
nonlinear behaviour due to the imperfections, such as a nonlinear coupling between the com-
pressive stress and the shell response such as local buckling. The author further concludes that
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this research shows good promise for further research on determining imperfection signatures.

The six test samples as mentioned in the previous paper were used for further research
on imperfection signatures by Hilburger et al. [18]. If such a signature for imperfections can
be developed, it could be of great importance in the general development of design guidelines.
As this could be of use in preliminary design as well, instead of just using the imperfections
for validations afterwards. A lot of the projects on the development of design guidelines focus
on worst case scenario which could lead to more conservative designs compared to designs
based on real imperfections. The numerical analyses is again executed by using STAGS,
similar to the numerical analyses as seen in the previous paper by Hilburger [17] but with
less imperfection types included. The imperfections will be restricted to the geometrical
imperfections at first. The determination of the manufacturing imperfection signature was
based on representing the actual imperfections by a Fourier series. A mean imperfection shape
and standard deviation are then established for the measured imperfections after which a
coefficient of variation is determined for each imperfection. The imperfections, determined by
the using the mean deviation and the minus deviation minus or plus the standard deviation,
are then implemented into the numerical model which leads to Figure 2.14. It can be seen that
this method thus leads to a bounded range of the predicted buckling load. Furthermore, the
results correlate well with the numerical models which include the measured imperfections,
and thus shows great promise for this method, and showing a maximum error of 10% compared
to the buckling loads determined by the experimental tests. Especially when it is considered
that only the geometrical imperfections are used in the determination of the imperfection
signature, which could thus be expanded by imperfections such as thickness variations which
have shown to greatly influence the buckling load as well. The behaviour of the shells as seen
in the numerical analyses, both with measured imperfections and the imperfection signature,
was in correspondence with the behaviour as seen during the experimental testing.

In 2015, as part of the DAEDALOS project, another paper was published by Bisagni
[19] which focuses on both static and dynamic axial loading of composite cylindrical shells.
The same auther also published on the topic of dynamic buckling in 2005 [20]. The inclusion
of dynamic load cases creates possibilities to determine dynamic buckling behaviour, damp-
ing characteristics and hysteresis among others. While current design guidelines are mostly
based on static loading, as seen in this literature study, aerospace structures are most often
dynamically loaded which leads to its own set of problems which should be taken into ac-
count. Three test samples were manufactured at DLR and were subjected to both static and
dynamic loading, the dynamic testing consisted of both modal tests at a variety of load levels
and dynamic buckling tests. The static tests were executed on two different test setups. The
static experimental tests showed an average difference of the buckling load of 5,7% between
the test setups, which is most likely caused by imperfections related to boundary conditions
and loading. The numerical analyses was executed using Abaqus in combination with S4R
elements. The linear eigenvalue buckling analyses shows considerable higher buckling loads,
as expected, but when the measured imperfections were added to the numerical model the
buckling load is approximately 22% higher. This remaining difference is most likely caused by
imperfections at the boundary of the shells. The dynamic testing showed a consistent trend,
with the dynamic buckling loads being 5% higher compared to the static buckling loads. It
should be said though, that this is based on three test samples and the range of 5% falls
within the range of scatter.
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Figure 2.14: Normalized load versus end shortening for imperfection signatures and measured
imperfections [18].

The difference could also be related to the modes of excitation as was concluded by other
researchers. The modal analysis resulted of a wide spectrum of modes and damping values
under 4 different load cases. The natural frequencies showed a decrease for an increase of
axial load and a corresponding higher damping value. The final test was a test until final
failure for one of the test samples. It showed a large post-buckling zone, which showed a load
carrying ability of 40-30% compared to the buckling load, with final failure at a total shorten-
ing of 26 times the shortening for buckling. This final failure test also gave the opportunity to
photograph several buckling shapes, which require going till final failure. More papers on the
postbuckling range were published by Bisagni and Cordisco [21] [22] [23], both for combined
loading cases and stiffened cylindrical shells.

The results of both the experimental testing and analysis of a NASA test article named
CTA8.1, was published in 2018 by Schultz et al. [13]. The test article was tested at a
purpose built testing facility for buckling at NASA Marshall Space Flight Center. The testing
facility is capable of up to 1.5 * 106 lb in pure axial compression next to combined axial and
bending loads and tension loads. For the manufacturing of the cylindrical shell which consisted
of a sandwich composite, an out of autoclave process was used. The process consisted of
manual layup in several steps, with curing in an oven under atmospheric pressure by using
a vacuum bag. After all intermediate steps were completed, the cylindrical shell was post
cured in an oven. Several non-destructive tests were executed to find any imperfections. The
imperfections, or flaws, consisted of dry fibers, a large delamination and voids. Furthermore,
testing methods were used to assess the thickness variations and radial imperfections which
can be used in the finite element model. Several steps in the repair process were required,
with some being successful but the voids in the padup could not be fixed and required further
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steps. Before the experimental test was executed, a finite element model was made to be able
to make a prediction of the structural behaviour. The model consisted of both the cylindrical
shell and the test setup itself to include influences of the test structure, see Figure 2.15. The
cylindrical shell itself was modelled by using S4 shell elements and the test structure consisted
of B31 shear-flexible beam elements. The imperfections as measured before were applied as
a radial displacement of the mid surface and thickness variations of the core material. A
static nonlinear analyses was used in combination with a transient nonlinear analyses. As
material properties tests were delayed, the properties used for the first model consisted of
assumed properties and data from the material vendor. When the test article was loaded till
a safe margin before buckling, it was determined that the FE model showed different results
and the material properties were adjusted. Specifically, the stiffness in in-plane directions
were adjusted. When the test article was loaded until buckling, the buckling load was within
1% but the experimental results showed a slight nonlinearity. Further results such as radial
displacements were also considered and analysed in detail. After the test, test samples were
taken from the cylindrical shell to determine the material properties more accurately. These
new material properties were then used in a new FE model, for which a user subroutine
function was used to approximate the nonlinear behaviour of the material. This resulted
in an even closer approximation of the experimental results, but it is noted by the authors
that existing differences are most likely caused by loading imperfections. In general great
results were achieved when comparing the FEA results to the experimental test, which is a
great indication of the progress that has been made to approximate the structural behaviour
without considerable experimental testing.

Figure 2.15: CTA8.1 test setup FE model [13].
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2.1.5 Nondimensional Parameters

During the 1990s the buckling behaviour of composite materials was gaining popularity and
new methods were needed. In 1991 Nemeth [24] published research about a method to pa-
rameterize the bifurcation buckling behaviour of shells in the elastic region. These parameters
can be very useful in the aerospace industry, where weight is a priority and less conserva-
tive design methods are an ongoing topic for research studies. The design goal is to take
advantage of the anisotropy of the material, to tailor the material to the structural needs.
The focus of this research is on double-curved panels under combined loading, as these have
a wide range of applications in the aerospace industry, with a symmetric layup. The pa-
rameters developed could also lead to new methods for the scaling of structures. As the
parameters were made nondimensional and thus could parameterize the behaviour without
having a direct link to the size, material and boundary conditions of the structure of interest.
This creates possibilities to compare structures, and thus also previous or new experimental
results, without them necessarily being in the same range of sizing or manufactured from
the exact same material. This could be of great help, especially in early design phases, and
limits the need for experimental testing which is expensive. The method was build around
equations for nonlinear deformation. The strain displacement relations, nonlinear equilibrium
equations, compatibility equation,constitutive equations and buckling equations were used in
the analyses. Furthermore, the analyses also include a form of the Batdorf Z parameter and
an example problem is presented. The analyses and included derivations are shown and ex-
plained in detail, these will however not be shown in this literature study as these are quite
extensive. After the derivations, it is noted by the author that the parameters can also be
used to determine the sensitivity of the buckling behaviour to each structural property. This
could be useful for scaling purposes, as it can be a good indication for what structural prop-
erties to scale without losing all similarity with the full-scale prototype.

In 2010 Nemeth [25] published another technical report which continues on and expands
his previous work about nondimensional parameters. The analyses will now include com-
posite quasi-shallow shells with the inclusion of possible initial geometric imperfections. It
furthermore deems to develop design tools that are able to determine the effect of structure
properties, such as material properties and layup configurations, on the imperfection sen-
sitivity of the mentioned shells under loading conditions. The sensitivity for each type of
imperfection can also be helpful in determining the viability of manufacturing methods, as
the variations, or accuracy, for structural properties can differ between each method. With
these design tools it is then possible to produce examples of the nondimensional parameters
as a function of these properties, which can be used as a guideline of sorts during preliminary
design. As in the previous work of this author, the derivations are explained and shown in
detail. The end results/values of the nondimensional parameters are produced for cases of
angle-ply laminates, quasi-isotropic laminates and unbalanced unsymmetric laminates for a
large range of configurations to create a large but usable design space. This makes the re-
search applicable for a wide field of structural designers.

Further development of the nondimensional parameters, to tailor them to the specific case
of cylindrical shells under axial compression, was published by Schultz and Nemeth [26] with
emphasis on the imperfection sensitivity. It is has been shown by several research projects,
that cylindrical shells are susceptible to being sensitive to imperfections with the buckling load
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being reduced considerably. The effect of the shell anisotropy on the imperfection sensitivity
was studied in detail, for the case of a sandwich composite cylindrical shell. The parameters
that were developed, offer insight into the behaviour of cylindrical structures while reducing
the amount of design variables. This provides a method to maneuver through the design
options and simplify preliminary design stages. The study does not feature applied measured
imperfections for the buckling analyses, but makes use of buckling modes to approximate re-
alistic imperfections. For the analytical model, Donnell’s equations will be used to determine
the nondimensional parameters and related equations. The Donnell’s equations are limited
to thin shells, as the transverse shear flexibility is neglected. As this study is also focusing on
sandwich composite cylindrical shells, it is noted that the radius over thickness ratio might be
higher compared to isotropic cylindrical shells, as the composites in general have low trans-
verse shear stiffness. The analytical part of the project starts off with the derivations for the
bifurcation buckling equations for a perfect cylindrical shell. After which the analyses con-
tinues with the nonlinear deformations of a imperfect cylindrical shell. The imperfections are
included by introducing a imperfection function which determines the radial displacement
from the middle surface of a perfect cylindrical shell. As noted earlier, the imperfections
consist of buckling modes, as during the design stages the actual imperfections are still un-
known and these buckling modes should lead to conservative results. The first set of results
are shown for the isotropic cylindrical shell, the results were obtained by using a symbolic
solver in combination with the analytical model. The results consist of end shortening vs
load curves, for different imperfection amplitudes, see Figure 2.16. It can be seen that after
a certain imperfection amplitude, the nodge in the curve almost disappears. The next step
was the FE model, which was constructed by using the FE software STAGS. The FE anal-
yses consist of both linear eigenvalue analyses and a geometrically nonlinear analyses. The
model consisted of a E410 element, which is a four node quadrilateral shell element without
transverse shear flexibility. Then a combined graph is shown, for the imperfection sensitivity
factors vs imperfection amplitude, for both the analytical and FE model, see Figure 2.17.
The next step is a comparison between 3 sandwich composite cylindrical shells which were
structurally optimized by the software package PANDA2. The same procedure as used for
the isotropic cylindrical shell is applied to the composite cylindrical shells. The results of
the composite cylindrical shells were compared to the isotropic cylindrical shell, for both the
analytical and STAGS model, see Figure 2.18. It is seen that the highly tailored composites
show the highest imperfection sensitivity factor, thus having a buckling load closest to the
bifurcation buckling load of a perfect cylindrical shell.
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Figure 2.16: Average end shortening vs normalized Load for the analytical model [26].

Figure 2.17: Imperfection sensitivity factors vs imperfection amplitude [26].
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Figure 2.18: Imperfection sensitivity factor for different materials and imperfection amplitudes
[26].

2.1.6 Remarks for Buckling Analysis
Several different methods for the determination of buckling behaviour have been presented.
The emphasize was on the inclusion of imperfections, and also the imperfection sensitivity of
the cylindrical shells. This imperfection sensitivity was shown per type of imperfection and
with a combination of imperfection types. Depending on the type of loading imperfections,
loading imperfections can have a large influence on the buckling load. While it was not always
included in the research shown, loading imperfections should thus be considered next to other
types of imperfections which are more commonly seen in FE analysis. For the buckling
analyses in combination with a scaling method, using real measured imperfections which are
then scaled for the cylindrical shell of interest would be ideal. As including real imperfections
has been shown to lead to great results, and is off course the most direct representation of
the real imperfect cylindrical shell. The first step to include scaled imperfections could be
approximating the imperfections by a imperfection signature, which could simplify the scaling
process and has already been shown by one of the cited authors. It should be noted however,
that determining imperfection signatures, is a topic of its own which requires intensive research
and also a database of real imperfections.

2.2 Scaling of Structures
In this section several methods for the scaling of structures will be explained. Different theo-
ries and their application will be examined. This section will be purely about scaling and the
effects of scaling. Not to be confused with size effects, which is about strength and stiffness
properties of the material and the dependency of these properties on product size. The first
paragraph will go into detail on similitude theory for which governing differential equations
are used, in which Simitses and Rezaeepazhand [27] have done extensive research. The second
paragraph is about dimensional analyses, which focuses on expressing variables in base units
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from which scaling laws are derived by using the Buckingham Pi theorem. The following
paragraph goes in depth about the scaling by using nondimensional parameters, which is
ongoing research as part of the SBKF project. The last paragraph is a short summary of the
methods in a comparative matter, combined with first insight on how the methods might be
used for the following thesis.

In 2016 Coutinho et al. [28] published a review about similitude theory based reduced
scale models which provides a good overview of scaling of structures in general. It explains
the basic definition of the similitude theory method and its use, next to a time line of the
research field starting since 1915. The timeline and accompanying research are explained in
detail and it’s a wealthy resource of references in this research field. The review shows the dif-
ference methods within similitude theory, from dimensional analysis to governing differential
equations and energy equations. The areas of research are then elaborated on, which includes
impacted structures, rapid prototyping and empirical methods. This review is a preparation
on further research by the same authors, which will be shown in the suitable paragraph.

2.2.1 Similitude Theory by Governing Differential Equations

Similitude theory is a widely used theory for several scaling problems. It can be used for
structural strength and stiffness, vibrations and impact problems. For this literature study
the main focus will be on the scaling of structural strength and stiffness. The majority of
recent work for structural similarity is based on the work by Simitses and Rezaeepazhand
[27, 29, 30] from the 1990s. Both authors The theory is based on the principle that the
prototype and the model are two different systems, but consist of similar parameters. These
parameters determine the structural behaviour or response to applied loads, both dynamical
and static loads. By developing similarity conditions, also called scaling laws, the mathe-
matical system of the scale model can be mapped, or transformed, onto the system of the
prototype to determine its behaviour. The system is defined by the governing differential
equations for the particular situation that is being modelled.

In 1996 Rezaeepazhand et al. [31] published a paper specifically focusing on the scaling
of laminated cylindrical shells under axial compression. The material is assumed to be linear
elastic. Furthermore, it is assumed that there are no imperfections or that the imperfections
have equal effect on both model and prototype. For the buckling analysis, Donnell-type
equations are used for circular cylindrical shells under uni-axial compression. Combining
these equations with an ABD-matrix formulation and Donnell kinematic relations, results
in a simplified form of the governing differential equations. Three shape functions u,v and
w are assumed. By substituting the displacement equations into the buckling equations,
multiple sets of homogeneous algebraic equations are determined. From these equations, the
critical buckling load can be determined. By applying similitude theory, a set of scaling laws
are determined. When complete similarity is achieved by using ply-level scaling it produces
excellent results as seen in previous papers. From these results it’s also apparent that the
critical buckling load is linearly dependent on the number of plies used for the prototype.
If not mentioned otherwise, models are geometrically scaled next to the mentioned variable
to retain similarity of the curvature parameter Z. The next model makes use of different
amount of plies compared to the prototype, outside of a certain range the accuracy drops but
there’s still a wide range. There is a underestimation but it declines fast when the number
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of plies increases. In previous papers the stacking sequence had always been equal for model
and prototype. Using a different stacking sequence for model and prototype, the accuracy
of the scaling laws is still retained. When both stacking sequence and number of plies differ
between prototype and model, there is an underestimation seen at lower number of plies but
this declines at higher ply numbers, see Figure 2.19. It can be concluded that a cylindrical
shell under axial compression is not sensitive to a stacking sequence distortion. The next
step is the distortion in length. For the following results, only the length is changed between
model and prototype. This also results in a different curvature parameter Z compared to the
prototype. The curvature parameter can be associated with the imperfection sensitivity of
a cylindrical shell, it is thus an important design rule to design a model with the equal or
close to curvature parameter and thus equal or close to imperfection sensitivity. If this design
rule can’t be satisfied, and the curvature parameter differs between prototype and model, one
of the two might be more sensitive to imperfections. Which direct effect the imperfections
might have is not reported. The distortion in length does not produce an inaccurate result.
The authors even report that extreme values of the model length that showed different mode
shapes, result in accurate predictions. The radius of the cylindrical shell is the next distortion
to be tested with further properties of the model and prototype being equal. This distortion
turns out to have a large effect on the accuracy of the scaling method. It should also be
noted that the resulting curvature parameter Z range of this graph is smaller compared to
the distortion in length. The last distortion of this paper, of which it shows results, consists
of different thicknesses. This distortion caused an inconsistent accuracy which is caused by
the different wave numbers as a result of thickness changes. It is still possible to design an
accurate model but the wave numbers should be taken into account. The distortion in material
properties was also mentioned. This distortion resulted in a model which did not predict the
behaviour of the prototype accurate. The results of this distortion are unfortunately not
shown or graphed in the paper.

Both Rezaeepazhand and Simitses kept publishing work about similitude theory in co-
operation with other researchers which will be shortly mentioned hereafter. In 1997 Tabiei
and Simitses [32] executed an analysis which includes the imperfection sensitivity of scaled
models. In 2002 Frostig and Simitses [33] published a paper which focused on the similitude
of sandwich beams. In 2004 Frostig and Simitses [34] published a paper about the buckling
of sandwich panels with a soft core.In 2011 Rezaeepazhand and Yazdi [35] published a paper
about the use of similitude theory focused on the prediction of flutter for angle-ply composite
plates.
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Figure 2.19: Accuracy comparison for models which differ in number of plies and stacking
sequence[31].

In 2017 Coutinho et al. [36] published a research focusing on a modular approach to
structural similitude. The method was based around several relationships which are kept as
general as possible, which were then subdivided into different modules. The relationships, or
equations, that are being used to derive the scaling laws are:

• Governing differential equations, with plane-stress assumption.

• Stress-strain relations.

• Strain-displacement relations.

• Force and moment resultants.

• Displacement field.

For each of these modulus scaling laws are then derived for the case of a generalized plate.
The next step is to combine these scaling laws for complete similarity, partial similarity is not
yet considered and is outside of the scope of this paper. There is no mention of a load case,
as it is kept as general as possible. In the following case the scaling laws for the generalized
beam were derived. Some of the scaling laws of the generalized plate were applied to the
beam as well. In the strain-displacement, displacement field and force and moment modules
a difference is being made between loadcases. The loadcases considered were uniaxial bending,
biaxial bending and torsion. The paper continues with a case study of a stiffened plate which
combines both plate and beam scaling laws. The plate was pinned along all edges and the
loadcase consists of uniform pressure on the skin side. A selection of scaling laws was then
made and later applied to a prototype and the 1/10 scale model. The results are shown in the
form of transverse displacement in the model under three different load levels, see Figure 2.20.
These transverse displacements are then scaled to the prototype, which results in Figure 2.21.
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As can be seen from this graph, the results form the model scale very accurately. For all three
loading options he results match. The authors conclude that this modular method can thus
be very accurate, next to the benefit of having less limitations compared to other methods.
These limitations were prevented through the combination of different scaling methods, as
the sub-systems were scaled and combined into one scaled system.

Figure 2.20: Transverse displacement for 3 different scaled loadings [36].

Figure 2.21: Transverse displacement of prototype with scaled predictions [36].
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The majority of recent work which uses governing differential equations for the similitude
theory is mostly focused on vibration studies. In 2014 Luo et al. [37] presented a research
about distorted scaling laws used for dynamic cases. In 2015 Zhu et al. [38] published a
paper about designing a dynamic similitude method for thin walled cylindrical shells which
makes use of strength requirements. The derivation of the scaling laws was very detailed and
includes the scaling of strength. In 2017 Zhu et al. [39] published a review which focused
on plates and shells and their design by dynamic similitude. It includes both dimensional
analyses and governing equation analysis next to examples for applications of similitude. It
shows an approach for distorted models and explains the need for more research next to it
being a wealthy resource of references. For more papers from recent research see: Luo et al.
[40], Luo et al. [41], Eydani Asl et al. [42], Asl et al. [43]. Similitude theory has also been
applied to impact problems of which the work of Morton [44] is an example. It is however
less popular compared to strength, stiffness and dynamic purposes.

2.2.2 Dimensional Analyses

Another method for scaling is dimensional analysis, which can be done by using the Buck-
ingham Pi Theorem, Simitses and Rezaeepazhand [45]. This method is based around the
similitude of the physical dimensions of the system. One of the benefits of this method com-
pared to using governing differential equations, is the ability to use this method for systems
of which the governing differential equations are complex and difficult to determine. The
shortcomings of this method lie in the amount of similarity equations or conditions it can
determine for the scaling factors for certain systems, especially when distorted models are
used. This problem mainly occurs for structural strength and stiffness problems, while it’s
not a common problem for dynamic or vibration problems where it’s widely being used.

In the 60s and 70s a considerable amount of testing of scaled models is done by NASA.
This included mostly vibration analyses of launch vehicles. In 1964 a technical report was
published by Mixson and Catherine [46] which focuses on the vibration properties of a 1/5
scale model and a full scale model of the Saturn SA-1. The scaling analyses were based on
the scaling of general dimensions and the material properties were kept constant between
the models. It was concluded that the method resulted in accurate similarity between scaled
model and full-scale prototype. In 1967 a technical report was published by Brock Jr et al.
[47] which focused on a 1/10 scale model of the Apollo/Saturn V, for which Leadbetter [48]
published another technical report in 1970 that went more in depth about the analysis part.
In 1968 Catherines [49] published a technical report focusing on a 1/40 scale model of the
Saturn V and its launch tower for use in experimental tests. It presents detailed results of
these experimental tests, but no comparison was made to the full-scale model. Another group
of papers was published around a 1/8 scale model for the shuttle solid rocket booster (SRB),
by Levy et al. [50] in 1975, Leadbetter et al. [51] in 1976 and Blanchard [52] in 1977. The
papers don’t show a detailed scaling process, the paper from 1975 focuses on a finite element
model of the SRB , the paper dating from 1976 goes more in depth on the construction of the
scale model and the paper dating from 1977 shows the full list of scaling relationships that
were used. Although the methods used in these technical reports might not be applicable
for the structural scaling that this literature study is focusing on, it does however show that
scaling has been widely used with success.
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2.2.3 Scaling by Nondimensional Parameters

The nondimensional parameters as published by Nemeth [24] [25] can also be used for the
scaling of structures. As these parameters are seen as a way to determine the behaviour
of a structure in general, without necessarily taking the size of the structure into account.
With the added complexity of composite structures, where the tailoring possibilities can be
overwhelming especially in early design stages, simplifying the structural behaviour can be
crucial to determine scaled models which are representative of the full scaled prototype with-
out having full similarity. Applicable research will be shown and explained.

In 2001 Hilburger et al. [53] published a paper which includes scaling by using nondi-
mensional parameters. The research is focused around a multi-cell non-circular composite
structure with a combined loadcase of mechanical load and internal pressure loading. The
nondimensional parameters are derived from a first order shear deformation plate theory,
which follows the method published by Nemeth [24]. The nondimensional parameters used
consist of:

• Membrane parameters
• Bending parameters
• Ratios of transverse shear stiffnesses
• Plate aspect ratio
• In-plane displacement
• Normal displacement
• In-plane loading
• Pressure loading

The structure for this research consists of several subcomponents. For complete similarity each
model subcomponent has to satisfy complete similarity, and thus have equal coefficients in
the governing partial differential equations, with the same subcomponent from the prototype.
This equals the nondimensional parameters being equal for the corresponding subcomponents
of model and prototype. As the structure consists of several subcomponents, the intersection
of these subcomponents need to satisfy continuity conditions. Which consist of displacement
and moment compatibility conditions. The displacement compatibility condition result in
the same parameters mentioned before, but the moment compatibility condition results in an
extra nondimensional parameter. To test the method, three configurations are designed. A
prototype, complete similar sub-scale model and a partial similar sub-scale model. The first
two models consists of sandwich panels, were the partial similar model consists of monolithic-
laminates. Results for these configurations were determined by FEM-models after which the
responses from the sub-scale models were scaled to full-scale responses. The complete similar-
ity case showed accurate results, the partial model showed less accurate results. For example,
the displacement results showed an error between 30 and 40%. The partial similarity and the
effect on the parameters is further explained and the sensitivity of the parameters is exam-
ined. It is shown that the behaviour of the parameters, and their influence on the resulting
displacement, differs per parameter and that there even is a slight dependency on the loadcase.
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In 2018 Uriol Balbin et al. [4] published a research using nondimensional parameters for
the scaling of cylindrical sandwich composites. The nondimensional parameters are as pub-
lished by Nemeth [24] and are tailored for the structure and loadcase of interest by Schultz
and Nemeth [26]. Both the prototype, or baseline cylindrical shell, and the model were con-
structed from the same materials which are carbon fiber epoxy and aluminium honeycomb
core. Two baseline cylindrical shells, which are simplified sub scale launch-vehicle designs,
were scaled. The assumptions for the buckling equations consist of small strains and the
neglect of flexural anisotropy, transverse-shear deformations, initial geometric imperfections
and it is noted that the last two assumptions might not be valid for every case. The analysis
starts with defining the compatiblity and equilibrium equations after which the nondimen-
sional parameters are specified. The similarity conditions, or scaling laws as named in previous
papers, are equal to the nondimensional parameters itself. The advantage of the presented
methodology is that the parameters are decoupled and can thus be calculated in a certain
order. The first nondimensional parameters to be calculated are the membrane orthotropy
parameter and the flexural orthotropy parameter. For this research two stacking sequences
were considered, which includes one variable for the fibre orientation. With the material
properties being constant and the influence of the core being negligible, the dependency be-
ing left is the dependency on the fibre orientation. Both parameters match the baseline
value for practically the same fibre orientation. With two baseline cylindrical shells and two
matches per parameter, this resulted in a total of 4 fibre orientation and stacking sequence
combos for the scaled cylindrical shells, see Figure 2.22. The next step in the analyses is
to compare the parameters which define the relation between the radius to length ratio and
membrane compliance, and the same ratio and the bending stiffnesses, see Figure 2.23. With
the stacking sequence and fibre orientation already determined and the core influences being
negligible, the dependency that is left is the radius over length ratio which is linear. As with
the previous two parameters, the ratio for matching parameters between scaled models and
baseline cylindrical shells is practically equal for both parameters, which ultimately lead to a
single solution for each scaled cylindrical shell. The nondimensional parameter that is left is
the Batdorf-Stein parameter. The dependencies that are left after previous calculations are
the radius and core thickness. As the radius of the cylindrical shell is limited by the testing
equipment as an upperbound, only the core thickness is left to be determined which is limited
by the manufacturability, see Figure 2.24.

Figure 2.22: Membrane and flexural orthotropy nondimensional parameter [4].
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Figure 2.23: Radius over length dependency for baseline 1 configurations [4].

Figure 2.24: The Batdorf-Stein parameter [4].

The core thicknesses were then determined. With all the variables determined for the
resulting eight scaled cylindrical shells, the nondimensional parameters are then calculated.
When comparing the nondimensional parameters for the baseline and scaled cylindrical shells,
it can be seen that there were some deviations. Especially the flexural orthotropy parameter
shows substantial deviation, up to 20% for one of the configurations. Next an evaluation is
done to determine the effect of the flexural anisotropy as this was neglected during the for-
mulation of the nondimensional parameters. These effects can be determined by comparing
elements of the constitutive relations that relate moment elements to curvature elements. It
was seen that one of the stacking sequences as used for the analyses part, showed a large
influence by the flexural anisotropy and was therefore discarded. The last step is the verifi-
cation of the methodology. The buckling mode and buckling load is first compared for the
baseline and scaled cylindrical shells. This consists of the axial half waves, circumferential full
waves, nondimensional load parameter and the buckling load itself. It can be seen that the



2.2 Scaling of Structures 33

buckling modes are a match, and that the nondimensional load parameter only shows a small
deviation of less then 1 %. The buckling load is then determined by the method of Schultz
and Nemeth [26] and another method which is based on different assumptions and formula-
tions. This comparison is deemed to be a good indication whether the flexural anisotropy
can be neglected or not. It is then shown that there is a considerable difference in buckling
loads, especially for two of the four scaled cylindrical shells which are then also disregarded
leaving two scaled cylindrical shells for the last test by finite element. The finite element
analyses were executed by using the software package Abaqus. The model consisted of S4R
elements, as the core of the sandwich was deemed thin enough to be modelled as a ply in
the layup. The buckling loads for the four models are then determined by explicit nonlinear
dynamic analyses and compared to the analytical solutions. The difference in loads is quite
small, ranging from 1.1 % to 8.82 %, and is considered to be caused by the assumptions of
neglecting anisotropy effects and transverse shear compliance. The last comparison is that of
the buckling modes. The modes of both the baseline and scaled cylindrical shell FE models
match, but are different compared to the buckling modes resulting from the analytical anal-
yses. This methodology thus showed great results, it is however noted by the authors that
the range of the method can be improved by including the flexural anisotropy and transverse
shear.

In 2018 Przekop et al. [54] published a paper which is part of the SBKF project. Buckling
critical cylindrical composite test articles were designed from real launch vehicle data. The
scaled designs are called sub-scale. Analytical design methods were developed as part of
this project, but these methods still have to be validated by experimental methods. These
experimental tests were accompanied by Finite Element Models (FEM) for which Abaqus is
being used. The method to determine the design of the test article, was described as being
a practical engineering approach. Several nondimensional parameters were used, of which
geometry and sandwich stiffness ratios, for the design. It is noted that the parameters as
published by Nemeth [24] were calculated and considered, but are not a direct part of the
design process. The geometric parameters consist of the radius over effective thickness ratio,
which is a indication of the thinness of the cylindrical shell, next to the length over diameter
ratio. The buckling response of cylindrical shells is highly affected by the membrane and
bending stiffnesses and is thus an important factor in determining the design of the scaled
models. The parameters used for the design are based on these stiffnesses, in particular the
ratios between these stiffnesses. For the case of a sandwich composite, the buckling response
is primarily affected by the bending stiffness, and the membrane stiffness is therefore left
out. The first step was to calculate these nondimensional parameters for existing launch-
vehicle cylindrical-shell designs which consist of real,proposed and other designs determined
by the SBKF project. The next step was to determine loads for several failure modes, to
ensure that the test article had global buckling as failure. These steps generated over 100000
designs, which were then reduced by limiting the buckling loads, a safe margin below the
maximum of the testing facilities, and strain at the critical buckling load. Further reduction
was reached by selected designs that assured a large range of the nondimensional parameters,
which ultimately resulted in 5 test article designs. The analysis and experimental test of
the first article, named CTA8.1, was published by Schultz et al. [13] in a separate paper.
The second test article is then designed in detail and a FE model is created. The detailed
design focuses on the manufacturing method and the buildup of the facesheet at the edge
of the cylindrical shell for load introduction. The FEM model was introduced to include
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more elements from the experimental test setup. The attachment rings were included and
the pad-ups were added as well. The cylindrical shell and included parts of the test setup
were modelled using a S4R element, where the sandwich cylindrical shell was modelled as
a laminate with the core being seen as a single ply. After the design of the test article
was modified according to the FE results, the rest of the test setup was included in the
model as well. The extra additions included the steel load introduction frame among other
parts. These were included to properly model the influence of the test fixture on the structural
behaviour. Then the results of the FE analysis are presented and graphed. The results consist
of a stability comparison, displacement, strains and buckling loads for both eigenvalue and
nonlinear transient methods which are then compared to closed-form solutions. Furthermore
the influence of imperfections was researched, by using the imperfections from a previously
manufactured cylindrical shell which resulted in a bucking load reduction of 13.8%. At first a
uniform mesh was used, from the first analyses it was seen that there was a load plateau after
buckling. A random perturbed mesh was then used and prevented this previous numerical
phenomena from happening again. The comparison between both FE methods and closed-
form analyses, showed that both the buckling loads and strain values varied between methods
up to 30 or even 50 % depending on the test article. Two of the designs were also altered, as
they showed large strains at the corresponding buckling loads. It can be concluded that the
design of test articles according to this method is quite extensive, as that it requires several
steps and design alterations when problems occur. It does have its advantages though, as it
has a higher degree of certainty that the test articles will show similar structural behaviour
compared to the full-scale cylindrical shells, and still has a high cost advantage compared to
full-scale testing.

2.2.4 Remarks for Scaling Methods
The scaling methods as shown have a wide variety of what is actually being scaled. From
scaling the geometry and dimensions to scaling of structural behaviour. It is noteworthy to
say that scaling for structural behaviour and strength by using similitude theory seems to be
hardly used in the aerospace industry in recent years, which might be an indication that its
disadvantages prevent it from being used more often. The demands on the scaled structure for
complete similarity can make the scaled model almost impossible to manufacture or constraint
the scaling factor, while distorted models can result in large inaccuracies when multiple scaling
laws can’t be satisfied. The scaling method of using nondimensional parameters is very recent,
and while scaled models have been created and modelled with success, it’s still the question
what the test results of these scaled cylindrical shells mean for the full scale cylindrical shell.
As the effect of the imperfections on different scales might still vary. The test results from
these scaled cylindrical shells are most ideal for validating FE models and methods, as the
behaviour should be as close as possible to the behaviour of the full scale cylindrical shell
without actually testing the full scale cylindrical shell.

2.3 Concluding Remarks Literature Review
The research as shown in this literature review just touches the surface of the amount of
research that has been done concerning buckling of cylindrical shells, let alone for general
shell buckling. While extensive research has been done, there are still critical questions to
be answered, especially for the case of a composite material. The inclusion of imperfections,
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and especially the imperfection sensitivity, increases the complexity of both the analytical
and numerical solutions for buckling load calculations. The statistical methods come into
play when scatter signatures need to be determined for all the different types of imperfec-
tions, each having a different effect on the buckling load [9, 10]. Although the general goal
of a large portion of the research groups is to minimize the experimental testing due to costs
[3, 6], these tests are still needed to validate new methods, next to establishing a database
for imperfections and their signatures. Considering that a large portion of test data used till
this day, originates from as far back as the 50s and might thus not be representative for the
current manufacturing accuracy and materials.

The cost of experimental testing is also one of the reasons for renewed interest in scaled
models. Smaller test specimens lead to lower costs, caused by both lower material and manu-
facturing costs and lower testing equipment requirements. Although, not as popular compared
to the topic on buckling of shells, scale models have been a topic of interest since the 60s
[46] and have picked up renewed interest with research groups suchs as the SBKF project
group [4, 54]. It’s unfortunate however, that this hasn’t lead to a definite answer on what
information a scaled model can provide to predict the full scale behaviour. Several scaling
theories and methods have been shown, even specifically for buckling of cylindrical composite
shells [31, 32]. It seems that the relation between scaled model and full scale prototype is
partially unknown because of three main issues. The first consists of problems with distorted
models causing inaccuracies, for example similitude theory by governing differential equations
focusses on the scaling of the buckling load, but multiple distortions can cause a scaled model
to be non representative. Secondly, the methods that focus on scaling the behaviour, such as
the nondimensional parameters method [4], these studies do not have an answer yet on what
test results of these scaled models tell about the full scale model, next to that these scaled
models should be ideal for numerical validation. This method has lead to test specimens
which are manufacturable, and shows thus great promise in the practical sense compared to
similitude theory. The third and final problem are the imperfections and how these could be
scaled or not. The different scales of a structures could have different imperfection signatures
and imperfection sensitivity, which is still a large unknown. It would be ideal if imperfections,
as measured from a scaled model, could be scaled to a full scale prototype by using dimen-
sional analyses with respect to the geometry in combination with a statistical method for the
determination of the scatter for the use in numerical simulations. The problem however is
that this will require a database of imperfections combined with a separate research that only
focusses on imperfections.

To increase the general understanding of the relation between scaled models and a full
scale prototype, a step-by-step approach seems most logical to distinguish the different in-
fluences on the structural behaviour. Starting with numerical simulations of both the scaled
model and full scale prototype [4] to determine similarities and dissimilar behaviour. After
which the imperfections can be included by scaling them to the full scale prototype, to see
the different behaviour as a function of the imperfections and their scale. The downside of
the last step is that it incorporates two factors of influence, the scalability of imperfections
and the imperfection sensitivity of the different scales of cylindrical shells. It might be of
interest to come up with a method to separate these two influences by, for example, using an
imperfection amplitude [32], which can be varied and applied to cylindrical shells of different
scales.
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2.4 Research Question, Aims and Objectives
The main objective of the literature review was to acquire knowledge on buckling of cylindrical
shells and scaling of structures. There are no recent results of the scaling of cylindrical shells
and how representative these cylindrical shells are in comparison to the full scale cylindrical
shell. The most recent scaling method for cylindrical composite shells, published in 2018 by
Uriol Balbin et al. [4], has resulted in scaled configurations of a full-scale cylindrical shell
developed by NASA. However, these scaled cylindrical shells have not been studied yet, and
the validity of the scaling method is still unknown, although showing good promise. From
this unknown the following research objectives and questions are defined.

2.4.1 Research Objective
The main objective of the thesis is to investigate if the scaling method by Uriol Balbin et
al. [4] results in representative scaled cylindrical composite shells, which will be validated by
experimental tests at NASA Langley. This research will consist of a numerical investigation
with the main focus on two scaled cylindrical shells.

Due to the cylindrical shell being an imperfection sensitive structure, the numerical mod-
elling can be challenging. Therefore, the research is divided into three sub-objectives. The
first sub-objective is to get a greater understanding of the general modelling of a cylindrical
shell. Using different elements and material configurations to compare results, and determine
how an accurate FE model can be developed. The second sub-objective is to accurately model
both the full scale and scaled cylindrical shells. This includes investigating the imperfection
sensitivity of these cylindrical shells to different imperfection types, next to an investigation
into the influence of numerical parameters on the buckling behaviour of cylindrical shells.
The last sub-objective is to create a comparison for the full scale and scaled cylindrical shells
to determine how representative the scaled cylindrical shells actually are. It is thus both the
method to reach the understanding of the relation between scaled and full-scaled cylindrical
shell, and the gained knowledge on scaled cylindrical shells which are goals for the following
thesis.

2.4.2 Research Questions
From the research objective as stated, a research question with accompanying sub questions
will be formulated.

• What methodology can assess if a scaled cylindrical shell can show full scale represen-
tative behaviour?

– What is the most accurate method of modelling a cylindrical shell numerically?
– How does each type of imperfection influence the buckling behaviour of both scaled

and full scaled cylindrical shells?
– What is the influence of the scale of the cylindrical composite shell to the imper-

fection sensitivity?
– What method can be used to compare results from cylindrical shells of different

scales?



Chapter 3

Preliminary Analysis of a Cylindrical
Shell

This chapter will describe the preliminary analyses on a cylindrical shell, 800 mm diameter
and 800 mm length. The 800 mm diameter was chosen as it is the maximum diameter possi-
ble for testing equipment intended to be used later on in the project, this diameter is also a
constraint for the development of a scaled cylindrical shell. The analyses that were executed
were done according a step by step process. This was partially done to get acquainted with
the software package Abaqus, in combination with the modelling of a cylindrical structure
and its challenges. It also gave a good knowledge base for more detailed and time consuming
analyses later on in the thesis. Both isotropic and composite materials were used. Starting
with an isotropic material, in order to focus on the modelling of the structure itself, without
having to deal with the challenges of modelling a composite material from the beginning.
After a basis is established for the modelling of this cylindrical shell, further analyses will
focus on the modelling of a composite cylindrical shell. All cylindrical shells considered in
this chapter do not include imperfections.

3.1 Aluminium Cylindrical shell

The first cylindrical shell to be modelled will have a diameter and length of 800 mm and 800
mm respectively, in combination with a shell thickness of 1 mm and 2 mm. It will make use
of a commonly used aluminium alloy namely 2024 T4, of which the properties are reported in
Table 3.1. The buckling loads resulting from the FE analyses were compared with analytical
buckling loads according to NASA SP-8007 [2]. The analytical buckling loads can be seen
in Table 3.2. The analytical buckling load calculations require operations of the classical
laminate theory, for which Kassapoglou [55] was used. First the modelling technique used for
the structure type of interest was explained. After which a mesh size sensitivity investigation
was executed, by comparing buckling load, stiffness and modeshape. This is followed by an
element comparison for two different mesh sizes.
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Table 3.1: Aluminium 2024 T4 Material Properties.

E [MPa] ν
73100 0.33

Table 3.2: Analytical buckling loads for the aluminium cylindrical shell without imperfection
according to NASA SP-8007 [2].

Shell Thickness [mm] 1 3
Buckling load [kN] 280.91 2528.23

3.1.1 Modelling Technique

This section will focus on the FE models used for the following sections. The meshes used will
always be regular. This is a convenient way of meshing when the meshes need to be comparable
for all elements. Otherwise the results may depend more on the mesh itself, instead of the
general mesh size and element type. A comparison between a non-structured and structured
mesh can be seen in Figure 3.1. A non-structured mesh could be of interest when certain
zones need a finer mesh, while zones which are not of interest can be meshed coarser to
increase the computational efficiency. A convenient way of applying boundary conditions is
to use reference points. These reference points are tied to each side of the structure by a
rigid body tie, which transfers the boundary condition applied to the reference point to the
appointed edge. The boundary conditions used are: clamped on one side and clamped except
for the longitudinal direction on the opposing side. The type of loading might differ between
displacement and force based through the chapter, but will always be in axial direction. The
use of reference points furthermore simplifies the output for a load-displacement graph, as
the reference point where the load is applied, will output the total load and corresponding
displacement without having to sum the reaction force of all the nodes on the edge.

3.1.2 Mesh Sensitivity Analysis

For the mesh sensitivity analysis, the S4R element was used. This is a 4 noded conventional
shell element, which has both displacement and rotational degrees of freedom. A shell thick-
ness of 1 mm is used in combination with mesh sizes of: 20 mm, 10 mm and 5 mm. The
type of analyses used are eigenvalue analysis and linear static analysis, where the applied
load for the linear static analysis is equal to the analytical buckling load. This will result in
a comparison for buckling load and modeshape as a result of the eigenvalue analysis, and a
comparison for stiffness resulting from the linear static analyses. This resulted in the data
reported in Table 3.3 and the modeshapes shown in Figure 3.3.

The table reporting the results consist of the buckling load of the first five eigenmodes
resulting from the eigenvalue analyses, next to the resulting displacement from the applied
load of the linear static analyses. Both the buckling load values and displacement values are
within 1% for all mesh sizes, with the largest change seen between the 20 mm and 10 mm
mesh. The buckling load shows a maximum difference with respect to the analytical buckling
load of 1.2% for the 20 mm mesh, which can already be considered accurate enough. The
20 mm mesh is too coarse which leads to some of the half waves being irregular. The 5 mm
mesh results in a different modeshape in comparison to the 10 mm and 20 mm mesh.
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Figure 3.1: Comparison of a non-structured (a) and (b) structured mesh.

Figure 3.2: FE model of the 800 mm x 800 mm cylindrical shell.

Figure 3.3: Modeshape comparison for the aluminium cylindrical shell, showing radial displace-
ment for mesh sizes: (a) 20 mm, (b) 10 mm and (c) 5 mm.
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Table 3.3: Mesh size sensitivity result data for the aluminium cylindrical shell.

Alu. 2024 T4 1 mm thickness
Element S4R S4R S4R

Mesh size [mm] 20 10 5
Eigenvalue Analyses

CPU time [s] 77.50 1202.10 9062.80
Force eigenmode 1 [kN] 284.32 282.20 281.80
Force eigenmode 2 [kN] 284.49 282.24 281.80
Force eigenmode 3 [kN] 284.49 282.24 281.81
Force eigenmode 4 [kN] 284.58 282.29 281.82
Force eigenmode 5 [kN] 284.75 282.33 281.83
Linear Static Analyses, Force of 280.91kN

CPU time [s] 1 7.8 40
Displacement [mm] 1.218 1.220 1.220

The 5 mm mesh shows an asymmetric modeshape and some irregularities of the half waves
as well. It seems that these irregularities are not caused by the mesh being too coarse, but
just being part of the modeshape. The increase in CPU time is substitutional, especially if
the CPU time between the 20 mm and 5 mm mesh is compared. Finer meshes than 5 mm
could be considered when looking at the modeshape alone. However, the buckling load shows
convergence and a finer mesh would increase the CPU time. It was therefore decided that finer
meshes were unnecessary. Especially when it is considered that these are linear analyses, the
increase in CPU time for an even finer mesh would become a problem for non-linear analyses
further on during the thesis.

3.1.3 Element Comparison

For the element comparison, 4 elements were considered: the S4R element as previously
mentioned, the 8 noded continuum shell SC8R element, the 8 noded continuum solid shell
CSS8 element and the 8 noded classical brick C3D8R element. All of these elements, except
for the S4R element, uses only displacement degrees of freedom, while the S4R element uses
both rotational as displacement degrees of freedom. The CSS8 element is new in the 2017
version of Abaqus, and is said to show superior bending behaviour for a solid element and
suitable for both solid composites and 3D material models. For the CSS8 and C3D8R element,
both 1 and 3 elements through the thickness (T-t-T) were compared, and for the S4R and
SC8R element 1 element through the thickness was used. Both a shell thickness of 1 mm
and 3 mm was used, as each type of element might react differently to the thickness. For the
comparison an eigenvalue analysis was used, next to linear static analysis. As this results in
a large amount of analyses, a mesh size of 10 mm was chosen to somewhat limit total CPU
time for the first part of the comparison, after which a fine mesh of 5 mm is used for the final
comparison.



3.1 Aluminium Cylindrical shell 41

1 mm Shell Thickness

The results for a shell thickness of 1 mm are reported in Table 3.4. The results consist of
the buckling loads for the first five eigenmodes resulting from the eigenvalue analyses for all
element combinations, next to the resulting displacement from the linear static analyses. The
CPU time of each analysis is also reported, as a relative comparison. The corresponding
modeshapes of the eigenvalue analyses are shown in Figure 3.4. The first thing to notice is
that the results of the C3D8R element with 1 element through the thickness are inaccurate
and the modeshape shows irregularities as well. When 3 elements through the thickness are
used with the C3D8R element, the results improve drastically, but are not on the level of
the results from the other elements. The results of the S4R element are then used as the
main comparison for the other element combinations, for which the percentage difference was
calculated.

With the results of the C3D8R element out of consideration, the maximum error for both
buckling load and displacement w.r.t. the S4R element is 3.3%, see Table 3.5. The maximum
error for the displacement is 0.2%. This level of agreement can be considered sufficient, but it
should be said that the buckling load resulting from the S4R element is closest to the analytical
buckling load of 280.91kN. The modeshape of the S4R and SC8R elements show agreement,
while the modeshape of the CSS8 element is different for both configurations. This might be
caused by the CSS8 element can be considered both a shell and solid element, while the S4R
and SC8R elements are shells. The S4R and SC8R element show a axisymmetric modeshape,
while the CSS8 with 1 element through the thickness shows a asymmetric modeshape with
wrinkling of the waves. The CSS8 element with three elements through the thickness, shows a
diamond modeshape. The difference between the two configurations using the CSS8 element
might be caused due to the difference in degrees of freedom, due to the increase in nodes.
When comparing CPU time, the S4R and SC8R element are close, but the CSS8 element is
computationally less efficient. Using 3 elements through the thickness for the CSS8 element
is also unnecessary, as the difference between the results is negligible and the CPU time
increasing considerably.

Table 3.4: Result data aluminium cylindrical shell thickness of 1 mm and mesh size of 10 mm.

2024 T4 1 mm Thickness
Element S4R SC8R CSS8 CSS8 C3D8R C3D8R

Elements through thickn. 1 1 1 3 1 3
Eigenvalue Analyses

CPU time [s] 1202.10 1247.50 4267.60 21840.00 125.30 312.00
Force eigenmode 1 [kN] 282.20 289.23 291.30 291.52 29.82 286.87
Force eigenmode 2 [kN] 282.24 289.26 291.31 291.54 29.82 286.93
Force eigenmode 3 [kN] 282.24 289.26 291.34 291.57 30.11 290.96
Force eigenmode 4 [kN] 282.29 289.30 291.34 291.59 30.12 291.23
Force eigenmode 5 [kN] 282.33 289.33 291.35 292.08 30.59 297.78

Linear Static Analyses, Applied Force of 280.91kN
CPU time [s] 7.8 8.8 23.8 75.1 8.3 35.7

Displacement [mm] 1.220 1.217 1.222 1.222 1.224 1.227
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Figure 3.4: Modeshape comparison 1 mm shell thickness and a mesh size of 10 mm, showing
radial displacement for 6 different configurations: (a) S4R, (b) SC8R, (c) CSS8 1 T-t-T, (d)
CSS8 3 T-t-T, (e) C3D8R 1 T-t-T, (f) C3D8R 3 T-t-T.
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Table 3.5: Result data comparison w.r.t. S4R aluminium cylindrical 1 mm shell thickness and
mesh size of 10 mm.

2024 T4 1 mm Thickness
Element SC8R CSS8 CSS8 C3D8R C3D8R

Elements through thickn. 1 1 3 1 3
Eigenvalue Analyses

CPU time 3.8% 255.0% 1716.8% -89.6% -74.0%
Force eigenmode 1 2.5% 3.2% 3.3% -89.4% 1.7%
Force eigenmode 2 2.5% 3.2% 3.3% -89.4% 1.7%
Force eigenmode 3 2.5% 3.2% 3.3% -89.3% 3.1%
Force eigenmode 4 2.5% 3.2% 3.3% -89.3% 3.2%
Force eigenmode 5 2.5% 3.2% 3.5% -89.2% 5.5%

Linear Static Analyses, Applied Force of 280.91kN
CPU time 12.8% 205.1% 862.8% 6.4% 357.7%

Displacement -0.2% 0.2% 0.2% 0.4% 0.6%

3 mm Shell Thickness

The results for a shell thickness of 3 mm are reported in Table 3.6, with the corresponding
modeshapes of the eigenvalue analyses shown in Figure 3.5. The results consist of the buckling
loads for the first five eigenmodes, with corresponding CPU times as a relative comparison,
and the displacement as a result from the linear static analyses. The applied force used for
the linear analyses is equal to the analytical buckling load. When reviewing the results, the
C3D8R element shows the same problems as for the shell thickness of 1 mm, and is not con-
sidered for further analyses or discussions. The most noticeable difference w.r.t. the 1 mm
shell thickness results ,is the level of agreement for the modeshapes. As the 4 configurations
all show a diamond modeshape which is very similar. The results of the S4R element are
again used as the main comparison for the other element combinations, for which the per-
centage difference was calculated. These percentage differences are reported in Table 3.7. The
maximum error is only 0.7% and 0.5% for the buckling load and displacement, respectively.
The CSS8 element results in a buckling load closest to the analytical buckling load and again
results in the highest CPU times. These results are all very close, and these elements all thus
show promising results for this kind of structure.

5 mm Mesh Comparison

The highest error seen in previous comparison of this chapter was for the 1 mm shell thickness.
The comparison for the finer mesh will therefore be made with a 1 mm shell thickness. The
results of the 5 mm mesh are reported in Table 3.8 and corresponding modeshapes shown in
Figure 3.6.

Due to the lower amount of element configurations, both the results of the three element
configurations and the difference w.r.t. to the S4R results are reported in the same table.
The level of agreement between the resulting buckling load and displacement is more then
sufficient and the results from the different elements seem to convergence for finer meshes.
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Table 3.6: Result data aluminium cylindrical shell thickness of 3 mm and mesh size of 10 mm.

2024 T4 3 mm Thickness
Element S4R SC8R CSS8 CSS8 C3D8R C3D8R

Elements through thickn. 1 1 1 3 1 3
Eigenvalue Analyses

CPU time [s] 1236.50 1298.40 2543.50 7225.70 344.10 655.60
Force eigenmode 1 [kN] 2548.23 2559.42 2530.49 2530.35 247.77 2414.62
Force eigenmode 2 [kN] 2548.25 2559.43 2530.54 2530.36 247.79 2417.42
Force eigenmode 3 [kN] 2548.72 2560.01 2531.05 2530.91 250.10 2436.46
Force eigenmode 4 [kN] 2548.74 2560.03 2531.07 2530.97 250.14 2436.46
Force eigenmode 5 [kN] 2551.94 2571.07 2541.85 2541.96 250.43 2439.17

Linear Static Analyses, Applied Force of 2528.23kN
CPU time [s] 7.6 8.7 22 73.6 8.5 35.4

Displacement [mm] 3.657 3.637 3.651 3.651 3.675 3.657

Table 3.7: Result data comparison w.r.t. S4R aluminium cylindrical 3 mm shell thickness and
mesh size of 10 mm.

2024 T4 3 mm Thickness
Element SC8R CSS8 CSS8 C3D8R C3D8R

Elements through thickn. 1 1 3 1 3
Eigenvalue Analyses

CPU time 5.0% 105.7% 484.4% -72.2% -47.0%
Force eigenmode 1 0.4% -0.7% -0.7% -90.3% -5.2%
Force eigenmode 2 0.4% -0.7% -0.7% -90.3% -5.1%
Force eigenmode 3 0.4% -0.7% -0.7% -90.2% -4.4%
Force eigenmode 4 0.4% -0.7% -0.7% -90.2% -4.4%
Force eigenmode 5 0.7% -0.4% -0.4% -90.2% -4.4%

Linear Static Analyses, Applied Force of 280.91kN
CPU time 14.5% 189.5% 868.4% 11.8% 365.8%

Displacement -0.5% -0.1% -0.2% 0.5% 0.0%
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Figure 3.5: Modeshape comparison 3 mm shell thickness and a mesh size of 10 mm, showing
radial displacement for 6 different configurations: (a) S4R, (b) SC8R, (c) CSS8 1 T-t-T, (d)
CSS8 3 T-t-T, (e) C3D8R 1 T-t-T, (f) C3D8R 3 T-t-T.
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Figure 3.6: Modeshape comparison for a shell thickness of 1 mm using a mesh size of 5 mm,
showing radial displacement for 3 different configurations: (a) S4R, (b) SC8R, (c) CSS8 1 T-t-T.

The modeshape of the S4R and SC8R are in agreement, with the modeshape of the SC8R
only rotated around the longitudinal axis. The modeshape of the CSS8 is again different, but
now equal to the modeshape previously it showed with a mesh size of 10 mm and 3 elements
through the thickness. The modeshapes of the S4R and SC8R element are now similar to the
modeshape showed by the CSS8 element with 1 element through the thickness for a mesh size
of 10 mm. The difference in CPU time is lower compared to previous analyses, but is still
considerably in favour of the S4R and SC8R element.

Table 3.8: Results of the 5 mm mesh for a shell thickness of 1 mm, error w.r.t. S4R shown in
shaded columns.

2024 T4 1 mm Shell Thickness
Element S4R SC8R CSS8

Elements T-t-T 1 1 1
Eigenvalue Analyses

CPU time [s] 9062.80 8991.30 -0.8% 34242.00 277.8%
Force eigenmode 1 [kN] 281.80 283.96 0.8% 282.53 0.3%
Force eigenmode 2 [kN] 281.80 283.96 0.8% 282.54 0.3%
Force eigenmode 3 [kN] 281.81 283.97 0.8% 282.54 0.3%
Force eigenmode 4 [kN] 281.82 284.00 0.8% 282.56 0.3%
Force eigenmode 5 [kN] 281.83 284.01 0.8% 282.78 0.3%

Linear Static Analyses, Applied Force of 280.91kN
CPU time [s] 40 46.6 16.5% 96.3 140.8%

Displacement [mm] 1.220 1.216 -0.3% 1.219 -0.1%
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3.2 Composite Cylindrical Shell
The next step is to model a composite cylindrical shell which was used for a comparison
between the S4R, SC8R and CSS8 element using 4 different layups. The cylindrical shell
will have the same dimensions, of 800 mm diameter and 800 mm length. The material used
is IM7/8552, see Table 3.9. The layups consist of a 0 layup, a 90 layup, a quasi-isotropic
layup and lastly a random generated layup. These layups are chosen to be able to test
a wide range of effects, as these layups contain high and low stiffness differences between
longitudinal and circumferential direction, and coupling. The layups combined with the
corresponding analytical buckling load are shown in Table 3.10. For the comparison, both a
force and displacement eigenvalue analyses was used, next to a linear static analysis. For the
eigenvalue analyses the first four eigenmodes are requested, instead of the first five in previous
comparisons to save computational time. The force eigenvalue analyses is used as it can be
compared to the previous results of the aluminium cylindrical shell, while the displacement
eigenvalue analyses is used due to next chapters using applied displacement instead of applied
force. The linear static analyses are therefore also displacement based.

Table 3.9: IM7/8552 Material Properties.

E11 E22 ν G12 tp
[MPa] [MPa] [-] [MPa] [mm]
153960 10066 0.3 5930 0.132

Table 3.10: Analytical buckling load for the composite cylindrical shell without imperfection
according to NASA SP-8007 [2].

Layup Buckling load [kN]
[0]8 91.14
[90]8 91.11

[0, 45,−45, 90]s 171.53
[36, 54− 14, 31,−44, 83, 41,−34] 192.34

3.2.1 Material Orientation
The use of a composite layup in combination with 3 types of elements and a cylindrical
structure does provide some challenges. The software package Abaqus handles the material
orientation for each type element slightly different. For the S4R and SC8R element it is
defined by a cylindrical coordinate system, which ensures the stacking direction and the
rotation around the stacking direction is consistent for the whole cylindrical shell. For a
solid element such as the CSS8 element a different method was chosen. When a cylindrical
coordinate system is defined for a structure using a solid element, the 1 direction of the
material is applied to the radial direction. This is caused by the fact that a solid element
uses a 3D material model and directly uses the radial coordinate system for the material
model and not just for the stacking direction and rotation as it would for a shell. One
could change the material model itself, to convert the material properties to this cylindrical
coordinate system. It was decided to not convert the material properties, as using the same
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set of material properties for all elements during the comparison was preferred. The second
and last possibility that was considered, was to use a discrete definition for the orientation
of the material. This is done by defining a surface of the cylindrical shell, which is used
for the stacking direction and rotational axis of the plies, combined with defining a primary
axis which is in the axial direction of the cylindrical shell. This method defines the material
orientation for each element in the input file, which does increase the size of the input file,
but it was still the preferred option instead of converting the material properties.

3.2.2 Element Comparison

For each element and layup combination, a force and displacement based eigenvalue analysis
was executed next to a linear eigenvalue analysis, all using a mesh size of 5 mm. This results
in buckling loads and displacements and a resulting force due to the applied displacement.
The displacement for the linear static analyses was chosen so that it would result in a force
that was in the same order of magnitude as the eigenvalue results. The results of the linear
static analyses are used to compare the stiffness, which is why the resulting force value in itself
is not the main interest. The results of the FE analyses are shown in Table 3.11, Table 3.12,
Table 3.13 and Table 3.14.

The results do vary slightly, all elements are within 8% for all configurations, and the
random generated layup shows the largest spread. This spread is most likely caused due to
coupling effects, as the random generated layup is the only layup in this test with considerable
coupling. The SC8R and CSS8 results are close for the random generated layup, while the
S4R results are showing an offset. This might be due to the S4R element having problems
with the coupling effects, while these effects do add stiffness for the SC8R and CSS8 element.

This coupling effect might also be the cause of the CPU time relative differences shown
for this layup. In general, S4R has the lowest CPU time. The exception is the random
generated layup, where the S4R shows a CPU time which is close to the CSS8 CPU time
and considerably higher compared to the SC8R element. The CPU time of the CSS8 element
is the highest for all analyses, which was seen for previous FE analyses as well. The CSS8
is computational far less efficient, which is something to take into account for more complex
analyses.

When comparing the buckling loads to the analytical buckling loads, it can be seen that
the FE analyses show buckling loads within 2% of the analytical solution for the first three
layups. For the random generated layup, the difference between analytical and FE results
ranges from 6% to 13%, which is most likely also caused by the coupling effects.

The modeshapes resulting from the S4R analyses for the 4 different layups are shown in
Figure 3.7. All 3 elements resulted in exactly the same modeshapes for all layups except for
the quasi-isotropic layup. Therefore the modeshapes for each element are only shown for the
quasi-isotropic layup in Figure 3.8. The 0 and 90 layup both show a diamond modeshape,
with the 90 layup showing a much finer diamond pattern in comparison to the 0 layup. The
quasi-isotropic and random generated layup show a slightly twisted pattern, with a higher
amount of waves in the circumferential direction. The two twisted modeshapes are mirrored,
and the random generated layup shows more twist in comparison the quasi-isotropic layup.
When comparing the modeshapes for the quasi-isotropic element for each layup, it can be seen
that the S4R element results in the modeshape being mirrored compared to the SC8R and
CSS8 element. This might be caused by the S4R not having a finite thickness, in comparison
of the SC8R and CSS8 element having a finite thickness. When comparing these results to
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the results of the aluminium cylindrical shell, there are far less differences in modeshapes.
This is most likely caused by the modeshape being more pronounced due to the anisotropy of
the material, while an isotropic material can results in modeshapes which vary significantly
shape wise but are close together for their corresponding load. This is also supported by the
fact that the first four modeshapes, looked visually exactly the same for each element for each
layup, while the first four modeshapes could vary slightly for the aluminium cylindrical shell.

Table 3.11: Eigenvalue and linear static analyses results for layup: [0]8, difference w.r.t. S4R
results are shown in the shaded columns.

Element S4R SC8R CSS8
Elements T-t-T 1 1 1

Eigenvalue Analyses, Applied Force
CPU time [s] 1600.60 1977.40 23.5% 4094.50 155.8%

Force eigenmode 1 [kN] 93.19 93.29 0.1% 92.15 -1.1%
Force eigenmode 2 [kN] 93.19 93.29 0.1% 92.15 -1.1%
Force eigenmode 3 [kN] 93.43 93.54 0.1% 92.31 -1.2%
Force eigenmode 4 [kN] 93.43 93.54 0.1% 92.31 -1.2%

Eigenvalue Analyses, Applied Disp.
CPU time [s] 1522.80 1893.60 24.3% 3994.60 162.3%

Disp. eigenmode 1 [mm] 0.18 0.18 0.2% 0.18 -1.0%
Disp. eigenmode 2 [mm] 0.18 0.18 0.2% 0.18 -1.0%
Disp. eigenmode 3 [mm] 0.18 0.18 0.2% 0.18 -1.1%
Disp. eigenmode 4 [mm] 0.18 0.18 0.2% 0.18 -1.1%

Linear Static Analyses, Applied Disp. of 0.25 mm
CPU time [s] 29.4 42.7 45.2% 168 471.4%
Force [kN] 127.748 127.63 -0.1% 127.58 -0.1%
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Table 3.12: Eigenvalue and linear static analyses results for layup: [90]8, difference w.r.t. S4R
results are shown in the shaded columns.

Element S4R SC8R CSS8
Elements T-t-T 1 1 1

Eigenvalue Analyses, Applied Force
CPU time [s] 3967.30 4416.60 11.3% 9748.50 145.7%

Force eigenmode 1 [kN] 91.66 92.03 0.4% 90.82 -0.9%
Force eigenmode 2 [kN] 91.66 92.03 0.4% 90.82 -0.9%
Force eigenmode 3 [kN] 91.66 92.03 0.4% 90.82 -0.9%
Force eigenmode 4 [kN] 91.66 92.03 0.4% 90.82 -0.9%

Eigenvalue Analyses, Applied Disp.
CPU time [s] 3931.10 4256.90 8.3% 9355.90 138.0%

Disp. eigenmode 1 [mm] 2.74 2.75 0.0% 2.72 -0.8%
Disp. eigenmode 2 [mm] 2.74 2.75 0.0% 2.72 -0.8%
Disp. eigenmode 3 [mm] 2.74 2.75 0.0% 2.72 -0.8%
Disp. eigenmode 4 [mm] 2.74 2.75 0.0% 2.72 -0.8%

Linear Static Analyses, Applied Disp. of 3 mm
CPU time [s] 29.4 41.5 41.2% 173.3 489.5%
Force [kN] 100.193 100.551 0.4% 100.091 -0.1%

Table 3.13: Eigenvalue and linear static analyses results for layup: [0, 45,−45, 90]s, difference
w.r.t. S4R results are shown in the shaded columns.

Element S4R SC8R CSS8
Elements T-t-T 1 1 1

Eigenvalue Analyses, Applied Force
CPU time [s] 1102.70 1300.00 17.9% 3117.90 182.8%

Force eigenmode 1 [kN] 173.78 173.85 0.0% 169.95 -2.2%
Force eigenmode 2 [kN] 173.78 173.85 0.0% 169.95 -2.2%
Force eigenmode 3 [kN] 173.81 173.90 0.1% 170.07 -2.2%
Force eigenmode 4 [kN] 173.81 173.90 0.1% 170.07 -2.2%

Eigenvalue Analyses, Applied Disp.
CPU time [s] 1004.80 1334.50 32.8% 2780.80 176.8%

Disp. eigenmode 1 [mm] 0.88 0.88 0.1% 0.86 -2.1%
Disp. eigenmode 2 [mm] 0.88 0.88 0.1% 0.86 -2.1%
Disp. eigenmode 3 [mm] 0.88 0.88 0.1% 0.86 -2.1%
Disp. eigenmode 4 [mm] 0.88 0.88 0.1% 0.86 -2.1%

Linear Static Analyses, Applied Disp. of 1.5 mm
CPU time [s] 30.1 48.8 62.1% 174.4 479.4%
Force [kN] 297.513 297.386 0.0% 297.214 -0.1%
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Table 3.14: Eigenvalue and linear static analyses results for layup: [36, 54 −
14, 31,−44, 83, 41,−34], difference w.r.t. S4R results are shown in the shaded columns.

Element S4R SC8R CSS8
Elements T-t-T 1 1 1

Eigenvalue Analyses, Applied Force
CPU time [s] 2632.20 1538.50 -41.6% 3096.00 17.6%

Force eigenmode 1 [kN] 167.36 180.09 7.6% 177.02 5.8%
Force eigenmode 2 [kN] 167.36 180.09 7.6% 177.02 5.8%
Force eigenmode 3 [kN] 167.39 180.29 7.7% 177.36 6.0%
Force eigenmode 4 [kN] 167.39 180.29 7.7% 177.36 6.0%

Eigenvalue Analyses, Applied Disp.
CPU time [s] 2487.70 1350.40 -45.7% 3032.00 21.9%

Disp. eigenmode 1 [mm] 0.96 1.03 7.5% 1.02 5.8%
Disp. eigenmode 2 [mm] 0.96 1.03 7.4% 1.02 5.8%
Disp. eigenmode 3 [mm] 0.96 1.03 7.6% 1.02 6.0%
Disp. eigenmode 4 [mm] 0.96 1.03 7.6% 1.02 6.0%

Linear Static Analyses, Applied Disp. of 1.5 mm
CPU time [s] 29.5 32.5 10.2% 165.1 459.7%
Force [kN] 261.309 261.471 0.1% 261.307 0.0%

Figure 3.7: Modeshapes for the S4R element, showing radial displacement for 4 different layups:
(a) [0]8, (b) [90]8, (c) [0, 45,−45, 90]s, (d) [36, 54− 14, 31,−44, 83, 41,−34].
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Figure 3.8: Modeshape comparison, showing radial displacement for the quasi-isotropic layup:
[0, 45,−45, 90]s, showing radial displacement for 3 configurations: (a) S4R, (b) SC8R, (c) CSS8
1 T-t-T.
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3.3 Discussion and Outcome
The preliminary analysis of a cylindrical shell has lead to a set of results, for two types of
materials and design combinations. For the mesh sensitivity investigation, a 10 mm mesh
already showed great results, while there were differences seen when a mesh of 5 mm was
used. A 5 mm mesh is deemed to be the better option for next chapters, not just because
of the results seen in this chapter, but also due to the investigations into imperfections. The
imperfections itself will be more accurately modelled with a finer mesh, and it is preferred
to be consistent with the mesh size to be able to compare all the results. Three elements
have shown great results, which are the S4R, SC8R and CSS8 element. The S4R and SC8R
element are in favour when compared to the other elements based on the results in this chapter.
They are computational efficient, show buckling loads close to the analytical solution and are
convenient to model as well. In general the S4R showed to be less sensitive to mesh size in
comparison to the other elements. The CSS8 element is very useful as well, but it should
only be used when a 3D material model is needed or for other element comparisons, as it is
computationally inefficient in comparison to the other two elements when modelling a shell.

3.4 Summary
The chapter showed a large set of results of linear FE analyses for a 800 mm x 800 mm
cylindrical shell using both aluminium and composite materials. A mesh size comparison was
executed, which showed that reasonable results could be achieved for a mesh size of 20 mm.
A mesh size of 10 mm resulted in a similar modeshape as the 20 mm mesh and the mesh size
of 5 mm showed a different modeshape compared to the two other mesh sizes. A element
comparison was executed for both a mesh size of 10 mm and two shell thicknesses, which
saw good results from the S4R, SC8R and CSS8 element. The buckling loads are close for
all three elements, where the biggest difference between the elements is seen for the resulting
modeshape. The C3D8R element showed inaccurate results, and was therefore discarded for
following analyses. A second element comparison was executed for a mesh size of 5 mm using
the thin shell, which showed that the results from all elements converged further towards each
other.

Then a composite cylindrical shell was used for a element comparison using four different
layups. The elements used for the composite cylindrical shell showed good agreement for the
buckling load and displacements and corresponding modeshapes. The main difference w.r.t.
the results of the aluminium cylindrical shell is that the composite cylindrical shell showed
better agreement for the modeshapes, which is most likely caused by the modeshape being
more pronounced for a composite material compared to a isotropic material. The FE analyses
of the aluminium cylindrical shell showed buckling loads close to the analytical solution. The
composite cylindrical shell showed similar buckling loads resulting from the FE analyses and
analytical solution for three out of four layups. The layup that showed a difference in buckling
loads, is a random generated layup with a considerable amount of coupling which is most likely
the cause of this difference.
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Chapter 4

Scaled Solid Laminate Cylindrical Shell

This chapter will go in depth on the scaled solid laminate cylindrical shell which was designed
according to the scaling procedure as published in 2018 by Uriol Balbin et al. [4]. The focus
is again on FE analyses, to investigate if this scaled cylindrical shells do provide represen-
tative behaviour of its full scale counterpart. The scaled cylindrical shell is a scaled version
of the CTA 8.1 cylindrical shell, which was elaborated on in the literature review. The FE
analyses will focus on an element comparison, containing the S4R, SC8R and CSS8 element,
next to comparing different types of imperfections. The comparison including different types
of imperfections at different amplitudes should provide insight on the imperfection sensitiv-
ity of this cylindrical shell. At first a simplified version of the scaled cylindrical shells was
used, excluding the edges which containing pad-ups and potting for load introduction. This
considerably simplifies the creation of FE models, which is convenient for the large portion
of FE analyses to be executed. In the latter part of the chapter, a test article version of the
scaled cylindrical shells was modelled.

4.1 Solid Laminate Cylindrical Shell

The solid laminate cylindrical shell is the first scaled configuration that was modelled. The
scaling procedure uses a set of six equations, which are based on both the geometry of the
cylindrical shell and the stiffness and compliance matrices of the composite laminate. The
resulting nondimensional parameters as a result of the six equations, are firstly calculated
for the full scale cylindrical shell. After which the scaling procedure determines the scaled
cylindrical shell, by matching these nondimensional parameters with the full scale cylindrical
shell. One of these equations include the nondimensional load, which was used to compare
the FE results of the different scales in the last chapter. The choice for a solid laminate is due
to manufacturing problems with scaled sandwich composite cylindrical shells, as the scaling
process can result in a core thickness which is too thin to manufacture. It is therefore of
interest, to investigate if the full scale and scaled cylindrical shell both need to be of the same
construction type or not. It would be ideal if a scaled cylindrical shell constructed from a
solid laminate, can show representative behaviour for a full scale sandwich cylindrical shell.
This would increase the design space of scaled cylindrical shells immensely and could decrease



56 Scaled Solid Laminate Cylindrical Shell

cost of scaled test cylindrical shells. The imperfection sensitivity is one of the main interests
of the scaled cylindrical shells. As the imperfection sensitivity can be one of the indications if
the cylindrical shell was representative for the full scale cylindrical shell or not. The different
scales of cylindrical shells might need different manufacturing methods, which will lead to
different imperfection signatures. Even if the cylindrical shell without imperfection can show
representative behaviour, it is more important that the behaviour is also representative when
actual imperfections are included. This would more closely represent the general problem, as
a structure without imperfection does not exist in practice.

The first portion of FE analyses, will use a slightly shortened version of the scaled solid
laminate cylindrical shell. As the edges of the cylindrical shell contain padups and potting,
these edge areas add considerable complexity to the model while not having a considerable
influence on the element comparison or imperfection type comparison. Therefore, only the
middle part of the cylindrical shell with one consistent layup was modelled firstly, for which
the structural properties are shown in Table 4.1. The cylindrical shell was constructed of the
IM7/8552 composite material, of which the properties of this material can be seen in Table 4.2.
These properties are slightly different compared to the IM7/8552 used in the chapter about
the 800 mm x 800 mm cylindrical shell. At this part of the thesis, new material properties
were received for the batch of materials which would be used, which were implemented. This
does not influence the conclusions from the previous chapter, as those conclusions are based
on the comparisons and not the actual result values itself. The general modelling technique
is equal to the explanation shown in subsection 3.1.1. This cylindrical shell will also be used
for an imperfection sensitivity investigation and therefore both the analytical buckling load
for a cylindrical shell with and without imperfections was calculated, see Table 4.3.

Table 4.1: Solid laminate scaled configuration.

Layup [23, 0,−23]4s

Diameter [mm] 800
Length [mm] 1120

Table 4.2: IM7/8552 Material Properties. Material strength from [56]. Strain values based on
CLT calculations from material strength data.

E11 E22 ν G12 ρ tp
[MPa] [MPa] [-] [MPa] [kg/m3] [mm]
140928 9721 0.356 4688 1580 0.175

Ftu
1 Fcu

1 Ftu
2 Fcu

2 F12 [MPa]
2212 1731 64 286 54
εt

11 εc
11 εt

22 εc
22 ε12 [microstrain]

15969 12280 6584 29400 11520
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Table 4.3: Analytical buckling loads and corresponding knockdown factor according to NASA
SP-8007 [2].

Buckling Load [kN]
Without Imperfection 2275.5
With Imperfection 1343.8
Knockdown Factor 0.6

4.2 Linear Analysis of the Solid Laminate Cylindrical Shell
This section focus on linear static and linear eigenvalue analyses of the solid laminate cylin-
drical shell. These analyses are executed to provide a set of buckling loads and stiffness before
the step to non-linear analyses is made, but are kept at a minimum as the main focus are
the non-linear analyses. Non-linear analysis was able to capture the full buckling behaviour,
next to the possible non-linear behaviour before buckling. In the previous chapter on the 800
mm x 800 mm cylindrical shell, it was shown that the three elements considered are closely
matched result wise for linear analyses and a mesh size of 5 mm. Therefore the whole set
of linear analyses were executed by using only the S4R element combined with a mesh size
of 5 mm, and the force based eigenvalue analyses ere executed for all of the three elements
also for a mesh size of 5 mm. These eigenvalue analyses provide the modeshape to be used
as an imperfection for the non-linear analyses section later on in the thesis. The linear static
analysis will result in a load-displacement curve, which was used as a stiffness reference for
the results of the non-linear analyses later on. The results of the linear analyses are shown in
Table 4.4.

Table 4.4: Linear analyses results table for the scaled solid laminate cylindrical shell.

Force Eigenvalue Analyses
Element S4R SC8R CSS8

Buckling load [kN] 2289.1 2295.9 2292.7
Displacement Eigenvalue Analyses

Element S4R
Displacement [mm] 2.3644
Linear Static Analysis, Applied Disp.

Element S4R
Load [kN] 2904.4

Displacement [mm] 3

It can be seen that the force eigenvalue analyses shows closely matched results for all
3 elements, and thus confirming results shown in the previous chapter. The linear analyses
results of the S4R element, which is the base set for comparisons further on in the thesis,
are shown in Figure 4.1. The graph shows that the results do match closely, the eigenvalue
analyses results match with the linear static results and are just slightly above the analytical
buckling load.
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The modeshapes resulting from the eigenvalue analyses were used as an imperfection in
next sections. For the all 3 elements, a antisymmetric modeshape was used, and only for
the S4R element a diamond modeshape was used as an imperfection as well. The first four
modeshapes of the S4R, SC8R and CSS8 element are shown in Figure 4.2,Figure 4.3 and
Figure 4.4 respectively. The modeshapes show an axisymmetric shape in general, with slight
differences. The first three modeshapes look visually very similar, but the third modeshape
does show slight differences. The S4R and SC8R element have an outwards wave in the
middle of the cylindrical shell longitudinally, while the CSS8 element has an inwards wave in
the middle. It can be seen that the third modeshape of the CSS8 element does correspond
partially with the fourth modeshape of the S4R and SC8R element, but they all show slight
differences. The fourth modeshape of the CSS8 element is again similar to the first two
modeshapes seen for all elements. The diamond modeshape is modeshape no. 83 for the S4R
element, and is shown in Figure 4.5. Although this is not a classical diamond shape as seen
in literature, it is the closest diamond shape achievable from the first 100 modeshapes. This
is most likely caused by the layup having the 23 and -23 layers.

Figure 4.1: Linear analyses results graph for the solid laminate cylindrical shell.
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Figure 4.2: First four modeshapes of the scaled solid laminate cylindrical shell for the S4R
element, showing radial displacement with modeshape numbering: (a) 1, (b) 2, (c) 3, (d) 4.

Figure 4.3: First four modeshapes of the scaled solid laminate cylindrical shell for the SC8R
element, showing radial displacement with modeshape numbering: (a) 1, (b) 2, (c) 3, (d) 4.

Figure 4.4: First four modeshapes of the scaled solid laminate cylindrical shell for the CSS8
element, showing radial displacement with modeshape numbering: (a) 1, (b) 2, (c) 3, (d) 4.
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Figure 4.5: S4R modeshape no. 83 of the scaled solid laminate cylindrical shell, diamond shape,
showing radial displacement.

4.3 Non-linear Analyses of the Solid Laminate Cylindrical Shell
The next step is to focus on the non-linear analyses of the solid laminate cylindrical shell.
The type of analysis that was used is dynamic implicit. The choice for a dynamic type of
analysis is due to the drop in stiffness and load carrying ability of the cylindrical structure
when it buckles, which is intended to be captured as well. In general space structures are
designed to not buckle for their design load, but the post-buckling field is interesting to
capture to see when failure would happen. The choice for the implicit analysis is due to
the computational efficiency compared to explicit analysis. As a large portion of analyses
were executed, computational efficiency becomes a priority as well. The non-linear analyses
were executed in several steps. First the displacement rate to be used through out this
chapter has to be determined, for which a comparison using an axisymmetric imperfection was
shown. This section is followed by a comparison for different types of imperfections for several
amplitudes w.r.t. the thickness. The 3 types compared are the axisymmetric imperfection,
diamond imperfection and a loading imperfection. Then, a comparison is executed for the
3 elements, using an axisymmetric imperfection for different amplitudes with respect to the
thickness. This is followed by a section on the implementation of mandrel imperfections,
which is compared to a diamond imperfection. The last section focusses on a test article
model including the mandrel imperfections, padups and potting.

4.3.1 Sensitivity to Displacement Rate
The displacement rate of a dynamic analysis is determined through a combination of the
applied displacement and the analysis time. The choice for a displacement rate is a trade
off between computational time and analysis accuracy. Due to the quasi-static nature of
the structural problem, it would be ideal to have a low displacement rate, but this would
result in a low computational efficiency. It is thus the goal to have the displacement rate as
high as possible, without the analysis showing dynamic influences. To test the effect of the
displacement rate, 4 different displacement rates were chosen: 1, 2, 5 and 10 mm/s. These
displacement rates were used in combination with an axisymmetric imperfection, as the main
focus is on cylindrical shells with imperfections. The cylindrical shells without imperfection
are seen as a reference to determine the drop in buckling load. Furthermore, a imperfect
cylindrical shell is seen as more reliable, as the the imperfection triggers a certain modeshape
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under buckling, while a cylindrical shell without imperfection can show different modeshapes.
This prevents the comparison showing the effect of different modeshapes, instead of showing
the effect of the displacement rate itself. The effect of the displacement rate was judged
according to the load-displacement curve each displacement rate results in, next to the CPU
time for each analysis. The results of the analyses can be seen in Table 4.5 and Figure 4.6
for the CPU times and load-displacement graphs respectively.

Table 4.5: S4R dynamic implicit analysis CPU time for four different displacement rates.

Displacement rate [mm/s] 1 2 5 10
CPU time [s] 88126 61821 39741 30030

Figure 4.6: Load-displacement graph for the S4R solid laminate cylindrical shell comparison of
4 displacement rates.

CPU time increases considerably for lower displacement rates, as was to be expected.
The load-displacement graph does show a bit of an unexpected result. The dependency does
not necessarily converge into one direction, for a higher or lower displacement rate. The 1 and
2 mm/s results are very close, while the 5 mm/s analysis results in the lowest buckling load
and the 10 mm/s analysis is in between. The 10 mm/s analysis also shows severe oscillations
in the post-buckling field, most likely caused by dynamic effects. Due to the 2 mm/s analysis
showing results very close to the 1 mm/s analysis with a considerably lower CPU time, it is
chosen for following analyses. Lower displacement rates were not considered after seeing these
results, as the two lowest displacement rates show similar results and look to be converged
already. There is a difference in the post-buckling field between the 1 and 2 mm/s analyses,



62 Scaled Solid Laminate Cylindrical Shell

most likely due to a change in modeshape. However, this is far enough into the post-buckling
field, that it is not of most importance. The analyses of the cylindrical shell without im-
perfection uses a displacement rate of 2 mm/s, which corresponds to the displacement rate
chosen for following analyses.

4.3.2 Modeshape and Loading Imperfection
This section will focus on a comparison between three types of imperfection using the S4R
element. For each type of imperfection four different amplitudes were used for the analyses.
The first two imperfections are based on the modeshape resulting from the eigenvalue analyses
shown previously in this chapter. Both an axisymmetric imperfection and a diamond imper-
fection was used. These modeshapes are a direct output of the eigenvalue analyses, and are
then used as an input for the dynamic implicit analyses. The input is specified as the mode-
shape number and amplitude. The modeshape numbers are 3 and 83 for the axisymmetric,
seen in Figure 4.2, and diamond modeshape, seen in Figure 4.5, respectively. The amplitude
is a percentage, which defines the maximum out of plane displacement of the imperfection
with respect to the thickness of the laminate, which is 4.21 mm.

The loading imperfection is based on that the loading platform of the test setup would
be slightly rotated, and thus cause a loading imperfection. In the FE model, this would result
in the reference point being rotated, with the amplitude defined as the degrees of rotation
named alpha, see Figure 4.7. The loading imperfection analyses are executed by using two
steps. The first step is to apply the rotation of the reference point and the second step is the
application of the displacement. This type of analysis is chosen as this would correspond with
the idea behind the loading imperfection. If the loading platforms of the experimental setup
are not exactly parallel, it is assumed that the offset remains constant with respect to the
magnitude of the final applied displacement. This would make the two step analyses a more
accurate representation then applying both displacement and rotation simultaneously. The
range of the imperfection amplitudes are chosen such that a wide range of buckling loads are
obtained. As this results in load-displacement graphs from which the imperfection sensitivity
can be observed clearly. The amplitudes for the modeshape imperfection are: 5%, 10%, 20%
and 50%. The amplitudes for the loading imperfection are: 0.025◦ , 0.05◦ , 0.1◦ and 0.2◦

. This will result in a load-displacement graph for each imperfection, which will compare
the four different amplitudes with the cylindrical shell without imperfection. This results
in the load-displacement graphs shown in Figure 4.8, Figure 4.9 and Figure 4.10 with the
corresponding buckling loads shown in Table 4.6.

Figure 4.7: Loading imperfection illustration showing degree of rotation alpha.
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Table 4.6: Buckling loads for three types of imperfections at five different amplitudes.

Axisymmetric Imperfection
Amplitude 0% 5% 10% 20% 50%

Buckling Load [kN] 2289.1 1810.4 1523.0 1259.3 829.0
Diamond Imperfection

Amplitude 0% 5% 10% 20% 50%
Buckling Load [kN] 2289.1 1859.2 1670.1 1406.2 1003.8

Loading Imperfection
Rotation 0◦ 0.025◦ 0.05◦ 0.1◦ 0.2◦

Buckling Load [kN] 2289.1 2026.6 1843.2 1450.4 667.8

Figure 4.8: Load-displacement graph for the axisymmetric imperfection for four amplitudes.
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Figure 4.9: Load-displacement graph for the diamond imperfection for four amplitudes.

Figure 4.10: Load-displacement graph for the loading imperfection for four amplitudes.
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When comparing the buckling loads of the modeshape imperfections in Table 4.6, it can
be seen that for an amplitude of 5% the buckling loads are relatively close. The buckling
loads do however diverge for higher imperfection amplitudes.

When the load-displacement graphs of the modeshape imperfections are compared, the
most notable difference is the drop in stiffness for the axisymmetric imperfections. A ampli-
tude of 20% for a laminate of 4.21 mm would result in an imperfection of 0.842 mm. For a
radius of 400 mm, an imperfection of 0.842 mm can be considered small, but does however
already result in a severe decrease in stiffness for the axisymmetric imperfection in compar-
ison to the diamond imperfection. The buckling loads of the two modeshape imperfections
are thus difference, but this is most likely caused by the difference in stiffness. As another
comparison could be made by looking at the displacement at which buckling occurs for the
two modeshape imperfections at 20% amplitude. The displacement at which they both buckle
is very similar for this amplitude, but this behaviour is not consistent throughout the differ-
ent imperfection amplitudes. As the 10% amplitude modeshape imperfections do not show
agreement for the displacement at which buckling occurs, and the 5% amplitude does show
agreement. The 50% imperfection amplitude cases were difficult to compare, as these cases
do not show typical buckling behaviour.

When the post-buckling field is investigated, it can be seen that for the axisymmetric
imperfection the 10% and 20% amplitude and the 5% and 50% amplitude converge respec-
tively. For the diamond imperfection the 5% and 10% amplitude converge, while the 20%
and 50% might converge after the drop in load of the 50% amplitude imperfection, but that’s
not captured clearly within the range of the graph. That the different amplitudes converge is
most likely caused due to the analyses having the same modeshape in the post-buckling field,
where the imperfection itself does not have the same influence it had in the pre-buckling field.

The comparison between the modeshape and loading imperfection is not straight forward,
as it is a totally different type of imperfection. The effect of the magnitude of the imperfection
is also quite different for the loading imperfection. There is no decrease in stiffness to be seen
and even for the highest rotation the cylindrical shell still shows a distinctive point of buckling.
All the four analyses seem to converge to the post-buckling behaviour of the cylindrical shell
without imperfections, with the 0.05◦ analyses showing a bit of an offset in the post-buckling
field.

In general, it can be concluded that the cylindrical shell is very sensitive to imperfections,
as an imperfection of 10% w.r.t. to the thickness already leads to a buckling load reduction of
30%. To put it into perspective, that would be an imperfection of 0.4 mm with the thickness
being 4.21 mm. On a radius of 400 mm that could mean a radial deviation of 0.1%, which
can be considered precise in manufacturing terms. It is thus of utmost importance, that the
manufacturing is very precise, otherwise large buckling load reductions will be unavoidable.

4.3.3 Element Comparison

The element comparison will consist of the 3 elements that have shown good results in the
previous chapter, namely the S4R, SC8R and CSS8 elements. The comparison will make use
of the axisymmetric imperfection, for the imperfection amplitudes of 10%, 20% and 50% next
to the cylindrical shell without imperfections. The axisymmetric imperfection was chosen as
it shows a larger variation in behaviour due to the different amplitudes, as it shows both a
remarkable decrease in stiffness and buckling load. The analyses that were executed are thus
similar to the analysis of the axisymmetric imperfection shown in the previous section, but
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now using the SC8R and CSS8 element. The results were shown in the form of two load-
displacement graphs and a comparison of buckling loads in a table format. The buckling loads
resulting from these analyses are reported in Table 4.7, and the load-displacement graphs are
shown in Figure 4.11 and Figure 4.12.

Table 4.7: Comparison of buckling loads using the three elements for the scaled solid laminate
cylindrical shell.

Axisymmetric Imperfection
Amplitude 0% 10% 20% 50%

Buckling Load S4R [kN] 2289.1 1523.0 1259.3 829.0
Buckling Load SC8R [kN] 2284.4 1471.5 1165.6 776.9
Buckling Load CSS8 [kN] 2300.4 1461.3 1174.3 786.9

Figure 4.11: Load-displacement graph for the scaled solid laminate cylindrical shell and the SC8R
element.

When the buckling loads of the three elements are compared for all amplitudes, it can
be seen that the S4R and SC8R match for the cylindrical shell without imperfection. While
for the cylindrical shells containing imperfections, the SC8R and CSS8 show very similar
results. The difference in buckling load for the cylindrical shell without imperfection, could
be explained by the CSS8 element showing a loading plateau, but it does not seem to increase
the buckling load by a large margin. This loading plateau is most likely caused by it being
a perfect structure forming a axisymmetric modeshape, where the analyses does not seem to
be able to initiate buckling.
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Figure 4.12: Load-displacement graph for the scaled solid laminate cylindrical shell and the CSS8
element.

When the load-displacement graphs of the SC8R and CSS8 are compared, the initial
point of buckling is relatively close, but in the post-buckling field it can be seen that both
the 10% and 20% amplitudes for the CSS8 element shows another drop off point of the load.
This is most likely caused by the change of modeshape, and is not seen for the S4R and SC8R
element. When looking back at the behaviour of the S4R element in Figure 4.8, it can be
seen that there were oscillations in the post-buckling field for the 20% amplitude, where the
CSS8 element does not show oscillations, and the SC8R element shows a minimal amount of
oscillations. The SC8R and CSS8 show similar buckling loads when compared with the S4R.
The S4R results in 5% higher buckling loads on average, and is deemed to be the outlier.
Due to these differences, the SC8R and CSS8 elements would be in favour. It is however
the computational efficiency of the SC8R element in comparison to the CSS8 element which
determined that the SC8R element will be used for the next sections.

4.3.4 Mandrel Imperfections Solid Laminate Cylindrical Shell

The next step of the thesis was to include mandrel imperfections and compare them to
previous results of the solid laminate cylindrical shell. The measurements were executed at
NASA, on the mandrel which will be used for production of the solid laminate cylindrical shell.
The first portion of this section will explain the work flow for the processes that were needed
to incorporate the measurement data into a FE model in Abaqus. Previous imperfections
were used at several amplitudes, to be able to see the imperfection sensitivity. To be able to
do the same kind of comparison for this imperfection data as well, two kinds of imperfection
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amplitudes were used. The first amplitude consists of the interpolated imperfection at its
original amplitude, and the second amplitude consists of an exaggeration of the interpolated
imperfection, to match 20% w.r.t. to the thickness of the laminate. This 20% is the amplitude
most commonly used in previous comparisons and should provide a insight into the sensitivity
to the mandrel imperfection on different amplitudes. The following bullet points will show
the general processing steps for the imperfection data:

• The measurement data was imported into Python, after which the data was filtered on
incomplete coordinates which were removed and the edge regions were excluded.

• The measurement data consisted of x,y,z coordinates, which were transformed to a cylin-
drical coordinate system. Using a cylindrical coordinate system has several advantages
for further steps, with the most important advantage being able to use 2D interpolation.

• Determine a regular grid which will be used for the 2D interpolation. This regular grid
is based on the amount of elements in circumferential and axial as was used in previous
analyses. This ensures that the mesh is consistent with previous analyses for accurate
result comparisons later on.

• The processed measurement data was interpolated onto the regular grid. Inputs from
the regular grid are the angular and z coordinate, with the output being the radius at
each location.

• This step is only used for the 20% amplitude imperfection. A histogram plot was made
for the radial coordinates, to determine the mid-plane of the imperfection data, which
can be seen as the general radius of the mandrel. After the mid-plane was determined,
the mid-plane radial distance was subtracted from the previous mentioned radial coor-
dinates, which results in a set of imperfection amplitudes. The maximum imperfection
amplitude was then determined to be able to calculate the scaling factor, after which
the imperfection amplitudes were scaled to match the 20% amplitude. Summing up this
20% amplitude data with the mid-plane radial distance, results in a new set of radial
coordinates for the 20% amplitude.

• The last step is to format the output data from 2D interpolation or scaling procedure,
to be used as node coordinates for a Abaqus input file.

The measurement data was also 2D interpolated onto a regular grid, containing the same
amount of coordinates of the original data. This was done to be able to show the imperfection
in a coloured graph, which requires the datapoints to be on a regular grid in python. This
results in the graph shown in Figure 4.13. The total variation over the whole mandrel is
just 0.24 mm, which is considerably lower than the imperfections that were used in previous
analyses.

For the solid laminate cylindrical shell as used in previous analyses, a length of 1120 mm
is needed. The interpolation on the regular grid which is equal to the mesh size for the length
of 1120 mm, results in the graph seen in Figure 4.14. Due to a smaller portion of the mandrel
being used, the maximum variation is 0.18 mm, which is impressively low for a mandrel.

To be able to create the 20% amplitude imperfection, a histogram plot was made, which
can be seen in Figure 4.15. From this histogram plot the mid-plane of 400.094 mm was
determined, as it had the highest amount of occurrences. Determining the mid-plane by
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amount of occurrences was deemed to be a more representative method to determine the
mid-plane, instead of just determining the average radial coordinate. With the mid-plane
being at 400.094 mm, the maximum imperfection is 0.12 mm which is 2.85 % w.r.t. to a
laminate thickness of 4.21 mm. Scaling the imperfection to an amplitude of 20% w.r.t. to
the laminate thickness, results in Figure 4.16.
The cylindrical shell resulting from the mandrel imperfection has a radius of 402.2 mm, which
is slightly larger compared to the previously used cylindrical shell. To be able to investigate
the stiffness reduction due to the mandrel imperfection, another linear static analysis was
executed using a radius of 402.2 mm for a cylindrical shell without imperfections.

With the imperfections ready for FE analyses, the last step is to be able to have an
imperfection similar to previous analyses, which can be directly compared to the mandrel
imperfection. From previous analyses it was seen that the axisymmetric imperfection showed
a high reduction in stiffness, which was not expected to happen for the mandrel imperfec-
tion. The diamond imperfection was therefore seen as more compatible, but it was not yet
determined for the SC8R element. This required another eigenvalue analysis to be executed
for the SC8R containing more eigenmodes, to be able to create the diamond imperfection.
The diamond shape that was chosen was exactly the same visually to the S4R diamond shape
as seen in Figure 4.5, and also had modeshape no. 83. This diamond modeshape was then
used for both 2.85% and 20% w.r.t. to the thickness in the previously used SC8R models,
as these are then a direct comparison with the mandrel imperfection. These two imperfec-
tion types, in combination with two imperfection amplitudes each, were used in a dynamic
analysis, which resulted in the load-displacement graph as shown in Figure 4.17 with the
corresponding buckling loads reported in Table 4.8.

Figure 4.13: 2D representation of the mandrel measurement data.
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Figure 4.14: 2D representation of the radial coordinates 2.85% mandrel imperfection and 1120
mm length cylindrical shell.

Figure 4.15: Histogram plot for the mandrel imperfection and 1120 mm length cylindrical shell.
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Figure 4.16: 2D representation of the radial coordinates of the 20% mandrel imperfection and
1120 mm length cylindrical shell.

Figure 4.17: Load-displacement graph containing the mandrel and diamond imperfection com-
parison for the 1120 mm length cylindrical shell.
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Table 4.8: Comparison of buckling loads between the diamond modeshape and mandrel imper-
fection for the 1120 mm length cylindrical shell.

Imperfection amplitude 2.85% 20%
Mandrel imperfection buckling load [kN] 2166.5 1684.3
Diamond imperfection buckling load [kN] 1962.5 1411.6

The first observation of the whole comparison including the mandrel and diamond im-
perfections, is that the models based on the mandrel have a slightly higher stiffness, which
is caused by the slightly larger diameter. This raised some concerns as the increased radius
might have implications for the experimental tests. Therefore a study was executed on the
effect of increased radius and thickness of the laminate, to ensure the experimental test equip-
ment can handle the cylindrical shell if it is slightly different than the actual design. This
study will be shown in the next paragraph, as first the rest of the comparison will be analysed.

With the attention back to the load-displacement graph, it can be seen that the imperfec-
tion sensitivity to the mandrel imperfection is considerably lower compared to the diamond
imperfection. The difference in buckling load between the two imperfection types is 10% and
19% for the 2.85% and 20% imperfection amplitude respectively. For the same imperfection
amplitude the buckling loads are higher, especially for the 20% amplitude. When both im-
perfection amplitudes of the mandrel imperfection are compared, it can be seen that they
converge towards each other in the post-buckling field. These models converge towards the
post-buckling behaviour of the cylindrical shell without imperfection. The mandrel imper-
fection has less influence on the post-buckling behaviour, most likely caused by the imper-
fection not being equal to a modeshape as was the case with previous comparisons. The
loading imperfection showed similar behaviour, as it also converged towards the cylindrical
shell without imperfection in the post-buckling field. The post-buckling behaviour difference
underlines that the influence of mandrel imperfections can be quite different in comparison
to modeshape imperfections. The modeshape imperfections seem to induce behaviour, which
might not be representative of reality as mandrel imperfections rarely have a modeshape-like
shape.

As mentioned before, cylindrical shells for the use in launch vehicles are design to not
buckle or have material failure for their design load. To check the state of the material at
the last increment before buckling, as this would be the maximum load before buckling, the
strains were also determined by the 5 analyses shown in Figure 4.17. The strains of the first
6 plies, are reported in Table 4.9. The first six plies are only shown, as these are the most
critical based on the strain values. When comparing the strain values for each of the five cases,
they all show that the second ply is the most critical. This ply shows the highest strains in
the 2nd material direction, which is the matrix dominated direction. The shear strain of the
first plies is high aswell, but not be considered critical in comparison to the second ply. The
strain of the second ply in the 2nd material direction is in tension, to which the matrix is
weakest. The reason for this ply becoming critical. is that it is a zero ply. Which means the
second material direction is in line with the circumferential direction of the cylindrical shell
and therefore show the highest amount of tension. The strain values are high, but not to
the point of material failure. This is an important conclusion, as the cylindrical shell should
not show material failure before buckling to be able to be representative of the full scale
cylindrical shell.
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From the five cases that are compared, the most critical strains are seen for the cylindrical
shell without imperfection. This can be explained by the fact that this cylindrical shell was
under a higher load which lead to higher strains for this case. When comparing the strains
of the two cylindrical shells with a 2.85% amplitude imperfection, the mandrel imperfections
shows higher strain values in general, but the cases are comparable. When the strains of
the two cylindrical shells with a 20% imperfection are compared, larger differences are seen.
The strain differences between each ply of the 20% diamond imperfection are vastly different
compared to the mandrel imperfection, as the diamond imperfection shows very similar strains
for each ply. This is most likely caused by the diamond shape showing a slightly twisted
shape, as seen in Figure 4.5. The different behaviour of the diamond imperfection with 20%
amplitude also shows that an imperfection can show very different behaviour for different
amplitudes. While the mandrel imperfection did show relatively similar behaviour for the
two imperfection amplitudes.

The strain values of the second ply are shown as contour plots in Figure 4.18. From
these plots it can be seen how much effect the applied imperfection has on the shape just
before buckling. The only two cases showing slightly similar behaviour are the cylindrical
shell without imperfection and the cylindrical shell with the 2.85% mandrel imperfection.
This could already be seen from the load-displacement graph that the mandrel imperfection
was the type of imperfection the cylindrical shell was least sensitive to. The differences
between the 2 amplitudes for each imperfection are notable. The difference for the diamond
imperfection per amplitude looks straight forward, what is seen for the 2.85% amplitude is
more extreme for the 20% amplitude. The difference between the two mandrel imperfections
shows more differences in comparison. The imperfection signature as shown in Figure 4.14
shows a clearly defined band across the mandrel. This imperfection band is slightly visible
in the strain results for the 2.85% amplitude, but for the 20% it causes a deeper inwards half
wave Due to the exaggeration of the imperfection, this band causes two slightly sharp edges
combined with a lower radius of that region of the cylindrical shell.
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Table 4.9: Maximum strains (µε) of the inner first six plies of the 1120mm length scaled solid
laminate cylindrical shell.

Without imperfection ε11 ε22 ε12

Ply 1 -2266 3434 5895
Ply 2 -3417 4684 9
Ply 3 -2101 3464 -5755
Ply 4 -2019 3478 -5686
Ply 5 -3126 4683 7
Ply 6 -1855 3507 5574

Mandrel imperfection 2.85% ε11 ε22 ε12

Ply 1 -1892 2835 4749
Ply 2 -2778 3783 -665
Ply 3 -1784 2839 -4652
Ply 4 -1730 2840 -4609
Ply 5 -2589 3765 -558
Ply 6 -1621 2835 4531

Mandrel imperfection 20% ε11 ε22 ε12

Ply 1 -1661 2267 3694
Ply 2 -2276 2921 -653
Ply 3 -1555 2213 -3754
Ply 4 -1505 2209 -3705
Ply 5 -2090 2904 -553
Ply 6 -1420 2244 3513

Diamond imperfection 2.85% ε11 ε22 ε12

Ply 1 -1858 2586 4550
Ply 2 -2561 3356 -776
Ply 3 -1786 2551 -4397
Ply 4 -1729 2543 -4336
Ply 5 -2382 3307 -644
Ply 6 -1607 2512 4242

Diamond imperfection 20% ε11 ε22 ε12

Ply 1 -2131 2957 -2297
Ply 2 -2060 2861 -2158
Ply 3 -1988 2772 -2019
Ply 4 -1917 2689 -1880
Ply 5 -1847 2613 -1751
Ply 6 -1776 2541 -1630
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Figure 4.18: Strain contour plots of the 1120 mm scaled solid laminate cylindrical shell with a
deformation scale of 50. Each row is one type of imperfection: a = without imperfection ; b =
diamond imperfection 2.85%; c = diamond imperfection 20%; d = mandrel imperfection 2.85%
; e = mandrel imperfection 20%. The number notation: 1,2 and 3 are ε11,ε22,ε12 respectively.
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4.3.5 Sensitivity to Laminate Thickness and Radius
Due to a possible increase of the radius of the cylindrical shell as a result of the mandrel being
slightly larger than expected, a investigation was executed in the effect of thickness and radial
variations. The main focus is to see how much the buckling load is affected by the increase
of the radius and thickness. As the buckling load should not exceed the maximum load of
the experimental test setup which is intended to be used. The choice was made to use a 10%
larger radius, 10% thicker laminate and 20% thicker laminate for the investigation, combined
with a cylindrical shell without imperfection and an axisymmetric imperfection with 20%
amplitude w.r.t. to the thickness. The axisymmetric imperfection is chosen instead of a
diamond imperfection, due to the increase of computational time of the eigenvalue analysis
when a diamond modeshape needs to be captured. For each of the 3 cases an eigenvalue
analysis has to be executed. For an axisymmetric imperfection only 4 eigenvalues are needed,
where the diamond modeshape has been shown to need in the region of 100 eigenvalues for
it to be captured. This would increase the total computational time, without having a huge
impact. The thickness and radius variations result in a total of 6 analyses to be executed. The
resulting buckling loads of these analyses are shown in Table 4.10, and the load-displacement
graphs are shown in Figure 4.19 and Figure 4.20.

From these results it can be concluded that the larger diameter should not be an issue
for the experimental test to reach the necessary load, it is most likely more of a concern if the
larger diameter cylindrical shell would fit the testing equipment or not. There is an increase in
stiffness but that should not be an issue for the testing equipment. The thicker laminate does
however greatly influence the necessary load, as a 10% increase in thickness already results in
an increase of the buckling load of 19%, with the 20% increase in thickness causing an increase
of 42% for the buckling load. It should be said however, that these are large steps in thickness,
and the variation in thickness should not even reach the 10% increase. The range of 10% and
20% increase in thickness, was also chosen to be able to show a clear change in buckling load.
There is a clear trend in the increase in buckling load, where the points of buckling are almost
in line for the cylindrical shell without imperfection. The testing equipment to be used has
a maximum load capability of 600 kips, which would convert to 2669 kN. Judging from the
load-displacement graph for the thickness variations, this would be the buckling load for a
cylindrical shell which has in increase of 7-8% in laminate thickness. The thickness is not
expected to vary by that high of an percentage, so the experimental testing should not have
an issue due to the variations tested in this section.

Table 4.10: Buckling loads for thickness and radial variations.

Original 10% thicker 20% thicker 10% larger diameter
Without imperfection 2284.4 2718.2 3232.4 2238
With imperfection 1176.8 1381.5 1681.2 1192.3
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Figure 4.19: Load-displacement graph for the variation in laminate thickness.

Figure 4.20: Load-displacement graph for the variation in diameter.
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4.3.6 Solid Laminate Test Article
The last step for the non-linear analyses of the solid laminate cylindrical shell is to use a
version of the cylindrical shell which will represent the actual test article. This cylindrical
shell will include the pad-up regions and the potting applied to the edge of the cylindrical
shell. The pad-ups and potting are added to the test article, to aid in the load introduction
during experimental testing. To prevent material failure at the edges where the load is
introduced. Due to the cylindrical shell being increased in length to include the pad-up
regions, a new imperfection signature has to be determined. This was done by the same
steps as used previously, but now for a cylindrical shell length of 1220 mm. This results in
an imperfection signature as shown in Figure 4.21 for the original amplitude imperfection
and shown in Figure 4.22 for the 20% amplitude imperfection. The implementation of the
imperfections itself is done in a similar manner as described in subsection 4.3.4. However,
the mesh does not have constant thickness for the whole cylindrical shell, due to the pad-ups.
This required the mesh, generated with the imperfection included, to be slightly thickened
in the edge regions. This thickening is done in 3 steps, as this would be in agreement with
the dropping of pad-up plies. The last step is to add the potting material, which is added
both on the in- and outside of the cylindrical shell, with a thickness of 25 mm and height of
50 mm, for which the material properties shown in Table 4.11 are used. This is a chopped
fibre epoxy composite material. The mesh of the potting consists of C3D8R classical solid
elements, with a mesh size of 5 mm so that it coincides with the mesh of the composite
laminate. An illustration of the whole mesh construction of the edge region is shown in
Figure 4.23 on the left, where the different colours show the regions containing different
material properties. On the right in Figure 4.23 the complete test article is shown. For the
regions containing different lay-ups, the layup details are shown in Table 4.12. The outer
three regions thus contain padup plies which are shown in red in the layup table, where one
padup ply is dropped on each region transition. A test article model was build for three
different cases, the 2.85% amplitude imperfection, the 20% amplitude imperfection and one
without imperfection. These three cases are then used in a dynamic implicit analyses, and
were compared with the 1120 mm length cylindrical shell without imperfection. The results of
the analyses are shown in the load-displacement graph in Figure 4.24, with the corresponding
buckling loads shown in Table 4.13.

Table 4.11: Potting Material Properties.

E ν ρ
[MPa] [-] [kg/m3]
4500 0.3 1200

Table 4.12: Lay-up regions of the solid laminate test article, with the pad-up plies shown in red.

Blue [(23/0/− 23)s2/23/0/− 23/45/− 23/0/23/−45/23/0/− 23/90/− 23/0/23]
Red [(23/0/− 23)s2/23/0/− 23/− 23/0/23/−45/23/0/− 23/90/− 23/0/23]

Cream [(23/0/− 23)s2/23/0/− 23/− 23/0/23/23/0/− 23/90/− 23/0/23]
Green [(23/0/− 23)s2/23/0/− 23/− 23/0/23/23/0/− 23/− 23/0/23]
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Figure 4.21: 2D representation of the radial coordinates of the 2.85% mandrel imperfection and
1220 mm solid laminate test article.

Figure 4.22: 2D representation of the radial coordinates of the 20% mandrel imperfection and
1220 mm solid laminate test article.
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Figure 4.23: (left) Mesh and section construction of the edge, including potting and pad-ups,
(right) test article FE model of the solid laminate cylindrical shell.

The resulting behaviour of the test article models are very similar to the models contain-
ing the mandrel imperfection but without the edge zones, when only the load-displacement
curves are examined. The main difference compared to the previous models is that the cylin-
drical shell has become less stiff, due to the increased length. The mandrel cylindrical shell
without imperfection shows almost the exact same buckling load as the cylindrical shell with-
out imperfection and edge zones. Another difference is that the mandrel cylindrical shell
without imperfection shows a small loading plateau, which is a numerical problem that also
occurred in a portion of previous analyses. The imperfection with an amplitude of 2.85%
shows a drop in buckling load of 5%, and the amplitude of 20% shows a drop in buckling load
of 27%. The imperfection sensitivity is similar, if not exactly the same as for the previous
cylindrical shell containing the mandrel imperfection. This was to be expected but it had to
be confirmed, and it does show that the influence of the pad-ups and potting is minimal on
the load-displacement behaviour and the imperfection sensitivity.

Table 4.13: Buckling loads of the solid laminate test article.

Analysis Buckling load [kN]
FE dynamic without imperfection 2288.8

FE dynamic with mandrel imperfection amp. 2.85% 2172.0
FE dynamic with mandrel imperfection amp. 20% 1669.7
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Figure 4.24: Load-displacement graph for the three solid laminate test article models.

The next step is to check the strains of the three cases for the last step before buckling,
the strain values for the first six plies are reported in Table 4.14. When comparing the strains
of the first six plies between the test article and 1120 mm model, it can be seen that the
cylindrical shell without imperfection shows lower strains for the test article model, while
the strains for the cylindrical shell with imperfections are higher for the test article model.
The strain values are thus still high in general, but not an indication of material failure
before buckling. For the three cases, the second ply is still deemed to the most critical. The
explanation for it being critical is due to it being a zero ply, which is under tension in the
second material direction. A more elaborated explanation was given in the precious section,
which is also valid for this test article. Due to the second ply being critical, the contour plots
will again be shown for the strain in the second ply, see Figure 4.25.
From the contour plot of the cylindrical shell without imperfection, it can be seen that the
pre-buckling shape of the has changed to an axisymmetric shape, which was not seen for the
cylindrical shell without the edge zones. This does confirm that the load plateau can be caused
due to a axisymmetric pre-buckling shape. The pre-buckling shape of the cylindrical shells
including imperfection might look more different than they are, as these test article include
the extra edge sections. There are some changes to the middle section of the cylindrical shells
with imperfection but these are minimal.

When comparing the two cylindrical shells which include imperfections, the most notice-
able difference is the location of the maximum strain. As the lower amplitude imperfection
shows the maximum strains at the bottom, while the higher amplitude imperfection shows
the maximum strains at the top. At the top of the cylindrical shell which include the im-
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perfection, an imperfection band is located as mentioned before. This would mean that the
maximum strain of the cylindrical shell with 2.85% mandrel imperfection is not located at
the imperfection band, while this is the case for the 20% imperfection amplitude. It seems
the imperfection band prevents the extra circumferential half waves from forming at the top
of the cylindrical shell, which did form at the bottom of the cylindrical shell. As it can be
clearly seen from the contour plot showing the strain in the first material direction, that there
are dimples formed at the bottom. Due to this phenomena being unexpected, these results
were checked in detail. When the strain contour plot is looked at in detail, by zooming in
considerably, the imperfection band can be visually located at the top of the cylindrical shell.
This does thus confirm that these results are correct.

For the test article models, the failure criteria output available in Abaqus was used,
which consists of the following failure criteria: Max Stress, Max Strain, Tsai-Wu, Tsai-Hill
and Hashin damage. Due to the abrupt drop in load carrying ability of a cylindrical shell
after buckling, these failure criteria all showed failure at similar locations of the load drop
for each cylindrical shell, which can be seen in the load-displacement graph in Figure 4.26.
It is of great importance that this cylindrical shell does not show any failure before buckling,
which is confirmed by the failure criteria used. All of the failure criteria showing failure at
the same increment can be considered unusual, but this can be explained by the high increase
of stresses and strains after buckling. A more exact moment of failure during the load drop
or after could be determined if needed, but would require a much smaller increment size or
more output requests during buckling.

The contour plots for the radial displacement and Tsai-Wu criteria at the increment
of failure are shown in Figure 4.27. It can be seen that the failure location is not always
at the location of the highest radial displacement, but instead more often on the location
with the highest amount of bending. It is important to note that failure does not happen
at the edge, where the load is introduced, but in the middle section. The buckling shape
of the cylindrical shell without imperfection shows less half waves compared to the 2.85%
amplitude imperfection shape, while the 20% imperfection shape shows more similarity with
the cylindrical shell without imperfection. This could be explained by the load at which
failure occurs, where the cylindrical shell with 2.85% imperfection shows failure at a higher
load compared to the other two cases, but this is most likely dependant on the location of the
first increment or output request after buckling. In the load-displacement graph it can be seen
that the graphs converge in the post-buckling field, which also indicate that the cylindrical
shells will converge to similar modeshapes in the post-buckling field as well. This convergence
in the post-buckling field was not always seen for other imperfection types.
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Table 4.14: Strains of the inner first six plies of the solid laminate test article.

Without imperfection ε11 ε22 ε12

Ply 1 -2041 3293 5529
Ply 2 -3141 4467 -125
Ply 3 -1918 3319 -5416
Ply 4 -1855 3330 -5362
Ply 5 -2917 4467 -126
Ply 6 -1725 3350 5260

Mandrel imperfection 2.85% ε11 ε22 ε12

Ply 1 -2009 2864 5064
Ply 2 -2880 3862 -588
Ply 3 -1898 2900 -4879
Ply 4 -1840 2900 -4823
Ply 5 -2680 3841 -489
Ply 6 -1722 2870 4753

Mandrel imperfection 20% ε11 ε22 ε12

Ply 1 -1818 2173 3899
Ply 2 -2306 2893 -782
Ply 3 -1690 2166 -3789
Ply 4 -1631 2155 -3734
Ply 5 -2117 2837 -657
Ply 6 -1519 2133 3859



84 Scaled Solid Laminate Cylindrical Shell

Figure 4.25: Contour plots for the strain of the second ply of the solid laminate test article with
a deformation scale of 50. Each row is one type of imperfection: a = without imperfection ; b =
mandrel imperfection 2.85% ; c = mandrel imperfection 20%. The number notation: 1,2 and 3
are ε11,ε22 and ε12 respectively.
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Figure 4.26: Failure criteria for the solid laminate test article.

Figure 4.27: Post-buckling contour plots of the solid laminate test article model with a defor-
mation scale of 4 for (a) radial displacement and (b) Tsai-Wu criteria. The notation 1,2 and 3
are for the cylindrical shell without imperfection, with 2.85% imperfection and 20% imperfection
respectively.
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4.3.7 Sensitivity to Numerical Damping

Due to the loading plateau that occurred for several of the FE results shown in this chapter,
an investigation was executed to investigate the influence of the damping value for a dynamic
implicit analyses. This loading plateau showed for cylindrical shells without imperfection,
where this phenomena occurs due to it having no imperfections. It is most likely the case
that the loading plateau takes as long as there is not a numerical error large enough to
initiate buckling. The damping value alpha that was varied, is a parameter of the Hilber-
Hughes-Taylor integrator which is the default integrator for a dynamic implicit analysis in
Abaqus [57]. The damping is defined by one value, as the other two variables, named beta
and gamma, are calculated by a set of equations which ensure desirable characteristics of the
default integrator used for the dynamic implicit analysis. The alphas to be used consist of two
pre-sets in Abaqus: Transient Fidelity alpha = -0.05, Moderate Dissipation alpha = -0.41421;
and three custom values: 0, -0.01 and -0.025. For this investigation, the solid laminate test
article without imperfection was used. This results in the load-displacement graph shown in
Figure 4.28.

Figure 4.28: Load-displacement graph for the numerical damping comparison.

The result of the moderate dissipation preset was to be expected, as an increase in
damping is most likely to minimize numerical errors and over-damp the analysis. The value
of -0.025 for alpha does minimize the loading plateau, and is a improvement of previous
results. A lower value of alpha however, a value of -0.01, increases the loading plateau again.
When a value of 0 is used, thus without damping, the analysis does not converge and is
stopped by Abaqus itself due to too many attempts for an increment. It can be expected
from an analysis to not converge when there is no damping used, but actually showing it does
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not converge does add value to the investigation.
From the first three damping values and the lowest damping value, it would seem that

there is convergence behaviour of the loading plateau until the analysis itself does not converge
any more. It is however the result of the analysis for an alpha of -0.01 that shows a slight
inconsistency of the behaviour as a function for the damping value. What the exact reason of
this result is would require more research. From the test it can be concluded that improved
results can be achieved, but it will require some fine tuning for each analysis for which it is
questionable if it is actually worth it or not. The loading plateau only happens for cylindrical
shells without imperfection, judged from the results in this thesis, where the buckling load
itself does not increase due to the plateau. The buckling load is thus still obtained from these
analyses. While the cylindrical shells without imperfection are important as they serve as a
reference case to cylindrical shells with imperfections, spending more time on the fine tuning
for models which include imperfections might add more to the value of the research.

4.4 Discussion and Outcome

The scaled solid laminate cylindrical shell has been analysed in detail, which has lead to a
set of results which were used for a comparison w.r.t. the full scale cylindrical shell later on.
From the element comparison it can be concluded that all elements showed good results, it is
however the consistency and the computational efficiency which leads to the SC8R element
being in favour of modelling the next scaled cylindrical shell. The imperfections that were
compared, showed that the axisymmetric imperfection causes behaviour of the cylindrical
shell which does not come close to a cylindrical shell including mandrel imperfections. The
diamond modeshape imperfection would be a better option in most cases, as it does not show
the drop in stiffness as was seen for the axisymmetric imperfection. The loading imperfection
that was investigated showed its main effect on the buckling load, while the stiffness remained
unchanged. Even the maximum amplitude used for the loading imperfection showed that it
did not affect the stiffness of the cylindrical shell, which was surprising in comparison with the
other imperfection types. The mandrel imperfections are ideal to use in an analyses, and would
most likely lead to results closest to experimental test results. These mandrel imperfections are
however not always available, making the diamond modeshape a valid option. Using several
imperfection amplitudes does result in a more elaborate comparison of the imperfection types,
as this provides a more clear behaviour pattern of each imperfection type as function of the
imperfection amplitude. One of the examples where it did show an unexpected result, is the
20% amplitude diamond shape. This case saw a considerable change in the strain pattern
which was not seen before.

From the analyses that were executed, the solid laminate cylindrical shell seems a valid
option to be tested. It does not show material failure before buckling, but it does show
a high imperfection sensitivity in some cases. The KDF resulting from using the mandrel
imperfection can be considered high, but it should be said that the imperfection consists of
the mandrel imperfection only and the real manufactured cylindrical shell might thus show
more imperfections. The manufactured cylindrical shell will contain more imperfections due
to the manufacturing, which can increase the imperfection amplitude next to changing the
imperfection signature. A sensitivity analysis w.r.t. laminate thickness and cylindrical shell
radius was executed, from which was seen that an increase in radius would not cause problem
with experimental testing. It is however shown that an increase in laminate thickness can
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become problematic, when the laminate thickness becomes 7-8% thicker than it was designed
to be. The likely hood of such a increase in thickness is low, and it should thus not become
a problem for experimental testing. How representative the scaled solid laminate cylindrical
shell is of the full scale cylindrical shell can only be determined during a comparison with the
full scale cylindrical shell.

4.5 Summary

The scaled solid laminate cylindrical shell was used for both linear and non-linear analyses.
The first set of linear analyses was executed for the S4R, SC8R and CSS8 element showing
good agreement. Modeshapes for all three elements were shown, which showed small differ-
ences between the elements. The next step was to use non-linear analysis, for which dynamic
implicit analysis is used. The first set of analyses compared the displacement rate, to find
an optimum between computational efficiency and the accuracy of the buckling behaviour.
Then two types of imperfections were compared: modeshape imperfections using both a ax-
isymmetric and a diamond imperfection and a loading imperfection. For these analyses the
S4R element was used. The results showed that the cylindrical shell is imperfection sensi-
tive, where the sensitivity to the axisymmetric imperfection is higher than to the diamond
imperfection. This is most likely caused by the drop in stiffness when the axisymmetric im-
perfection is applied, as the drop of stiffness is considerably higher compared to when the
diamond imperfection is applied. The loading imperfection also shows considerable drops in
buckling loads, but it is difficult to quantify the amplitude of the loading imperfection for
a comparison with the modeshape comparison. The loading imperfection does hardly cause
any drop in stiffness and only lowers the buckling load.

In the following step the three elements are again compared, now for a non-linear analyses
using both cylindrical shells with and without imperfection. The SC8R and CSS8 elements
show agreement for the buckling loads for the cylindrical shells with imperfection, where the
S4R element showed small differences. For the cylindrical shell without imperfection, all three
elements showed good agreement but the CSS8 element showed a short loading plateau. Due
to these results it was chosen to continue with the SC8R element for further analyses of the
solid laminate cylindrical shell.

In the following step, mandrel imperfections were included into the FE model. These
mandrel imperfections are based on measurements executed at NASA on the mandrel which
will be used for production of this cylindrical shell. The processing steps for the measurement
data were elaborated on and the imperfection signatures were shown. The analyses which
included the mandrel imperfection showed that the cylindrical shell is much less sensitive to
the mandrel imperfection in comparison to modeshape comparisons. Maximum strain values
were shown, to be able to determine that no material failure would occur before buckling.

The effect of laminate thickness and cylindrical shell radius were investigated. To ensure
that the testing equipment would be capable of the experimental test, if the cylindrical shell
would have a larger radius of thicker laminate then was intended. The results showed that the
radius would not be a problem, but if the laminate thickness of the cylindrical shell increases
more than 8% it could become a problem. This high increase of thickness is however unlikely
to happen.

The last step of the chapter is to analyse a test article model of the solid laminate
cylindrical shell. This cylindrical shell includes the pad-ups and potting material at the edge.
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This cylindrical shell is slightly less stiff compared to the previous cylindrical shell using the
mandrel imperfection, due to the increase in length. Maximum strain values are shown, both
in table format and contour plot. Failure criteria are used to determine when failure happens,
which is right after buckling as was intended. The cylindrical shell without imperfection shows
a slight loading plateau, and therefore an investigation was executed to determine the effect
of numerical damping on the analyses. A decrease of the loading plateau can be achieved,
but this will require a fine tuning process to find the optimum damping value. When the
damping value is too low, the analysis can stop to converge, which was shown for the extreme
case of no damping.

The outcome of the chapter is that the best combination to model a cylindrical shell
with imperfections, is to use the SC8R element combined with mandrel imperfections. When
mandrel imperfections are not available, a diamond modeshape is a valid option. The scaled
solid laminate cylindrical shell seems a valid option to be experimentally tested, but a final
comparison with the full scale cylindrical shell will provide more clarity.
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Chapter 5

Scaled Sandwich Cylindrical Shell

This chapter will go in depth on the modelling of a cylindrical shell constructed from a
sandwich panel. This cylindrical shell is the second scaled configuration to be tested, which
was designed according to the scaling procedure as published in 2018 by Uriol Balbin et al.
[4]. The amount of analyses in this chapter are limited in comparison the chapter on the solid
laminate cylindrical shell. As the knowledge on FE properties such as: mesh size, element
type and displacement rate from the previous chapter is applicable for this cylindrical shell
as well. The chapter will still incorporate an element comparison, but for a lower amount
of models compared to the previous chapter. Due to the cylindrical shell being a sandwich
panel, it is of interest for further research to use separate elements through the thickness for
the facesheet and core respectively. In the preliminary phase of the thesis, a tensile specimen
was used to test different elements configurations for the construction of a sandwich panel,
which will also be shown. The benefit of multiple elements through the thickness can be in
the form of improved bending behaviour, and also the ability to analyse facesheet separation
when these models will continue to be used after the thesis.

5.1 Tensile Specimen

The tensile specimen is used for preliminary analysis of different element configurations to
model a sandwich panel. Due to the sandwich consisting of different materials, it can be of
interest to model the materials with different elements, or each layer of a different material
as a separate element. Two configurations of the tensile specimen were analysed, for which
the structural properties are reported in Figure 5.1. The difference between these two con-
figurations, is the thickness of the core, which is 1 mm and 3 mm. The tensile specimen will
make use of the IM7/8552 material, for which the properties can be seen in Table 3.9. This
IM7/8552 material is from a different batch as the IM7/8552 material to be used for the sand-
wich cylindrical shell later on. The core material is a foam material, for which the material
properties are reported in Figure 5.1. This core material is the same foam material that was
used for the sandwich cylindrical shell. Two different mesh sizes were used for the modelling
of the tensile specimen. For the core thickness of 1 mm, a mesh size of 1 mm and 5 mm were
used, while the core thickness of 3 mm will only use a mesh size of 1 mm. Three types of
element configurations were used. A single element through the thickness, for which the S4R,



92 Scaled Sandwich Cylindrical Shell

SC8R and CSS8 element were used, and three elements through the thickness for which a
S4R and C3D8R combination, seen in Figure 5.2, and a SC8R and CSS8 combination, seen
in Figure 5.3, were used. The FE model consists of the tensile specimen, which is clamped on
one end and clamped except for a longitudinal translation on the other end. An illustration
of the FE model is seen in Figure 5.1. The type of analyses is a linear static, for which a
displacement of 3.2 mm is used. The comparison will consist of a resulting force comparison,
from which the stiffness differences can be observed, and a CPU time comparison. The re-
sults of the linear static analyses of the first configuration, using a 1 mm core, can be seen in
Table 5.3 and Table 5.4 for a mesh size of 5 mm and 1 mm respectively.

Table 5.1: Tensile specimen configurations.

Configuration 1 2
Facesheet Layup [0, 90]s [0, 90]s

Core Thickness [mm] 1 3
Width [mm] 60 60
Length [mm] 200 200

Table 5.2: Rohacell 300 WF material properties.

E [MPa] ν ρ [kg/m3]
578 0.3 300

Figure 5.1: Tensile specimen FE model.

Figure 5.2: S4R facesheets with C3D8R core element configuration.
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Figure 5.3: SC8R facesheets with CSS8 core element configuration.

Table 5.3: Tensile specimen results for a 5 mm mesh size and core thickness of 1 mm.

Elements Force [kN] Disp. [mm] CPU time [s]
S4R 84.12 3.2 0.3
SC8R 84.16 3.2 0.4
CSS8 84.17 3.2 1.8

S4R+C3D8R+S4R 84.44 3.2 0.6
SC8R+CSS8+SC8R 84.39 3.2 0.9

Table 5.4: Tensile specimen results for a 1 mm mesh size and core thickness of 1 mm.

Elements Force [kN] Disp. [mm] CPU time [s]
S4R 84.12 3.2 6.1
SC8R 84.13 3.2 6.8
CSS8 84.15 3.2 43.4

S4R+C3D8R+S4R 84.12 3.2 17.1
SC8R+CSS8+SC8R 84.18 3.2 25.3

Table 5.5: Tensile specimen results for a 1 mm mesh size and core thickness of 3 mm.

Elements Force [kN] Disp. [mm] CPU time [s]
S4R 85.32 3.2 6.1
SC8R 85.33 3.2 7
CSS8 85.35 3.2 43.5

S4R+C3D8R+S4R 85.32 3.2 17.3
SC8R+CSS8+SC8R 85.38 3.2 25.2
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For the coarse mesh, the resulting forces are close and all elements show results which can
be considered accurate enough. When the mesh is refined, it can be seen that the resulting
forces from the elements, besides the S4R element, converge towards the force obtained from
using the S4R element. This kind of behaviour was also seen from previous element compar-
isons. The S4R is less sensitive to mesh size, and the remaining elements converge to similar
results for finer meshes. When the CPU times are compared, the CSS8 showed the highest
CPU time, which was to be expected from knowledge gain in previous element comparisons.
The unexpected result from the CPU time comparison is that the combination of SC8R and
CSS8 elements costs less CPU time compared to the CSS8 element alone. This can be ex-
plained however, as their is a considerable amount of integration points difference between
the CSS8 element configurations for each analysis. When the CSS8 element is only used for
the core, it has much less integration points than when it is used for both the facesheets and
the core. The impact on the CPU time due to the added SC8R elements for the facesheets
is minimal, as it is already computational efficient in comparison. The results of the second
configuration, using a 3 mm core and a mesh size of 1 mm, can be seen in Table 5.5. These
results are almost an exact copy of the previous analyses, there is just a small difference in
load due to the added core thickness. This is to be expected due to the core being much
less stiff compared to the facesheets and not having a large influence in tensile loading, while
larger differences were seen under bending or compressional loads. From these results it can
thus be said that all element configurations are viable options for the element comparison
using a sandwich cylindrical shell.

5.2 Modelling of the Sandwich Cylindrical Shell

The sandwich cylindrical shell uses the same diameter of 800 mm as used previously for the
cylindrical shell. The sandwich cylindrical shell is however considerably shorter in comparison
to the other scaled configuration, with a length of 730 mm. All the structural properties of
the sandwich cylindrical shell are reported in Table 5.6. The analytical buckling load is
calculated by using two different methods. The reference case is the SP-8007 solution. The
second solution is the method as published by Reese and Bert [58]. This solution is used as
the SP-8007 method is not specifically developed for a sandwich composite, while the method
by Reese and Bert is. The analytical buckling loads are reported in Table 5.7. The sandwich
cylindrical shell uses the same composite material for the facesheets as the solid laminate
cylindrical shell used, from which the material properties are shown in Table 4.2. The core
will consist of a foam material, for which the properties are shown in Table 5.2. While the
CTA 8.1 cylindrical shell uses a aluminium honeycomb core, the scaled cylindrical shell does
not use the same core material. This is due to the core of the scaled configuration being
considerably thinner compared to the full scale cylindrical shell, which causes issues with
manufacturability of a honeycomb core. The manufacturability of a sandwich using a foam
core can also become problematic when the core becomes too thin, but it is a much more
viable option for thin cores in comparison to a honeycomb core.

The FE model is again constructed similar to previous cylindrical shells, with a reference
points on each side, with the model shown in Figure 5.4. The first analysis that was executed
with the sandwich cylindrical shell was a linear static general using the SC8R element for the
cylindrical shell without imperfection. This provides a comparison to see potential stiffness
drops. Three types of cylindrical shells were modelled for the dynamic implicit analyses: a
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cylindrical shell without imperfection, one cylindrical shell with the mandrel imperfection and
one cylindrical shell with the exaggerated mandrel imperfection. The method of incorporating
the mandrel imperfection is the same as for the solid laminate cylindrical shell. The main
difference lies in the shorter cylindrical shell, as the sandwich cylindrical shell is 730 mm long.
This requires a new imperfection mesh to be processed, which results in the imperfection
signature shown in Figure 5.5. The actual amplitude of the mandrel imperfection is 4.1%
w.r.t. to the thickness of the sandwich panel. The imperfection signature for the exaggerated
imperfection can be seen in Figure 5.6, which is again scaled to 20% w.r.t to the thickness. Due
to the different thicknesses of the two scaled cylindrical shells, the 20% amplitude mandrel
imperfection has a different magnitude for the two scaled cylindrical shells. The analyses
using the single SC8R through the thickness will include the failure criteria as available in
Abaqus: Max-Stress, Max-Strain, Tsai-Hill, Tsai-Wu and Hashin damage. Only failure of the
composite plies are checked, there is no failure included for the core material. The results of
the analyses using the SC8R element are shown in Figure 5.7.

Table 5.6: Scaled sandwich cylindrical shell configuration.

Facesheet Layup [56, 0,−56]
Core Thickness [mm] 1.9

Diameter [mm] 800
Length [mm] 730

Table 5.7: Analytical buckling loads and corresponding knockdown factor according to NASA
SP-8007 [2] and Reese and Bert [58].

Buckling Load [kN]
SP-8007 Without Imperfection 874.14
SP-8007 With Imperfection 517.7

Reese and Bert Without Imperfection 794.4
Knockdown Factor 0.6

Table 5.8: Buckling loads of the scaled sandwich cylindrical shell.

Analysis Buckling load [kN]
FE dynamic without imperfection 767.1

FE dynamic with mandrel imperfection amp. 4.1% 727.8
FE dynamic with mandrel imperfection amp. 20% 582.6
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Figure 5.4: FE model of the scaled sandwich cylindrical shell.

Figure 5.5: 2D representation of the radial coordinates of the 4.1% mandrel imperfection for the
scaled sandwich cylindrical shell.
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Figure 5.6: 2D representation of the radial coordinates of the 20% mandrel imperfection for the
scaled sandwich cylindrical shell.

Figure 5.7: Load-displacement graphs of the scaled sandwich cylindrical shell using the SC8R
element.
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When taking a first look at the presented load-displacement graph, the most noticeable
difference is that the buckling load resulting from the cylindrical shell without imperfection
is 13 % lower compared to the SP-8007 analytical buckling load. The solution by Reese and
Bert shows a smaller difference of 3.5%. This could be expected, as the solution by Reese and
Bert is specifically for a sandwich panel, while the solution from SP-8007 is intended for a
solid laminate. Comparing the results of the different imperfection amplitudes in Figure 5.7,
it can again be seen that the cylindrical shells do not seem to have a high imperfection
sensitivity to the mandrel imperfection. The 4.1% mandrel imperfection shows a 5% drop
in buckling load in comparison to the cylindrical shell without imperfection, while the 20%
mandrel imperfection shows a 24% drop in buckling load. The 20% mandrel imperfection is
an exaggeration, and still shows a higher knockdown factor compared to the analytical results
from SP-8007. As SP-8007 results in a KDF of 0.6, while the mandrel imperfection shows
a KDF of 0.95 and 0.76 for the 4.1% and 20% mandrel imperfection respectively. The drop
in stiffness due to the imperfection is also minimal, with only the exaggerated imperfection
showing a slight drop in stiffness just before buckling, while the 4.1% imperfection showing
practically no drop in stiffness.

The failure criteria that were included showed failure after buckling. This is coherent with
the design of launch vehicle cylindrical shells, which are designed to not fail before buckling.
Furthermore, it also means the experimental test will show buckling as intended, and not
premature material failure. The failure criteria all showed failure at the same increment for
each analysis, which is similar to the failure behaviour seen for the solid laminate cylindrical
shell. The failure criteria all show failure at the same increment, due to the major portion of
the drop in load occurring between two output requests. This problem could be prevented by
decreasing the increment size and requesting more frequent outputs, but this would increase
the computational time and output database size considerably. To compare the locations of
failure with the locations of maximum radial displacement,the contour plots for the radial
displacement and Tsai-Wu failure criteria are shown in Figure 5.8.

Figure 5.8: Post-buckling contour plots of the scaled sandwich cylindrical shell, with a scaling
factor of 3, of the (a) radial displacement and (b) Tsai-Wu criteria, with the 1, 2 and 3 notation
showing the cylindrical shell without imperfection, with 4.1% mandrel imperfection and 20%
mandrel imperfection respectively.
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The location of the failure with respect to the location of maximum radial displacement
is similar to the location seen for the scaled solid laminate cylindrical shell. The locations
showing high criteria values are at the location of highest bending and also located in the
middle section of the cylindrical shell. The modeshapes of all three cylindrical shells show
great agreement, which is most likely due to the buckling modeshape being fully or close to
fully developed. As it can be seen that the failure increment is located after the steep drop
in load. The last step for this cylindrical shell is to check the strains at the last increment
before buckling, to ensure the cylindrical shell is not close to material failure before buckling.
The strain values of the three plies of the inner facesheet are shown in Table 5.9.

Table 5.9: Maximum strains (µε) of the inner facesheet of the scaled sandwich cylindrical shell.

Without imperfection ε11 ε22 ε12

Ply 1 -709 -4131 10970
Ply 2 -7566 4038 -36
Ply 3 -842 -3754 -10530

Mandrel imperfection 4.1% ε11 ε22 ε12

Ply 1 -765 -3513 8822
Ply 2 -6290 3115 226
Ply 3 -859 -3289 -8574

Mandrel imperfection 20% ε11 ε22 ε12

Ply 1 -933 -3675 7977
Ply 2 -5415 2833 1243
Ply 3 -974 -3263 -7625

When looking at the strain values of the three cylindrical shells, it can be seen that the
shear strain of the first ply causes it to be critical for all the three cylindrical shells. The
largest difference in strain between the three cases, is between the cylindrical shell without
imperfection and the cylindrical shell with the 4.1% mandrel imperfection. The shear strain
seen in the first ply, especially for the cylindrical shell without imperfection, is very close to the
critical value and is thus a concern. It should be said however, that the cylindrical shell with
the 4.1% mandrel imperfection does already show a considerable drop in the strain values,
which is a more realistic case in comparison the to the cylindrical shell without imperfection.

To determine the location of the strain values, the strain values of the first ply are shown
in a contour plot for the three cylindrical shells in Figure 5.9. The maximum strain values
for the cylindrical shell without imperfection and the cylindrical shell with the 4.1% mandrel
imperfection are located at the first half wave. A solution to lower the strain values at
this location would be to add ply drops and potting, as was done with the solid laminate
cylindrical shell. The effect of the ply drops will higher for the sandwich cylindrical shell, as
it has only 3 plies per facesheet, 6 in total, in comparison the solid laminate cylindrical shell
having 24 plies. It should thus be investigated if the extra plies are a problem for the scaling
procedure and if the behaviour is still representative for the full scale structure. The location
of the maximum strain values of the cylindrical shell with the 20% mandrel imperfection is
in the region of the imperfection band, which was also seen in Figure 5.6. It can also be
seen that this cylindrical shell does not show a similar half wave at the edges, which caused
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the high strain values for the other two cylindrical shell. The imperfection band can also be
seen in the contour plots of the cylindrical shell with 4.1% mandrel imperfection, both by
the shape and the colours. It does however not cause the highest strain values for this case.
The reasoning for this imperfection band causing high strain values for the cylindrical shell
with 20% imperfection, is that the exaggeration of the imperfection causes the edges of the
imperfection to become relatively sharp next to the region having a lower radius for the whole
imperfection band.

Figure 5.9: Contour plots of the scaled sandwich cylindrical shell, with a scaling factor of 30,
for the strain of the first ply. Each row is one type of imperfection: a = without imperfection ; b
= mandrel imperfection 4.1% ; c = mandrel imperfection 20%. The number notation: 1,2 and 3
are ε11,ε22 and ε12 respectively.

5.3 Element Comparison
For the element comparison, four different element configuration were used. A single SC8R
and S4R through the thickness, 3 SC8R elements through the thickness and a SC8R element
as facesheet combined with a CSS8 element for the core. The combination of the S4R and
C3D8R element, which was shown in the tensile specimen section, is not used for this com-
parison as the C3D8R element showed inaccurate results when used for a cylindrical shell in
subsection 3.1.3 and was therefore discarded to be used for a shell. The configuration with
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three SC8R elements through the thickness was not yet tested, but is seen as an interesting
option due to the great results seen from the SC8R and CSS8 combination and the SC8R
element itself. The element comparison will only be executed using the 4.1% amplitude man-
drel imperfection. Comparing the elements for the cylindrical shell without imperfection and
the two imperfection amplitudes would require considerable more computational time, while
the 4.1% amplitude mandrel imperfection is seen as most realistic case and therefore most
important to test. The results of the dynamic implicit analyses using the different element
configurations can be seen in Figure 5.10 with the corresponding buckling loads reported in
Table 5.10.

Figure 5.10: Element comparison using the scaled sandwich cylindrical shell with mandrel im-
perfection.

Table 5.10: Element comparison for the scaled sandwich cylindrical shell with mandrel imper-
fection.

Element Buckling load [kN]
SC8R 727.8
S4R 728.9

SC8R 3 T-t-T 703.0
SC8R - CSS8 - SC8R 725.7

Three of the four element configurations show buckling loads within 0.5%. The only
configuration showing a small difference is the three SC8R elements through the thickness,
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with a 3.5% lower buckling load in comparison to the single SC8R element through the
thickness. This can be considered unexpected, as the single SC8R element through the
thickness does match with the other element configuration. This might be caused by the
fact that the core is modelled as a separate shell in between the shell facesheets, while the
configuration with the CSS8 element models the core as a solid shell and thus a 3D material
model. The configurations using one element through the thickness might not be affected
by this difference, as the sandwich panel is modelled as one laminate. The result of the
three SC8R elements through the thickness can still be considered accurate as it is a minimal
difference.

5.4 Discussion and Outcome
The scaled sandwich cylindrical shell has been analysed for several configurations, which has
lead to a set of results which were used for a comparison w.r.t. the full scale cylindrical
shell later on. The sandwich cylindrical shell shows similar KDFs as seen for the scaled
solid laminate cylindrical shell, and thus also showing a higher KDF than the KDF retrieved
from SP-8007. This could confirm that SP-8007 can result in conservative KDFs, but the
mandrel imperfection only accounts for the mandrel and not imperfections caused by the
manufacturing. This could mean the mandrel imperfection is conservative. The exaggerated
imperfection still shows a higher KDF in comparison to SP-8007, which ensures a higher
degree of certainty for the claim that SP-8007 is conservative. The sandwich cylindrical shell
does not show failure pre-buckling, but the strain values are considerably high at the last
pre-buckling increment. An investigation is needed if pad-ups can lower the strains, to be
able to ensure that this scaled configuration is a valid option for experimental testing. Three
out four element configurations showed buckling loads within 0.5%, with the three SC8R
elements through the thickness showing a 3.5% lower buckling load compared to a single
SC8R element through the thickness. When the main goal of an analyses is to determine the
buckling behaviour, a single SC8R or S4R element through the thickness is still recommended.
It saves both time to model as computational time, while the results for the buckling behaviour
are as accurate or better than other configurations. When damage analysis or facesheet core
separation are of interest, the SC8R facesheet and CSS8 core combination is recommended,
as it combines efficient modelling of the facesheets combined with a 3D material model for
the core.

5.5 Summary
The scaled sandwich cylindrical shell offers a few new aspects. As it’s the first cylindrical shell
of this thesis using a sandwich panel design, which offers new possibilities for the FE model.
To first get acquainted with the modelling of a sandwich panel, the first sandwich panel to
be modelled consisted of a tensile specimen. The tensile specimen was modelled using two
different structural configurations and two mesh sizes. A finer mesh saw the results of all
element configurations converge, where it was seen that the S4R element is less sensitive to
mesh size. The CSS8 element again showed the highest CPU time, even higher than using
multiple elements through the thickness with two different combinations. The chapter then
continued with the modelling of the sandwich cylindrical shell. The sandwich cylindrical shell
has a diameter of 800 mm and a length of 730 mm. It has a core thickness of 1.9 mm, which
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is why a foam material core is used instead of a honeycomb core. A honeycomb core would
be difficult, if not impossible, to manufacture for such a thin core thickness. Three types of
this sandwich cylindrical shell were modelled: a cylindrical shell without imperfection, with a
4.1% mandrel imperfection and with a 20% mandrel imperfection. Due to the different thick-
ness, the original mandrel imperfection has a higher amplitude with respect to the thickness
compared to the scaled solid laminate cylindrical shell. These three cylindrical shells were
modelled, and showed comparable behaviour to the scaled solid laminate cylindrical shell
when looking at the load-displacement graph. The cylindrical shell without imperfection did
however show a lower buckling load compared to the SP-8007 analytical solution, while the
Reese and Bert analytical solution did show better agreement with the FE results. This was
to be expected, as this difference is most likely caused by the assumption of using the SP-8007
method, that the core is thin enough to consider the sandwich as a single laminate. All failure
criteria showed failure after buckling. The mandrel imperfection showed higher knockdown
factors compared to the analytical solution. Strains in the pre-buckling last increment were
checked, and were considered high. The cylindrical shell without imperfection showing shear
strains close to failure. All contour plots in pre-buckling showed similar behaviour, both in
radial displacement and failure criteria values. The largest difference in strain values was be-
tween the cylindrical shell without imperfection and the cylindrical shell with 4.1% mandrel
imperfection.

An element comparison was executed. Two single element through the thickness configu-
rations were used, with a SC8R and S4R element. Furthermore, two configurations with three
elements through the thickness were used: SC8R facesheet and CSS8 core and SC8R facesheet
and core. Three out of four configurations showed exact overlap, with only the three SC8R
elements through the thickness showed a 4% lower buckling load which can still be considered
accurate enough. It is discussed that the sandwich cylindrical shell shows higher KDFs from
the FE analyses in comparison to the KDF received from SP-8007. It’s also recommended
to investigate if the strains can be lowered by adding pad-ups, as values close to material
failure were seen. This would ensure the sandwich cylindrical shell would be a valid option
for experimental testing.
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Chapter 6

Full Scale Cylinder

This chapter focusses on the analyses of the CTA 8.1 cylindrical shell and the comparison
with the scaled cylindrical shells which are based on the CTA 8.1. The analyses of the CTA
8.1 provide results which were compared to the results from the scaled cylindrical shells. The
CTA 8.1 is a test cylindrical shell designed and manufactured by NASA. The cylindrical shell
is manufactured from a sandwich composite which utilizes a honeycomb core. A imperfection
sensitivity investigation was executed, and two types of imperfections were compared. The
first type is an axisymmetric imperfection, and the second type is an imperfection which is
based on measurements of the actual CTA 8.1 cylindrical shell. For this comparison, dynamic
implicit analyses was used, next to a linear eigenvalue analysis to determine the axisymmetric
modeshape. A linear static analysis was executed, to determine the linear stiffness as a
reference case. The last section of the chapter focussed on the comparison between the CTA
8.1 cylindrical shell, and the two scaled configurations which are based on the CTA 8.1. The
comparison utilized nondimensional equations, to be able to compare the load-displacement
graphs in a nondimensional form. Furthermore, a comparison of the strain contour plots was
executed, and lastly a relation between the resulting KDF and imperfection amplitude was
established.

6.1 CTA 8.1

The CTA 8.1 cylindrical shell was designed and manufactured by NASA for experimental
testing purposes. It has a length of 2286 mm and a diameter of 2402 mm, and is thus
considerably larger in comparison to the other cylindrical shells included in this thesis. The
full structural properties are shown in Table 6.1. It uses a different composite material for the
facesheets, named IM7/MTM45, for which the material properties are shown in Table 6.2.
The core material used is a honeycomb core, for which the material properties are shown in
Table 6.3. As it is a sandwich cylindrical shell, the analytical buckling load was once more be
calculated by using two different methods. The first analytical method to be used is SP-8007,
the second method is the method by Reese and Bert. The resulting buckling loads of these
analytical methods are reported in Table 6.4. The results are similar to what was seen for
the scaled sandwich cylindrical shell. The SP-8007 results in a higher buckling load for a
cylindrical shell without imperfection compared to the solution by Reese and Bert.
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Table 6.1: CTA 8.1 structural properties [13].

Facesheet Layup [±45, 0, 90]s
Core Thickness [mm] 6.35

Diameter [mm] 2402
Length [mm] 2286

Table 6.2: IM7/MTM45 Material Properties [13].

E11 E22 ν G12 ρ tp
[MPa] [MPa] [-] [MPa] [kg/m3] [mm]
142816 8618.5 0.36 5309 1580 0.144

Table 6.3: Honeycomb core material properties [13].

E11 E22 E33 ν12 ν13 ν23 G12 G13 G23 ρ
[MPa] [MPa] [MPa] [-] [-] [-] [MPa] [MPa] [MPa] [kg/m3]
0.345 0.262 413.7 0.45 0.0001 0.0001 0.12 203.4 82.7 72

Table 6.4: Buckling loads for the CTA 8.1 cylindrical shell, SP-8007 [2] and Reese and Bert [58].

Analysis Buckling load [kN]
SP-8007 without imperfection 5023.2
SP-8007 with imperfection 2985.4

Reese and Bert without imperfection 4519.3
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6.2 Preliminary Analysis of the CTA 8.1 Cylindrical Shell
This section focusses on the preliminary analyses of the CTA 8.1 cylindrical shell. Three types
of analyses were executed, an eigenvalue analyses which provided a axisymmetric imperfection,
a linear static analysis as a reference case for the stiffness of the cylindrical shell, and dynamic
implicit analyses. The dynamic implicit analyses that were executed, used a cylindrical shell
without imperfections and a cylindrical shell including an axisymmetric imperfection. The
axisymmetric imperfection was used for three different amplitudes w.r.t. the thickness, which
are: 10%, 20% and 50%. These are similar amplitudes as used in the analyses which were
previously executed. The modelling technique used is similar to previous chapter, which is
explained in subsection 3.1.1, and results in the FE model shown in Figure 6.1. In previous
analyses, a mesh size of 5 mm was used. Due to this cylindrical shell being a different scale
and thus considerably larger, a mesh size of 10 mm was used. This results in the same order
of magnitude for the number of nodes as previous analyses. The S4R element was used for
the analyses of this chapter. Most of these models were build early during the thesis, when
the S4R element was the element of choice. Due to the S4R element showing excellent results
for the scaled sandwich cylindrical shell in the element comparison, rebuilding the model of
the CTA 8.1 cylindrical shell with another element was deemed unnecessary.

Figure 6.1: FE model of the CTA 8.1 cylindrical shell.

The first results to be shown consists of the first four eigenmodes of the CTA 8.1 cylindrical
shell, which are retrieved from the eigenvalue analyses. The first two eigenmodes show a
typical axisymmetric modeshape, while the third and fourth eigenmodes show a asymmetric
modeshape, see Figure 6.2. The first eigenmode was used as the axisymmetric imperfection
for the dynamic implicit analyses. The reasoning for using the axisymmetric modeshape
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as an imperfection is similar to previous cases. The diamond modeshape is only retrieved
when a higher amount of eigenvalues is requested, which resulted in a higher amount of
computational time. The dynamic analyses that were executed resulted in a load-displacement
graph, which is combined with the analytical buckling loads calculated by using SP-8007. The
load-displacement graph for these analyses is shown in"Figure 6.3.

Figure 6.2: First four eigenmodes, showing radial displacement of the CTA 8.1 cylindrical shell:
(a) first, (b) second, (c) third and (d) fourth.

The first thing to notice from the results shown in the load-displacement graph is the
long loading plateau shown by the cylindrical shell without imperfection. Previous chap-
ters have shown similar occurrences, but the loading plateaus that were encountered never
showed a length as is seen for this cylindrical shell. This is a purely numerical problem and
its occurrence is linked to a axisymmetric shape forming before buckling. Fine tuning the
settings of the dynamic implicit analyses could shorten the loading plateau, or even prevent
it from happening. This would however be time consuming, and the cylindrical shell without
imperfection is only used to provide a reference buckling load in comparison to cylindrical
shells with imperfection. The loading plateau does not seem to increase the buckling load by
a considerable margin, and does still serve its purpose.

When the results of the cylindrical shell with axisymmetric imperfection are compared
with the cylindrical shell without imperfection, it can be seen that the buckling load drops
considerably and that the stiffness is also reduced. The cylindrical shells with the 10% and
20% axisymmetric imperfection converged towards each other in the post-buckling field, which
is most likely caused by the modeshape being similar in the post-buckling field. This type of
behaviour due to a axisymmetric imperfection was also observed for the scaled solid laminate
cylindrical shell.
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Figure 6.3: Load-displacement graph for the CTA 8.1 cylindrical shell and axisymmetric imper-
fection.

When comparing the buckling loads for the cylindrical shell without imperfection, the
buckling load resulting from the cylindrical shell without imperfection is 10% lower compared
to the corresponding SP-8007 analytical buckling load, see Table 6.5. When the analytical
solution from Reese and Bert is compared to the FE solutions, the analytical buckling load is
very close to the buckling load as received from the eigenvalue and dynamic implicit analyses.
With the difference being 1.4% w.r.t. to the FE buckling loads which can be considered very
accurate.

Table 6.5: Buckling loads for the CTA 8.1 cylindrical shell, SP-8007 [2].

Analysis Buckling load [kN]
FE eigenvalue analysis 4584.61

FE dynamic without imperfection 4586.45
FE dynamic with axisymmetric imperfection 10% 3335.35
FE dynamic with axisymmetric imperfection 20% 2645.80
FE dynamic with axisymmetric imperfection 50% 1871.01

6.3 Measured Imperfections of the CTA 8.1 Cylindrical Shell
Measurements that were executed on the manufactured CTA 8.1 cylindrical shells at NASA
resulted in several data sets for the imperfection. Measurements were executed both on the
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inside and outside of the cylindrical shell, from which both a mid-plane was determined and
the thickness imperfection. Although this mid-plane and thickness imperfection data was
available, only using the inside measurements would result in a more comparable situation
w.r.t. the scaled cylindrical shells using mandrel imperfections. No thickness imperfections
were used before, and the determined mid-lane might have a different effect on the behaviour
of the cylindrical shell as it is based on inside and outside measurements.

The steps that had to be taken to process the inside measurements are similar to the steps
that were explained in subsection 4.3.4. The main difference with previous processes, is that
this measurement includes the pad-ups of that were used for the CTA 8.1 cylindrical shell,
and thus requires extra steps. These pad-ups results in a lower radius in the edge regions,
which would distort the imperfection signature. The total imperfection signature, including
these pad-up regions, is shown in Figure 6.4.

Figure 6.4: 2D representation of the radial coordinates for the inside imperfection of the CTA
8.1 cylindrical shell.

To create a imperfection signature which can be used for further analyses, these pad-ups
were compensated for in the imperfection signature. The pad-up layups, and the length of
the pad-up regions are described in the publication by Schultz et al. [13] which focusses on
the CTA 8.1 cylindrical shell. From this publication, the thickness and length of the pad-
ups was determined, and compensated for in the imperfection signature. This results in the
imperfection signature as shown in Figure 6.5.

The pad-ups can still be seen when the imperfection is looked at in detail, but only
for a few locations and minor radial differences. The current imperfection signature was
deemed sufficiently accurate, as the imperfection signature itself shows higher radial variations
compared to these few regions still showing influences of the pad-ups. In previous analyses
that were executed, a imperfection with a amplitude of 20% w.r.t. to the thickness was used
as a reference case. Therefore the imperfection signature of the CTA 8.1 cylindrical shell was
scaled to match 20% w.r.t. the thickness. Firstly the mid-plane has to be determined, which
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is determined by using a histogram plot showing the number of occurrences of the radial
coordinates, as shown in Figure 6.6. From this histogram plot the mid-plane radius of the
inside measurement was determined to be 1201.1 mm. This mid-plane radius is than used
to scale the imperfection amplitude, which results in the imperfection signature as showed in
Figure 6.7.

Figure 6.5: 2D representation of the radial coordinates for the CTA 8.1 cylindrical shell imper-
fection using a 10 mm mesh size.

When the two imperfection signatures are compared, it can be seen that the imperfection
signature using the measured amplitude has a larger amplitude compared to the 20% ampli-
tude imperfection. The measured imperfection amplitude is 31.6% w.r.t. to the thickness,
and the scaling of the 20% amplitude imperfection is thus the other way around as compared
to previous imperfection signatures of the mandrel imperfection. The next step is to use these
imperfection signatures in a dynamic implicit analyses, which can then be compared to the
results of the cylindrical shell without imperfection. This results in the load-displacement
graph as shown in Figure 6.8, with the corresponding buckling loads reported in Table 6.6.

Table 6.6: Buckling loads for the CTA 8.1 cylindrical shell, SP-8007 [2].

Analysis Buckling load [kN]
FE dynamic without imperfection 4586.45

FE dynamic with measured imperfection 20% 4032.84
FE dynamic with measured imperfection 31.6% 3730.78
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Figure 6.6: Histogram plot for the number of occurrences of the radial coordinates of the
imperfection measurement.

Figure 6.7: 2D representation of the radial coordinates for the CTA 8.1 cylindrical shell imper-
fection with an amplitude of 20% w.r.t. to the thickness.
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Figure 6.8: Load-displacement graph of the CTA 8.1 cylindrical shell with measured imperfec-
tions.

The behaviour in these load-displacement graphs is similar to what was seen for the scaled
configurations using the mandrel imperfections. The stiffness does show a decrease, but not
in the same order of magnitude as seen for a axisymmetric imperfection. Both imperfection
amplitudes show higher KDFs in comparison to the SP-8007 analytical solution, with a KDF
of 0.88 and 0.81 for the 20% and 31.6% amplitude respectively. The influence of the amplitude
of the measured imperfection seems to have a higher influence on the stiffness, than it does
on the buckling load. The relative difference between the buckling loads of the cylindrical
shells using an imperfection in comparison to the buckling load of the cylindrical shell without
imperfection, is lower in comparison to the stiffness differences. The next step is to compare
the strain values of the outer facesheet of the CTA 8.1 cylindrical shell, which contain the
most critical strain values. The strain values are reported in Table 6.7.

When comparing the strain values of the three cylindrical shells, all show that the first
ply is the most critical. The first and second ply both show high shear strains, where the first
ply shows slightly higher shear strains. The third ply shows the highest tensional strain in the
2nd material direction, but does not seem to be as critical as the shear strains. The difference
in strain values between the two cylindrical shells including imperfections is minimal, while
the difference with the cylindrical shell without imperfection is higher. To determine the
location of the critical strain values, the strain values of the first ply are shown in a contour
plot in Figure 6.9.
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Figure 6.9: Strain contour plots of the first ply of the CTA 8.1 cylindrical shell with a deformation
scale of 30. Each row is one type of imperfection: a = without imperfection ; b = measured
imperfection 20%; c = measured imperfection 31.6%. The number notation: 1,2 and 3 are
ε11,ε22,ε12 respectively.
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Table 6.7: Maximum strains (µε) of the inner facesheet of the CTA 8.1 cylindrical shell.

Without imperfection ε11 ε22 ε12

Ply 1 -1578 -1579 11420
Ply 2 -1552 -1552 -11370
Ply 3 -7168 4142 -1
Ply 4 4142 -7111 1
Ply 5 -7054 4142 -1
Ply 6 -1486 -1495 -2928
Ply 7 -1512 -1512 11080

Mandrel imperfection 20% ε11 ε22 ε12

Ply 1 -1839 -1901 9582
Ply 2 -1882 -1819 -9527
Ply 3 -6320 3223 820
Ply 4 3223 -6264 -805
Ply 5 -6209 3222 789
Ply 6 -1809 -1740 -9310
Ply 7 -1732 -1790 9255

Mandrel imperfection 31.6% ε11 ε22 ε12

Ply 1 -1917 -2086 9472
Ply 2 -2062 -1906 -9410
Ply 3 -6288 3111 1118
Ply 4 3110 -6225 -1096
Ply 5 -6161 3108 1082
Ply 6 -1968 -1863 -9163
Ply 7 -1853 -1944 9101

The location of the highest strain values are similar, with the exception of the shear strain
of the cylindrical shell without imperfection in comparison to the two cylindrical shells with
measured imperfection. The location of the maximum strains in the first and second material
direction are close to the edge for all three cylindrical shells. While the maximum shear strain
of the two cylindrical shells with imperfections show maximum strain locations which are a
bit spread out, and the cylindrical shell without imperfection shows the maximum strain at
locations close to the edges. The cylindrical shell without imperfection showed the highest
strain values, combined with the strain values occurring in the whole circumferential direction
at the edges, it combines into a more critical situation.
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6.4 Comparison between the Scaled and Full Scale Cylindrical Shells
This section focusses on the comparison between the three main cylindrical shells of this thesis.
These comparisons utilized the results of the three cylindrical shells from the dynamic implicit
analyses which were executed. From the scaled solid laminate cylindrical shell, the test article
version was used both with and without mandrel imperfection. The scaled sandwich cylin-
drical shell was used with and without mandrel imperfection. The CTA 8.1 cylindrical shell
was used with and without the measured imperfection. This in total provides 9 cylindrical
shell configurations to be compared.

6.4.1 Nondimensional Load-Displacement Comparison
The first comparison was executed by using two nondimensional equations to characterize
the load-displacement curve of the three cylindrical shells. The nondimensional equations
consist of the nondimensional load as shown in Equation 6.1, which is included in the scaling
procedure published by Uriol Balbin et al. [4], and the nondimensional displacement as
shown in Equation 6.2, which is included in a publication by Schultz and Nemeth [26]. Two
comparisons were made using the nondimensional equations. The first comparison included
the cylindrical shells without imperfections and with the measured amplitude imperfection.
The second comparison included the cylindrical shells without imperfections and with the
measured imperfections which are scaled to have an amplitude of 20% w.r.t. to the thickness.
The load-displacement results of all cylindrical shells were converted to the nondimensional
load-displacement graphs using previously mentioned equations, which results in the first
comparison being shown in Figure 6.10, with the corresponding nondimensional buckling
loads shown in Table 6.8.

K = PR

2π
√
D11D22

(6.1)

U = uL√
a11a22D11D22

(6.2)

Two properties can be distinguished from this load-displacement graph which are important
for the comparison. The first property is the buckling load of each configuration, which can be
observed just before the drop in load in each graph. The second property are the stiffnesses,
which is the curve of each slope during the increase in loading. When the nondimensional
buckling loads of the cylindrical shells without imperfection are compared, it can be seen that
the scaled solid laminate cylindrical sh ell shows the highest nondimensional buckling load,
10.2% higher w.r.t. to the CTA 8.1 cylindrical shell. While the buckling loads of the scaled
sandwich cylindrical shell and the CTA 8.1 cylindrical shell are quite close, with a difference of
3.3%. The nondimensional stiffnesses of the three cylindrical shells show the similar relation
as the nondimensional buckling load, the scaled solid laminate cylindrical shell shows the
highest stiffness, while the scaled sandwich cylindrical shell and the CTA 8.1 cylindrical shell
show nondimensional stiffnesses which are equal.

The comparison of the cylindrical shell with imperfection using the measured imperfec-
tion amplitude shows a different relation between the results. The two scaled cylindrical
shells show a drop in nondimensional buckling load, which is less severe in comparison to
the drop in nondimensional buckling load of the CTA 8.1 cylindrical shell. The scaled solid
laminate cylindrical shell shows a buckling load which is 28.7% higher compared to the CTA
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8.1 cylindrical shell, while the scaled sandwich cylindrical shell shows a 12.2% higher buckling
load. The two scaled cylindrical shells also show almost no drop in nondimensional stiffness
due to the imperfection, while the CTA 8.1 cylindrical shell does show a drop in nondimen-
sional stiffness. These behaviour differences can however be explained, by looking at the
amplitudes of the imperfection. The scaled cylindrical shells have a imperfection amplitude
of 2.85% and 4.1% w.r.t. to the thickness for the scaled solid laminate and scaled sandwich
cylindrical shell respectively. The CTA 8.1 cylindrical shell shows a imperfection amplitude
which is 31.6% w.r.t. to the thickness. Relatively speaking, this is a considerable difference
in imperfection amplitude from which the effect can be directly seen in the nondimensional
load-displacement graphs. The next step is to compare the nondimensional load-displacement
graphs of the cylindrical shells with the scaled imperfection amplitude of 20%. These load-
displacement graphs are shown in Figure 6.11,with the corresponding buckling loads shown
in Table 6.8.

Table 6.8: Nondimensional buckling loads of the three cylindrical shells, with and without im-
perfections.

CTA 8.1 Scaled solid laminate Scaled sandwich
Without imperfection 556.0 612.8 10.2% 537.9 -3.3%

With imperfection measured amplitude 451.9 579.4 28.7% 507.2 12.2%
With imperfection 20% amplitude 488.5 448.7 -8.1% 408.6 -16.3%

Figure 6.10: Nondimensional load-displacement graph for the cylindrical shells with and without
measured and mandrel imperfection.
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Figure 6.11: Nondimensional load-displacement graph for the cylindrical shells with and without
20% measured and mandrel imperfection.

When comparing the nondimensional buckling loads of the cylindrical shells using the 20%
amplitude imperfection, the CTA 8.1 cylindrical shell shows the highest load. The scaled solid
laminate cylindrical shell has a 8.1% lower buckling load and the scaled sandwich cylindrical
shell has a 16.3% lower buckling load, both in comparison to the CTA 8.1 cylindrical shell.
The relation between the two scaled configurations is similar to the previous comparison, but
the relation with respect to the CTA 8.1 cylindrical shell is the opposite. The change of this
relative relation can have multiple causes:

• Difference in shape and smoothness of the imperfection signature: The shape of the
mandrel imperfection and the CTA 8.1 measured imperfection do show differences when
the imperfection signatures are compared in Figure 4.13 and Figure 6.4. The mandrel
imperfection seems to be smoother in comparison to the CTA 8.1 measured imperfection.
This might be due to different objects being measured, one being a mandrel and the
other being a actual cylindrical shell. The shape of the mandrel imperfection also seems
more constant in the axial direction, but this is a minimal difference. The mandrel
imperfection also shows the imperfection band, of which the effect increases when the
imperfection is scaled, judging from previous results.

• Difference in scale of the cylindrical shell: It might be that the scale of the cylindrical
shell affects the relation between imperfection amplitude and decrease of the buckling
load.

• The method of scaling the imperfection, or relating the imperfection to the thickness
of the shell: The imperfection has been scaled w.r.t. the thickness of the shell. This
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type of scaling, or relating the imperfection to the thickness of the shell, might not lead
to realistic behaviour. It might also lead to an unrealistic effect of the imperfection
amplitude on the behaviour of the cylindrical shell.

These bullet points actually describe the main problem of using scaled structures, as the
comparison between different scales remains difficult. The differences seen in this compar-
ison should however not be exaggerated, as the differences in nondimensional stiffness and
nondimensional buckling load are relatively small.

6.4.2 Comparison of Strain Contour Plots

The next comparison used the strain contour plots of the cylindrical shells with the measured
and mandrel imperfections using the measured amplitude. Using these cylindrical shells for
this comparison showed the most realistic case for each cylindrical shell that was analysed.
All plots show the most critical ply of the cylindrical shells at the pre-buckling increment,
which were previously used to check for material failure before buckling. The strain contour
plots are shown in Figure 6.12.

Figure 6.12: Strain contour plots of the three cylindrical shells using the measured and mandrel
imperfections. Each row is one cylindrical shell configuration: a = CTA 8.1 (deformation scale
of 30) ; b = scaled solid laminate (deformation scale of 50); c = scaled sandwich (deformation
scale of 30). The number notation: 1,2 and 3 are ε11,ε22,ε12 respectively.
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When comparing the contour plots of the three cylindrical shells, it can be seen that very
similar colour patterns are seen next to similar displacement fields. It should be noted that
the general deformation shape and relative colour pattern differences should be judged, as the
scaled solid laminate cylindrical shape has a different radius to length ratio it might give a
slight distorted image while it does show comparable behaviour. The relative location of the
maximum strain values and radial displacement is similar. Furthermore, the ratio between the
amplitudes of the half waves close to the edges and at the mid section are similar between the
cylindrical shells as well. The largest difference is seen between the shear strains, for which
the CTA 8.1 cylindrical shell and solid laminate cylindrical shell show some similarities, while
the scaled sandwich cylindrical shell shows a different colour pattern.

6.4.3 Relation between KDF and Imperfection Amplitude

The last step of the comparison between the three cylindrical shells focussed on relating
the KDF of each cylindrical shell and imperfection combination to the amplitude of the
imperfection. A similar approach is seen in SP-8007, where the knockdown factor is related
to the radius over thickness and not the imperfection itself, as seen in Figure 2.1. To be
able to base this relation on a larger dataset than is available from previous analyses, a few
additional dynamic implicit analyses with scaled imperfections were executed. The CTA 8.1
cylindrical shell and the solid laminate cylindrical shell were both used for one additional
analyses, while the scaled sandwich cylindrical shell was used for three additional analyses.
The scaled sandwich cylindrical shell was used for more analyses as it is the most efficient to
analyse. This is due to a combination of relative element size and length of the cylindrical
shell, which is why it has the lowest number of elements. Only the buckling load of these
analyses was used for the comparison. First, a basic comparison of the geometry of the three
cylindrical shells was compared, which was used to determine the relation between KDF
and imperfection amplitude later on. The geometry of each cylindrical shell is reported in
Table 6.9.

Table 6.9: Dimentions of the three cylindrical shells of the comparison.

Radius [mm] Length [mm] Thickness [mm]
CTA 8.1 1205.3 2286 8.37

Scaled solid laminate 402.2 1220 4.21
Scaled sandwich 401.6 730 2.95

The radius differences that can be seen between the two scaled configurations, is due to
difference in thickness. As in the inside diameter is determined by the radius of the mandrel,
which results in different mid-plane radii for the scaled configurations. The next step of this
last comparison is to combine the results of the dynamic implicit analyses of all cylindrical
shell configurations. The imperfection w.r.t. to the thickness was reported, as it was used
throughout the thesis as a reference towards the imperfections, next to the actual imperfection
amplitude in mm. The buckling loads of each cylindrical shell configuration with imperfection
is compared to the buckling load of the corresponding cylindrical shell without imperfection,
which leads to a knockdown factor. The last step of the comparison would be to actually
relate the knockdown factor to the imperfection amplitude in mm and to a set of properties
of each cylindrical shell. Several combinations of structural properties were investigated to
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determine if a trend could be established, where it was seen that relating the imperfection
amplitude to the radius and length of the cylindrical shell saw the most consistent results.
The imperfection amplitude was divided by the radius and length, from which the resulting
data is reported in Table 6.10.

Table 6.10: The 11 cylindrical shell configurations for the imperfection versus knockdown factor
comparison.

CTA 8.1
Imp. w.r.t. Imp. amp.

KDF ia/(R*L)to thickness (ia) [mm]

1 12.80 1.08 0.91 3.9E-07
2 20.00 1.67 0.88 6.1E-07
3 31.60 2.64 0.81 9.6E-07

Scaled solid laminate
Imp. w.r.t. Imp. amp.

KDF ia/(R*L)to thickness (ia) [mm]

4 2.85 0.12 0.95 2.4E-07
5 6.90 0.29 0.89 5.9E-07
6 20.00 0.84 0.73 1.7E-06

Scaled sandwich
Imp. w.r.t. Imp. amp.

KDF ia/(R*L)to thickness (ia) [mm]

7 4.10 0.12 0.95 4.1E-07
8 6.30 0.19 0.88 6.5E-07
9 10.00 0.29 0.83 9.9E-07
10 20.00 0.59 0.76 2.0E-06
11 28.40 0.84 0.67 2.9E-06

The comparison used 11 configurations in total, with the majority using scaled imperfec-
tions. The high amplitude imperfections w.r.t. to the radius and length were only used for
the scaled configuration, as it was not deemed to be an accurate representation to up-scale
the imperfection of the CTA 8.1. The imperfection of the CTA 8.1 already showed large
deviations, and the FE model would most likely require a finer mesh to be able to represent a
higher imperfection amplitude accurately. When the KDFs are compared to the imperfection
w.r.t. to the thickness, it can be seen that this relation is quite different between the CTA
8.1 cylindrical shell and the scaled cylindrical shells. To create a more clear idea why the
imperfection amplitude over radius times length is chosen, the KDFs was plotted against this
relation. The plot showing this relation is shown in Figure 6.13.

It can be seen that the highest level of agreement is achieved at lower imperfection
amplitudes w.r.t. to the radius and length of the cylindrical shell. This could be caused by
the scaling factor that was used for the mandrel imperfection for some of these configurations.
The scaling factor for the extreme cases ranged from 5 to 7, which is a significant exaggeration
of the imperfection. This could already be seen for the strain contour plots from the scaled
cylindrical shell using the 20% w.r.t to the thickness imperfections, where the imperfection
band caused high strain values. When the results for each cylindrical shell are compared,
the CTA 8.1 and the scaled solid laminate cylindrical shells seem to follow a linear relation.
While the scaled sandwich cylindrical shell shows less consistent behaviour, which might be
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due to the imperfection band having a larger influence on the sandwich in comparison to the
solid laminate configurations.

Figure 6.13: Graphical representation of the relation between the KDF and imperfection ampli-
tude over radius and length.

6.5 Discussion and Outcome
The CTA 8.1 cylindrical shell was analysed for two different imperfection types, next to a
configuration without imperfections. The imperfection sensitivity to the axisymmetric im-
perfection is high, which is thus similar to what was seen for the solid laminate cylindrical
shell. When comparing the two imperfection types, the imperfection sensitivity for the mea-
sured imperfection is much lower compared to the axisymmetric imperfection. When both
imperfection types are used with a amplitude of 20% w.r.t. to the thickness, the difference in
buckling load is 35%. The axisymmetric imperfection does not result in realistic behaviour
of a cylindrical shell, when it is compared with a measured imperfection. If measured imper-
fections are not available, a diamond modeshape would be a better choice in most cases, but
this option was not explored for the CTA 8.1 cylindrical shell due to the main focus being on
the comparison between cylindrical shells using measured imperfections.

The three main cylindrical shells of the thesis were compared in the nondimensional
load-displacement graphs. Although differences were seen, the cylindrical shells do show very
similar behaviour, both for the buckling loads and stiffnesses of the cylindrical shells. The
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maximum buckling load difference for the cylindrical shells without imperfection was 10.2%,
while the cylindrical shells with imperfections showed a maximum difference of 28.7%. This
difference for the cylindrical shells with imperfection is most likely caused by the difference in
imperfection amplitude and imperfection signature, due to the CTA 8.1 cylindrical shell also
including manufacturing imperfections. The comparison of the strain contour plots strengthen
the conclusion of the nondimensional load-displacement graphs. The strain contour plots
showed good agreement in general, with the largest difference seen between the shear strain
plots. This difference in shear strain contour plots is most likely caused by the differences in
orientation of the ply used for these plots.

This level of agreement between scaled and full-scale structures was not seen during the
literature review, even when structures with more properties in common were compared by
authors [31]. The current scaled configurations have a lot of distortions w.r.t. to the properties
of the full-scale cylinder, when properties such as dimensions and layup are compared, and still
show representative behaviour. This leads to the conclusion that the scaling procedure results
in representative scaled structures judging from these results, even when a combination of
distorted properties are used. The scaled structures should always be checked if they are valid
options for experimental testing, to ensure that no material failure happens in pre-buckling
and the design can then be adapted when needed.

The last step of the comparison was to investigate if a relation could be determined
between the KDFs resulting from the three cylindrical shells using different imperfection am-
plitudes. Such a relation was presented, but it requires more research if such a relation can
result in accurate predictions for KDFs of other cylindrical shells. The relation that was found
consisted of relating the imperfection to the radius and length of the cylindrical shell. It did
show slight divergence for higher imperfection amplitudes, but the higher imperfection am-
plitudes are scaled imperfections with a high scaling factor which might cause the divergence
behaviour. It would be ideal if this relation could be expanded by using full scale and scaled
cylindrical shells which are based on existing launch vehicle cylindrical shell designs.

6.6 Summary

The CTA 8.1 cylindrical shell is a test article of the SBKF project. This cylindrical shell
was a basis for which two scaled cylindrical shells were designed, which were analysed in
previous chapters. This chapter therefore focused on analysing the CTA 8.1 cylindrical shell,
to provide a set of results for the comparison with the scaled cylindrical shells. A preliminary
analysis was done on the CTA 8.1 cylindrical shell. A linear eigenvalue analysis and a linear
static analysis were executed, to provide a axisymmetric modeshape and reference stiffness of
the cylindrical shell. In the next step dynamic analyses were executed. For both a cylindrical
shell without imperfection, and three cylindrical shells using the axisymmetric imperfection
at different amplitudes. A similar imperfection sensitivity to the axisymmetric imperfection
was seen as for the scaled solid laminate cylindrical shell. As the axisymmetric imperfection
resulted in both a drop in stiffness and a drop buckling load.

The next step was to incorporate measured imperfections. These measured imperfections
were processed similar to previous chapters, but an extra processing step was required. The
measurement included padups, which would not be included into the FE model. To compen-
sate for the radial difference, the padup thicknesses were compensated for, which resulted in a
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imperfection signature without padups. A scaled imperfection of this imperfection signature
was also created, to stay consistent with previous analyses of the scaled cylindrical shells.
Due to the measured amplitude of the imperfection being 31.6% w.r.t. to the thickness, the
imperfection was scaled down to 20% w.r.t. to the thickness. The two imperfection signatures
were used in dynamic implicit analyses which resulted in relatively high buckling loads, as
the imperfection seems large when it is compared to the thickness. The strain values of the
CTA 8.1 cylindrical shell were reported, from which could be seen that there were rather high
shear strains. The contour plots for the strain were shown for the cylindrical shell without
imperfection and with the two measured imperfection cases.

A comparison of the three cylindrical shells was executed. The first step consisted of
determining the nondimensional load-displacement graphs, for which a nondimensional load
and nondimensional displacement equation were shown and used. From this comparison it
was seen that there was general agreement. With the scaled sandwich cylindrical shell show-
ing the highest level of agreement with the CTA 8.1 cylindrical shell, while the scaled solid
laminate cylindrical shell showed higher buckling loads and stiffnesses. The CTA 8.1 cylindri-
cal shell including the measured imperfection was a slight outlier, as the measured amplitude
resulted in a imperfection which caused the buckling load to drop more in comparison to the
scaled cylindrical shells with imperfection. The cylindrical shells including 20% imperfection
amplitude w.r.t. to the thickness were then compared, which showed the opposite relation in
comparison to the measured imperfection amplitude comparison.

Next the strain contour plots of the three cylindrical shells were compared, all cylindri-
cal shells using the measured imperfection amplitude. A high level of agreement was seen,
with the shear strain contour plots showing different colour patterns. The last step of the
comparison consisted of establishing a relation between the KDF and the corresponding im-
perfection amplitude used for the cylindrical shells. To slightly enlarge the dataset on which
this relation would be based on, a few extra analyses of the cylindrical shells using different
imperfection amplitudes were executed. This resulted in the comparison including 11 cases
in total. From these results a relationship was determined and shown, but it requires more
research to establish a relationship with a higher certainty.
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Conclusions

A buckling analysis and imperfection sensitivity study of scaled launch-vehicle cylindrical
shells have been executed, with the emphasis on scaled cylindrical shells due to the expensive
nature of full-scale launch-vehicle cylindrical shells. The work as presented in this thesis is
in a framework of a collaboration with NASA Langley. A literature review on the buckling
of cylindrical shells showed that it is considered a structural problem which is yet to be fully
understood. The cylindrical shells show a high imperfection sensitivity, but the exact influence
of imperfections caused by different manufacturing processes is a source of uncertainty. The
second subject of the literature review was the scaling of structures. The need for scaled
structures is due to the size constraints of experimental testing equipment, next to the financial
benefits compared to testing full scale launch-vehicle cylindrical shells. However, the scaling of
structures can be a challenging process, as a scaled model which shows full scale representative
behaviour is difficult to design due to constraints such as manufacturability.

The main objective of this thesis was to investigate if a scaling method results in repre-
sentative scaled cylindrical composite shells, which will be validated by experimental tests at
NASA Langley. The investigation started with a preliminary analysis of a 800 mm x 800 mm
cylindrical shell, which focussed on an element comparison and a mesh sensitivity study. The
knowledge gained during the preliminary analyses will be used for the following analyses on
the two scaled and full scale cylindrical shells .

The first scaled cylindrical shell to be analysed was a solid laminate cylindrical shell.
The focus was on an element comparison, next to a study on different imperfection types and
the corresponding imperfection sensitivity. The scaled solid laminate cylindrical shell is then
modelled as a test article including mandrel imperfections, padups and potting.

Hereafter, the analyses of a scaled sandwich cylindrical shell was executed, which includes
the mandrel imperfections. The scaled sandwich cylindrical shell was used for an element
comparison, where different element configurations are compared while using the mandrel
imperfection.

Finally, the full scale structure which was the basis of the two scaled cylindrical shells,
named the CTA 8.1, was analysed using both an axisymmetric and measured imperfection.
The CTA 8.1 cylindrical shell, both without and with measured imperfection, was then used
for a comparison with the two scaled cylindrical shells. This comparison was executed by com-
paring the nondimensional load and displacement of each cylindrical shell, next to comparing
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the strain contour plots. Then a relation was established between the knockdown factors of
the cylindrical shells with respect to the imperfection amplitude and structural properties of
each cylindrical shell.

The mesh sensitivity analysis showed that a 5 mm mesh should be used. It should also
be kept in mind, that the mesh size can also be a point of discussion when imperfections are
to be used in the FE model. For example, when measured imperfections are included, with a
finer mesh size the imperfection signature can be approximated more accurately, depending
on the resolution of the measurements.

From the element comparison during the preliminary analysis it was concluded that the
S4R element shows good results, is less sensitive to mesh size and is computational efficient.
The SC8R element showed to be more sensitive to mesh size, but still showed good results
and is also computational efficient. Although the results of the CSS8 element were in line
with the S4R and SC8R element for finer meshes, its computational efficiency makes it the
less obvious choice. Therefore, the CSS8 element should only be used when its 3D material
model is necessary. The C3D8R element showed inaccuracies when modelling a shell. Using
three elements through the thickness improved its results, but the results were still not on
par with the S4R, SC8R and CSS8 elements. The accuracy of the results obtained when
using the C3D8R element can most likely be improved by using an element per ply, but this
increases the computational time and cause the modelling of the composite structure to be
inconvenient. From the preliminary analyses it was concluded that the C3D8R was not a
valid option for subsequent analyses.

The element comparison of the scaled solid laminate cylindrical shell showed agreement
between the SC8R and CSS8 element, while the S4R element showed 5% higher buckling loads
on average. Therefore, for the remaining analysis of the scaled solid laminate cylindrical shell,
the SC8R element was preferred. The scaled sandwich cylindrical shell was used to compare
different element configurations, with single and multiple elements through the thickness
where the facesheets and core were a separate layer of elements. All configurations, except
for the three SC8R elements through the thickness, showed very close agreement. The three
SC8R elements through the thickness showed a 3.5% lower buckling load compared to other
element configurations. Judging from these results, a sandwich cylindrical shell has many
options which can be used to accurately model its behaviour. When a single element through
the thickness is sufficient, as the modelling of damage or separation is not of interest, a S4R
or SC8R element is recommended. When damage or separation is of interest, the SC8R
facesheet and CSS8 core is recommended. This configuration provides a 3D material model
for the core, in combination with efficient modelling of the facesheets.

The dynamic implicit analyses of cylindrical shells without imperfection showed loading
plateaus. The effect of numerical damping on the loading plateau was investigated, where it
was concluded that it does affect the loading plateau but it is not a quick fix and requires
case specific fine tuning.

The scaled solid laminate cylindrical shell was used to investigate the effect of several
types of imperfection, next to the investigation into the imperfection sensitivity with respect
to the amplitude of the imperfection. It was shown that an axisymmetric modeshape im-
perfection causes a considerable reduction in stiffness and buckling load, while a diamond
modeshape imperfection only causes a minor reduction of the stiffness and a drop in buck-
ling load, with a 18% higher buckling load compared to the axisymmetric imperfection. A
loading imperfection was investigated as well, and showed that it did not affect the stiff-
ness of the shell even at high imperfection amplitudes for which the buckling load did show
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a considerable drop. However, the amplitude of a loading imperfection is not comparable
to a geometrical imperfection. This makes the imperfection sensitivity comparison between
a loading imperfection and a geometrical imperfection difficult as there is no relationship.
Mandrel imperfections were introduced, to which the scaled solid laminate cylindrical shell
showed a lower imperfection sensitivity in comparison to the diamond modeshape imperfec-
tion. With 10% and 19% higher buckling loads when using a mandrel imperfection for a
2.85% and 20% imperfection amplitude with respect to the thickness respectively. When
measured imperfections are not available, it is recommended to use a diamond modeshape
imperfection and not an axisymmetric imperfection, as the diamond modeshape imperfection
showed behaviour closer to the mandrel imperfection. It is however always recommended to
use measured imperfections, as the shape of the imperfection showed to have a large impact
on the deformation behaviour, both in pre-buckling and post-buckling, which will also have
a considerable effect on strain field.

The CTA 8.1 cylindrical shell was also used for a investigation into the effect of two dif-
ferent geometrical imperfections. The axisymmetric modeshape imperfection was used, next
to a measured imperfection. Similar behaviour differences as with the scaled solid laminate
cylindrical shell was seen. The axisymmetric modeshape causes a considerable drop in stiff-
ness, which is not seen for the measured imperfection. The drop in buckling load due to the
axisymmetric imperfection is considerably higher in comparison the drop in buckling load seen
for the measured imperfection, with a 35% difference in buckling loads for an imperfection
amplitude of 20% with respect to the thickness.

A sensitivity study of the laminate thickness and cylindrical shell radius was executed,
which showed that an increase of the radius should not cause problems for experimental
testing. An increase in thickness can cause problems due to an increase of the buckling load,
but only when an increase of 7-8% is seen in laminate thickness, which is unlikely to happen.

The maximum strains of the three cylindrical shells at the last increment pre-buckling
were investigated to check for material failure. The maximum strains of the CTA 8.1 are high,
the maximum strains of the scaled sandwich cylindrical shells are close to material failure,
while the scaled solid laminate cylindrical shell has a higher margin with respect to material
failure. The scaled cylindrical shells were also used for a failure analysis, for which both
cylindrical shells saw failure after buckling.

The general comparison of the CTA 8.1 cylindrical shell and the scaled cylindrical shells
saw good agreement, with both scaled configurations resulting as valid options. The first
comparison used nondimensional load and displacement. Which showed for the cylindrical
shells without imperfection, that the scaled solid laminate cylindrical shell has the highest
nondimensional stiffness and a 10.2% higher nondimensional buckling load compared to the
CTA 8.1 cylindrical shell, while the stiffness of the scaled sandwich cylindrical shell shows
close agreement with the CTA 8.1 cylindrical shell and only a 3.3% difference in buckling
load. When the effect of the measured imperfections are compared, the scaled solid laminate
cylindrical shell shows the highest stiffness and a nondimensional buckling load which is 28.7%
higher compared to the CTA 8.1 cylindrical shell. The scaled sandwich cylindrical shell shows
a 12.2% higher nondimensional buckling load in comparison to the CTA 8.1 cylindrical shell,
with a stiffness which is in between the scaled solid laminate and CTA 8.1 cylindrical shell.
The scaled cylindrical shells using the mandrel imperfection have a knockdown factor of 0.95,
which can be expected due to the imperfection being equal. The measured imperfection of
the CTA 8.1 cylindrical shell did however show a lower knockdown factor of 0.81. This is
most likely due to the larger measured amplitude of the imperfection. The relation between
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imperfection amplitude and the scale of the cylindrical shell also seems to have an effect. This
effect was magnified when the measured imperfections were scaled to 20% with respect to the
thickness and compared by nondimensional load and displacement. This comparison showed
the opposite in terms of buckling loads with respect to the previous comparison. The CTA
8.1 cylindrical shell showed the highest buckling load, followed by the buckling load of the
scaled solid laminate cylindrical shell, which was 8.1% lower, and the buckling load of the
scaled sandwich cylindrical shell, which was 16.3% lower. The knockdown factor of the scaled
sandwich cylindrical shell was 0.73, while the knockdown factor of the scaled solid laminate
cylindrical shell was 0.76. The scaled mandrel imperfection had a larger influence on the
scaled solid laminate cylindrical shell than on the scaled sandwich cylindrical shell, while the
scaled cylindrical shells showed equal knockdown factors for the measured amplitude.

When the strain contour plots are compared, similarities are seen between the ε11 and ε22
colour patterns in the contour plots between all three cylindrical shells, while the ε12 contour
plots show differences in the patterns. The differences are most likely due to the difference
in ply orientation of the most critical ply at pre-buckling, which were shown in these contour
plots.

The last part of the comparison between the cylindrical shells investigated if a relation
could be determined between the structural properties with respect to the imperfection ampli-
tude and the knockdown factor of all cylindrical shell configurations. A trend was seen when
the imperfection amplitude was related to the radius and length of the cylindrical shells. It
however does require more research into more types of cylindrical shells to determine if the
trend is a local trend for these cylindrical shells or not.

The scaled cylindrical shells that were studied in this thesis do show behaviour that is
representative of the full scale they were based on. Although differences were observed, the
level of similarity that was seen between these scaled structure and their full scale counterpart,
was not found in literature. There is still research to be done, as some of the similarities
that are seen are not quantified, such as the strain patterns that were compared and the
relation between imperfection amplitude and knockdown factor. The certainty behind these
conclusions can be strengthened, by adding more full scale and scaled cylindrical shells to the
comparison. This would increase the dataset which the conclusions and found relations are
based on, next to providing more experience on the analyses of scaled cylindrical shells. This
experience can be a valuable asset when these scaled cylindrical shells are used during the
design process of launch-vehicle cylindrical shells.

A recommended next step of the research of these scaled cylindrical shells, is to investigate
if the results of the scaled cylindrical shells can be used to predict behaviour of the full scale
cylindrical shell. This prediction method can then be compared with both the experimental
and numerical results of the CTA 8.1 cylindrical shell. This capability of predicting behaviour
of full scale cylindrical shell is the major remaining part which will increase the usefulness of
knowledge gained by testing scaled cylindrical shells. If such prediction method is developed
successfully, it will further increase the certainty of results based on scaled structures and
increase the amount of possibilities to use these methods for the design process of launch-
vehicle cylindrical shells.
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